

Report No. FAA- RD-80-12 FAA-NA-79-28

300

AD A 0882

DYNAMIC AIR TRAFFIC CONTROL SIMULATION of profile descent and high-speed approach fuel conservation procedures

P. James O'Brien Francis M. Willett, Jr. Leonard Tobias, (NASA Ames) FEDERAL AVIATION ADMINISTRATION TECHNICAL CENTER Atlantic City, N. J. 08405

FINAL REPORT

MAY 1980

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U. S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D. C. 20590

80 8 22 009

NOTICE

Ì

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

1. Report No. 19		· ·		
	2. Government Access	on No.	3. Recipient's Catalog No	•
FAA-RD 80-12	AD-AARX	232		
C. Title and Subvivie	110 11900		S. Report Date	
DYNAMIC AIR TRAFFIC CONT			// May 1080	
DESCENT AND HIGH-SPEED A PROCEDURES	APPROACH FUEL CONSE	RVATION	6. Performing Organization	2/12:
7. Author's P. James O'Bri	len / Francis M./Wil	lett, Jr.	8. Performing Organization	Report No.
and /Leonard /To		All A	FAA-NA-79-28	1
9. Performing Organization Name and	Address	<u>(</u>	10. Work Unit No. (TRAIS)	
Federal Aviation Adminis		-		
National Aviation Facili Atlantic City, New Jerse		Center	11. Contract or Grant No. 218-150-110	
	.,		13. Type of Report and Pe	
12. Sponsoring Agency Name and Addre	938		1 9	
U.S. Department of Trans				repto
Federal Aviation Adminis Systems Research and Dev			Jul 17-A	
Washington, D.C. 20590	eropuene pervice		14. Sponsoring Agency Co.	de 6
15. Supplementary Notes			<u> </u>	<u> </u>
1				
/				
16. Abstract		·····		
A dynamic simulation of	instrument flight	rule (IFR) ai	r traffic operati	ons in the
Denver, Colorado, termin	al area was conduct	ted at the Na	tional Aviation F	acilities
Experimental Center (NAF	EC) to investigate	aircraft fue	l conservation pr	ocedures
and the compatibilities	of these procedure	s with air tr	affic control (AT	C) and wit
the expeditious flow of	air trattic. The	laboratory en	vironment of the	NAFEC
ALT ITATIC CONTROL STRU				
Basaarah Canton (ADC)	lation Facility (A	ICSF) was uti	lized along with	two Ames
Research Center (ARC) pi	loted flight simula	ators. The A	RC simulators were	two Ames e inter-
Research Center (ARC) pi faced with the ATCSF via	loted flight simula a landline system	ators. The A and were flo	RC simulators were wn within the sim	two Ames e inter- ulated
Research Center (ARC) pi faced with the ATCSF via environment together wit	loted flight simula a landline system h the NAFEC compute	ators. The A and were flo er-generated	RC simulators were wn within the simu flights. Fuel cou	two Ames e inter- ulated nservative
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t	loted flight simula a landline system h the NAFEC compute he profile descent	ators. The A and were flo er-generated and two high	RC simulators were wn within the simu flights. Fuel con- speed approaches	two Ames e inter- ulated nservative , the
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an	loted flight simula a landline system h the NAFEC compute he profile descent d the International	ators. The A and were flo er-generated and two high l Air Transpo	RC simulators wer wn within the sim flights. Fuel co -speed approaches rt Association (L	two Ames e inter- ulated nservative , the ATA)
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approx	ators. The A and were flo er-generated and two high l Air Transpo ach control (RC simulators wer wn within the sim flights. Fuel con -speed approaches rt Association (L TRACON) was simula	two Ames e inter- ulated nservative , the ATA) ated, and
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approa ve of Stapleton Air	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope	RC simulators wer wn within the sim flights. Fuel con -speed approaches rt Association (L TRACON) was simular rations. Results	two Ames e inter- ulated nservative , the ATA) ated, and showed
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approvi- ve of Stapleton Air conventional proce	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel	RC simulators were wn within the simulators. Fuel con- speed approaches rt Association (L TRACON) was simulators. Results was saved when on	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approa ve of Stapleton Air conventional proce e was used. Fuel	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t	RC simulators were wn within the simulators. Fuel con- speed approaches rt Association (L TRACON) was simulators. Results was saved when on he high-speed app	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approa ve of Stapleton Air conventional proce e was used. Fuel , was questionable ights were not rest	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma	RC simulators were wn within the simu- flights. Fuel con- -speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed appr an indication of intaining 250 know	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below.	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approa ve of Stapleton Air conventional proce e was used. Fuel , was questionable ights were not rest Additionally, a gra	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s	RC simulators were wn within the simu- flights. Fuel con- -speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed appr an indication of intaining 250 known howed that, at lay	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions,	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approa ve of Stapleton Air conventional proce e was used. Fuel , was questionable ights were not rest Additionally, a gra the most desirable	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt	RC simulators were wn within the simu- flights. Fuel con- -speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed appr an indication of intaining 250 known howed that, at lan itudes were betwee	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet.	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approa ve of Stapleton Air conventional proce e was used. Fuel s, was questionable ights were not resu Additionally, a gra the most desirable A more in-depth su	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt	RC simulators were wn within the simu- flights. Fuel con- speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed appr an indication of intaining 250 known howed that, at land itudes were betwee amifications of con-	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer-
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approa ve of Stapleton Air conventional proce e was used. Fuel s, was questionable ights were not resu Additionally, a gra the most desirable A more in-depth su	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt	RC simulators were wn within the simu- flights. Fuel con- speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed appr an indication of intaining 250 known howed that, at land itudes were betwee amifications of con-	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer-
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling recommended.	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar appro- ve of Stapleton Air conventional proce e was used. Fuel , was questionable ights were not rest Additionally, a gra the most desirable A more in-depth st and latest technolo	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r	RC simulators were wn within the simu- flights. Fuel con- speed approaches rt Association (I. TRACON) was simular rations. Results was saved when on he high-speed appr an indication of intaining 250 known howed that, at land itudes were between amifications of con- aving flight procession	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer-
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approa ve of Stapleton Air conventional proce e was used. Fuel s was questionable ights were not rest Additionally, a gra the most desirable and latest technolo	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r ogy in fuel s	RC simulators were wn within the simu- flights. Fuel cou- -speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed app an indication of intaining 250 known howed that, at land itudes were between amifications of con- aving flight proce-	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer- edures is
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling recommended.	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approx- ve of Stapleton Air conventional proce was used. Fuel s , was questionable ights were not rest Additionally, a gra the most desirable and latest technolo	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r ogy in fuel s	RC simulators were wn within the simu- flights. Fuel cou- -speed approaches rt Association (L TRACON) was simula- rations. Results was saved when on he high-speed app an indication of intaining 250 know howed that, at law itudes were between amifications of co- aving flight proce- ment vailable to the U	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer- edures is
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling recommended. 17. Key Words Fuel conservation Profile descent IATA approach	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar appro- ve of Stapleton Air conventional proce e was used. Fuel s , was questionable ights were not rest Additionally, a gra the most desirable and latest technolo	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r ogy in fuel s 8. Distribution State Document is a through the N	RC simulators were wn within the simu- flights. Fuel cou- -speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed app an indication of intaining 250 known howed that, at land itudes were between amifications of con- aving flight proce-	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer- edures is .S. public Informatic
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling recommended. 17. Key Words Fuel conservation Profile descent IATA approach	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar appro- ve of Stapleton Air conventional proce e was used. Fuel s , was questionable ights were not rest Additionally, a gra the most desirable and latest technolo	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r ogy in fuel s 8. Distribution State Document is a through the N	RC simulators were wn within the simu- flights. Fuel cou- -speed approaches rt Association (L TRACON) was simul- rations. Results was saved when on he high-speed app an indication of intaining 250 known howed that, at lan itudes were betwee amifications of co aving flight proce- ment vailable to the U- ational Technical	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer- edures is .S. public Informatic
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling recommended. T. Key Words Fuel conservation Profile descent IATA approach Delayed flap	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar appro- ve of Stapleton Air conventional proce e was used. Fuel s , was questionable ights were not rest Additionally, a gra the most desirable and latest technolo	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r ogy in fuel s . Distribution State Document is a chrough the N	RC simulators were wn within the simu- flights. Fuel cou- speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed appr- an indication of intaining 250 know howed that, at land itudes were between amifications of co- aving flight proce- ment vailable to the U- rational Technical ngfield, Virginia	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer- edures is .S. public Informatic
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling recommended. 17. Key Words Fuel conservation Profile descent	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar appro- ve of Stapleton Air conventional proce e was used. Fuel , was questionable ights were not rest Additionally, a gra the most desirable A more in-depth st and latest technolo	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r bogy in fuel s B. Distribution State Document is a chrough the N Service, Spri	RC simulators were wn within the simu- flights. Fuel con- speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed apprian indication of intaining 250 known howed that, at land itudes were between amifications of con- aving flight process wailable to the U- ational Technical ngfield, Virginia	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer- edures is .S. public Informatio
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling recommended. 17. Key Words Fuel conservation Profile descent IATA approach Delayed flap 19. Security Clessif. (of this report) Unclassified	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar approv- ve of Stapleton Air conventional proce e was used. Fuel s, was questionable ights were not rest Additionally, a gra the most desirable A more in-depth st and latest technolo 20. Security Classif Unclass	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r ogy in fuel s 8. Distribution State Document is a chrough the N Service, Spri	RC simulators were wn within the simu- flights. Fuel con- speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed appr an indication of intaining 250 known howed that, at lan itudes were between amifications of con- aving flight proce- ment vailable to the U- ational Technical ngfield, Virginia 21. No. of Peges 126	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer- edures is .S. public Informatio
Research Center (ARC) pi faced with the ATCSF via environment together wit procedures tested were t delayed flap approach an approach. The Denver te traffic was representati that, by comparison with profile descent procedur procedures, as simulated saving when departure fl 10,000 feet and below. gross weight conditions, 20,000 and 30,000 feet. aided flight scheduling recommended. 17. Key Words Fuel conservation Profile descent IATA approach Delayed flap	loted flight simula a landline system h the NAFEC compute he profile descent d the International rminal radar appro- ve of Stapleton Air conventional proce e was used. Fuel , was questionable ights were not rest Additionally, a gra the most desirable A more in-depth st and latest technolo	ators. The A and were flo er-generated and two high l Air Transpo ach control (rport IFR ope edures, fuel saving with t . There was tricted to ma aphic study s e holding alt tudy of the r ogy in fuel s 8. Distribution State Document is a chrough the N Service, Spri	RC simulators were wn within the simu- flights. Fuel con- speed approaches rt Association (L TRACON) was simular rations. Results was saved when on he high-speed appr an indication of intaining 250 known howed that, at lan itudes were between amifications of con- aving flight proce- ment vailable to the U- ational Technical ngfield, Virginia 21. No. of Peges 126	two Ames e inter- ulated nservative , the ATA) ated, and showed ly the roach a fuel ts at nding en omputer- edures is .S. public Informatio

PREFACE

This simulation was intended to be a fact-finding and concept investigation study with the results, together with the benefits from the evolution of research, providing background for more sophisticated simulations of fuel conservation and attendant air traffic control procedures at later dates.

The work effort was accomplished within the National Aviation Facilities Experimental Center (NAFEC) Systems Test Branch under NPD No. SE-191, ATC Operational Sustaining Engineering; Subprogram No. 218-150, FAA/NAFEC -NASA/Ames ATC simulations. The Washington Subprogram Manager was Joseph P. O'Brien, ARD-100; the NAFEC Program Manager was Felix F. Hierbaum, ANA-210; the Ames Program Manager was Dr. Heinz Erzberger, and the NAFEC and Ames Project Managers were P. James O'Brien and Dr. Leonard Tobias, respectively.

Acknowledgment is extended to Mr. John J. Ryan, NAFEC project pilot, for a fine effort in conducting the graphic study of the holding configuration fuel flow of large turbojet aircraft contained in this report.

The authors also wish to acknowledge Messrs. Pierre E. Collins, Ralph C. Miller, and Victor J. Misiewicz (Air Traffic Control Specialists) for their contributions and able assistance as members of the NAFEC project team. Acknowledgment is also extended to Messrs. Barry R. Billmann and Thomas E. Morgan of Computer Sciences Corporation for providing the statistical test design, data analysis, and counsel during the planning and testing periods.

ACCESSION 10	
NTIS	Walte Section
DOC	Buff Section 🗖
UNANNOUNC	
JUSTIFICATION	
BY DISTRIBUTION Dist. AVA:	AVAIL ABILITY CODES
DIST. AVA.	C. and of the

PRECEDING PACE BLANK-NOT FILMED

Page

) _____ 1

TABLE OF CONTENTS

INTRODUCTION	1
Purpose Background	1 1
DISCUSSION	1
General Simulation Procedures Test Design Statístical Method	1 2 19 21
STATISTICAL RESULTS	22
General Statistical Results between Conditions Statistical Results within Conditions	22 24 26
ANALYSIS	34
General Profile Descent High-Speed Approach Combined Profile Descent and High-Speed Approach Effects on Aircraft FL230-and-Below Arrival Rates Delay Flight Simulators Interactions Metering Model Controller Comments Departures Holding	34 38 39 40 41 41 41 42 42 43 43 43
SUMMARY OF RESULTS	44
CONCLUSIONS	45
RECOMMENDATION	45
REFERENCES	46

and a start of the start of the

.

TABLE OF CONTENTS (Continued)

APPENDICES

- A Simulation Facilities
- **B** NAFEC/ARC Joint Effort Fuel Conservation Simulation Operating Instructions for Controllers
- C Metering Model
- D Data Tables
- E Fuel Model
- F Graphic Study of Fuel Consumption during In-Flight Holding Configurations

LIST OF ILLUSTRATIONS

Figure		Page
1	ATCSF Controller Positions of Operation	3
2	ATCSF Pilot Computer Keyboard Entry Operating Positions	4
3	ARC Convair 990 Aircraft Simulator	5
4	ARC Boeing 727 Aircraft Simulator	6
5	The Denver Route and Airway Structure Used in the Simulation	7
6	Denver Stapleton Airport Runway Configuration	8
7	The ILS Procedure for Stapleton Runway 26L as Used in the Simulation	9
8	Simulated Profile Descent Procedure for the Keann Cornerpost	11
9	Simulated Profile Descent Procedure for the Kiowa Cornerpost	12
10	Simulated Profile Descent Procedure for the Byson Cornerpost	13
11	Simulated Profile Descent Procedure for the Drako Cornerpost	14
12	Crossview of a Typical Profile Descent Procedure Simulated	17
13	Speed Profiles for Delayed Flap, IATA, and Conventional Approaches	17

vii

.

_

LIST OF TABLES

Table		Page
1	Test Matrix by Condition and Number of Runs	20
2	Matrix of Statistical Test Conditions and Subconditions	23
3	Analysis of Distance Flown Comparisons	30
4	Analysis of Time-in-System Comparisons	31
5	Analysis of Controller Workload Comparisons	33
6	Grand Summary of Measures per Aircraft by Test Conditions for All Arrival Traffic	35
7	Measurement Differences Comparing Fuel Conservation Procedures with Conventional Procedures	36
8	Summary of Measures per Aircraft by Condition for Flights That Completed the Specified Procedure, FL240-and-Above	37

viii

INTRODUCTION

PURPOSE.

The purpose of this project was to investigate aircraft fuel conservative procedures using dynamic simulation techniques. The specific objectives were to dynamically simulate the Denver, Colorado, terminal area air traffic environment and collect and analyze fuel consumption and other pertinent data in order to study the effects on traffic flows and the air traffic system of two fuel conservative procedures; namely, profile descent and high-speed approaches.

BACKGROUND.

The present joint Federal Aviation Administration/National Aeronautics and Space Administration (FAA/NASA) efforts, accomplished by the National Aviation Facilities Experimental Center (NAFEC) and the Ames Research Center (ARC) have been continuous over the past 4 years under an interagency research program. In cooperation with the Washington FAA System Research and Development Service (SRDS) Office, NAFEC and ARC have interconnected the air traffic control (ATC) simulation facilities at both centers with the piloted simulation facilities at ARC to create a unique national facility. Three ATC dynamic simulations have been conducted; two small-scale simulations at ARC using an ARC in-house simulation capability, and one full-scale simulation at NAFEC using the NAFEC Air Traffic Control Simulation Facility (ATCSF).

The current energy situation, typified by fuel shortages and rising costs, has mandated that aircraft fuel conservation programs be undertaken, geared toward the development of in-flight aircraft operational procedures providing greater fuel economy than previously achieved. Several studies have been made and procedures developed. One of the most familiar fuel conservation procedures developed has been profile descent. Profile descent provides for an idlethrust descent from cruise altitude/flight level until glide slope intercept. Another fuel conservative development, called high-speed approach, utilizes two procedures governing final approach speeds at normal approach altitudes. The two final approach speed procedures, the delayed flap and the International Air Transport Association (IATA) low-power noise abatement approach technique, were studied by simulation at ARC. The idle-thrust profile descent together with the delayed flap and IATA high-speed approach procedures were the subject matter of the tests in the simulation conducted at NAFEC.

DISCUSSION

GENERAL.

The subject of aircraft fuel conservation has produced much discussion, and various fuel conservative procedures have been proposed. Those considered in

this simulation were profile descents and high-speed approaches. Previous experiments have shown that each procedure saves fuel for an individual aircraft if executed as planned. However, the impact of these procedures on the ATC system has been uncertain. Satisfactory procedures must not only save fuel for the individual aircraft, but must also result in a reasonable workload for the controller and pilot. Additionally, other aircraft should not be significantly delayed nor should delay be shifted to another part of the ATC system such that the overall system fuel usage is greater.

As directed by the Operational Requirements Branch of the Washington FAA/SRDS Office, the NAFEC Systems Test Branch was charged with conducting a comprehensive dynamic simulation study of the selected aircraft fuel conservation procedures. Those procedures, together with the Denver, Colorado, terminal area, were specified as broad test requirements by the Washington SRDS Office, and the NAFEC ATCSF was used as the test facility. The profile descent and high-speed approach procedures were tested both separately and together, and baseline data for comparisons were collected when none of the fuel conservative procedures were used.

Simulation tests were conducted between July 18 and August 19, 1977. Approximately 5,000 flights were simulated during 32 test-designed data collection runs, plus eight additional runs. A graphic study was also conducted to appraise fuel consumption of selected aircraft flying in holding configurations.

SIMULATION PROCEDURES.

SIMULATION FACILITIES. The NAFEC ATCSF laboratory provided the simulation environment. The simulated ATC facility control room and the "pilots" computer entry operating positions are shown in figures 1 and 2, respectively. Two ARC-piloted aircraft simulators interfacing with the ATCSF via transcontinental land-line data links participated in the flight operations together with the computer-generated flights. One aircraft simulator (figure 3) was configured as a Convair 990 (CV-990), and the other (figure 4) as a Boeing 727 (B727). Both aircraft simulators were piloted by current airline pilots. The simulation facilities are discussed in appendix A.

<u>GEOGRAPHICAL AREA</u>. The area simulated was approximately a 150-nautical mile (nmi) radius of the Denver, Colorado, very high frequency omnidirectional range/tactical air navigation facility (VORTAC). The route and airway structure simulated for both arrival and departure flights was patterned after the Denver "four-corner post" system as of February 24, 1977 (figure 5). One runway, 26L, was used for all arrival traffic, while departures used runway 35R. The Denver Stapleton Airport runway layout is shown in figure 6, and the instrument landing system (ILS) procedure for runway 26L, as used in the simulation, is shown in (figure 7).

FIGURE 1. ATCSF CONTROLLER POSITIONS OF OPERATION

FIGURE 2. ATCSF PILOT COMPUTER KEYBOARD ENTRY OPERATING POSITIONS

...

FIGURE 3. ARC CONVAIR 990 AIRCRAFT SIMULATOR

ł

FIGURE 4. ARC BOEING 727 AIRCRAFT SIMULATOR

FIGURE 5. THE DENVER ROUTE AND AIRWAY STRUCTURE USED IN THE SIMULATION

Ν

FIGURE 6. DENVER STAPLETON AIRPORT RUNWAY CONFIGURATION

GENERAL ASSUMPTIONS. It was assumed that:

1. All arrival traffic would land on runway 26L. Weather conditions would be such that landings on 26R would be precluded. Independent departure operations would be conducted on runway 35R. Only Stapleton Airport traffic would be simulated because any satellite airport traffic would occupy "slots" in the Stapleton flow and be controlled by the same procedures.

2. The Denver Terminal Radar Approach Control (TRACON) would be the prime control facility, and the Denver Air Route Traffic Control Center (ARTCC) would be simulated only to the extent necessary to support TRACON activities. Problem-causing overtraffic and other unique situations could have been resolved by rerouting or other solutions.

3. Simulated wind conditions, surface and aloft, would not be used.

4. A system metering all arrival traffic would be required.

5. No fuel conservation procedures would be flown by aircraft cruising below flight level (FL)240. Since these procedures were designed for large transport type aircraft, they were not intended for light aircraft which use FL230 and below. The traffic below FL240 remained in the sample so that traffic interactions could be appraised.

FUEL CONSERVATION PROCEDURES. Two fuel conservative procedures were tested, profile descents and high-speed approaches.

<u>Profile Descents</u>. A profile descent is defined as an unrestricted descent (except where level flight is required for speed adjustment; e.g., 250 knots at 10,000 feet mean sea level (m.s.l.)) from cruising altitude/flight level to interception of a glide slope or to a minimum altitude specified for the initial or intermediate segment of a nonprecision instrument approach (reference 1). Normally, the procedure is based on an altitude loss of 300 feet per nmi and terminates at the approach gate or where the glide slope or other appropriate minimum altitude is intercepted.

Essentially, the procedure applies the principle that turbojet aircraft should operate at as high an altitude as possible for as long as possible, preferably cruise, until the ideal distance from destination has been reached, then close the throttles, descend, and not use power again until the final approach has been reached.

For the simulation tests, the profile descent procedures were patterned after the Experimental Profile Descent Procedures published by the FAA for Denver Stapleton Airport in December 1976 (reference 2). Those experimental procedures were modified so that both azimuth and vertical guidance were provided to a point of alignment on the ILS final approach course below glide slope interception. By the design of the procedures, no ATC clearances were required other than the initial clearance to enter the profile from cruising level. Controllers monitored the progress of flights through the system and issued alternate clearances only as necessary for ATC purposes. Figures 8, 9, 10, and 11 show the procedure for each of the "four corners" of the Denver Stapleton Airport arrival flow patterns.

STAPLETON INTL DENVER, COLORADO **KEANN - RUNWAY 26 PROFILE DESCENT** CHART NOT TO SCALE SIDNEY Ε 115.9 SNY RADAR AND DME REQUIRED 0114 + 18F R-230 I JONE 12 ō E GILL 112.8 GLL FOWLS CROSS AT OR ABOVE FL231 REDUCE TO 250K R-100 IF COMMUNICATIONS ARE LOST BEFORE REACHING BURTY, PROCEED VIA BURTY THENCE DIRECT DENVER VORTAC, MAINTAIN 11,000 SMITY . . CROSS AT OR ABOVE 16500 KEANN DENVER CROSS AT OR ABOVE 12900 REDUCE TO 210K 116.3 DEN Riche R-OTA BURTY 297-12 DME DEN VOR KEANN 4--0.0 REDUCE TO IBOK DENVER CENTER - 119.8 DENVER APPROACH CONTROL - 127.6 U PROFILE DESCENT TERMINATED, MAINTAIN 7500 TO GLIDE SLOPE DESCENT FROM ALTITUDE TO RUNWAY 26 APPROXIMATELY 300' PER MILE G KIOWA 117.5 100 FROM OVER START POINTS "I" AND "M" FROM OVER START POINT "E" FROM OVER SNY RADIAL DME ALT RADIAL ALT RADIAL ALT DME DME 410 SNY 176 410 410 BFF 177 15 **DEN 046** 103 45 390 BFF 177 51 390 SNY 176 21 390 DEN 046 97 370 370 **DEN 046** BFF 177 57 SNY 176 27 370 91 350 BFF 177 350 **DEN 046** 85 350 **DEN 046** 85 63 BFF 177 330 DEN 046 330 DEN 046 330 69 79 79 310 BFF 177 75 310 **DEN 046** 73 310 **DEN 046** 73 290 BFF 177 290 DEN 046 67 290 DEN 046 67 81 EXPERIMENTAL **DEN 046** 280 BFF 177 280 **DEN 046** 64 280 64 84 NOT FOR NAVIGATIONAL USE 270 DEN 046 61 270 **DEN 046** 61 270 BFF 177 87 260 BFF 177 90 260 DEN 046 58 260 DEN 046 58 BFF 250 **DEN 046** 55 250 DEN 046 55 250 177 93 240 8FF 177 240 **DEN 046** DEN 046 52 96 52 240 STAPLETON INTL DENVER, COLORADO KEANN - RUNWAY 26 PROFILE DESCENT 79-28-8

KIOWA - RUNWAY 26 PROFILE DESCENT

STAPLETON INTL DENVER, COLORADO

FIGURE 9. SIMULATED PROFILE DESCENT PROCEDURE FOR THE KIOWA CORNERPOST

FIGURE 10. SIMULATED PROFILE DESCENT PROCEDURE FOR THE BYSON CORNERPOST

13

Ì

DRAKO - RUNWAY 26 PROFILE DESCENT

STAPLETON INTL

DRAKO - RUNWAY 26 PROFILE DESCENT 79-28-11

DENVER, COLORADO STAPLETON INTL

FIGURE 11. SIMULATED PROFILE DESCENT PROCEDURE FOR THE DRAKO CORNERPOST

·· · · · · ·

The procedures were provided in these formats for the pilots flying the ARC aircraft simulators. The illustrations show the detail of azimuth and altitude guidance information as well as required speeds throughout the descent from cruise level to the end of the profile at 7,500 feet m.s.l. The table on each chart provided the distance measuring equipment (DME) point where descent would ideally begin. That point would vary, since an aircraft cruising at a higher altitude would begin descent at a greater distance from destination than one cruising at a lower altitude. Upon determination of the ideal point by reference to the appropriate radial and cruise altitude in the table, the throttles were closed at that point, and descent was made at idle thrust. Power was not used again until the end of the profile when adjustments were made to complete the final approach and stabilize the aircraft for landing.

