
AOSA 189 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INWO-ETC F/6 9/2
MICROCODE VERIFICATION PROJECT.(U)
MAY A0 S D CROCKER, L MARCUS, D VAN-MIEMOP F30602-78C-0OO8J)NLASSIFIED RADC-TR-80-42 M

-mhhllllEIIhl//E
-EmmmEmmmEEEI
-IEEE--gllI
!InIIIIIIIIu
IIIIunuuuuI

-IEEE'.'.-

f11 11. 11.

111111-2

MICROCOPY RESOLUTION TEST CHART

MADCTR.S042 /2>t w
NI TeduIem R"pm'

00

0 MICRQCODE VERIFICATION PROJECT

Unhvrsity of Southern California

Stephen D. Crocker
Leo Marcus
Dono van-Mierop

APPROVED FOR PUBLC RELEASE; DISTRIBUTION UNUMITED

DTIC

ELECTE
AUG 18 1 8Oj

A
ROME AIR DEVELOPMENT CENTER

Uj Air Force Systems Command
- Griffiss Air Force Base, New York 13441

Ii' S 80 81501

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-80-42 has been reviewed and is approved for publication.

APPROVED: 9~ j
DONALD F. ROBERTS
Project Engineer

APPROVED:

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER:.6

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (ISIS) Griffiss AFB NY 13441. This will asaist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dat; Entered)_____________________
READ INSTRUCTIONS/ REPORT DOCUMENTATION PAGE -BEFORE COMPLETING FORM

CI.REPOR_7-UMBER 2GOT ACS1 SION 0. 3. RECIPIENT'S CATALOG NUMBER

4. TTLE arkVubtile)S. TYPE OF REPORT & PERIOD COVERED

OJCT.Final technical epePft.

6. PERFORMING 01G. REPORT NUMBER

Stephen D. CrockerFp627C-q8 '

9. PRORMING ORGNIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
University of Southern California 7AE OKUI UBR

Information Sciences Institute, 4676 Admiralty 62702F j7,.
Way, Marina del Rey CA 90291 5581Z007
11. CONTROLLING OFFICE NAME AND ADDRESS r7RP

Rome Air Development Center (ISIS)Ma08
Griffiss AFB NY 13441 /4 .'UBRO AE

14. MONITORING AGENCY NAME & AODRESS(If different fronv ContrOlt~ing Office) IS. SECURITY CLASS. (of this report)

Same UNCLASS IFIED
IS&. OECL ASSI FICATION/ODOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

I7. DISTRIBUTION. STATEMENT (of the abstract entered ini Block 20, ft dffferent from, Report)

Same

12. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald F. Roberts (ISIS)

19. KEY WORDS (Continue on re~erae side if neceeeary and Identify by block number)

ISPS proof checker
microcode simplifier
program verification state deltas
symbolic simulation

20. ABSTRACT (Centinue mn reverse side Of necessay and identify by btack number)

The goal of the microcode verification project at ISI is the
development of both theory and tools for verification of microcode.
Within the scope of this project, a formalism for representing state
transitions in a computationally tractable way has been invented, and
a proof system based on this formalism has been designed and implemented.
The representations of state transitions are called "state deltas."

(Cont'd)]

DD 'JA*, 1473 EDITION OF I NOV 65 IS OUSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whm Dore Entered)

el; /

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(". Del. Entred)

-The basic proof system has been specialized for proofs about machine

language and microcode by the addition of simplification rules for
bitstring arithmetic, and by the addition of a translator from the
ISPS machine description language to state deltas.

Some experimentation with the system has been driven by a preliminary
attempt to verify parts of the microcode of the Fault-Tolerant

Spaceborne Computer (FTSC). The primary success to date has been the
verification of the basic algorithm used for computing floating point
square root.

UNCLASSIFIED
SECURITY CLASSIPICAriom oil 7-1 PAGIEe1hefl DOMa Entgf6)

Table of Contents
1. OVERVIEW 1

2. LANGUAGE AND THEORY 9

2.1 ISPS 9
2.2 STATE DELTAS 11
2.3 SIMULATION 16
2.4 TRANSLATION OF ISPS INTO SDS 17
2.5 THE SYSTEM -- OVERVIEW 21

3. EXPERIENCE AND EXAMPLES 23

3.1 THE TOY MACHINE 23
3.2 THE FTSC 38

4. CONCLUSIONS 61

REFERENCES 55

A THE SYSTEM 57

A.1 PREPARING AND RUNNING A PROOF 57
A.1.1 Exec Mode 57
A. 1.2 BatchMode 58

A.2 BASIC PROOFSTEPS 59

A.2.1 Beginning and Ending a Proof 59
A.2.2 Registering Places 80
A.2.3 Advancing the Computation 61
A.2.4 Case Analysis and Loops 61
A.2.5 Mapping Between Levels 62
A.2.6 Static Reasoning 63

A.3 HIGH LEVEL PROOFSTEPS 63
A.4 STATE DJELTA EXPRESSION LANGUAGE 65

A.5 THE SIMPLIFIER 73

B FTSC HOST 83

C FTSC TARGET 107

List of Figures
Figure 3-1: ISPS descript4on of the TARGET machine 25
Figure 3-2: The SD description of the TARGET 25
Figure 3-3: Schematic of the TOY Host 29
Figure 3-4: ISPS description of the HOST 29
Figure 3-5: The specification of the Microcode 29
Figure 3-6: Mapping between TARGET and HOST 3
Figure 3-7: Two of the MAPPING records 3
Figure 3-8: Outline of the command batch 38
Figure 3-9: ISPS description of the square root algorithm 43

* L

--&add"_________

EVALUATION

One goal of Software Engineering Tools and Methods, a subthrust of TPO-5

Software Cost Reduction, is the development of automated tools for use in

the production, testing, and maintenance of Air Force software. This effort

was undertaken in response to that goal.

The objective of the effort was to develop a prototype software system for

formally verifying microcode. The use of microcode (firmware) to implement

computer instruction sets, rather than hard wiring, is a recent development

in computer technology. Hardware diagnostics do not fulfill testing

requirements for these computers.

Formal proof-of-correctness techniques, previously developed, were applied

to develop a system for "proving" microcode correctness. These techniques

were developed for software written in high order languages. This effort

is significant in that it is the first application of the techniques on

assembly or micro level software.

Development of the system was guided by problems encountered in attempting

to verify the microcoded instruction set of the SAMSO Fault Tolerant Space

Computer (FTSC). This provided a practical problem to demonstrate the

usefulness of the system. Verification of the complete FTSC instruction

set will be completed in a follow-on effort sponsored by SAMSO.

DONALD F. ROBERTS
Project Engineer

V

1. OVERVIEW

The .joal of the microcode verification project at ISI is to develop both the theory and
the tools for verification of microcode. While some prior work has been done in this area,
notably [Patt.rson 77, Birman & Joynor 76], the field was (and Is) far from closed.
Problems exist at every level, from fundamental questions of theory through questions of
strategies of system design to problems of integration with other software engineering

tools and education of users. Our strategy has been to concentrate on developing a
working system, lotting the theoretical issues emerge--sometimes painfully--amid system

developmtit. We have tried to delay overall consideration of the human engineering

qutstions, but have been forced to consider some of these when it became too difficult

to .lso our own system without improving the interface.

To establish a focus for the project and provide a source of examples, we selected a
prtictilar computer, the Fault-Tolerant Spaceborne Computer (FTSC), under development
by Raytheon for the Space and Missile Systems Organization (SAMSO) of the Air Force.
The iTSC ha.s a number of unusual features related to its design goal for a five-year

mhint nance-free survival in space. These features appear primarily at the hardware

level and in the operating system, however, not in tile architecture seen or implemented

by the microcode. At the machine languato level, the programmer sees a 32-bit machine

with 64K of me.mory, 8 general purpos, registers and the usual types of Instructions. At
thn microcodo lovel, tile machine is horizontally microprogrammed with 78-bit instructions

dIoco(lnci into 37 different fields. (As of this writing, the machine has been redesigned to

hWive a1 short.r microinstruction. We havt not taken these changes Into account In the

pr:'"wt work, but will focus on the now design in the next effort.) Documentation of the

I'TbC is givuon in ['laythoon Cori) 701.

One of the criteria in the selection of the FTSC is that it is a real machine developed

oulside our conitrol. We boliuve that It is possiblo to verify code for nearly arbitrary

machiiews, Irrespective of the tochniquos used to develop the code. This view differs

soinowhat from those of othor verificiation researclers, notably [London 77). To be fair,

it is quito clear that much of the ILbor Il tile verification task can be reduced If
verification and. code development are carried out together and If the strategies,

practices. and tools used to develop the code are also geared toward verification. But
we view this as a secondary concern and not fundamental to the verification task.
Dulow, we will mention where the savin3s in labor would occur.

Wo viow a microprogram verification system In the following terms. A user prepares
formal descril)tions of the host machine and the target Instruction set. He also obtains
a copy of tMe microcode that runs on the host machine and allegedly implements the
tarmet instruction sat. He then prepares a proof that the microcode does Indeed behave
as Io.sired, and submits all four of these files--host description, microcode, target
dclscrir)tion, proof--to the verification system, which then examines the target
description to determine all aspects of its behavior needing implementation. For each
s(equence of events that must be implemented, the system symbolically executes the
microcode .ccording to the rules of the host machine and demonstrates that the required

:et'hiuuco of events does take I)lacc.

No ..y.tom c;an i quito smart enough to carry out all possible demonstrations completely
istlontic.illy, so somo help may be nudod. Some systems operate on the principle that
the: tiy:tom Isould try very hard to succeed on its own and then ask for help after It has
triod ill l)O!;,jllh urizitics. While this approach seems attractive, it has a fundamental
drawl),ack. When the system asks the user for help, the user is generally unaware of
what th(system already has tried to do, what level of detail Is needed, or even what
prohlhm the system is working on. The underlying difficulty is that the user must have
soen idea of how the system is constructed and understand how to drive tile system. At
the same time, we note that the system is really trying to formally document the
rationale, for each instruction in the microprogram. However, this is just what the

procrimner had to do himself when he wrote the program. Combining these two
ob~servationis, we have taken the view thait the verification system should be driven by
the user, not the other way around. 7he user should have a complete understanding of
what thu verification system will ard will not do, and the user should drive the
verification system toward believing the correctness of the code. In this view,
interaction between the system and the user takes the form of a prepared proof, and it
becomes meaningful to ask what is the proper language for writing proofs. Wegbreit's

2

i-awr (Wcqbict 77] oxplores this area elogantly for well-structured algorithmic

li"afi!thirns. For microcodo ganeratod with minimal assembly language tools, different
ong(inooring is reqluired, but the basic idea~ Is the same. At the present time, our "proof
laIlullilqc" it; nothingj more than a set at commands to the prooftchecker. However, as we
ogaiii experionce witl~ tile system. it becomes clear how to structure these commands into
Phriltses; thus tile decvelopment of a proof language begins. At the same time, It Is
worthwhile to task whether the production of both the microcode and the proof of its
correctness can share any tools. The answer must be Iyes," but we have not yet
consideoredI anIy specific implementation.

Althowii wIC Wi.';h our system to be as general and as useful as possible, our present
ciesijni hori.-wns enocloy the following limitations:

- The purpose of tile microcode mujst lbe to implement the instruction set of a
copinl)tIr. This restriction is Intended to limit the difficulty of specifying
the ititend(ed behavior of the microcode. With this restriction, we rule out
microcode that is just arbitrary lower level code to implement, say,
operatinq~ systems, signal processing algorithms, device controllers, etc.
7his ret riction is not really fundamental to our work and, as we shall see,
don2(s not qluite guarantee that vie ahall always have a straightforward way
to upecify thle intended behavior of tile machine.

- Since wo cia not yet have sufficient tools to represent or reason about
concurrency or time-dependent behavior, we demand that our microcode be
written for a sequential machine and that It Implement the Instruction set of
a sV(1tuentiauI malchineG.

- We ii-itend that thle result Of this researcii be a demonstrablea system with
the roal possibility that someone other than ourselves should be able to
formuelate a task and carry it out. We do not intend, however, that the
system ho0 officient, comlpletculy robust, smoothly huma n-engineered, or
tliorutailiy docuim(ntecj. Usorrs of ilia system should understand the state
of developmeont. Their SUCcess rau will be higher If they communicate with
us l)Cfore and during any experimentation.

It, addition to thle caveats above, the system we are building is not yet ready for

relvas,

Carryingj out a complete proof may be fairly tedious. Preparation of the formal

descri)tions often appears to be a straighforward task of encoding the information in the

manuals that accompany the machine, but we have noticed that many important details

arts ofteit omitted from such documents, and others are misdocumented. Programmers

d(v~loipin(i the microcode come to understand these details and use their knowledge to

write or deIbig their code. If the person writing the formal description is not similarly

stevl)od(in the culture of the machine under consideration, a similar learning period will

be ro(qiiroJ.

Writiuri thin proof may be tedious, for three reasons. First, a complete understanding of

tho codi, is nvcessary. The programmer understands the code; the person responsible

for verificationi may not. A period of study may be necessary before any of the proof

cil be writtoti. Of course, if the programmer were also responsible for preparation of

tho proof, then the verification would proceed all the faster. Unfortunately, with

ver(:fition still in the research phase, programmers who build "real" programs are far

too b)uny to -.pond the extra time required for verification. Also, since verification

r.quiros some' .special knowledge, production programmers may not be skilled in the art of

)roparing formal descriptions and proofs.

iho ;ocond difliculty is that the codo my be relatively complicated to verify. At the

bor inni g we hisisted that it should be possible to verify code even if it were written

without ktiowledge that it would be subjected to verification. (We're assuming, of

cours-, that the code does indeed work!) However, it is equally clear that there are

majiy stratirlics for writing code and that some of them may be equally good from the

programmer's point of view but require very different levels of effort in verification.

The third difficulty is that proofs may be tediously long. We have said that the user

must drive the verification system wilthl a proof and that the verification system must

proceed so as to give the user a clear idea of what the system is doing. However, a

trivial way to build such a system is to make it extremely simple, with the result that

Yroofs will be extremely long and require the user to spend a long time preparing them.

In the extreme, this is not permissible; It Is necessary to build the system with enough

kiuwwledgo so the "straightforward" deductions are carried out automatically. There Is
f

no possibility that any system can know a "maximum" of knowledge, for there will always

4

bo prolenu that cant bo provon withl a systom, but not proven automatically. At the
sanio tinin, thero is no limit to making a system smarter; we can always go beyond the
lprtviotis limits and(build a next systain that understands more than the last. Clear
nieasures of the smartness of one sytitem compared to another do not yet exist, but It Is
a qu1estion thiat is likely to gain attantion as various verification systems are used for
Jaruer at)(I harqor problems.

As we said earlier, we have restricted our interest to microcode that implements the
InstructionI set of some computer. The intention of this limitation is to make it easy to
specify 1110 ilkended behavior. Unfortunately, this restriction does not quite work. In the
dlescrip~tion of the host architecture, we have no difficulty in formalizing all aspects of

Conlcorn. oxceptinq, of course, timing ana! concurrency. We view the host machine as
ojperatinq on bitntrinrgs of finite longth. The operators for bitstrings are concatenation

and 5;eloctio,1. loijical op~erations, e.g., AND. OR and NOT, and the simple integer arithmetic
ovoratiow;-, At tho tiarqe(t level, howover, we have not been so fortunate. Bitstrings

rom.n~ tV'i ')cnnant datatype. and all of the bitstring operators are still required, but
new oporatioos exist that are not simply characterized by short descriptions. Floating
point .irithimllok is the most obvious and extensive area, but sorne machines have other
instructions wi;obehavior is qluite (hiffiCUlt to characterize in lerms of bitstrings. Edit
and format instructions provide many examples, as do instructions that find the

lowost-order or higher-order 1 bit.

The- rTSC cuoiptter is blessed with the usual comlpleniont of floating point instructions;

1mi(lo'd. it ovon has a floating point squarc root instruction. On' the grounds that avoiding
tho.:,o im-Atlc(hi1 WOiIIld triviali7o% tho rif fort and leave us an undetermined distance from
roili.-IIII il nyntn capable of verifying real microprograms for real machines, we decided

to tackle the floiitinq point arithmetic heaoc On.

We, divideod IIIh! spocifitcation of tho target miachine Into two levels. The first Is written In
the saino tonrms as the hiost machino description. It is restricted to simple bitstring
oporators. At this level, the simple target. mpachine instructions, e~g., load, store, Integer

add., juimp, otc., ure stated as succinclty as they will ever be stated and no further work
is requiired. The floating point instructiolls, however, look like short but complicated

alhlorithms that provide an explicit view of how the words are divided into a mantissa and

ex)onent, how Iormalization takes place, (:tc.

For these hstructions, we provide a higher level of specification that shows that the
ronsult of that aloorithmic specification has certain properties. This higher level of

sl)oCifiration reclijiros the introduction of the reals, and the properties are stated in
terms of tilt inteIrprectation of the floating point bitstrings as real numbers. For example,

the dclsired property of the square root instruction is that it computes the largest
floltinq poilit inimbcer whose square is tiot larger than the original number. (The notion of
"lar.iost floilinq point ilumbor" roluiros oven a little more; the granularity of the floating

I)01)t Itllb,,r'; ; ;l;o aln issue.)

In the work to date, we have written a complete specification of the FTSC at both the

ho.it ,11d altlortl mic targot level, but wo have not defined the properties required of the
NIoutinci i)oiit ingstructions except for the square root Instruction. We have focused on
tw s!;Itiirn root instruction simply becauso it seemed to expose all of the issues likely to

como il) iity othor instruction.

1l hi,;i pl.i for vorifyingl the correctn(u.is of the microcode thus has two parts. One

part is to vrify that the microcodo running on the host machine Implements the
al horlrhmi: tirgot Iv;l. The second part Is to verify that the algorithmic target level

has the additional properities desired.

At th, pre;.,;nt time, we have comfletod tncr proof that the algorithmic target description

of tho st;iarv root instruction has the desired property. We have not yet proven similar

proportio; for other instructions, nor have we proven the correspondence between the
host miichiiiu: and the target instruction set, for the FTSC. We have, however, created a

• ,'lh, fictitious machine and carried out a complete proof of the correctness of Its

*.i;ro(:ode. This small machine is called the TOY machine. Both of these proofs are

documented ill chapter four.

Comlition of proofs is one measure of progress, but there Is much that precedes the

ability to carry out proofs. A sound theoretical basis must exist or be developed and a

functioning proof system must be developed. These activities have consumed the

... .. i.. .

majority of our time and resources.

In chapter two, wo cliscw;s the thlooratical basis for our proof system and Introduce the

i illrlaqo wo tiso for expressinj the buhavior of machines and the properties Of

)ro(r tmi;. In chaptor three, we oullino the structure of the proof system and give

d:tail, for sulucted components.

711s work. is still in progress. The details of language, structure and capabilities are all

Io .vii;.

NAM

2. LANGUAGE AND THEORY

In this chapter we discuss the formal basi.a of and the language we have chosen for both

encoding our descriptions of machines and reasoning about the course of computations.

Internally, our notation Is chosen for its precision and ease of processing, qualities that

contrast with the desire for compactness and richness in the languages read and written

by humans. Both levels exist, and there must be translation between them. As often

happens. subtle and important issues emerge in the translation. At IBM, the difficulties of

usinci two levils of language hove been avoided by designing a special-purpose

lan)ir1#ge that is both computationolly tractable and not too unwieldy for humans. That

hilnlr(Iao is documentod in [Joyner at al. 78].

2.1 ISPS

To rup r';o'It the host and target machinois, we have chosen to use the ISPS language.

I. S. ; (hariv.tivo of Boll and Nowoll's ISP language [Bell and Newell 71], Is now in

nlIo(le;.-t imc by a niumbor of organizations. Documentation of the current version is given

in [Ilarbiicci ;t al. 77]; the examples in chapter four are written in ISPS.

Vu.scriptions of machines have been written In ISPS for a numbcer of different purposes,

includion simisuation, architecture evaluation, documentation, computer-aided design, and

(in variants ilf ISPS) automatic generation of code generators and assemblers. This

variety of activity associated with the languoge is useful in two ways. On the one hand,

thu ii:;c hy largo numbors of people improvos tih possibility that a standard will emerge,

tltit documunittion of computors will be more accurate and more complete, and that the

ta:.k of)rup.iinrJ formal descriptions of the host and target levels of a microprogrammed

inu:chinn will bo carried out by the machine dosigners Instead of by the verification group.

On the other hand, tile wide variety of applications using ISPS, each with Its own

software to process ISPS descriptions, has tended to expose the lack of a precise

semantics for the language. As an expoiment to gain some leverage on the semantics

of ISPS, Pate Alfvin developed a denotational semantic definition of AMDL, an abstract

syntax version of ISPS in use at ISI [Alfvir 79].

9

p\

As we mentioned in the overview, while it may look simple to encode the details of a
111achinO's instruction sat in ISPS, it may be tedious in actuality. In the case of the FTSC,
a , achinle undor development and redesigns, a number of small but important details were
oitlhcer 11cdoclunmnted or misdocumontod. We developed simulation tools to execute the

dobcriptioij., wL wrote and used the simulations to execute the diagnostics for the

li1'chine at both the host and target levels. In essence, this amounted to a "verification

by tcstiill" l)proach; since the microcode Itself was used In some of these tests, It is
roa =;onl(o to ask if we perturbed the description of the machine In order to make the

cotle work. Stated another way, how do we know that the descriptlo,i of the host
machin is an accurate representation of how the hardware really works, and how do we

know that tho description of the target muchine is an accurate representation of how
the targeut machino is supposed to work? There can be no completely satisfactory
answers to thoso questions. The descriptions at both levels must be accepted; they

cannot he chocked in any rigorous sense within the confines of the microcode

verification p)ara(lignm. If there exists another description at a higher or lower level, then

the corresl)ondinJ descriptions may be checked against it. However, this meroy pushes
the problei m off one level, and there is no ultimate exemption from a requirement to
accept the bottom level description as the way the machine actually works and the top

level description as the way the system is supposed to work.

Complete assurance having been denied us, we can ask what lesser assurance Is
available. By using a language understood by a number of people (in particular by the
desi(Iners of the machine, the microprogrammers of the machine* and the programmers at

th a.ss mly lanr(Mago level) we can have some hope that they all share the same
un(er.standi j of the machine if they were to depend upon the same descriptions as

th.ir roforenco. This is not yet the case for any machine with any description system,
but we so no reason wly it coulo not be. In the course of writing the formal

clescril)tions, the "outsider', may find himself In a question and answer dialogue with the
machime desigfners, in order to clarify the Informal descriptions. See the appendices for

al oxaml)lo of our dialogue with the d(isigtiers of the FTSC.

To complute our discussion of ISPS, wI, again mention that ISPS does not provide

10

)rimitives for representing floating point operations; we have had to code them in ISPS
as small algorithms. Since the lack of standard notions and designs of floating point
aritlhnetic is a common problem, the choic, of another language would not have Improved

matters.

2.2 STATE DELTAS

In ordor to hild a proof system, a formal basis for reasoning about machines is required.
Ordinary first-order predicate calculus is often used as a foundation, but it provides no
machinery for reasoning about time or situations that change with time.

Uiioro ..o il y possible solutions. Ours has been the development of an extension to
the first-order predicate calculus by tha addition of sentences called state deltas.
Staite doltas wore first introduced in (Crocker 77). For a more formal treatment see
(M ircts 79]. To motivate the dovelopmont of state deltas, we give the observations
alld d.ciioni; tliat rul)l)ort our formul,ition.

It is n pii.ilk to think in theareticaJ terms that a computer can be
characteriz,:d by a transition function that maps state vectors into state
vectors. Given an initial state vcctor and a statement of the transition
function. ordinary matheninticcl lools will provide the machinery forre.soio)in(g about successive states of the machine. However, direct use of
this tproach becomes unwieldy for even the simplest example.

- Ono of the first difficulties Is the description of the state vector. It Is
cliglo iicnnivonlinnt to think of the state vector as a single domain. For all
rval m;iclihins, the state vector is a messy patchwork of various domains.
Each of the storagle locations in the machine is a piece of the state vector.
The prit ry memory is porhalps the most regular component, but there are
m.iiy oilter components. Also, it mcy be desirable to subdivide the memory
into ,smaller pieces. To deal witih this, we use the usual programming
practice of assigning names to diflorent places. A place is essentially a
cnmpluMnnt of the state vector. Given the list of places that comprise the
stote vector, we will not actually need to symbolize the state vector as a
sincile object. We will not oven need to know exactly how the components
coml)rise the state vector, e.g.. it is not necessary to know if the state
vector is represented as a tuple or whether the program counter is, say,
tile first or second element of that tuplb.

- The precise granularity of time is not really of interest. We do not care

11

___ll-

whothor a particular comp~utation takes one or two time steps. Instead, we
care that certain states follow one another eventually. Accordingly, we
avoid dcncribing- Individual transiticns and describe thc cffcct of multiple
transitions instead. The rezutt is quite similar to Manna and Waldinger's
intermnittent assertion idea (Maia & Waldinger 78), which is derived from
LBurstaill's paper [Burstall 74]. Wc make use of a precondition and a
Postcondition, wid our state delta etwodes the Idea that

if the procomdition holds at some point in time,

theni tlwre will be a latur tillw at whichl tile postconciition holds.

While it mi1Hjllt bo p)ossile to stato the behavior of a machine In a single
sw~ifl oto, it wouldl ho quiite uiiwielily. Wo mako use of a collection of stato
lla,- to spiecify the behavior (if a machine. Each state delta defines tile

boluivior of thu machint? in only particular circumstances. Of course, It Is
not iiecossary to covcr all possible circumstances; It is perfectly
roea!;oniile to leave the behavior of the machine undefined in some cases.

-Mos;t of the components of the state vector are unchanged at each step.
Aniy straiqhltforward description of the transition function would be
don11iiiiited by simple statements of equality between large sections of the
old miid ncow states. To reduce this burden, our formalism encodes the
a%Un5timtoI that all of the state remains unchanged except for a list of
placvs inl the state vector expli.iitl'i named. Accordingly, a'state delta has
a modlification list. The semantics of a state delta includes

if the lproconiditiciil holds at some point in time,

thon there will come a time ait which the new state Is the same
mithe prosent state ttxcep~t possibly for the values in the

plaJces listed in the modilication list, and

at that time the postcondition will also hold.

-Even with the implicit assumption tl,.at most of tile state remains unchanged
from one state to another, it may De necessary to Include many details In
tho p'recondition. Ouite often the precondition includes the requirement
that mutch of the present state -s identical to a particular prior state. This

introtiucos a third time into the formnalism. We have encoded this conditionI
with atnther list of places, calicid the environment liet. The semantics of
state dulta ao now statod as

if the contents of the places Ilistd In the environment list are

the same at some1 time t I as theoy were at an earlier time to, and

12

if the precondition is true at time t ,

then there will be a later time t 2 in which the new state Is the

same as the state at time t1 everywhere except possibly at the

)laces listed in the modification list, and

the postcondition will also hold.

- To simplify our bookkeeping about times and states, we organize all of our
thou(qlts in terms of a current time. In the formulation above, we anchor t O

to the current time. We can restate the formulation as

if at some future time t 1 all of the values in the places listed in

the environment list are tho saio as they are now, and

if the precondition holds at that time,

then there will come a timni t 2 whose values are the same as at

time t 1 everywhere except possibly in the places list in the

modification list, and

Lht: p sitcoll)(ition will hold.

Whilh thi; formulation is quite clos3 to what we need to support efficient
rc.I'n1Iinrl about places and stat.s, the requirements imposed by the
modification and environment lints are more difficult than they look. As

statvl. it is permitted that the values inside the environment list and

outs-ido the modification may change in the interim, as long as they are
restored at the end of the Interval. We have found It more useful to

tirliht.n this requirement so that the values that must be the saine at the
iids of thv tim inter ,als are in fact never changed during the intervals.

It t111gl.s out that tightening the restriction of the environment and

modificationi lists does not ro;movo any essential power. On the contrary,

thin t;w version allows the restricted uso of the modal operator "during" to

form ,;I:ntLnccs which are not expressible using only pro- and

p)o'.tcfl(blisls. Our formulation Is now

if the values listed in the environment list remain unchanged from

now until some future time, and

if the)rocondition also holds Lt that time,

then at the end of some succeeding iime interval during which at

most only the values listed in the modification list will have

changed, and

13

the postcondition will hold.

Noto that thnro is no requirement that values that are unchanged from now

until the precondition becomes true remain unchanged when the

iportcondition becomes true. In other words, it is possible that the same

plactl may be listed in both the environment and modification lists. Later,

we will see til use and effect of such an intersection.

The syntactical form of a state delta is

(50 (pr:o P)
(fmod: Ml)

(env: E)
(Ipot: 0))

whoire P uiI'l i0 are ui.jally first ordar soitancos In some language, but may in fact be

stt dolt.,vi thomsolves, and M is a list of places, as Is E. See Chapter 4 for additional

(oX.11hip.s of state deltas.

Note tha.t thu logical implication P implies 0 (in a given state) Is equivalent to the state

delta

(5D (pre: P)
(mod:)
(env: OMiEGA)
(post: 0))

beinq true in that state, where OMEGA i: a list of all places, or equivalently a single

state "containing" all others.

Also note that one state delta may be derived from two others by a kind of case

analyy';is.

If

i$3 lpre: P AND P')

(mod: MI)
(env: El
(posts 0))

and
(so (pre: P AND INOT F"))

(mod: M)
(enva E)
(posts 0))

L 14

hold ill a cc'rtiiin state, than

(SO (pre: P)
F (naod: Mi)

(env: E)
(post: 0))

ho1h; in theat state.

An imporlieg tool is the "dot" operator ,R, which when applied to a place R (for

"lor.i;;tor") represents the value or contents of that place. Thus a state change entails
a redefinition of dot, not a reinterpretation of the place itself.

When (lot is used in a state delta it always refers to the contents at the time of the
precondition. In order to reference the contents of a place at the time of the
postconditioll, the symbol # is used. For example,

(SD (pre: .A GTR 0)

(mad: R)
(,'nv:)
(po'"A: R-.R-1))

natovie. that il the vale of R is greater than 0, then at some later time the new value will
lie oi l ? leisi (ind nothing changod alongu tho way except for R).

