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Abstract

This note is a continuation of previous work on the singularity expansion

method. Different integral-equation formulations describing electromagnetic

scattering from imperfectly conducting bodies are considered. A set of volume-

surface integral equations is used to determine the analytical properties in

the complex frequency plane of the field scattered from imperfectly conducting,

finite bodies. Conditions are determined for the constitutive parameters of

the scattering body so that the scattered field can be described only by damped

sinusoidal oscillations when the incident field is a delta function plane wave.

Scattering from a perfectly conducting, finite body within a parallel

plate region is also considered. It is shown that the singularities in the

complex frequency plane of the scattered field are poles and branch cuts. The

locations of the branch cuts depend only on the separation between the parallel

plates.
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I. Introduction

The singularity expansion method for solving electromagnetic interaction

problems is first introduced in Interaction Note 88[1]. Scattering from a

perfectly conducting body of finite extent is considered in Interaction Note
[2]

92 . It is shown in [2] that the operator inverse to the integral operator

of the magnetic field formulation is an analytic operator-valued function in

the complex frequency (s) plane except at certain points in the left half plane

where it has poles. A representation of the inverse operator in terms of the

natural modes and frequencies is also given in reference [2]. A scheme for

the numerical evaluation of the natural modes and frequencies for perfectly

conducting bodies of revolution has been developed in reference [27]. In [27]

the magnetic field integral equation is simplified to account for rotational

symmetry. A computer code for the numerical evaluation of the natural frequencies

and modes is also presented in [27] together with detailed numerical calculations

of some of the natural frequencies and modes for a perfectly conducting prolate

spheroid.

The natural frequencies and modes of a thin cylinder has been calculated

numerically in reference [253 by using the electric field integral equation.

Some approximate analytical results of the locations of some of the natural

frequencies of a thin cylinder have been derived in reference [26]. The

integral equation is solved approximately by using Fourier transform methods

combined with the Wiener-Hopf technique. The solution thus obtained gives an

accurate prediction of the locations of the natural frequencies of perfectly
[25]

conducting cylinders with diameter-to-length ratio less than 1/1005 . However,

due to the approximations introduced, the method fails to give the correct

analytical properties in the complex frequency plane of the field scattered

from a thin wire. For example, the approximations introduce additional branch

points which should not be present.

In this note we will consider the general problems of scattering from

imperfectly conducting, inhomogeneous bodies in free space and of scattering

from perfectly conducting bodies within a parallel plate region. The mathematical

methods that we use resemble in a way those used in reference [2].
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In section III, electromagnetic scattering from an imperfectly conducting

body is first formulated in terms of a volume integral equation for the fields

inside the body. The mathematical formalism used in section III is similar to

the one used in deriving the so-called Oseen extinction theorem[ 9 -12 . The

integral equation is of the second kind. However, due to the singularity in

the kernel of the integral equation we are unable to draw any conclusions about

the analytical properties of the solution of the integral equation. Therefore,

in section IV, we reformulate the electromagnetic scattering problem in terms

of a set of volume-surface integral equations. When the scattering body is a

pure dielectric body this set of integral equations reduces to an integral

equation previously used in connection with considerations of uniqueness and

existence of the solution of certain electromagnetic scattering problems[i3]

This set of volume-surface integral equations is solved by using the

Fredholm determinant theory. From this solution it follows that the scattered

field has two types of singularities in the complex frequency plane. The first

type is due to the singularities of the incident field (waveform singularities).

The second type is due to the scattering body itself. Sufficient conditions

for this latter type of singularities to consist of only poles are (1) the

scattering body is of finite extent and (2) the constitutive parameters a, c,

p together with Vc'/c' and Vp/p are analytic functions in the entire complex

frequency plane. Here, C' = E + io/w, and a, c, p are the conductivity,

permittivity and permeability, respectively, of the scattering body.

A knowledge of the order of each pole is necessary when solving transient

electromagnetic interaction problems by using the singularity expansion method.

As of now, no general analytical method of determining the order of each pole

has been found. Therefore, the order of each pole has to be determined numerically

when solving a specific problem. However, a general method for the numerical

evaluation of the order of each pole has been discussed in reference [27].

Scattering from a perfectly conducting cylinder within a parallel plate

region has been treated in references [20] through [24] by using the conventional

method of first solving the integral equation numerically in the frequency domain

and then applying a numerical inverse Fourier transform. In section V of this

note we will investigate the analytical properties of the field scattered from
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a perfectly conducting, finite body, located within a parallel plate region.

The effect of the parallel plates can be taken into account by using the method

of images. Due to the interaction between the body and the two parallel plates

we will get an infinite set of image bodies. Therefore, the theory developed

in reference [2] cannot be applied directly.

The series representation of the Green's function, derived from the method

of images, converges only in the right half of the complex frequency plane. In

order to make use of the singularity expansion method we first have to analytically

continue the Green's function into the entire complex frequency plane. This is

done by finding an integral representation of the series defining the Green's

function. From this integral representation it follows that the kernel of the

integral equation has branch cuts in the left half plane. The locations of these

branch cuts are uniquely determined by the distance separating the parallel plates.

Once a representation of the Green's function, valid in the entire complex

frequency plane, is available, it is easy to show that the operator inverse to

the integral operator of the magnetic field formulation has two types of singular-

ities. One type is poles at those frequencies where there exist nontrivial

solutions of the homogeneous integral equation. The other type is branch cuts

coinciding with the branch cuts of the Green's function.

Before starting with the analysis outlined here we will in section II

briefly consider a surface integral equation describing scattering from a

homogeneous, imperfectly conducting body.
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Il. Scattering From a Finite, Imperfectly Conducting, Homogeneous Body

Before we consider scattering from an inhomogeneous, imperfectly conducting

body we will discuss, in this section, briefly the special case of scattering

from a homogeneous, imperfectly conducting body. Mathematically this scattering

problem can be formulated in terms of a set of two coupled surface integral

equations.

Let the scattering body occupy the region V of finite extent. The boundary

surface of V is denoted by S and the outward unit normal of S is denoted by n.

We also assume that the electromagnetic properties of the scattering body can

be described by the constitutive parameters i, c, U. These parameters are allowed

to vary with frequency, but they do not vary with position within V. (See

figure 1). Throughout this section we use harmonic time dependence exp(-iwt).