The profile for the descent of a given aircraft will depend on type and weight, but the rate of descent used as a standard for simulation was approximately 300 feet per nmi for both the piloted aircraft simulators and the ATCSF computer-generated flights. Whereas, the manned aircraft simulators were piloted in the execution of the profile descent procedure, the computergenerated flights were software programed for automatic execution of the same procedures.

Figure 12 is a crossview of a typical profile descent procedure as it was simulated. The figure illustrates a flight cruising at FL 350. Descent began approximately 100 nmi from touchdown on runway 26L. Transition from mach to indicated airspeed (IAS) was made, and the airspeed was reduced to 250 knots at approximately 60 nmi and FL240. Speed was gradually dissipated and reduced to 210 knots at about 20 nmi between 14,000 and 13,000 feet.

Not shown in the illustration, because it was not used when the high-speed approach procedures were executed, is the final speed reduction to 180 knots between 13 and 14 nmi from touchdown and prior to interception of the ILS.

<u>High-Speed Approaches</u>. The two high-speed final approach procedures simulated were the delayed flap and the IATA. The delayed flap procedure was developed by NASA and the IATA procedure by the International Air Transport Association.

The delayed flap approach was developed utilizing an onboard computer to effect a low-noise, fuel-conservative alternative to the conventional jet transport instrument landing approach procedure (reference 3). In contrast to conventional approaches, which are flown at constant airspeeds of 140 to 160 knots, depending on aircraft type and weight and high landing flap settings throughout, the delayed flap approach begins in a clean configuration at a high initial speed between 240 and 210 knots. An altitude of 3,000 feet above ground is maintained to ILS glidepath interception at about 10 nmi from touchdown. The pilot begins descent on the glidepath, retards the throttles to idle, and the aircraft begins slowly to decelerate. About 6 nmi from touchdown, the pilot is given a cue from an onboard computer to lower gear and later the approach flaps. The final adjustment of flaps to the landing position is made at about 4 nmi. The aircraft decelerates to final approach speed at an altitude of 500 feet, 1.5 nmi from touchdown. At this point, the pilot advances the throttles to approach power, and the remaining portion of the approach is flown at a stablized airspeed similar to conventional approach.

The IATA approach (reference 4) requires no onboard computer. The approach speeds are higher than a conventional approach but less than the speeds used in the delayed flap approach. IATA approach procedure is such that at a distance of 12 to 15 nmi, the aircraft is in level flight at 3,000 feet above ground at a speed of 210 knots and in a position to intercept the ILS. Prior to glide slope interception, the aircraft decelerates to reach 185 knots at the point of glide slope intercept. Established on the glide slope, the aircraft is decelerated to final approach speed plus 20 knots by the time an altitude of 1,500 feet is reached. A further speed reduction is then made so that final approach speed is reached at 1,000 feet. Power adjustments are then made, and the remainder of the approach to touchdown is made in the convention-al manner.

The two procedures are similar in that both employ a technique which comprises a decelerating process employing delays and/or reductions in the application of drag and the use of flaps, with a consequent reduction in the amount of power required to conduct the approach. The difference between the two approaches is that the delayed flap approach requires the use of an onboard computer system to determine the timing for flight configuration changes involving induced drag and speed adjustments. The timing for these changes in the IATA approach are made manually by pilot reference to DME fixes or controller advisories with respect to the position of the aircraft and a known fix on the controller's display.

Figure 13 shows speed profiles and respective distances to touchdown for delayed flap, IATA, and conventional approaches. Flight time required from the 18-nmi point to touchdown, as calibrated for a B-727 aircraft for the different approaches, is shown to the lower right in the figure.

As with the profile descent procedure, the piloted flight simulators were flown in accordance with the procedures specified for the high-speed approaches, but those procedures could not be positively duplicated in the NAFEC simulation laboratory within the time alloted for software preparation. It was recognized that the elapsed time difference between the various approaches was a prime factor, and the procedures for the computer-generated flights were designed so that approach speeds and time differences between the approaches remained reasonably realistic.

<u>Simulated Approaches/Descents</u>. Computer-generated flights that simulated delayed flap approaches maintained 210 knots to a point 4.5 nmi from touchdown. At that point, a reduction to final approach speed automatically began, and final speed was attained about 1.5 nmi from touchdown. Flights that simulated IATA approaches maintained 210 knots to a point 13 nmi from touchdown. At that point, controllers issued clearances for speed reductions to

FIGURE 13. SPEED PROFILES FOR DELAYED FLAP, IATA, AND CONVENTIONAL APPROACHES

180 knots. A speed of 180 knots was then maintained to the 4.5-nmi point where the reduction to final approach speed automatically began as with the delayed flap approach flights.

Computer-generated flights that simulated the testing of the profile descent followed by an IATA high-speed approach in the same flight could not complete both procedures. Because of software limitations, when the computer entry for the 13-nmi ATC speed reduction clearance was made, the profile descent was interrupted. The result was that, using IATA approach, profile descents could not be completed.

TRAFFIC SAMPLE. The traffic sample was developed from an analysis of a Denver "busy day" in January 1977. The traffic was categorized by aircraft types, routes, and numbers of flights. The results of this analysis were duplicated for simulation except that the number of flights was increased by 20 percent. That resulted in a traffic sample input rate of 53 arrival flights per hour. Thirteen, or about 25 percent, of those flights were low-performance aircraft. Representative departure flights were programed by the NAFEC project team in accordance with the same parameters as the arrivals.

ATC FACILITIES AND CONTROL PROCEDURES. The Denver TRACON was simulated as closely as possible, and the ARTCC was simulated only in part as necessary to support the tests.

Four Denver TRACON control positions were simulated: North Arrival, South Arrival, Final, and Departure. An additional, nonradar position performed the metering/flow control for arrival traffic. (This position was considered to be within the ARTCC, but the function served both the ARTCC and the TRACON.)

Two positions were operated to perform the necessary functions of the Denver ARTCC. A true representation of the facility's sectorization adjacent to the terminal area was neither intended nor necessary.

Control procedures used were in accordance with those set forth in the Air Traffic Control Handbook (reference 5). Specific details concerning ATC operating positions and procedures simulated are presented in appendix B.

METERING OF ARRIVAL TRAFFIC. All arrival traffic under all conditions were metered into the system at peripheral points in accordance with a metering model developed for the simulation by Computer Sciences Corporation under contract to the FAA. The model sequenced the traffic on a basis of "firstcome, first-serve" according to a projected touchdown time for each aircraft.

The intrail spacing requirements for the different aircraft weight classes and the compression factor caused by different approach speeds were both considered in the model design. A description of the metering model is provided in appendix C.

TEST DESIGN.

Four different in-flight arrival "conditions" were simulated, and data were collected for comparisons between conditions and procedures within conditions. For the remainder of this report, they will be referred to as condition 1, 2, 3, and 4.

CONDITION 1. No fuel conservation procedures were used. All arrival flights navigated by conventional present-day methods using very high frequency omnidirectional range (VOR) route structures and radar vectors from ATC. Altitude and speed control clearances were given by ATC in the usual manner. Data collected under this condition were used as a baseline for comparison with the other conditions.

CONDITION 2. Profile descent procedures were used. All arrival flights cruising FL240 and above conformed with the procedure.

<u>CONDITION 3.</u> Delayed flap and IATA high-speed approach procedures were used. Since the profile descent procedure was not used, arrival flights cruising FL240 and above conformed with conventional procedures during the descent and executed the high-speed procedures on the approach. The number of aircraft flying those procedures was divided equally; that is, 50 percent of the total number of aircraft were scheduled to conform with the delayed flap procedure and 50 percent with the IATA.

CONDITION 4. This condition combined the use of both the profile descent and the high-speed approach procedures during a single flight. As in condition 3, the number of aircraft making each type of high-speed approach was divided equally.

TEST MATRIX. The simulation was planned to provide statistical results between each of the four test procedures. From a team of controllers, four were selected to operate the test control position (final control). The four controllers were randomly assigned to the test position for two consecutive runs under each condition. The test matrix is shown in table 1.

In addition to the 32 test-design data collection runs shown in table 1, eight additional runs were conducted to collect data when aircraft were not required to maintain a speed of 250 knots IAS or less at and below 10,000 feet m.s.l. in the terminal area. For the eight additional runs, data were collected on selected departure flights flying two separate departure procedures. The subject aircraft were all B-727's, and all flew the same standard instrument departure route.

Under one procedure, the aircraft were required to maintain 10,000 feet m.s.l. or below and 250 knots or less while in the terminal area. (That represented an in-flight distance of between 25 to 30 nmi). Under the other procedure, the same aircraft were allowed to fly at the best performance speed, and climbs were not restricted except as occasionally necessary for ATC purposes.

TABLE 1. TEST MATRIX BY CONDITION AND NUMBER OF RUNS*

High-Speed Approach** Procedures	Profile Descent	Procedures***
	Without	With
Without	Condition 1 8 runs	Condition 2 8 runs
With	Condition 3 8 runs	Condition 4 8 runs

* Two replicates for each of the four controllers for each condition.

** Delayed flap or IATA high-speed approach procedures flown by aircraft cruising FL240 and above. The number of aircraft flying each procedure was divided equally.

*** Flown by aircraft cruising FL240 and above.

Those eight runs were made without using the metering model for arrival flights, and metering was done manually by the controllers. Measurements were compared to detect any possible differences between the two metering procedures.

MEASUREMENTS. From the data recorded, the measures were reduced and analyzed to determine benefits between and within the test conditions. The measures apply only to the results of entire flights; i.e., aircraft that entered and landed during the 1.5-hour data collection period. A test run was 1 hour and 45 minutes. The arrival rate measure accounted for all aircraft that landed in the data period regardless of the start time.

Measurements were tabulated by test condition, altitude strata, direction of flight by quadrant, aircraft fuel category with attendant statistical results. Aircraft entering the simulated area at cruising altitudes of FL240 and above were capable of flying the fuel-conservation procedures. Those at FL230 and below could not fly the fuel procedures, therefore, altitude strata, FL240 and above/FL230 and below, defined procedural and nonprocedural aircraft.

Measures for fuel conservation procedures (conditions 2, 3, and 4) are divided into two groups; complete and incomplete, with associated scores for both parts. As the name indicates, "complete" means aircraft which completed the procedure, and "incomplete" means that the procedure was interrupted prior to completion. The incomplete procedure is further divided into total "before" and total "after". The "before" identifies that portion of the procedures which was completed, and the "after" identifies the "off-procedure" portion of the flight when the aircraft was in conventional flight. The measures were:

1. <u>Number of Aircraft</u>: The total number of test aircraft that completed a flight from start point to runway during the data collection period.

2. Fuel: The average amount of fuel consumed, in pounds, per completed flight. (A gallon of jet fuel weighs approximately 6.7 pounds and aviation gas weighs 6.0 pounds per gallon.)

3. Distance: The average distance flown per aircraft, in nmi, from the start point to landing.

4. <u>Time</u>: The average flight time per aircraft, in seconds, from start point to landing. (Time does not include delay.)

5. Workload: The average number of control clearances issued by the controller per aircraft. The clearances are of three types: vectors (heading changes), altitude changes, and speed changes. Dividing the number of clearances issued to entire flights by the number of entire flights gives the average by type of clearance per aircraft. Summing the averages of the clearance types gives the total number of average clearances per aircraft from first contact to landing.

6. Interrupted Procedure Altitude: The average altitude at which the aircraft left the procedure being tested. During the profile descent, the altitude was determined by a heading change, altitude change, or speed change (or a combination thereof) other than specified by the procedure. Altitudes for IATA or delayed flap approaches were determined by a speed change that resulted in a speed lower than specified in the procedure. There was no interrupted procedure altitude for condition 1 because aircraft were not required to fly specific procedures as conditions 2, 3, and 4.

7. <u>Arrival Rate</u>: The average number of aircraft that landed per hour during the data period per run. Since the data period was 1.5 hours, the hourly rate was obtained by dividing the number of landed aircraft by the data time.

8. Number of Delayed Aircraft: The total number of completed flights that were delayed for each test condition.

9. Delay: The time difference, in seconds, between the scheduled start time and the actual start time for completed flights.

STATISTICAL METHOD.

To determine significant differences between the test conditions; i.e., conventional, profile descent, and high-speed approach procedures, the data were subjected to the Analysis of Variance (ANOVA) (reference 6) and Newman-Keuls Multiple Comparison Tests (reference 7). A one-way analysis of variance design was used on the experimental data to find meaningful results from the data; i.e., statistically significant differences among the treatment group means. To further analyze the data, the Newman-Keuls multiple comparisons tests were used. This method tells more about "why" treatment groups in a one-way ANOVA are significant. The Newman-Keuls test is an offshoot of the Studentized Range test.

The significance level was preestablished at a = 0.05. The null hypothesis for these tests was that the means of the various treatments were equal. If the means were found to be not statistically different, rejection of the null hypothesis would occur less than 5 percent of the time. Differences found to be nonsignificant indicate that the means are considered equal.

A matrix of statistical test conditions and subconditions is given in table 2. The averages of the test conditions were analyzed first by comparison of the four conditions summary averages followed by a test within each condition that had more than one treatment; for example: condition 2, profile descent complete versus profile descent incomplete; condition 3, IATA versus delayed flap, complete and incomplete; condition 4, profile descent, complete and incomplete, with delayed flap complete and incomplete and IATA complete and incomplete. (Due to simulation limitations and programing time, it was not possible for the aircraft to complete a profile descent combined with either a complete or incomplete IATA approach.)

The purpose of the test runs was to determine by statistical evaluation which condition procedure obtained the best score under each measure. To answer the question; "Do profile descent and/or high-speed approach procedures save fuel, reduce workload, save flight time, and distance?" the data are analyzed first for the differences between conditions and then for differences within each condition. (Condition 1, conventional procedures, has no analysis within the condition. This condition was used as base data.)

Data tables and summary tables are presented in appendix D. Under each summary table for each condition are the statistical results for each measure by altitude strata. The significant differences are shown by paired numbers for each measure. Nonsignificant differences are not shown. Tables which follow the summary table for each condition give the breakdown by direction of aircraft entry and aircraft fuel category for each measure. These data made up the summary table for each condition.

STATISTICAL RESULTS

GENERAL.

The results are broken down into two parts. First the statistical differences are given for <u>between</u> condition comparisons; i.e., how the measures in one condition compare to similar measures in other conditions. Second, the statistical differences within each condition are shown; i.e., subcondition elements such as complete versus incomplete or delay flap versus IATA procedures. The results are given as a strictly objective comparision without TABLE 2. MATRIX OF STATISTICAL TEST CONDITIONS AND SUBCONDITIONS

								Con	dition	Condition 4: Combined Profile	vined F	rofile	
								Des	cent Hi	Descent High-Speed Approaches	ad Appr	coaches	
		Cond	Cond. 2		Cond. 3	ŝ			Prof	Profile Descent	scent		
	Cond. 1	Prof	Profile	High-S	peed A	High-Speed Approaches	les	Complete	lete	Inc	Incomplete	e	
Systems	Baseline	Desc	Descent	DF		IATA	A.	DF	2	DF		IATA	
Measures	Data	Comp.	Inc.	Comp.	Comp. Inc.	Comp. Inc.	Inc.	Comp.	Inc.	Comp.	Inc.	Comp.	Inc.
No. Aircraft	×	×	×	×	×	×	×	×	×	×	×	×	×
Fuel	×	×	×	×	×	×	×	×	×	×	×	×	×
Distance	×	×	×	×	×	×	×	×	×	×	×	×	×
Time	×	×	×	×	×	×	×	×	×	×	×	×	ĸ
Workload	×	×	×	×	×	×	×	×	×	×	×	×	×

subjective purview. However, both the between and within results are then further expanded and amplified in the ANALYSIS section, where trends and observations are also discussed.

STATISTICAL RESULTS BETWEEN CONDITIONS.

Listed in table D-1 are the total number or mean scores for each measure by direction and condition, with the system total or mean scores of the eight test runs for each test condition. The Newman/Keuls statistical analysis was conducted on the system scores. The resultant statistical significant differences (paired numbers) are shown for each measure by altitude strata scores. Except for workload, no cross analysis was made between the altitude strata scores, due to the fact that the types of aircraft are different above and below 240.

NUMBER OF AIRCRAFT. There was no significant difference in the total number of flights between conditions by altitude strata.

FUEL SAVINGS. For aircraft that operated in the FL240-and-above strata, there was a significant fuel saving for profile descent (condition 2) aircraft compared to the other conditions. There was no significant difference in the amount of fuel used between conventional (condition 1) and high-speed approaches (condition 3). (The fuel data for combined profile descent/high-speed approach (condition 4) was found to be inconsistent and is not included in this report.)

For aircraft that operated in the FL230-and-below strata, the only significant difference in fuel burned was between profile descent (condition 2) and high-speed approaches (condition 3) where the lesser amount used was found in condition 3. It should be remembered that the primarily light-weight aircraft at FL230 and below did not use the procedures themselves but were impacted by the large commercial descending aircraft that were using the procedures.

DISTANCE. The distances flown by aircraft in the FL240-and-above strata were significantly less for conventional and high-speed approaches (condition 3) when compared to profile descent (condition 2). There was no significant difference found between conditions 1, 3, and 4, and no difference between conditions 4 and any of the other conditions. There were no significant differences between distances flown in any of the conditions by aircraft operating in the FL230-and-below strata.

TIME. Flight time was significantly less in condition 4 than in conditions 1 and 2 for aircraft in the FL240-and-above strata. In the strata of FL230 and below, the flight time was significantly greater in condition 2 than conditions 1 and 3.

WORKLOAD. Controller workload was found to be significantly less in conditions 2 and 4 than 1 and 3 for aircraft in the FL240-and-above strata. Each of the fuel conservative procedures resulted in less (a = 0.05) controller workload than conventional procedures. Table 7 shows that reductions of 38 percent were found with profile descents, 14 percent with high-speed approaches, and 39 percent with profile descent and high-speed approaches combined. Even though there was a workload reduction with the high-speed approaches, there

was less efficiency in that respect than with either profile descents or with the profile descent and high-speed approach combination. The latter two procedures showed 27 and 29 percent less workload, respectively, than the high-speed approaches.

Although there were differences in all three of the workload measures, the differences were mainly found in the number of radar vectors and speed control clearances (appendix D). As expected, the greatest reductions were found when the profile descent procedures were used, because the profile descent procedures provided the pilot with both azimuth and altitude guidance information with no requirement for ATC clearances. The workload reduction with the highspeed approach procedures was also because of the procedural difference. Aircraft that flew high-speed approach procedures, in general, required one less speed control clearance than aircraft flying conventional procedures. Data comparison showed that the difference was an average of 0.9, or about 14 percent per aircraft. Greater workload was involved in controlling IATA approach flights than delayed flaps.

Workload in controlling aircraft in the FL230-and-below strata was significantly greater in condition 4 than in conditions 1 and 3. There was no significant difference between conditions 1, 2, and 3.

ARRIVAL RATES. Table D-2 shows the arrival rates by direction and test condition for both altitude strata. Statistical tests resulted in no significant differences between the test conditions for both altitude strata. The differences in rates by entry direction (quadrant) were not tested for significance. The obviously higher rates attained from the northeast and southwest quadrants resulted because the balance of input traffic sample data favored those two quadrants.

DELAY. Tables D-3 and D-4 show the number of aircraft that were delayed and the amount of time each flight was delayed. These data are presented by quadrant of flight and test condition for both the FL240-and-above and FL230and-below altitude strata.

Table D-3 shows that the number of delayed aircraft in both altitude strata was consistent between the several test condiitons. There were no significant differences in either strata. It is interesting to note, in a comparison of delay with arrival operations rates in table D-2, that the number of aircraft delayed per hour consistently exceeded the hourly operations rates.

Table D-4 shows that the amount of delay time was consistently ($\alpha = 0.05$) higher in conditions 3 and 4 than in conditions 1 and 2 in both altitude strata and in the system averages. There were no significant differences between conditions 1 and 2 or conditions 3 and 4.

Within the system averages, delays ranged from 517 seconds in condition 1 to 761 seconds in condition 4. Although delays were about the same for aircraft in both altitude strata in condition 1, the per-aircraft delay in the lower strata was progressively increased across the several test conditions at a greater rate than in the higher strata. Delays in the lower strata were nearly the same in conditions 3 and 4, but were about 2 minutes longer in condition 4 than flights in the higher altitude strata. Although no statistically significant tests were conducted within the direction quadrants or across quadrants and/or test conditions, it is noteworthy that the traffic from the southwest in the FL240-and-above strata consistently received less delay than the other three quadrants. Similarly, the greatest amount of delay incurred by low-performance aircraft in the FL230-and-below strata was in traffic from the northwest.

STATISTICAL RESULTS WITHIN CONDITIONS.

<u>GENERAL</u>. The purpose of comparing results within each condition is to show differences between subcondition treatments. The complexities of the analysis increase with the number of subcondition treatments. This is particularly obvious in condition 4 which has six treatments (table 2): profile descent, LATA, and delayed flap in combination with complete and incomplete procedures. The analysis of each condition is shown in the condition summary tables (appendix D).

Comparisons of aircraft measures for both altitude strata are given only for workload. Comparison of the other measures was not possible, since there was no commonality of routes or number and type of aircraft.

Associated with each condition are the measure tables in appendix D. These tables give the average scores by entry direction and aircraft category for each altitude strata. Except for condition 1, the tables also accounted for complete and incomplete procedure results for conditions 2, 3, and 4.

The statistical analysis results are shown for each condition by paired numbers for each measure. No analysis was made for differences between entry direction (feeder quadrant) and category. The five aircraft fuel categories and four feeder quadrants data are included, but no analysis or comparisons were made.

<u>CONDITION 1</u>. The purpose of condition 1 test runs was to obtain basic measure scores on present-day conventional descent and approach procedures with the common traffic sample used in all conditions tested. The summary of measurement averages is listed in table D-5. Tables D-6 to D-10 list the detailed average scores for each measure by direction and fuel category. It was found that workload was significantly greater for aircraft FL240 and above compared to aircraft FL230 and below.

<u>CONDITION 2</u>. The summary of mean scores for profile descent is listed in table D-11 with statistical results listed for each measure. The mean scores were obtained from tables D-12 to D-17. The only treatment effects on system measures within this condition were the effects of complete and incomplete profile descents.

<u>Number of Aircraft (Table D-12)</u>. The number of aircraft that completed the profile descent procedure was significantly less than when the procedure was incomplete. Since the lower speed aircraft operating in that FL230-andbelow strata were making approaches to the same runway as the profile descent aircraft from FL240 and above, the speed differences between the

ŧ.
two often required controllers to interrupt the profile descent procedure for separation purposes. Generally, the interruption occurred approximately 20 nmi from the runway, based on an average interrupted procedure altitude of 13,252 feet m.s.l., (table D-17).

<u>Fuel (Table D-13)</u>. Profile descent flights used an average of 3,054 pounds of fuel. Those flights that flew the procedure to completion used an average of 2,699 pounds, which was 496 pounds less than the 3,195 pound average of flights when the procedure was interrupted. That difference in fuel saved was found to be statistically significant.

Distance (Table D-14) and Time (Tabel D-15). No significance was found between the differences for either distance or time measures regardless whether the procedure was flown to completion or not.

<u>Workload (Table D-16)</u>. The significant workload difference between the complete and incomplete flights was a result of the fact that the completed flights utilizing condition 2 procedure required no control clearances as compared to the incomplete flights which were controlled as conventional flights after the procedure was interrupted. The few clearances issued to the complete flights were generally in the vicinity of 8 nmi from the runway, which had no effect on the procedure. Workload for profile descent aircraft was significantly lower than for aircraft at FL230 and below.

Interrupted Procedure Summary (Table D-17). No statistical analysis was made of this measure. The data shown are the average altitude at which the profile descent procedure was interrupted. It should be noted that the altitude is in relation to mean sea level. Using the profile descent (figure 12), the distance from the runway can be determined.

<u>CONDITION 3</u>. The analysis is of two types of high-speed approaches--IATA and delayed flap. Since condition 3 is more complex than conditions 1 and 2, summary tables have been prepared for each measure showing the significant differences within the measures.

<u>Number of Aircraft (Tables D-18 and D-19)</u>. About 85 percent of the high-speed approach flights (both IATA and delayed flap) completed the procedure. The number of flights that completed the procedure was significantly greater than the incomplete. However, there was no significant difference between the number of flights that completed each one of the two approach procedures. Tables D-18 and D-19 give the breakdown by entry direction and fuel category.

<u>Fuel (Tables D-20 and D-21)</u>. There was significant fuel saving for aircraft that completed the IATA approach compared to the incomplete IATA and incomplete delayed flap approaches. There was no significant difference between complete IATA and complete delayed flap approaches. The average fuel consumed for complete and incomplete approaches resulted in no significant difference, and the same results were found for all IATA and all delayed flap, as well as for all approaches.

27

Distance (Table D-22 and D-23). The significant differences point out that delayed flap flights, in general, flew greater distances than IATA flights, and that when the delayed flap procedure was complete, the flight distance was less than when the procedure was interrupted.