Ihero iz; ,in tl xamplo of deriving one state delta from another by a form of Induction:
A.;sumo tho contents of places are nonnegative integers. If

(SD (pre: P(.R) AND .R GTR 0)~(m Od: ii)
(env: E)
(pocot: P(UR) AND .R GIR #R))

lolh.; ill a. c,rlain Cstillo, and in1 adcitioni if M and E represent disjoint sets of places, then

(51 (pret P(.R) AND .R GTR 0)
(1110d: Mi)
(env- E)
(Jpolts P(Q)

ho(idin i that state.

It i, obviou:; how u11l inlput-output specific atlon can be stated uuIng state deltas. In the

ncxt sections we shall explain how a simulation relation between two programs can be
proved using state deltas.

15

I-Or Ilow It 'is Point Out how a set of state deltas can be viewed as a program. Assume
that we ar (qiven a set of state delta:, ordered in some way, and an "initial" state. The
first state delta (according to the above ordering) whose precondition Is true in the
ctirrent stat: iniy I)o "applied", tllus transforming the state into that specified by the

po0trcjgiitio1 (jinl(I the modification list). Actually the term "state" should perhaps be
r p)i.ce(d by ".;et of states" since we do not demand that the postcondition completely

doctrmino. the stat; for example, the actual values of some places may not be

ci,,trmilld, Iijt rath:r &ome propertius of these values are known. The components

(n'o,,i€:'0:.f) vI thu old state which were d pendont on, or "supported by", places In the
modlific:,tion list are removed from thle stato, and the list of sentences In the

po,;tcoiiiticn are addd to the remaining santencos.

Now Ili, lproc:oss is rupcatod in th=u now state. This process is called symbolic

It 1.; al,;ot po .. bhh to viuw a somewhat arbitrary program as a set of state deltas, or to

trai i:dlto ,'r(Irau into state deltas, as is discussed In Section 2.4.

2.3 SINiULATo;iO

A.; itatod in the: overview, the process of microcode verification can be divided Into two

l)ir.;: the first showing that the Host Machine implements the Target Machine, the
second !;%howhjrI thiit tho Target Machine natisfies the Top Level Specification. We shall

now discti.s tll (first of these parts.

Lot u'; thiaik on the level of abstraction where both the host and microcode and the
tlarnet may 19e considorecl as programs A, A . Intuitively, A1 simulates A2 if A can "do"

anythinq A, c,-in; that is, the state changes due to A are reflected In the state changes
- 2

that AI caweus. The state changos for AI and A2 separately are computed using the

sym|holic execution of the provious suction. To prove that AI (symbolically) simulates A2

w, nved to estahlish a corrospondence, between the states o1 A and those of A such
12

thla;t (liven two corresponding states, 1;2 (for A 2) and S (for A), if S 2' is the next state

after S, nrrived nt by executing A2 , then the (a) state SI' corresponding to $2 can be

arrivild at by nxocuting A1 from S, (though S,' need not be the very next state after S).

18

In the sy.stom imlwomontation, a state is spsecified (as In the precondition or postcondition

of it ntate delta) by a list of first order sentences and SDs, and the correspondence

botwovin states is specified by a function called MAPPING. Again, recall that "state" as
usod here is niot necessarily a complete description. Thus MAPPING Is actually a

corr!nlondi ieI bloweell sots of comipleto states.

2.4 TRANSLATIOUJ 0F ISPS 1ITO SDS

ISPS in ia relhatively well known languagle suitable for machine descriptions. We will see

thait SD notation is suitable for rep~resenting Intermediate proof steps, performing

symbolic exectlion, and1 utilizing the efficiency of the modification list. in order to retain

the idvantaqc(Je of ISPS as anl input lancluaqje and SDs as an internal notation, we need to

trainslt(! ISPS descriptions into SDs.

If we hivent a place to represent the internal control state of a machine and we Aq-ign a

sylhliiC Viue to the control place for each statement in an ISPS program, the

prfram~ couild be representedl with a sot of SDs, where each SD represents a possible
state clhanule. References to control statos could be made by including predicates of
tho formi VC=lIal)(?l in the precondition and postconciition (PC represents the internal

conitrol sta16 "proqrfim counter"; Iaot" represents the control value). Representing all

tle(;tato cliaiifwes with SIs has two drawbacks: the thread of control that is Implicit in

lteo ISPS representation is lost. and is encoded explicitly into the precondition and

l)o:;IColditifll. the SD niotation is differciit from the familiar ISFIS (and somewhat more

compl, i cated(i).

Nezted State Deltas

1lui srhomeu wo are uising is motivated by the need to model the control mechanism Inside

a nuwi~iii. Ini anl earlier formulation, we modelled the control mechanism as a single

v.Iri.iilOw tha ook uet exp~licit values. [:Cci~ precondition and lpostcorndltlon mentioned the

valu, e., Microl3CzA3 12, and this conitrol place was also mentioned In the modification

li.st of evory stD. It did not, of course, occur In tho environmpnt list. Since the names of

the control state valieo wore completely artificial and the explicit appearance In the

p~re- and postconclitions Of these equations was very cumbersome, we revised the

17

formutilation to .n entirely equivalent scheme that simply made implicit use of the value of

contlrol WIacl'. The only propnrty of the control plce we cared about is that it made

s.m)mII. procondition tr(uo. By embedding the next SD In the postcondItion of the current

SI). the next SD is automatically made valid when the current SD is applied

('exe . t l"). Of course, its validity disappears when the control place is changed, so it

in n u:s(..ry thaft the name of the control place appear in the environment list of the

now SD. Thi; is what gives rise to the appearance of the same control place in both the

:jiviroommIelt ad1(modificatioii lists. Of course, there are some SDs that will not have the

coitrol Il;aco iln th mivironniont list. The tol)s of loops need to be around forever, and

wo mw.;t rorsirt to using names for the values of the control place at those points. SDs

thatf exit fromi blocks will not generally have SDs in their postconditions; Instead they will

at relhvilmt values of the control Iplaco.

lw..lvoil of (le!.rrihinlg a program by a set of SDs (one for each possible state change) we

couil h,il, it with one SD that represents the first state change and has a nested

SI) tihat rproscols the rest of tWo program in its postcondition. During symbolic

oxiecuiul, tle process of applyinI an SD is repeated. The following happens for each SD

il)pliCritiol: the a)propriate state channge is made; the nested SD that represents the

re;t of tle. prograin is added to the current state; and the SD just applied Is removed

from the ciorrenit state if it is supported by the (modified) control place.

Tho TR Notation

lie tine of the TR notation Is a further compression of the translation from ISPS to SDs.

We noticed that it was unnecessary to translate an ISPS description entirely Into SDs

atid th n woik with the SDs. Instead, we embedded the translation process In the

operation of the proof system and carried out just one step of the translation at a time.

II) essenice, we now encodo the value of the control place as a formula that tells what to

do next. That formula is basically ISPS coode, with embellishments to tell us where we

arn in th codo and to keep track of the environment established by ISPS scope rules.

To iml)rovo the cumbersome notation cuf nested SDs to represent the tall of a program,

we (lefined a function called TR that maps an ISPS description Into an SD or a set of

SD:;. We distinjuish between ISPS doscri;)tions whose first statement is an assignment

18

stateeonit miid thoso who start with a control change (conditional or unconditional). In
caso of ail assijnment, the TR maps an ISPS program Into an SD whose precondition is
emlpty; th modlist incliados a control place (MicroPC) and the name of the register that
i. iinrj 6619as, Ind to; the onvlist Includes only MicroPC; the postcondition includes the
(!ff!ct of the assiglnment and a TR whose parameter Is the tall of the ISPS program. In
cle of a control change, the TR maps an ISPS program into a set of SDs. For each SD,
th; precomfitio ii icludes the condition that leads to the control change, the modlist and
onvli-;t include MicroPC, and the postcondition includes a TR with the corresponding rest
of tM ISPS program. The symbolic execution using TRs is very similar to nested SDs,
oxcept that the rest of the program is represented as a TR applied to an ISPS

descriptioii.

Msarking ISPS Programs

The t.st of SDs that represents an ISPS program is not unique. We saw that it ranges
from imn SD for each ISPS statement to a singlo SD for the whole program. It depends on
the "lranuilarity" that the ISPS description is intended to be broken into. This granularity

is .si)(.ifiod I)y special markings of the ISPS description: Every SD that is part of the
d';.riptioi of a marked ISPS program mu,;t cover a path of execution between two

ni trki11 s.

A control stale of an ISPS description is a labol or a procedure-entry (that specifies the
"r.';t of thn I)rojram"). A marking Is a special kind of control state. The minimum set of
mnarkin rjs nedcr'?d to specify simulation ara the entries and exit:s of all the procedures.
Markings cold)e added In order to allow more SDs (i.e., a finer granularity). They should

bt: ,dded to broak all the loops, for simplicity. Marking should also be added in order to
avoid coveringi the same execution path by more than one SD, for efficiency.

The Translation Process

A markinri M is a "successor" of M If M belonls to the set of markings that can be
rn.nche.d I)y symbolic Oxocution from M without visiting any other marking. The translation

lriorithm goneratos one SD for each path of execution between two succeeding

niarkin(ls that are reachable from the Initial one. The number of SDs generated is
cotormii(;d iby tie granularity (i.e., the number of markings). When showing simulation, we

19

will usually uise a very fine granularity for the lower level machine (the Host) and a
coarser one for the Target. The TR function Is used for performing the symbolic
execution.

I or simp~licity we will refer in this paragraph~ to the translation of the target machine. The
con~trol placo for the target machine is MacroPC.

Thot folloWinqt information is accumulated during the symbolic execution for generating
eadch SO: all the "path conditions" that have to be true in order to reach a successor;
the lint of p~laces that are modified duringl execution; the new symbolic state. The new
SD covers the path of execution between A marking and its successor, and includes the
following: inl the precondition the accumiulated path condition and .MacroPC z11initial label";
ill tho modJlli;t tho accumulated modified placos and MacroPC; the enviist Is empty; In the
Ipo.tcondiduo, the aiccumulated symbolic stato and .MacroPCzlabel. A concrete example
of lraivdiitoii uf anl ISPS programn is shown In a subsoquent chapter.

20

2.5 THE SYSTEM -- OVERVIEW

Tho syst'm is described in detail In Appendix A. Here we just describe enough to serve
as ba.ckground for the next chapter. For any additional Information, see Appendix A.

TIM MICltOViI1 system consists of the following components: User Interface, ISPS
Tr.n; ator (Nescrilied in the previous section), Kernel, Data Base, Place System, and
Simplifier. The User Interface, with the help of the ISPS Translator, converts the user's

ilpht to " swqitence of basic proofstops. The Kernel processes the proofsteps with the

hl of thL; Data Base, Place System, and Simplifier. The Data Base keeps track of the

current state, the Place System keeps Interdependencies among places, and the

Simplifier .implifies expressions in the current state.

The Datit l3e contains facts which may change as the state changes through symbolic

exectition. s.iiy. Thus it contains facts relating to the contents of places (these facts do

not ul cr-s;irily uniquely determine thoz;e c:ontents, e.g., contents of A greater than 0), or

relaiting to s"ome arithmetical variables like induction variables.

Ti1v Pluce System holds "permanent" facts about places, for example which places are

sublaces of other places. This is the "Covering" relationship:

(Covering A ((11 L1) ... (Bn Ln)))

moans A is i place with disjoint subplaces 01 of length L1, ..., Bn of length Ln.

1ho MICROVW:fl system as a whole caln Ie thought of as performing deductions involving

(lyI,3miC 'taitomo,)Itr. (state dnltas). *rho Simplifier is the component performing static

(l .ductiol,5. Thus tie simplifier contains procedures for simplifying expressions In a

ciivii stato. If the expression is a sentence (e.g., predicate), and the simplified result is

T, then that soenonce is true in the given =stto,

21

3. EXPERIENCE AND EXAMPLES

The bulk of our work has used examples taken from the FTSC. As we outlined In the

overview, we have divided the FTSC target description Into two levels. One level

provides an algorithmic description for the instructions. For the simple instructions, e.g.,

load, store, and Integer arithmetic instructions, this level of description Is easy to read

and requires no further refinement. However, for the floating point instructions, an

algorithmic description of the effect of an Instruction Is nearly opaque and is useful only

to a specialist who needs to track down the detailed results for particular cases. For

these Instructions, we need to prove that the results guaranteed by the algorithmic

description may be understood in terms of some simply stated properties. The square

root Instruction Is the most Interesting example In this area, and we have focused most

of our attention on proving just the simple property that the effect of the square root
instruction as described by the algorithmic description does indeed compute the largest

floating point number whose square is not greater than the original number. We felt this

example would expose the hardest issues first and provide some chance that the rest of

the proof would be comparatively easy. We have not yet determined whether this

strategy will be successful.

At the same time, we have been concerned that the mechanics of carrying out a

complete proof should be well understood. Accordingly, we have hedged our bets a bit

and constructed a very small fictitious example of a microcoded machine, written the
microcode to Implement a simple Instruction set for that machine, and prepared a

complete proof. We call the machine the "TOY" machine.

This chapter details the proofs for both of these examples. To give the flavor of a

complete proof, we present the TOY machine first.

3.1 THE TOY MACHINE

The TOY machine Is a simple microprogrommed machine. We have provided a formal

description of Its target instruction sat and of its host architecture, We have written

the microcode for the host level that Implements the target Instruction set, and we have

specified the states In the host and target levels that correspond to each other. Finally,

23
fRSiUDZNG ?AM BAJL-NOT 1UJIM

we have written a set of commands for the proofchecker to guide it toward proving that
when the microcode runs on the host machine, it correctly implements the target
Instruction set. For a problem this simple, the commands to the proofchecker are entirely
devoted to setting up the proof. The actual details are carried out completely

automatically.

The TARGET Machine

in order to keep this experiment simple, but still deal with a realistic machine, we

designed the TARGET machine according to the following requirements:

- 4K-word 18-bit memory

- a 12-bit program counter, a 16-bit accumulator, and a l 8-bit instruct
register

- infinite indirect addressing

- six possible operations: add, subtract, store, load, skip or negative, jump.

We decided on the following word format:

IS -13 12 11 0e.........---...--................----------------------I I I I
I opCoDE IIN IA II I I I

TOY starts operating by fetching the Instruction from location I In memory. It proceeds

by repeating the cycle of execution and fetching.

Fetching is performed as follows: the machine loads the Instruction register from the
memory location that the program counter points to; while the Indirect bit Is set, the 13

.least significant bits of the Instruction register are overwritten by the contents of the
memory location that the effective address (EA) points to; then the program counter Is

Incremented.

The execution performs one of the following operations according to the 3-bit opcode:

24

add MEM[EA] to the accumulator; subtract MEM[EA] from the accumulator; load the

accumulator with MEM(EA]; store the contents of the accumulator in MEM[EA]; skip the
next operation If the most significant bit of the accumulator Is one (negative
accumulate); Jump to EA.

The precise ISPS description of the TARGET machine was written according to the
English description and is shown In Figure 3-1. The ISPS program Is divided Into the
following declarations: the memory; the registers; the fetching algorithm; the execution

algorithm; the main cycle.

The markings we selected in the TARGET machine are the labels MAIN, XFETCH, FLOOP,
and EXEC. The paths that the algorithm found were one from MAIN to FETCH, one from
FETCH to FLOOP, one from FLOOP to FLOOP, one from FLOOP to EXEC, nine from EXEC to

FETCH.

MacroPC Is a dummy place that holds the control state (the label) and TinvReg covers
the internal registers. The complete set of SOs that the ISPS to SD algorithm found Is
shown In Figure 3-2. Let us look closer, for example, at the third SD: it describes the
path from FLOOP to EXEC which is denoted by .MacroPCzFLOOP In the pre: and
#MscroPC=EXEC In the post:. The pre: also includes .IR(12>zO, which is the precondition
for taking this particular path. The post: includes also the new value of PC, .PC+I.

The HOST Machine and the Microcode

The HOST machine Is the actual hardware that Implements the TOY machine. Because
the goal of this experiment Is microprogram verification, we chose a microprogrammed
HOST. The HOST machine was somewhat tailored to the TARGET, for simplicity, but still
much generality and extendability were maintained. The description of the HOST machine
explicates all the details of registers, combination circuits, and data paths.

We decided to keep the microprogram In a 64-word 21-bit ROM. ROM words contain
21 -bit microinstructions with the following format:

25

TARGET :mBEGIN
M*Iemory *

IlEf (0:4kJ 41:0>

ird Registers **
PCc11:13>, 1 program counter
ACC<15:8>, ! accumulator
IRc1S:8>. 1 instruction register
OPCODE<2:8> :- IR<lS:13>, 1 operation code
EA<11:e1 :- IRc11:0> 1 effective address

*fe Instruction.Fetching *
XFETCH := BEGIN

IR -, IIEIIPCI NEXT
FLOOP1 :- REPEAT

FLOOP :w DECODE IRcl2> ->
BEGIN
8 : LEAVE FLOOPI,
1 aIRc12:11> 4- MEMIEAJ
END

NEXT PC '- PC + 1
END

swe Instruction.Execution *
EXEC :-BEGIN

DECODE DPCODE ->
BEGIN
8\ADD : ACC ACC + IIEMEEA).
1\SUB :.ACC -ACC - MEIICEAJ,
2\STR :-MEMIEAI -1 ACC,
3\OAD :uACC *- rIEM(EAI,
4\SKPN imIF ACC<1' a> PC i-PC +. 1,
S\JMP aPC .. EA.
6 imNO.OP 0
7 imNO.OP (
END

END

Execution.Cycle s
CYCLE IMAINI :- BEGIN

PC*.1 NEXT I program counter init
REPEAT

BEGI N
XFETCH() NEXT I call fetch algorithm
EXECI) I call execution algorithm
END

END
END

Figure 3-1: IBPS description of the TARGET machine

26

((SO (pro: (.MacroPC)-MrAIN)
(mod: TlnvRog MacroPC PC)
(env:)
(post: MacroPC*XFETCH #PC.1 (12)))

(SO (pre: (.IacroPC).XFETCH)
(mod: TjnvReg MacroPC IR)
(env:)
(post: #MacroPC.FLOOP #IR.w(OT (WORDS tiEl .PC .PC]

(SO (pre: (.MacroPC).FLOOP
(NZEROP (USEOL (DOT (BITS JR 121))

91)
(mod: TlnvRog tlacroPC PC)
(eny:)
(post: #ttacroPC.EXEC NWC.(BITPLUS .PC 1(12)

(SO (pre: (.MacroPC).EXEC
(NZEROP (USEOL (DOT (BITS IR (PAIR 15 13))

(mod: TlnvReg rlacroPC ACC)
(env:)
(posts MacroPC=XFETCH NACC. (BI TPLUS

.ACC
(DOT (WORDS MEtI (USSUB *IR 11 01

(USSUB JIR 11 a)
ISD (pre: (.MacroPC).EXEC

(NZEROP (USEOL (DOT (BITS IR (PAIR 16 13))
M)

(mod: TlnvReg MacroPC ACC)
(eny:)
(post: MlacroPC.XFETCH #ACC. (BI TPLUS

.ACC
(BITIIINUS (DOT (WORDS tiEt

(USSUB JIR 11 8)
(USSUIB .*IR 119]1

(SO (pro: (.flacroPC)EXEC
(NZEROP (USEOL (DOT (BITS JR (PAIR 15 13))'

2))
(mod: TlnvReg flacroPC

(ev)(WORDS MEM (DOT (BITS IR (PAIR 11 9]

(Post: MacroPCwXFETCH #(WOS MEM
(USSUB *JR 11 8)

(USSUB JIR 11 8))-(.ACC)))
(SD (pro: (.MacroPC).EXEC

(NZEROP (USEOL (DOT (BITS IR (PAIR 15 13))
3))

(mod: TlnvReg MacroPC ACC)
(env:)
(post: MacroPCuXFETCH #ACC.(DOT (WORDS MEM

(USSUB JIR 11 8)
(USSUB *IR 11 a]i

Figure 3-2: The SD description of the TARGET

27

(SO (pro:t (.IlacroCJ.EXEC
(NZEROP (USEOIL (DOT (BITS JR (PAIR 15 13))

4))
(NZEROP (DOT (BITS ACC 151

(mod: TlnvRog IlacroC PK)
(env:)
(post: MacroPCwXFETCH #C.(BITPLUS .PC 1(12)

(SO (pre: (.tacroPC).EXEC
(NZEROP (LISEOL (DOT (BITS IR (PAIR 15 13))

4"
.u(NZEROP (DOT (BITS ACC 161

(mod: TlnvReg MscraPt)
(env:)
(pout: MacroPC.XFETCH))

(SO (pre:t (.IacroPC).EXEC
(NZEROP (IJSEOL IDOT (BITS JR (PAIR 16 13))

6))
(mod: TlnvReg MacroPC KC)
(env:)
(post: MacroPC.XFETCH #PC-(USSUOB IR 11 0))

(SO (pre: (.MacroPCI.EXEC
(NZEROP (USEOL (DOT (BITS JR (PAIR 15 13))

6))
(mod: TInvReg MacroPt)
(env:)
(pout: #llacroPC.XFETCH))

(SO (pre: (.facroPC).EXEC
(NZEROP (USEOL (DOT (BITS JR (PAIR 16 13))

7))
(mod: TInvReg flacroPC)
(env:)
(pout: MacroPC.XFETCH))

(5D (pre.- (.MacroPC)-FLOOP
(NZEROP (USEOL (DOT (BITS IR 12))

1))
(mod: TlnvReg JlacroPC IR)
(env:)
(posts #IlacroPCeFLOOP #IR-(USCONC

(USSUB .IR 15 13)
(USSUB (DOT (WORDS MEM (USSUB I R 11 9)

(USSUB .111 11 6))
12 0)

Flours 2. (continued)

28

19 18 16 15 13 12 11 9 8 5 S 0

I I I I I I I I I I
I I UXI IALUI I ND LATC4 I NPC NNEXT I
I I I I I I I I I I
+ ------------ --------.------ ---------------------------------

The HOST machine (see schematic in Figure 3-3) includes the following: two memories,

STORE, and ROM; registers R1, R2, R3, MAD, MPC (microprogram counter) and MI

(microinstruction register); combinational circuits ALU, MO, and MUX; data paths; the

scanner. R1 holds the value from the ALU that receives Its value either from STORE or

from R1; R2 holds the value from R3 or increments its old value; R3 holds the value from

MD that receives its value from STORE or R3; MAD holds the value from MUX that

receives its value either from R2 or R3.

The HOST repeats the cycle of loading the microinstruction register from the location in

ROM that the microprogram counter points to; incrementing the microprogram counter; and

scanning the microinstruction and decoding a field at a time. The scanner sends signals

that establish data paths and latch values Into registers. It also receives values from

registers.

The precise ISPS description of the HOST machine is shown in Figure 3-4, and the

description of the ROM in Figure 3-5. The description of the HOST Includes the following

declarations: the memories; the registers; the combinational logic; and the execution

cycle that fetches and scans the IR. The microprogram Is specified as a set of

assignments to ROM. The comment In each assignment shows the microinstruction In a

mnemonic form: The nonzero fields of each microinstruction are separated by Q. The

mnemonics correspond to the ones in the DECODE statements In Figure 3-4. For example,

MUXR3@LMAD@ONINDQIO means that MUX a 3, ALU a 0, MD a 0, LATCH a 6, MPC a 2 and

MNEXT a 10.

The first phase of the proof converts the ISPS defcrlption of the HOST Into a single SO

whose post: field includes the complete representation of the HOST. This SO Is used in

29

MICIMOC VIRVICATMO

16
4

6 16

M -ECMD
21 64

ALU IMI
EXCALU

LM --

16 -- 16

sRi R3 j

T -L -xj-.

0 L -- - - - -153 ftULV- .
R KS DECODER 0

E 1

R2 -- INCR2

M EXECMUX 6

WRITE MPC

Figure 3-3: Schematic of the TOY Host

30

HOST :a BEGIN

mv Memoryj*
ROM(8: 63) <20: 8>
STORE Ce: 4k) <1S: 8>

** Registers v**
MPCcS:B,,. 1 micro program counter
M1<20:0>, ! micro instruction register
INEXT<5:8> to IIc5:8>, 1 next micra instruction
RIc15:B>, ! Accumulator
R2<11:0>. I Program Counter
R3<lS:9B>. 1 Instruct ion Register
MAD<11:11> ! memory address

** Combinational.Circuits frf
ALU<IS:S>. ! arithmetic. logic unit
IIUX'cll:0>, ! memory address multiplexer

MD<IS:B> memory data multiplexer

** Execution.Cycle f**
CYCLEIfIAINI :- BEGIN

REPEAT
BEGIN
MII ROCI(IPCJ NEXT
MPC M.- +p +1
NEXT
DECODE M1149:18> ->

BEGIN
9 to NO.OP 0
1 to NO.OP 0
2\IIUXR2 to flUX .R2<11:6>,

3\MUXR3 a.flX R341:0>
END NEXT

DECODE M1146:15>
BEGIN
8 to NO.OP 0
1\ALUNOP a.ALU STORE (CAW.
2\ALUADO : ALU .- R1 + STOREE(CAD],
3\ALUSUB a.ALU ~.RI - STORE (CAD)
END NEXT

DECODE M1143:12)>
BEGIN
0 to NO.OP 0
1 :- NO.OP(.
2\ALL to MO 4 STORE(MADJ,
W\OO t. MOD o R3415:13)- 9TOREECIAO 203uU

END NEXT

Figure 3-4: ISPS description of the HOST

31

DECODE MI1:8) .>
BEG IN
8 to NO.OP 0,
l\LRl to Ri ALU,

3\LR3 to R3 D.
4\INCR2 :a R2 * R2 + 1,
S\LJRJTE ton STOREUIADJ * Ri,
G\LM1AD to MAD -P. UX,
7\INIT to R2 #- 1
END NEXT

DECODE flI<8:6> .>
BEGIN
81 : a NO. OP 0 ,
1\ONPOS -- IF NOT Ri4cS> .> PPC MEXT,
2\ONIND to IF R3412, -> IPC #, NEXT,
3 to NO.OP 0,
4\NXT s. MPC o.MNEXT,
5 to NO.OP 0,
6 to NO.OP 0,
7\ONOP to I1PC *R3<15si3,
END

END
END

END

Figure 4. (continued)

82

ROMl:
BEG IN

**Memory we

ROil (:633 26: 6,>

**i Execution.Cycie *

CYCLEIIIAINI :-
BEG IN
ROtl(81 *. 201418 1 ALUADD*LR1eNXTe8
ROil 1) #8381418 1 ALUSUBeLR19NXTe8
ROfl[2) #8885418 1 I RTE@NXTe8
ROM133 #8101410 1 ALUNOPeLR1eNXTe8
ROM(41 #8088416 ! NXTe14
ROMI (5 #8802410 1 LR2.NXT*8
ROIG() 000410 NXTeS
ROMil71. #00004180 NXTe8
ROMl(81 .. #2886008 1 FETCH: MUiXR2LMAO
ROM1 9] #8823413 1 ALL.LR3*NXTell
ROM li)18 #0033088 ! AODeLR3
ROMl(11] #3806212 : FLOOP: IUXR3eLMADeONIND*10
ROMl(123 #0884088 1 EXEC: INCR2
ROMIU3J #8080788 1 ONOP*8
ROMl 141 #0800110 ; ONPOSe8
ROMIII - #0804418 ! INCR2eNXT*8
ROM1 (16] #8887418 1 INIT*NXT*8

NEXT EXEC := NO.OP I
END

END

Figure 3-6: The specification of the Microcode

33

the next section as the specification of the control state of the HOST In the mapping.

The ISPS description of the microcode is converted to SD notation too.

The current Implementation requires that the ISPS description of the HOST consist of a

single cycle, for reasons of simplicity. The HOST will Indeed usually be a single cycle

because It represents hardware. Minor Implementation changes will accommodate

arbitrary ISPS descriptions of the HOST.

The next section Introduces the mapping and the following section explains how the

symbolic simulation of the TARGET by the microprogrammed HOST machine is set up and

performed.

Relating the TARGET and the HOST

In order to show that one machine simulates another, a relation between the two must be

established. The relation addresses control issues and data Issues. The control part of

the relation specifies all the pairs of control states (in the TARGET and HOST,

respectively) that have the following properties: whenever a control state is reached in

one machine then the corresponding one is reached in the other machine. Two obvious

pairs are the pair of Initial states and the pair of final states. A necessary condition for

simulation (of terminating machines) is that corresponding Initial states always lead to

corresponding final states. The data part of the relation specifies the pairs of carriers

that should have the same contents whenever a pair of control states Is reached. This

data relation is celled a covering.

The control states In the TARGET machine to be mapped from or to were selected as the

set of all the markings. For the particular TOY machine example the following markings

were selected: the Initial state is MAIN; the top of the main cycle is XFETCH; the Infinite

fetch loop Is broken at FLOOP; the fetch algorithm is separated from the execution

algorithm at all the control states In the TARGET map to or from a state described by the

top of cycle of the HOST and an additional predicate (usually the value of the

microprogram counter).

The top of Figure 3-8 shows a set of control 'relations; the first element of each Is a

marking (represented by an ISPS label) In the TARGET and the rest is a predicate that

34

together with the code of the HOST makes up its control state. The bottom of Figure 3-6
shows the coverings that specify the relation between registers (or memories) In the
TARGET to registers (or memories) in the HOST.

During the first phase of the proof, a set of internal MAPPING records is generated from
the concise representation of Figure 3-6. Figure 3-7 shows two out of the eight
mappings. A MAPPING record has three fields: from:, that specifies the control state of

either the TARGET or the HOST; to:, that specifies the corresponding control state of the
other machine; and map:, that specifies the covering. The notion of MAPPING records is

built into the SD proofchecker and is used in the second phase.

We have described the TARGET, the HOST+microcode, and the relation between them in

three forms: English, formal, and a form that can be processed by the SD proofchecker.
The first phase of the proof generated the batch of SD commands from the formal

descriptions.