Introduce the effective electric surface current I and the effective

magnetic surface current k, defined by

j=nxH (2.1)

k = nxE. (2.2)

Assuming that all sources of the electromagnetic field are outside V we can

derive the following set of two coupled integral equations for J and k[31

1 -1M.k inc

(2.3)

'k + L k- Z =

where

(Lg) (r) - J n(r)xEVG(r,r ;ik)x&(r')3dS', (2.4)
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Figure 1. A homogeneous, imperfectly conducting, finite body.
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= (ik) - f n(r)x k2 G(r,r';ik)g(r')

- [Ku (r') + Kv (r')3[VG(r,r';ik)3En(r') - n(r)]3"(r)
Vt

- [j(r') - g(r)].V;VG(r,r';ik) dS', (2.5)

where

G(r,r';ik) f (4 kr- r'I)- exp(iklr_- r')

the free-space Green's function, V' is the tangential gradient with respect to r',
s 4, and

K and K are the principal curvatures of S [ d indicates the principal
value of the integral, i.e.,

li ... .
fS .. 6 0 S-S 6

Here S-S6 is the part of the surface S outside a sphere with radius 6 and center

at r. The subscript c in (2.3) on the operators L and M indicates that the

wave number k of the medium should be used in the Green's function insteadc
of the free-space wave number k. Also,

k = WE[(C + ia/W)] , (2.6)c

Z = [I/(c + io/w)J, (2.7)

Z being the wave impedance of the medium, Z° w 377Q, and c is the vacuum speed

of light.

We will now investigate some of the properties of the integral operators

L and I defined by equations (2.4) and (2.5), respectively. In reference [2]

it has been shown that the kernel of the integral expression (2.4) behaves like

jr - r' j-1 as r' -' r. From this fact it follows that the operator k2 , defined

by L2.& - L.*(Lj), is of Hilbert-Schmidt type[2].

In order to investigate the properties of the operator I we assume that

K and K exist everywhere on S. Let P be a point on S with coordinates

u v



r = (x,y,z). (See figure 2). We choose the coordinate system in such a way

that, in the vicinity of P, the surface S can be described in the following

way:

S =fr' (x',y',z') :x - x - P Cos

y' -y p sin z, z' - z - p 2f() + 0( 3 ). (2.8)

Here 0 C V 9 2n and 0 < p e c, where Cc << I and cK v<< 1. The representationu v

(2.8) is valid everywhere on S since S is a smooth surface. Assuming that the

function g(r) is differentiable on S we then have

- g(r) (1)(r)cos * + p.& (r2)sin * + O(p ) (2.9)

where

(1)(r )  = (- lx r),

(2) = (a/ay)g(r).

Moreover, for an arbitrary vector a we have

(a.V)VG = af(R) + R(a-R)ER- 1 f'(R)3 (2.10)

where

f(R) - (44p- 3 (ikR - l)exp(ikR), R r -r'

and the prime denotes differentiation with respect to R. After some algebraic

manipulations we get



Figure 2. The local geometry of the surface of the scattering body.
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- jr).~'G~~r;ik -(4 2fl()(r)co €, + g(2) (r)sin i

( 2 (2) 2
- 3[g r)(r)cos2, +y ()(r)sLin 

+ cos * sin O g(l) (r) + g (2)
y

Cx Cos + j sin 0] + 0(P-1 ). (2.11)

In order to evaluate the integral (2.5) we proceed as follows. Let SC

be the part of S inside a sphere with radius e and center at r. Moreover, let

us denote the integrand of the integral expression (2.5) by H(r,r') so that

(s1.)(r fH(rr')dS'. (2.12)

We then have

(I~)(r) = H(r_,r')dS' +1 H(r,r')dS'. (2.13)

is E( S-S (

C C

Since c is finite it is easy to see from equation (2.5) that H(r,r') is finite

when r' belongs to S-Se. Thus, the last integral of equation (2.13) is a well-

defined function of r. From equation (2.11) it follows that

fH(rr')dS' - lim (41r)-1 (*)g() (r) + (2) 2

+ l Jm H1 (r,r')dS'. (2.14)6-0 fS -S----

Here H(rr') as r' r. Therefore, the principal value integral,

lm H (r,r')dS',6-0 fS S6 -

can be replaced by an ordinary integral over S . Furthermore, N() and Q(*)
C

are two matrices with elements

10



nx(q,) = cos i -3 cos3j

ny(N) -- 3 cos2 * sinl
(2.15)

n ()-n (p)

n yy( )cos p - 3 cos V sin 2

qxx( sin * - 3 cos 2 0 sin

qxy)- 3 cos * sin2*

(2.16)
q yx(¢ q qxy(

q(yy() siniP- 3 sin31.

From the expressions (2.15) and (2.16) it follows that

0d - O(,)d, - 0. (2.17)
0 0

Thus, we have

lir J (4)-['U()'g 1 )(O + (*)'.( 2 )(r)°-2 dS' 0 0. (2.18)
6-0 S E-S

Equation (2.18) implies that the operator I is a bounded operator when operating

on differentiable functions and the surface of integration is a smooth surface.

From equations (2.14) through (2.16) it follows that

I , 1-2 as r' r r (2.19)

and that the integral
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IH(r,r')IdS' (2.20)
S

does not exist. From equation (2.19) it follows that the kernel of any iterated
n

operator n , defined by

Mn (n-in1
S. .), n > 1

also behaves like Ir - r' as r' r . (c.f. reference [19]). Thus, there

exists no n such that the operator Mn is of Hilbert-Schmidt type. Therefore,

the Fredholm determinant theory cannot be used when solving the set of integral

equations (2.3).

Next, we will study the analytical behavior, in the complex frequency plane,

of the operators 1, L , M, M . By making the substitution y = - ik, k - iy

where y is any complex number we can extend the validity of the set of integral

equations (2.3) to all complex frequencies s - cy. From equations (2.4) and (2.5)

it easily follows that L and M are analytic operator-valued functions of y in

the entire complex frequency plane. It also follows from equations (2.3) through

(2.5) that the integral operator defined by the left hand side of the set of

integral equations (2.3) is an analytic operator-valued function of y provided

that y and Z are analytic functions of y. Here

c c{IEY[y + o/(ce)31 (2.21)

Zc = {Ie - Y/EY + o/(cc)]} . (2.22)

Unfortunately, the fact that a, c and p are all analytic functions does not

necessarily ensure that yc and Zc are analytic functions of y. For example,

when a, c and V are constants we notice from equations (2.21) and (2.22) that

YC and Zc have branch points at y1 = 0 and y2 - - o/(ce). Thus, the operators

k and M are analytic operators in the entire y-plane except along the branch
line C, defined by

C = { - a/(cc) : Re{y} ! 0, Im{yl = 01.
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In sections III and IV we will study electromagnetic scattering from an

inhomogeneous, imperfectly conducting body. When a, e, p and the incident field

are analytic functions of y we will show that the only singularities of the

induced volume current density are poles. This fact implies that the solution

of the set of integral equations (2.3) is an analytic function of y except

for poles when a, e, p and the incident field are analytic functions of Y.

Unfortunately we can not draw this conclusion from the set of integral equations

(2.3) for two reasons. The first reason stems from the fact that Zc and yc

are not necessarily analytic functions of y even if o, E and p are analytic

functions of y. The second reason is due to the fact that the Fredholm

determinant theory can not be used when solving the set of integral equations

(2.3). However, in view of the results in section IV the set of integral

equations (2.3) can be used in finding the natural frequencies and modes of

a homogeneous, imperfectly conducting, finite body. It is a well-known fact

that a surface integral equation is better suited for numerical treatment

than a volume integral equation.

