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TR 6289 1

A Functional for Finite Element g
Analysis of Low Intensity
Magnetic Fields Including
Permanent Magnetization Effects
Introduction ;

The analysis of static magnetic fields using scalar potential functions in
association with the Biot-Savart law has been reported in the open literature by
Zienkiewicz et al.! and Armstrong et al.2 Wikswo? has indicated how widely
distributed current distributions can be economically treated using this approach.
Although the work of Zienkiewicz et al.! uses a general variational, there is no
discussion on how a problem with permanent magnetization effects should be

approached.

Wt e ik

Solution Approach :

If the magnetic fields are of low intensity or do not change rapidly over the
magnetized body, the change in magnetic flux as a function of magnetic field in-

tensity will be linear; i.e.,
B =B, + uH, m

where u, is the incremental permeability and -ﬁl is the remanent magnetization
measured by drawing a tangent from the operating point on the B-H curve to the H
= 0 axis.

s
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Following the usual scalar potential solution to magnetic field problems, we
have

where ﬁc is the Biot-Savart law magnetic field strength due to currents, ﬁ, is the
applied farfield magnetic field strength, and ¢ is an unknown continuous scalar
potential function. For the purposes of this discussion, H; and Hj are assumed to
have cither low amplitudes or to be changing slowly, so that u, can be taken as a
constant for the problem.

Using the assumed solution of equation (2), we immediately satisfy one of
Maxwell’s equations involving the curl of the magnetic field strength H and the
current densityT:

VxH=T. A)
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Furthermore, the continuity requirements on the scalar potential function
provide for the satisfaction of the boundary condition between dissimilar materials
involving the magnetic field strength components tangent to the boundary:

nxH|, =Tx’xf—l.|z , 0))

where T is a vector normal to the boundary and the symbols |, and |, indicate that
the operation is to be carried out in materials 1 and 2, respectively.

The relation requiring that the divergence of the flux density must vanish fur-
nished the field relation for the determination of the scalar potential function:

—

VeB =0. €5

Substitution of equations (1) and (2) into equation (5) gives
Vou4= Ve yH.-Vo u,H -VeoB,. ©

The boundary condition requiring that the normal component of the flux density
be constant across the boundary must also be satisfied:

neB|,=ne*H|,. ™

A further boundary condition on ¢ is that it decay to zero as the distance from the
permanently magnetized body becomes large:

¢ =Oas|f-ry|> o, ®
where l?-'r'l,l is the distance between the point r at which ¢ is evaluated and the
nearest point of the finitely sized permanently magnetized region.
Functional and Finite Element Equations

A functional that, when minimized, leads to the field and boundary conditions of
equations (6) and (7) is given below.

X=[1204+H,+H)® 7 + mpH, + yHc +2Bav. @
v
This functional may be used as the basis of a finite element formulation. In such a

formulation the scalar potential function is set equal to the sum of the products of
interpolation functions with discrete unknowns:

=3 b, (10)
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where N; = N, (x, y, 2) are the interpolation functions, ¢, are discrete unknown
values of potential associated with various discrete points in the problem domain,
and n is the number of discrete unknowns.

A discussion of the details of the finite element method is unnecessary here since
such details are covered in any standard text on the subject.4

When equation (10) is substituted into the variational principle (9) and the
functional is minimized with respect to the ¢, unknowns, a set of linear algebraic
equations results that can be conveniently represented in matrix form:

KI{$} + {f} + {f;}} + {f} =0, an
where
k; = J: VN;e pVNdV (12
f, = [ VN, y,H dv a3)
£, = _ﬁ’N o u,H; dv (14)

fr, = [N Bpav. (5)
v

Equations (12) and (13) are identical to those given by Zienkiewicz et al.!
Equation (14) shows the “‘loading” term relation that accounts for the incident
magnetic field on the body. If we use this solution approach for a problem with an
incident magnetic field, the finite element solution gives us the magnetic field
disturbance caused by the body directly. Often the magnetic field disturbance is the
topic of interest in such problems. Equation (15) shows the term accounting for
permanent magnetization effects; the distribution of remanent fiux density BR must
be known for this formulation.

Conclusions

Equations (11) through (15) allow determination of the magnetic field around a
permeable body. The equations account for the effects of currents, incident fields,
and permanent magnetization. Since the heat transfer elements in standard finite
clement programs have the same formulation as that given by equation (12), such
programs may be used to solve a variety of magnetic field problems. A preprocessor
must be developed, however, to calculate the loadings defined by equations (13)
through (15), and a postprocessor must be used to perform the additional operation
given by equation (2) in order to obtain the total field solution.
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