Symbolic Simulation

The previous sections presented the TARGET machine, the HOST machine with Its

microprogram, and the mapping between the machines. This section shows how the proof

of simulation of the TARGET by the HOST with respect to the mapping was performed

using the SD command batch. The simulation is performed within the state delta symbolic

execution framework, thus it is called symbolic simulation.

The SD proof system operates by maintaining a "current state" of the execution, which

can be manipulated by opening or closing proofs, or by applying SIs or mappings. A SD is
a notation for specifying a segment of execution, either as the "goal" or for changing

the current state. A SD has 4 fields: pre:, mod:, env:, and post:. When a SD is used to
Open a proof, then the pre: Is added to the current state and the post: becomes the

goal; when it Is being "applied", then the pre: must be true In the current state, and the

effect of the SD Is removing from the current state everything that depends on mod: and

adding post:. A MAPPING has three fields: from:, to:, and map. When a mapping is
"applied", its from: must be true in the current state, and the effect of the mapping Is

adding to: and map: to the current state.

35

((IAIN (.tIPC)-16)
(XFETCH (.IIPC)-8)
(FLOOP I.IIPC).11)
(EXEC L.IPC).13 I.IAD).(USSUB .R3 11 W)

((Coveting liEM ((STORE 16 16>>)
(Covering PC <<R2 M,,>)
(Coveting ACC ((Ri 16>0
(Coveting IIR <<R3 16>>)
(Coveting tlacroPC ((tlicroPC 2> ctlPC 6 >)
(Coveting HlnvReg <<l 21> (MAD 12> <ALU 16> ditiX 12> <MD 16>>)
(Coveting TlnvReg <<HlnvReg 22>>))

Figure 3-8: Mapping between TARGET and HOST

36

(MAPPING (from: (.MPC)1l1

(SO (pre:)
(mod: MlicroPC MI)
(env: MicroPC)
(post: #MI-(OOT (WORDS ROM .MPC))

(TR ((SEQ (USSET MPC $)
(DECODE S S S S)
(DECODE # S S S)
(DECODE S S S S 5)
(DECODE S5$ 5 S $ 5 I

$)
(DECODE S S S S S S 1 S

1))
(REPEAT S)
(ProcMark HOST]

(to: (.MacroPC) -FLOOP)
(map: (.MEM).(.STORE)

(.PC).(.R2)
(.ACC)-(.R1)
(.]R) =(.R3)))

(MAPPING (from: (.MacroPC)wEXEC)
(to: (.MPC).13 (.MAD)-(USSUB .R3 11 0)

(SD (pre:)
(mod: MicroPC MI)
(env: MicroPC)
(post: #M-(DOT (WORDS ROM .MPC))

(TR ((SEQ (USSET MPC 2)
(DECODE S I 1 $ $)
(DECODE S S I 5 5)
(DECODE 1 1 1 S$)
(DECODE S I I S S I S 1 8)

(DECODE I 1 8 S S I S 5 5))
(REPEAT I)
(ProcMtark HOST]

(map: (.STORE).(.MEM)
(.R2).(.PC)
(.Rt)-(.ACC)
I.R3).(.IR)))

Figure 3-T: Two of the MAPPING records

87

r iuro 3-8 t.bows an outline of tile batc h of commands that drives the proof in the

so,:ou phae. Tile first Open ano NowDecomposition declare the memories and

re(li.iters in the IIOST machine. The pro: of the second Open includes the microcode and

th mmpiuq hbetweeon tile TARGET and the HOST. The post: of the same command includes

thl(! !;,!t of 5D; ht describes the TARGET machine. Executing this command adds the

mficr)(:o(J I and inapping to the current state and makes the TARGET tile "goal". A

s(fiti(nce of seven NewComposition commands declares the memories and registers in

the IAlGi machine and their relalion to the places In the HOST. The command

SyniSinul,tt? prfornis the symbolic simulati')n according to a heuristic that we have

do*w-lop)o:dI

i1. Synismi.all'to coilCmmand executes ai heuristic that drives the symbolic simulation. For

("11Ah 81) iln 1h! "(10;J1" do the following: oe)an the SD, apply a mapping from the TARGET to

the; i1:;r; !;ymLbulictlly executo (i.e., keep applying SDs) until the state can be mapped

fJ,i(:k lo Ili. TARGET, al)iply the mapping to the TARGET; close tile SD. Finally close the

1 hi cominod effoct of the two phasos of the proof Is the generation of a set of SDs

fro(m (ho TAI%(';LT using symbolic execution of the TARGET and proving these SDs by using

:tylllbole oxieculion of til HOST and microcode. Tile rest of the effort Is setting up the

riolit rol,itions amonig the registers and memories and between the HOST and TARGET to

a.'i;r" intecjriiy of the proof. Note that the only Input needed Is the ISPS description of

th, 1. 1lO:ST. and ROM and the concise representation of tile mapping between the

m,'icici, ';. 1 h? roct is done automaticaly.

3.2 TH- F7,C

*I w(e I 1:.C w,:i chosen as the real examplu on which to try out the microcode verification

..y-.tts-i heci.i:;o it is il general-purpose computer with enough features to thoroughly

tZe..1 th(e ny't'n: in addition, it is still in the development stage, so that successful

vorif.:atimio or discovery of bugs would influence the final version.

Some of th. characturistics of the FTSC (its of May 1970) are:

38

((011(n (vr.: icrrrPC EXP riD "iUX ALU l1AD R3 R2 RI MI MPC STORE ROM UNDEFINED

CLCLC,, LABLO.& A1S3.I)C& ARNLO0C)
(50 (1,ru: (Covering 011EGA

<<flicroPC I> <EXP 440> <MD 16> <MUX 12>
ALU 10> -:.AO 12> <R3 16> <R2 12> <Ri 1G>

<:11 21> <IIPC G7, <STON E 16 100010>

<RD".l 21 a43Q> 4UNDEFINED 440> <CLKLOC& 440>
<LALUC& 440> <ASSLOC& 440, <ARRLOC& 440>))

.. (,:Ard: UI GA)
(,:,nv:)
(lpi ,t)))

,.fl ', ,..c i .t un (Cover i nU OIE GA
<<IlicroP 1> <EXP 440> <MD 16> <MUX 12>

<cALU IG> <MAD 12> <R3 1G> <R2 12> <Ri 16>
'11 21' <I'PC G> <STORE 16 100810>
<RO1 21 1JQ> <UNDEFINED 440> <CLKLOC& 440>
<LABLOC& 440> <ASSLOC& 44Q> <ARRLOC& 440>>))

[~i,'n (vr&: nicrrPC EXP IR ACC PC Mii'l UNDEFINED CLKLOC& LABLOC& ASSLOC&
ARRLCC&)

(5D [pre: (DOT (JORDS RO1 'I)=(OCONST 2014100 21)

III Specification of microcode III

[to: (.MPC)-16
(SD (pre:

(kiod: MicroPC MI)
(env: MicroPC)
(post: #111,(0OT (WORDS ROM .MPC))

(TR ((SEQ (USSET MPC $)
(DECODE 8$ $ 8 C)
(DECODE 8 $ S S)
(DECODE S 0 I S C)
(DECODE S $ 8 8 S C C S)

(DECODE $ $ S S)
(REPEAT 9)
(ProcMark HOST]

(map: (.STORE)-(.MEM)
(.R2). (.PC)
(.Ri),(.ACC)

(.R3). (. IR))

I I I All Imappings IIF

Figure 3-8: Outlino of the command batch

89

(env:)
(potit: (SD (pre: (.MacroPC)-MA1N)

(mod: TlnvReg MacroPC PC)
(env:)
(post: rnlacroPC.XFETCH #PC4 (12)))

III State Delta representation of TARGET MI

i o (Covering tiEf «<STORE 16 1G>>))
i t i on (Covering PC <<R2 1))

011-111Uomipo :i t ion (Covering ACC «<R I 16))
it ion (Covering IR <<P3 16,>))

(~iiici t~ tion (Covering flacroPC <IlicroPC 2> <MPC 6>>))
(No i~muo.i t ion (Cover ing NJ nvric-y

<<l 21> <1MAO 12> <ALU 16> <MUX 12> <MO 16>>))
(t.I.C .o t ion (Covering TlnvReq <<Hl1nvReg 22>))

SuI ;I to~)

Figure 8. (continued)

40

- 112 instructions, including integer, floating point, and vector operations

- data formats: fixed point (32-lit, two's complement integer) and floating
point (24-bit, two's complement mantissa; 8-bit, two's complement
exponent)

- 0 address modios

- 1 ruj nornl-purposo registers (that servo as accumulators, index registers,
or adciross pointers) and 8 working re!jisters

- 10 interrupt levels

- G 1 K of addrossablo program memory

The fir: t step in the verification process is writing the formal host and target machine

d criptions in ISPS. Ideally, the designer of the machine would write the formal

dwecription alonq with the informal description ("user's manual"). In lieu of this, the

writer of the formal descriptions must submit them to the designer for "description

verification" (that this is really the niachiie informally described in the manual) before

procedinj with the proof. In addition, the writer of the formal descriptions may discover

"bu(Js" (inconsistenicies or incompleteness) in the user manual. As a formal description is

biicq writteo, its writer will probably be in need of information which was either omitted

from tho machine user manual or presented there in an ambiguous or contradictory way.

Our experi.'eico yielded approximatoly 120 questions on the documentation, accumulated

ovr a pe riud of about six months. Approximately 80 answers were finally obtained from

various per;ons who had "inside" information about the construction of the FTSC.

Typical diffi(:ultics arc missing information, multiple names for the same value, e.g.,

AMOD anid AM, and inconsistencies between written and diagrammed specifications.

As explained earlier, wo consider the total problem of microcode verification as

consi,;tinq of two parts: tho proof that the host machine with its microcode implements

tho tarrIet machino (as described ii a language containing only those operations

avllahln to the host) and the proof that the target machine, Instruction by instruction,

salisfim, some higher level specification. For example, the target machine description of

41

the integer multiply and divide instructions, and all floating point instructions, would most

likely consist of an algorithm using the host machines operations of shifting, testing,

addinq, XORin, etc. The higher lovbl specification would be that these Instructions do in

fact find the product, quotient, etc. to a given precision. The Instruction definitions given

in tho user manual, which are largely English, are most likely those instructions needing

this second level of proof.

All of our work to date on the verification of the FTSC has been concerned with the step

from the tarclct to the higher specification. This seemed a wise choice, since we knew

thait at the start of our project the FTSC host machine design was not finalized, although

the tarjet machine would remain more or less the same. In addition, many aspects of the

system had to be developed before a truly large example could be attacked.

7ho juirticular instruction chosen was square root. Square root was chosen because of

tiht rol;tive compactness of Its algorithmic description in the target machine, and the

wid. diff:rviice between the algorithm and its higher specification. Although the

socoiid-lo'vil verification has nothing to do with the microcode or the host machine, one

(:harictvrific making it loss than goieral program verification Is that the data types

u.sedl in t(i targat and higher level descriptions are usually restricted to be bitstrings

and integers in the target, and valuns of bitstrings and reals in the hlgher level. Thus we

used the square root instruction as a testing ground for developing the automatic

simplification of expressions in these data types.

The staltus of our work on the square root algorithm Is that the simplifier Is able to handle

automatically all the dorivatioits needed to complete the proof of correctness. Smoothing

the :vwir interface and gracefully setting up the Induction needed for the loop remain to

be (10110.

It is hoi)pd that many of the special simplfication rules adopted in proving the square root

will also he useful in the other proofs of higher level correctness.

Square Root Proof

In this section we give the ISPS version of the algorithm that constitutes the FTSC

target machine description of the floating point square root instruction (SRTF). See

42

Fi(Iure 3-0. This description of the algorithm was written on the basis of the microcode
flowchart. which is derived directly f ronm the host description and the microcoide. Then
wo r-how tho dorivations the simplifier is able to accomplish automatically In proving that
SRllF finds tile squtare root to within a certaini accuracy.

Lot us; "talk tlhrough" the algorithm nlow: Til first line decides if the input is to be from
rflistior GVXilA or register MD. If the input is negative, the algorithm Is terminated with
overflow flaiq spt If the input is 0, thle algorithm Is terminated with output register
GPXIUB not to the floating representation of 0. From here on the algorithm splits Into two
piirts: tho ctilctliationl of thle now exponent and the calculation ot the new mantissa. The
0Xp)Ont'nt Calculation splits depending on whether it Is even or odd. If the old value Is
evon., tho) now exponlent is half thle old value. If the old value Is odd, It Is made even by
aIddinui 1 "11111 !5liftinrj thle mantissa accordingly (in thle even case the mantissa is shifted
two hit&,: in the odd case, only one bit). Now the new value is half thle old value (with a
chock for vxponcnt overflow thrown inl). The mantissa is now calculated by a variation
Of tho 10onqhand high school square root algorithm. The mantissa Is shifted two bits at a
timie tlirou(;l the lo0o) 23 times. The loop has two branches according to the sign of the
Soremiaindelr," the reglister SUM.

Tlu theorom which expresses the correctness of SRTF Is

Theore-m: If FL(INPUT)zxk0, then SRTF terminates with FL(OUTPUT) :5x:S FL +(OUTPUT)'

If FL(INPUT)<O, then SRTF term~inates with OVFF=1.

LXpl1.1tionl of notation: FL(R) is the valuue of the bltstring A as a floating point number In
ft FTSC format: 24 leftmost bits coding two's complement fractional mantissa and
rigihtmost LI hits coding two's complemeint exponent. INPUT Is either the register GPXRA
or MD, depending onl AMODE. OUTPUT Is the register GPXRB. FL* (R) is floating successor
to rL(R1), i.e.,

rL (R) z (TCVAL(R31:8>))1) m2TVLR7O)2

Lattingq MAN(R) z TCVAL(R(31:8>)1 2'23 anid EXP(R) * TCVAL(R(7:O>), It Is sufficient to

Provo

43

SRTF:

BEGIN
DECODE AMODE.> (W0-1841GPXRA143-.1.410) NEXT
IF WOB LSS 8.> (OVFF'-1 NEXT LEAVE SRTF) NEXT
IF WU<31:8> EOL 8-> (GPXRB.-"80 NEXT LEAVE SRTF) NEXT
LJ3.31:8>4J0<31:8> SLO 1 NEXT
Li0<7:0>.-O NEXT
DECODE LJI<O>->

BEGIN
8: *(GPXRB-WO<31 :30> NEXT

LJ8-LJ SLO 2 NEXT
LJIc31:8>.-O NEXT
WJI7:0>.417>WY<7:1>)

1: -(GPXRB4JB<31> NEXT
WO8.WO SLO 1 NEXT
Wl<31:8>-8 NEXT
EXPOUT'-147>&W1<,7:0> + 1 NEXT
L14:8>'-EXPOUT<7:8'- NEXT
W1.c7:0>.-W1c7>1,1<7: 1> NEXT
IF EXPOUT<8> XOR EX'OUT<7>.>W14:>-#100

END0
NE~u Xr
,I-1-GPXRB-1 NEXT
GP>XJd3-'Ur129: 8>rLJO<31 :30> NEX T
CCIUITERa-I) NEXT
SLOOP: -

REPEAT
BEG IN
COUNTER'.COUNTER+1 NEX r
W3<'31:8>..LJ8<31:8> SLO 2 NEXT
DECODE SUM<31>->
BEG IN
8:. (L1<31:8>.-2*W1<~31:8> +~ 1 NEXT

IF COUNTER E0U- 23.> (LEAVE SLOOP) NEXT
W2.-4*Wl<131:8> 4. 1 NEXT
SUM.-GPXRB-142 NEXT
GPXRB-SUr1<23: 8>iLJ<31: 38>),

1:- (W1<3:8>4--2*W1<31t8> NEXT
IF COUNTER EOL 23.> (LEAVE SLOOP) NEXT
J2-4*WlJ1.31:8> + 3 NEXT
SUM1-GPXRB+W2l N&'XT
GPXRB*-SUM<M9 8aLJ8'<31 :30>)

ENO
END

NEXT
GPXRB3-LJI
END0

Figure 34:t ISPS description of the square root algorithm

44

(1) If EXPI(INPIUT)zo is oven and MAN(INPUT)'2 6UARG, then SRTF terminates with

2*EXP(OUTPUT)=e and (MAN(OUTPUT)*2')' 5 ARG 5 (MAN(OUTPUT)2 2 3+), and

(11) If EXP(INPUT)=e is odd and MAN(INPUT)*2' 45 ARG, then SRTF terminates with

2*i-XP(OUTu r)ze~l and (MAN(OUTPUT)'2 21)1 5 ARG:5 (MAN(OUTPUT)-2 23+1)2.

So thia proof is carried out by

(1) symbhlolica'lly executing through thia end of the exponent calculation for
Mine and odd Input exponent, and proving thea relevant parts of (1) and (11)

at that poit (note that OUTPUT Is assigned the contents of working
rorlistor W1 at the end of SRTF);

(2) at that point, for even input exponent,

MAN(INPUT)-2"* a USVAL(GPXRB(1:0>@WO(3:1O>)2 U ARG,

anid for odd exponent,

MAN(lNPUT)--285 - ARG.

Thus to complete both (1) and (11) it remains to show that

CLAIM: TCVAL(OUTPUT(31 :8>)? S ARG!STCVAL(OUTPUT(31 :8>41)2

licro is whecre we use induction to prove loop Invariants that lead to a proof of the
CLAIM. Lut R dutnoe tlia contenis oo R tarier i timus through the loop, that is, the last

coiitaits bof ore COUNTER changes from I to i+1.

The CLAIM is proved from

SUIICLAIM: Fur 1:5i!523. USVAL(W130:8>)' Int(ARG2 -46) :5 (USVAL(WI<30:8>). 12

(Tho actual calculation with the integer part function int Is done by noting that If

X=USVAL(fl), then int(X02) USVAL(R SRO k).)

The CLAIM is proved from the SUBCLAIM by taking isa. The SUBCLAIM Is Implied by the

first three of thea following loop Invariants for 1:5622. ((HI) 1s shown here for the case

of ovon exponent only).

45

(Hi) (2*USVAL(Wl1(30:8)).1) 2 + TCVAL(SUM) * USVAL(a(30:8)O0(23) SRO 44-2)

(112) TCVAL(SUM,) S 4"USVAL(WI 30:8) + 2

(113) -TCVAL(SUM) < 4AUSVAL(W130.8)) + 1

(H4) WO =U (a(28:8)0(1 1) SLO 2)

(H5) W1i(31:i 8> =us 0(24-i)

(110) W2(31:i+2> =us 0(30-i)

(117) SUM (29:0> =US GPXRB (312>

(ib) SUM, =TC GPXRB (31:2>

(119) GPXfB<1:0 aU W0,(31:30)

Thtis win prove that if (H1)-(H) are true for 1_i_<21, then they are true for i+1.
Additionial inchiction hypotheses ((H4)-09) were found to facilitate the proof of

(1ll)-(113)). Then we prove that if the SUKiLAIM is true for 191_522, then It Is true for 1 1.
The simplifier automatically carries out thoso deductions.

The followinj is the batch containing the proof of the square root algorithm as it Is read
unto MICIOVERM in form to be automatically chocked.1

(BATCIHSORT
[(lnitProof 8011TM)
(istantiotoContents GPXRA a)
(Prove

[SD (pro: (.AMODE)=O (TCGEQ (USSUB a 31 8)
0)

(TCNEQ (USSUB a 31 8)
0)

(USEOL (USSUB a 0 0)
0)

1Actually. in tho present form of the system the INVARIANT and LABEL must be given in expanded form at every
occurence.

48

(SD (Pre: (NZEROP (USEOL .AMODE 0)))
(mod: MicroPC)
(env: MkcroPC)
(post: Q@Program)))

(mod: OMEGA)
(aeiv: GPXRA)
(Post: (NZEROP (REALEQUAL (PRODUCT (EXPVAL #GPXRB)

2)
(EXPVAL a)))

[NZEROP (REALLEG (POWER (PRODUCT (MANVAL #GPXRB)
(POWER 2 23))

2)
(PRODUCT (MANVAL. a)

(POWER1 ;? 5o0)
(NZLHOP (REALLEG (PRODUCT (MANVAL a)

(POWER 2 560))
(POWER (REALPLUS (PRODUCT (MANVAL #GPXRB)

(POWER 2 23))

2]
((Propos('Mo~l (.COUNTER): 1)
[ProvuIbyCascs [SD (pre:)

(mod: OMEGA)
(env: OMEGA)
(post: #COUNTERc(1 iftwriamnt)

(SD (pre:)
(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #,COUNTER::(USSUB (TCPLUS .COUNTER 1)

31 O)@Label]
((USSUD -SUM .31 3 1)x I

([ProposeMode ((.COUNTER~u1
and (SO (pro:)

(moci: MicroPC COUNTER)
(env: MicroPC)
(post: 4(:OUNTER:-(USSUB

(TC PLUS .COUNTER 1)
31 O)@LabeIJ

(Close)))
((USSUc3 .SUM 31 31)--
([ProposeMode ((.COUNTEF,):1

and (SD (pre:)
(mod: MicroPC COUNTER)
(eny: MicroPC)

47'

(post: #COUNTER=(USSUB
(TCPLUS .COUNTER 1)
31 O)c@Label]

(close]
[ApplySD (SD (pre: ((USSUB .SUM 31 31)=1 or (UsSUB .SUM 31 31)ao))

(mocd: OMEGA)
(env: OMEGA)
(post: (T or T)

#COUNTER=l @Invariant
(SD (pre:)

(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS -COUNTER 1)

31 O)@Label)
(Prove [SD (pro:)

(mod:)
(env: OMEGA)
(post: (.COUNTER)=l Oinvariant

(SD (pre:)
(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)

31 O)@lobel]
((ProposeModc)))

(ProvebyCiises [SD (pre: (NZEROP (REALLEG I .COUNTER))
(NZEROP (REALLEQ .COUNTER 21)XOlnvariant
(SD (pre:)

(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)

(mod: OMEGA)
(env:)
(post: # COUNTER=(FlEALPLUS .COUNTER 1A)~nvariant

(SD (Pro:)
(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)

31 0)0,Label]
(((USSU3 -SUM 31 31)z 1 andc (USSUB .GPXRB 31 31)sl)

((ProposeMocia)))
((USSLJB .SUM 31 31)z-O arid (U6SUB .GP)(RB 31 a1):co)
((ProposeMode)

(Prove [SD (pre: (NZEROP (REALLEQ 1 ,COUNTER))

48

(NZE POP (REALLEG .COUNT ER 21))@Invariant
(SD (pro:)

(mod: MicroPC COUNTERl)
(env: MicroPC)
(post: #COUNTER=(USSU3 (TOPLUS .COUNTER 1)

31 0)0-Label)))
(mod: OMEGA)
(env:)
(post: ilCOUNTER:(REALPLUS .COUNTER 1)@lnvariant

(SD (pro:)
(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)

31 O)@LabcIJ
([ApplySD (SD (pre: ((USSU3 .SUM 31 31)=1

and (USSUD .GpxRE3 31 31)=1
or (USSUB .SUM 31 31)--0
anld (USSUB .GPXRB 31 31)=O)

(NZEROP (REALLEQ 1 .COLJNTER))
(NZEROP (REAL LE .OUNTER 21))@Invariant
(SD (pre:)

(mod. MicroPC COUNTER)
(env: MicroPC)

(post: #COUN1ERZ(USSUB (TCPLUS .COUNTER 1)

(mod: OMEGA)
(env:)
(post: (T or T)

#COUNTER=(REALPLUS .COUNTER 1)cInvariant
(SD (pre:)

(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTE'.R=(USSUB (TCPLUS .COUNTER

1)
31 O)@LabelJ

(Close)))
(Per formleinuc tion (SD $)

(SD (&)

(ProposeMode (SID (pre:)
(mod: MicroPC COUNTER)
(eniv: MicroPC)
(post: #COUNTERa(USSUB (TCPLUS .COUNTFR 1)

31 OX(ILabeI)))

49

(InstantiotoContonts WI wi
[13rovebyCosces

[SD (pre:)
(mod: OMEGA)
(env: OMEGA)

(post: (NZEROP (REALEQUAL (PRODUCT (EXPVAL #GPXRB)
2)

(EXPVAL a)))
[NZEROP (REALLEG (POWER (PRODUCT (MANVAL #GPXRB)

(POWER 2 23))
2)

(PRODUCT (MANVAL a)
(POWER 2 560]

(NZEROP (REALLEG (PRODUCT (MANVAL a)
(POWER 2 560))

(POWER (REALPLUS (PRODUCT (MANVAL #GPXRB)
(POWER 2 20))

2)

((USEOL (USSUB .SUM 31 31)
0)

((ProposeMode)))
((USEOL (USSUB .SUM 31 31)

1I)
((ProposeMode]

(ProlposcvMode])
(L3ATCHSOR 1)

s0

I-MP- , _ .--

4. CONCLUSIONS

PLANNED EXTENSIONS

Tho basic theoretical work for proofs of correctness of sequential microcode is
reasonably complete, and a preliminary system for carrying out proofs has been built and

exercised. Within the scope of the present work, the following extensions are planned.

Proof Language

The system Is divided into a user interface and a rigorous proofchecker. In the present

implomentation, the user interface knows too little about the direction of the proof. In a
proof by cases, for example, the separate cases are presented to the proofchecker,

then combined. It is possible to declare the intended result in a superior proof, but no

use is made of this information in either the user interface or the kernel.

Wv tiow se that thn user interface can Interpret a simple goal-oriented language. For a
proof by cnses., the user would specify what lemma is to be proven and would specify

that the form of the proof is to be by cases with a given predicate. Room for specifying

the details of each subproof would also exist, but the packaging of the separate proofs

would be carried out by the proof checker. In the orpsent system, a proof by cases now

looks like the following:

(Open P)
(Open P and C)

(details of the proof of the first case>
(Clos. P and C)
(Open P and not C)

<details of the proof of the second case>
(Close P and not C)
(CombineCases)
(Closo P)

In many instances, the proof of each case may be carried out automatically. In the

present system, a ProposeModo statement is required. We can eliminate the "obvious"
proofs if we use null lists where proof details are permitted. Combined with the

automatic setup and packaging of compound proofs, the proof above might become the

following:

81

(Prove P (Cases C <room for details of positive subcase)
<room for details of negative subcase))

Similar savings would result In proofs by Induction. Some of the savings are not apparent
from proof sketches like the ones above. The lemmas are often quite lengthy. Even with
the lemma suppressed from the Close command, the current system requires three

copies of the main lemma, one for the statement of the lemma in the main proof, and two
more for the subcase proofs. The compressed form requires only one appearance of the

lemma. In addition, the compressed form is much more readable and, we hope, more

writable.

Editing

The present system permits only limited editing of the proof. Using the structured proofs

illustrated above, it should be possible to edit a proof quite freely and have the proof

restarted from the last point it was changed.

Efficiency

The present system Is fairly slow. With a little experimentation, it has become clear that

a lot of time is expended In the simplifier. The simplifier has evolved through an

accretion process, and is due for a complete redesign. We have also studied Derek

Oppen's work (see, for example, [Nelson and Oppen 78]), and it appears reasonable to

use his simplifier for parts of the system. His simplifier is carefully crafted and should be

much faster.

FUTURE CONSIDERATIONS

A number of Ideas for logical next steps have emerged, though these are beyond the

scopo of the present effort.

Floating Point Arithmetic Specification

It Is obvious that we must allow other floating point formats than that of the FTSC. The

parnmeters neoded to specify the format should be variables which can be set by the

user to fit his particular application. In addition, floating point arithmetic needs to be

characterized precisely. Notation to describe thl Intended precision of the results and

rolationship between floating point operations and the corresponding abstract operations

52

on the reals would materially reduce the size of the target machine description and

remove the need for proving a separate set of constraints.

Some of the initial work has been done by Brown and others [Brown 77, Brown

78. Wijngaardon 64, Kahan 77a, Kahan 77b].

Timing

Porformance characteristics play a large part in the design of host machines and In the

doslify of the microcode. However, to date no work has been done to characterize the

runnig time of microcode. Proofs of running time limits should be reasonably

straiulhtforward, but work is needed on the specifications.

Concurren r

Essentially no work has been done on correctness proofs of truly concurrent microcode.

The present work requires a sequentialized model of the host and target machines.

Extensions to the basic theory will be required to model concurrency.

53

REFERENCES

[Alfvin 79] Peter W. Alfvin, A Formal Definition of AMDL, Master's thesis, University of
California, Los Angeles, 1079.

(Barbacci at al. 7?] Mario R. Barbacci, Gary E. Barnes, Roderic G. Cattell, and Daniel
P. Siowiorek, The ISPS Computer Description Language, 1977. (Unpublished paper
from Carnegie-Mellon University.)

[Boll and Nowell 71] Gordon C. Bell and Alien Newell, Computer Structures: Readings and
Examples, McGraw-Hill, New York, 1971.

(Birman & Joyner 76] A. Birman and William H. Joyner, "A Problem-Reduction Approach to
Proving Simulation Between Programs," IEEE Transactions on Software
Engineering SE-2, (2), June 1976, 87-96.

(Brown 77] W. S. Brown, A Realistic Model of Floating Point Arithmetic, Bell
Laboratories, Technical Report 58, 1977.

[Brown 78] W. Stanley Brown and Stuart 1. Feldman, Environment Parameters and Basic
Functions for Floating-Point Computation, Bell Laboratories, Technical Report 72,
1978.

(Burstall 74] R. M. Burstall, "Program Proving as Hand Simulation with a Little Induction,"
in Information Processing 74, pp. 308-312, North-Holland, Amsterdam, 1974.

(Crocker 77] Stephen D. Crocker, State Deltas: A Formalism for Representing Segments
of Computation, Ph.D. thesis, University of California, Los Angeles, 1977.

[Joyner et al. 78] William H. Joyner Jr., William C. Carter, and Daniel Brand, "Using
Machine Descriptions in Program Verification," in Information Technology:
Proceedings of the 3rd Jerusalem Conference on Information Technology (JCIT3),
pp. 51 5-522, North-Holland, Amsterdam, 1978.

[Kahnn 77a] W. Kahan and B. N. Parlett, Can You Count on Your Calculator?, University of
California, Berkeley, Memorandum No. UCB/ERL M77/21, 1977.