In the next section we will derive a volume integral equation for

calculating the scattering from an inhomogeneous imperfectly conducting body

of finite size.
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III. Volume Integral Equation Describing Scattering From an
Inhomogeneous, Imperfectly Conducting Body

In this section we will derive a volume integral equation that describes

electromagnetic scattering from a body whose conductivity (o),permittivity

(e), and permeability (p) are functions of space and frequency. Throughout

this section we will suppress a harmonic time dependence factor exp(-iwt).

From Maxwell's equations one can derive the following set of partial

differential equations for the electromagnetic potentials (0,A) in an arbitrary

medium

o (P - V.P)

(3.1)

V2A + k2A - uo(i + VXM - iWP).

Here k = w/c, P is the polarization of the medium, M is the magnetization of

the medium, and p and i represent the charge and current density, respectively,

of exterior sources. The electromagnetic fields E, B are obtained from

E = iwA - VO

(3.2)

B = VxA.

We also have the relationships

E - (D - P)
- 0-

(3.3)
B - io(H + M)

_ 0-

where

V'D -

(3.4)

VxH - i - iwD.

From equations (3.1) and (3.4) it follows that

14



." .4

V.A ikc-1 4 0. (35)

Next, we consider a region V of finite extent with some polarization P

and magnetization M. Futhermore, we assume that there are no exterior sources

of the electromagnetic field in V implying that p - 0 and i = 0 in V. Let S

be the boundary surface of V and let n be the outward unit normal of S. The

complement of V with respect to the three dimensional Euclidean space is denoted

by V1 . We also assume that the region V is vacuum as far as the electromagnetic

properties are concerned. Assuming that all the exterior sources of the electro-

magnetic field are at infinity we have the following differential equations for

the electromagnetic potentials

V2D + k -2 = -Iv-p
0

(3.6)

V2A + k2A =fi o(ip - VxM) in V

and

V 2 .+ k 24 = 0

(3.7)

V2A + k2A 0 in V1 .

Let G be the free-space Green's function, and let r be a point inside V.

We then have

J (GV2 - 4V' 2G)dV' ffi 6 V'.(GVO - OV'G)dV'

s S6

where V' operates on the second argument of G(r,r';ik), n' - n(r'), and V 6 is a

sphere with surface S, radius 6, and center at r (see figure 3). It is easy to

show that

lim J R.(GVO - OV'G)dS' - 4. (3.9)
6- 0fS6

15
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Figure 3.An inhomogeneous, imperfectly ronducting, finite body.
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Equations (3.6), (3.8) and (3.9) then give

4* + C_ 1 GV.PdVI + J(OaG/an' -GaO/3n')dS' -0. (3.10)

Similarly, it can be shown that

A + p~ 0JVG(iwP - VxM)dV' + JS[AaG/3n' - G(n'.V')A]dV' 0. (3.11)

Next, we consider an actual scattering situation. We split the electro-

magnetic field into two parts:

inc +0sc

(3.12)
A Ainc. sc

where 4 adA scsatisfy the radiation condition at infinity and the differential

equations

V2 sc +k2 0sc 0

(3.13)

V 2A c+ k 2A -O inV.

and V ~2 Psc +k2 0sc -_1 *

(3.14)

72 A +k 2A sc M o(iWP - VXM) in V.

The incident field satisfies the differential equations

V2 0inc +k2 0inc 0

(3.15)

V2 Ainc +k2 Ainc 0 i

We nov go on to apply the integral formulas (3.10) and (3.11) to 0 SC
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and A sc. Equation (3.10) gives

0 sc+ E- 1 GVPdV' + P "- 0")4C/3n'
0 J s +

-G(a Sc /an' - tSCan'IjdS' -0, r EV (3.16)

where

0+(r) - lrn 0(r)

rEV

and

0-(r) - lrn 0(r).
r-S

On the surface S we impose the boundary conditions that 0, A and Dn are

continuous. Since t inc: is continuous everywhere these boundary conditions

imply that

sc 0sc

and

at sc/an DOBC/3n-c Jn.(P -p c n-P
+ 0-- 0

where we have made use of the fact that P 0 in V. Suppressing the index +

we arrive at the following expression

0 . *inc - C- I GV-PdV' + £c1 JGn'.PdS' (3.17)

and equation (3.17) is valid at points inside V.

In the same way, equation (3.11) gives

As1c + (iw_ - VxM)dV' + [(~A" - Ar )aG/3n'

-G(flI.V)(A sc As A)]dS - 0, r FV. (3.18)
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We also impose the boundary conditions that A, n-B and nxH are continuous on S.

Making use of these boundary conditons, equation (3.5), and the vector formula

nx(VxA) = VAn - (n.V)A

we get

A Ainc + V 0 _VG(V
M - iwP)dV' - Vo j | G(n'xM)dS'. (3.19)

Equation (3.19) is valid at points inside V. In the surface integral of equation

(3.19) we have used the definition

M(r) - lir M(r).
r-+S
reV

To sum up, we have the following set of equations for the electromagnetic

potentials, valid in the region V,

A inc + Po J G(VxM - iwP)dV'- P° j G(n'xM)dS'

(3.20)

-C I GV.PdV' + c- 1 Gn'.PdS'.

Combining equations (3.2) and (3.20) we get the following set of equations for

the electromagnetic field quantities E, B, al3o valid in V,

E.- Einc + o-1V GV*PdV' - S 1 Gn'.PdS'

+ i 0 G(VxM - iwP)dV' - iwuf SG (n 'xM )dS '

(3.21)

B Binc + 0 Vx fV G(VxM - iwP)dV' - oVxJCsG(nxM)dS'

where
Einc VOinc + iwAinc

19



and

Binc IxAInc.

Employing the integral formulas

IV .PdV' - JsGn'.PdS' + V.JIVGPdV' (3.22)

and

IVGVxMdV' -JsGn'x~dS' + VxJI G~dV' (3.23)

to equation (3.21) we get

E -E Inc +C_1 vvf GPdV' + w 2 JAG~V'~ + ou~Vx G~Vt

(3.24)

B a B inc + 0 vxvxV GMdV' - iwp0oVxfvGPdV'.

Making use of equation (3.3) and the facts that

Inc inc
D c E (3.25)

and
(V2 + k2 ) IVGPdV' - - P (3.26)

we can replace the set of equations (3.24) by the following set of equations

D a D inc + vxvx vPdV' + iwvocoVXj VG!~dVv

(3.27)

B-B nc + 4 0vxVx GMdV - iwti0VxI GPdV'.

From now on we restrict our calculations to linear media, i.e., there

exist 1(r,k) and j(r,k) such that

20i NJ



D(r,k) = U 0 (r,k)E(r,k).