<u>Time (Table D-24 and D-25)</u>. Since time is a function of distance, the significant differences were expected and essentially point out approximately the same results as the flight distance measures. Incomplete procedure flights were in the system for a significantly longer period of time than complete flights, and the flight time for delayed flap flights was longer (a = 0.05) than for IATA, with one exception. A significantly greater flight time was shown for incomplete IATA flights compared with complete delayed flaps. When the approach procedures were complete, both the IATA and the delayed flap required just about the same amount of flight time.

Workload (Table D-26 and D-27). The significant differences indicate that complete high-speed approach procedures required less workload than the incomplete procedures, and that there was less workload controlling delayed flap aircraft than IATA.

Interrupted Procedure (Table D-28). No statistical analysis was run on the values of this measure. An interrupted procedure occurred when the speed of an aircraft was reduced below the speed required by the particular procedure. Procedural requirements for IATA and delayed flap approaches established that speeds not below 180 and 210 knots, respectively, be maintained to a point 4.5 nmi from touchdown (1 nmi inside the outer marker). When the speed was reduced below procedural requirements, an altitude measurement was taken. The average altitude at which the highspeed approach procedures were interrupted was 8,457 feet m.s.l., or between 10 and 11 nmi from touchdown. The table shows that the average altitude was slightly higher for delayed flap flights which were interrupted about 12 nmi out. Interruptions of IATA approaches occurred on an average of about 9 nmi out.

CONDITION 4

General. Condition 4 is complex. There are six treatments (table 2):

- 1. Complete profile descent with complete delayed flaps
- 2. Complete profile descent with incomplete delayed flaps
- 3. Incomplete profile descent with complete IATA
- 4. Incomplete profile descent with incomplete IATA
- 5. Incomplete profile descent with complete delay flaps
- 6. Incomplete profile descent with incomplete delay flaps

The omission of complete profile descents with IATA complete and incomplete scores was due to computer limitations in the simulator software, which made a combination of complete profile descent and IATA procedures impossible. <u>Number of Aircraft (Tables D-29 and D-30)</u>. Table D-29 lists the treatments (procedures) summarized from the scores in table D-30. The significant difference between complete profile descent and incomplete profile descent (All Approaches) was because no IATA procedure could be made with a complete profile descent procedure; i.e., profile descent was curtailed upon the initiating of the IATA approach. Since the IATA approach could not be made together with the complete profile descent, IATA procedures occurred only under the incomplete profile descent.

Considering all the procedures, there were significantly more IATA approaches completed than delayed flap approaches, even though the number of aircraft that were planned to make either an IATA or delayed flap approach was nearly equal.

There was no significant difference in the number of flights between condition 4 and the other conditions within the altitude strata of FL230 and below (table D-1).

<u>Fuel</u>. The fuel data for aircraft that operated in the FL240-and-above strata was found to be inconsistent and is not used in the report. Computer Sciences Corporation reported, in a documentation of that company's participation in supporting the simulation, that the average fuel usage per aircraft in condition 4 was 2,891 pounds (reference 6). The average fuel used per aircraft that operated in the FL230-and-below strata was 1,579 pounds (table D-1).

DISTANCE (TABLES D-31 AND D-32a AND b). Table 3 shows an analysis of the statistically significant differences in the distance flown comparisons. In general, the analysis shows that flights which were not allowed to complete the profile descent procedure flew greater distances than those that completed the procedure. It is also shown that delayed flap approach flights, regardless of whether the procedures were flown to completion or not, flew greater distances than IATA approach flights, with one exception. The IATA flights, when the profile descent was interrupted, flew farther than incomplete delayed flap flights which completed the profile descent. However, the data for the latter flight group are based on only two flights. Additionally, the table shows that when all profile descents, complete and incomplete, are considered, the incomplete high-speed approaches flew greater distances than those that were complete.

There was no significant difference found in the distance flown by flights in the FL230-and-below strata in this condition compared with the other test conditions (table D-1).

<u>Time (Tables D-33 and D-34a and b)</u>. Since time-in-system is a function of distance, similar significant differences were, in general, found in both measures. The statistical tests used for this measure addressed only the total average time per aircraft.

Table 4 shows an analysis of the statistically significant difference in the time-in-system comparisons.

TABLE 3. ANALYSIS OF DISTANCE FLOWN COMPARISONS

Comaplete PD/Comaplete DF	flew statistically significant greater distance than	*Complete PD/Incomplete DF
Incomplete PD/Complete DF		Complete PD/Complete DF
Incomplete PD/Complete DF		*Complete PD/Incomplete DF
Incomplete PD/Complete DF		Incomplete PD/Incomplete DF
Incomplete PD/Complete DF		Incomplete DP/Complete IATA
Incomplete PD/Complete DF		Incomplete PD/Incomplete IATA
Incomplete PD/Incomplete D	F	Complete PD/Complete DF
Incomplete PD/Incomplete D	F	*Complete PD/Incomplete DF
Incomplete PD/Incomplete D	F	Incomplete PD/Complete IATA
Incomplete PD/Incomplete D	F	Incomplete PD/Incomplete IATA
Incomplete PD/ALL DF		Complete PD/ALL DF
Incomplete PD/Complete IAT	A	*Complete PD/Incomplete DF
Incomplete PD/Incomplete I	АТА	*Complete PD/Incomplete DF
Incomplete PD/ALL Approach	es	Complete PD/ALL Approaches
All PD/Incomplete DF		All PD/Complete IATA
All PD/Incomplete DF		All PD/Incomplete IATA
All PD/ALL DF		ALL PD/ALL IATA
All PD/ALL Incomplete Appr	oaches	ALL PD/ALL Complete Approaches

Legend :

*Data values based on two flights PD--Denotes profile descent DF--Denotes delayed flap approach IATA--Denotes IATA approach

30

the second se

TABLE 4. ANALYSIS OF TIME-IN-SYSTEM COMPARISONS

Complete PD/Complete DF	was in the system significantly longer than	*Complete PD/Incomplete DF
Incomplete PD/Complete DF		Complete PD/Complete DF
Incomplete PD/Complete DF		*Complete PD/Incomplete DF
Incomplete PD/Incomplete D)F	Complete PD/Complete DF
Incomplete PD/Incomplete D	DF	*Complete DP/Incomplete DF
Incomplete PD/Incomplete D)F	Incomplete PD/Complete IATA
Incomplete PD/Complete IAT	FA	Complete PD/Complete DF
Incomplete PD/Complete IAT	FA	*Complete PD/Incomplete DF
Incomplete PD/Incomplete I	IATA	*Complete PD/Incomplete DF
Incomplete PD/All Approach	168	Complete PD/All Approaches
All PD/Incomplete DF		ALL PD/Complete DF
ALL PD/Incomplete DF		ALL PD/Complete IATA
ALL PD/Incomplete IATA		ALL PD/Complete IATA
All PD/ALL Incomplete Appr	roaches	All PD/ALL Complete Approaches

Legend:

*Data values based on two flights PD-Denotes profile descent DF-Denotes delayed flap approach IATA-Denotes IATA approach

31

· - -

.....

Incomplete profile descent flights were in the system for a longer time than those when the procedure was flown to completion. The pattern for the high-speed approach portion of the flights was not found to be as consistent. Greater or lesser time-in-system was found to vacillate between the two types of high-speed aproaches and between the completion and incompletion of the approach procedures. However, when both the complete and incomplete profile descents were considered together, the incomplete high-speed approach flights were in the system longer than those that completed the approach procedure.

Workload (Tables D-35 and D-36a and b). The summary, table D-35, depicts the accumulative average of vector, speed, and altitude clearances per aircraft. A breakdown of the workload by the three types of clearances is shown in tables D-36a and D-36b, and an analysis of statistically significant comparisons is shown in table 5.

Table 5 shows that, without exception, controller workload was less when the profile descent portion of the flight was flown to completion regardless of the type of approach or whether the approach procedure was flown to completion or not. It is also shown that, without regard for the complete or incomplete results of the descent procedure during the flight, less workload was required to control completed approaches than incomplete. In general, there was less workload involved in controlling delayed flap approaches than IATA, with one exception. Workload for incomplete delayed flap flights was higher than for complete IATA flights.

Interrupted Procedure (Table D-37a and b). Table 37a lists the altitude at which the delayed flap approach procedure was interrupted after the profile descent procedure had been completed. As previously pointed out, no IATA approaches could be flown following a complete profile descent procedure. Table D-37b lists the interrupted altitude for incomplete profile descents followed by complete and incomplete high-speed approaches. When the high-speed approaches were complete, the interrupted procedure altitude given in the table was the altitude at which the descent procedure was interrupted. In cases where both the profile descent and the high-speed approach procedures were interrupted, the interruption altitudes are shown under the descent and approach columns, respectively.

No statistical analysis was made of the interrupted procedure altitude data for combined treatments. Tables D-37a and b show that on the average, profile descent procedures were interrupted at 11,063 feet (about 20 nmi out) when the high-speed approaches were flown to completion. The interruption altitude for both procedures was approximately the same. When both the profile descent and high-speed approach procedures were interrupted, the interruption of the descent procedure occurred earlier at an altitude of 12,329 feet (about 24 nmi out). The procedure for the high-speed approach portion of the flight was interrupted, on the average, at an altitude of 9,506 feet (about 14 nmi from touchdown). The delayed flap procedure was interrupted earlier at an altitude of 10,379 feet (about 17 nmi from touchdown), and the IATA was interrupted at 8,078 feet (about 10 nmi from touchdown).

TABLE 5. ANALYSIS OF CONTROLLER WORKLOAD COMPARISONS

Incomplete	PD/Complete DF	required statistically significant greater workload than	Complete PD/Complete DF
Incomplete	PD/Complete DF		*Complete PD/Incomplete DF
Incomplete	PD/Incomplete DF		Complete PD/Complete DF
Incomplete	PD/Incomplete DF		*Complete PD/Incomplete DF
Incomplete	PD/Incomplete DF		Incomplete PD/Complete IATA
Incomplete	PD/Complete IATA		Complete PD/Complete DF
Incomplete	PD/Complete IATA		*Complete PD/Incomplete DF
Incomplete	PD/Incomplete IATA		Complete PD/Complete DF
Incomplete	PD/Incomplete IATA		*Complete PD/Incomplete DF
Incomplete	PD/Incomplete IATA		Incomplete PD/Complete DF
Incomplete	PD/Incomplete IATA		Incomplete PD/Incomplete DF
Incomplete	PD/Incomplete IATA		Incomplete PD/Complete IATA
Incomplete	PD/ALL Incomplete	Approaches	Incomplete PD/ALL Completed Approaches
Incomplete	PD/ALL Approaches		Complete PD/ALL Approaches
ALL PD/Inco	omplete DF		ALL PD/Complete DF
ALL PD/Inco	omplete DF		ALL PD/Complete IATA
ALL PD/Com	plete IATA		ALL PD/Complete DF
ALL PD/Inco	omplete IATA		ALL PD/Complete DF
ALL PD/Inco	omplete IATA		ALL PD/Incomplete DF
ALL PD/Inco	omplete IATA		ALL PD/Complete IATA
ALL PD/ALL	IATA		ALL PD/ALL DF
ALL PD/ALL	Incomplete Approac	hes	ALL PD/ALL Complete Approaches

Legend:

)

*Data values based on two flights PD--Denotes profile descent DP--Denotes delayed flap approach IATA--Denotes IATA approach

.

33

بالالالا المستحد المستحد المراجع

. .

ANALYSIS

GENERAL.

This discussion of results is based on comparisons of objective data and on the subjective opinion of NAFEC project personnel, participating controllers, and the ARC flight simulator pilots.

Objective data for all entire flights are used in comparisons, except arrival rates, where data from partial flights were used. Comparisons are made between the baseline data of condition 1 (conventional procedures) and the other procedural conditions. Some intraprocedural comparisons are also made.

Table 6 is an excerpt from table D-1 (appendix D) and shows the value of measures per aircraft for flights that operated in both altitude strata, FL240-and-above and FL230-and-below. Data for flights within the higher altitude strata are for all aircraft; that is, the measure values for aircraft that flew a procedure to completion are compiled together with those values for aircraft when the procedure was not completed. These two are referred to as complete and incomplete flights, respectively.

Tables 7 and 8 aid in discussing the complexities in results, and some discussion about what happened within specific areas and/or flight situations is presented. These two tables show data only for aircraft that operated with the FL240-and-above strata. Table 7 shows the measure value difference and percentages of increase or decrease in comparisons of the fuel conservation procedures with the baseline data of the conventional procedures. Data are for all aircraft, and the quadrant of flight is also shown. Table 8 is a summary of measure values per aircraft for only those aircraft that completed the flight-planned procedure. Intermittent reference is made to each of these tables. Positive discussion is presented only where statistically significant differences apply, but reasonable indications and trends are identified as such and discussed where pertinent.

PROFILE DESCENT.

Tables 6 and 7 show that there was a l2-percent (a = 0.05) fuel saving of 413 pounds per aircraft with the use of the profile descent procedure as compared to the conventional descent/conventional approach procedure. Additionally, 380 pounds (11 percent) less fuel (a = 0.05) per aircraft was used with the profile descent procedure than with the high-speed approach procedures. Evidence of the efficiency of the profile descent procedure is more clearly shown in table 8 where data for only complete procedure flights are considered. Even though the rate of completion for profile descent flights was relatively low, 28 percent, the fuel saving for the complete procedure flights, compared to conventional procedures, was 22 percent or 768 pounds per aircraft.

GRAND SUMMARY OF MEASURES PER AIRCRAFT BY TEST CONDITION FOR ALL ARRIVAL TRAFFIC TABLE 6.

Ę.
0
•
4
••••
Ξ.
C
^
ŏ
-
L.
60
õ
Ē.

-

			E	FL240 and above	bove			
Fuel	3,467 1 [*]	1*	3,054 1,2	1,2	3,434 2	2		
Distance	152	2	155 1,2	1,2	152	1	154	
Time	1,619	1	1,601 2	3	1,592		1,565 1,2	1,2
Work Load	6.4 1,2,4	1,2,4	4.0 2,5	2,5	5.5	5.5 3,4,5	3.9	1,3
			FL	FL230 and below	low			
F uel	1,595		1,641 1	1	1,547	1	1,579	
Distance	127		133		127		129	
Time	2150 2	2	2,313 1,2	1,2	2,100 1	I	2,288	

example: The numeral 1 appears following the fuel value for condition 1 at FL240 and above. The numeral 1 also appears following the fuel value for condition 2 in the same row. A significant difference is shown in this manner, and the For Significant differences are shown by paired numbers in the same row. remainder of the differences shown can be likewise interpreted.

1,2

7.3

2

5.9

6.6

5.9

Workload

*

TABLE 7. MEASUREMENT DIFFERENCES COMPARING FUEL CONSERVATION PROCEDURES WITH CONVENTIONAL PROCEDURES

. --

Test Conditions

-

													ove, ions		
	4			7 H	4 X - 72	-2.4		22	9 K	-2.5 392			and ab indicat		
	n	-60	22		5 1	-1.3 20 2	-33 1 1	00	-27 2 X	9 141			at FL240 le 6 for		
	2	-522	132	+2 1 2	-89 52	-2.2 332	413 12 X	÷2	-18 17	-2.4			perated to tab		
	-	3 877	4	164	1,758	6.6	3,467	152	1,619	6.4			n that o . Refer nces.		
	Measures	E	1907	Distance	Tine	Work load	Fuel	Distance	Tine	Work i oad			llying populatic omplete flights ifficant differe		
FL240 and above	Quadrant of Flight			Northwest Drako				System*					* Systemthe total flying population that operated at FL240 and above, both complete and incomplete flights. Refer to table 6 for indications of statistically significant differences.		
L	4	r		1+	-60 21	-1.5 28 2		0	44	12	-2.7 40 X		44 32	-56 3 1	-4.0
		.	-114 32	77	-55 4 2	4	-55	74	9	0	-1.3	စ္ ဝ ၊	12 -1	-30	7
	•	-	57	48	41+ 21	-1.0	907	0	5	- 0	-3.1	245 142	34.5	-29 2 1	-3.3 492
	-	-	3,262	145	1,558	5.4	3,241	143		N2C,1	6.7	3,665	159	1,693	6.8
	3	Heasures	Fuel	Distance	Time	Work I oad	fue l	Distance	i	Time	Workload	Fuel	Distance	Tine	Workloed
	Quedrant of	Flight		Northeast Keann					Southeast Kiove				Sou threat Braon		

36

.....

الارابية المستعيرة

...

_

TABLE 8. SUMMARY OF MEASURES PER AIRCRAFT BY CONDITION FOR FLIGHTS THAT COMPLETED THE SPECIFIED PROCEDURE, FL240-AND-ABOVE

Measures	Cond. l Conventional	Cond. 2 Profile Descent	Cond. 3 High-speed Approaches IATA DF	l. 3 Approaches DF	Cond. 4 Profile Descent & High-speed Approac IATA DF * **	Cond. 4 Profile Descent & High-speed Approaches IATA DF * **
Number of Aircraft	100%	28%	932	78%	742	542
Fuel	3,467	2,699	3,351	3,480		
Distance	152	153	149	153	152	154
Time	1,619	1,564	1,569	1,585	1,559	1,533
Workload	6.4	.1	5.7	5.0	4.3	1.5
Speed (in knots)	e) 338 .	352	342	348	351	362

* Simulation procedure did not permit the profile descent to be completed.

** Includes both complete and incomplete profile descents.

Table 7 shows that the beneficial results from the profile descents were equally distributed amongst flights from all directions, except from the northeast over Keann. Trends show that the rate of completion of the procedure for traffic from that direction was lower (table D-12), the altitude at which the procedure was interrupted was higher (table D-7), and the reduction in controller workload was less (table 3) than in any of the other flight direction quadrants.

The profile descent procedure was least compatible with the system functions in the Keann quadrant for several reasons. The semistraight-in design of the azimuth track of the profile descent procedure from over Keann was not as compatible with the dynamic function of the system as the downwind and base-leg pattern from over Drako. The profile descent procedure allowed for no flexibilty in pathstretching or shortcutting, but trends indicate that control judgments and decisions were fewer and less difficult where the downwind and base-leg pattern from Drako was flown, even though the same lack of flexibility prevailed. Even though the procedure and azimuth flight pattern of the profile descent from the Kiowa quadrant was of the same design as that from Keann, comprised of the downwind from over Byson and the semistraight-in from Kiowa, there was a higher degree of operational efficiency because a fewer number of difficult-to-control aircraft entered the final approach area from Kiowa than from Keann. Sixty percent of the traffic volume and 75 percent of the problematic traffic in the FL230-andbelow strata from over those two fixes was from Keann.

HIGH-SPEED APPROACH.

Table 6 shows that no significant fuel saving over conventional procedures was found with the high-speed approaches. Only an indication is shown that there might be a trend in favor of less fuel. It can be seen in table 7 that the fuel, distance, time, and workload performance measures, when these procedures were used, were just about the same in all four quadrants. Traffic interactions between the aircraft flying the high-speed approach procedures and low-performance aircraft, as well as between aircraft flying the two different high-speed approach procedures, did not allow for the best efficiency of the high-speed approaches, because sequencing and spacing problems often occurred. Even though about 85 percent of the high-speed approaches were flown to completion, when the procedure was interrupted, fuel consumption for the flight, because of the interruption, was just about the same and in some cases more than during conventional descent and approach procedures. Fuel consumption by incomplete approaches was always higher than when the procedure was completed. The greatest difference was 275 pounds or about 8 percent per aircraft in IATA approaches.

Spacing problems sometimes occurred between the two different high-speed procedures because of the 30-knot difference in the two approach speeds. If a delayed flap flight was followed by an IATA, the IATA flight was affected by the faster speed of the delayed flap aircraft. Spacing was increased. The converse was not true. If an IATA flight was followed by a delayed flap, control planning required additional spacing to allow for the 30-knot closure of the delayed flap flight on the IATA flight ahead. As a result, the system function was not as compatible for delayed flap procedure flights. Regardless of whether the procedure was flown to completion or not, delayed flap flights always flew greater distances and were in the system for longer periods of time than IATA flights. Additionally, the altitude at which the delayed flap procedure was interrupted during incomplete flights average about 500 feet higher than during incomplete IATA flights.

The IATA procedure was more compatible with traffic flow requirements in the final approach area because the approach speed was 30 knots slower than that of the delayed flap procedure. Table 8 shows that 93 percent of the IATA flights were flown to a completion of the procedure. Those completed flights saved 116 pounds of fuel per aircraft, or about 3 percent over conventional approaches. Seventy-eight percent of the delayed flap approach flights were completed, but data show a slight net fuel loss. The apparent lack of efficiency in the procedure is attibuted to the faster approach speed which caused a greater flight distance, 4 nmi farther than IATA approaches and 1 nmi farther than conventional. In some cases, the flight distance of incomplete delayed flap flights was 6 nmi greater than conventional flights.

COMBINED PROFILE DESCENT AND HIGH-SPEED APPROACHES.

Table 6 and 7 show results of the combined profile descents and high-speed approaches in condition 4 to be reasonably consistent with those in conditions 2 and 3. The procedural effect of each, the profile descent and the high-speed approaches, can be seen. Distance flown and workload were just about the same as when the profile descent procedure alone was used in condition 2, and the time-in-system measure was less because of the effect of the higher speeds in both procedures. Performance was just about the same in all four quadrants. However, because the two procedures were combined, complexities occurred which caused a reduction in the completion rate of each procedure. Trends show that profile descents completed were reduced to 20 percent from the 28 percent in condition 2, and table 8 shows that IATA and delayed flap approach completions were reduced from 93 to 74 and from 78 to 54 percent from condition 3 to condition 4, respectively. Workload in controlling IATA flights was found to be higher.

The flight procedural differences are reflected in both the flight distance and flight time measures (table 6). Longer flightpaths were flown when profile descent procedures were used, and flight distances were the same for both the conventional and the high-speed approach procedures. Although not statistically significant, a trend toward the greater flight distance required by the profile descent was indicated when the profile descent and high-speed approaches were combined. However, that greater distance tended to be offset by the high-speed approaches, which did not require an extended flightpath.

The flight times for conventional, profile descent, and high-speed approaches were just about the same (table 6). Aircraft that flew profile descents remained at higher altitudes for longer periods of time, and were thus enabled to fly further during the same length of time because of the faster groundspeeds at the higher altitude.

EFFECTS ON AIRCRAFT FL230 AND BELOW.

Results indicated that the system did not allow aircraft flying at and below FL230 to operate as efficiently when profile descent procedures were used. Even though statistical tests showed a significant difference only in flight time (table 6), which was increased 8 percent, data comparisons showed trends toward increased fuel consumption and a greater flight distance. Data comparisons also indicated a strong trend toward an increase in controller workload. The increase was found to be about 12 percent, with the number of radar vector and altitude change clearances each increasing 25 percent and with a slight decrease in speed control clearances (tables D-10 and D-16). Although there were increases in controller workload from aircraft in all four quadrants, the greatest item was a 100-percent increase in the number of radar vectors to the aircraft from over Drako. A trend toward an increase in delay is also indicated (table D-4).

Except for delay, it did not appear that the high-speed approach procedures were detrimental to the operation of the aircraft in the FL230-and-below strata. The values of all measures, except delay during high-speed approach operations, were just about the same as during conventional procedure operations. Delay was increased 61 percent over conventional procedures (configuration 1). Once in the system, if anything, a slight trend toward greater efficiency was indicated by the nearly 50 pounds less fuel used and almost a minute less in-flight time. Considering all aircraft that operated in the FL230-and-below strata, there were no significant differences in controller workload. However, when each type of clearance was examined, a trend toward an increase in workload was again found in just about the same pattern as with the profile descent procedures. There were increases in the number of both radar vectors and altitude change clearances of 10 and 25 percent, respectively, and a decrease in the number of speed control clearances (tables D-10 and D-27). The increases were found to have been in controlling the aircraft on the north side of the runway 26L ILS course. It seemed that those on the south side were more compatible with the operation of the high-speed approach procedures and were spaced and sequenced into the flow of high-speed approach aircraft easier than those on the north side. Radar vector and altitude change clearances to aircraft from over Keann and Drako were increased 28, 150, 26, and 27 percent, respectively.

As in configuration 3, except for delay, there was no evidence of detrimental system effects to aircraft in the FL230-and-below strata when the combination of the profile descent and high-speed approach procedures were used in configuration 4. Again, delay was increased (64 percent) over configuration 1. After the aircraft were cleared into the system from the hold, fuel consumption was just about the same as during conventional procedures, and only trends toward increase in flight distance and flight time were shown (table 6). An interesting and important point is that these aircraft posed the greatest problem to ATC at this time, and workload was increased 24 percent (table 6). Again, the familiar pattern of the system effect was evident whereby workload increases were found for radar vectors and altitude change clearances, and aircraft on the north side of the ILS course were more

40

difficult to control than those on the south. Although workload increases were found in controlling aircraft from all four quadrants, the greatest increases were for Keann and Drako traffic, where radar vectors were increased more than 50 percent and altitude changes between 25 and 40 percent (tables D-10 and D-36a).

During condition 1, when conventional descent and approach procedures were used by aircraft in the FL240-and-above strata, workload was 8 percent higher in controlling the aircraft in the higher altitude strata than in the lower (table 6). That was reversed when the fuel conservative procedures were introduced. Workload in the FL230-and-below strata was 39 percent greater than in the higher strata in condition 2, 7 percent greater in condition 3, and 47 percent greater in condition 4. The effect on workload of the profile descent procedure again is obvious in conditions 2 and 4, but more interesting is that workload in the lower strata in condition 3 is 7 percent greater than in the higher strata—the reversal of workload data indications in condition 1. It is reasonable to conclude that a 15-percent workload increase occurred within the FL230-and-below strata when the high-speed approach procedures were in operation.