[Kahan 77b] W. Kahan, And Now for Something Completely Different: The Texas
Instruments SR-52, University of California, Berkeley, Memorandum No. UCB/ERL
M77/23, 1977.

[London 77] Ralph L. London, "Perspectives on Program Verification," In Raymond T. Yeh
(od.), Current Trends In Programming Methodology, pp. 151-172, Prentice-Hall,
1977.

55

-PAGE BLAIOW. YLL

(Manna & Walclinger 78] Zohar Manna and Richard Waldinger, "is 'Sometime' Sometimes)
Better than 'Always,?," Communications of the 4CM 21, (2), February 1978,
159-1 72.

(Marcus 79] Leo Marcus, State Deltas that Remember: a System of Describing State
Changes, 1979. (Submitted for publication.)

(Nelson and Oppen 78) C. G. Nelson and D. C. Oppen, Simplification by Cooperating
Decision Procedures, Stanford University, CS Report No. STAN-CS-78-652, 1978.
(Al Memo AIM31 1.)

[Pattorson 77] David Patterson, Verification of Microprograms, Ph.D. thesis, University
. nhifoggnje, Los Angeles, 1977.

[Raytheon Cori) 791 Raytheon Corp., Brassboard Fault rolerant Spaceborne Computer
(BFrSC), Raytheon Corp., Technical Report ER7D-4135, May 1979.

(Wegbreit 77] Son Wegbreit, "Constructive Methods In Program Verification," IEEE
Transactions on Software Engineering SE-3, (3), May 1977, 193-209.

(Wijnrjnarcien 04] A. van Wujnganarten, "Numerical Analysis as an Independent Science,"
BIT 6. 1964, 66-81.

Appendix A
THE SYSTEM

This appendix describes the operation of the proofchocker, the state delta expression

language, and the simplifier.

A.1 PREPARING AND RUNNING A PROOF

The MICROVIFR system is a LISP program that is loaded from TOPS20 exec by typing

(AMDSYS)MICROVER.EXE 2 . The program Is started by the LISP function StartExec, and

can be restarted by the function ContinueExec. Both functions put the system in exec

mode, which provides a set of commands to prepare and run proofs.

The proof checker is driven by a sequence of proofsteps. Each proofstep is submitted

one at a time to the kernel, which checks its applicability and updates the state of the

proof according to the specific proofstep. Although the user is responsible for preparing

the proofstel)s, the MICROVER system provides various aids for preparing and submitting

them. The most important aid is the the batch. The batch consists of a sequence of

proofstops that is submitted by MICROVER under user supervision.

A.1.1 Exec Mode

Exec mode provides several ways to prepare and submit proofsteps, as well as some

miscellaneous tasks.

The following commands are used to prepare and submit proofs:

UsorModo This command puts the system in a mode that provides the user

with convenient facilities to prepare individual proofsteps. In

particular, it completes key-words, prompts with parameter names,

etc. The proofsteps are prepared one at a time, and submitted

immediately.

SaveTranscript This command accumulates the successful proofsteps from the last

session Into a batch. The batch (in the form of a LISP function) can

be stored away, submitted again, or otherwise manipulated.

2 The system is curently available on the 1511 machine, aecosuible over the AMPANET,

57

BatchMode This command controls the submitting of a batch. See below for
more details.

FixLast Lets the user edit and resubmit the proofstep that was last
submitted. The full power of the INTERLISP editor is available. It is
a convenient way to recover from an error.

GenBATCH GenBATCH prepares a batch of proofsteps according to the ISPS
descriptions of the target-machine, host-machine, ROM, and
mapping. This command is used for symbolic simulation.

Three TOPS20 files and two LISP variables must exist before
executing GenBATCH: The description of the target, host and ROM
should reside in the files TARG.ISP, HOST.ISP and ROM.ISP,
respectively. The mapping should reside in the LISP variables
MAPPING$LIST and COVERING$LIST.

The result of GenBATCH is a list of proofsteps for submission in
batch mode. The user is queried as to where to store the list.

The following miscellaneous commands are provided by exec mode:

RosotProof Clears the whole proof, ready to begin a new session.

SotSwitch Sets, resets, or checks the value of a trace switch.

DIsplaySWLIST Displays the value of all the trace switches.

DisplayState Displays the current state of the proof.

DisplayLast Displays the last proofstop that was submitted.

Ouit Returns the system to the LISP level.

A.1.2 BatchMode

Batchmode initializes and controls the submitting of a batch that exists as a TOPS2O file.
This batch could be generated off line using an editor, by the SaveTranscript command,
or by the GenBATCH command (see next section). It provides the following batch

commands:

OponBatch Reads the batch from a file and initializes the batch-pointer to the
first proofatep in the file.

58

DisplayNext Displays the proofstep to which the batch pointer is pointing.

PorformNoxt Submits the proofatep to which the batch-pointer is pointing and

advances3 it.

Doit Performs a fixed number of proofsteps from the batch file. The
user Is asked for the number.

WholBoatch Displays the complete list of proofiteps In the batch file last read
by OpenBatch.

Quit Returns to the exec mode.

A.2 BASIC PROOFSTEPS
The basic "proof action" that MICROVER uses is setting goal to sd:post, and advancing
the current state until the goal becomes true. Using combinations of this proof action for
the right state deltas can accomplish symbolic execution, symbolic simulation, proofs by
cases. or proofs by Induction.

MiLI4OVER provides a data base to hold the current state and a kernel that processes a
sequence of basic proofsteps. Before carrying out a proofstep, MICROVER checks that
aH of the requirements are satisfied, If they are not, an error message is printed and the
proofstop Is aborted with no change to the data base. The following basic proofsteps
are available in the system:

A.2.1 Beginning and Ending a Proof

(Open vars-list sd) meaning: Initiates proof of 3d.

arguments: ad is a state delta and vars-list is a list of places or
variables.

requirements: The places In sd:mod and sd:env must be registered
(see below).

effects: Creates a current state consisting of sd:pre and those

3In case of failure, the exec command DisplayLast and rixLes! still points to the failed proofstep (and can be used for
recovery)

59.

predicates from the previous state whose support is contained in
sd:env; creates a new goal of sd:post; the prior state of the
database and the place graph are restored when the proof is
complete, except that the proven state delta Is added to the prior
state. (See Close, below).

(Close) meaning: Terminates the proof of the most recently Opened state
delta (goal) assuming the postcondition of goal is true in the
current state.

arguments: none

requirements: sd:post simplifies to true.

effects: Restores the proof system to its state prior to the most
recent Open, with the addition of the proven state delta.

A.2.2 Registering Places

(NowDecomposition covering)

meaning: Registers new subplaces.

arguments: Covering is of the form (Covering place ((subplace
length) ... (subplace length))).

requirements: Mother place must oe registered; daeughter places
must not be registered.

effects: The place graph Is extended with new covering
relationship.

(NowComposition) meaning: Registers new superplces.

arguments: Covering as above.

requirements: Mother place must not be registered; daughter
places must be registered and disjoint.

effects: The place graph is extended with new covering
relationship.

80

A.2.3 Advancing the Computation

(ApplySD sd) meaning: Advance the execution by applying ad.

arguments: ad is a state delta.

requirements: sd:pre must simplify to true In the current state, and
sd:mod must be contained in the modification list for the most
recently Opened state delta.

effects: Deletes from the current state all predicates supported
by places in sd:mod, and adds sd:post.

A.2.4 Case Analysis and Loops

(CombineCases sd-list)
meaning: Combines the state deltas in sd-list into one state delta.

arguments: sd-list is a list of state deltas (sd I ... sdn) where sd,

is of the form

(SO (pre: case,

pred)
(mod: MOO.)

(env: ENV)

(post: POSTi)).

requirements: All adI must be true In the current state.

effects: Adds the following state delta to the current state:

(SO (pre: (OR case, ... casen)

pred)
(mod: MOO1 U ... U MOOn)

(env: ENV1 U ... U ENVn)

(post: (OR POST1 ... POSTn))

(PerformInduction loop-sd base-sd)
meaning: Derives a state delta representing the state
transformation from the start of a loop to its termination (the
number of times through the loop being known in advance).

arguments: base-sd is a state delta representing the state
transformation for the first time through the loop, and loop-sd is the

state delta representing the state transformation once through the
loop, starting after an arbitrary number of iterations. In the

following from and to are numbers, indver Is a bitstring term, claim

61

is what is to be proved (written as a list (or conjunction) of
predicates in the state delta expression language), and program is
a state delta encoding the execution of the loop.

base-sd must be of the form:

(SO (pre:)
(mod:)
(env: OMEGA)
(post: Indvar-from

claim (fromlto)
program)

loop-sd must be of the form:

(SD (pre: from < Indvar
Indver < to
claim
program)

(mod: (no restriction])
(env:)
(post: indvar(#/.) - /ndvar + 1

claim(#/.)
program))

requirements: base-sd and loop-sd must be in the current state.

effects: If base-sd and loop-sd are in the current state,
PerformInduction adds the following state delta to the current
state:

(SO (pre: program)
(mod: loop-sd:mod)

(env: OMEGA)
(post: lndvar(#/.) - to

claim(/., to/ndvar)
program))

A.2.5 Mapping Between Levels

(ApplyMapping) meaning: Searches the current state for an "applicable" mapping
and "applies" it.

arguments: none

requirements: There must be an applicable mapping.

effects: Finds a mapping with mapping:from true In the current
state, and adds maplplng:to and mapplng:map to the current state.

82

A.2.6 Static Reasoning

(InstantlateContents place var)
meaning: Instantiates the contents of place to be var.

arguments: Place is already registered and var Is new; both are
atoms.

requirements: Place must be registered, var must be new, and
both must be atoms.

effects: Substitutes var for (.place) everywhere in the current
state, and adds the predicate (.place)=var.

(Derive exp) meaning: Inserts exp into the current state.

arguments: Typically exp is a predicate.

requirements: none

effects: Allows direct user alteration of the current state; thus
would not be used in a completely system-checked proof.

A.3 HIGH LEVEL PROOFSTEPS

'Our oxporionco with detailed proofs has shown that there are patterns of proofstep

soqutoncos that can be lumped together to a single (more abstract) proofstep. High level
proofsteps are generally only necessary for setting up a proof, for symbolic execution of
straight line code, for execution of alternation, for execution of Iteration, and for

porforming symbolic simulation.

Tiho sot of high level proofsteps forms a language that is compact and structured. Using

this language makes it easier to read or write proofs.

(Prove sd proof) meaning: Proves sd by proof.

arguments: ad is a state delta and proof Is a list of proofsteps.

requirements: Those of Open.

effects: Performs (Open NIL sd) and then sequentially processes
the elements of proof.

(ProposeMode breakpoint)

63

meaning: Symbolically executes from the current state until
breakpoint is reached or until a (Close) can be performed.

arguments: breakpoint Is a predicate.

requirements: none

effects: Checks to see If Breakpoint is true In the current state; if
yes, halts; if not, checks to see if (Close) Is possible; If yes,
(Close) Is performed; If not, checks to see if there is an applicable
state delta sd; if yes, performs (ApplySD ad); If not, halts with the
message "Proofcheckor has nothing to propose".

(ProvobyCases ad case-proof-list)
meaning: Proves (a state delta equivalent to) ad, by using the
case analysis specified in case-proof-list.

arguments: ad is a state delta, and case-proof-list is a list of the
form

((case 1 proof1) .. (case, proof,))

where ti- .cases are predicates specifying the different cases and
the proofs are lists of proofsteps which prove sd in case case i is
true.

requirements: Those of (CombineCases).

effects: Sequentially treats the elements of case-proof-list by
adding pred to sd:pre and then sequentially processing proof.
After the last element of case-proof-list is processed,
(CombineCases (sd I .. Sdn)) is performed where sdi is ad with
case I added to Its precondition.

(SymSimulato) meaning: Proves a series of simulation relationships.

arguments: none

requirements: none

effects: Assumes that the goal Is a list of state deltas to be
proved (ad ...). For each ad in the goal performs the following
sequence of proofsteps: (Open NIL ad), (ApplyMapping),
(ProposeMode b), (ApplyMapping), (Close). The breakpoint b in
ProposeMode is mapping:from of the mapping for which mapping:to
Is true In sd:post.

64

(InitProof program) meaning: Initializes the system in order to prove something (to be
specified in a later (Prove) proofstep) about program.

arguments: program.isp Is a file containing an ISPS program.

requirements: program must be a valid ISPS program.

effects: Translates program Into the internal state delta
representation, and initializes the placesystem using the
Information on the declared places in program.

A.4 STATE DELTA EXPRESSION LANGUAGE

li this section we describe the function symbols used in the state delta language. This

language Is Intended to accommodate all the needs of the whole system, from translating

a machine-description program in ISPS, to writing down the high level specification, to

writing down the proof. Thus we deal with placenames (program identifiers), bitstrings,

arrays, and several varieties of numbers.

DATA DOMAINS

P Places (in a machine; or in general any set of "names")

B Bitstrings

N Natural Numbers

Z Integers

a Rationals

A Arrays (considered as a superset of B)

(T.NIL) Truth values

In the following we give the definitions of the function symbols. The constant bitstrings

are value-length pairs written m(n) where m(2n, Note that there Is only one legal

bltstrlng of length 0, that of value 0. The symbols *,+,-,*,and :9 are logical equality, and

arithmetical symbols. Additional "support functions" are mod, int(x)nIntegral part of x,

85

maxlh(ab) max{(LH a), (LH b)), and tctous(i,n) (2's complement to unsigned), which

takes IZ and n(N such that -2n-1SI(2
n and returns that non-negative number which is

the unsigned value of the bitstring of length n representing i in 2's complement. Thus,

tctous(i.n)=if i>O then I else 2 ni. So, tctous(-3,4)=13, tctous(-4,3)=4, and tctous(-3,2)

is undefined. Notice that in all the uses of tctous below, the arguments satisfy the

conditions for the definition. "Expalf p then x else y" is a short form of writing a

definition of Exp by cases: If p is true, then Expzx; if p is false, then Exp=y. The union

of two sets is denoted by U; thus, for example, in the specification of LH, LH:PUAUN-->N

mans that LH is a function taking either a place, array (and hence bitstring), or number,

and returning a number.

(DOT p) .p Contents of p

"'()T:p.->A

DOT is an arbitrary function subject to the restrictions that (LH p)(LH .p)

and (HT p)-(HT .p).

(LIf x) Length of x

LH:PUAUN--)N
The length of a place is an arbitrary natural number.
The length of an array is the same as the length of all its rows.

The length of a bitstring b Is a natural number j such that (2J,

where I=(USVAL b).
The length of a natural number is one more than the number of binary digits,
needed to represent it.

(HT x) Height of x

HT:PUAUN--> N
The height of a place is any natural number
The height of an array is the number of Its rows.
The height of a bitstring or natural number is 1.

(USVAL b) Unsigned value of bitstring b

USVAL:B-->N
The case by case definition is given below.
Note that Places do not have USVAL's; however Numbers,
considered as bitstrings, do.

86

(TCVAL b) Two's complement value of b
TCVAL:B-->Z

(TCVAL b)z~f (USVAL b)(2 (LH W-1 then (USVAL b) else (USVAL b)-2 (LH b)

(VerBS I J)Bitstrlng of USVAL I (almost) and LH .
VarBS :NXN-->B
(USVAL (VerBS I j))ul mod 2J
(LN (VarBS I j))mj

(BSEOL a b) Equality between bitstrings

BSEOL:BXB-->B
(I3SEOL1 a b)=if (USVAL aW(USVAL b) and (LH a)(LH b) then I(1M else 0(0)

(USCONc a b) Concatenation of a and b

USCONC:BXB-->B
(USCONC a b)(VarBS [(USVAL a)R2(LH b) + (USVAL b)] (LH a)4(LH b))

(USSUB a m n) Substring of b from bit m down to n

USSUB:BXNXN--)B
(IJSSUB a m i)= if m>(LH a) then (USSUB a (LN a)-1 n)
elscif m~n then 0(0)
olso (VerBS int((USVAL a) mod 2M+1)* 2 -n) m-n+1).

(USSUB a M) m-th bit of a

(USSUB a M)=(USSUB a m m)

(BITS p (PAIR m n)) Subplace of p from bit m down to n

BITS: PXNXN--)P
(DOT (BITS p (PAIR m n))=(USSUB (DOT p) m n)

(BITS p m) Alternative form for (BITS p (PAIR m in))

(DOT (BITS p m):.(USSUB (DOT p) in)

(BITPLUS a W) Same length bit addition

DITPLUS:BXB-->B
(BITPLUs a b)z(VarBS [(USVAL a).(USVAL b) mod 2 maxlh(a~b)] maxih(a,b))
BITPLUS (essentially) zeto-extentis a and b to be the same length, adds them.,
and drops the carry, If any.
BITPLUS can be used to uniformly dellne USPLUS and TCPLUS.

67j

(USPLUS a b) Unsigned addition

USPLUS:BXB-->B
(USPLUS a b)=(VarBS (USVAL a).(USVAL b) maxlh(a~b)+1)
or:
(USPLUS a b)=(BITPLUS (USCONC (VarBS 0 maxlh(a,b)+1-(LH a)) a)

(USCONO (VarI3S 0 maxlh(a,b)+1 -(LH b)) b))

(TCPLUS a b) Two's complement addition

TCPLUS:.BXB-->B
(TCPLUS a b) is that bitstring of lengthi maxlh(a,b)+1 whose TCVAL Is
(TCVAL n)(TCVAL b). There are several possible ways to describe that
In terms of VarBS.
(TCPLUS a b)=

(VarBS tctous((TCVAL a)(TCVAL b),max~Ih(a,b).1) maxlh(a,b)4'1)).
Or in terms of BITPLUS:
(TCPLUS a b)=(Bl7PLUS (USCONC 001) (SE a maxlh(a,b)))F

(USCONC 0(1) (SE b maxlh(a,b)))),
where SE Is dofined below.

(USDIFFERENCE a b) Unsigned difference

USD11 rEIIENCE:BX(3--)B
(USDII-F ERENCE ab)

(VarBS tctous((USVAL a)-(USVAL b),maxlh(a,b)+1) maxlh(a~b)*1)

(TCDIFFERENCE a b) Two's complement difference

TCDIFFERENCE:8X8--)B
(TCDIFFERENCE ab)

(VarBS tctous((TCVAL a)-(TCVAL b),maxIh(a,b).1) maxlh(a,b).1)

(USTIMES a h) Unsigned multiplication

USTIMES:13XB-->B
(USTIMES a b3)=(VarBS (USVAL a)(USVAL b) (LH a).(LH b))

(TCTIMES a b) Two's complement multiplication

TCTIMES:BXB--)B
(TCTIMES ab)

(VarI3S tctous((TCVAL a)(TCVAL b),(LH a)+(LH b)) (LH a).(LH b)))

(USEOL a b) Unsigned equality

USEOL:BXf3-->B
(USEOL a b)z if (USVAL a)=USVAL b) then 101) else 0(0)

(TCEQL a 1)) Two's complement equality

TCEOL:BXl3-->B
[(TCEOL a b): If (TCVAL a)=CrCVAL b) then I(1) else 0(0)

(USNEQ a b) Unsigned inequality

USNEO:BXB-.>B
(USNEG n b): if (USVAL a)(USVAL b) then 0(0) else 101)

end similarly for the other bit relations: TCNIEO, USLSS, TCLSS, USLEQ, TCLIEQ, USGTR,
TCGIR. USGEG, TCGEQ

(B3ITMINUS a) Some length two's complement negation

I3ITMINUS:B-->B
(I3ITMINUS a)=(VarBS (2 (LH a)-(USVAI. a) mod 2(LH a)) (LH a))

(USMINUS a) Unsigned negation

USMINUS-.->B
(USMINUS aWVarBS tctous(-(USVAL a),(LH a).1) (LH a)+1)

(TCMINUS a) Two's complement negation

TCMINUS:B--)B
(TCMINUS aWVarBS tctous(-(TCVAL a),(LH a).l) (LH a)+1)

(SE a m) Sign extend a to length m

SE:13XN--)13
(SE a m) has the sign TCVAL as a (if m>-(LH a)). Thus:
(SE a m)= if m((LH a) then (USSUB a rn-1 0)
else (yarDS tctous((TCVAL a),m) mn).

(USSLO a m) Shift left m bits shifting In 0

USSLO:BXZ-')B
(USSLO a in)z if m(0 then (USSRO a -in)

else (USCONC (USSUB a (LH a)-I1-n 0) (USSUB (VerBS 0 (LH a)) rn-i1 0)).
This lost clause can also be written as:
(VarBS (USVAL a)12 mmod 2 (LH a) rn)

- - 89

(USSLi a mn) Shift left m bits shifting in I

USSL1:BXZ--)B
(USSLi a in): if W(O then (USSR 1 a -mn)

else (USCONC (USSUB a (LH a)- 1 -m 0)
(USSUB (Var8S 2 (LH a)-1 (LH a)) rn-i 0))

(USSLR a mn) Shift left rotate

USSLR:.BXZ-->B
(USSLR1 a mn): if W(0 then (USSRR a -mn) else

(USCONC (USSUB a (LH a)-m-1 0) (USSUB a (LH a)-m))

(USSID a mn) Shift left duplicate right bit

IJSSLD:BXZ-->B
(USSID a mn)= If (USVAL (USSUB a 0 0))z I then (USSLI a m)

else (USSLO a mn)

(USSI1O a M) Shift right mn shifting In 0

USSRO:BXZ->)D
(USSRO n in)= if in(0 then (USSLO a -in)

else (USCONC (USSUB (Varl3S 0 (LH a)) rn-I 0) (USSUB a (LH a)-1 in))

(USSR 1 a mn) Shift right mn shif ting in 1

US Sil: BXZ--) B
(USSR 1 a mn): if in<O then (USSLi a -mn)

else (USCONC (USSUB (VarBS 2 (LH a)_i (LH a)) rn-i1 0)
(USSUB a (LH a)-1 mn))

(USSIIR a mn) Shift right rotate

USSRR:BXZ--)B
(USSRR a in): if inCO then (USSLR a -mn)

else (USCONC (USSUB a (LH a)-1 mn) (USSUB a rn-i 0))

(USSRD a mn) Shift right duplicate left bit

USSRD:BXZ--)B
(IJSSRD a in)=if (USVAL (USSUB a (LH a)-i (LH a)-i))uI then (USSRi a mn)

else (USSRO a mn)

Note that all of the results of the shifts have length (LH a)

(USNOT a) Bitstrlng -logical NOT

70

USNOT:8--)6

(USOR a b) Bitstring -logical OR

ZeroR-etnd to maximum length and ORs

(USAND a b) Bitstring-logical AND
(USEOV a b) Bitstring-logical equivalence
(USXOR a b) Bits tring-iogical exclusive OR

Similarly

(EXPVAL a) TCVAL of right 8 bits

EXPVAL:B--)Z
(EXPVAL a)=(TCVAL (USSUB a 7 0))

(MANVAL a) Fractional value of left 24 bits

(MANVAL a)=(TCVAL (USSUB a 31 8))A 2'23

(FL VAL a) Value of a as a floating number

FLVAL:B-->0
(FLVAL a)(MANVAL a)t2 (EXPVAL a)

(NZEROP a) Not zero predicate

NZEROP: B--> (T,NIL)
(NZEROP a). if (USVAL a)zO then NIL else T

(POWER q i) Integer exponentiation of rationals

POWER:OXZ-->Q

(REALMINUS q) Unary arithmetic negation

REALMINIS:O-->O

(PRODUCT q r) Multiplication
(REALPLUS q r) Addition
(REALDIFFERENCE q r) Subtraction
(REALOUOTIENT q r) Division

All these from QXQ-->Q

(REALEQUAL q r) (Provable) equality between arithmetic terms

REALEOUAL:OXQ-->B
(REALEOUAL q r)=if q=r then 1() else 0(0)

(REAI.I.F q r) (Provable) less than or equality

REALLEO:OXO-->B
(REALLEQ q r)= if qr then 1(1) else 0(1)

Now we describe the terms dealing with arrays. Two arrays are the same iff they have
the same height and the same sequence of words. Thus: We have no function analogous

to USVAL for arrays, although it is an easy matter to uniquely assign a number to an array
on the basis of the USVALs of Its words. We number the rows of an array from top to
bottom, starting with 0. We have learned to view as natural the apparent discrepancy
between the top-down ordering of rows In an array and the right-left ordering of bits in a

bitstring.

(WORDS a m n) The rows of a from m down to n

WORDS:AXNXN--)A
(HT (WORDS a m n))=if n>_(HT a) then (HT (WORDS a m (HT a)-l))

elseif m)n then 0
else n-m+1

(WORDS a m) m-th word of a

(WORDS a n)u=.WORDS a n n)

(SUBARRAY a I j) The columns of a from i to J
SUBARRAY:AXNXN--)A
(HT (SUBARRAY a I J))=(HT a)
(WORDS (SUBARRAY a I j) m m)(USSUB (WORDS a m m) Ij)

(RANGE a) The concatenation of the rows of a

72

RANGE:->
(RANGE a):(USCONC (WORDS a 0 0) ... (WORDS a (HT a)-I (l4T 8)-i))

It is convenient to define (RANGE x y) for two lits of the explicit form
x=(USSU3 (WORDS a jx ix) ix ix) and y:(USSUB (WORDS a jy Jy) ly ly)
or In the degenerate case where a Is of length 1,
xx(WORDS a jx ix) and y=(WORDS a jy jy). Its value Is the word
consisting of all bits from x to and Including y inside a.

(ARRAYNGE ib) Forms b into an array of height h.

ARRAYNGE:NXB--)A
Dot mod only for b such that hJ(LH b)
(HT (ARRAYNGE h b))--h
(WORDS (ARRAYNGE h b) i Oz= if iKh then

(USSUB b (LH b)-1 -i'(LH b)/h
else 0(0)

(ARRAYCONC h a b) Forms a and b into an array of height h

ArIRAYCONC:NXAXA--)A
Defined only for h,a,b such that h~ divides the areas of a and b.
MHT (ARRAYCONC h a b))h
(WORDS (ARRAVCONC h a b) i i)z if iKh then

(USCONC (WORDS (ARRAYNGE h (RANGE (USSUB (WORDS a 0 0) (LH a)-1)
(USSUB (WORDS a (HT a)-1 (HT a)-1) 00))) ii0

(WORDS (ARRAYNGE h (RANGE (USSUB (WORDS b 0 0) (LH b)-1)
(USSUB (WORDS b (HT b)-1 (HT b)-1) 0 0))) ii)
else 0(0) F

AX5 THE SIMPLIFIER

SIMPLIFIER STRUCTURE

In this section we describe the structure of the simplifier and give a brief description of

the purpose of each of its files. Entry to the simplifier is through the function SIMPEVAL.

S/MfPCVAL(X) returns a term equivalerit to X If X is a term (legal expression) In the

simplifier's language. The simplification is processed recursively; that is, if X Is not

atomic, then the arguments of X are first passed to SIMPEVAL, and likewise for their

arguments. If no simplifcation or evaluation is possible (by the system) then the original

argument is returned.

SIMPLIFY

SIMPLIFY consists of two levels. At the top level, the function SIMPEVAL is the entry

point to the simplifier. An expression to be simplified is sent to the appropriate second

level routine by SIMPEVAL after its arguments have been recursively simplified by the

same process. This appropriate routine is chosen on a one-to-one basis depending on

the principal function symbol of the expression.

The second level routines consist of three parts: if the simplified arguments are not
4symbolic, the expression is evaluated and the value returned; If not, then the

expression is passed to one of the files listed below for further processing; if this does

not result in further simplification, the original expression with simplified arguments is

returned.

If the expression is of type real numbers or integers, or relations on them, and the

simplified arguments are constant numbers, then the evaluation is done by LISP

functions. If the arguments are symbolic, then the computation calls a routine In

REALSIMP.

If the expression is of type bitstring and the arguments are constant bitstrings, then the

evaluation is done by functions in MDTE. If the arguments are symbolic then the

computation calls a routine in ISPSSIMP.

If the expression is of type value of bitstrlng, and the arguments are constant bltstrings,

then the evaluation is done in SIMPLIFY by LISP functions and perhaps other second

level functions. If the arguments are symbolic, the computation calls a routine in

VALUESIMP.

If the expression is of type arrays then ARRAYSIMP is called.

If the expression is of type propositional calculus, and the arguments are not logical

constants (T or NIL), then LOGSIMP is called.

4 This conventon iS not strictly observed; some functions at this level do sinpification on symbolic expressions and/or

examine the data base.

74

Each of these files may call SIMPLIFY, each other, or OTHERBITSIMP and AUXILIARYSIMP.
In addition, they all search the data base for current facts which may Imply some
simplification that is not generally true.

REALSIMP

This file contains the main routines for simplification of algebraic expressions over the
domain of the real numbers. The relations and functions recognized, along with their
Internal syntax, are addition (REALPLUS), subtraction (REALDIFFERENCE), multiplication
(PRODUCT), division (REALOUOTIENT), exponentlation (POWER), unary negation

(REALMINUS), equality (REALEDUAL), strict order (REALLESS), and weak order (REALLEQ).

In addition, the maximum and/or minimum bound on a real variable Is round where possible
by searching the data base for the entries of the form (REALLEQ var n) or (REALLEQ n
var) whore n Is a numerical constant. The internal syntax for these minimum and
maximum values is REALMIN and REALMAX.

ISPSSIMP

ISPSSIMP is the file simplifying bitstring expressions (more or less those of ISPS). An
important point is that we allow bltstring variables to have variable lengths (including
zero) as well as variable contents. A constructor expression (formed of concatenation,
substring selection, and shifts) is reduced to a standard form as a concatenation of
substrings, where two adjacent substrings may not be combined any further. This
standard expression is almost canonical; that is, two equivalent bitstrings reduce to the
same standard expression except in certain cases involving registers whose variable

length may Include zero.

Two's complement or unsigned plus and difference are replaced by an equivalent
addition or subtraction between two bltstrings of equal length and sent to OTHERBITSIMP
for processing. In the case of bitstring multiplication, some simplification Is accomplished

If one of the arguments is a bitstring with known value.