Here E(r,k) accounts for both the permittivity, c(r,k), and the conductivity,

a(r,k), of the medium,

E(r,k) -[c(r,k) + io(r,k)/(ck)]/c0

With

X(r,k) = E(r,k)/EI(r,k) - 1]

and (3.29)

K(r,k) = ii(r,k)/llj(r,k) - 1]

we get the following differential volume integral equation for P and M

XP= D inc + VXVX fV PdVI + iwc- 2 VJ GMdVI 
3.0

KM -H inc + VxVxJfGMdV' - iwxfGd_

To derive a set of integral equations from the set of equations (3.29) we

notice that 191

VXVXJfVGqdVI = 2_q/3 + IVVxVx(G)dVI (3.31)

and

VxJfVGdV' -JV Vx(G)dVt. (3.32)

Here Jdenotes the principal value integral, i.e.,

f d'- lirn f adV#

where V 6 is a sphere with radius 65 and center at r. Applying equations (3.31)

21



and (3.32) to the set of equations (3.30) we arrive at the following set of

coupled integral equations for P and M

(I + 2)/[3(9 - 1)]P = Dinc + f VxVx(GP)dV' + ikc - I fVVx(GM)dV'

(3.33)

(D + 2)/[3( - 1)3Mfi Hinc - ikc -  fV Vx(GP)dV' + f VxVx(GM)dV'

The integral

fw Vx(CR)dV' (3.34)

V

is a well-defined quantity for any point inside V provided that _ is a H~lder

continuous function in V. This can be seen from the fact that

VxVx(GO,) = [- 3[(e',' ) + (,O,')].(r')(3.35)

as R = Ir- r'* 0. Here 8' and 0' are the polar angles of the vector R- r - r'.

Moreover, F and j are 3x3 matrices such that

_S(R,',0')I - O(R - 2 ) as R -P 0 (3.36)

and ad f ',')sin 'dO'do' = 0 
(3.37)

where S is the surface of the unit sphere. The principal value integral (3.34)

has been discussed previously in the literature and we refer the interested

reader to references [5] through [8].

The singularity inherent in the set of integral equations (3.33) makes

it difficult to determine the analytical properties in the complex frequency

plane of P and M from the set of integral equations (3.33). In the next section

we will start with the set of differential integral equations (3.27) and derive

a set of volume-surface integral equations for E and H. This set of integral

equations can be treated by means of the Fredholm determinant theory.
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IV. Analytical Properties of the Field Scattered From an
Imperfectly Conducting, Finite Body

Based on the differential integral equation (3.27) we will in this section

first derive a volume-surface integral equation describing scattering from an

inhomogeneous, imperfectly conducting, finite body. We will then discuss the

analytical properties in the complex frequency plane of the solution of this

integral equation.

Employing the integral formulas (3.22) and (3.26) to the set of equations

(3.24) we arrive at the following set of volume-surface integral equations

EE nc + Jv[k2(E - I)GE + VGZ-I V.E]dV' - i U - 1)VG(n''E)dS'

+ ik(Z - 1)VGxHdV'

(4.1)

H =Hinc + fV [k2( _ ) + VG_ . dV' - 1)VG(n'.H)dS'

inckz G (E - I)VGEdV'.

0 V

In deriving the set of equations (4.1) we have made use of the fact that

P = C0 U - I)E = -1 (9 I)D,

-1 -1
M - )H 0 o.

For the special case where - 1 and a = 0 the set of equations (4.1) reduces to

the integral equations

E = Einc + J [k2((1 - 1)GE + VG-I V9.E]dV' - is (9 - 1)VG(n'.E)dS'

(4.2)

H = H inc -
ikZ 

1  j(E - 1)VGxEdV'

2V
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[13]

which have been discussed previously in the literature

Instead of considering the set of integral equations (4.1) we will consider

the following more general set of integral equations

E - Jvl*.dV' - EJLFdS' - Mv lHdVI - Eic rEV

fS L 1 ~FdS' - Jv!-EdV' - f M I HdV' - Fic r(=

(4.3)

Hj- JLk-jHdV' f JL JdS' - fJM EdV' , H inc, r C= V

S- JdS~ ' L JJ-HdV' - MH2.EdV' - Jin r F_ S

where

L2-k2 -1G+ -1VV

L3 - (1- )VG

.E - k 2 (~-1)Gn + 51(n-VG)V5

L 1= (1 - ji)VG)
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l- "

ikZo (i - 1)(nxVG)

2 = - ikZ -1( - 1)(nxVG).-2 0

Substituting

inc inc
F =n.E

(4.4)
jinc i nc

into the set of equations (4.3) one can verify that the solution of the set of

integral equations (4.1) also satisfies (4.3). In fact, having the solution of

(4.1) we only have to substitute

F = nE,

(4.5)

J3n.H

into (4.3) in order to show that the solution of (4.1) satisfies (4.3).

Next, we will show that the solution of the set of equations (4.3)

satisfies the set of equations (4.1). The uniqueness of the solution of the

integral equation (4.2) for real values of k has been shown in reference [13].

Without going into the details of the proof we claim here that the uniqueness

of the solutions of the set of equations (4.1) and (4.3) can be shown by using

the technique employed in reference [13]. Let E,, I be a solution of (4.1)

with the right hand sides equal to E and H . Moreover, let E2' F !2' H 2
-0 -o2 '-2

be a solution of (4.3) with the right hand sides equal to E, FO  n.E, H ,

J = n.H . Introduce the quantities

E'= E -E-1 -2

F' = n E - F2 -- 1 2(4.6)

H' =H A2H-1 -2

' " n'H -2
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.1TIMM"

Then one can easily see that E', F', H', J' satisfy the set of homogeneous

integral equations

-- f --K' 1 F'dSI - f1liH'dV' = 0

F' - JL F'dS' f JL *E'dV' - JM 1 H'dV' -Q

(4.7)

-V -J12  V:- H'dV' J'~JdS' - Mv 2 E'dVI = 0

it - L J. H'dV' - "E'dV' - 0.

From the uniqueness theorem it follows, however, that the only solution of the

set of integral equations (4.7) is the trivial solution E' = F' = H' = J' = 0.

Thus, by substituting the set of equations (4.4) into the set of integral

equations (4.3) it follows that the solution of (4.3) satisfies (4.1) for real

values of k. From the principle of analytic continuation it then follows that

the solution of equation (4.3) satisfies equation (4.1) for all complex values

of k.

We will now continue with the solution of the set of integral equations

(4.3). First we will transform the set of vector integral equations (4.2) into

a set of two coupled scalar integral equations. For that reason we introduce

a set of volumes, V, and a surface, SI defined by

v- {rf : r- kr + r', r'E VI

S1  {r :r r + r', r'E S}.

Here 0 £ R 5 and

r = £ max [I.r" + d]

where t is an arbitrary unit vector and d > 0. Notice that V - V and that the
o
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regions V are nonintersecting regions and that S 0 S and S are two non-

intersecting surfaces. Moreover, define

Ex (r), rE(-V0

E (r-r r(-V2

E (r 5 r ),r E Vz- -o 2

(r) =I
H_ I(r - 3r) r E SI

n~~~~r)~ ~ -(Prlr.'ynr)V Fr 12 r1 ;)a, ')S - nc();rV=

a~r) - f2. F 2H (rr'yn ')V - S rr';), ~ ')S rEVnc(); r

Q- Uo - S

E ~ - r 0 , r ES1.
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and rI, r 12, r21' r22 are constructed from the kernels of the set of integral F

equations (4.3) in the same way as the quantity r used in section IV of reference

[2]. Since we are not interested in the actual analytical expressions of r11,
r1 2, r2 1 and r22 we leave it to the interested reader to find these expressions.