ARRIVAL RATES.

The arrival operations rates remained nearly constant throughout all conditions of the experiment. There were no statistically significant differences. The hourly rates averaged between 27.8 and 25.7 for all aircraft that operated in the system in both altitude strata. The hourly rate for aircraft in the higher strata was between 23.1 and 20.8, while in the lower strata the average was from 5.2 to 4.7. The ARC aircraft simulator flights were not included in these data.

DELAY.

There were no significant differences found in the number of aircraft that were delayed in either altitude strata (table D-3). The amount of time lost in delay (table D-4) was significantly greater in conditions 3 and 4 than in conditions 1 and 2 in both altitude strata. There were no differences between conditions 1 and 2 or conditions 3 and 4. None of the aircraft in either altitude strata were penalized significantly by increased delay when profile descents were in operation. Only a slight trend toward increased delay was found. However, when high-speed approaches were in operation (condition 3) and also when the combination of profile descents with high-speed approaches (condition 4) was in operation, delays to aircraft in the FL240-and-above strata were increased between 25 and 30 percent. Delays to aircraft in the FL230-and-below strata, at those times, were increased over 60 percent.

FLIGHT SIMULATORS.

It was planned that the ARC-piloted aircraft simulators were to have been a part of the programed traffic sample input, and each simulator flight was to have been controlled the same as the computer-generated flights. However, the downtime of both the ARC and NAFEC simulation facilities and other restrictions made the required coordination impossible at times. The programed requirements for the ARC simulators were deviated from, and all of the flights could not be flown. Both simulators flew in all four of the test conditions; however, limited data were available because of the small number of flights. No statistical tests could be made because of the limited amount of data. A trend was, however, shown in favor of fuel saving with the use of the fuel conservative procedures in all the conditions tested. The most favorable indications were in condition 4, when the profile descent and high-speed approach procedures were combined.

Pilot comments were in favor of the fuel conservation procedures, especially the profile descent. However, comments indicated that the charts which had been prepared by NAFEC for use in the simulator cockpits were in excessive detail and should be simplified. Pilot comments were also favorable for dynamic simulation.

INTERACTIONS.

The test design was constrained to four variables (test conditions) because of time limitations for conducting the test. The design did not allow for testing profile descent procedures without the presence of low-performance aircraft in the traffic sample. It is reasonable to conclude that even greater fuel conservation benefits would have been found for the profile descent if traffic interactions with low-performance aircraft could have been eliminated.

Similarly, the test design did not permit testing of the high-speed approach procedures without interaction with low-performance aircraft or without interaction with each other. Again, a reasonable conclusion suggests that favorable results could be attained from high-speed approach procedures being operated within an independent environment.

Severe interaction of traffic often occurred in the final approach airspace because of such a wide range in approach speeds of the different types of aircraft that used the same airspace and landed on the same runway. Analysis of objective data results did not fully demonstrate the magnitude of the many difficult and complex control situations that were observed. Controllers experienced problems in establishing and maintaining a workable sequence of aircraft on the final approach course and maintaining the required spacing to touchdown.

METERING MODEL.

The metering model, which was designed for and used in the simulation, and was intended to aid in sequencing and spacing, was found to be a workable controller's tool. It aided in the orderly dispatch of aircraft entering the area at the peripheral start points. However, because system effects could not be treated in the model, control action was often necessary to assure that required spacing on final approach was attained. Alternate clearances often changed the patterns of the flows, and the arrangement of the sequence provided by the model were often rearranged. Those actions had a "snowballing" effect and contributed to the number of flights that were not permitted to fly the fuel conservative procedures to completion.

CONTROLLER COMMENTS.

Controllers were critical of the profile descent procedure as it was simulated. Because it was designed essentially to be a "hands off" procedure from cruising level to 7,500 m.s.l. (about 2,200 feet above ground level), no latitude remained for control decisions without interruption of the procedure. Controllers suggested that either the procedure be modified to accommodate control decision adjustments or the metering procedure be refined to treat system effects for more accurate sequencing and spacing.

The terminal ATC procedure was also criticized. The procedure simulated, required the final controller to accept, marshall, and space traffic from over each of the four cornerposts. A possible solution suggested was that flow patterns be modified to enable the north and south arrival controllers to sequence the traffic into a single flow on the respective sides of the ILS course before handoff to the final controller. The final controller would then be accepting traffic flows from two directions instead of four.

DEPARTURES.

There was an indication of about 4-percent saving of fuel when the selected departure flights were not restricted to maintain 250 knots at 10,000 feet and below. However, because of the limited number of test runs, there was not a sufficient amount of data for statistical tests. The elevation of the Denver Stapleton Airport is over 5,000 feet; therefore, the performance of the selected aircraft was measured during slightly less than a 5,000-foot climb. It is reasonable to conclude that a much greater fuel saving would be found in longer climbs from airports at lower elevations above sea level.

HOLDING.

Results of the graphic study of fuel consumption by large turbojet aircraft in holding configurations showed that the most fuel efficient holding altitudes are from 25,000 to 30,000 feet, inclusive. The penalty for holding at 10,000 feet would range from 400 to 1,100 pounds per hour, depending upon the aircraft type.

It was further shown that optimum fuel efficiency while holding is difficult to attain, because holding pattern airspace is often too small to accommodate aircraft flying at the most fuel-efficient speed. When aircraft are required to fly a slower-than-optimum speed to contain the flight pattern within designated airspace, a penalty to fuel efficiency of up to 20 percent results. Additionally, the study showed that in comparison with flight at slower speeds in level flight, holding results in a 5-percent penalty to fuel-flow efficiency. It was recommended that, wherever possible, the size of holding pattern airspace should be increased, and that delay should be absorbed by slower en route speeds in order to preclude holding. A complete documentation of the study is presented in appendix F.

SUMMARY OF RESULTS

1. The profile descent procedure was significantly efficient in both fuel consumption and controller workload, even though the number of aircraft that completed the profile descent procedure was relatively low.

2. The low rate of completion of the profile descent procedure resulted because of spacing problems and interaction with low-performance aircraft competing to land on the same runway.

3. Spacing and interaction for both high- and low-performance aircraft also adversely affected the high-speed approach operations, making the fuel efficiency of those procedures questionable.

4. The IATA approach procedure was found to be more compatible with traffic flows than the delayed flap, because of the slower approach speed.

5. A reduction in workload was the only advantage found in the simulation of combined profile descent and high-speed approach procedures. That reduction was about the same reduction found for the profile descent procedure alone.

6. The fuel conservation procedures added complexities to the existing complicated flow pattern situations involved in the competition between both high- and low-performance aircraft approaching to land on the same runway. Even though the traffic was metered into the system at the peripheral start points, the model could not treat system effects, and complicated sequencing and spacing problems resulted which were detrimental to the fuel conservation procedures.

7. Arrival operations rates were approximately the same under all conditions tested because traffic was metered into the system.

8. No increase in delay over conventional procedures was incurred by either high- or low-performance aircraft during profile descent operations. However, significant increases in delay occurred for aircraft in both altitude strata during high-speed approach operations and when the profile descent and high-speed approaches were combined.

9. Even though coordination problems did not allow the ARC aircraft simulators to collect sufficient data for analysis, participation was an asset to the simulation because of the realism afforded by the live input. 10. Controller critiques indicated a need for latitude for control decisions and more efficient metering in order to attain more successful results from fuel conservation procedures. Additionally, controllers felt that a redistribution of workload would be a further aid.

CONCLUSIONS

1. The profile descent procedure was significantly efficient in both fuel consumption and in controller workload.

2. Fuel conservation procedures were significantly more efficient in both fuel and controller workload when flown to completion; however, significant benefits were found with the profile descent even when the procedure was interrupted.

3. Air traffic control procedures and techniques have a significant impact on the effectiveness of fuel conservation procedures.

4. Traffic mix adversely effects the results of fuel conservation procedures, especially the high-speed approach procedures.

5. Low-performance aircraft and those not flying fuel conservation procedures should be separated procedurally and approach to land on an independent runway.

6. An effective system of en route metering is mandatory for obtaining efficient results from fuel conservation procedures.

7. Based on the indications of limited data, fuel was saved when the 250-knot speed restriction at 10,000 feet and below was deleted.

RECOMMENDATION

Since fuel conservation has become even more critical subsequent to this study, another full-scaled NAFEC/ARC simulation of fuel conservation procedures should be planned so that the benefits from the evolution of research may be exploited to the fullest. Planning should incorporate a much greater radius of en route range. Planning should also incorporate the latest in fuel optimized procedures, en route metering techniques mandatory to effective scheduling, and provide for on-time delivery of aircraft with the aid of both ground and airborne computing equipments. Studies, thus far, have not been of sufficient depth to investigate the ramifications involved in the marshalling of the flow of arrival traffic, which has been pushed well back into the en route area.

45

REFERENCES

1. Local Flow Traffic Management, Federal Aviation Administration, Advisory Circular 90-73, January 13, 1977.

2. Experimental Operational Profile Descent Procedures-Stapleton International Airport, Federal Aviation Administration, December 2, 1976.

3. Bull, J.S., et al., <u>Flight Test Evaluation of a Delayed Flap Approach</u> <u>Procedure</u>, NASA TM X-73, 198, 1977.

4. <u>Operational Procedures for Noise Abatement</u>, International Air Transport Association Technical Policy Manual, IATA, Montreal, Canada, January 1977.

5. Air Traffic Control Handbook, DOT/FAA, No. 7110-65.

6. <u>Biomedical (01V), Analysis of Variance for One-Way Design</u>, Health Science Computing Facility, University of California, Los Angeles, California, January 5, 1972.

7. Cochran, S. P., <u>Statistical Methods</u>, sixth edition, The Iowa State Press, 1967.

8. Billman, B. R., <u>Report of Findings for the Profile Descent Experiment</u>, TM-15-001, Computer Sciences Corporation, Silver Springs, Maryland, October 1977.

9. Algeo, D. R., <u>Digital Simulation Facility User's Guide</u>, DOT/FAA/NAFEC Simulation and Analysis Division, June 1975.

10. User's Guide for Air Traffic Control Digital Simulation Facility—Data Reduction and Analysis, DOT/FAA/NAFEC Simulation and Analysis Division, June 1978.

11. Fetter, J. L., <u>A Communications System for the Terminal Area Effective-</u> ness Program, NASA TM 73, 227, 1977.

46

APPENDIX A

SIMULATION FACILITIES

The ATCSF is a laboratory tool composed of digital computers, a cathode-ray tube complex, a telephone communications system, and a computer-operated radar target generator and data collection system. The computer accepts aircraft performance data, airspace geometry, and flight plan items. The facility provides the capability of realistically modeling, either in real- or fast-time, segments of the ATC system for experimental purposes. Hundreds of aircraft flights can be simulated simultaneously either under the control of simulated ATC facilities or without control intervention.

Under real-time conditions, as with this simulation, air traffic controllers control the flights by issuing clearances through the communications system to the simulator "pilots." Appropriate keyboard entries to the computer are made at the "pilot" operating positions. The clearance vocabulary between controllers and "pilots" is in the same form of clearances that are used in today's ATC system. Detailed information about the simulation facility and associated hardware/software can be obtained by referring to separate NAFEC documents (references 9 and 10).

The piloted aircraft simulators at ARC which "flew" in the NAFEC ATC environment were interconnected with the ATCSF via transcontinental land-line data links. Aircraft identification, altitude, speed, and latitudinal and longitudinal position information were transmitted to NAFEC, and the flights were appropriately positioned on the NAFEC-simulated radar displays at the ATC control positions. Additionally, several voice channels were transmitted via the data link. Thus, the ARC pilots were enabled to be in contact with the appropriate controllers as the flights progressed through the system. Details of the ARC/NAFEC data link can be found in a NASA publication (reference 11).

One of the ARC aircraft simulators was a moving-base transport type capable of simulating a wide range of aircraft during takeoff, climb, cruise, descent, approach, landing, and taxiing. Additional features included out-the-window visual television displays; panel, center, and overhead instruments; programmable "force-feel" flight controls; and autothrottles. In the simulation, this simulator was operated as a fixed base and was configured as a Convair 990 (CV990). The CV990 was simulated, rather than a currently operational aircraft, because NASA has previously conducted both live and simulated tests of the delayed flap high-speed approach procedure with that aircraft.

The second of the ARC aircraft simulators was also capable of specific sophistications similar to the above. In the simulation, it was configured as a Boeing 727.

APPENDIX B

NAFEC/ARC JOINT EFFORT FUEL CONSERVATION SIMULATION OPERATING INSTRUCTIONS FOR CONTROLLERS

BACKGROUND

The rising cost of fuel has precipitated the need for turbojet aircraft to use more economical fuel management techniques. It is anticipated that considerable adjustment and modification to air traffic flows and air traffic control procedures will be necessary to accommodate changes in fuel management procedures.

Air Traffic Service has levied a mandate upon most of the major terminals to implement changes to accommodate profile descent procedures by late 1977. Additionally, the National Aeronautics and Space Administration (NASA) had been conducting studies of two approach procedures designed to conserve fuel; the delayed flap approach, and the International Air Transport Association (IATA) approach.

OBJECTIVE

The objective will be to study the operational impact on air traffic control (ATC) procedures and on air traffic flow patterns when aircraft fuel conservation procedures are used.

PROCEDURES

GENERAL.

The following describes the fuel conservation procedures, air traffic flow and ATC procedures, and simulation procedures.

AREA SIMULATED.

The area simulated will be approximately a 150-mile radius of the Denver Stapleton Airport. All instrument flight rule (IFR) traffic arriving Stapleton Airport will be simulated from peripheral start points to completion of flight at touchdown. All arrival traffic will land on runway 26L, and departures will take off on runway 35R. Departure traffic will be simulated until advised to terminate.

NASA/ARC PILOTED SIMULATORS.

The ARC-piloted flight simulators will participate in the simulation together with the ATCSF computer-generated flights. Actual traffic sample flights will be flown by the flight simulators. One simulator will be configured as a Convair 990, and the other as a Boeing 727, and both will be piloted by current airline pilots. Both of these aircraft will fly conventional procedures, profile descents, and high-speed approaches. The 990 will fly the delayed flap high-speed approach and the 727 will fly the IATA approach. The interface between the ATCSF and the ARC simulators has provided for the capability of discrete communications selection by control operating position.

FUEL CONSERVATION PROCEDURES.

The fuel conservation procedures are the profile descent and the delayed flap and IATA high-speed approaches.

PROFILE DESCENT. Ideally, a profile descent is an uninterrupted descent from cruise altitude to the runway threshold at idle thrust power setting. The descent rate will be about 300 feet per mile. The procedure will be flown by aircraft cruising FL240-and-above, and each flight will be designated by the letter "Z" following the identification in the data tag. The procedure will be flown automatically by the computer-generated flights from start point to touchdown. Due to ATCSF software limitations, any clearance will interrupt the programed profile, and it will be impossible for the profile to be resumed. In the event of an interrupted profile, the "Z" will be dropped from the identification, and it will be necessary to control the flight by conventional methods of navigation and speed control. Wherever possible, attempt to employ a "hands-off" type of control with computer-generated profile descent flights. A diagram of the profile descent procedure for each of the Denver "four corners" will be provided on the back-lighted map displays at each control position in the simulation lab.

The ARC piloted simulators will fly the profile descent procedure without specific clearances. Copies of the profile descent procedures have been prepared for use by the pilots of the simulators during flight. Interruption of the procedure does not necessarily disrupt the entire procedure of the flight; that is, the pilot may be able to resume profile after being interrupted.

DELAYED FLAP APPROACHES. Delayed flap approaches will be flown by aircraft cruising FL240-and-above, and each flight will be designated by the letter "D" following the identification in the data tag. Each aircraft will be assigned a final approach speed of not less than 210 knots, and that speed shall have been attained prior to reaching the ILS final approach course. The speed of 210 knots will be maintained to 4.5 miles from touchdown, where it will be reduced automatically to final speed. IATA APPROACHES. IATA approaches will be flown by aircraft cruising FL240and-above, and each flight will be designated by the letter "T" following the identification in the data tag. The IATA procedure requires two speed reductions based on distances from touchdown by DME measurements or controller assistance for the distance measurements. Due to ATCSF software limitations, it will not be possible for these speed reductions to be made automatically, and the speed reductions will be initiated by the final controller. One speed reduction will be made to 180 knots. (The speed of 180 knots is an average and a compromise between the two reductions in the procedure.)

IATA aircraft will be reduced to 180 knots when crossing the 13.5-mile arc which crosses through the ILS course. Any point on the arc is a measured distance of 13.5 from touchdown. The speed of 180 knots will be maintained to 4.5 miles from touchdown, where the reduction to final speed will be made automatically.

CONVENTIONAL DESCENTS AND APPROACHES. All aircraft will be controlled in the conventional manner; that is, aircraft will navigate via VOR routes and radar vectors, and speed control will be used as necessary.

TRAFFIC SAMPLE. The one basic traffic sample was developed from an analysis of a Denver Stapleton Airport busy IFR day in January 1977. The flights were reproduced for simulation, and the number of flights was increased by 20 percent to insure adequate system loading during the tests. The weight class of the aircraft will be shown in the identification line of the data tag as follows:

Heavy - TW123H shows that TWA's flight 123 is a heavy aircraft.

Large - MX234 (no letter following the ident)

Small - RM345S

As discussed above, the profile descent and high-speed approach flight planning for each flight will also be shown on the identification line in the data tag.

Examples are as follows:

TW123H Z shows that the flight is a heavy aircraft and is programed to fly the profile descent procedure.

TW123H D shows that the flight will fly the delayed flap approach procedure. (The letter T would be shown instead of the D in the event the flight was programed to fly the IATA approach instead of the delayed flap.)

TW123H ZD (or ZT) shows that the flight is programed to fly the profile descent and one or the other of the high-speed approach procedures during the same flight. The one basic traffic sample will be used to test the different procedures. For convenience and ease of identification, each procedure will be associated with a specific sample number as follows:

<u>Sample 1.</u> Aircraft will follow conventional methods of flight during both descent and approach and be controlled by conventional ATC methods.

<u>Sample 2.</u> Profile descent procedures will be in operation and be flown by all aircraft cruising FL240 and above. Aircraft cruising FL230 and below will not fly the profile descent procedure and will be controlled in the conventional manner.

Sample 3. Delayed flap and IATA high-speed approaches will be in operation and be flown by aircraft cruising FL240 and above. The number of aircraft flying each procedure will be divided equally. Aircraft will be controlled by conventional methods during the descent portion of the flights and in accordance with the above described high-speed approach procedures during the approach.

<u>Sample 4</u>. Both the profile descent and high-speed approaches will be in operation. Each aircraft, cruising FL240 and above and according to flight plan, will conform to the profile descent procedure and execute either the delayed flap or IATA approach during the same flight. As in samples 2 and 3, all flights will execute the profile descent, and the number of flights flying each high-speed approach procedure will be divided equally. Again, the aircraft cruising Fl230 and below will not fly fuel conservation procedures.

CONTROL POSITIONS. There will be seven operational control positions and controller personnel will be rotated through the positions within areas of specialty. Diagrams of the route structure of the area simulated and the profile descent procedure for each of the Denver "four corners" will be provided on the back-lighted map displays over each of the control positions in the ATCSF control room. The ATCSF laboratory configuration is shown in figure B-1.

Denver Center (ARTCC). The two ARTCC positions will function only as necessary to support the operations of the TRACON. The area will be divided into north and south sectors by the front and back courses of the runway 26L ILS course. With one exception, the controller of each sector will be responsible for arrival traffic originating in and the departure traffic terminating in each respective area of jurisdiction. Eastbound departures via J80 (SID 5) will remain under the control of the Denver North Controller until the flight is terminated, even though a portion of the flight will be flown within the south sector airspace.

Standard ATC service will be provided for arrival and departure traffic. Start clearances will be issued to each flight in accordance with metering model start times as directed by the metering controller. All delays will be accomplished in start point delay, as there is no provision for holding within the area of simulation except in emergencies. Emergency holds may be accomplished at the fixes indicated on the route and flow diagram.

FIGURE B-1. ATCSF LABORATORY DENVER CONFIGURATION

B-5

المالي والمنبعة فالعانية المحالية المراجب والمراجب بعارية المحالية المحالية المحالية

_

Denver North. Transfer of control of traffic from the northwest routed over Drako and from the northeast routed over Keann will be made to the Denver North Approach Controller at Drako or Smity or no later than when the aircraft leaves 17,000 feet. Unless otherwise directed, departures will be terminated when separation is assured and the aircraft are no longer a factor. This position will control departures eastbound via J80 (SID-5) even though that route is south of the runway 26L ILS course.

Denver South. Transfer of control of traffic from the southwest routed over Byson and from the southeast over Kiowa will be made to the Denver South Approach Controller at Byson or Ramah, respectively, or no later than when the aircraft leaves 17,000 feet. Unless otherwise directed, departures will be terminated when aircraft are no longer a factor and when separation is assured.

Approach Control North. Maintains control of all arrival traffic from over Drako on the northwest and from over Keann on the northeast. Arrivals from over Drako will normally be handed off to the Final Controller over the Denver VORTAC. The aircraft will be given a heading of 075° from the Denver VORTAC and instructed to contact the Final Controller. The aircraft will be descended to maintain an altitude of 8,000 feet. Traffic from over Keann will normally be handed off at Keann. The aircraft will be given a clearance to fly a heading of 170° and descent to 8,000 and instructed to contact the Final Controller.

<u>Approach Control South</u>. Maintains control of all arrival traffic from over Byson on the southwest and from over Kiowa on the southeast. Arrivals from over Byson will normally be handed off to the Final Controller on downwind leg on a heading of 075° descending to maintain 9,000 feet. The handoff will normally be made when the aircraft crosses the Denver 186° radial.

Traffic from over Kiowa will normally be handed off to the Final Controller after the aircraft passes Kiowa on a heading of 310° descending to maintain 9,000 feet.

Approach Control Final. Radar vectors all arrivals to the runway 26L ILS final approach course, sequences and spaces the aircraft, and issues final altitude and ILS approach clearances in the conventional manner.

Special Instructions. The following special instructions shall be observed by both the North and South Arrival Controllers as well as Final. Aircraft identified as being profile descent flights by the letter "Z" will be monitored through the system. No ATC clearances will be required or issued unless necessary for ATC purposes. Aircraft identified as delayed flap approach flights by the letter "D" will not be reduced in speed below 210 knots. Those identified as IATA approach flights by the letter "T" will be given a speed reduction to 180 knots when the aircraft crosses the 13.5-mile arc.

The in-trail spacing between successive aircraft will be:

Leading Aircraft	Trailing <u>Aircraft</u>	Spacing In Miles
Small	Small	3
Small	Large	3
Small	Heavy	3
Large	Small	4
Large	Large	3
Large	Heavy	3
Heavy	Small	6
Heavy	Large	5
Heavy	Heavy	4

Departure/Control Tower. Is responsible for providing separation for departures from the Denver Stapleton Airport. Aircraft will be instructed to maintain runway heading and 10,000 feet for radar vectors to the SID route. All takeoffs will be on runway 35R. Clearance to climb above 10,000 feet will be coordinated with the appropriate approach control position. Radar handoffs will be made to the Denver Center when clear of approach control arriving traffic.

APPENDIX C

METERING MODEL

Flight time from start fix to crossing of the runway threshold was estimated using fast-time simulation of all flights. This information provided a list of all arrival traffic ordered by earliest arrival time (start time plus estimated travel time for that route). The basic time premise of the manual metering procedure was that arrival traffic will land in this sequence.

For each run, a worksheet was prepared as shown in table C-1. The first two columns of information were taken directly from the traffic sample. Column 3 was estimated during fast-time simulation runs. Column 4 is the sum of columns 1 and 2. The aircraft are listed on the worksheet in order by ascending earliest arrival time (column 4). The time separation (column 5) is simply the difference between the earliest arrival time for an aircraft minus the earliest arrival time for the preceding aircraft. (Note: This value is not defined for the first aircraft.)

The minimum separation required (column 6) is determined by the aircraft size class and the approach procedure of the current and preceding aircraft. Tables C-2 and C-3 give the time separation for the possible combinations. The times indicated in these tables are additive.

For example, if the current aircraft is a small aircraft flying a standard approach and the preceding aircraft is a heavy aircraft flying a delayed flap approach, the minimum separation required is 160 seconds plus 60 seconds or 220 seconds.

Column 7 of table C-1 gives the difference between the minimum separation required (column 6) and the actual time separation (column 5). This number represents the delay introduced by each aircraft. (Note: Δ is defined to be zero for the first aircraft.)

The desired delay values for each aircraft (column 8) are computed from the column 7 values. Basically, column 8 is an accumulation of column 7 except that negatives are not allowed. The first entry in column 8 is set to zero. For each subsequent aircraft, the value of Δ in column 7 is added to the delay value of the preceding aircraft from column 8. This value is entered in column 8 unless it is negative. If the new column 8 value is negative, a zero is placed in column 8.

At this point, the worksheet was prepared for the run. If all flights proceed smoothly, each flight should be delayed at the start point by its current delay value. It should be given an actual start time equal to the input start time plus the current delay value. Since the flight times from each start fix may differ, an aircraft which is scheduled to arrive before another aircraft may actually depart its start fix later than the other aircraft.

C-1

To handle this situation, each aircraft should be crossed through as it leaves its start fix. By following this procedure, the point at which aircraft start times can be recalculated without changing the arrival sequence can be readily determined. An example is shown in table C-4.

If the terminal area is unable to handle traffic at the expected rate or if some problem occurs which causes a temporary disruption of flow, then the planning must be revised. For this experiment, it was considered that two means of introducing planning changes will be provided.