If the expression is an equality between itstrings, then simplification is accomplished in
many cases, either completely (i.e., to the bltstrings 1 or 0 representing T and F) or
partially. There is also some use made of REALSIMP and VALUESIMP, for example, In the

~75

equivalence between unsigned equality of bitstrings and real equality between their

unsigned values.

OTHERBITSIMP

OTHERBITSIMP contains routines for use in simplifying bitstring expressions, and is in

principle subordinate to ISPSSIMP. Included are routines for simplifying the non-carry

bitstring addition BITPLUS, sign-extension, substrings of concatenations, squashing

tog ther two adjacent substrings in a concatenation, and replacing a substring of the

form A<llI(a)-i :0> by A.

VALUESIMP

The two main expressions simplified in VALUESIMP are USVAL(A) and TCVAL(A), the

unsigned and two's complement value of the bitstring A. In addition FLVAL(A), EXPVAL(A),

and MANVAL(A) are expressions represeting the value of A as a floating number (of

customized 24-bit mantissa and 8-bit exponent), the two's complement value of the

exponeint of A, and the two's complement value of the mantissa of A, respectively.

Typical steps In a recursive simplification are changing a TCVAL into a USVAL where

possilie (and sending the result back to SIMPEVAL), changing TCVAL(A) Into TCVAL(B)

whore B Is simpler than A, returning an Integer instead of TCVAL or USVAL, or "pushing

TCVAL in" and roturing an expression of the form TCVAL(A)+TCVAL(B).

ARRAYSIMP

ARRAYSIMP simplifies expressions in the array language described in Microver Note #1 2.

This language allows all possible row and column and subarray selection, reshaping, and

concatenation of two rectangular arrays of constant height and length. It Is completely

Inteo ratod with the bItstring language in that a word in an array is a bitstring, an array of

height I is a word, and the length of an array Is the (common) length of its words. The

height and area of arrays are calculated here, but the length is calculated In

AUXILIARYSIMP.

LOGSIMP

LOGSIMP recognizes formulas of the propositionai calculus written with implication and

disjunction. Free individual variables are allowed, and in this case we treat the formula

78

as if all the free variables were universally quantified.

AUXILIARYSIMP

This file contains the simplifications of the other "service" functions used In the
simplifier. First, we have the representation of an arbitrary continuous plecewise linear
function on bounded domain:

(SLANT v (aI) (1 s0) (2 s2) ... (I s)

where v is the function's argument variable, a is the left endpoint, h Is the height of the
graph at a. and from then on the graph continues 1 units to the right with slope s,, and
then 1, units with slope s2 , etc. There are routines for adding slant functions, finding

maximuLm or minimum of two slants, converting from standard arithmetic notation to slant
notation, etc. Slants are used mostly as lengths of variable length bitstrlngs.

There are routines for calculating the length of bitstring expressions, inserting and
extracting parentheses, "multiplying out" arithmetic expressions, solving linear
equations, and converting from rationals to bitstrings representing them In floating point
format.

PRINCIPLES

In the following we describe the principles behind some simplifications for expressions in
the state delta language. This is not intended to be a complete survey of all possible
simplifications, but rather a representative list of those simplifications found useful In the
actual practice of verification, especially the square root algorithm of the FTSC. Thus
there is a close correspondence between these simplifications and those actually
Implemented in the system. Here, though, we describe only the "interesting" ones, and
some of these may be stated in different form without mentioning all the cases and
specifying the implementation details.

BSC (bitstring constructor) terms

The primitive operations for constructinpi bitstrings are concatenation afb, aubstring
selector a<l:j), and shifts. The definilions of concatenation and shifts are standard. Our
conventions for substring selector are that bitstrings are numbered from the right-most
bit a<O) to the left-most a(Ih(a)-1> where Ih(a) Is the length of a. Note that we shall

allow bitstrincjs to have variable length. These are called generalized bltstrlngs. For

Integer I, J a(I:j) represents the string consisting of bits I down to J of a, that Is,

a~i>@a(i-1> ... @aj>. If j is greater than i, then this string Is nonexistent, and is called

EMPTY. If K<0 or l Ah(a) then a<!> is EMPTY. In the following f(i) and g(i) will be functions

attaining integer values at integer values of the argument I. We will occasionally omit

mention of I and write just f. g.

A (generalized) substring is a term at the form a~f:g> where a is atomic.

A simplified stibstrinn is the EMPTY string or Is a substring of the form a~f:g> where

Note that wheni f and g are constants, these conditions become flh(a), g O, f2 g. Note

also that we cannot demand Vi f(i) g(i), since for example a(O:-i> is either EMPTY or

a(0) depeniding on i. From our definition of the semantics of substring, it follows that

any substrinic is equivalent to a simplified substring: a~f:g)= a~min~f, lh(a)-1),

max(g,0)> or EMPTY. If a canonical simplified substring Is desired, some standard values

of f and g will have to be taken in the case that f(i)<g(i), for example f(l)0O and g0i)z1

Longth is defined for a (generalized) substring as the following function of I: (Let a, f.

and g be functions of I)

lh~afg'1(i - f f (i)? lh(a(i)) then lh~a<Ih(a)-1tg>(I))
elseif g(i) < then lh(a~cf:BAi))
elseif f(i~g(i) then
else f(i)-g(i)+1.

An equivalent closed form Is

lIh(a~f:g)) a minlh(a), max(min(f, lh(a)-1) - max(g, 0) + 1, 0))

This allows the following rewriting: Let 001) denote a string of f zeroes.

If a Is of the form 0(f)(g:h>, then a =t 0(lh(a)). (1)

A I3SC (bitstring constructor) term is any term formed from atomic bltstrings,

concatenation, substring, and shifts.

78

A simplifiod 138C term is of the form b i@b, 0 .@ where n21 and each b is a simplified

substring.

It car ho shown that every BSC term Is equivalent to a simplified BSC term. The main

simplification rules used In simplifying a BSC term are

(a@ b)<f:q> =i a<f-Ih(b): g-Ili(b)) @ b(fig> (2)

a SLO f 0(minll(a),-f))@a< 1li(a)-t - 1 :max(f-f,0) >@0(mlnfih(a),t) (3)

Exnnilelt Assuime lh(a)z4, ih(b):5, lh~carG.

(1MPTY@(a(-2:-1 1 >@(b@c)<9:O>)G(5))9:4>

(b(3:O>@c<9:O)eO(5))(0:4)

c(4:O)EO(1)

BSA (bltstring arithmetic) terms

All the bitstring addition operators are translated Into BITPLUS; BITPLUS is noncarry

addition betwoen two bitstrings of equal length. When the sign + appears between

bitstrinrjs it will always denote BITPLUS. We also use + for numerical addition, but It is

clear from the cot.. ,xt which is intended. USVAL(a) Is the nonnegative Integer

represented in binary by the bitstring a.

If b and c oa- constant bitstrings and USVAL(b).USVAL(c) (21~) then

(aeb)e+c =t a@(be~c)(lh(b)-1 :0>()

A similar simplification rule holds for c+(a~b). Of course the two sides of 5 are

equivalent even If b and c are not constiants, but then the right side Is not necessarily

79

simpler.

BSR (bitstring relational) terms

There are two main classes of bitstring relations: unsigned value and two's complement.

Every unsigned bitstring relation is equivalent to the the corresponding real relation on

the USVAL's of its arguments. For example, USEQL(a,b) is equivalent to

USVAL(a)=USVAL(b). Similarly for two's complement. The simplification of this type of

reltion will be given in this section. The section on real relations will include (among

others) "mixed relations", i.e., those containing both USVAL and TCVAL. TCVAL(a) is the

(signed) Integer which is the two's complement interpretation of the bitstring a.

Equality

We let a = b denote USEQL(a,b)=T and similarly for TCEQL. We write z with no

subscript if identity between bitstrlngs Is intended.

if Yij (fI(i)(j_<f2(i) v f2(i)(jf I (I) -- >a (j>O), then

a(fI:g> =us a1f2 :g> (6)

If a, =us 0" and bI =US b2 and lh(bI)lh(b),or if bi =US b2(lh(bl)-l:0> and al =US

a2 b 2<lh(b)- 1 .lh(b)>, then

al@bl =US az@b 2()

If a =us 0 and b sus 0, then

001) =us 0 (8)

Of course, thoro aro the obvious generalizations when an arbitrary constant Is In place of

0.

If at "US a, andb1 = b2 or a " b2 and b, "US a, then

abI US a+b 2

If USVAL(a)>_2 lh(a)-2 f or O>TCVAL(a))-2 f -f, then

a<f> z 1 (10)

If a<f1 :g1> aus 0 for some f1ef, g1:Sg, then

80

a~f:g> 0 01)

If a a sb and a(Ili(a)- 1> =b(lh(b)-1)> (or Ih(a)xlh(b)), then
a TC b (12)

I (f > = (f +1) > afl(h(a)-1I>, then

a(f:0) TC a (13)

If a~f+1>=a~f>:n<t-1) and b~f.1>zb(f>=b~f-1), than

(a +±b)(f) z(a ± b)(4.1) (14)

ift-~~ a< f, :g 1) =sb~f2'g,') f,'af, g,':g, fl'-f f2'-f2, g -%g2-

or if a(if(a)-I~cg) = u b(Ui(b)-1Ig) , a(f,+ .)... ja(h(a)-1 >w0, b(t2+ .>... sb(Ih(b)-1I>r=O,

a<f I:q I> a us b(f 2:g 2> (15)

Ordering

0 5 TC a (16)
if. and only if a~lh(a)-1 >20.

BSV (bltstring value) terms

If a(lhI(a)-1)20, then

TCVAL(a) ::t USVAL(a) (17)

If a<lh(a)-1>=0, then

USVAL(a) ;t USVAL(a(Ih(a)-2,.0>) (18)

TCVAL(aeb) * 21hb)TCVAL(a) + USVAL(b) (19)

USVAL(aCeb) * 2Ih(b),USVAL(a) + USVAL(b) (20)

If Ill(a)zlh(b), a<t- 1)b<f-1)uO, a(f~xa(f.1 >u ... ma(lh(a)-1), b(f>ub(fe1~ >... ub(lh(b)-1 >,

then

TCVAL((~b)(f:0)) co TCVAL(a~b) (21)

If lh(a)=lh(b) and TCVAL(a) + TCVAL(b) 2: 2 then

TCVAL(a~b) TCVAL(e),TCVAL(b)-2 lh(a~) (22)

81

If lh(O):lh(b) and TCVAL(a) + TCVAL(b) - 21a), then

TCVAL(a+b) = TCVAL(a) + TCVAL(b) + 2 1h(a) (23)

If lialb)and ..2 11(a)-1 STCVAL(a) + TCVAL(b) (2 1h(s)1l, then

TCVAL(a~b) = TCVAL(a) + TCVAL(b). (24)

RA (real arithmetic) terms

We list here only the rules concerning RA terms which contain BSV terms.

Let c , and c 2 be functions of I (as are the f's and g's). If cl,c2>O, fl1 Jf2, g1 g,, and

Ys(C1 I) c,() =2 g2(001,20I)), then

C, v(afg> c c2 lv(a(f2 :g>) (25)

Note that we do not demand that Vi(f2 g)

If aflh(a)- 1 >1, then
lh(a) (6TCVAL(a) + 2 USVAL(a). (6

RR (real relational) terms

TCVAL(aflh(a)-1 :n>) S 2,n-TCVAL(a) (27)

82

Appendix B
FTSC HOST

FTSC HOST

!FTSC.MICRDMACHINE

!Tliis version (Mar.24, 1978) has miade it through uiftet G18-69A(16).

fIICROFTSC:.-

lin. Mcmoryc

rEMl[a: 32:k<31:0>! ACTUALLY MEM IS 48 BITS WIDE BUT HERE
!WE JUST DEAL WITH THE PART THAT FITS
!ONTO THE CPU DATA BUS.

ROM~

!FTSC.CONTRO1 P214-21G

CONkTROr1 [a: 10V31 <31:80>, !THREE SLICES OF CONTROM
CONTROT2 (0:10231 <31: 8>,
CON TRO13 18: 1023) < 3:80>,
MI CWOR~i <31: 8>
MICWORO2.c31 :8,,
MICWORD3<13:0,
RFDI<4:0. !tICWDR01<31:27,
RFOZ<9:8,.. !MICWORD1<26:17,
RF03<": 0, !!ICWORD1.c16: 14,

-F4<:a>, !MICWOROI413:11,
RF0S<2:0., !iIICWOROI1c18:8,
RPOG<':0,. ItICWORD1<7:5.
RF07<0>, !MICWORDI<4,
RF0S<0,, !tIICLORO1<3,,*
RF139<Z:8,., !MICWORO1<2:0,,
RFIO<2:0>. !MICWORDd'<31:29,
RFII<0>. !rICWORD2<c28>
RF12<0. !MICWORO2.c27>
RF13.8,., !MICWORD2.c26>
RF14<,., !MICWORD2.<25>
RFlS.2:0., !tICWORD2<24:22>

RF1G<c2:0>, !MICWORD2.c21:19>
RF17<3:8,.. !MICWORD2<18:16>
RFI8.c3:8,., !iICWOR02<14:11>
RFI9<0>, !MICWORD2<10>
RF&"Oca>, !MICWORD2<9>

88

RF2I<0>, !MICWORD2,<8>
R F2 <2: 0 > !MICWORDZ<7t:5
RFZ3<0>, !MICWCIIIO2<4>
RFZ4<0>, !MICLJORD2<3>
RFZ!5<0>. !MICWopD2<2>
RFZG43>. !MICWOR02<1>
RF- 7<0>. !MICLJD24o>
RF'3<O3>, 1CWORD3413>,

RF304)O>. !rllCL.ORO3cll>,

RF31<4:0>, !MICWORD3<10:6,,
RF32<0>. !MICWORD3<S>,
RF33<0>, !MICLJORO3<4,
RF34<0>. !MICLJORO3<3>,
RF3S<0>. !MICLJORO3.2>,
RF3G<3>, !MICWORD3cl>,
RF37<0>. !MICLORO3<0>,

!FTSC. ROtISEGUENCER P213.217

RECONFIGROl1[0: 1023] <31:8>, !RECONFIGURATION ROM P121
!rECONFI GRnli: MEM ('F7FF: 'F880] P69
RAD<9:0>.!NEXT ROM ADDRESS
ROtlA4-fl>: -RFtl2.S>.
R0M1ASd3>: -RFO2'<4>,
ROr1AG.tB>:-RF0O:<3>,
ROMlA70>D: nRFP,-'<2>
RO1A8 -,0 : .RF 02 <I>,
ROMA9<0.: .RF0Z<c,.

AMODE<0>, !-0 1FF ADDRESS MODE-B
MOtl~D<O3>, ! -1 IN MONITOR CPU
CNTRL<0'. !-l IF CONTROL PANEL WANTS ACCES TO CPU
SUMMI <0. !"SUM<32>1 . THE I NPUTS TO THE ALU
!ARE SIGN-EXTENDED TO 40 BITS AND THEN A DIFFERENCE BETWEEN
!SUtlMl AND SUM<31> INDICATES OVERFLOW (DYFF).
SUMMI1<0>,!I"SUJ<33>"

1FTGC. ROIFUNG TI ONOECODER P. 2.28

RFflaD.-O>,
RFO1-4I>.

RFDD3.<0>,
RFDO4 (0>,

RFD04cO>,

RFDB0S<.
RFDUGo
RFOO9<0,
RFD1 O,

84

RFOI I <0>.
RF012<0>,
RFO13<,.
RFD14<0>,
RFO1S<d,
RFD16<3>.
RFOI7<0>.
RFDI8<0>.
RFO19<0>,

RFOO<0>,

RFD%2d)>,
RFD,3<8>.
RFD'4<0B-,
RFD S8O>
RFD G<8>,
RFDO7<0>,

RFD 9<0>.

RFO31<0>.

*eExternalI.Connect ions**

SETROI: -SETRIOM (CONTROMi * CONTROM2, CONTROM3)

*Ilieecj s t er s*dc

!F TSC. GENERALPURPOSEREG I STERS P209

MAJCPR10: 71 <23: 0>, ! 8 MANT ISSA GEN PURP REGS
MANGPRIN23:,., IFICTITIOUS MANTISSA INPUT
EXPGPcR (0: 73<7: 0, !8 EXPONENT GEN PURP PEGS
EXPGPRIN<7:0>, !FICTITIOUS EXPONENT INPUT

!FTSC. WORK INGREGISTERS P1209

MANJR(0: 71 <23: 0>. ! 8 MANT ISSA WORK ING REGI STERS
EXPWR (0: 71 <7:80>. !8 EXPONENT WORKING REGISTERS
MANEXTREG<23: 8>: UMANWR (4) <23: 0, !MANTISSA EXTENSION REGISTER
EXPEXrREG<7:0.: EXPWR (4147:8>, !EXPONENT EXTENSION REGISTER
MANt1ErIOAT<2'3:0>: .MANWR (SI 23: 0>, !MANTISSA MEMORY DATA
EXPIIEt1OAT<7: 0>: .EXPWR (6] <7:80> !EXPONENT MEMORY DATA
MANf 1E(1AOO<23: 0>: .MANWR (6) <23: 0>, !MANT[ISSA MEMORY ADDRESS
EXPrIEIADO<7: 8>: .EXPWR (6) <7: 0>, ! EXPONENT MEMORY ADDRESS
fI1ANPC <"3: 0>: .IlANWR 17) <23: 0>, !riANT I SSA PROGRAM COUNTER
EXPPC<7: 0>: -EXPWR (7] c7:0>, !EXPONENT PROGRAM COUNTER
MANWR I N<23: 0>. 1F ICT IT IOUS MANT ISSA I NPUT
EXPWRINc7:0>, IiCTITIOUS EXPONENT INPUT
MANWX<23:0>, IMANTISSA LJX OUTPUT

85

WRYB<31: 0>. !WRYB OUTPUT
MANWRYB<23:B>: -WRYB<31:8>, !MANTISSA WRYB OUTPUT
EXPWRYB<7: 0>: -WRYB<7: 0>. !EXPONENT WRYB OUTPUT
EXPWX<7:0> !EXPONENT WX OUTPUT

'FTSC. INSTRUCTIONREGISTERP2B9,213

INR<31:>, !INSTRUCTION REGISTER
RA<2:0>:-INR<21:19>o !SEE PG0
RB,2:O>:-INR<24:22>,.

!OTHER REGISTERS

HSWI<S:0>, !HARDWARE STATUS WORD 1
HSW'<31:0>. !HARDWARE STATUS WORD 2
MRAR<15:8>. !MOST RECENT ADDRESS REGISTER
MONMSKREG<31:8>, !MONITOR MASK REGISTER (REALLY?)

!FTSC.PIN (PRIORITY INTERRUPT NETWORK) P229 FF

PERMSKREG<31:0>. !PERIPHERAL MASK REGISTER
INTREOREG<7:0>, !INTERRUPT REQUEST REGISTER
!HOW IS THIS LOADED? SEE 23G AND 112.
!RTI AND ARFLT ARE LOADED FROM INSIDE CPU.
!THE BITS CORRESPOND TO INTERRUPTS IN THE ORDER
!GIVEN ON P74 FOR INTMSKREG.
INTREOFF<7:0>, !INTERRUPT REQUEST FLIPFLOPS

REOPRIORITY<31:0>, !HIGHEST ON-BIT OF INTREQFF
INTMSKREG<7: 0>, !INTERRUPT MASK REGISTER
PENDING<7:0>. !PENDING INTERRUPTS REGISTER
PRIORI TYLEVEL<31:0,. !PENDING INTERRUPT PRIORITY LEVEL P112

INPROCFF<31: 0>,! I NTERRUPT IN-PROCESS FLIPFLOPS

ENADISFF<8>!ENABLE/DISABLE FLIPFLOP(1-DISABLE?)

ALU

!FTSC.ALUINPUTSELECTOR P.208

!MANTISSA

MANINA<23:0>,!MANTISSA ALU A INPOnT
MANAZS<2S:0>.lEXTENDED INPUT FOR
!CALCULATING OVERFLOW AND CARRY
MANINB<23:>, !MANTISSA ALU B INPORT
MANBZS2SS:0>.

IEXPONENT

88

IL

EXP INA<7: 0>,!EXPONENT ALU A I NPORT
EX(PA9<8: 0>.
EXPING<7:0;. !EXPONENT ALU B INPORT
EXPB9<8: 8>.

1FTSC.FUNCTIONINVERSION P.207

!MANTISSA

t1ANCIN.-8,. !MANTISSA CARRYIN
MANSELECT-c3: 0>, !MANTISSA SO-93
INVIIFN<C>. !tIANTISSA INVERTER
EXPCOUT<O>, !EXPONENT ALU CARRY-OUT

! EXPONENT

EXPCIN<8>, !EXPONENT CARRY IN
EXPSELECT~c3:0>, !EXPONENT SO-S3
INVEFN<3>. !EXPONENT INVERTER

!FTSC. ALUFUNCTIONSELECTOR P.26

!MANTISSA ALU OUTPUT FUNCTION (1N2-0)

MANOVFDO., MANTISSA OVERFLOW

fIANCOUT<8>, !MANTISSA CARRY OUT

!EXPONENT ALU OUTPUT FUNCTION

EXPOVF<0>, !EXPONENT OVERFLOW

!FTSC. AUTOMULDI VSUBP222

!AUTOrIULTIPLY FUNCTION P224

!THIS IS A VERY TENTATIVE VERSION

AUTOMULFN<3: 0>, !AUTO MULTIPLY BITS
I NVER TOR<0>: -AUTOMULFN<3>, !I INVERT ALU FUNCT ION
ALUBLSO:AUTOMULFN<c2>, IALUB LEFT SHIFT
ALUBZ<8>: -AUTOMULFN<1>. 1ALUB ZEROS
CRYSTS<>: -AUTOMULFN<O>, IINTERNAL CARRY STATUS
iULBI TSl: 0>, !MULTIPLIER BITS

!FTSC. ALUOUTPUTS P204

SUM<31:0. SUM OUTPUT

ZOT8<0>, !ZERO DETECT SIGNALS
ZOT2'4<0>.
ZOT32<0>.
FOT32.<C>, !FULL DETECT SIGNAL
CRY1303<0>, MANTISSA CARRYOUT
OVF8dJO>. !EXPONENT OVERFLOW

!WHAT ABOUT MANTISSA OVERFLOW?

EXG23<0>!.1 1FF EXPONENT (I.E.SUM<7t8I> GTR 23

ie*Signals.FI ipflops**g

!FTSC. ENOC01JD1 T IONSGENERATOR P223

!NOTE THE QUESTION MARKS BELOW!
ENncforJDS<14':0>. PLIST OF ENOCONDITIONS
SL~rltlRP3'<>: .-ENDCONOS<12>1
SL)rMrZRS<A3: -ENDCONDS<1I>.
StUrICLS<0>: =ENDCONOS<10>,
SUrlJ1LS<,.: .ENOCONOS<9>,
SUrIELS<0>, -ENDCONDS<8>,
SUtlEZLS<B,: -ENDCONOS<7>,
WRYr1RS4I[>: -Er.'DCONDS,<G.
LJRvrl-RS<.-:='ENDCONOS<S5.
WRYt1LS<l>: -ENDCONOS<4>,
WRYI12LS<O>:ftENOCONDS<3>,
WRYER'a<0>Z ENDCONOS<2>,
WRYELS<0>: -ENOCONOS<1>,
WRYE2LS<0>: -ENOCONOS<0>,

!FTSC.FSFG (FLAG AND SPECIAL FUNCTION GENERATOR)
!P.226,94

EXTAOD~D<>. !EXTERNAL (TO THE CPU) AODRESS SIGNAL
ROI1ADO<O>, PRECONFIGURATION ROM ADDRESS
HSWIEN<dh, PHAROWARE STATUS WORD 1 ENABLE
HSWZEN<O>. PHAROWARE STATUS WORD 2 ENABLE
LDRlMRAR<8>, !LOAD MRAR: HOW IS THIS SET? SEE 229.
PERSKcD, !PERIPHERAL MASK SIGNAL
I NTMSK <0 . ! I NTERRUP T MASK S IGNAL

IONrMSK<0>. !tlONI TOR MASK SIGNAL
RHTIME<C>, READ HARDENED TIMER S IGN1AL
PROFLAGc2'-: 0, !PROGRAM FLAGS

INRPT<.cI INTERRUPT SIGNAL FROM PIN TO ROM SEQUENCER

FLTINTc8B. IFAULT INTERRUPT SIGNAL

88

7FTSC. ILLEGALOPCOOEOETECTOR P2.19

ILLOPC<O>, !ILLEGAL OPCODE SIGNAL
FETCHMAX4cS:8,. !MAXIMUM VALUE FOR FETCH OPCODES
STOREMAXdcS:O>, lMAXIhUM VALUE FOR STORE OPCOOES

!FTSC.OVERFLOW DIVIDE CHECK AND CARRY OUT STATUS FLIP FLOPS P221
(FTSC.OVFDIVCRYFF)

OVFF<G>, !OVERFLOJ FLIP FLOP
CRYFF<c8>, !CARRY OUT FLIP FLOP
DIVFF<O>. !DIVIDE STATUS FLIP FLOP
ARFLT.C8>. !ARITHIIETIC FAULT SIGNAL
FCHSTR<S:0>.!CPU FETCH/STORE CONTROL SIGNALS

!FTSC. GENERALPURPOSEFLIPFLOPS P219

GPSFD1<.1, !GENERAL PURPOSE FLIP FLOP
GPSFO2<IO>. !GENERAL PURPOSE FLIP FLOP 2
GPSF~3.cO>!GENERAL PURPOSE FLIP FLOP 3

**CPU. Bujsos*

!FTSC. CPUFETCHANOSTORE P230

ItAB<15:80, CPU ADDRESS BUS

1M08<31:0>!CPU DATA BUS

tLoop. T i nier

1FTSC. LOOPTIM1ERP219

SEO11<0>, !LOOP BRANCH CONDITIONS
SEOIS<3>.
SEQO2<>.
SEQ30bfl>,
SE01I3<0>,

CPIJCLK<8>. !CPU CLOCK PULSE
COUNTER.-6: 0> !COUNTS UP TO 113 PULSES
ASUI3FF<OC., !AUTOSUBTRACT FLIP FLOP
INTf1UL<1:0>, !FOR AUTOfIULTIPLY
FLOIIUL<1i:0

*ttProces sesi**

89

!FTSC.ROrISEQUENCER P213.217

SEQUENCER: -

BEGIN
IF FLTINT->
(RAD.-D NEXTW1PIIS218
IMMfl3-RECONF IGROMI (3 NEXT
PERilSKREG<7>-l NEXT
LEAVE SEQUEIINCER) NEXT
IF ILLOPC->!P21I8
(RAO.-2 NEXT LEAVE SEQUENCER)
NEXT
RAD<9:G>-RF0Z<9:G> NEXT
DECODlE RF01 ->
BEGIN
0: - (RAfl<5>-ROMA4: RA<4>-ROMA;A.3>-OA6;

RADC>-ROlA7:RAcl>-ROMA8;RAO>.ROMA9).
1:- (RAD<S>.-INR<30>:RAO<4>..INR<22>;RAO<3>.INR<28>

2 :- (RAO1<..,-ROMA4;RA<4>-.EXG23;RAO<3>.OVF8;RAO<2>-SUM<>;
RAtPI>-Z018%RAO<>-SUl<7>).

3: - (PAD <5 .- ROtA4: RAO <4 >-SUMMI ; RAD<3 >4ZOT24; RAO<2>.SUM<29>;
RAD<1 >-SLIM30>:RA<>-SUr<31>).

4: - (PADO<f>lpnA4 RA<4 >ROAS RA<3>*-I NR<31 >; RAD<2>- INRd8:

S: - (PAD < S >-ROflA4; RAO< 4 >-RO1AS; RAD <3>.-0VF8; RAO <2>.-SUM <23>;

6: - (RAO.5>-ROMA4; RAD<4>.-RO1A5: RAD<3>.-ZDT24; RAO<2>E-SUM<29>:

7: - (RAO.:5'.-ROI1A4: RAO-4>-ROrIAS; RAODc3>.-ZT32; RAD<2>-SUMk29>;

8: - (RAD.S S>-ROf1A4 1. AO<4 >-ROMAS; RAO<30, VF8; RAD2i-SUM<27>s
RAO< I >-SUf<29>: RAO>-SUI<28>) .

9: - (RAD-5 5> -RO1A4 : RAD<4 >-ROIA5: RAO<3>4-ROMA6; RAO<2>.GPSF03;
RAO <I >-GPSFOZ: RAO,'-GPSFO1) ,

10: - (RAD.<S >.RO?1A4: RAO<4>-ROtIAS: RAO<.3>-ROIA6; RAD<2>--SUM<8>;
RAO < I>-ZDT: RAD<>.SUM<~7>) ,

11: (RAD< >.-rOtA4: RAD<4>-ROMAS: RAO<.3>.ROMAG -,RAD<2>#-Z0T32;
RAO< I >.-SUII<8>: RAD'ca'.SU1.31 >).

1 (RAO'zS>.-ROI1A4 - RAO<4>-RO1AS;RADc3>-ROrAG; RAD<2>.RQ!A7;
RAO<>-SMIr :RAODcB>.-SUMI31>),.