From the definitions of the kernels of the set of integral equations (4.3) we

can derive the following asymptotic expressions

Ir 1( _ - r')I - I_ - f' - (i - j)r 1-2

when r E Vi and r' e V and r' - r - (i - J)r ;

1r12(r - r')j - L.r - r'- (i - i).o- 2

when r E V and r' E S and r' + r - (i - j)r ;

Ir 21 (r - r')I - Jr - r' - (i - j)r 1-2

when r ( S i and r' ( V. and r' r- (i - J)r; and

r 22 (r - r')j - Jr - r; - (i - j)r 1- 1

when r E S i and r' E S and r' r - (i - J)r o

Introducing I = (n,a) the set of integral equations (4.8) can be cast

into the following operator form

LI _. ' I "i -  (4.9)

The operator r is determined by the kernels r1l, r12, r21, r22 and the domains
of integration i,E. It is easy to show that the kernels defining the iterated

operator r3 have logarithmic singularities at those values, of (r,r') where r

r12, r2 1 and r22 are singular. Since any solution of the integral equation

(4.9) also satisfies the integral equation

3. inc (4.10)

28



where

inc 2 inc1~~ r ( + -- ) -

we will consider the integral equation

( - 2)' (4.11)

A solution of the integral equation (4.11) is derived in Appendix C.

Provided that E, VE/E, and V / are analytic functions in the entire complex

frequency plane it follows from the analysis presented in Appendix C that poles

are the only singularities of the operator inverse to the integral operator

defining the left hand side of (4.11). The location of these poles are given

by those values of y, y n where there exists a nontrivial solution of the

homogeneous equation[2]

(1- =)'± = 0. (4.12)

To conclude this section we have shown that there are two types of

singularities in the complex frequency plane of the field scattered from an

imperfectly conducting, inhomogeneous body. One type is due to the singularities

of the incident field. The other type is due to the scattering body. Sufficient

conditions for the latter type of singularities to consist of only poles are that

the scattering body is of finite extent and that E, Ve/t, i, and V /O are analytic

functions throughout the entire complex frequency plane.

The approach we have used is based on a formulation of the electromagnetic

scattering problem in terms of a set of coupled Fredholm integral equations of

the second kind. This approach resembles the approach used in deriving the so-

called Oseen extinction theorem 9 .12] . When solving for the natural frequencies

and natural modes of a particular scattering body it might be advantageous from

the numerical point of view to use other formulations. One method that can be

used is an integral equation of the first kind for the induced polarization

current and magnetization current used in reference [17]. In comparison to
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different formulations used when solving electromagnetic scattering problems

involving perfectly conducting bodies, the formulation used in this note

resembles the magnetic field formulation whereas the formulation used in

reference E173 resembles the electric field formulation. Finially, as we

have seen in section II, scattering from a homogeneous, imperfectly conducting

body can be formulated in terms of a surface integral equation.
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V. Scattering From a Perfectly Conducting, Finite Body
Within a Parallel Plate Region

In this section we will consider electromagnetic scattering from a perfectly

conducting, finite body located between two parallel plates. With the use of

image theory we will first formulate an integral equation for the scattering

problem valid for real frequencies. Next, we will find the analytic continuation

of this integral equation to the entire complex frequency plane. Finally, we

will discuss some of the analytic properties of the solution of the integral

equation.

The geometry of the scattering problem considered is depicted in figure 4.

From the theory of images it follows that the integral equation derived from the

magnetic field formulation can be cast into the following form:

1 _ inc. (5.1)

Here J is the induced surface current density on the scattering object, I is the

identity operator, L is an integral operator defined by

_ = nxE vx (J-I)JdS', (5.2)

and n is the outward unit normal of the surface S of the scattering object.

Moreover,

- (5.3)

G = IG (5.4)

G-(rr';ik) - O 4n- exp(ikRn, (5.5)

Rn - [(x - x' - 2nd) 2 + (y - y')2 + (z - z') ], (5.6)

- G + (5.7)

= - xx + + i, (5.8)
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- xad/2

En

- x--d/2

Figure 4. A perfectly conducting body within a parallel plate region.
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G+(rr';ik) -- - (4,R') exp(ikR+), (5.9)

R n E(x + x' + 2nd)2 + (y -y) + (z zI) (5.10)

and d is the spacing between the perfectly conducting, parallel plates.

We observe that the series representations (5.5) and (5.9) of G (r,r';ik)

and G+(r,r ;ik), respectively, converge for real values of k except for k = nr/d
[24]

(n is an integer) . We will later return to the question of convergence of

the series representation of the Green's function in connection with the problem

of finding representations of G-(r,r';y) which are valid in the entire y-plane.

We will now investigate the kernel of the integral equation (5.1),

VX(G.j 1 = VX(. 1 ) + V + (5.11)

Here V operates on the first argument of G-(r,r';ik). Making use of Cartesian

coordinates (xy,z) one has

VX(G--j) = [ f(R) , (5.12)
-00

where
f(R) = (4R 3)- (ikR - 1)exp(ikR)

+

and D have the dyadic representations:

D (r,r') = - (z - z')ij + (y - y') i +(z- z')i - (x - x' - 2nd)i

- (y - y')ii + (x - x' - 2nd)^,

D+(rr') = - (z - z') i + (y - y')i - (z - z')yi - (x + x' + 2nd)yi

+ (y - y')IA + (x +x' + 2nd)29.

Thus, L can be split into two parts (c.f. (5.2), (5.3) and (5.12)),

L ++It -(5.13)
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++

K-(r,r';ik) K +-(r,r';ik). (5.14)
__n

Here -

K +(rr';ik) f( - rr)
n n

and are two dyadics,

F(r,r') = [y -y')n +(-z)n]i+ (x - x' - ndn
y z y

+ (x - x' - 2nd)nz + (y - Y')nxyjX

- [(z- z')n + (x- x' - 2nd)n x jj + (y y'n

+ (z - z')n xii + (z -'n

- (x -x' - 2nd)nx + (y - 'nyIi

4(r r') = (y - y')n + (z - z')n Iii + (x + x' + 2nd)n x'y
y zy

+ (x +- x' + 2nd)n z- (y - y')n xyx

- [(z -z')n z+ (x + x' + 2nd)n x]Yy + (y - y')nzi

- (z -z')n iX + (z - Z')n y jy

- [(x + x' + 2nd)n x+ (y - 'nyii

From (5.14) one can derive the following asymptotic expression for

K + r,r' ;ik),

K +(r,r';ik) An 1 4 exp(21kdlnl) + A(r,r')b (.5
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-2where b = O(n ) as n - and A is a constant dyadic. Thus, we haven
S-1 