In the first possibility, either the final controller or the metering controller requests a temporary suspension for some period of time. This request can be honored for all aircraft after the recalculation point (table C-4). The rescheduling is accomplished by readjusting the delay for each aircraft after the recalculation point in order as follows:

1. The additional delay value is added to the column 7 value for the first aircraft after the recompute point.

2. The delay values are recomputed as described above for all aircraft after the recomputation point.

For the second possibility, either the final controller or metering controller requests a change in the nominal time separation between successive aircraft. This situation is handled in a manner very similar to the first case except that the change in time separation is added to the value for each aircraft after the recomputation point and to the end of the list.

The delay values in column 8 (or the new start times equal to the input start time plus delay) must be communicated from the person performing the metering function to the controllers responsible for starting each aircraft. TABLE C-1. SAMPLE METERING WORKSHEET

um red Delay <u>sec)</u> (sec) (sec)	0	1:20 +25 25	10 +100 100	20 -30 0	20 -80 20	+10	+15	:0 -70 0	:050 0	:0 +55 +55
Time Minimum Separation Required (min:sec) (min:sec)	1	:55 1:3	:30 2:10	1:50 1:20	2:40 1:20	1:10 1:20	1:55 2:10	2:30 1:20	2:10 1:20	:25 1:20
Earliest Arrival Time	13:24:30	13:25:25	13:27:45	13:27:15	13:30:25	13:31:35	13:33:30	13:36:00	13:38:10	13:38:35
Estimated Flight Time	22:17	25:30	16:23	19:15	24:09	20:52	17:30	24:10	19:40	19:27
Input Start Time	17 13:02:13	1 12:59:55	6 13:11:22	IH 13:08:00	13:06:16	7 13:10:43	0H 13:16:00	3 13:11:50	l 13:18:30	9 13:19:08
ACID	UA317	NA 521	912EN	HIIIVV	UA83	DL507	NA660H	DL553	N2521	TW329

Current Time: 13:10:00

NOTE: Using this method, start times can be adjusted for those aircraft for which no succeeding aircraft have already started. These aircraft are readily shown by crossing out aircraft as they start. The recomputation point is then the first aircraft after the last one crossed through.

.

C-3

TABLE C-2. TIME SEPARATIONS (SECONDS) FOR AIRCRAFT SIZE CLASS COMBINATIONS

Preceding Aircraft Size

Current Aircraft			
Size	Heavy	Large	<u>Small</u>
Heavy	110	80	80
Large	135	80	80
Small	160	110	80

TABLE C-3. TIME SEPARATION (SECONDS) FOR AIRCRAFT APPROACH COMBINATIONS

Preceding Aircraft Approach

Current Aircraft Approach	Standard	IATA	Delayed Flap
Standard	0	30	60
IATA	0	0	10
Delayed Flap	0	0	0

TABLE C-4. EXAMPLE RECOMPUTATION POINT

1]

•

,

~

De l ay (sec)	00	30 Recomputation	Point 45	0	0	+55	
(<u>aec</u>)							
Mini m um Required (min:oec)	2:10	1:20	2:10	1:20	1:20	1:20	
Time Separation (min:aec)	: 30	1:10	1:55	2:30	2:10	:25	
Karliest Arrival Time	13:27:45	20:10:01	13:33:30	13:36:00	13:38:10	13:38:35	
Estimated 71 ight Time	16:23	20:52	17:30	24:10	04:41	19:27	
Input Start Time	13:11:22	[]:10:43	13:16:00	13:11:50	13:18:30	13:19:00	13:10:00
ACTD	9122N	DL507	NA660H	DL553	H2521	11329	Current Time:

wrrent Time: 13:10:00

NOTE: Using this method, start times can be adjusted for those aircraft for which no succeeding aircraft have already started. These aircraft are readily shown by crossing out aircraft as they start. The recomputation point is then the first aircraft after the last one crossed through.

APPENDIX D

DATA TABLES

GRAND SUMMARY OF MEASURES PER AIRCRAFT BY QUADRANT OF FLIGHT AND TEST CONDITION TABLE D-1.

Art. Messures 1 2 3 1 4 asst Fuel 3,262 3,213 3,148 146 1,16 asst Fuel 3,262 3,213 3,148 1,46 1,16 Distance 1,558 1,572 1,572 1,572 1,503 1,498 2,04 Workload 5.4 4.4 5.0 3.2 3.2 4.4 Norkload 5.4 1,43 1,43 1,43 1,43 4.4 Norkload 6.7 835 3,186 1,43 1,43 4.4 Norkload 6.7 3.657 1,43 1,476 6.6 6.6 Norkload 6.7 3.657 1,43 1,476 6.6 6.6 Norkload 6.8 3,657 1,43 1,476 6.6 6.6 Norkload 6.8 3,657 1,43 1,476 6.6 6.6 Norkload 6.8 3.657 1,46	I				FL24	FL240 and Above	bove					Ε. Ε	FL230 and Below Test Conditions	Below		
Air-craft 82 81 73 71 2 Fuel 3,262 3,213 3,148 146 1,60 Distance 1,558 1,572 1,503 1,498 2,06 Distance 1,558 1,572 1,503 1,446 2,06 Aircraft 67 62 58 59 59 59 Aircraft 67 62 58 3,186 1,433 1,46 4,0 Distance 1,43 1,43 1,42 1,43 1,46 6,6	Entry Quadrant	Measures	-		165L	11 01100			4		-	2		-	4	L
Fuel 3,262 3,213 3,148 143 146 1,503 1,46 1,60 Time 1,558 1,572 1,503 1,498 2,04 Workload 5.4 4.4 5.0 3,986 2,04 2,04 Aircraft 67 62 58 59 59 4 Aircraft 67 1,43 1,443 1,446 4 4 Distance 1,43 1,42 1,442 1,446 4 4 Distance 1,520 1,513 1,512 1,446 6 6 Workload 6.7 3.655 1,422 1,446 6 6 Aircraft 84 82 80 83 2,03 1,466 6 6 Distance 1,664 1,663 1,663 1,663 1,693 1,037 2,03 Distance 1,693 1,664 1,663 1,663 1,01 1,01 Distance <t< th=""><th></th><th>Ai-craft</th><th>82</th><th></th><th>81</th><th></th><th>73</th><th></th><th>71</th><th></th><th>22</th><th>54</th><th></th><th>23</th><th>20</th><th></th></t<>		Ai-craft	82		81		73		71		22	54		23	20	
Distance145149146141Time1,5581,5721,5031,4982,06Horkload5.45.65.95.95.9Horkload5.46.76.25.85.95.9Fuel3,2412,8353,1861,431,43Distance1,3311,431,421,443Distance1,3011,5131,5121,4766.0Workload6.73.653,1663,6571,4766.0Mircraft848280832,03Puel3.6551,6663,6571,4661,6332,03Pistance1,5931,6663,6571,6372,03Distance1,6931,6661,5121,4760.0Distance1,5931,6663,6573.83.8Distance1,5931,6661,5181,6372,03Distance1,5931,6661,5181,6373.9Distance1,5931,6661,5181,6373.9Distance1,5631,6633,9121,6373.9Distance1,5631,6631,7181,6373.9Distance1,5631,6133.4463.41,03Distance1,5631,6331,6631,6133.9Distance1641,7181,7181,6372,03Distance1,5241,6373.4463.4463.446 <tr< th=""><th>Northeast</th><th>Fuel</th><th>3,262</th><th></th><th>3,213</th><th>•••</th><th>3,148</th><th></th><th></th><th></th><th>1,608</th><th>1,724</th><th></th><th>1,521</th><th>1,510</th><th></th></tr<>	Northeast	Fuel	3,262		3,213	•••	3,148				1,608	1,724		1,521	1,510	
Time1,5581,5721,5031,4982,04Workload5.44.45.03.94.Workload5.46.762585959Fuel3,2412,8353,1861,431,43Distance1,5201,5131,5121,4766.Workload6.73.653,6571,4082,03Time1,5201,5131,5121,4766.Norkload6.73.653,1663,6571,4766.Aircraft848280832,03Fuel3,6553,1663,6571,6631,663Distance1,5931,6641,6631,6632,06Distance1,5931,6641,6633,8122,03Pistance1,7581,6633,8121,6332,03Distance1,7641,6631,7181,6332,03Distance1,7581,6691,7181,6355.Distance1,7581,6691,7181,6663,657Distance1,7581,6691,7181,6663,657Distance1,7581,6691,7181,6663,657Distance1,7581,6091,7181,6663,657Distance1,7581,6931,7181,7081,708Distance1,7581,7181,7181,7081,705Distance1,5651,72,9232,47<	Kean	Distance	145		149		143		146	-	115	123		108	108	
Morkload 5.4 4.4 5.0 3.9 4. Aircraft 67 62 58 59 59 59 Fuel 3,241 2,835 3,186 143 143 7 Distance 143 143 1,512 1,476 6. 5.4 Distance 1,520 1,513 1,512 1,476 6. 5.0 Morkload 6.7 3.65 3,166 3,657 1,476 6. Morkload 6.7 3.65 3,166 3,657 1,476 6. Aircraft 84 82 80 83 2,03 Fuel 3,657 1,663 1,663 1,63 2,03 Time 1,664 1,663 1,663 1,63 2,03 Piel 3,872 1,664 1,663 1,63 2,03 Piere 1,580 1,664 1,663 1,63 2,03 Piere 3,872 3,812 <td< th=""><th></th><th>Time</th><th>1,558</th><th></th><th>1,572</th><th>_</th><th>1,503</th><th>-</th><th>1,498</th><th></th><th>2,042</th><th>2,117</th><th></th><th>1,911</th><th>2,165</th><th></th></td<>		Time	1,558		1,572	_	1,503	-	1,498		2,042	2,117		1,911	2,165	
Aircraft 67 62 58 59 50 <		Work load	5.4		7 7		0.5		3.9	~~	4.9	6.1		5.9	6.5	
Fuel 3,241 2,835 3,186 143 59 Distance 143 143 143 143 7 Time 1,520 1,513 1,512 1,476 6. Workload 6.7 3.6 5.4 4.0 6. Mircraft 84 82 80 83 2,03 Fuel 3,665 3,166 3,657 1,43 2,03 Fuel 1,693 1,664 1,663 1,637 2,03 Norkload 6.8 3,350 3,812 1,637 2,03 Mircraft 38 39 46 34 1,00 Mircraft 38 3,350 3,812 1,663 1,663 1,663 Distance 1,564 1,663 1,718 1,686 3,98 5. Mircraft 38 3,350 3,812 1,663 1,663 1,663 1,666 Distance 1,564 1,518 1,666 1,718 1,568 1,6 1,0 Puel 3,872 3,344		Aircraft			63		58		59		80	80		80	æ	
Distance 143 143 142 143 Time 1,520 1,513 1,512 1,476 1,466 Workload 6.7 3.6 5.4 4.0 6. Workload 6.7 3.6 3,657 1,43 1,46 Fuel 3,665 3,166 3,657 163 1,40 Fuel 3,665 3,166 3,657 163 2,03 Fuel 1,693 1,664 1,663 1,637 2,09 Morkload 6.8 3,355 6.1 3.8 2,09 Morkload 6.8 3,357 6.1 3.8 2,09 Morkload 6.8 3,355 6.1 3.8 2,09 Morkload 6.8 3,350 3,812 1,637 2,09 Peel 3,872 3,350 3,812 1,037 2,09 Distance 1,530 3,812 1,666 1,718 1,037 Puel 3,872 3,350 3,812 1,03 4,1 Distance 152 1,565 1,24 1,03 Puel 3,467 1*,24 4,0 2,57 2,47 Puel 3,467 1*,24	Contheset	Finel			2.835		3.186				592	580		560	593	
Time1,5201,5131,5121,4761,466Morkload 6.7 3.6 5.4 80 83 2.00 Morkload 6.7 3.166 $3,657$ $1,476$ $1,466$ Luel $3,665$ $3,1666$ $3,657$ 1637 2.02 Distance 1593 $1,664$ $1,663$ $1,637$ 2.09 Time $1,693$ $1,664$ $1,663$ $1,637$ 2.09 Vorkload 6.8 3.35 6.1 3.83 $2,09$ Morkload 6.8 3.972 3.550 $3,812$ $1,637$ 2.09 Morkload 6.6 $3,657$ $1,663$ $1,637$ 2.09 Morkload 6.6 $3,950$ $3,812$ $1,637$ 2.09 Morkload 6.6 $3,950$ $1,718$ $1,666$ $3,766$ Norkload 6.6 $4,46$ 3.4 4.1 6.6 Morkload 6.6 $4,46$ 5.3 $4,11$ 6.6 Morkload 6.6 $4,46$ $1,718$ $1,686$ $3,96$ Morkload 6.6 $4,46$ 5.3 $4,11$ 6.6 Morkload 6.6 $4,46$ $1,718$ $1,686$ $3,96$ Morkload 6.6 $4,46$ 2.53 $4,47$ 2.97 Morkload 6.6 $4,46$ 2.53 $2,47$ $1,93$ Morkload 6.6 $1,724$ $4,002$ 2.55 $3,4,55$ $1,33$ Morkload 6.4 $1,292$ 2.53 $3,4,55$ <th>Southeast</th> <th>Dierance</th> <th></th> <th></th> <th>143</th> <th>-</th> <th>142</th> <th></th> <th>143</th> <th></th> <th>72</th> <th>71</th> <th></th> <th>70</th> <th>73</th> <th></th>	Southeast	Dierance			143	-	142		143		72	71		70	73	
2, 2, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 1, 2, 1,	PAOTA	Time			1.513	-	1.512		1.476		1,468	1,430		1,424	1,445	
2,00 2,00 2,10 2,10 2,10 2,10 2,10 2,10		Work load			3.6		5.4		4.0		6.6	7.6		5.1	8.0	
2,00 1,1 2,00 2,00 2,00 2,00 2,00 2,00 2					87		80		83		34	23		24	24	
2,00 1,2 2,00 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0		AITCTALL			30	•	1 657		3		2.024	2.101		2.055	2,056	
2,505 1,505 2,11,505 5,11,5055	Southwest	ruel	ĥ		221		031		163		871	151		153	154	
2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Byson	Distance	•		104		000		1 6 27		140	197		2010	2 072	
2,11,2 2,11,5 2,11,5 2,11,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,		Time	-		1,004		, 00, I		1,00,1		4,074	,01(3				
1,0 1,0 1,3 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5		Workload			3.5		6.1		9.8		1.5	2.0		1.0	1.0	
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00					30		46		*		Ś	80		80	80	
3,916 3,916 1,3 2,11 1,3 2,11 1,3 1,3 1,3 1,3 1,3 1,3 1,4 1,3 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	Northwest	Fuel			3,350	.,	3.812				1,078	1,133		1,086	1,308	
3,96 3,96 1,2 1,3 2,11 1,3 2,111 2,111	Drako	Distance			166		163		166	_	164	171		162	166	
, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,		Time			1.669		1.718		1,686	_	3,982	4,149		3,422	4,084	
1,3 1,3 2,13 1,3 2,13 1,3 2,13 1,3 2,13 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3		Work load			4.4		5.3		4.1		6.5	7.9		6.3	6.5	
1,3 1,3 1,3 5,1 1,3 5,1 5,1 1,3 5,1 1,3 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5		• ; ; •			264		257		747		59	, 63		63	60	
1,2 1,3 5,1 1,3 5,1 1,3	Custom	Fiel		*	3.054		3.434 2	~	:		1,595	1,641	1	1,547	1 1,579	
1,2 2,15 1,3 5,		Distance	ſ	• •	155		15.7		154		127	133		127	129	
, 1,3 5		Time	-	•	1.601		1.592		1.565	1.2	2,150 2	2,313	1,2	2,100	1 2,288	
-		Workload	•	1,2,4	4.0			3,4,5	3.9	1,3	5.9 1	6.6		5.9	2 7.3	1,2
* Significant differences are shown by paired numbers in the same row. For example: The numeral lappears following the fuel value	* Signific	cant differe	ares are	e shown Ì	by paired	1 numbe	rs in th	Le same		For exam		umeral l	appears	tollowing	g the fue	l value

Significant differences are shown by paired numbers in the same row. For example: The numeral 1 appears following the fuel value for condition 1 at FL240 and above. The numeral 1 also appears following the fuel value for condition 2 in the same row. A significant difference is shown in this manner, and the remainder of the differences shown can be likewish interpreted.

١

4

-

D-1

. .

TABLE D-2. AVERAGE ARRIVAL RATE PER TEST RUN AND PER HOUR BY QUADRANT, CONDITION, AND ALTITUDE STRATA

FL240 and above

Test Conditions

Direction		_2	_3	4
Northeast Southeast	10.3 8.6	10.5 7.6	9.4 7.8	9.5 7.4
Southwest Norhtwest	10.6 _5.1	10.3 <u>5.1</u>	10.0 <u>5.0</u>	10.4 <u>3.9</u>
Run Avg.	34.6	33.5	32.1	31.1 N S*
Hourly Rate	23.1	22.3	21.4	20.8 N S

FL230 and below

Northeast Southeast Southwest Northwest	2.7 1.0 3.0 <u>0.6</u>	3.0 1.0 2.9 0.9	2.9 1.0 3.0 0.9	2.4 1.0 3.1 0.9
Run Avg.	7.3	7.8	7.8	7.4 N S
Hourly Rate	4.7	5.1	5.2	4.9 N S

System Total

Run Avg.	41.7	41.3	39.9	38.5 N S
Hourly Rate	27.8	27.4	26.6	25.7 N S

* N S = No significant difference between conditions.

. . . .

···· · · •

.

TABLE D-3. TOTAL NUMBER OF DELAYED AIRCRAFT BY TEST CONDITION BY QUADRANT AND BY ALTITUDE STRATA

FL240 and above

Test Conditions

Quadrant			3	_4
Northeast	70	72	65	62
Southeast	53	46	45	45
Southwest	61	58	55	60
Northwest	33	35	36	_24
Total	217	211	201	191
Run Avg.	27.1	26.4	25.2	23.9 N S*

FL230 and below

Northeast Southeast Southwest Northwest	14 8 23 5	14 8 25 <u>6</u>	15 8 24 <u>7</u>	12 8 25 7
Total	50	53	54	52
Run Avg.	6.3	6.6	6.8	6.5 N S
System Total	267	264	255	243
Run Avg.	33.4	33.0	31.9	30.4

* N S = No significant difference between conditions.

. ..

• • • • • •

ŧ.

TABLE D-4. AVERAGE TOTAL DELAY (SECONDS) PER DELAYED FLIGHT PER RUN BY TEST CONDITION BY QUADRANT BY ALTITUDE STRATA

FL240 and above

Test Conditions

Quadrant	1	_2	3	4
Northeast	506	508	679	766
Southeast	535	574	767	779
Southwest	541	455	598	648
Northwest	588	530	667	792
FL Avg.	530 2,4*	529 1,3	695 3,4	746 1,2

FL230 and below

Northeast	666	651	927	912
Southeast	315	393	505	912
Southwest	484	651	854	842
Northwest	820	<u>780</u>	1145	1278
FL Avg.	527 1,2	612 3,4	851 1,3	863 2,4
System				
Avg.	517	531	713	761

* Significant differences shown by paired numbers.

 TABLE D-5.
 CONDITION 1---SUMMARY OF TABLES---NUMBER OR AVERAGE BY MEASURE PER

 '
 AIRCRAFT

Table Referenced

D-6	Number of Aircraft		
	Aircraft Cruising FL240 and above	271	
	Aircraft Cruising FL230 and below	59	
	All Aircraft	330	
D-7	Fuel (Average Pounds per Aircraft)		
	Aircraft Cruising FL240 and above	3,467	
	Aircraft Cruising FL230 and below	1,595	
D-8	Distance (Average nmi per Aircraft)		
	Aircraft Cruising FL240 and above	152	
	Aircraft Cruising FL230 and below	127	
D-9	Time (Average Seconds per Aircraft)		
	Aircraft Cruising FL240 and above	1,619	
	Aircraft Cruising FL230 and below	2,150	
D-10	Workload (Average Number of Clearances per Air	craft)	
	Aircraft Cruising FL240 and above	6.4 1	
	Aircraft Cruising FL230 and below	5.9 1	

1 Significant difference between flight level aircraft.

D-5

.

.

TABLE D-6. CONDITION 1-NUMBER OF TEST AIRCRAFT BY FUEL CATEGORY AND QUADRANT OF FLIGHT

Aircraft Cruising FL240 and above

Quadrant of Flight

	System Totals	32	25	147	67	271		59	330
	Northwest Drako	£	0	20	15	38		2	43
t Flight	Southwest Byson	16	17	45	و	84	FL230 and below	24	108
Quadrant of Flight	Southeast Kiowa	0	5	40	22	67	Aircraft Cruising FL230 and below	8	75
	Northeast Keann	13	e	42	24	82		22	104
	Fuel Category	l	2	£	4	Total		2	Quadrant Totals

CONDITION 1-FUEL SUMMARY-AVERAGE NUMBER OF POUNDS USED PER AIRCRAFT BY FUEL CATEGORY AND QUADRANT OF FLIGHT TABLE D-7.

ł

ı : † |

1

Aircraft Cruising FL240 and above

Quadrant of Flight

		Quadiant UL FIEDIL	ו נווצוו		
Puel Category	Northeast Keann	Southeast Kiowa	Sou thwes t Byson	Northwest Drako	System
T	3,286	o	3,684	4,883	3,635
2	3,425	2,855	3,138	0	3,116
£	3,239	3,270	3,898	3,958	3,547
4	3,270	3,275	3,349	3,556	3, 343
Average	3,262	3,241	3,665	3,872	3,467
	·	Aircraft Cruising FL230 and below	FL230 and below		
ŝ	1,608	592	2,024	1,078	1,595

CONDITION 1-DISTANCE FLOWN SUMMARY-AVERAGE NUMBER OF NAUTICAL MILES FLOWN PER AIRCRAFT BY FUEL CATEGORY AND QUADRANT OF FLIGHT TABLE D-8.

Aircraft Cruising FL240 and above

Quadrant of Flight

		Uuadranc of Filght	L F118nL		
Fuel Category	Northeas t Keann	Southeast Kiowa	Southwest Byson	Northwest Drako	System
1	147	0	157	163	154
2	147	145	157	0	154
9	144	143	160	163	151
4	147	143	161	167	151
Average	145	143	159	164	152
	1	Aircraft Cruising FL230 and below	FL230 and below		

127

164

148

72

115

ŝ

ł

I.

3. 2. 1.

TABLE D-9. CONDITION 1---TIME-IN-SYSTEM SUMMARY---AVERAGE FLIGHT TIME IN SECONDS PER AIRCRAFT BY FUEL CATEGORY AND QUADRANT OF FLIGHT

.

Aircraft Cruising FL240 and above

.

Quadrant of Flight

System	1,634	1,679	1,618	1,590	1,619	
Northwest Drako	1,770	0	1,753	1,763	1,758	
Sou thwest Byson	1,635	1,714	1,702	1,721	1,693	FL230 and below
Southeast Kiowa	0	1,618	1,520	1,497	1,520	Aircraft Cruising FL230 and below
Northeast Keann	1,600	1,581	1,557	1,535	1,585	1
Fuel Category	1	7	e	4	Average	

2,150

3,982

2,094

1,468

2,042

ŝ

i

TABLE D-10.

Aircraft Cruising FL240 and above

L,
Ē
igh
• •••
, E
-
ų
0
L
Z
Bn
ы
Ľ.
Qua
ð

Fuel	Northeast	Š	Southeast	18 t	دن	Southwest	lest.	Ň	Northuser	4	Ű	Cveton	
Category	Keann	1	Kiowa	/a	1	Byson	g	2 -1	Drako			Average	
	V* S* A*	>	s	~	>1	N S N	<	>	v	۷I	<u>v</u> <u>s</u> <u>v</u> <u>v</u> <u>v</u> <u>v</u>	5	~
l	1.8 2.5 1.2	0	0	0	2.8	2.8 1.8 1.6	1.6	3.0	2.7	1.0	3.0 2.7 1.0 2.4 2.2	2.2	1.4
2	1.3 2.3 1.0	2.8	2.8 3.0 1.0	1.0	3.0	3.0 2.1 1.6	1.6	0	0	0	0 0 0 2.8 2.3 1.4	2.3	1.4
۳	2.0 2.1 1.1	3.0	3.0 2.4 1.3	1.3	2.9	2.9 2.4 1.4	1.4	3.3	2.5.	1.1	3.3 2.5. 1.1 2.7 2.3 1.3	2.3	1.3
4	2.7 2.4 1.2	3.2	3.2 2.1 1.2	1.2	3.7	3.7 2.0 1.7	1.7	3.0	2.5	1.1	3.0 2.5 1.1 3.0 2.3 1.2	2.3	1.2
Average	2.0 2.3 1.1	3.0	2.5	3.0 2.5 1.2	3.1	3.1 2.1 1.6	1.6	3.1	2.4	1.1	3.1 2.4 1.1 2.8 2.3 1.3	2.3	1.3
				Aver	age N	umber	of	Average Number of Clearances per Aircraft = 6.4	рег	Aircr	aft =	6.4	

Aircraft Cruising FL230 and below

1.5 3.8 1.3 1.5 æ, 2.9 1.2

ŝ

3.2 1.8 1.5 3.2 3.2 1.8 1.5

Average Number of Clearances per Aircraft = 5.9

1.2

*V = radar vectors

S = speed control clearances A = altitude change clearances

TABLE D-11. CONDITION 2-SUMMARY OF MEASURES TABLE

Table Referenced

D-12 Number of Aircraft Complete Profile Descents 75 2* Incomplete Profile Descents 189 2 All Approaches 264 Aircraft Cruising FL230 and below 63 D-13 Fuel (Average Pounds per Aircraft) Complete Profile Descents 2,699 1 Incomplete Profile Descents 3,195 1 All Approaches 3,054 Aircraft Cruising FL230 and below 1,641 D-14 Distance (Average nmi per Aircraft) 153 Complete Profile Descents Incomplete Profile Descents 156 155 All Approaches Aircraft Cruising FL230 and below 133 D-15 Time (Average Seconds per Aircraft) 1,564 Complete Profile Descents Incomplete Profile Descents 1,616 1,601 All Approaches Aircraft Cruising FL230 and below 1,641 D-16 Workload (Average Number of Clearances per Aircraft) 0.1 Complete Profile Descents 3 5.5 Incomplete Profile Descents 3 4 All Approaches 4.0 5 Aircraft Cruising FL230 and below 6.6 5 4 D-17 Interrupted Profile Descents Altitude (Average) 13,252 feet m.s.l. * Significant difference by paired numbers

• • • • • • •

and the second of the second second

CONDITION 2-NUMBER OF TEST AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT AND PROFILE DESCENT BREAKDOWN TABLE D-12.