13: - (RADOzS >-ROt1A4 ; RAO.4>ROMA: RA3>.RO1AGRAc2>-ROMA7;
RAOKI-ZOT24RAD<O..SUM431>),

14: - (RAD-c S>-POI1A4: RAO<c4 >.-OMAS: RAODc3>-ROMAG; RAD<2>#.ROMA7;
RAD<1,I.-ZOT32: RAO>.-SUM1.31 >),9

1 S: a (RAtS>-R01A4 1. RAOc4>.-ROMAS; RAO(3>.&ROMA %RAO<2>.ROMA71
RAO< 1 >#-SUr1<8>: RAO>#,.SUMcl ,),I

16: - (RAD<cS,4ROtIA4 : RAD<4>-.RO11AS: RAO.<3>.RO11AGiRAD2>*.-ROt1A71
RAO<I >-GUM<8>: RAD<B,-SUM<.9>) ,

17: - (RAD.S,.ROI1A4: RAO(4>..ROMAS: RAO<3>-R0iAGi RAD<2.-ROMA7i
RAO< >-.. EO1 13; RAD<O>-0VF8)

18: - (RAD<S.-RO1A4: RAO4>..ROMA5; RAODc3>.ROMA6: RAD4<..ROMA7i

90

RAO<1I>.-CNTRL; RAO>-lNRPT),
19: - (RAD<S>.-RfrIA4: RAD<4>-ROt1AS: RAO<3>-ROMA6; RAD2>*-ROM1A7;

RAD<1 >-R011A8:RAC a->.-ZOT32),
2:- (RAD<S>.-ROI1A4; RAO<4>..ROMA5; RAO<3>.R0MA6: RA<2>-RO1A7;

PAD- >.-ROrIAS:RAO<8>'-SEQI 1).
21: - (RAL?<S'-RflIA4 :RAO'4>'-ROrIAS:RAO<3>-RO1A6;RAD2>-ROIA7;

RAO,4I>-ROMAS:RA<>-SE015) .
22:- (RAnl<5>-ROMA4:RAD<4>-ROMAS:,RAO<3>-RO1AG;RAD<2>-ROM1A7;

RAD~I>.-ROIA8; RAD<0>.-SEQ22),
-3: - (RAO..E-ROrA4RA0<4>.ROMA5: PAO<3>'-ROMAG; RAO<2>.-ROMA7:.

RAO <I >'ROMA8; RAO<e>.-SEQ30).
24: - (RAD-S>-ROrIA4:RAD<4>.-ROtAS;RAO<3>-ROrA;RA0<2>-ROIA7;

2S: - (RAD-1S>'-rOrlA4: RAO<4>.-ROMiAS; RAD<3>'-ROMAG;RAO<2>-ROMA7;
RAD<I>.RO1A8;RAO<0>.-OVFF),

ZG: - f(PAD <S>-1OMA4RAD<4ROMAS;RA<3>-ROAG;RAc2>-ROMA7;
RAO< I >- ROtlA8: RAO<O>.-CRYFF) ,

27: - (RAD <S,.rOi1A4:-,RAO4>ROM1AS: RAD<3>-ROMAG; RAD2>-ROMA7;
RAD- I >.-ROrlA8: RAO>.-FOT3') ,

28- (RiAO->-RlA4RAD<4>-ROMAS,RA <3 >-ROMA; RAD<2 >..ROMA7;
PAD.- I > flrAS: RAD<O>..ZDT8).

29- (RAD>MA4 RAD<>-ROMA; RA<3>ROAGRAD<2>-RO1A7;
RAD< 1 '.-ROt1A8; RAD<>-rONr1D),.

30: - (fA0<.3>-fA4; RAD<4>-ROrAS: RAO<3>.-RO!AG; RAD<2>*-ROMA7;
RAD<l>-RC0AS:RADd3>'-SUM<3I>),

3 1: - (RAD3<5flRn1lA4:RAO<4>.-ROtIAS; RAG<3>.ROrAGRA<2,'ROMA7t
RAD< I >.ROtAS; RA0.-AOOE)

DECODE INR<I8:1G>->
BEGIN
0: - Af1ODE. 2,
OTHERWI SE: -AtIOOE'-1

ENO. !OF SEUENCER

NFXTRIWLOnn: -
DECT. I N
I-1ICLORfl-C0OJTRoM1 (PAD] NEXT!NEXT RIMORO
f1ICWL12.-COlNTR3fl2 (RAO] NEXT
MICWlJRO3-CONTROr13 [RAO) NEXT
PF)1 <4: f>l41IfR0I<31 :27>tNEXT
RF02-:3: 0>4 11CW0R01<26':17>NEXT
RFo3<2: -TIicwnR~l<16: 14>NEXT
1',P4<2: 0:>4MICW.OROD1<3:11>NEXT
RFflS<2:0>-micLJRDl<1:8>NEXT
RFOGi<2: 0>-iICUUiRDI<7:5>NEXT
RF07-0.-MlCLJORDI c4>NEXT
RFOS<0.--MI CL.ORD1 <3>NEXT
RFOJ-<": 0>-MI CWIORDI <21 0>NEXT
RFI0c2: 03>.4I CL4ORD2.c31 :29>NEXT
lRFI1<8.'-MICWOJR2<28> NEXT

RF12<0-MrICL.JRO2<27> NEXT
rlJ1<0>.41!ELJRDZ<26G> NEXT
RF14<0>ICW0rRoZ<cS> NEXT
RF ISC:0~>.41 ICI4ORD2<24:22> NEXT

R1<:[b...MICUORD2<21: 19> NEXT
RF7<:>41ICW0JRD2 18: 15> NEXT

RF1 8<3: 0>-1I CLORO2<1 4: 11> NEXT
RF19<0>.41ICW0OZ<10> NEXT
RF:fld)>-1zCW4R'<9> NEXT
RFZ1<0-MrICW0no:<8> NEXT
RFC: -.- MICW0RO-<7:5> NEXT
RF-3 (]>41I CC-nu<4> NEXT
RF24<0>.41ICWURDo<3> NEXT
RF25-.o>-rIcICW0R02<> NEXT

RF2G<3>IICW0CROZ<l> NEXT
RF27->-rl1CLWCIRD2<0> NEXT
RF284bl.ril CW0fRt3<13>rNEXT

Rr-'nl.b4>crIno~ii311>IEXT
riF3I .c4: rJ".-rICLORD3<10:6>NEXT

RF13-0-.-MI CWPRD3<4>NEXT

RF34<o.--MICW0RO33>NEXT
RF3S<.3>.-rll CLCR3<2>NEXT
RF36.:0J>.-IiCOR03<1 AEXT
RF37<0>.-MiICL4ORI3<0>
END,. !OF NEXTROMWLORO

!FTSC. ROrIFUNCTIONOECOOER P.220

DECOER:-
RAEr
RFL3HI-03 NEXT
RFMI I -f IJXT
RFU02-0 INJE T
RFOO' :,-,I NEXT
PFflfl4.-0 NEXT
PRr:DOS.kl NEXT

RFW)NEXT
HFDi'374J NEX T
RFOOS.-0 NEXT
RFDDO3-O NEXT
RF010.-0 NEXT
PF01-0 NEXT
PFU12-0 NEXT
RFD3.-0 N4EXT
PF014.-0 NEXT
RF015.-0 NEXT

02

AOBO 169 LAIVERSITY OF SOUTHRN CALIFORNIA MARINA DEL RET INFO-ETC F/S 9/2

MICROCODE VERIFICATION PROJECT.(U)
MAY 80 S D CROCKER, L MARCUS. D VAN-MIEROP F30602-78-C-00o8

CLASSIFIEO
RADC-TR-80-42 NL

22 fffffffffff
innuuunnununu
Sc

1$11- Jil .

11111111

MICROCOPY RESOLUTION TESI CHARI

RF01643 NEXT
RF017.-0 NEXT
RFD18-0 NEXT
RF019-03 NEXT
RFD2O..8 NEXT
RFDZI.-0 NEXT

RFD2Z..8 NEXT
RF02-8- NEXT
RFOZ4.43 NEXT
RFD2S-0 NEXT
RFO2G-0 NEXT
RF027.-0 NEXT
RFDZ8-0 NEXT
RF029..8 NEXT
RP3O-O NEXT
RF031.-0 NEXT

DECODE RF31 -

BEGI N

2: -RFiDO.-I.

3: -IFOU3-1.
4: -RFOO4..

6: -RFOOG-1,
7: -RFD07-1,
8:-IIFOOC.-1.

13:-RFDI3-I,
14: -RFD14..1 ,
15: -RF015.-1,
12: -RFOIC.-1,
173: -RF0D17.-I.

19: .wRFC)l.

17: RFDZ17-1,
12: .RF022.-1,
23: .RF023.-1.
24: -RFDZO.4,
25 : .RFO2S.-1.

26.:-.RFD"3-1.
24.8: F .1,

29: .RF029-1.
38:.-RFD3O.-1.

31: uRF031...1

93

ENDJ
END. 'OF DECODER

!THE NEW VALUES OF M1ANOVF AND MANCOUT STILL HAVE TO BE CALCULATED
!ALONG WITH M1ANOUT BELOW.

MANOUT<24: 0>:-
BEGIN
DECODE PF37.>
BEGI N
0: - (rANA25C4:13>c<tIANINA NEXT MAN1325t24: B><tiANINB NEXT
(DECODE IIANSELECT .>
BEGINJ
8: .fArJCOUT,.-.r1~tOUT.(MANA2 S~c24:0>~ AND MANB2S,24: 6>),
1: -1A!ICOU7 -,:1'A?-JCUT.-(tANA2S<'c24: 8> EOV flANB2S5c24: B>),
2: MAJ'COUT,?W4N0UT-,. (NOT MANA2S(24:0.) + 8@MANCIN,

3: -IAtNCOUTo.,I1ANOUT.4IANBS '<24: 8> + B&IMANC IN,
4: -t1ArCOU To~t1AOUT.- (NOT MANB25<c24: 0>) + 0.MANC IN.
5: -fAUCOU rt.,-flANOUT-MtAA256<2,4: B> + OoMANC IN,
6: -MANiCOUT,.-rlAUOUT.-MANJA2S<24: B> + MANB25.c24: B>.8.MANCIN.
7: wflAUCOUT-MANOUT.U1 77777777. (8&IANC IN),
8: MANiCOUTiP- AN'OUT-MANB25<24: B>.NOT MANA25<24: 8>. 1219ANCI N, ! Some times i t
!Iook'n like l1ANA'S<c24:0> above should be just MANINA. Similarly in next line-
9: 41ANoCOU Ti ilANOUT-MANA5<24: >.+NOT MANB25<24: 8>.8?IANC IN,
10: -MIJO ,-1NUMN2< 4 >-MN MANCIN),
11: -fANCOUTc$1AINOUT- (NOT MANB2G<24: 8>) + - (BeNOT MANCIN),
12": MArJCOUT.$IANJOUT-MANB2524: 8,.- (0NOT MANCIN),
1 3: ut1ANCOUTior1ANOUT.- (NOT IIANA2S<24: 8>)+ - (OoNOT MANCIN),
14: mMANCOUTi-.tlAf.OUT...(MANA2'-S.<24: 8> XOR MANB25<24: 0>),
15: -lANCOUTi:r1ANOUT-(MANA2S<24: 8> OR tIANB2S<24: 8>)
END)).
1: - MANA25ScUMANINA NEXT
MANI32S< -MAN INB NEXT
IF ALUBLS->1ANB'f5.4IANB2"S SLO 1 NEXTr
!FOR AUTOrIULTIPLY SIGN-EXTEND MANTISSA TWO BITS BEFORE SHIFTING
!BUT NOT EXPONENT?

(DECODE MANSELECT .

BEGIN
8: -MANCOUThr1ANOUT-.(IIANA2S AND MNS2)
1: -MAfJCOI JT~t41AN0UT- (tANA25 EOV t1AN25),

2-MANCOUT,;,MANOUT" (NOT MANA25) + &IMANC IN,
3: -MANCOIJT,-$1IANOUT-412 + 0St1ANCI N,
4: wMANCOUTntIANOUT..(NOT MANB25) + OttMANCIN,
5: -MANCOU TpMANOUT.4IANA25 + BeMANC IN,
C: -MANCOUT$1ANOUT-rIANA2S + MANB2S+O3&IANC IN,
7: 'MANCOU T&IfANOU T-UI77777777. (8uMANC EN),
8: -MANCOUTtr1ANOUT-MANB2S+NOT MANA25. OeMONC IN, ISomet imes it
1 looks l ike MANAZIS above should be just IIANINA. Simi larlW in next Ilins.

9: .MANCOUTtMANOUT..MANA2S.NOT MAN2S.6,0ANC IN,

94

18: MANCOUT--I1ANOUT.4ANA'>S...(e9NOT tIANCI N),
11: .t1ANCOUT,41ANOUT- INOT IIAN2S) + - (04NOT IIANCIN).
1 2: .rANCOLITi,-tANOUT.4AN2S,..(8L4NDT 11ANGIN),
13: .r1ANCDUToM4AIOur,-(NOT MANA2S)+ - (8PNOT IIANCIN).
14: -r1ANCOUT~i1,ANOUT, f!1ANA2'S XOR MAW3S),
15: -tANCOUTI(r1ANOUT-.UANA2S OR rIANB26)
END))
END
END. LOF MANOUT

!THE NEW VALUES OF EXPDVF AND EXPCOUT MUST STILL BE CALCULATED ALONG
!WITH EXPOUT BELOW. SEE LINES 8-13 BELOW.

EXPOUT<8:0.
BEG I N
EYPA9<-EXPINA NEXT
EXPB3<-EXPNP3 NEXT
IF ALU1BLS->EXPB.-EXPB9 SLO I NEXT
fDECODE EXPSELECT .>

BEG IN
3: -CXrCOUT,;:1XPOUT-EXPA9 AND EXPD9,
1: .EXTCO'JTEXPOUT.-EXPA9 EOV EXPB9.
2 : -DECODE EXPCIN.>(EXPCDUTPEXPOUT-NOr EXPA9.

EXPCOUToEXPOUT4NO7 EXPAS + B@RF19 +Bel).
3:-DECODE EXPCIN->(EXPCOUTeEXPOUT-EXPG$J

EXPCOUToEXPOUT-EYPBS 09RF19 +91),
4:-DECODE EXPCIN.>IEXPCOUTEXPOUT.NOT EXPB3,

EXPCOUT@EXPDUT.NOT EXPBS .9,RF19 +Bel).
S:-OECODE EX"C IN.> (EXPCOU1 eEXPOUT.EXPA9,

EXPCOUT@EXPOUT*.EXPA3 .9.RF1B +B.1),

G:=EXPCO.ITi-)EXPOUT.-EXPA9 + EXPB9 +. BoEXPCIN.
7: -EXPCOu)T,,EXPOUr...777, (O.EXPC IN),
8: -EXrCOUT,-:JEXPOUT.-EXPB9+NDT EXPA9 + BtEXPCIN,
9: -EXPCOUThtEXPOU.-EXPA9+NOr EXP89 + 8IeEXPCIN,
13: -DECOD)E EXPCI N.> (EXPCOUTPEXPOUT.-EXPA9.- (86RF19.1),

EXPCOUT@EXPOUT.EXPAS),
11: .DECODE EXPC IN.> (EXPCOUTPEXPDUT--NOT EXPBS.- (BF1S4 1),

EYPCOUTeEXPOUT..NOT EXPB9).12: 'DECODE EXPCIN.>IEXPCOUTeEXPOUT.EXPB9,-(8.F1941),
EXPCOUTPEXPOUT-EXPBSI

13: mOECOOE EXPCIN.> (EXPCOUTh.EXPOUT.-NOT EXPA9+- (8.RF19+1).
EXPCOUTh&EXPOUT4JOT EXPA9),

14: -EXPCDUToXPOUT.EXPA9 XOR EXPBS,
IS: .EXPCOUT~iEXPOUT..EXPAS OR EXP83
END)I
NEXT
OVFS..EXPDVF4-XPOUT<8> XOR EXPOUT<7>
END, 'OF EXPOUT

95

!FTSC.FSFG (FLAG AND SPECIAL FUNCTION GENERATOR)
1P.226.94

FSFG:-!FLAG AND SPECIAL FUNCTION GENERATOR
BEGIN

IION4iSK.-RHT IMIE-PROFLAG.- NEXT
EX TADO-RO1AO-HS~lJEN.-HSW2EN..PERMSK..INTMSK.. NEXT
DECODE ItlAB .

BEG I N
"F860: - HSLJIEN-1,

"8:- HSW2EN.-1,
"F02 Ml1r4lSK-1,

"FS03: - PERt1!K.1,
"F0: I NTHSK.-1I

"F80G5:- RHTIMEIE.
11IF I MAD3 GTR 'F80S AND I MAB LSS 7P809 .~ERROR?

*'F903: -PROFL-AG.-I MA841: 0>,
"FSOA: -PRrOr:LAG. I MAB2: 0>.
"F8UiD: -PROFLAG. IMAB<:2: 0>,
"FSOC: -PROrLAG- I MAB<Z: 0>,
"F800: -PROFLAG-IMABc2: 0>.
" F8DE: -F'ROFLAG.-I MAB<2: 0>.
" F80:: -PROFLAG-I MAB<2:8.
OTHERW.ISE:-!SEE P G9
((IF ((IlAB GEG "F808) AND (ItIAS LEa "F7FF1).o>
ROr1ADD.-1)

(IF ((MAB LSS "FO08) OR (IMAB GTR "F7FF)).>
EXTADO-1)
END

END. IOF FSFG

!FTSC. ILLEGALOPCDDEDETECTOR P219

DETECTOR: -
BEGIN

IF RFD12->(ILLOPC-0 NEXT LEAVE DETECTOR) NEXT
IF (RFDDI OR RFDII)->
(ILLOPC-IIDB<c20> NEXT LEAVE DETECTOR) NEXT
!OR InlD<2>? ON PG4 IT SAYS BITll.IMDB<28>
!BUT ON 205 IT SHOWS S1T10.IMIDB <21> AS INPUT.

DECODE INR<31>>
BEGIN
0:- IF OmINR<30:26i GTR FETCHMAX a:ILL-OPC4-1.
I:- IF 8@INR<30:2S5 GTR STOREMAX *.PILLOPC*.4
END
END. !OF DETECTOR

96

LOOP:.
BEGIN
PENDING-PENDING OR INTREOFF NEXT
(IF REOPRIORITY LEO PRIORITYLEVEL .>LEAVE LOOP) NEXT
PRIORITYLEVEL - REOPRIORITY NEXT
(IF PRIORI TYLEVEL LEO INPROCFF -> LEAVE LOOP) NEXT
(IF ENADJSFF W> LEAVE LOOP) NEXT
INRPT.-1 NEXT
IF RF27 W>iNTREOREG<PRIORITYLEVEL> -a NEXT
INPROCFF<PRIORITYLEVEL> 4 1
END, !OF LOOP

PRIORITY:.-
BEGIN
REPEAT
BEGIN
REOPRIORITY -REOPRIORITY + 1 NEXT
(IF (INTREOFF SRO REOPRIORITY) EOL 1 -
LEAVE PRIORITY) NEXT
(IF (REOPRIORITY EOL 8) -> (REOPRIORITY *-8 NEXT
LEAVE PRIORITY))
END
END. !REOPRIGRITY-the level of highest interrupt requested.

!FTSC.PIN (PRIORITY INTERRUPT NETWORK) P229 FF

PIN:-
BEG IN
IF PERr1SK.>PERrISKREG-1IMOB NEXT
IF FLTINT.>PERISKREG7:..1 NEXT
IF ARFLT.>INTREOREG(7,,1 NEXT
!ADD THE OTHIER PRIORITIES HERE.
IF PERMSKREG<7> *>INTREOFF@INPROCFF.8 NEXT
IF INTI1SK -- INTr1SKREG..IMOB NEXT
IF NOT PERM'OKREG<7. u>INTREOFF -(INTREOREG AND NOT INTMSKREG) NEXT I1 IF MLINT -> ... LEAVE PIN NEXT

IF ILLOPC -> ... LEAVE PIN NEXT

REOPRIORITY<.-- NEXT
PRIORITY0 NEXT
LOOP() NEXT
IF (RFD10 OR RF217 OR PERMSKREG7.) a> INPROCFF-1-0 NEXTIALL OF THEM
!THERE STILL MAY BE SOME IN PENDING

IF (RFOO1 OR RFDO)oENAISFF*.IMB<c23, NEXT
IF RFO13 u>ENAOISFF*-1 NEXT
IF RFD12 ->ENADISFF40
ENO.1OF PIN

IFTSC.LOOPTIMERPz19

TIMtER:-
BEG IN
COUNTER40CUNTER +1 NEXT
IF RFD14 *>(COUJNTER-SE11-SEOS..sQ22.SEQ3g-*SEoll3 4) NEXT

DECODE COUNTER w>
BEGIN
11: wSEO1 ,
is: mSEOIS.1,
22: .SE022Z'1
311t SEO311-..

113: .SEQ113*4,
114: vCOUNTER*08 IMaybe not: or maybe need tuo counters:

lone f or setting SEO and one for counting microsteps.
END
ENOIOF TIMER

tlicrainstruct ion.Cycle

CYCLE IMA IN1
BEGIN
DELAY(1) NEXT
RAO..1 NEXT
FETCHMAX."35 NEXT ITHESE ARE THE MAXIMIUI OP-CODES FOR

lINR41,. RESPECTIVELY
STOREIAX.-"68 NEXT
COUNTER..B NEXT
REPEAT
BEGIN
NEXTROMuORD() NEXT
SEOUENCER() NEXT
DECODER() NEXT
IF RFO21. (GPSFS1..CPSFS24I.CPS34ASUIBFF4) NEXT
lAUTO MULTIPLY FN. P224.

DECODE RF37.3- (AUTOMLFN4,
IDECODE RF?3~.-
BEGIN
0: .MUL I TS. INTMUL. I INTEGER FORMAT
1:.MULLITSFLIFLOATING POINT FORMAT
END
NEXT
DECODE CRYSTS.IULBI TS .
BEGIN
Be sAUTOI1LLFN..2,

9J_

1: uAUTOr1ULFNb.S.
2s -AUTOMULFN-#15.
3: -AUTDIIULFN,.u11,
4: -AUTOrIULFN.O,
5:@wAUTOIULFN.
6: -AUTOIULFN..#11.
7: -AUTOMLULFN*.913
END))
NEXT

IIANLJX.4ANUR [RF033 NEXT
IIANURYB'4IANWR (RFOS) NEXT
EXPWX-EXPWR (RFS41 NEXT
EXPIIRYB-EXPUR (RF861 NEXT
IF TSC. GENERALPURPOSEREGI STERS P288

'FTSC. ALUINPUTSELECTOR P.28

!MANTISSA

DECODE RF20 -

BEGIN
9: -IANINA.4IANGPR (RA],

1: -fAN INA.4IANGPR (RB)
END
NEXT
DECODE ALUBZ -

BEG IN
6:-DECODE RF21 DR AMDOE-. (MlANI NB*flANGPR [RA] MfANI NB41ANIJX).
1: .IANINB.
END
NEXT

! EXPONENT

DECODE RF28 .
BEGIN
8: -EXPINA#.EXPGPR (RAJI
1: .EXPINA&.EXPGPR (RB)
END
NEXT
DECODE ALUBZ -
BEG IN
0: -DECODE RF21 OR AMODE-:, (EXPINB*FEXPGPR (RAI ,EXPINB*EXPUX),
1 :-EXPINB4
END
NEXT

so

'FTSC.FUNCTIONINVERSION P.207

INVERTOR..(RF3G AND INVERTOR) OR (RF37 AND INVERTOR) NEXT

DECODE RF23.>
BEGIN
0- (INVEFN.-INVERTOR; INVrIFN*.INVERTOR).
1: -INVr1FN-.INVERTOR
END
NEXT
DECODE INVEFN ->
BEG IN
0:.a (EXPC I N-RF24: EXPSELECT.RF18) ,
1: u (EXPCIN..NOT RF24;EXPSELECT.MNT RF18)
END
NEXT

IFTSC. ALUFUNCTIONSELECTOR P.286

IMANTISSA ALU OUTPUT FUNCTION (IN2.9)

1EXPONENT ALU OUTPUT FUNCTION

EXPOUTI) NEXT

IF ASUBFF &3(INVrIFN.RF33) NEXTIINVERT CARRY IN SITS TO MIANTISSA-SEE P 222
DECOE INVIIFN -
BEG IN
0:-(DECODE RF23 a

BEGIN
St .MANC IN.. EXPCOUT,
1: .MANC IN..RF25
END:

MANSELECT*.RF17).
1:.(DECODE RF23
BEGIN
98.r1ANCIN. EXPCOUT. !Note this deviation(?) from the documentation.
1:.MANCINA.OT RF25

MANSELECTA.OT RF17)
END
NEXT

IIANOUT() NEXT
IFTSC.ALUOUJTPUTS P284

100

IMDB'-SUM-M4ANOUT423:g>.EXPOtJT<738, NEXT lHere I assume that
!SUtLSBEN.SUMMSBEN are alwayps on so that
lany output of the ALU goes to 11108 and SUMI.
SUMf14tANOUT<24 -NEXT

SUMIM2-lIANCOUT NEXT
DECODE SUM<31:8>=
BEGIN
0: -ZDT24.1,
OTHERWI SE: .ZDT24*8
END
NEXT

DECODE SUtMc7:0>u>
BEGI N
0: -ZDT8-.-1
OTHERUI SE: .ZDT84.
END
NEXT

DECODE SUM->
BEG IN
0: -fZ0T32.1: :FT32.83).
#37777777777:.- (F0T32-1; Z0T32.)
OTHERU ISE: (F0T32*.ZT324B
END
NEXT
EXG23-9 NEXT
IF (SUM-c7:8> GTR 23) OR (SUM<7t& LSS -23) a), EXG23.1 NEXT
IFTSC.ENDCONOI TIONSGENERATOR P223

!NOTE THE QUESTION MARKS BELOW!

DECODE RF22 ->
BEGIN
8: -ENDCOND5-SUI1<8>SUM-c1 >eURYB<31 >sURYB<c30>eSUM<31 >*SUMc30)-

*URYB<31>.URY831>.(RF2S XOR INVMFN)e' 9eURYB<1e'F69,
1: tENOCONDS-SUMMIeSUII2.URYB<c31 ,eURYBc38".' 89.SUcg

9SUM<9i.(RF24 XOR I NYEFN)*' 9eSUII8>e' 6,
!THERE IS STILL SOME DOUBT IF THE ABOVE LINE IS CORRECT. SEE P223
2: -ENOCONOS-'1 OSUMc31>eSUM<7>SUM<6,eSUMc3l>eSUM<30>

eSUM<8g.SUM<9>e (RF25 XOR I NYMFN)*'9SUM&*' 61.
31 mENOCONDS-' 00eSUM17>eSUM6,@9' 66SUM8*SUM<S>

etRF25 XOR INVMFN)& BSSUIc8,SU31>eSUM39,
4: uENDCONDS-UYBc8:,eRYBcSUM7SU<lc,eRYBc31,.U*MYBc3g,

OSUM9.,SUI-11-eRYB4UR,*YBS,.SUM4-cB,. RF24 XQR INVEFt4.' 1,
5: 1 ENOCONOS*-SUMM 1 9S"2eSMc71,SUMcG>@WRY8<31 >eIIRY84&U

*SUMlcB,.SJMtcl)eUYBc7,eUWR VBcS.SUMc9Be' 39,

101

6: uENOCONDSi.SUM<131 leSUIMc31 SM7eLMG"Ycl-A~3:
.SUrMcS>.SUrI @eRYBc7>eWRYBc6>gSfLc9<Bi@' 1.

7: imENOCONDS-' 80eSUM<7>@SUM(6.LJMYB<31 >eWRYBc38>eSUM<8>
eSUMrIci eYB(7>.URYB(6>eSLMf1(bSLJ131,.S fl3b

END
NEXT

1AUTODIVIDE FUNCTION P.225

IF RF36w(INVERTOR-SUtl(31>) NEXTIPREVIOUS SUM

1AUTOSUBTRACT FUNCTION

IF RF022u,(ASUBFF.1) NEXT

IF RF007-f3PSF1.1 NEXT
IF RFD08maGPSF2.1 NEXT
IF RFOB9.,GPSF0341 NEXT

!FTSC. CPUFETCHANDSTORE P230

IF RF26.,!nErlORY REOUEST(SPEED UP")
(DECODE RF32m>
BEGIN ADDRESS
St -IflAB-URYB41S:$>9'EXPWRYB,
ltwIMA6.-(WRYBclS:8)-@EXPuRYB) + #10088 (ADO 4396
END) NEXT

IF LOBIIRAR --A tIRAR..IIAB NEXT-
ITHE FLAG AND SPECIAL FUNCTION GEN ERATOR COMES HERE (FTSC.FSFG)
(STILL INSIDE IF RFZ6-iol

!SINCE IT COMIPUTES THE VALUE OF EXTADO WHICH IS NEEDED BELOW.
FSFG() NEXT

DETECTOR() NEXT

ICRYFF.-0 NEXTIOR IS RESTORING ENOUGH? SEE BELOW
I DIVFF. NEXT!DITTO
IF RF03n>OVFF.l NEXT
IF RF004.w.OVFF4. NEXT
IF RFDSS.),CRYFF4%KANOUJT NEXT

102

IF RFOOG m*,OIVFF4,. NEXT
IF RF018-> (OVFF..IMDB<c21> NEXT!RESTORING

CRYFF*-IflOB<M9, NEXT
DI VFF'.IflB<22>.) NEXT

IF RF28.- (IMD1B-ENAOISFF.0IVFFeOVFFI.LLOPC.CRYFF
ePRIORI TYLEVEL42: 6lIANPCO7:9XPPC) NEXT

ARFLT.O~IVFF OR OYFF NEXT
FCHSTR'.RF2GRF27@RF28,RF39@RFD1 SEXTADO NEXT

!NOTE ORDER IS DJFFERENTTHAN ON 230
!19 EXTADO set in FSFG before type of address Is known?

DECODE FCHSTR.>
BEG IN
#45:- ItlDB'4lEM[ItAB] INORMAL FETCH (INR<31>u8)
#41:. IIEM[IMABI.-IMDB, !NORMIAL STORE (INR<3h1-)
044:- (IF HSWlEN *>ItiOB.HS.Jet1RAR NEXT lCPU FETCH P226,1388
IF HS142EN .>IMOB-HSW2 NEXTIP98
IF M1ONMSIK *>IMD.MONIISKREG NEXTIP87
IF PERMSK ->It1DB-PERJ1SKREG NEXT
IF INTMSK *>IMOB.-INTtSREG,'IPGB

lET CETERA.