+
-(r,r'ik) = +A n exp(2ikdlnl) + R(r,r';ik) (5.16)

n#O

where R-(r,r';ik) is well defined for all real values of k and r # r'. Moreover,

since

Y n-  exp(2ikdn) - - in[l - exp(2ikd)] (5.17)
n-l

the series representation (5.14) of L-(r,r';ik) converges for all real values

of k such that k 0 nn/d. Also from equation (5.15) the series (5.14) converges

conditionally for k = nT/d. In passing we want to point out that the series

K(rr';ik) Y [K(rr';ik) + K+(r,r';ik)] (5.18)
-OD

converges absolutely for all real values of k. This can be seen from the fact

that for large n we have asymptotically:

K (r,r';ik) + K +(r,r';ik) = C(r,r')c (5.19)
n

and c = O(n - 2 ) as n .n
To conclude our considerations for real values of k we will briefly

investigate the convergence of the series representation (5.4) through (5.10)

of the dyadics -(r,r';ik). Employing the methods used when deriving (5.16)+

it can be shown that one representation of G7(r,r';ik) is given by

-(r,r;ik) = r') n- exp(2iknd) + G(rr';ik) (5.20)
n=1 6

where G-(r,r';ik) is well defined for all values of k and r r ', and Gl(rr')

is well defined for r 0 r'. Thus, from equations (5.17) and (5.20) it can be

seen that the series representations (5.3) through (5.10) of E-(rr';ik) diverge

for k = nr/d (in contrast to the series representation of r-(r,';ik)).

Until now we have only considered the operator = (y) when y is a purely

imaginary number. In order to find an analytic continuation of k from the
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imaginary axis into the complex y-plane we first make the following observation. V

The series

G(r,' ;y) = ( )- exp(-yR) (5.21)

converges for Re{y} > 0. Therefore, the definition of L(y) from G-(r,r';y)

by equations (5.2) through (5.10) can be extended to all complex values of y

such that Re{y} k 0. Next, we will find an operator L(y), defined almost

everywhere in the entire complex y-plane, and such that L(y) = &(y) for

Re{y} 2 0. In order to find A we start with the following representation of L,

- + + (5.22)
m=2,3

where

(L "f)(r) E=II(rr';y) + K(rr';y)]f(Cr')dS',
fSV

(=i.f)(r) = S Ef;m,k)t(r,')'f(r')dS',

and

S±(~~Imt = f 2t(R7)- exp(-yR+).
n-1 n n

+

The analytic properties in the complex y-plane of the functions S-(y;r,r';m,z)

are investigated in Appendix A. In this appendix we have shown the existence

and given a method of constructing two functions, E-(y;r,r';m,l), defined almost

everywhere in the entire y-plane, and such that

+ Z y._fmX - S (y;r9r';m,z) (5.23)

for Re(y} 2 0. Moreover £±(yFf';m,) are analytic functions in the entire

y-plane except along the lines Cn, defined by

Cn = {y Re{y} : 0, Im(y) = nw/d, n integer},
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+1

where +-('f;r,r';m,X) are discontinuous (see figure 5). Thus, we can define

an operator A = A(y),

A= L + [ (A +A+ (5.24)
m=2,3 nit =It

t=0,1

where

(A+9,'f)(r) E -(y;r,r ;m,P)B (r,r')'f(r')dS'

and L is defined by equation (5.22). From equations (5.22) through (5.24) it
=0

follows that

L(_) = 1(y)

for Re{y} t 0. Moreover, A(y) is an analytic operator-valued function of y

except on the lines C . Of course, the lines C can be considered as branchn n

cuts in the complex y-plane of the operator Akv). The operator A is the analytic

continuation of 1. into the complex y-plane.

We now go on to consider the solution of the integral equation

( - ' inc. (5.25)

for any complex value of y. Since A(ik) = j(ik) it follows from the uniqueness

theorem that the solution of the integral equations (5.1) and (5.25) are

identical for y = ik. Next, we will consider the analytic behavior in the complex

y-plane of the solution of the integral equation (5.25). It is easy to show
2 2 [2]

that the operator = , defined by . - L.(.f), is of Hilbert Schmidt type

The integral equation

1 2 1 inc finc

[2]can then be solved by using the Fredholm determinant theory 2
. Following the

procedure in reference [2] one can easily see that the inverse operator

(- - A)-  has two types of singularities. One type is poles at those values
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Figure 5. Branch cuts of the operator ,(-Y).
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of y, Yn' where there exists a nontrivial solution of the homogeneous integral

equation

1 -1The other type of singularities of the inverse operator (i I- A) is dis-

continuities along the lines C where the operator - 1 - A is discontinuous.
nP2- - 1 -1For the case where all the poles of the inverse operator (i 1 - )

are simple poles we get the following time-domain representation of the induced

current, J(r,t), due to a delta-function incident TEM wave,
[2]

Hinc = I 6(z - ct), I = I 0- "-0 -0 0

J(r,t) = U(ct - Zo1 ( 1minc )exp(y z ),n >[(B"nm,h )]-l exp[y (ct Z)]0-- Limn (nzo)-l =I --m -m n 0

+ (27i) - 1  E J [P(),,inc (_ + i'n/d)exp(-ctE + iirnct/d)]d ]
-~0

Here
jinc(y) = n- exp(-yz),

B = dAdy evaluated at y = y

and h are linearly independent nontrivial solutions of the homogeneous

integral equations

E[. L - A(Y_)]'*h = 0'

Ei- L(n) --nmI~ -*
where A t is the adjoint operator of L. Moreover,
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P(E) li - (-t+in+in/)

1 2

and we assume that the inverse operator [- I - L(y)3 exists as y approaches

C (from above or below).n

To sum up, we have shown that the singularities in the complex frequency

plane of the operator inverse to the integral operator of the magnetic field

formulation are poles and branch cuts. The location of the branch cuts is

uniquely determined by the distance between the parallel plates. Based on the

theory developed here we might in the future undertake a numerical study of the

location of the poles. As we have seen, the main problem is to find a represen-

tation of the integral operator that is valid in the entire complex frequency

plane. There still remain some problems to be solved in the construction of

this operator. Needless to say, the "ordinary" series representation, derived

from the method of images, is not valid throughout the entire complex frequency

plane.

Based on eigenfunction expansions different representation of the Green's

function is given in Appendix B.
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Appendix A

In this appendix we will consider the following sums

S( ;n,J) = I. n'Rm exp(-4R) m~ k. IA. 1)

where

R =(n + an +)

The series (A.1) converges-: for Ref } > 0 when m and Z. are any finite integers.

It also converges for Re{C) : 0 when m -' Z. + 2. In this appendix we will find

the analytical continuation of S(C;m,9.) into the entire c-plane when m : X.