Aircraft Cruising FL240 and above

Complete Profile Descents

Quadrant of Flight

		QUARTERIL OL FILKIN	1 fRuc		
Fuel Category	Northeast Keann	Southeast Kiowa	Southwest Byson	Northwest Drako	System Totals
l	e	0	8	0	11
2	0	0	11	0	11
ر ب	10	13	16		- 46
4	⊸ļ	7	2	7	- ;
Total	14	51	37	6	3
	Incon	Incomplete Profile Descents	escents		
I		0	œ	4	23
7		2	Ś	0	10
e	32	27	26	16	101
4		18	9	9	55
Total	l.	47	45	30	189
Total Profil	e				
Descent	81	62	82	39	264
	v i ro	Aircraft Cruissing El 230 and helow	230 and helow		
	VIII	TTI SHITSTAL			
5	. 24	Ø	23	8	63
Quadrant Total	105	70	105	47	327

CONDITION 2-FUEL SUMMARY-AVERAGE NUMBER OF POUNDS USED FER AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, AND PROFILE DESCENT BREAKDOWN TABLE D-13.

Aircraft Cruising at FL240 and above

Complete Profile Descents

Į.
L
-
ŝ
ч
Ę
Ę
Ť
δ

System Average	2,904 2,478 2,688 2,768	2,699
Northwest Drako	0 0 2,831 2,991	2,977
Southwest Byson	2,953 2,478 2,977 <u>2,669</u>	2,807
Southeast Kiowa	0 0 2,525 2,597	2,535
Northeast Keann	2,418 0 2,335 <u>2,865</u>	2,391
Fuel Category	- 0 6 4	Average

Incomplete Profile Descents

After	1,086 749 1,134 1,007	1,071
Before	2,356 1,966 2,038 2,213	2,124
Total	3,441 2,714 3,172 3,220	3, 195
After	938 0 983 1,137	1,029
Before	3,447 0 2,317 2,212	2,433 1
Total	4,386 0 3,301 3,349	3,462
After	1,227 723 1,075 666	1,009
Before	2,560 2,006 2,585 2,097	2,452
Total	3,788 2,730 3,660 2,763	3,461
After	0 400 1,081 791	942
Before	0 1,656 1,793 2,319	1,989
Total	0 2,056 2,875 3,111	2,931
After ³	1,035 1,023 1,303 1,227	1,223
Before ²	1,809 2,103 1,658 2,155	1,859
*Total ¹	1 2,844 2 3,126 3 2,962 4 <u>3,383</u>	Average 3,385

Average Cruising FL230 and below

3,054

System Average

1,641 1,133 2,101 580 5 1,724

2 9

Total—denotes fuel used during entire flight Before—denotes fuel used before profile descent procedures were interrupted After—denotes fuel used after profile descent procedures were interrupted

۰

...

CONDITION 2-DISTANCE FLOWN SUMMARY-AVERAGE NUMBER OF NAUTICAL MILES FLOWN PER AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, AND PROFILE DESCENT BREAKDOWN TABLE D-14.

Aircraft Cruising at FL240 and above

Complete Profile Descents

	_ u]					Afte		• • •	e.)]
	System Aver ag e	156 161 151 153	153			Before	127	120	611
						Total	156	154	157
	ч. J					After Total	0 Q	30	51
	Northwest Drako	0 0 162 <u>162</u>	162			Before	136 0	130	128
Quadrant of Flight		· • · · · · · · · · · · · · · · · · · ·			_	Total	166 0	160	179
	st				encs.	After	35	30	12
	Southwest Byson	161 161 161 161	161	Treesed of Same	TTE DESC	Before After Total Before After	135 139	137	<u>134</u>
					1011 01	Total	171 169	167	651
Quadran	۱ ت	0 0 141 141				After	16 16	32	위
	Southeast Kiowa		141	É	1	Before	0 125	112	리
					Total	141	144	14)	
	1					After ³ Total	31 32	40 77	‡
	Northeast Keann	145 0 141 145	142		ſ	Before ²	118 116	107	
	tory		age		-	Total	152 149	148 158	
	Fuel Category	- 0 6 4	Average			*	- ~ ~	n 4	

еr

38 7 33

35

121

156

37

130

167

29

137

166

30

113

143

40

111

Average 151

D-14

155

System Average 171 Average Cruising FL230 and below 153 71 123

ŝ

133

.

:

.

.

- ~ ~

Total—denotes fuel used during entire flight Before—denotes fuel used before profile descent procedures were interrupted After—dentoes fuel used after profile descent procedures were interrupted

NUMBITION 2-TIME-IN-SYSTEM SUMMARY-AVERAGE FLIGHT TIME IN SECONDS PER AIRCRAFT BY Puel categray, quadrant of flight, and profile descent breakdown

•

.

Aircraft Cruising FL240 and above

Complete Profile Descents

Quadrant of Flight

System Average	1,586 1,650 1,540 1,550
Northwest Drako	0 0 1,639 1,634 1,631
Sout hwest Byson	1,613 1,650 1,616 <u>1,613</u> 1,625
Southeast Kiowa	0 0 1,461 <u>1,457</u> 1,460
Northeast Keann	1,514 0 1,451 1,462 1,465
F	1 2 3 Average

80
-
C .
a
õ
οõ.
ē.
Ă.
_
e)
.
ų.
5
P.,
9
e
-1
ġ.
8
0

			_	П	ncomple	te Prof	Incomplete Profile Descents	ents			-			
*Total ¹	MTotal ^l Before ²	After ³	Total	Before	After	Total	Before	After	Total	Before	After	Total	Before	After
1 1,606 2 1,594	1,063 1,018	542 576	1,513	0 1,211	302	1,801	1,186 1,264		1,658	1,149 0	50 8 0	1,683	1,121	562 464
3 1,549 4 <u>1,656</u>	964 971	585	1,540	1,002	537	1,723	1,194	52 8 609	1,662 1,716	1,146	516 585	1,609	1,054	26.2
Average 1,594	985	609	1,530	1,005	525	1,696	1,148	547	1,680	1,141	538	1,616	1,054	562
			_			_		-	Syst	System Average	1ge		1,601	

Aircraft Cruising FL230 and below

2,313 4,149 2,187 1,430 2,117 ŝ

Total—denotes fuel used during entire flight
 Before—denotes fuel used before profile descent procedures were interrupted
 After—denotes fuel used after profile descent procedures were interrupted

,

AND PROFILE DESCENT BREAKDOWN TABLE D-16.

·• -

Aircraft Cruising FL240 and above

Quadrant of Flight

Complete Profile Descents

	- 2	V	0	0	0	0	0	
	System Average	s	0	•		-!		
	S y	>	0	0	0	0	0	
	4 1	<	0	•	0	0	0	
	Northwest Drako	v	0	0		01	г.	
	Northwest Drako	>	0	0	0	01	0	
'n	t c	<	0	0	0	0	0	
cence	Sou thwest Byson	so	0	0	0	0	0	
sear at	Sou	>	0	0	0	•	0	
ombrers rrorie neacents			_			·		
	Southeast Kiowa	< i	0	0	0	0	0	
זינר	Kion	8 1	•	0	0		г.	
	Sou	>1	0	0	0	01	0	
			·				_	
	L IST	*	0	0	0	0	0	
	Northeast Keann	Λ* *S	•	0	г.	01	.1	
	Nor	≴	0	0	•	01	0	
	Fuel Category		1	2	ſ.	4	Average	

٦. Average Number of Clearances per Aircraft =

Incomplete Profile Descents

3.6 2.3 1.1 0 0 0 1.7 2.2 1.2

-

D-16

2

2.6

3.0 2.3 1.3

6. I 2.3 1.9 2.1

Average Number of Clearances per Aircraft = 5.5 System Average = 4.0

.

6.	1.1	1.3	1.3
		2.1	
2.1	2.1	2.2	2.2
0	6	1.0	1.0
0	1.9	2.1	2.0
		2.7	2.7
1.0	1.2	1:3	1.2
1.4	1.8	2.3	1.9
		<u>2.1</u>	
1.5	٥.	1.1	1.0
2.0	2.1	1.9	2.0
•	1.5	<u>.</u>]	1.6
1.0	1.5	1.5	1.3
2.7	1.9	2.2	.2.2
2.0	1.6	2.0	1.8
2	ę	4	Average

*V = radar vectors
S = speed rontrol clearances
A = altitude change clearances

Average Number of Clearances per Aircraft = 6.6

6.4 0.1 1.5 3.3 1.5 1.4 3.6 1.2 1.5 5.1 0.9 1.6

4.0 1.1 1.5

Aircraft Cruising FL230 and below

ŝ

TABLE D-17.

1

Quadarant of Flight

System Average	12,594	11,455	13,281	13,802	13,252
Northwest Drako	12,818		13,282	13,875	13,427
Southwest Byson	12,475	11,390	11,994	12,042	12,018
Sou the st Kiova	ı	9,050	13,456	12,687	12,974
Northeast Keann	12,600	13,168	14,178	15,226	14,202
Fuel Category	ľ	2	e	4	Average

* All altitudes are in feet m.s.l.

TABLE D-18. CONDITION 3-NUMBER OF TEST AIRCRAFT-SUMMARY OF TABLE D-19

Complete IATA Approaches Complete Delayed Flap Approaches Complete Approaches	118 101 219	- 23
Incomplete IATA Approaches Incomplete Delayed Flap Approaches Incomplete Approaches	9 29 38	ч, 44
LATA Approaches Delayed Flap Approaches All Approaches	127 130 257	
Aircraft Cruising FL230 and below	63	

* *

* Significant differences are indicated by paired numbers.

CONDITION 3-NUMBER OF TEST AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, AND APPROACH BREAKDOWN TABLE D-19.

			System Totals All Approaches	12 20 12 25 20 12	127		5 8 % E	130 257		63	320																																																						
above	80	Incomplete LATA Approaches Quadrant of Flight	System Totals Incomplete Approaches	7 6 0 	6	10	- 6 4 -	29 38			btal																																																						
g FL240 and	CA Approache		Incomplete IATA Approache Quadrant of Filght	Incomplete IATA Approaches Quadrant of Flight	TA Approache of Flight	Northwest Drako	0040	4	lap Approach	0040	10			Grand Total																																																			
Aircraft Cruising FL240 and above	ncomplete L				Southwest Byson	0000	0	Incomplete Delayed Flap Approaches	0000	ه ې																																																							
Aircr In	Ir				Southeast Kiowa	0007	2	Incomplet	0 7 7 0	5 7																																																							
					Northeast Keann	- 0 7 0	£		~ - n n	8 11																																																							
			System Totals Complete Approaches	17 15 22 64	118		12 22 22 23	101 219	_	63																																																							
above		Complete IATA Approaches Quadrant of Flight	Complete IATA Approaches Quadrant of Flight	Complete IATA Approaches Quadrant of Filght	Northwest Drako	0 11 0 3	20	Ø	0006	12 32		ø																																																					
ig FL240 and	Approaches of Flight				Complete IATA Approache Quadrant of Flight	Complete IATA Approache Quadrant of Flight	Complete IATA Approache. Quadrant of Flight	Complete IATA Approache Quadrant of Flight	Complete IATA Approache. Quadrant of Flight	Complete IATA Approaches Quadrant of Flight	Southwest Byson	~ 2 1 2	28	ap Approache	8 r v o	46 74	0 and below	24																																															
Aircraft Cruising FL240 and above	Complete IAT										Complete IAT Quadrant	Complete IA' Quadrant	Complete IA Quadrant	Complete IA Quadrant	Complete IAT Quadrant	Complete IATA Quadrant o	Complete IATA Quadrant o	Complete IAT/ Quadrant o	Complete IAT Quadrant	Complete IA1 Quadrant	Complete IA' Quadrant	Complete IA1 Quadrant	Complete IAT Quadrant	Complete IAT. Quadrant (Complete IAT. Quadrant (Complete IAT. Quadrant (Complete IAT. Quadrant (Complete IATA Quadrant o	Complete IATA Quadrant o	Complete IATA Quadrant of	Complete IATA (Quadrant of	Complete IATA . Quadrant of	Complete IATA (Quadrant of	Complete IATA Quadrant of	Complete IATA Quadrant of	Complete IATA Quadrant of	Complete IATA Quadrant of	complete iAlA Quadrant of	Complete inin Quadrant of	Complete IAIA Quadrant of	Complete inin Quadrant of	Quadrant of	Complete IATA Quadrant of	Complete IATA (Quadrant of	Complete IATA (Quadrant of	Complete IATA A Quadrant of	Southeast Kiowa	0 24 15	39	Complete Delayed Flap Approaches	o - 6 - 0	12 51	Aircraft Cruising FL230 and below	80											
Aire																							Northeast Keann	7 22 22	31	Complet	4 I ~ I	31 62	Aircraft C	23																																			
			Fuel Category				- 0 - 4			s																																																							

.

•

D-18

. .

TABLE D-20. CONDITION 3-FUEL SUMMARY, SUMMARY OF TABLE D-21

Complete IATA Approaches	3,351	1, 2
Complete Delayed Flap Approaches	3,480	
Complete Approaches	3,410	
Incomplete IATA Approaches	3,626	1
Incomplete Delayed Flap Approaches	3,555	2
Incomplete Approaches	3,572	
IATA Approaches	3,370	
Delayed Flap Approaches	3,497	
All Approaches	3,434	
Aircraft Cruising FL230 and below	1,547	

*Significant differences are indicated by paired numbers

CONDITION 3-FUEL SUMMARY-AVERAGE NUMBER OF POUNDS USED PER AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, AND APPROACH BREAKDOWN TABLE D-21.

			System Average	AII IATA Approaches	3,370		All Delayed Flap Approaches	3,497		All Approaches	3,434	
				After	1,059 0 495 215	495		65 8 9 2 J	622			
			System Average Incomplete Approaches	Before	2,413 0,279 3,279	161,6		2,469 2,667 3,039 2,914	2,933			
			System Ave Incomplete Approaches	Total	3,472 3,774 3,258	3,226		2,962 3,020 3,588	3,555	3, 572		
				After	0 286 0	586		0 519 475	667	•		
			Nort hvest Drako		3,321	3, 321		0 3,316 3,330	3,324	sches		
ahove			Nort	After Total Before	0 3,907 0	3,907		0 3,835 3,805	765 3,817- 3,324	All Incomplete Approaches		
t pue 0t	roaches	1ght			0 0 0 0	0		0 765	265	complete		
iing FL2	ATA App	Quadrant of Flight	Sout heest Byson	Before	• • • •	0	_	0 3,358 0	3,358	All In		
Aircraft Cruising FL240 and above	Incomplete IATA Approaches	Quadran	S	Total		0	pproaches	4,123 0	4,123			
Aircre	Ince			After	0 0 0 512	215	Flap A	261 261 11034	712			
			Southeast Kiowa	Total Before After	0 0 3,044	3,044	Delayed	2,587 2,152 2,449	2,445			
			S		0 0 3,258	3,258	560 3,258 3,044 215 0 Incomplete Delayed Flap Approaches	0 2,848 3,120 3,483	3,156			
			z	After	1,059 0 311 0	560	lace	493 537 479 831	620			
			Northeast Keann	Be fore	2,413 0 3,596	2,935		2,469 2,827 2,329 2,392	2,432			
			-	*Total	3,472 0 3,507 0	3,495		2,962 3,364 2,808 3,223	3,054		_	
		Svat en	Average Complete Approaches		3,807 3,098 3,153	1,351		3,464 3,320 3,614	3,480	3,410		1,547
above	_		Northwest Drako		4,261 3,943	166'E	ich es	0 3,645 3,422	3,478	•	5	1,086
t PL240 and	Approaches	of Flight	Sout hwest By son		3, 999 3, 098 3, 076 3, 005	3,306	Flap Appros	3,677 3,813 3,841	3,610		.230 and bel	2,055
Aircraft Cruising FL240 and above	Complete lATA Approaches	Quadrant of Flight	Southeast Southwest Klova Byson		0 0 3,221	3,213	Complete Delayed Flap Approaches	0 2,488 3,159 3,145	101.5	ches	Aircraft Cruising FL230 and below	260
ALCEN	3		Northeast Keann		3, 421 0 3, 054 3, 276	1,151	Comple	3,037 3,262 2,823 3,189	3,136	All Complete Approaches	Aircraft	1,521
			Pue! Category			Average			Ave rage	All Compl		~

D-20

Fotal - fuel used during enture flight Before - fuel used before approach procedures were interrupted After - fuel used after approach procedures were interrupted

1

1.1

•

TABLE D-22. CONDITION 3-DISTANCE FLOWN-SUMMARY OF TABLE D-23

Complete IATA Approaches	149	1*, 2
Complete Delayed Flap Approaches	153	1, 4, 5
Complete Approaches	151	
Incomplete IATA Approaches	151	3,4
Incomplete Delayed Flap Approaches	156	2, 3, 5
Incomplete Approaches	155	
IATA Approaches	149	6
Delayed Flap Approaches	154	6
All Approaches	152	
Aircraft Cruising FL230 and below	127	

*Significant difference is indicated by paired numbers

۱

D-21

والجاجب للمستحد والم

CONDITION 3-DISTANCE FLOWN SUMMARY---AVERAGE NUMBER OF NAUTICAL MILES FLOWN PER AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, AND APPROACH BREAKDOWN TABLE D-23.

		-				Approaches	149			All Delayed Flap Approaches	154		System Average All Approaches	152
				After	2° 28	•••]	15		16	= = z	61			
			System Average Incomplete Approaches	Before	120 0 139	<u></u>	136		161	29 <u>6</u>	137			
			System Aven Incomplete Approaches	Total	146	3	151		147	<u>85 81</u>	156	155		
				After	000	익	19		0	o 4 8]	91	•		
	, N		Northwest Drako		0 0 0 0 0 0 0	٩	140		00	° 23 23	153	aches		
bove _			Norl	After Total Before	0 0 00	•	159	_	• •	121	169	Appro		
s bus 0	roaches	ght		After	• • •	•	•	_	0 0	0 2 0	20	omplete		
ing FL24	LATA App	Quadrant of Flight	Southwest Byson	Before	006	-	0		0	۰ <u>۶</u> ۰	145	All Incomplete Approaches		
t Cruis	Aircraft Cruising F1240 and above _ Incomplete LATA Approaches Quadrant of F11ght	Sot	Total		0	0	roachea	• •	9 <u>9</u> 0	165	_			
Aircraf				After	000	•	80	i Incompiete Delayed Flap Approaches	• :	32 22	22			
			Southeast Kiowa	Before	000	믭	133	elayed	0	<u>861</u>	122			
			Soul	Total Before After	000	141	141	plete D	• ;	14 1	144			
				After	30 90 90	•	15	Incom	16 16	a e x	81	-		
			Northeast Keann	Before	120	•	132		ē	2 <u>2</u> 2	122			
			z	*Total	97 O 87	•	147		147	61 F F F F F F F F F F F F F F F F F F F	140			
		System	Average Complete Approaches		154 155 146	146	149		153	154	153	151		127
bove			Northwest Drako		851 0 0 2 40	0	160	ches	0	3 3	165	•	ł	162
M.240 and	Aircraft Cruising F1240 and above Complete IATA Approaches Quedrant of F11ght	f Flight	Southwest Byson		<u>8</u> 23	<u>s</u>	156	Flap Appros	156	9 9 °	159		.230 and bel	153
oft Cruising		Quedrant o	Mortheast Southeast Southwest Keess Kiowa Byson		004	3	- 142	Complete Delayed Flap Approaches	0	899	141	iches	Aircraft Cruising 71230 and below	ę
Afreri		Northeast Lean		9 0	2	CF I	Compl	841	22.091	541	All Complete Approaches	Aircraft	108	
			Puel Category		- • •		Average		-	~~4	Average	All Compl		•

Flocial - demotes distance flown during entire flight Before - demotes distance flown before approach procedure was interrupted After - demotes distance flown after approach procedure was interrupted

t

TABLE D-24. CONDITION 3-SUMMARY OF TIME-IN-SYSTEM (MINUTES)-SUMMARY OF TABLE D-25

Complete IATA Approaches	1,569	1*, 2
Complete Delayed Flap Approaches	1,585	3, 4
Complete Approaches	1,576	7
Incomplete IATA Approaches	1,645	2, 4, 5
Incomplete Delayed Flap Approaches	1,705	1, 3, 5
Incomplete Approaches	1,691	7
IATA Approaches Delayed Flap Approaches All Approaches	1,574 1,612 1,592	
All Cruising FL230 and below	2,100	

*Significant difference by paired numbers

CONDITION 3-AVERAGE TIME-IN-SYSTEM PER AIRCRAFT BY QUADRANT OF FLIGHT, FUEL CATEGORY, AND APPROACH BREAKDOWN TABLE D-25.

ŧ

-		Ail IATA Approaches 1,574		All Delayed Flap Approsches 1,612	_	Ail Approaches 1,592
-	System Average	Total Before After 1,675 1,139 536 270 1,560 1,410 270 1,544 1,369 276 1,645 1,369 276		1,583 1,290 293 1,552 1,286 246 1,730 1.402 328 1,701 <u>1,364 367</u> 1,705 1,372 333	1,691	
above es	Northwest Drako	After Total Before After 			↓ Incomplete Approsches =	
Aircraft Cruising FL240 and above Incomplete lATA Approaches Quadrant of Fl1ght	Sout hweat Byson	Total Before After	proaches			
Aircr In	Southeast Klova	Total Before After	Incomplete Delayed Fiap Approaches	1,524 1,361 163 1,566 1,352 214 1,618 1,110 508 1,615 1,162 494 1,615 1,228 384		
	Northeast Keann	*Total Before After 1,675 1,139 536 1,675 1,139 546 1,633 1,449 184 1,647 1,346 301	Inco	1,583 1,290 293 1,463 1,154 309 1,446 1,190 256 <u>1,528 1,081 447</u> 1,664 1,157 339		
	System Average	1,645 1,673 1,537 1,532 1,532		1,575 1,488 1,488 1,611 1,611		2,100
above	Northwest Drako	1,601 1,669 1,659	iches		•	10m 3,422
g FL240 and A Approachem of Flicht	Southeast Southvest Kiova Byson	1,732 1,673 1,510 1,609 1,609	Flap Appros	1,580	969 ⁴ 7	1230 and bei 2,064
Aircraft Cruising FL240 and above Complete LATA Approachem Onadramst of Flight	Southeast Kiova		Complete Delayed Flap Approaches	1,622 1,516 1,499	uc, I iches	Aircraft Cruising FL390 and belon 1,911 1,424 2,064
Aircr C	Tortheast Keann	1, 577 1, 487 1, 447 1, 505	[damo]	1,566	age I,439 Complete Approaches	Aircraft 1,911
	Fuel Category	Average			Average	~

effotal - demotes flight time during entire flight Defore - demotes flight time before approach procedure was interrupted After - demotes flight time after approach procedure was interrupted

TABLE D-26. CONDITION 3-CONTROLLER WORKLOAD, AVERAGE NUMBER OF CLEARANCES PER AIRCRAFT-SUMMARY OF TABLE D-27

Complete IATA Approaches	5.7	3*,4
Complete Delayed Flap Approaches	5.0	1, 1, 4
Complete Approaches	5.4	6
Incomplete IATA Approaches		1, 3, 5
Incomplete Delayed Flap Approaches	6.7	1, 3, 5
Incomplete Approaches	6.2	6
IATA Approaches	5.8	
Delayed Flap Approaches	5.2	7
All Approaches	5.5	
Aircraft Cruising FL230 and below	5.9	

*Significant difference is shown by paired numbers

CONDITION 3-AVERAGE WORKLOAD PER AIRCRAFT BY CLEARANCE BREAKDOWN, FUEL CATEGORY, QUADRANT OF FLIGHT AND APPROACH BREAKDOWN TABLE D-27.