#40:.'CPU STORE
(IF HS~l1EN ->HSW1-IMOB<31:16> NEXT
IF HSU-7EN -> HSW2-rtOB NEXT
IF IIONtSK ->MONMSKREG-ItIDB NEXT
IF PERISK ->PERMSKREG-It1DB NEXT
IF INTI1SK ->INTMSKREG-IIDB),

!ET CETERA.
#24:#25:.(IIAB'-"F888 +4 PRIORITYLEVEL NEXT

!"VECTOR JUMP". INTVEC ON 216.
IMDB.-MEM[IIABI),
WPIN SENDS OUT ADDRESS OF INTERRUPT SERVICE ROUTINE; SEE 73.
f16: #11: .(IMA13-PRIORITYLEVELNEXT!"JSBI"w INTRET ON 216.
MEtl[IIABIIMOB),
!e:1:--!JSB2
!SPC1 IS SAME DECODE VALUE AS JSBI
lSPC2 IS SAMIE DECODE VALUE AS NORMAL STORE
#47.mIDB41EM[IfAB]I!RFI
!RET IS SAME DECODE VALUE AS RFI

END
NEXT

!FTSC. GENERALPURPOSEFLIPFLOPS P219

103

PiN() NEXT
DECOLlE IiF03.>
PEG 11 W21
0: tl1ANCrR I N-SUcl3: 8>.
1: -t~4P -UMRaSMAoU<1 0-

4:l1AfnLPR IN0
3. TAtJCrR I N- 1 MOB<31: 8>,

4: -iMANGPR I Nl-SLUr1< 30: 8 ,--SUMMILS.
5: MiAGPR 1 N-S.UMMrRStqSUM1<31 :9>,
G: -T1AiJGPRJ IJ-SUr12"9: 8>eSUMM~LSeSUMr12LS,
7: -rIANGPR IN < - I OB < 5:8 >
ENDo
NEXT
DECODE RF8-
FCC .14
0: .I:XPGPRI N-SUrl<7: 0>,

5: - EXPGrH I N-SUM < 3: 1;,.MLS

G: 4XPG'n 1 rN-SUMIS: 0,oSUMELSaSUMEULS,
7: -L X'PIR1 N.- I UB <7: 0>
EN~D

NEXT

IF HF11I> (DECODE RF4"0>
SEG1 N
0: .llANGPRlP3A1-1ANGrPR IN,
1: -M1AN*GPR ERB] -r1ANGPRIN
END) NEXT
IF flF12.> (DECODE RF20.>

18. .[XP'GPR[RAJ -EXFGPR IN,
1: .EXPGPR (RBI -EXPGPRIN
END) NEXT

!FTSC.WORKINGREG1STERS P.209

DECODE PFI5->
BE G I N
0: fl1AtJWF71N-WRYB<~31 :8>.
I : -rlArJF RI N-WRYM.ZRSi4JRYMRSivWRY831: 18;,
2: .rANtRIN-SU<31:8>.

4: .r1ANWRIN-LJRYBC30: 8>,LRYrILS,
5: .rIAN.J I N-WPYfRSoWRYS<3i:9>,
6: -1ANW.R I N-WRY<29: 8>eWRYIL^OWRYM12LS.
7: -rANWRIN.IMDB<4S:8>
END
NEXT

104

DECODE RFIG.>
BEGIZN
8: mEXPWRIN-LRYB7: 0>,
1: -EXPWRIN4JRYBc3: 2>.
2: .EXPURIN-SUIMc7:8,
3: uEXPWRIN.-IMDB<:,>
4: .EXPWR I N4RYB<c6: 8>9WRYELS,
5: uEXPWRIN-LRYB<8: 1>,
6: ..EXPLJR I N.-URYB<S: B~eURYELS.LIRYE2LS.
7: mEXPWRIN-.ItDB<7: 8>
END

NEXT
IF RF13->
(DECODE RF87.>
BEGIN
0: "tANWR (RF85J .4ANWR IN,
1: -MANUR CRF031 41ANJR IN
END) NEXT
IF RF14->
(DECODE RF08.>
BEGIN
0: wEXPLJR RF06I -EXPWRIN,
1: -EXPLJR RF043 ..EXPLJRIN
END) NEXT

DECODE RF37.> (INTMUL-FLOMUL-0,
(I NTMUL.-URYB<3: 2> NEXT
FLOMUL-WRYBcll: 10>)) NEXT

IFTSC. I NSTRUCTIONREGI STERPZ09,213

IF RF020 -> INR.IMOB NEXT
IF RFOIS a> (RA..RA + 1 NEXT

P8.-RB + 1) NEXT!I4HAT HAPPENS IF RA OR R8 GETS TOO LARGE?
IF RF3S -> RB..RB +~ 1 NEXT
TIMtEROI

ENDIOF REPEAT IN CYCLE
END!OF CYCLE
)!'END OF IIICROFTSC

105

Appendix C
FTSC TARGET

PTSC TARGET

IIACROFTSC: u(

v*fesimorU**

liEMl 8:32K) c1:&p

Regi stersi

COUNTER-c31:8>. !Loop counter

!WATCH OUT: THE COUNTER HERE IS NOT THE SAMlE AS IN FTSC.IIIC!
GPXR 11: 71<31:8,0, 18 general PurPose registers
WO<3lsB>, !Working register a
WIc31:0>, !Working register 1
W2<31:0>, !Working register 2
U3<31:0... l~orking registr 3
EX<31:8>, !Extension register
110<31:8>, !Memory data
MA<c31:8. !Memory address
PC<31:0>, !Program counter
EXPOUT<8:8>, 19-bit output of exponent ALU
SUII<31:8,, 132-bit output of ALU
ALUA'c33: 8>,
ALUB<33:0>,
EXPA9c8:13>,
EXP89c8:08,
INTPRIOR<31:0>, !highest pending interrupt level

INR<31:8>
AMODE<c2: 8>: uINR<18: 16,
RA<218>:w INR<21:19>.
RBc2:0,: uINRc4:22>,
OPCOOE<6:-INR<31: 25>,

MlACRO GPXRA:=*IGPXR (RA] I,
MIACRO GPXR~g-lGPXR (RB)II

iffS i gna I Sid(

OVFF4cB,

107

ffiECES BL P&aoor nu

CRYSTS<S>,
SUMM2<8>,
SUMMI<8>,

OVF8<0>,
DIVFF<8>,
CRYFF,
INVERTOR<O>.
EXG23<e>,
INRPT,
MON<cB>.
ASUBE.
EXMODE, !Executive mode
ILLOPC.
DISINT, Idisable interrupt

MACRO STATUS:- IEXMODEeOISINTsOIVFFoOVFFeILLOPC*CRYFFeNTPRIOR<2: b I

**Addres ing.Fetching*s

INSTRUCTION:-
BEGIN
INR-MEM[PC] NEXT
MA<-INR<IS:B> NEXT
PC.PC+I
END,

ADDRESS:-
BEGIN
DECODE AMODE->

BEGIN
0:2:.NOOP). fRog-rug, Immediate, direct

3:.MA,-MEM[MAJ. Indirect
4:-(MA-MA+GPXRA NEXT lIndexed, post-Increment

GPXRA*-GPXRA+1),
6St(GPXRA..GPXRA-1 NEXT Ilmdexed, pro-decrement

MA4IA GPXRA).
6:-MA4 -A+GPXRA. lindexed
7t-MA4IEM(MA+GPXRA] Ilndexed. Indirect

END
END.

OPERAND:.
BEGIN
IF NOT INR<31>=>

(DECODE AMODE=>
BEGIN
8:.MD4-PXRA, IThis is elightly different from

1 the real machine: there AMODE is checked In each function and sometimes
I even if AMODE a 0. GPXRA does not have to go through MO.

ISO THERE'S NO NEED FOR ALL THE 'DECODE AIMODE"'S IN THE BODY OF THE PROGRAM!
IBUT MAYBE IT'S BETTER TO LEAVE THEM IN. AND ELIMINATE THE (THEN) EXTRANEOUS
IDECODE AMODE IN OPERAND, IN ORDER TO IAKE THE AUTOMATIC PROVING EASIER.

108

!OR INDEED IN ORDER TO MAKE IT POSSIBLE: IF THE MACRODESCRIPTION SAYS!MD.-GPXRA BUT IN FACT THAT DOES NOT HAPPEN , THEN IT CANNOT BE PROVED.
!WE COULD INTRODUCE ANOTHER VARIABLE "ARG" TO TAKE THE PLACE OF
I"GPXRA PHI MD".

1: -MD.I1A,
OTHERWISE: - MD.MEM (MA)

END)
END

Processes

1 THE COMPLETE INSTRUCTION CYCLE IS COOED UNTIL CONTROL RETURNS TO INR FETCH
! OR "ALPHA". DEPENDING ON THE INSTRUCTION. THIS DIFFERENCE UILL HAVE
I TO BE COMPENSATED FOR LATER.

LOR:- BEIBEGIN

GPXRB*1O
END.

LDE:-
BEGIN
EX.-MD
END.

!LIO-LLJ3 ARE NOT CODED, BUT IF NEEDED CAN BE CODED LIKE LOR AND LDE.

LOOPI:-
BEGIN
MA-MA+ NEXT
DECODE AMODE->

BEGIN
0:.-GPXRB-GPXRA,

OTHERW I SE: -GPXRB*-MEM [MAI
END

END .

LDR2:-
BEGIN
LDR() NEXT
RA.RA+1 NEXT
RB-RB+1 NEXT
LOOPW (
END.

LOOP2: -
BEG IN
LOOP (0 NEXT
RA.RA+ NEXT
RB..RB+l
END.

109

LOR3:.
BEGIN
LDR () NEXT
RA.-RA.I NEXT
RB-RB+1 NEXT
LODP2() NEXT
LOOPI (

LO~-END.

BEG IN
LORI) NEXT
LDP2() NEXT
LODP2() NEXT
LOOP2() NEXT
LOOP2() NEXT
LODP2() NEXT
LOOP 10
END.

LO:- BEGIN
ALUB<32: 8><MD NEXT
S~L)I* SUM*.-ALUS NEXT
GPXR.-SUMl NEXT
IF SUMIIl XOR SLUI131)-w:OVFF-1 IOVERFLDIJ DETECTION
END.

IFrom here to the end of NORMIAL has been checked with OIYF. tlar.8978.
I as OIYFrIL.

NIILOOP:.-
BEGIN
REPEAT
BEGIN
IF OVF8.,.(OYFF1.1 NEXT LEAVE NtILOOP) NEXT
DECODE GPXRB<Zs27>e)

BEGIN
[8,71:. (EXPOUT.(GPXRB7'.GPXRB7:9>).-2 NEXT

OYF84XPUTc8>' XOR EXPOUT<73 NEXT
GPXR84.PXRB<29s 8,.' S9eEXPOUJT<7i 00)

2t6:LEAVE NIILOOP.
(1.61*- (EXPUJT.(GPXRB<7h'eGPXRB<7s: 11.-I NEXT

OVF8*-EXPOUT, XOR EXPOUJT<7> NEXT
GPXRB,..GXRB<8ie' eEXPOU)T<7s: NEXT
IF DVF8.,nOVFF.1 NEXT
LEAVE NIILOOP)

END
END

110

END.
NOIRMAL:- !CALLED IN ADF, SUBF,OIVF, LOAFLDNF.
!Mlake sure that a test for OVF8 is made at the and of above instructions
lbefore entry into NORMAL.

BEG IN
IF SUM1t11SUM<13I8i- EQt. 8->(GPXRB*-"80 NEXT

LEAVE NORMAL) NEXT
DECODE OVF8eSUMIlSUtlc31 :29-

BEG IN
(519:513] a *(EXPOUT-(GPXRB7>,GPXRB4:8,l)+I NEXT

GPXRB-' 1eGPXRB<31 a 9,EXPOUJT7: 8> NEXT
OVFS*.EXPOUT<8 XOR EXPOUT<7> NEXT
IF OVF8->OVFF.l),

1THAT'S RIGHT: IF BOTH THE PREVIOUS EXPONENT AND THE PRESENT ONE
IOVERFLOW THEN THERE IS NO GENERAL OVERFLOW.

(#39:5331 :.(EXPOJT-GPXRB7eGPXRB<7:9')+l NEXT
GPXRB-' 1GPXRB31:9'eEXPOUJT<7: 9> NEXT
DVF8'-EXPOUTc8> XOR EXPOUT<7> NEXT
IF NOT DVF8..DVFF#-1),

(4: 7) :(EXPOUT*- (GPXRB<7>oGPXRB7: 110 +1 NEXT
GPXRB-' BGPXRB<3ls9>EXPOJT4: 8> NEXT
OVF8.-EXPOUT<8> XOR EXPOUT<7> NEXT
IF OVF8.OVFF-1).

(524:#273 :.(EXPOUT.(GPXRB<7GPXRB<7:8>)+I NEXT
GPX(RB'.' BGPXRB<31 : 9>EXPOUJT<7: 8 NEXT
OVI8o-EXPOUT4> XOR EXPOUT<7> NEXT
IF NOT OVF8..OVFF*..),

(1.5161 :.(EXPOUTm.(GPXRB<71.OGPXRB<7:8:)+-l NEXT
OVFS'EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB..GPXRB<38: 7U*Wl31eEXPOUT<c7:9> NEXT

1WHAT DOES Wi CONTAIN IN ALL THE CASES WHERE NORMAL IS CALLED?
!IT LOOKS LIKE IN ALL THE ABOVE CASES 111.0. NO: THERE'S AT LEAST
IONE CASE FROM ADOF WHERE Wi IS NOT ZERO.

IF OVF8.>OVFF-1.),

(521,536): *(EXPOUT.-(GPXRB<7>eGPXRB7: 8>) .-i NEXT
OVF8'-.EXPOUT4g XOR EXPDUT<7> NEXT
GPXRB-GPXRB<39: 7>eWI<31>*EXPDUT<7: 9> NEXT
IF NOT OVF8.>OVFF*-1),

(529,537,8,5#17):-*(EXPDUT-(GPXRB7>eGPXRB<7:8>) +-2 NEXT
OVF8'-.EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB.-GPXRB<28: 7>-eUl31 :38>oEXPOUT7: 8> NEXT
NIILOOP 0),

(#22,#23,#34.#3S1:- IF OVF8'>OVFF#i.1,

(2:3,514:5151:.IF OVF8.>OVFF.
END,

IFrom NMlLOOP to here has been checked with OIYF

LONF#.
BEG IN
SUMMIeSUMc31: 8"- (MD<31>efl~c1:8>) NEXT
GPXRB.SUIc31: 8>e D47s8I> NEXT

WU11 NEXT
NORM1ALO(
END

LOA.
BEG IN
LDR() NEXT
IF GPXRB<31i.'-

(SUMfMI*SUfl-- (GPXRB3>GPXRB) NEXT
GPXRB.-SUfl NEXT
IF 511111 XOR SUfl<31>-.OVFF#-1)

END,

LOAF: -
BEGIN
LORf) NEXT
IF GPXRBc312'..'

(SUMMI1sSUIMc31 :8>.- GPXRB<312gGPXfl41 : 8>) NEXT
GPXRB*.SUl NEXT
U1'-0 NEXT
NORMALO)

END.

LOC:.-
BEGIN
GPXRB*-NOT MD
END.

LAO3:.
BEGIN
IF NOT flON=:,LDR()
END,

LflO:-
BEGIN
IF MON-NOAI)
END.

STRain
BEGIN
DECODE AMOOE.>

BEGIN
fit -GPXRA..GPXRB,

OTHERUISE: .MEI* l.GPXRB
END

END.

STEts
BEGIN
DECODE At1OOE.:o

BEGIN
9: .GPXRA.EX.

OTHERJISEiwMfEfl(MAl.-EX

112

END
END.

!SUB-sIJ3 ARE NOT COOED HERE. BUT IF NEEDED THEY ARE LIKE STR, STE.

STO:-
BEGIN
DECODE AMODE->

BEGIN
@:- (MA<-MEM[PC4<1S:8> NEXT

I NR4rEM (PC)).
OTHERIJISE:. (MEMI(MA],-GPXRB NEXT

ME'I [MA+483G] 4GPXRB)
END

END.

STZ:-
BEGIN
DECODE AMODE->

BEGIN
8: -GPXRA,.8,

OTHERWISE: -MEM (MfA].-8
END

END.

SZO:
BEG I N
DECODE AMODE->

BEGIN
0:- STDO, NO STORING OF ZERO IF AMODOEB?

OTHERWISE:- (MEM[MA] -8 NEXT
MEM (MA+48961 '-6)

END
END.

STR2:-.
BEGIN
DECODE AMODE.>

BEGIN
8:- (GPXRA.-GPXRB NEXT

RA,-RA+I NEXT
RB-RB+I NEXT
GPXRA,-GPXRB),

OTHERIJISE:- (MEEM [MA-GPXRB NEXT
MA4,MA+I NEXT
RB,-RB+I NEXT
IEM (MA) '-GPXRB)

END
END.

STR3:,
BEGIN
DECODE AMOOE->

118

BEG IN
B:. (GPXRA.-PXRO NEXT

RA'RA+l NEXT
RB*-RB.1 NEXT
STR2 0).

OTHERWISE:. (PEMUMIJ-GPXRB NEXT
IIA.41A. NEXT
RB-RB+1 NEXT
STR20)

END
END,

LOOP4:. ITHIS IS ONLY CALLED WHVEN AMODE-1
BEGIN
STD() NEXT
RA'-RA.I NEXT
RB4-RB+l NEXT
flA-MA~l

END.

STOZs.
BEG IN
DECODE At1ODE.>

BEGIN
Bi- STD().

OTHERWISE:. -(LDOP4() NEXT
STOMl

END
END.

STD3:.
BEGIN
DECODE AMDDE->

BEGIN
B:. STOO.,

OTHERWISE:. (LOOP4() NEXT
STOZO)

END
END,

STO?:.
BEGIN
DECODE AMODEm>

BEGIN
Bin STOO),

OTHERWISE:. (LOOP4() NEXT
LOOPW(NEXT
LOOP4() NEXT
LOOP4() NEXT
903 0)

114

END
END.

STH:a
BEGIN
MEM[(MA]e-IIA SLO 1G I?
END.

SPS:-
BEGIN
MEM(MAI*.STATUS@PC<lS:0>

Eeee p.G6 of FTSC instruction set document
END,

SPCl
BEGIN
DECODE AMODE.>

BEGIN
8:. NO.OP),

OTHERWISE: -MEM (MA]'-MEM (MA+43G] oSTATUS*PC<15: 0>
END

END,

!SBPA:-
BEGIN
DECODE AMODE->

1:- MEM [MAJ.GPXRB NEXT

!MAEC<7:B> ARE MEMORY ADDRESS ERROR CODE BITS. SEE 226 LINE G AND LAST
!FOR CONTRADICTORY INTERPRETATIONS.

END
I END.

ISBPAB:-
BEGIN
DECODE AMODE=>

BEGIN
0:- GPXRA.-GPXRB,
1:- MEM[MAJ-GPXRB NEXT

! MAEC#43,
END

END.

!SBPDI:-
! BEGIN
I DECODE AMODE->
I BEGIN
I 8:- GPXRA.-GPXRB,
I 1:w MEM[MA]#-GPXRB NEXT
I MOEC<-I.
I IMDEC<7:8) IS MEMORY DATA ERROR CODE.

115

ENDA
END.

BEGIN
DECODE AMODE.>

BEGIN
0:-GPXRA4-PXRB,
I:- llEMllfAJ..PXRB NEXT

MOEC4-,
END

END.

Jflp:
BEGIN
DECODE AIIODE.>

BEGIN
8: -PC4-PXRA.

OTHERUISE: -PC41MA
END

END,

JSB: -
BEGIN
GPXRB.-STATUS*PC<15: e> NEXT
DECODE AMODE.>

BEGIN
8: .PC4PXRA,

OTHERIISE: -PC4IMA
END

END.

JPZ:u
BEG IN
IF NOT GPXRB<31b.-J1P(
END.

BEGIN

IFGPXRB<3EOL o),JMP()
END.

JZEF:.
BEGIN
IF GPXRBS18 EOI. S.'JIIP(
END.

116

JNZ:.
BEG IN
IF GPXRB NEU 8.>Jt1P(
END.

JNZF:- EI

IF GPXRB-c3l:8> NEO 8.->JMP()
END,

JPS: -
BEGIN
IF GPXRB NEO 8 AND GPXRB41 , EOL 8.,JI1P()
END.

JPSF:.
BEGIN
IF GPXRB<31:8> NEO 0 AND GPXRB31 EOL 6w2JIP(
END,

JIMZ,-
BEGIN
IF GPXRB-c3h EOL 1 OR GPXRB EQt. 0 =>J1P(
END.

JIIZF:u
BEGIN
IF GPXRB<31> EOL 1 OR GPXRB'c3l:8> EUL. 8.>JI1P(
END,

JON: -
BEGIN
SUrMM11*SUM@-(GPXRB31:,.GPXRB) -1 NEXT
GPXRB-SUI NEXT
IF GPXRB NEO ll.>JfP(I
END,

JOS: -
BEGIN
IF OVFFn>J1P(NEXT
OVFF-8
END,

JCS:.
BEGIN
IF CRYFFu>J1P(NEXT
CRYFF*-B
END.

OISNt.
BEGIN
flOe-NOT MD NEXT

OWN7

IF IGPXRB OR M10) NEG #37777777777 m
(PC.-PC+1)
END,

ol SO:.
BEGIN
1104-NOT MO NEXT
IF (GPXRB OR MO) EOL #37777777777
(PCa.PC+1)
END.

ASNZ:-
BEGIN
IF (GPXRB AND M10) NEO 8.:,PCu-PC,1
END.

ASZ: -
BEG IN
IF fGPXRB AND 110) EOL 8->PC4-PC+l
END,

!CSNE AND CSEO ARE NOT ON THE FLOWCHART DIAGRAMS

ADD:.
BEGIN
SUMM12SUMMIISUM4GPXRB31*GPXRB + flO'31:,.110 NEXT
IF SUMMr2.,CRYFF-1 NEXT
GP XRB-SUl NEXT
IF (SUMM1I XOR SUM<1>b >OVFF44.
END.

SUB:-
BEGIN
SUMf12*SUM1.SUM4..PXRB<31>..GPXRB +-It1D<31>eD) NEXT
IF SUMI12->CRYFF,-l NEXT
GPXRB-SUI NEXT
IF (SUMMII XOR SUM<31>)u>0VFF#.1
END,

MPY:.
BEG IN
EX*-GPXRB NEXT
GPXRB-9 NEXT
COUNTER48 NEXT
CRYSTSs-8 NEXT
LOOPSt.

REPEAT
BEGIN
ALUAc.GPXRB NEXT IIT APPEARS THAT WE NEED GPXRB AND MD SIGN

I EXTENDED TWJO SITS. 90 HERE ALUA AND
IALLIS SHOLD BE 34 S1ITS.

ALU-cwMO NEXT

l16

DECODE CRYSTS@EXcl :8,>
BEGIN

8:. (SUMt12eSUMM1SU14-ALUA NEXT
CRYSTS48),

1: - (SUMM2@SUMMeSUI..ALUA+eALUB NEXT
CRYSTS-0).

2:.- (SUMMf2@SUt11SUf1q-ALUA- (ALUB SLO 1) NEXT
CRYSTS-1),

3: * (SUMM2@SUMM1@SU14-ALUA-ALUB NEXT
CRYSTS#-1) .

4:- (SUMM2aSUMM1aSUM.-ALUA+ALU8 NEXT
CRYSTS.0),

S:- (SUrlrl2@SUMM19lSUM*-ALUA+q(ALUB SLS 1) NEXT
CRYSTS4-8,

6:. (SUMM2@SUtIM1@SUM..ALUA-ALUB NEXT
CRYSTS4-1),

7:- (SUMM2@SUMM1SUM1-ALJA NEXT
CRYSTS4-)

END NEXT
GPXRB'.SUMM29SUM1,eSUM<c31 :2> NEXT
EX.-SUMcl: 6>9EXc31: 2> NEXT
COUNTER.-COUNTER+1 NEXT
IF COUNTER EOL 16->LEAVE LOOPS
END NEXT

!At this point in the computation. the sign appears in GPXRB<31:30>
land the msb's to Isb's are in GPXRB<29:8>*tEX.

EX.-EX<38: e>@GPXRB<31> NEXT
GPXRB.-GPXRB<30: 0>*EX<31> NEXT
I.O-GPXRB NEXT JIS THIS NEEDED FOR SOMETHING? FOR EXAMPLE

!IF MPY IS EXITED ON OYFF.
IF CPXRB<31> XOR GPXRB.<30>.>(OVFF#.1 NEXT LEAVE MPY) NEXT
GPXRB.-EX SRR 1 NEXT !EX ROTATED RIGHT ONE BIT
EXe-US0
END,

PPLOOP: -
BEGIN
REPEAT
BEGIN
COUNTER*-COUNTER+1 NEXT
DECODE I NVERTOR.> (SUM.-GPXRB-MO, SU~lMGPXRB+t1D) NEXT
GPXRB*-SUM<38: 8,eEX<31> NEXT
EX'-EX<3e:0>@NOT INVERTOR NEXT
INVERTORe-SUM<31> NEXT
IF COUNTER EOL 30->LEAVE PPLOOP
END
END,

PtILOOP: -
BEG IN
REPEAT
BEG IN

119

4i .1

COUNTER'-COUNTER+I NEXr
DECODE INVERTOR.>(SUM,-GPXRB+MOSUM'-GPXRB-MO) NEXT
GPXRB.-SUM<38:8>@EX<31> NEXT
EX-EX<38:B>.INVERTOR NEXT
INVERTOR4-SUM<31> NEXT
IF COUNTER EQL 29-> LEAVE PMLOOP
END
END,

DIVPP .
BEGIN
EX#-EX SLO 1 NEXT
SUM-GPXRB-MO NEXT uIN DIV GPXRB-B HERE.
IF NOT SUM<31>.>(DIVFF-1 NEXT LEAVE DIVPP) NEXT 1DENOM.B IN DIV

!AND MSB HALF OF NUMERATOR GEO DENOMINATOR IN LDV
GPXRB-SUM<38:0>uEX<c31> NEXT
EX-EX SLO I NEXT
INVERTOR-I NEXT
COUNTER'- NEXT
PPLOOP() NEXT
DECODE INVERTOR.>(SUMr-GPXRB-MD, SUM-GPXRB+MD) NEXT
GPXRB-SUM NEXT
EX-EX<30:0>eNOT INVERTOR NEXT
DECODE GPXRB<31>.>

BEGIN
0:- (W10-GPXRB NEXT

GPXR8-(EX SLO 1) + 1 NEXT
EX*.-.),

1:o (WU-GPXRB + MD NEXT
GPXRB'-EX SLO 1 NEXT
EX#4,W)

END
END,

DIVPM:.
BEGIN
!THE STEP EX-EX SLO 1 IS TAKEN CARE OF A FEW LINES HENCE.
SUM.GPXRB+MD NEXT !IN DIV GPXRB-B HERE.
IF SUM GTR 8.>(DIVFF-l NEXT LEAVE OIVPM) NEXT
!THIS IS IMPOSSIBLE FOR DIV. FOR LDV THIS CHECKS IF MS HALF
!OF NUM GTR ABSOLUTE VALUE OF DENOMINATOR.
IF (SUM EOL 8) AND (W8 NEG 0)-r.(OIVFF-1 NEXT LEAVE DIVPM) NEXT
!THIS IS ALSO IMPOSSIBLE FOR DIV. IN LOV IT CHECKS IF MS HALF
!OF NUMERATOR EUL ABSOLUTE VALUE OF DENOMINATOR AND LS HALF
!OF NUMERATOR NEG 0.
GPXRB-SUM<30:8>*EXc3g> NEXT
EX*.EX<29:8>e'61 NEXT
IF SUM EOL 8.,INVERTOR&O NEXT IAT THIS POINT LS HALF OF

NUM IN LOV IS KNOWN TO BE ZERO.
IF SUM LSS 6->(
SUM.-GPXRB-MD NEXT

120

GPXRB.SUM483: 8>EX42, NEXT
EX'-EX SLI I NEXT
I NVERTOR.-SUM<31>1 NEXT
COUNTER-8 NEXT
PMLOOP() NEXT
DECODE I NVER TOR-> IGPXRB..GPXRB4ID, GPXRMi.PXRB-ID) NEXT
EX.-EX483: 8>9INVERTOR NEXT
DECODE GPXRB<31.>.uue.PXRB NEXT EX+-EX SLO 1),

(UO'-PXRB-flO NEXT EX&EX SLI 1)) NEXT
GPXRB.-EX.1 NEXT
EXI-J8
END,

01 VIP: -
BEGIN
EX.-EX SLO 1 NEXT
GPXRB4-PXRB+tlD NEXT !HERE IN DIV GPXR8i4M-1.
IF GPXRB<31>,(DIVFF..1 NEXT LEAVE DZVIIP) NEXT !CHECK FOR IJENOMag

I ACTUALLY WE MAY HAVE TO EXECUTE ALSO 646 IN ORDER THAT THE PROPER
IVALUES BE IN GPXRB AND EX WHEN CONTROL GETS THE INTERRUPT SIGNAL.

GPXRB-GPXRB<c30: 9>EX<31b NEXT
EX'-EX SLI. 1 NEXT
SUM1-GPXRB-tID NEXT
I NVERTOR..5UM<31 NEXT
GPXRB-SUM<~30: 8>%EX<31> NEXT
EX&'EX SLI 1 NEXT
PPLOOP() NEXT !SAMIE LOOP AS FOR +/.
DECODE INVERTOR-, (SUM.-GPXRB-M,SUM1-GPXRB+1D) NEXT
GPXRB-SUl NEXT
EX.-EX<38:0>@NDT INVERTOR NEXT
IF GPXRB GTR Bu>(W0.-GPXRB-MO NEXT !E.G.-4/5

EX#.EX SLI 1 NEXT
GPXRBE-EX +q 1 NEXT
EX48U NEXT
LEAVE DIVIP) NEXT

IF GPXRB EOL Bs>(GPXRB..EX SLS 1) + 1 NEXT IE.G.-4/4
EX-6 NEXT LEAVE OIVMP) NEXT

IF GPXRB LSS 8., (GPXRB,-GPXRBMO NEXT
IF GPXRB EUL @.>(GPXRB-EX SLO 1 NEXT lE.G.-4/2

EX.-8 NEXT LEAVE DIYIIP) NEXT
IF GPXRB NEG 8.>(W84-PXRB-MD NEXT !E.G.-4/3

EX.--EX SLO 1 NEXT
GPXRB..EX +. 1 NEXT
EX4JB8))

END,

OIVMfl:-
BEGIN
EX..EX SLO 1 NEXT
SUM-4GPXRB-r1O NEXT IIN DIV GPXRB--l HERE.
IF SUM LSS 8.:, (01VFF*-1 NEXT LEAVE OZIhhl) NEXT
ITHIS IS IMPOSSIBLE FOR DIV. IN LOY THIS CHECKS IF MO GTR GPXRB

121

!I.E.. IF ABS.VALUE OF MS HALF OF NUMERATOR GTR ABS. VALUE OF
DENOMINATOR.