Let N be a finite integer such that

jai + ji< N t-- ja + 1 + 1. (A.2)

We then have

S~tm,.) H( ;m,9.) + D(C;m,9.) (A.3)

where N-1

HC;m,9.) = n9 R- exp(-?R)
n=1

and

DC~;,9. =I n9.R-1 exp(-CR)
n-N nn

Since N is finite it easily follows that H(C;m,k) is an analytic function in the

entire 4-plane. Next we consider the expansion

R m exp(-4Rn I f f(Cm)nmk exp(-nC). (A.4)

The analytical expression for f k (,m) is rather complicated. We will here only

consider the convergence of the series (A.4). We have
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I7

m k (A.5)Rn k=0 O

and the expansion (A.5) converges for n k N. Moreover, it is easy to show that
there exists a finite constant A such that R > nA for all n. We then have

Go

JR:m exp(- R)I1 < (nA)- lexp(- n I a nk)
n n k=O

= (nA)-mlexp( - Cn - CaI - C k aknk+)
k=2

- (nA)mi[l + Cn ()]exp(-Cn - a0 1)I (A.6)

where

C (O CW)t~'I ahk+

Furthermore, we have

)C c 1lZ!l ( '  (A.7)
X=I [k=2 t-1=

where

C= ak 
N -k + l <Ik "

k= 2

Comparing equations (A.4) and (A.7) we obtain

ifk( ,m)I < CA -mlNIk(k!) -1lexp(-Cn- al1 , k k 1. (A.8)

From equation (A.8) it follows that the series (A.6) converges for all complex

values of 4. In passing we also want to point out that, from the construction

of fk (,m), it follows immediately that fk(C,m) is an analytic function in the

entire 4-plane.

From equation (A.8) it also follows that

D(=;m,t) fk(rm)n1-m exp(-nO) - X fk(,m)n exp(-nC). (A.9)
n=N k- k-0 n-N
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From the definition of the r function it follows that (c.f. Appendix D of

reference [28])

nY exp(-nc) [r(t)] - ' [i"' exp-(Q + x)nldx (A.1O)

0

and

n- exp(-nr) [r(9)] F91 (A.ll)
nfN

where

Fk() =J x k'1 expE-(x + 1)N]/Il - exp(- - x)]dx. (A.11)
0

Equation (A.11) is valid for Re{c} > 0 when . 1 1 and it is valid for Re{f} . 0

when Z k 2. Thus, we have

D(c;m,t)= I f k(,m) ()/r(m- ). (A.12)
k=0

The convergence of the series (A.12) follows from the following consideration:

for Re{W} > 0 there exists an c > 0 such that

11 - e-(c+x) > C

and from equation (A.11) it then follows that

IF (;)l < -I r(t)N-1jexp(-Nc)j. (A.13)

The convergence of the series (A.12) is now clear in view of equations (A.8),

(A.11) and (A.13).

Introduce the function

( = fzL-1 exp[-(z + C)N]/[l - exp(-z - C)]dz (A.14)

where the path of integration, C, is along the real axis in the complex i-plane.

One easily sees that t (C) is an analytic function in the entire c-plane except

43



on the lines Cn,

C n f : Re{CJ < 0, Im{} - 2wn, n integerl.

We also notice that

It (i + 2win) - t(

so that we can limit our investigation of t () within the band

: - - < Re{r} < -, -n - Im{0 C 4}. From equations (A.11) and (A.14) it

follows that

t () = F (C) for Re{f} > 0.

Thus, the function 0 (t) is an analytic continuation of the function F (O.

Making use of complex contour integration it is easy to show that the limit

values

lim 0 (& + in), < 0 (A.IS)
n-,0+

exist. Moreover, we have

lim 4 (E + in) - lim $t( + in) - 2%i(-C) (A.16)
-n-O- n-0-

Thus, we can define a function A(C;m,t),

kO

and for Re{f} > 0 we have

) D( ;mL). (A.18)

It is easy to show that the series (A.17) converges for c i Cn (c.f. the proof

above concerning the convergence of the series (A.12)). Thus, the function
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A(Q;m,I) is an analytic function of C in the entire C-plane except on the lines

C n We use A( ;m,l) as the analytic continuation of D( ;m,l) into the entire

c-plane. From equations (A.3) and (A.18) it then follows that the function

£(Q;m, ),

Z(4;m,l) =H(C;m..C) + A(Q;m,0), (A.19)

in an analytic continuation into the entire c-plane of the function S( ;m,z)

defined by equation (A.1).
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Appendix B

Using eigenfunction expansions we will in this Appendix find a representa-

tion of the scalar Green's function different from the one used in section V.

The Green's function Gl(r,r';y) of a parallel plate region satisfies the

differential equation

2 12 2
++ y2- G - p, 6( - ')z- z') (B.1)+7+ 2 2 2

for 0 < z < d and the boundary conditions

.- - 0 when z 0,d.

To find G that satisfies equation (B.1) we proceed in the usual way. Let

n!0nmCO A r)FK (A p')- cos(n7rz/d)cos(nrz'/d)exp[im(O- ')J,

P > Q'
r(B.2)

n0 m=-wO P <0

where
2 .y2 + (nnr/d) 2

n

and I (r), K (r) are modified Bessel functions. Note that (B.2) satisfies the

boundary conditions (B.1). To determine the constants Anm, multiply the

differential equation (B.1) with cos(niz/d) and perform the integration

lim ff 27r j S+E( .... )pdpdodz.C-O o o Jp I-C

After some straightforward algebraic manipulations combined with the Wronskian

for the modified Bessel functions we obtain

A -m (C n rd)- I Im(A nP')K m(Anp') (B.3)
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where E - I if n k I and c = 2. Substituting (B.3) into (B.2) we have
n 0

G1 (r;r';y) - 0 (cn d) -Im (np<)K m(Anp)cos(nnz/d)cos(nrz'/d)exp~im(O-o')I

(B.4)

where p< (p>) denotes the smaller (larger) of p and p'.

Next, we consider the analytical properties of GI in the complex y-plane.

In doing so we first observe that the series representation (B.4) converges for

all finite values of y such that A n(y) 0 0 when r 0 r'. The convergence is

easy to show from the asymptotic expansions of the Bessel functions. From other

representations of Gl(r,r';y) one has

G, (r,f ;y) - (41Tr f I' I)_exp,(-yl - ') a s r -~ r'

We also note that the function A (y),n

An(Y) /2 + (nn 1d) 2

is multiple-valued but can be made single-valued by introducing branch cuts

parallel to the negative real axis and starting at ±iwn/d. These branch cuts

have been denoted by Cn in section V. (See figure 5). Since X n 0 at inn/dn n

it is clear that the branch cuts for An also make I m(Xn p) and Km (Anp) unique

functions of y. Thus, G1 (r,r';y) is an analytic function in the entire Y-plane

except on the branch cuts Cn.
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Appendix C

In this appendix we will find a solution of the integral equation (4.11)

of section IV,

-_3 .. _ (c.1)

33

The quantities L , 3 and have been defined in section IV.