ļ

		Northwest Drako V S A	0.00	2.5 3.3 1.0	2.3 3.2 1.2	6.7			0.0 0.0 0.0 0.0 0.0 0.0 2.8 1.8 1.0 2.7 2.0 1.0	2.7 1.9 1.0	2.7 2.2 1.1	6.0		6.2	5.5		
Aircraft Cruising FL240 and above Incomplete LATA Approaches	Quadrant of Flight	Southwest Byson V S A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 2	ı	•		ap Approaches	0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 2.1 2 2.1 2 2	3.3 3.0 1.7 2.	•	_		rstem Average	coaches		
Aircraft Cruising FL240 and a Incomplete IATA Approaches	Quadrant	Northeast Southeast Keann Kiowa	0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.0 3.3 1.3 4.0 3.0 1.5	System Average	Combined		Incomplete Delayed Flap Approaches	2.0 2.0 2.0 2.0 0.0 0.0 0.0 2.0 2.0 1.0 2.0 1.0 0.0 0.0 3.0 1.7 1.3 3.0 3.0 1.0 0.0 2.0 2.3 1.0 2.0 3.0 3.0 1.0	2.4 2.0 1.2 2.2 2.4 0.4	System Average	Combined		Incomplete Approache s S ystem Average	System Average - All Approaches		
nd above hes		west Northwest on Drako	1.7 2.0 1.7 1.3 1.7 0.0 0.0 0.0 2.0 2.6 1.4 1.4 1.6 0.0 0.0 0.0	1.7 2.5 1.5 1.4	age = 2.6 1.8 1.3	- 5.7	System Average = 5.8		1.5 0.0 0.0 0.0 0.0 10 <t< th=""><th>1.5 2.4 1.0 1.0</th><th>age = 2.7 1.0 1.3</th><th>- 5.0</th><th>System Average = 5.2</th><th>age 5.4</th><th>MO</th><th>1.3 1.7 4.3 0.1 1.9</th><th>age 3,50.91.5 5.9</th></t<>	1.5 2.4 1.0 1.0	age = 2.7 1.0 1.3	- 5.0	System Average = 5.2	age 5.4	MO	1.3 1.7 4.3 0.1 1.9	age 3,50.91.5 5.9
Aircraft Cruising FL240 and above Complete IATA Approaches	Quadrant of Flight	Mortheast Southeast Southwest Keann Kiowa Byson V S A V S A V S	1.6 0.0 0.0 0.0 2.6 1 0.0 0.0 0.0 0.0 3.4 1	6 1.4 2.6 2.0 1.0 3.0 1.8	System Average	Combined	All IATA Approaches - System Average	Complete Delayed Flap Approaches	3 1.5 0.0 0.0 0.0 2.9 1.3 1 1.4 3.0 1.0 1.0 3.0 1.0 2 1.0 3.1 1.0 0.6 3.1 0.9 2 1.0 3.1 1.0 0.6 3.1 0.9 2 1.2 2.5 1.0 0.5 0.1 0.9	1 1.3 3.0 1.0 0.6 3.1 1.0	System Average	Combined	All Delayed Flap Approaches - S	Com plete Approache s S ystem Average	Aircraft Cruising FL230 and below	3.7 1.0 1.2 3.5 0.5 1.1 3.1 1.	System Average Combined
		Rorthea Fuel Keann Category V S	1 2.1 1.3 2 0.0 0.0 3 2.1 1.8 4 1.5 1.0	Average 2.1 1.6					1 3.0 1.3 2 2.4 1.1 3 2.0 1.2 4 <u>1.7 0.9</u>	Average 2.2 1.1						5 3.7 1.	

*V - radar vectors S - speed change clearances A - altitude change clearances

CONDITION 3-SUMMARY OF *AVERAGE ALTITUDE AT WHICH THE FUEL CONSERVATION APPROACH PROCEDURES WERE INTERRUPTED TABLE D-28.

		Northwest Drako	;	ł	7,818	7,981	7,916	8,578
oaches	ght	Southeast Southwest Kiowa Byson	ł	1	9,438	1	9,438	System Average =
Delayed Flap Approaches	Quadrant of Flight	Southeast Kiowa	ł	8,987	9,005	9,005	8,998	System A
Delaye	Quad	Northeast Keann	8,171	9,005	7,851	9,088	8,499	
	*.	Northwest Drako	1	1	8, 196		8,196	8,068
s	ight	Northeast Southeast Southwest Keann Kiowa Byson	ł	ł	1	1	ł	/erage =
IATA Approaches	Quadrant of Flight	Southeast Kiowa	ł	!	ł	8,466	8,466	System Average =
IAI	Qua	Northeast Keann	8,005	1	7,445	ł	7,632	
		Fuel Category	l	2	°.	4	Average	

System Average - All Approaches = 8,457

*All altitudes are in feet m.s.l.

TABLE D-29. CONDITION 4-NUMBER OF TEST AIRCRAFT-SUMMARY OF TABLE D-30

Complete Profile Descents 5	0	
Complete IATA Approaches	None	
Complete Delayed Flap Approach	es 48	8, 10*
All Complete Approaches	48	•
Incomplete IATA Approaches	None	
Incomplete Delayed Flap Approa	ches 2	8, 11
All Incomplete Approaches	2	•
All IATA Approaches	None	
All Delayed Flap Approaches	50	
All Approaches	50	9
Incomplete Profile Descents 19	7	
Complete IATA Approaches	. 93	6
Complete Delayed Flap Approach		6, 10
All Complete Approaches	110	7
Incomplete IATA Approaches	33	5
Incomplete Delayed Flap Approa		5, 11
All Incomplete Approaches	87	7
All IATA Approaches	126	4
All Delayed Flap Approaches	71	4
All Approaches	197	9
All Profile Descents 24	7	
	., 93	1
Complete IATA Approaches		1
Complete Delayed Flap Approach	158	-
All Complete Approaches		2
Incomplete IATA Approaches	33	3
Incomplete Delayed Flap Approa		3
All Incomplete Approaches	89	2

Incomplete Delayed Flap Approaches	56
All Incomplete Approaches	89
All IATA Approaches	126
All Delayed Flap Approaches	121
All Approaches	247

Aircraft Cruising FL230 and below 60

Grand Total 307

*Significant differences by paired numbers

TABLE D-30.

Aircraft Cruising FL240 and above

			System Totals	63		65	158		33		56	89		
			System Totals	9 <u>3</u> 0 930 930		- 0 - 1 <u>0</u> - 1	110		6 3 33 33		33 3 3 24 2	87		
Incomplete Profile Descents	light	Northwest Drako	00 0 m m		00-0-	6				00400	18			
	lete Profile	Quedrant of Flight	Southwest Byson	5 0 25		0 0 0 0 0	3		8-0-1		21 - 1 23 0 23	27		
	Incomp	Š	Southeast Kiowa	0 20 <u>33</u> 33	aches	00-0-	*		00400	roaches	0 - 9 7 6	15		
pproaches			Northeast Keann	23 23 27	Complete Delayed Flap Approaches	-000	33 Annuachae	Incomplete IATA Approaches	4 0 1 0 4 7 0 1 0 4	Incomplete Delayed Flap Approaches		27		
Complete IATA Approaches			System Totals	00000	ete Delayeo	11 0 8 8 48	48	plete IATA	0000	plete Delaj	70-0	2		60
Compl			Northwest Drako	0 0 0 0 O	Compl	9099	7	Incom	0 0 0 o o	Incom	• • • • •	0	below	æ
	le Descents	Plight	Sout hwest Byson	0 0 0 0 0		1 15 0 22	22		0 0 0 0 0		0 0 C 0 O	0	Aircraft Cruising FL230 and below	24
	Complete Profile Descents	Quadrant of Flight	Southeast Kiowa	• • • • • •		008-6	6		0 0 0 0 0		o o - o -	1	aft Cruising	ø
	Com		Northeast Keann	0 0 0 0 O		<u>10</u> 4 0 4	10		0 0 0 0 0		- 0 0 0 -	1	Aircr	20
			Puel Category	まちちゅ		- 0 6 4					まちち			2

D-29

-**;**

 TABLE D-31.
 CONDITION 4-SUMMARY OF DISTANCE FLOWN-SUMMARY OF TABLE 32a AND b

 5
 5

Complete Profile Descents		
Complete IATA Approaches	None	
Complete Delayed Flap Approaches	152	6*,7,11
All Complete Approaches	152	
Incomplete IATA Approaches	None	
Incomplete Delayed Flap Approaches	**143	1,3,6,9,12
All Incomplete Approaches	**143	
All IATA Approaches	None	
All Delayed Flap Approaches	152	14
All Approaches	152	13
Incomplete Profile Descents		
Complete IATA Approaches	152	4,8,9
Complete Delayed Flap Approaches	161	1,2,4,7,10
All Complete Approaches	153	
Incomplete IATA Approaches	151	2,5,12
Incomplete Delayed Flap Approaches	159	3,5,8,10,11
All Incomplete Approaches	156	
All IATA Approaches	151	
All Delayed Flap Approaches	159	14
All Approaches	154	13
All Profile Descents		
Complete IATA Approaches	152	15
Complete Delayed Flap Approaches	154	
All Complete Approaches	153	18
Incomplete IATA Approaches	151	
Incomplete Delayed Flap Approaches		15,16
All Incomplete Approaches	156	
All IATA Approaches	151	
All Delayed Flap Approaches	156	
	154	

Aircraft Cruising FL230 and below

All Approaches

1

129

154

e.

*Significant differences are indicated by paired numbers **Data value based on two flights CONDITION 4-DISTANCE FLOWN-AVERAGE NUMBER OF NAUTICAL MILES FLOWN PER AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, PROFILE DESCENT BREAKDOWN, AND APPROACH BREAKDOWN TABLE D-32a.

		System Average Descent <u>Approach</u>			149 6 0 0 145 6		146 6 146 6				147 8 0 0 134 0 135 8	135 8		146 6	146 6			
		Total			151 151 151	152	152				145 141 141	C#I		152	152		129	
		Approach			009	_	y y	-			00000	•		 vo	 v			
		Northwest Drako Total <u>Descent</u>			0 155	51	155 155				0 0 0 0 0	0		155	155			
		Total			0 0 161	191	161 161				0 0 0 0 0	0		161	161		166	
		Approach			~~~~	•	 ve vo	-		ches	00000	•		 o	¥0	MO		
nd above ent hes		Southwest Byson Descent		Approaci	154 0 154	°Ì	154 154	sches		ep Appro	••••	o		154	154	and bel		
g FL240 a file Desc A Approaci	of Flight	Sou Total D	ZNON	ayed Flap	160 160	익	160	ATA Appro	ZHON	elayed Fl	0 0 0 0 0 0	0	ZNON	160	160	iing FL23(154	likht
Aircraft Cruising W1240 and above Complete Profile Descent Complete LATA Approaches	Quedrant of Flight	Approach		Complete Delayed Flap Approaches	Q Q 4	_ د	ه ه	Incomplete IATA Approaches		Incomplete Delayed Flap Approaches	0000	1	ž	 •	v	Afrcraft Cruising FL230 and below		Total - denotes distance flown during entire flight Descent - denotes distance flown during the descent corrion of flight
Aircr		Southeast Kiowa Descent		0	0 0 0	2	135 135	1		-	00404	13		135	135	v		flight descent r
		So Total			0 0 I4I	4	141 141				0 0 I 0 I	141		141	141		73	ng entire ring the
		Approach			40 V	- ا	• •	-			****			~	~			Total - demotes distance flown during entire flight Descent - demotes distance flown during the descent
		Northeast Keann Descent			6C1 0 21	<u>61</u>	61 61				151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	137		133	661			distance distance
		Noi 1 1			241 0 2 2 1 3 2	3	eci eci				145 0 0 0 145	145		140	140		108	Total - demotes distance flown during entire flight Descent - demotes distance flown during the descent portion of flight
		Fuel Category			- 9 6	4	Average Completed Aprchs Avg.				- N S 4 VAL	Incomplete Aprchs Avg.	LATA Aprehs Avg.	Delayed Flap Aprchs Avg.	All Aprche Average		s	1. Total - 2. Descent

1

•

CONDITION 4-DISTANCE FLOWN-AVERAGE NUMBER OF NAUTICAL MILES FLOWN PER AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, PROFILE DESCENT BREAKDOWN, AND APPROACH BREAKDOWN (Continued) TABLE 32b.

Ì

ł

Aircraft Cruising 71.240 and above

Incomplete Profile Descents

Poul Cartegery Rerthaat Cartegery Rerthaat Marann Morthaat Marann Source Marann Morthaat Marann 1		uccubice Lotile Descents						
Rottheast East Softheast from Softhea	Complete	Complete IATA Approaches						
Northeast Section Northeast Section Northeast Section Northeast Section Northeast Section Sectin Section Section	Quedr	Quadrant of Flight						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Southwest Byson Total Descent	Approach	Northwest Drako Total Descent	at Approach	Total	System Average Descent	Approach
14 <		167 133 162 140 162 140 166 146	*2°2	161 147 175 141 164 143		299 199 199	2091 120	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	143 122	164 140			2 R	i	5 S	៖ ន
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Camplete	Complete Delayed Flap Approaches	-		-	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 0 166 137 0	0000	0 0 173 131 0 0	00700	147 165 156	121 0 83	%°85
1 1 <td>144 121</td> <td>6</td> <td>\$</td> <td>•</td> <td>1 3</td> <td>19</td> <td>1</td> <td>: 3</td>	144 121	6	\$	•	1 3	19	1	: 3
16 10 10 16 10 10 16 10 10 16 10 10 16 10 10 16 12 12 16 12 12 16 16 16 12 17 12 18 12 19 12 12 12 13 12 14 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16 18 16 19 17 10 16 16 16 17 16 <tr< td=""><td></td><td>165 139</td><td></td><td>166 142</td><td>24</td><td>153</td><td>127</td><td>8</td></tr<>		165 139		166 142	24	153	127	8
166 110 110 110 161 161 100 110 161 161 110 110 161 152 122 123 161 161 161 123 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 162 161 161 161 163 161 161 161 164 161 161	Incomplete	te LATA Approaches			•			
141 141 141 141 143 123 230 132 132 143 132 132 330 141 143 132 132 330 141 144 132 132 330 141 141 132 132 133 140 141 143 132 133 140 141 143 143 140 140 141 140 140 140 140 145 140 140 140 140 145 140 140 140 140 145 140 140 140 140 140 140 140 140 140		163 163 128 163 128 128	10 A B	0 0 165 141 0	0030	122	128	R R R
143 123 20 0 145 123 20 124 145 123 20 144 146 124 23 11 154 116 31 144 154 116 31 144 154 116 34 166 154 116 34 166 154 107 24 163 164 107 24 163 163 13 163 164 164 130 26 163 163 13 163 164 164 130 27 163 163 13 164 163 <td></td> <td>(1 2</td> <td> ≈ ≈</td> <td></td> <td>의 x</td> <td>ā 3</td> <td><u>1</u></td> <td>뭐 :</td>		(1 2	 ≈ ≈		의 x	ā 3	<u>1</u>	뭐 :
143 123 20 0 144 124 123 20 145 124 23 144 146 124 23 144 154 126 23 144 154 116 36 146 154 116 36 146 154 116 36 146 154 107 26 26 154 107 27 165 16 13 27 165 16 13 27 165 16 13 27 165 16 13 27 165 16 13 27 165 16 13 27 165	Incomplete	Delayed Flap Approach	-					;
154 116 38 146 · 144 116 34 145 · 144 120 34 143 · 144 120 34 143 · 154 107 47 146 · 154 107 47 146 · 16 31 146		154 154 162 186 138 0 0		0 0 0 0 167 142 173 146	0055	991 991 991	154	***
- 148 114 34 145 - 144 120 24 143 - 154 107 47 146 - 151 116 31 146	146 117	<u> </u>			: ::	1 2	1 E	5) g
. 144 120 24 143 P 154 107 47 146 . 147 116 31 144			- 8	168 143		<u> 1</u>	<u>1</u>	
a 154 107 47 146		164 139 2				1 2	1	5 7
147 116 31 144		2 961 691	2) 		38	2	1	: 1
-		961			*	51	124	5 R
				Grand Total	otal .	154	128	26

1 || ||

TABLE D-33. CONDITION 4-TIME-IN-SYSTEM-SUMMARY OF TABLES 34a AND b

ţ

ŧ

	Total	Descent	Approach
Complete Profile Descents			
Complete IATA Approaches		None	
Complete Delayed Flap Approaches	1,509	1,399	110 *2,5,8,9
All Complete Approaches	1,509	1,399	110
Incomplete IATA Approaches		None	
Incomplete Delayed Flap Approaches		1,320	161 1,3,6,7,8
All Incomplete Approaches	**1,481	1,320	161
All IATA Approaches		None	
All Delayed Flap Approaches	1,508	1,396	112 16
All Approaches	1,508	1,396	112 11
Incomplete Profile Descents			
Complete IATA Approaches	1,550	1,180	370 4,7,9
Complete Delayed Flap Approaches	1,599	1,028	571 3,5
All Complete Approaches	1,558	1,157	401
Incomplete IATA Approaches	1,585	1,077	508 6
Incomplete Delayed Flap Approaches	1,622	1,129	493 1,2,4
All Incomplete Approaches	1,608	1,109	499
All IATA Approaches	1,559	1,153	406
All Delayed Flap Approaches	1,616	1,105	511 16
All Approaches	1,580	1,135	445 11
All Profile Descents			
Complete IATA Approacnes	1,559	1,153	406 13
Complete Delayed Flar Approaches	1,533	1,302	231 12,14
All Complete Approaches	1,544	1,231	313 15
Incomplete IATA Apprcaches	1,585	1,077	508 14
Incomplete Delayed Flap Approaches	1,617	1,136	481 12,13
All Incomplete Approaches	1,605	1,114	491 15
All IATA Approaches	1,559	1,153	406
All Delayed Flap Approaches	1,571	1,225	346
All Approaches	1,565	1,187	378
Aircraft Cruising FL230 and below	2,288		

*Significant differences are indicated by paired numbers **Data value based on two flights

CONDITION 4-TIME-IN-SYSTEM-AVERAGE FLIGHT TIME IN SECONDS PER AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, PROFILE DESCENT BREAKDOWN, AND APPROACH BREAKDOWN TABLE D-32a.

Aircraft Cruising FL240 and above

Complete Profile Descent Complete IATA Approaches

			-	_		Quadrant	Quedrant of Flight	t t							
Puel Category	Total	Northeast Keann Descent	Approach	Total	Southeast Kiowa Descent	Approach	Sc Sc	Southwest Byson Descent	Approach	1 Totel	Northwest Drako	Approach	Total	System Average Descent	Abbroach
						-	NONE						1		
			-		v	Complete Delayed Flap Approaches	layed Fla	ip Approac	he.						
2	1,468 0	1,375 0	110	00	00	00	1,568	1,457	III	•	0	•	1,538	1,427	111
~ 4	1,368	1, 256 1, 309	<u>19</u>	1,417 1,389	1, 306 1, 283	2 <u>3</u>	1,560	1,447	0 [] 0	0 1,604 1,573	0 1,494 1,466	0 110	0 1,497	1,365	112
Average Completed	1,424	1,314	110	1,413	1,303	110	1,563	1,450	=	1,582	474.1		1.509	66C-1	
Aprche Avg.	1,424	1,314	110	1,413	1,303	110	1,563	1,450	113	1,582	1,474	108		1, 399	011
					I	Incomplete LATA Approaches	ATA Appro	oaches	-						
- 9 6 -						-									
•					-	- to be			-						
			-		•	ANCOMPTER DELAYED FIRD Approaches		ap Appro.	iches .						
- 7 (1,341 0		• •	• •	00	0 c	00	• •	00	0		1,514	1,341	671
n 4	• •	• •	• •	<u></u>	0 9 0	147			> > > >				1,447	,300	0 147
Average Incomplate		1,341	E71	1,447	1,300	147	-	0	•	•			ł		이 :
Aprche Avg.	1,514	1,341	- C/I	1,447	1,300	147	0	•	0	- c	• •				
LATA Aprche Avg.			-			_ ×	WONT.		-	•	•	_			Ter
Delayed Flap Aprchs Ave. 1.435		A16.1							_			-			
				014.1	1,303	113	1,563	1,450	113	1,582 1,474		108	1,508 1	1,396	112
All Aprchs Average	1,435	1,316	611	1,416	1,303	113	1,563	1,450	113	1,582 1,474		108	1,508 1	1,396	112
					Afr	Aircraft Cruising FL230 and below	iing PL234	0 and belo				-			

2,288

4,084

2,072

1,445

2,165

\$

The same is a sub-

¢ 1

CONDITION 4-TIME-IN-SYSTEM-AVERAGE FLIGHT TIME IN SECONDS PER AIRCRAFT BY FUEL CATEGORY, QUADRANT OF FLIGHT, PROFILE DESCENT BREAKDOWN, AND APPROACH BREAKDOWN (Continued) TABLE D-34b.

Aircraft Cruising FL240 and above

Iacomplete Profile Descent

						Complete LATA Approaches	NTA Appro	aches							
				-		Quadrant	Quedrant of Flight	Pc							
Puel Category	Total	Bortheast Keann Deacent	Approach	Sc Total	Southeast Kiowa Descent	Approach	Iotal Sc	Southwest Byson Descent	Approach	Total	Northwest Drako Descent	Approach	Total	System Average Descent	Approach
	1,517 0 1,510 1,426	1,151 0 1,160 1,299	35 0 55 127	0 1,475 1,445	0 1,086 1,129	389 316	1,738 1,651 0 1,697	1,152 1,286 0 1,325	586 365 372	1,578 1,772 1,637 0	1, 308 1, 228 1, 269 0	270 368 368	1,647 1,659 1,511 1,520	1, 169 1, 282 1, 196	478 377 365 326
Ave r 4 5 e	1,507	1,164	343	1,463	1,103	360	1,679	1,269	410	1,647	1,269	378	1,550	1,180	3740
				-	,	Complete Delayed Flap Approaches	layed Flu	ap Appros.	ches .			•			
	1,520 0 1,523	1,107 0 666	313 0 0 0 85 0	0 1,483 0	1,117 0 1,117	0090	0 1,643	0 1,198 0	0 0 5 0 0	0 1,783	0 1,144 0	0 0 689	1,520 0 1,641 1,523	1,107 0 1,186 666	313 655 857
Average Completed	1,523	740	283	1,483	1,117	366	1,643	1,198	446	1,783	1,144	639	1,599	1,028	571
Aprichs Avg.	1,510	1,087	£24	1,467	1,103	360	1,669	1,250	419	1,662	1,255	407	1,558	1,157	104
				-		Incomplete IATA Approaches	IATA App	roaches	-			-			
- 2 4 4	1,550	1,057 957 957	69° 52° 69	0 1,474 1,516	0 1,081 973	93 243 243	1,679 1,753 0 1,722	1,175 1,119 1,210	504 634 0 512	0 1,686 0	0 1,231 0	0 0 5 0 0	1,593 1,753 1,565 1,565	1,096 1,119 1,074 1,052	497 501 533
Åve rage	1,535	48	221	1,486	1,045	54	1,708	1,170	536	1,686	1,231	455	1,585	1,077	508
						Incomplete	Delayed 1	Delayed flap Approaches	oaches			•••			
	1,533 1,550 1,400 1,471	1,134 1,127 1,187 769	399 423 213 702	0 1,488 1,606 <u>1,505</u>	0 1,253 1,048 963	235 558 542	1,538 1,686 1,652 1,652	748 1, 292 1, 204	790 796 448 0	0 0 1,740 <u>1,809</u>	0 1,287 1,297	653 512 512	1,534 1,575 1,639 1,611	1,038 1,224 1,185 1,006	\$ <u>5</u> 5 5
Average	1,476	929	547	1,570	1,052	518	1,649	1,168	461	1,781	1,293	488	1,622	1,129	493
Incomplete Aprchs Avg.	1,509	960	549	1,537	1,049	488	1,658	1,185	472	1,739	1,265	474	1,608	1,109	667
Aprchs Avg.	1,517	1,100	417	1,467	1,095	472	1,683	1,255	428	1,667	1,250	417	1,559	1,153	406
Delayed TLap Aprchs Avg.	1,492	866	626	1,561	1,059	502	1,647	1,191	456	1,781	1,279	502	1,616	1,105	211
All Aprche Average	1,510	1,029	481	1,488	1.086	402	1,664	1,221	443	1,713	1,262	451	1,580	1,135	445

D-35

v ag

378

1,565 1,187

Grand Total

1

TABLE D-35. CONDITION 4-CONTROLLER WORKLOAD-SUMMARY OF TABLES D-36a AND b

Complete Profile Descents	
Complete IATA Approaches None	
	.2 7,*9,12,20
All Complete Approaches 0	.2
Incomplete IATA Approaches None	
	.5 8,11,15,19
All Incomplete Approaches **1	.5
All IATA Approaches None	
All Delayed Flap Approaches 0	.3
All Approaches 0	.3 21
Incomplete Profile Descents	
Complete IATA Approaches 4	.3 10,14,17,18,19,20
	.0 12,13,15,17
	.4 22
Incomplete IATA Approaches 6	.5 7,8,10,13,16
Incomplete Delayed Flap Approaches 5	.9 9,11,14,16,18
	.6 22
All IATA Approaches 4	.9
All Delujeu llup approvenet	.1
All Approaches 5	.0 21
All Profile Descents	
Complete IATA Approaches 4	.3 2,5,6
Complete Delayed Flap Approaches 1	.5 1,3,6
	.2 23
Incomplete IATA Approaches 6	.5 1,2,4
	.0 3,4,5
WIT THEOREPICES INFLORENCE	.5 23
	.9 24
All Delayed file Approaches	.1 24
All Approaches 4	.0
Aircraft Cruising FL230 and below 7	.4

-

*Significant differences are indicated by paired numbers **Data value based on two flights
TABLE D-36a. CONDITION 4—AVERAGE CONTROLLER WORKLOAD PER AIRCRAFT BY QUADRANT OF FLIGHT, FUEL CATEGORY, CLEARANCE BREAKDOWN, PROFILE DESCENT BREAKDOWN, AND APPROACH BREAKDOWN

Aircraft Cruising FL240 and above

۲

Complete Profile Descents

Complete IATA Approaches

Quadrant of Flight

.

Fuel	Northeast Fuel Keann			Southeast Kiowa			Southwest Byson			Northwest Drako			System Average		
Category	<u>v</u> +		<u>A*</u>	V			<u>v</u>		<u>A</u>	V	- · ·		<u>v</u>	S	<u>A</u>
1 2 3 4							None				•				
				Comp	lete	Dela	yed Fla	ap Aj	pproac	hes					
1	-	-	-	-	-	-	-		-	-	-	-	-	-	-
2 3	-	-	-	-	-	-	-	-0.1	- 0.1	-	-	-	-	0.1	0.1
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Average	-	-	-	-	-	-	-	0.1	0.1	-	-	-	-	0.1	0.1
				Incon	nplet	e IA	TA App	roaci	nes						
1 2 3 4							None								
				Incon	nplet	e De	layed	Flap	Appro	aches					
1	-	2.0	-	-	-	-	-	-	-	-	-	-	-	2.0	-
2 3	-	-	-	-	- 1.0	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Average		2.0	-	-	1.0	-	-	-	-	-	-	-	-	1.5	-
				Aircı	aft	Crui	sing Fl	L2 30	and b	elow					
5	4.4	1.0	1.1	4.8	1.41	.8	3.9	1.8	2.4	5.1	.3	1.1	4.4	1.3	1.7
*V-Reder	vecto	ors.													

S-Speed change clearances

A-Altitude change clearances

TABLE D-36b. CONDITION 4 AVERAGE CONTROLLER WORKLOAD PER AIRCRAFT BY QUADRANT OF FLIGHT, FUEL CATEGORY, CLEARANCE BREAKDOWN, PROFILE DESCENT BREAKDOWN, AND APPROACH BREAKDOWN (Continued)

Aircraft Cruising FL240 and above

Incomplete Profile Descents

Complete IATA Approaches

Quadrant of Flight

Fuel <u>Category</u> 1 2 3 4	Northeast Keann V* S* A* 2.0 1.5 0.5 1.3 1.4 1.3	Southeast Kiowa V S A 1.8 1.2 1.3 1.3 1.5 1.3	Southwest Byson V S A 2.6 1.8 1.8 2.2 0.8 1.4 1.5 1.3 1.2	Northwest Drako V S A - 1.0 1.0 3.0 2.0 1.0 1.5 1.3 1.0	System Average V S A 2.1 1.6 1.4 2.3 0.9 1.4 1.5 1.3 1.3 1.4 1.4 1.4
Average	1.3 1.4 1.2	1.6 1.3 1.3	2.1 1.1 1.4	1.5 1.4 1.0	
		Complete Delay	ed Flap Approac	hes	
l 2 3 4 Average	2.0 1.0 1.0	2.0 1.0 1.0	3.2 .7 1.2 	4.0 1.0 1.0	$\begin{array}{c} 2.0 & 1.0 & 1.0 \\ \hline 3.2 & 1.0 & 1.2 \\ \hline 2.4 & 1.0 & 1.0 \\ \hline 2.9 & 1.0 & 1.1 \end{array}$
Complete	1.5 1.3 1.2	1.6 1.3 1.3	2.4 1.0 1.4		1.9 1.3 1.3
		Incomplete IAT	A Approaches		
l 2 3 4 Average	$\begin{array}{c} 0.8 & 2.8 & 1.5 \\ \hline 1.6 & 2.9 & 1.6 \\ \hline - & - & - \\ \hline 1.4 & 2.9 & 1.6 \end{array}$	$ \begin{array}{c} - & - \\ 1.0 & 3.3 & 1.5 \\ \underline{2.0} & \underline{4.5} & 3.5 \\ 1.3 & 3.7 & 2.2 \\ \end{array} $	3.0 2.5 2.5 2.0 4.0 3.0 5.0 4.0 1.0 3.3 2.2 1.5	$\begin{array}{c} - & - & - \\ 2.0 & 2.3 & 1.5 \\ - & - & - \\ 2.0 & 2.3 & 1.5 \end{array}$	1.5 2.7 1.8 2.0 4.0 3.0 1.6 2.8 1.6 3.0 4.3 2.7 1.7 3.0 1.8
		incomplete Del	ayed Flap Appro	aches	
1 2 3 4	- 1.0 1.0 2.0 1.0 1.0 - 1.5 0.5 1.9 2.4 1.7	- 1.0 1.0 2.5 2.5 1.3 <u>1.0 3.5 2.0</u>	2.0 1.0 1.0 3.0 1.0 1.0 2.1 1.9 1.3	2.3 2.0 0.8 1.8 2.3 1.7	$\begin{array}{c} 0.7 & 1.0 & 1.0 \\ 1.7 & 1.0 & 1.0 \\ 2.1 & 1.8 & 1.2 \\ 1.7 & 2.5 & 1.7 \end{array}$
Average	1.3 1.9 1.3	1.9 2.6 1.4	2.1 1.8 1.3	2.0 2.2 1.3	1.9 1.9 1.3
Incomplete Aprchs Avg.	1.4 2.5 1.5	1.7 3.0 1.7	2.3 1.9 1.3	2.0 2.2 1.4	1.8 2.3 1.5
Delayed	1.3 1.9 1.3	1.6 1.7 1.4	2.3 1.3 1.4	1.8 1.9 1.3	1.7 1.8 1.4
All Aprchs	1.6 1.6 1.3 1.4 1.8 1.3	1.9 2.4 1.4 1.7 1.8 1.4	2.4 1.5 1.3 2.4 1.4 1.4	2.2 2.1 1.3 2.0 2.0 1.3	2.1 1.7 1.3 1.8 1.8 1.4

*V-

-Radar vectors --Speed change clearances S

Altitude change clearances A-

D-38

TABLE D-37a. CONDITION 4-*AVERAGE ALTITUDE AT WHICH FUEL CONSERVATION PROCEDURES WERE INTERRUPTED

Complete Profile Descents

Complete IATA Approaches

Quadrant of Flight

Fuel <u>Category</u>	Northeast <u>Keann</u>	Southeast Kiowa	Southwest Byson	Northwest Drako	System Average
1					
2 3 4					
3		No	one		•
4					
	Co	mplete Delayed H	lap Approaches	1	
1					
1 2 3					
3		No	me		
4					
	Inc	omplete IATA App	oroaches		
1					
1 2 3					
3		No	ne		
4					
		Incomplete Del	ayed Flap Appr	oachea	
1	7,502	-	-	-	7,502
2	-	-	-	-	-
2 3	-	7,500	-	-	7,500
4	-	-	-	-	-
Average	7,502	7,500	-	-	7,501
U U					-

*All altitudes are in feet m.s.l.

D-39

TABLE D-37b. CONDITION 4---*AVERAGE ALTITUDE AT WHICH FUEL CONSERVATION PROCEDURES WERE INTERRUPTED (Continued)

Incomplete Profile Descents

Complete IATA Approaches

Quadrant of Flight

Fuel Catego		Southeast Kiowa	Southwest Byson	Northwest Drako	System Average
1 2 3 4	12,184 10,842 9,975	11,252 	13,272 11,596 	9,484 11,293 10,703	12,527 11,574 10,987 9,786
Averag	ge 10,959	10,715	11,417	10,624	10,971
		Complete	Delayed Flap App	roaches	1
1	11,782	-	-	-	11,782
2	-	-	-	-	-
3 4	10,463	10,372	11,999	14,250	12,056 10,463
4	10,405				10,405
Averag	ge 10,683	10,372	11,999	14,250	11,571
Comple Aprcha	ete 3 Avg. 10,909	10,705	11,571	11,027	11,063
		Incomple	te IATA Approach	es	
	Decnt Aprch	Decnt Aprch	Decnt Aprch	Decnt Aprch	Decnt Aprch
1	12,051 7,582		12,636 8,925		12,266 8,030
2			14,751 6,872		14,751 6,872
3 4	14,052 8,152	10,596 7,362		11,236 8,417	
4	 _	12,540 8,123	11,864 8,804		12,254 8,350
Avg.	13,526 8,000	11,244 7,616	12,972 8,382	11,236 8,417	12,489 8,078
		Incomplete De	layed Flap Approa	aches 1	۶.
1	11,297 11,297		14,318 9,003		12,304 10,532
2	10,825 10,825	8,173 8,173	10,792 10,792		9,930 9,930
3	7,895 7,895	11,586 10,967	11,906 10,509	11,118 8,835	11,509 9,992
4	17,561 10,996	12,409 11,057		10,771 10,390	14,134 10,762
Avg.	14,315 10,515	11,390 10,677	12,047 10,456	10,910 9,768	12,231 10,379
Incomp Aprcha					
	13,877 9,118	11,332 8,437	12,116 10,188	11,055 9,168	12,329 9,506

D-40

APPENDIX E

FUEL MODEL

The fuel model was developed by Champlain Technology Industries of West Palm Beach, Florida. Modifications were made to the model to meet test requirements. Fuel consumption parameters for use in the model were obtained from the aircraft performance handbook published by the aircraft manufacturer.

To reduce the number of aircraft fuel parameters, the 20 different types of aircraft used in the traffic sample were cataloged under five fuel categories. Each fuel category had an assigned aircraft gross weight. The gross aircraft range from 400,000 pounds for category 1 aircraft to 11,000 pounds for category 5 aircraft. To minimize the stereotype fuel performance within each category, each aircraft was randomly assigned one of three gross weights within the operating limits.

From the flight parameters of assigned gross weight, aircraft altitude, flight condition (level flight, climbing, and descending) and airspeed, the fuel model formula calculated the fuel consumption. Every change in flight parameters required a new calculation of fuel consumption for that period of time.

Examination of the fuel consumption formula showed that reduction in gross weight as fuel is burned off was not considered in the formula. Time limitations did not allow for the necessary software adjustments to allow for that refinement. However, a comparison was made between the amount of fuel used by the ARC Boeing 727 piloted flight simulator and fuel used by a 727 simulated by the ATCSF on several identical flights. Results of that comparison showed that the fuel consumption by both simulators was within an acceptable range of similarity. If anything, the trend was that the fuel model was conservative, and it was concluded that the omission of the gross weight adjustment for final burnoff would not be detrimental to the accuracy of fuel measurements.

Table E-1 shows the arrangement of the simulated aircraft types according to fuel model category and ATCSF category. Each fuel category determined, in accordance with the formula in the model, the fuel flow for each particular type or type group. Categories 1 and 2 were heavy aircraft; large aircraft were in categories 3 and 4; and small aircraft in category 5. Category 5 aircraft operated within the FL230-and-below altitude strata and were not programed to fly the fuel conservation procedures. Fuel conservation procedures were flown by all others.

The simulator category was used to access a specific aircraft type or type group to tables in software for rate and speed performance data.

TABLE E-1. AIRCRAFT TYPES BY FUEL MODEL AND SIMULATOR CATEGORIES

< P

Aircraft Type	Fuel Category	Simulator Category
B-747, DC-10	1	· 9
DC-8S, B-707, B-720	2	8
B-727, DC-9, B-737	3	10
DC-8, B-707, B-720	4	7
DHC-6	5	1
PA-31, PAZT, BE-90	· · · 5	2
CV-58	5	5

APPENDIX F

GRAPHIC STUDY OF FUEL CONSUMPTION DURING IN-FLIGHT HOLDING CONFIGURATIONS

ALC: NO DE COMPANY

as de

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

DATE:

April 27, 1979 IN REPLY REFER TO:

NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATLANTIC CITY, NEW JERSEY 08405

Holding pattern fuel economy for large turbojet aircraft

FROM:

TO:

SUBJECT:

John J. Ryan, Project Pilot, ANA-640

P. James O'Brien, ANA-170 Through: Felix Hierbaum, Jr., Project Manager, ANA-170

Introduction:

This study was carried out to provide information relevant to problems associated with fuel consumption in holding patterns. The study had three objectives:

1. To graphically demonstrate and explain the optimum holding altitudes and most efficient airspeeds for several large turbojet aircraft.

2. To show need for more flexibility in allowing for deviations from limitholding speeds and patterns as specified in FAA procedures.

3. To discuss and identify other means of saving fuel while in a holding pattern.

Background:

With the emphasis on fuel conservation and the constant and increasing threat of energy shortages, fuel savings obtainable in holding patterns must not be overlooked. If holding an aircraft becomes necessary, it is extremely important that ATC be aware of optimum efficient altitude for that particular type. Every possible effort should be made to place the aircraft in the holding pattern not only at their optimum fuel flow altitude but also at their minimum drag airspeed.

Approach:

The performance data of several large turbojet aircraft were examined and drawn up in graphical form to better illustrate the adverse influence of low altitudes on fuel consumption. The conclusions reached were based on figures in FAA approved flight manuals, copies of which are enclosed.

The aircraft examined were: Boeing 727, B-737, B-747, and the DC-10. These aircraft are in wide use by the air carriers in the United States and abroad, and thus present a sufficiently broad spectrum of performance for general conclusions. Performance data from these aircraft, pertinent to this study, are shown in both graphic illustrations and tables in figures F-1 through F-4.

Best Fuel Economy Holding Altitudes

Aircraft	Altitude	Penalty for holding at 10,000 ft instead of best altitude
B-727	25,000 ft	420 lbs/hr
B-737	30,000 ft	520 lbs/hr
B-747	25,000 ft (except when heavy then 20,000 ft)	1100 lbs/hr
DC-10	25,000 ft (except when heavy then 20,000 ft)	500 lbs/hr

Typical Fuel Flow (FF in pounds) for Aircraft at Middle Weight

Aircraft/Gross Wt.			Altitude		
	5,000 ft	10,000 ft	15,000 ft	20,000 ft	25,000 ft
B-727/120,000 GW	6,420 FF	6,240 FF	6,240 FF	6,000 FF	5,820 FF
B-737/85,000 GW	4,720 FF	4,510 FF	4,320 FF	4,170 FF	4,050 FF
B-747/500,000 GW	19,600 FF	19,100 FF	18,700 FF	18,200 FF	18,000 FF
DC-10/320,000 GW	12,600 FF	12,300 FF	12,000 FF	11,800 FF	11,800 FF

Discussion:

The current FAA holding speeds and patterns are as follows: Below 6,000 feet 200 knots/1 minute legs; 6,000 feet to 14,000 feet - 210 knots/1 minute legs, and 14,000 feet and above 230 knots/1-1/2 minute legs.

The data for Boeing 737, Boeing 747 and Douglas DC-10 are minimum drag airspeed. The data for the Boeing 727 is based on FAA holding airspeed limitations. Comparing these graphs, it is evident that the adherence to the airspeed limits is not fuel efficient. The B-727 graph, Enclosure 1-1, is a perfect example of this. Following the fuel flow lines up to 10,000 feet, the lines have a proper slope, indicating decrease in fuel flow with increasing altitude. However, with the 210 knots constraint, the drag increases (or is not decreasing at higher gross weights) up to 14,000 feet where the aircraft is allowed to accelerate to 230 knots, and fuel flow once again decreases. (The graph is graduated in 5,000 feet increments. The break in fuel flow should be actually at 14,000 feet, although the tabulation implies 15,000 feet). The decrease is evident up to 30,000 feet.

The graphs for the other aircraft are based on minimum drag airspeeds and are not bound by airspeed limits. The fuel flow lines are even and undisturbed, and show gradual fuel flow decrease up to their respective most economical altitude.

Enclosed table "Holding Speed and Fuel Flow" from the B-747 flight manual handbook, Enclosure 2-3, indicates the recommended holding speeds required to achieve minimum fuel flow. The shaded area shows the speeds that are within the limit speed constraints. These speeds represent only 27percent of the conditions, (gross weight/altitude) when the limit speeds can be met. As a result, anytime a B-747 is placed into a holding pattern, the crew has to request permission to exceed the speed limitations. Similar table from a DC-10 manual, Enclosure 2-4, shows a like ratio of only 25 percent of conditions at very light weights when a request for deviation from prescribed airspeeds would not have to be made. In most instances, for the "heavy" aircraft, the limit speeds will have to be exceeded by a hefty margin. For example, holding a DC-10 at 10,000 feet will require up to 50 knots over the speed limit of 210 knots depending on gross weight of the aircraft.

The DC-8 holding speed is one half of gross weight plus 115. For example: 1/2 of 300,000 lbs. G.W. + 115. $\frac{300}{2}$ = 150 + 115 = 265. This speed would exceed the ATC limits at all altitudes.

We now have a case when the exception becomes a rule. The FAA should consider a change in the regulations to allow a more fuel efficient flight management. The speed-holding restraints were formulated long before the advent of "heavy" air-craft, and today, with emphasis on fuel conservation, are obsolete. Quote from DC-10-10 FAA Flight Handbook:

1. "Speeds in table are for airplane in the clean configuration."

2. "Flying at lower speeds in the clean configuration will cause drag to increase and speed instability may develop."

All the aircraft can be slowed down to the "proper" speeds by use of lift devices, but at a great penalty. Depending on aircraft type, the amount of fuel flow will increase up to 20 percent for initial flap extension. Another possible fuel flow reduction is by considerably enlarging the holding patterns. Obviously, this is not possible while holding at the Outer Marker; however, en route and at altitude, consideration should be given to longer legs, if the length of the holding time is known. The data for all large turbojet aircraft shows a 5% increase in fuel flow when the aircraft is flown in a standard racetrack pattern. The first consideration then must be given to slow down en route, before resorting to holding an aircraft. This will save 5 percent of fuel otherwise wasted in a holding pattern.

Conclusions:

1. Make ATC personnel aware of the most fuel efficient holding altitudes for large turbojet aircraft. This could be accomplished mainly by dissemination of this information and charts to the ARTCC facilities.

2. Increase present holding pattern speed limits to more closely correspond to the minimum fuel flow/minimum drag airspeeds of current generation aircraft.

3. Whenever possible, increase the holding pattern size and give the crews more latitude in extending the legs of holding patterns for more fuel efficient operation.

4. Whenever possible, when holding is anticipated, slow down aircraft enroute and at altitude, rather than feeding aircraft into a fuel wasteful holding pattern.

JOHN J. RYAN

2 Enclosures

٩

F-5

F--6

FIGURE F-3

F-7

ł

F--8

1

. **. . .** .

BOEING 727

HOI	.DING
1101	.0110
3 ENGINES	2 AIRBLEED

FAA LIMIT AIRSPEED

<u> </u>		_					FA.	LIMIT AI
EPR		7				FUEL	FLOW BA	SED ON ISA.
	KTS R ENGINE 🖕					ADJUST	FUEL	FLOW ± 1%
	DAY TAT	:				PER ±	5°C IS	A DEVIATION
	PRESSURE	<u> </u>	GRO	SS WEI	GHT - 1	000 L B		1
	ALTITUDE	150	140	130	T 120	T	1 100	4
		1 150	140	130	-	110	100	4
	40000				1.96	1.88	1.81	
					2100	1930	1780	ļ
					-30	-30	-30	
	35000	1.95	1.88				1.65	
	35000	2400	2240	230			230	
	1	-34	-34	-34	- 34	-34	-34	Í
		1.76	1.71	1.66	1.61	1.56	1.52	· ·
	30000	230	230	230	230	230	230	
	1	2320	2180	2050	1930	1820	1730	{
	1	1.61	1.57	1.53	1.49	1.45	1.42	
	25000	230	230	230	230	230	230	
	1	2320	2190	2060	1940	1840	1750	
		-20	-20	-20	-20	-20	-20	
	20000	1.49	1.46	1.42	1.39	1.36	1.34	
		2340	2220	2110	2000	1910	1820	
		-12	-12	-12	-12	-12	-12	
]	1.39	1.36	1.34	1.31	1.29	1.27	-
	15000	230 2410	230	230	230	230	230	
		-4	2300 -4	2190 -4	2080 -4	1990 -4	1900 -4	
		1.34	1.29	1.27	1.24	1.22	1.20	
	10000	210	210	210	210	210	210	1
		2520	2330	2200	2080	1980	1870	
		3	3	3	3	3	3	
i	5000	1.28	1.25	1.22 200	1.19 200	1.18 200	1.16 200	
		2640	2480	2280	2140	2030	1930	
		11	- 11	11	11	\mathbf{n}	11	<i>,</i> •
		1.25	1.22	1.19	1.17	1.15	1.14	4.
	1500	200 2750	200 2550	200 2360	200 2240	200	200 2030	
		17	17	17	17	17	17	

F-9

BOEING 737

HOLDING PLANNING 2ENGINES 2 AIRBLEEDS

TOTAL FUEL FLOW - LB/HR

FUEL FLOW	BASED ON	ISA
FUEL FLOW ADJUST FU PER ± 5°C	IEL FLUW ± LISA DEVIA	TION

PRESS		GROSS WEIGHT - 1000 LB										
ALT-FT ISA-°C	115	110	105	100	95	90	85	80	75	70	65	
35000 -54		5480	5120	4790	4480	4250	4030	3830	3640	3470	3310	
30000 -44	5340	5070	4810	4620	4390	4190	3990	3820	3660	3500	3360	
25000 -35	5270	5070	4850	4620	4410	4230	4050	3890	3730	3580	3450	
20000 -25	5290	5070	4850	4670	4500	4330	4170	4020	3880	3740	3620	
15000 -15	5440	5230	5020	4810	4640	4480	4320	4170	4030	3900	3770	
10000 - 5	5590	5420	5220	5000	4820	4660	4510	4360	4220	4090	3 99 0	
5000 5	5780	5600	5400	5200	5030	4870	4720	4590	4460	4330	4200	
1500 12	5940	5760	5550	5340	5170	5040	4890	4740	4610	4490	4360	
S.L. 15	6030	5830	5620	5430	5270	5110	4960	4820	4690	4560	4420	

HOLDING SPEED: 210 KIAS OR MINIMUM DRAG AIRSPEED - CLEAN. FUEL FLOW IS BASED ON HOLDING IN A RACE TRACK PATTERN. REDUCE FUEL FLOW BY 5% IF HOLDING STRAIGHT AND LEVEL.

NOTE: IF HOLDING BELOW 200 KIAS IS REQUIRED, FLAPS POSITION 1 AND 190 KIAS MAY BE MAINTAINED WITH A RESULTING FUEL FLOW INCREASE OF 10%.

BOEING 747

PRESS.		GROSS WEIGHT - 1000 LBS.												
ALT-FT		600	580	560	540	520	500	480	460	440	420	400		
30, 000	LAS	270	265	260	255	250	245	239	234	229	223	217		
	LBS/HR	22400	21500	20600	19800	18900	18000	17200	16500	15800	15100	14300		
25, 000	LAS	267	262	257	252	247	242	237	232	226	221	215		
	LBS/HR	22000	21200	20400	19600	18800	18000	17300	16600	15900	15200	14500		
	IAS	264	260	255	250	245	240	235	230	225	220	214		
20, 000	LBS/HR	22000	21300	20500	19600	18700	18200	17600	16900	16200	15500	14700		
15 000	LAS	260	257	252	247	243	238	232	227	222	217	212		
15,000	LBS/HR	22300	21600	20900	20200	19400	18700	18000	17300	16500	15800	15100		
10.000	IAS	228	225	222	219	216	213	210	207	204	201	198		
10,000	LBS/HR	22700	22000	21200	20500	19800	19100	18400	17700	16900	16400	15800		
5 000	LAS	228	225	222	219	216	213	210	207	204	201	198		
5, 000	LBS/HR	23200	22500	21800	21100	20300	19600	18900	18200	17500	16900	16200		
	IAS	228	225	222	219	216	213	210	207	204	201	198		
1, 500	LBS/HR	23700	23000	22300	21600	20900	20150	19400	18700	18000	17300	16600		

HOLDING SPEED AND FUEL FLOW

Total fuel flow for standard day conditions with flaps and landing gear retracted.

Fuel flow will increase approximately 1% for each 5°C increase in temperature and decrease approximately 1% for each 5°C decrease.

Fuel flows based on holding in a race track pattern.

Minimum drag airspeed is shown for 15,000 feet and above. The minimum drag airspeeds represent the best angle of climb speeds.

The airspeed schedule below 15,000 is REF + 80 IAS and is approximately the minimum fuel flow airspeed. Minimum fuel flow airspeeds above 15,000 could not be used because of speed stability problems.

NOTE Outlined area indicates conditions under which limit speeds can be met.

DC 10

(IAS)

PRESS. ALT.	GROSS WEIGHT - 1000 LBS.									
	400	380	360	340	320	300	280	260	240	
30,000	275	268	258	249	241	232	223	213	204	
25,000	267	260	252	243	235	227	218	210	202	
20,000	263	256	248	240	233	225	217	210	202	
15,000	260	254	247	240	233	226	218	211	203	
10,000	259	253	247	240	233	227	219	212	203	
5,000	258	253	247	241	234	227	220	213	204	
1,500	258	253	247	242	236	229	221	213	205	

- 1. Speeds in table are for airplane in the clean configuration, with or without all engine operating.
- 2. Flying at lower speeds in the clean configuration will cause drag to increase and speed instability may develop.
- 3. Speeds in table
 - provides adequate speed stability and, for practical purposes, maximum endurance. NOTE: Outlined area indicates conditions under which (1000 LBS/HR)

PRESS. ALT.	GROSS WEIGHT - 1000 LBS.									
	400	380	360	340	320	300	280	260	240	
30,000	15.6	14.6	13.7	12.8	12.0	11.1	10.3	9.5	8.7	
25,000	15.1	14.3	13.4	12.6	11.8	11.0	10.2	9.5	8.8	
20,000 ~	14.9	14.1	13.3	12.5	11.8	11.1	10.4	9.7	8.9	
15,000	14.9	14.2	13.5	12.7	. 12.0	11.3	10.6	9.8	9.2	
10,000	15.2	14.4	13.7	13.0	12.3	11.6	10.8	10.1	· 9.4	
5,000	15.5	14.7	14.1	13.3	12.6	11:9	11.1	10.5	9.7	
1,500	16.0	15.2	14.4	1348	12.9	12.2	11.5	10.9	10.1	

Total fuel flow for straight and level flight at minimum Drag Speeds with flaps, slats and landing gear retracted for Standard Day conditions.

Fuel Flow Adjustments: Holding in race track pattern Holding with slats extended Temperature - per 5°C above Standard - per 5°C below Standard

Increase by 5% Increase by 20% Increase by 1% Decrease by 1%

ł.

F-12