The operator equation (C.1) has the following explicit representation

n(r) - J All(rr';y)n(r')dV' - JEAl 2 (r'r';y)o(r')dS' - nl(r)

rE S

(C.2)

o(r) - L A2 1 (r,r' ;y)n(r')dV' - JEA 2 2(rtr';y)a(r')dS' - o7 ( r ) ,

.__E G z

Here All, A1 2 , A2 1 , A2 2 have a logarithmic singularity at those points where

rll, r1 2, r2 1, r2 2 are singular.

The method we will use in solving the set of integral equations (C.2) is

based on the Fredholm determinant theory. Introducing the resolvent, RI(tr';Y),

which satisfies the integral equation

l(r,r' ;y) - fSAll (r,r';y)Rl(r",r';y)dV" - All(r,r';y) (C.3)

we can transform the first equation in (C.2) into the following equation[18]

n (r) - ill(r) + JA 1 2(r tr';y)o(r')dS' + JRl(rr';y)T%1 (r')dV'

+ (r, ,;y) r , ;y)o(r")dV'dS" (C.4)

Substituting the expression (C.4) into the second equation of (C.2) we arrive

at the following integral equation for o(r),
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a(r) - JA'(rr';y)o(r')dS' - a'(r), rE E. (C.5)

Here,

A'(r,r';y) A2 2(r,r';Y) + Al(rr' ';Y) + A2(rr ';Y)

Al 1 r ;7_ f 1A 21 --r '; ) A12r ' 1,' ;Y) dV1'

A(rr';y) = 1 ! ,(r,r";)(r',r ;y)A " ;y)dV"'dV"

o'(r) = o1 (r) + 02(-r) + 03(r)

a 2(r) = fS1A 21(r'rE' y )nl(r')dV '- - -

a3(r) 'fiI= A21(r'r';)Rl(r'r";Y)nl(r")dV'dV".

All the operations we have performed so far are strictly formal and we

will now go back and examine the validity of each operation. First, we notice

that the kernel All(r,r';y) is a square integrable function on the domain

Oxg. Thus, the integral equation (C.3) can be solved by using the Fredholm

determinant theory. Moreover, in the following we assume that 9, Vt/f, j and

Vi/j are analytic functions of y - s/c. We will also assume that the incident

field is an analytic function of y implying that n and a1 are analytic functions

of y. It then follows from equations (4.3), (4.8), (4.10) of section IV and

(C.2) that the kernels AlI , A12' A21 and A22 are analytic functions of y

throughout the entire complex y-plane. Following the procedure used in reference

[23 it is easy to show that the resolvent, Rl(r,r';y), is an analytic function
(1)werthreissantrva

of y except for those values of y, yn ) where there exists a nontrivial

solution of the homogeneous integral equation

nr) - [A (I. (1) )n(r' )dV' 0. (C.6)
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The resolvent has a pole at y - y (
n

Let A be a domain in the complex y-plane such that RI(r,r';y) is analytic

in A. (We will discuss later what happens at the poles of Rj(rr';y)). From

the integral equation (C.3) it follows that R,(r,r';y) has a logarithmic

singularity at those values of (r,r') where Al1(r,r';y) has a logarithmic

singularity. From the Schwartz inequality it then follows that A I and A2

are square integrable functionson Q×Q. The integral equation (C.5) can then

be solved by using the Fredholm determinant theory. Since a' is an analytic

function of y on A it follows that the only singularities in A of the solution

of the integral equation (C.5) are poles at y = y' where there exists a non-
n

trivial solution of the equation

a(r) - JA'(r'r';Yn)a(r')dS' = 0. (C.7)

It now follows that the operator inverse to the integral operator defining

the left hand side of equation (C.5) has two type of singularities. One type is

poles at those values of y = y' where there exist a nontrivial solution of

equation (C.7). The locations of the other type of singularities (if any)

coincide with the locations of the poles of the resolvent R(r,r';y).

In order to investigate the behavior of the solution of equation (C.5)

around the poles of RI(r,r';y) we will go back to the set of integral equations

(C.2). Introducing the resolvent R2 (r,r';y) satisfying the integral equation

R 2(,r' ;y) - f A22 (r,!";y)R2(r",';y)dS" = A2 2 (r,f';y) (C.8)

we have

a(r) - o1 (r) + f A21(r,E';y)n(r')dV' + J£R 2(-,';Y)a,(r')dS'

+ jR2 (r,r' ;y)A 2 1 (r' ,r1;y)n(r")dS'dV". (C.9)

Here n(r) satisfies the integral equation

n(r) - J A"(rr';Y)n(r')dV' - n"(r), rE f (C.1O)
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where

A"(r,r';y) - A11 (r,r';y) + A3 rr';y) + A4( ,r';Y)

A3 (rAr';y) - JA (r,r";y)A2 1(r",r';y)dS"3(rE;) z 12 21..

A4 (r,i' ;y) - xA 2 (i" ; 2)R 2 y) A21 (r",r_ ;y)dV"'dV"

n"(r) = n1 (r) + n2(r) + n 3 (r)

n2(r) -fi IA 12 (r,r';y)aj(r')dS'

ni3 (r) f A 1 2 (rEr' ;)R 2 (r'Sr"; Y) 1 (r")dS'dS".

First, we observe that the only singularities of the resolvent R2(r,r' ;y) are
(2)

poles at those values of y, n , where there exists a nontrivial solution of

the homogeneous integral equation

a(r) - A2 2 (r';Y ( 2 ) ) (r ' )dS' = 0. (C.11)

Assuming that y(1) 0 y(2) for all possible combinations of m and n it followsY n

immediately by comparing the solutions of equations (C.4), (C.5), (C.9) and (C.10)

that the only singularities in the complex y-plane of the solution of (C.2)

are poles.

For the special case where there exist an m and an n such that y (1) Y (2)
m n

we return to the set of integral equations (C.2). Dividing the volume 0 into

N1 equal subvolumes and dividing the surface E into N2 equal subsurfaces we can

approximate (C.2) by the following set of equations

N
* i l Ai*J6 ' (C.12)
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Here N - N1 + N2 ,

1 : j : N1

G(Ej) ,  N + 1 : j ! N

1 SII/N 
t 

:!c j -C 1N1

IlzIIl N 2 9 N I +  1 !Cj  C N

I1111 is the volume of the region S1 and JJI11 is the area of the surface Z. The

elements Xij are determined by the kernels AlI, A 12, A2 1 ' A22:

A siE Q -1r E S0

A1 (i )E 0, r E E

ij

A2 1 -r -' -j - i Z tj r '2

A 21(Ei,.rE , ri E

The solution of (C.2) can be obtained from (C.12) in the proper limit as N O

and N2 - w. This way of obtaining the solution of (C.2) follows closely the

Fredholm method of obtaining the solution of an "ordinary" second kind integral

equationL[ 18] . From the solution obtained in this way it is now easy to show

that the solution of (C.2) is an analytic function of y except at the poles Yn

where there exists a nontrivial solution 
of the equation2]n

U 2 ) . 0.

This completes our proof that the only singularities are poles of the
3

operator inverse to the integral operatorj-
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