GPXRB,-SUM<38:B>eEX<31> NEXT
EX&EX SLO 1 NEXT
IF (SUM EOL 6) AND (EX EOL 8)->(DIVFF*1 NEXT LEAVE DIYMM) NEXT

!SO 'IXB...0/-l YIELDS DIVFF IN DIV SINCE SUM EOL 9<-> M--i IN DIV.
!IN LDV THIS CHECKS IF MS HALF OF NUM - DENOMINATOR AND LS HALF -
!'1X8...0 AS IN DIV. AGAIN THIS DOES NOT MAKE SENSE.

COUNTER-8 NEXT
INVERTOR-B NEXT
PMLOOP() NEXT !SAME LOOP AS +/-.
DECODE INVERTOR-> (GPXRB.-GPXRB+MD,GPXRB,-GPXRB-MO) NEXT
EX&EX<38:8>@INVERTOR NEXT
IF GPXRB EOL 8.>(GPXRB-(EX SL8 1) + 1 NEXT IE.G.-4/-4

EX-0 NEXT LEAVE DIVMM) NEXT
IF GPXRB GTR 8->(WO-GPXRB+MD NEXT !E.G.-4/-S

GPXRB,-EX SLO 1 NEXT
EX,-WB NEXT LEAVE DIVMM) NEXT

IF GPXRB LSS 0.>(WBo-GPXRB-MO NEXT
IF WO EUL 8->(EX-EX SLI 1 NEXT IE.G.-4/-2

GPXRB,-EX + 1 NEXT
EX4- NEXT LEAVE DIVMM) NEXT

IF WO NEU 8->(WO-GPXRB+MD NEXT IE.G.-4/-3
EX.-EX SLO 1 NEXT
GPXRB,-EX+1 NEXT
EX4JB))

END,

DIVI:u !GPXRB CONTAINS NUMERATOR AND MD DENOMINATOR. GUOTIENT GOES IN
GPXRB WITH REMAINDER IN EX. SIGN OF REMAINDER IS SAMlE AS

I SIGN OF NUMERATOR.
BEGIN
EX-GPXRB NEXT
DECODE GPXRB<31>eMD<31>=>

BEGIN
8:=(GPXRB.6 NEXT DIVPPO), l+/+
1:=(GPXRB-8 NEXT OIVPM(o), I+/-
2:-(GPXRB.- NEXT DIVMPO), 1-/+
3:o,(GPXRB--1 NEXT DIVMM(o) I-/-
END

END,

LDV:- !NUMERATOR IS EXeGPXRB, DENOMINATOR IS MD. (PROBABLY) EX<31>UGPXRB<31>.

!OTHER DETAILS AS IN DIV.
!(AT THE START EX AND GPXRB ARE INTERCHANGED)
BEGIN
UW-GPXRB NEXT
GPXRB.-EX NEXT
EXo-W NEXT
WU-EX SLO I NEXT
IF (GPXRB GEO 6) AND (M10 GEO @)=,(DIVPP() NEXT LEAVE LOV) NEXT

122

iA

IF (GPXRB CEO 8) AND (MD LSS 8)->(DIVPM() NEXT LEAVE LOY) NEXT
IF (GPXRB LSS 8) AND (MD CEO 06->-WIVMF'o NEXT LEAVE LOY) NEXT
IF (GPXRB LSS 8) AND (MO LSS g)->(OIVMM() NEXT LEAVE LOY)
END,

ACO:
BEGIN
SUMrI2,SUMM1 *SUM#- (GPXRB<31 -GPXRB) + (tlDc31 >.l1) +CRYFF NEXT
GPXRB.-SUM NEXT
IF SUM12->CRYFF-1 NEXT
IF SUMII~ XOR SUM<.31>.,OVFF.
END,

LOOIPG:.
BEGIN
REPEAT

BEGIN
GPXRB.-GPXRB SLO 2 NEXT

WJI,41-2 NEXT
IF NOT((GPXRB NED 6 AND GPXRB<31:29> EOL 18) OR

(GPXRB (31:29> EOL 7))-> LEAVE LOOPK
END

END.

CFL:- !TAKES GPXRA OR MD INTEGER AND CONVERTS TO FLOATING IN GPXRB.
I THE MANTISSA IS INTERPRETED AS A BINARY FRACTION LESS THAN 1.

BEGIN
GPXRB.-MO NEXT
WlJ'8 NEXT
IF (GPXRB NEG 8) AND (GPXRBc31:292, EOL 9 OR GPXRB<31:29> EQL 7)n>
LOOPG() NEXT

ILOOPG CAN CHANGE THE VALUE OF Ul.
IF GPXRB EQL 0ma(GPXRB.-"88 NEXT LEAVE CFL) NEXT
IF GPXRB<31> XOR GPXRB<30>*>

IALREADY NORMAL IZED
(GPXRB<:0>'-Wlc7:0> NEXT GPXRB<7:0>*.GPXRB47:9,+31 NEXT LEAVE CFL) NEXT
IF (GPXRB<c31:29> EOL 6) OR (GPXRB<31:29>' SQL 1) =>

INORMALIZE FIRST
(GPXRBI-PXRB SLOI1 NEXT GPXRB<:8>.-- NEXT

GPXRB<: 9,'-GPXRB<7: 8>31)
END.

ADOLPIh-
BEG IN
REPEAT

BEGIN
GPXRB<31 : 8>PXRB31>GPXRB31>GPXRB31: 10> NEXT !?
W1<7:6141<70>+.2 NEXT
GPXRBc7:13>.M10:8> NEXT
IF W1<7i8> EQL 0.,LEAVE ADOLPI

123

END
END.

ADDLP2:.
BEGIN
REPEAT

BEGIN
UI<c7:6>,.4J14:6,-2 NEXT

D<31:8>,-MlO31>elO<31>oflP31slg> NEXT
IF U147:8> EQL 139.LEAVE AOOLP2
END

END.

ADOF:-

BEGIN

IFIRST COMPARE THE TWO EXPONENTS. THEIR DIFFERENCE GOES IN EXPOUT.

EXPOUT'GPXRB47>@GPXR04: B>-MD<7u*MDO4: 8> NEXT
WI<7: 0'-SUM7: 0>#-EXPOUT<7: > NEXT

1WHAT DO WE NEED 141 FOR?
IF SUM<7:0> EOL 8..>(DECOOE ASUBEm>(GPXRB<31:8,4-GPXRB<c31:8>4flD38>,

GPXRB<31:s8>.-PXRBc31 :8>-MD<31:a8>) NEXT
W1i.. NEXT NORMAL() NEXT LEAVE ADOF) NEXT

1 SO FROTM HERE ON SUTMc7: 8> NCO 0.
OVF8.-EXPOUT<$> XOR EXPOUT<7> NEXT
EXG23.-(EXPOUT<7:0> GTR 23) DR (EXPOUT<7:0> ISS -23) NEXT
DECODE EXG23@OVF8eSUSUtc7>->

BEGINt
(4:7.14:#173:.f (IF GPXRB<7>,u, IIF GPXRB EXPONENT <0

(DECODE ASUBE.' IGPXRB.41D,
GPXRB.(-M<31:8>)dlM7:b))) NEXT

LEAVE ADOF).
(#1 19#13J a m(DECODE ASUBE.> (GPXR4-I1D,

GPXRB..-t1Oc31:8>).t1D<7: 9) NEXT
LEAVE ADOF),

(018,N121t-LEAVE ADF.
It- ADOLP 10,

3:- (GPXRB<31:a8>GPXRB31>GPXRB<31:9>S NEXT
1414: 0>*-U17: 02.1 NEXT
GPXRB<7: 6'..fo4: Bt NEXT
ADOLPIO),

B:.- ADDLP2{).
2:a(Wl<7t8>.417:0>-l NEXT

IIOc31 :8>*l031diO'3,82 NEXT
ADDLP2 0)

END NEXT

124

ALUA<-GPXRB NEXT ISIGN EXTEND ONE BIT
ALUBc.11O NEXT
DECODE ASUBE->
BEGIN
8: .SUtM2@SUMM1,GPXRB<31;8:.

GPXRB<31 >.GPXRB<31 :8>+t1D<31 >etD<31: 8>,
1: -SUMtI2@SUMIIIGPXRB<31: 8>4-

GPXRB<c31 -gGPXRB<31 :8>-tlt<31 >,D<31 :8>
END NEXT
IF SUMII2->CRYFFul

END,

SUIBF: -
BEGIN
ASUBE-1 NEXT !AUTO SUBTRACT ENABLE
ADDF0I
END,

IWrom here to the end of M1PYF has been checked in MPYFML

lVersion of Iar.31978
flINUSI:.

BEGIN
GPXRB<31 : 8>.GPXRB<39: 8>eEX<31> NEXT
EX.-EX SLO 1 NEXT
EXPASCUGPXRB<7t8> NEXT
EXPOUT+-EXPAS-1 NEXT
OVF8EEXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB<7: @>.i-EXPOUT <7 9>
END,

I NUS2:u
BEGIN

GPXRB<31 :8>,.PXRB<23 8>*EX31 :39> NEXT
EX.-EX SLO 2 NEXT
EXPASc-GPXRB<c7: 0> NEXT
EXPDUT'--EXPAS-2 NEXT
OVF8#-EXPOUT<8> XOR EXPOUTc7> NEXT
GPXRB4: b.-EXPOUT7t9>
END,

IIPYFlAtw
BEGIN

M1LOOP1 :
REPEAT

125

BEG IN
IF (OVF8@GPXRB43li2S> NEO 8 AND

OVF8@GPXRB<3ls2g> NEG 7)->
LEAVE flLOOP1 NEXT

fIINUSZ(I
END !Of IILOOPI
NEXT
IF IOVF8@GPXR843ls29> EOL 6 OR

OVF8@GPXRB<31:29. EQL I)->
IIINUS1(I NEXT

EX<31 :8>#.'ftiEX<3li9>~ NEXT
IF OVF8->OVFF.l

END,

JIPYFlB:w
BEG IN

REPEAT
BEGIN
DECODE OVF89GPXRB<c3I :2>

BEGIN
1,61 :utINUSI(),
(0.7:-MINUS2(),

(II,0lG1:u(MINUSl() NEXT
EX<c31:8>4-'0eEX<31:9> NEXT
IF OVF8.>OVFF,-1 NEXT LEAVE IIPYFIB),

(2:51:m(VFF..1 NEXT LEAVE MPYFlB),
(N12:#1S] :.(EX<31:8>-'8.EX<c31:9> NEXT LEAVE IIPYF1B),
(#18,#171:-(MINUS2() NEXT

IIPYF1A() NEXT LEAVE tIPYFlB)
END !of decode

END loREPEAT
END. !of MIPYF1B

IIPYF:. ITAKES NORMIALIZED GPXRB AND M10 (OR GPXRA) IN FLOATING POINT
WFORMI AND PUTS THE SIGN OF THE PRODUCT AND 23 IISB'S IN
!MANTISSA OF GPXAq6. 23 LSB'S IN BITS <38t8> OF EXTENSION
!REGISTER, AND EXPONENT IN EXPONENT OF GPXRB.

BEGIN
EX.-GPXRB431 : 8>.'888088 NEXT
GPXRB<3lt8>'.8 NEXT
IF NOT AIIODE->rnO..GPXRA) NEXT IOTHERUISE USE OLD M10
COUNTER.8 NEXT
CRYSTS*.8 NEXT
LOOPSF:-

REPEAT

BEGIN
ALUA<c33:8><oGPXRBc31a8> NEXT lHERE ALSO(AS IN IIPY INTEGER)

!SIGN-EXTENO TWO BITS)
ALUBc33: 8>'cwMO<31 : 8z NEXT

128

DECODE CRYSTS*EX<9:8.
BEGI N

Bi- (SUMMf2SU1MISUM31:8>.ALUA(c33:8> NEXT
CRYSTS-8),

1:- (SUIMt2SUMMleSUM<c31 :8>..ALUAc33: 8>+ALUB<33: 8> NEXT
CRYSTS-8),

2: - (SUMM2@SUMI@~SUI.31 :8
ALUA<33:8,.-(ALUB<33:8> SL9 1) NEXT

CRYSTS4-1),
3:- (SUtIM2,SUrirllSUtI<31 :8>.-ALUAc33: 8>-ALUB<c33: 8> NEXT

CRYSTS-1),
4:- (SUtlr2,SUMIIM1SUM<~31 :8>4-.ALUAc33: 8>+ALUB<c33: 8> NEXT

CRYSTS-0),
Sin (SUMII2@SUII@ISUiMc3lt8>-

ALUA<33:8>+(ALU1B<33:8> SLO 1) NEXT
CRYSTS*-8),

G:- (SUMM2GSUMM1SSUtI<31:8>..ALUA33:8,-ALUB<33:8> NEXT
CRYSTS4-1),

7:- (SUMtM2eSUMMf1eSUtMc31 : 8>-ALUAc33: 8> NEXT
CRYSTS*4)

END NEXT
GPXRB<31:8>.-SUtIM2,SUMtlleSUrc31: 16> NEXT
EX<31:8>'-SUM<9: 8>9EX<31: 16> NEXT
COUNTER-COUNTER4I NEXT
IF COUNTER EOL 12->LEAVE LOOPSF
END NEXT

IF GPXRB<31:8> EQL 8->(GPXRBi-"80 NEXT EX4. NEXT LEAVE M1PYF) NEXT
!THAT IS THE FLOATING REPRESENTATION OF ZERO.

!Eliminate GPSDECOOE GPSDECODEO NEXT LEAVE MPYF) NEXT
EXPA9<-GPXRB<7:0> NEXT !HERE LWE ARE USING THE MICROMACHINE NOTATION.
EXPBS<-M=<04> NEXT
EXPOUT.-EXPAS+EXPB9 NEXT
GPXRB<7:0>6-EXPOUT<7: 6> NEXT
OVF8.-EXPOUT<8> XOR EXPOUT<7> NEXT
DECODE GPXRB<31 :29

BEGIN
16,7] : -(GPXRB<c31 :8>.,.GPXRBc29: 8>.EX<31:36> NEXT

EX-EX SLO 2 NEXT
DECODE OVF8.>

MLe do the decode on OVF8 here , even though the first 4 lines
!in both cases are the same. because OVF8 is recalculated immediately
!andI didn't see any other way that would not Introduce fictitious
Iregisters or something like the DELAY.

BEGIN
B:. (EXPAS<-GPXRBO7:0> NEXT

EXPOUT4-EXPA9-1 NEXT
OVF8.-EXPOUT<8) XOR EXPOUT<7> NEXT
GPXRB<c7: 9>'EXPOUTc7: 9> NEXT
MPYF1A(),

I:- (EXPAS<-GPXRB<7:8> NEXT
EXPOUTo.EXPA9-1 NEXT
0VF84.EXPOUT<4> XOR EXPOUT7> NEXT
GPXRB7:0,>'.EXPOUT<71 9> NEXT

12?

MPYF1BO)
END),

1.6)ta- IGPXRB<31:8>GPXRB<39:8>eEX-31> NEXT
EX,-EX SLO 1 NEXT
EXc31: 8>-' BeEX<31 :9> NEXT
IF OVF8.>OVFF*-1),

2to (DECODE OVF8->
BEGIN
9:nm(EXPA9<.GPXRB<7: 9> NEXT

EXPOUT*-EXPA9+1 NEXT
OVF8-EXPOUT<8> XOR EXPOUT4h NEXT
GPXRB<7: 9>.-EXPDUT<7: 9> NEXT
EX<31 a8>.-' B@EX<31: 9: NEXT
IF OVF8.>OVFF.1).

13 * EXPA8'<GPXRB47: 9 NEXT
EXPOIUT.-EXPA9+1 NEXT
OVF8-EXPOUT<S> XOR EXP0tJT<7 NEXT
GPXRB<c7: 6>'-EXP0UT<7t11> NEXT
EX<31:a8>.-' SSEX<31: 9> NEXT
IF NOT OVF8o2-OVFF.l) Ihere's the difference

END)
END
WUHY ARE 3 AND 5 IMPOSSIBLE? Because GPXRB<3lt38> contains
I the sign bit repeated. 2 is only possible for -2t23x-2tZ3-

END.

From the last landmark to hers has been checked as MPYFIIL

IFrom here to the end of OIYF has been checked along wiith NORI1AL,Mar.8,78
I as DIVFIIL.

FPPLODPa -
BEGIN
REPEAT

BEGIN
COUNTER4-OUNTER.1 NEXT
DECODE INVERTOR., (SUM<31:8>GPXRB<31:8'-1O31:8>.

SUI~c31 :8i-.GPXRB<3l 8>+4.f1a8>) NEXT
EX<31:8>o-EX<38:8>'eNOT INVERTOR NEXT
I NVERTOR.SUIMc31> NEXT

IF COUNTER EOL 23-> LEAVE FPPLOOP NEXT
GPXR8<31 : 8>-SU?1c38: 8>sEXc31 ,
END

END,

128

FPIILOOP: -
BEG IN
REPEAT

BEGIN
COUNTER-COUNTER+l NEXT
DECODE INVERTOR., SUrI<31 :8>,-GPXRB<31: 8>41D'31 :8>,

SUM<31 :8>.-GPXRB<31 :8>-I1D<31 :8>) NEXT
EX<31:8>'-EX<30:8>@ INVERTOR NEXT
I NVERTOR.SUM<~31> NEXT
IF COUNTER EOL 23-> LEAVE FPIILOOP NEXT
GPXRB<31 :8>'-SUM<30: 8>EX<31>
END

END,
DI VF:. !GPXRB/MO

BEGIN
IF NOT AIIOOE.>M1O.GPXRA NEXT
WlJ<7:0>.-"FF NEXT !??
EX<c31>.-GPXRB<c8> NEXT
GPXRB<31:8>'-GPXRB'31>eGPXRB<31 :9> NEXT
IF MO EOL B.,(OIVFF*.1 NEXT LEAVE DIVF) NEXT
DECODE GPXRB<31 >et1O31 ,.>

BEGIN
8- (COUNTER#-8 NEXT

SUM<3 : 8>'-GPXRB<31:9>-MD<31 :8> NEXT
GPXRB<31 :8,-SUM<30: 8>EX<31> NEXT
EX<31 :8>.-EX<30: 8>e B NEXT
INVERTOR.-SUM<c31> NEXT
FPPLOOP() NEXT
GPXRB<31 : 8>SUtMc31:8> NEXT
Wl<31:8,e-& NEXT IFOR USE IN NORMAL() ??

DECODE GPXRBc31:-.>
BEGIN
9:- (W8<31 8>#.GPXRB<31 :8> NEXT

GPXRB<3li8>*.EX<31:8> SLO 1 + 1 NEXT
EX3:8>-Wc30:8>9' 1), I?

1:a.W41:8>.PXRSc31:8>+ID<31:8> NEXT
GPXRB<31:8>..EX<31:8> SLII 1 NEXT
EX<31s8>*4i9 SLO 1)

END).

l .(COUNTER4- NEXT
SUM<31 :8>.GPXRB<31: 8>.MODc31 8> NEXT
GPXRB<31 :8>'.SUM<30: 8>sEX<31: NEXT
EX<31 :8>*-EX<38: 8>.' 1 NEXT
I NVERTOR'.SUMc 31> NEXT
FPMLOOP() NEXT
GPXRB<c31 :8>*-SUM<31: 8> NEXT
WJ1<31:8>41. NEXT
DECODE GPXRB<31>n>

BEGIN
9: *(W8<31 i8>sGPXRB<31 :8> NEXT

129

GPXRB<31:8>o-EX<31:8> SLO 1 + 1 NEXT
EX<31:8>#-1838:8>e'1),!?

1:- (W0<31:8>..GPXRB<31 :8>-MOD:31: 8> NEXT
GPXRB<318>*EX<3l:8> SLI 1 +1 NEXT
EX<31 :8>*41c30: 8>.' 1)

ENO),

2:-(COtJNTER-8 NEXT

SIJM<31: 8>-GPXRB<c31 :8>+MODc31 : 8 NEXTi
GPXRBc31 :8>.-SUM<3B:8>@EX<c31> NEXT
EX<31 :8>'-EX<38: 8>' 1 NEXT
INVERTOR.SUMc31> NEXT
FPPLOOP() NEXT
GPXRB<31 :8>&SLNc31 :8> NEXT
u1(31:8>be8 NEXT
DECODE GPXRB<31>u>

BEG IN
B: - (LJS31:8>.-PXRB<3l :8>-MD<31 :8> NEXT

GPXRB<31:8>i-EX<31:8> SLi 1 +1 NEXT
EX<31:8>*-U6<30:8>e'), 1?

1:u(GPXRB<31:8>-EX<c31:8> SLS 1 + 1 NEXT
EX<31 :8>4iW8<30: 8>.' 1) !?

END).

3: * (COUNTER.8 NEXT
SUM<31 :8>.-GPXRB<31 :8>-MO<31 :8> NEXT
GPXRB<31%:8>.-SUM<30: 8>eEX<31> NEXT
EX<31:8>'-EX<c38:8>e'8 NEXT
INVERTOR.SUIMc31> NEXT
FPIILOOP() NEXT
GPXRB<31%:8>*-SUM<31 :8> NEXT
Ul<31:8>4. NEXT
DECODE GPXRB<31 >n>

BEG IN
8:- (1J031s8-GPXRB<31 :8>+?1O<31 :8> NEXT

GPXRB<31:8,..EX<31:8> SLS 1 NEXT
EX<31:8>419c<31:8> SLO 1),

1:-(GPXRB<c31:8>o.EX<31:8> SLO 1 +1 NEXT
EX<31 :8>14J8<30: 8>.' 1) !?

END)
END
NEXT
SUMMIlhSUTMc31:8>..PXRB<c31 >GPXRBc31: 8> +

GPXRB<31"~GPXRB<31 :8> NEXT
GPXRB<31 :8>*-SUM<31 :8> NEXT
EXPOUTm.GPXRBc7>@GPXRB<7:0> - MD<7>e)D<7:i> NEXT
OVF8.-EXPOUT<8> XDR EXPOUT4>i N4EXT
GPXRB47: 9>'EXPOUT<O:0> NEXT
NORIIAL 0

END,

IFrom FPPLOOP to here has boem chocked alomg w.ith NORMAL.

130

!From here to the end of SRTF has been checked as SORTIIL

SRTF:u !TAKES FLOATING GPXRA OR M10 AND PUTS SQUARE ROOT IN GPX)hB.
!A - mn x 2te. (t indicates exponent iat ion)

BEG IN
IF NOT AMOOE->(M..GPXRA) NEXT
IF 110 LSS @.>(OVFF-1 NEXT LEAVE SRTF) NEXT
IF M10 EOL 0->(GPXR8.-"80 NEXT LEAVE SRTF) NEXT
W1'-t1 NEXT !This register transfer is pure machine dependence.
LJB<31:8>.-MO<31:8> SL8 1 NEXT MTis too.
!W8<31:9> - 11 - m x Mt3.
LJOc7:8>.-B NEXT
DECODE 110<6>.> !Even or odd exponent

BEGIN
0:-(GPXRB-W0Oc31:30> NEXT !If even, shift argument two bits

UB'-WO SLO 2) , Heft into GPXRB.
!GPXRB@WO<31:1>21, Wi-s.

1:-(GPXRB448.31> NEXT !If odd, shift argument one bit left
W6..WO SLO 1 NEXT H nto GPXRB and add 1 to exponent.
EXPOUT,-MD<7>eM0<7: 0> + 1 NEXT !Exponent over flIow check.
Wlc7: 8>-EXPOUT<7: 8>)

!GPXRB@W.J<31:10> - M 14 1-e.1.
END

1In any case. at this stage sqrt(GPXRBeWB'c31:18>) x 2t(141/2) equals
1 2t12 x sqrt(m) x 2t(e/2). So all we have to do is take W41/2 for
!the exponent of the answer and for the mantissa (in its fractional
!form) take sqrt(GPXRBeIJB<3:10>) x 2t(-12). What is the same Is
!to take sqrt(GPXRBeLIOc31:10> x 2t22) x 2t(-23). in other iVords,
!take the square root mentioned here as an integer, and then just
h nterpret it as a fraction in the bits 4M:> of the register
!containing the answer (bit <31> will be zero, since we are finding
!the positive square root). Notice that GPXRB<4:8>*W8<31:10> x M12 Is
!a 46-bit number, and the range of values Is >-2t44 and <-2t46 - 2M2.

NEXT
U1<7:6,'W1<7>*W1c7:1> NEXT !Exponent of root is 1/2 previous value.
IF EXPOUT<8> XOR EXPOUT<7>.>W14:8>o-#100 NEXT

IThis is 1/2 of previous value
lin the case of overflow.

!So from here to the end we will be finding the square root of the
hinteger GPXRB<1:0>@WB<31:18> x 2M2.
!For proof of the following, see <MARCUS>SRTFPROOF.XOF.
COUNTER-0 NEXT
U1c31:8>-S NEXT !Zero is partial square root.
SUM.-GPXRB-1 NEXT
GPXRB*.SUMc29: 8>*W831 :30> NEXT

181

77-y7=7777

SLOOP:.
REPEAT
BEG IN
U9'419 SLO 2 NEXT
COUNTER.-COUNTER+1 NEXTreanr
DECODE SUtM31>-> Ipositive (or zero) or negreanr
BEGIN
at-Uc3:>-~ck18 + 1 NEXTSLO)NX

IF COUNTER EOL 23->(LEAVESLO)NX
W24*4l<31:8> + I NEXT
SU?1.PXRBUW2 NEXT

1:. (Ul<31:8>*.2*Wl<31:8> NEXT

IF COUNTER EOL 23.,(LEAVE SLOWP) NEXT

U2.-4*l131:8> + 3 NEXT
SUMI.-GPXRB44J2 NEXT
GPXRB-o-SUM<29:8>@W.U931 139>)

END
END

NEXT
GPXRB41

VADOF: -
BEG IN
AODF() NEXT
RA.-RA.1 NEXT
RB'-RB+1 NEXT
MA.-MA.1 NEXT
IF AMOOE,41M4E1(fAI NEXT
ADO NEXT
RA.-RA.1 NEXT
RB.-RB+l NEXT
flA.-IA+l NEXT
IF AtIOOE.,-iO4EIMMI NEXT
ADOF0(
END,

IVSUBF IS NOT ON FLOU DIAGRAMIS

VtiPYF t
BEGIZN
JIPYFI) NEXT

132

RARA+1 NEXT
RB'-RB.1 NEXT
tlA.-MA+l NEXT
IF AMODE->MlO-lE1UA) NEXT
MPYF() NEXT
RA..RA+1 NEXT
RB'-RB.I NEXT
MA'-MA+1 NEXT
IF AMODE.,MD-MEM (MA3 NEXT
MPYF()
END,

VI PF:-
BEG IN
rlPYF() NEXT
1J3'GPXRB NEXT
MA'MA+1 NEXT
RA.-RA+I NEXT
RB.-RB+1 NEXT
IF AI100E.>M..MrEM[MA3 NEXT
MPYF() NEXT
J2-GPXRB NEXT
MA-MAdl NEXT
RB'-RB+1 NEXT
RA.-RA+l NEXT
DECODE AMOOEw>

BEGIN
8: -WB.-GPXRA.

OTHERWISE: .MO.-MEM (MA)
END

NEXT
MPYF() NEXT
DECODE AMODE.>

BEGIN
8: -GPXRA.J2,
1: -M04W2
END

NEXT
AOOF(J NEXT
DECODE AMODE.>

BEGIN
Meu (GPXRA.-W2 NEXT

AOO(NEXT
GPXRAs.J9),

OTHERWISE:- (M04.W3 NEXT
ADO)

END
END,

VSMF: -
BEGIN
MPYF() NEXT
RB*.RB.1 NEXT

1 33

IPYF() NEXT
RB-RB+l NEXT
MPYF()
END,

LOOP7:.
BEGIN
REPEAT

BEGIN
W1-W+2 NEXT
GPXRB*-GPXRB<31>oGPXRB<31>eGPXRB<31:2> NEXT
IF UW<7:8> EQL 0-> LEAVE LOOP7
END

END.

CFX:. !CONVERTS GPXRA OR MD IN FLOATING TO GPXRB INTEGER.
BEGIN
GPXRB-MO NEXT
IF GPXRB<7:0> EOL B -> 'EXPONENT-0

(GPXRB&.GPXRB SLS 1 NEXT
(IF GPXRB EOL 0 -> GPXRB<-1 NEXT LEAVE CFX) NEXT
(IF GPXRB NED 8 -> GPXRB4-) NEXT LEAVE CFX) NEXT

CONVERTS <X88...8> TO -1 AND A NON-ZERO NUMBER OF ABSOLUTE
VALUE < I TO 0,

IF GPXRB<7:>-IGPXRB*.B NEXT LEAVE CFX) NEXT !NEG EXPONENT GOES TO B.
IF GPXRB<7:8> NEQ B AND GPXRB<7> EQL B w> (POSITIVE EXPONENT
(W-31 NEXT
UIGPXRB<7:8>-UI<7:B> NEXT
GPXRB<7t8>&8 NEXT
DECODE Wl<7>WJX.>

BEGIN
0:- IF U1<7:B> NED 8 ->OVFF4.1,

!IF W10:0> EDL 9, JUST LEAVE CFX.
1: OVFF-l,
2:w LOOP70,
3:m (Ul-II+1 NEXT

GPXRB'-GPXRB<31>.GPXRB<31:I> NEXT
IF Ul NED 8->LOOP7()

END)
END,

UPF:a. !TAKES GPXRA OR MD AND PUTS THE EXPONENT (SIGN EXTENDED) AND
!THE MANTISSA IN SUCCESSIVE GP REGISTERS.
BEGIN
GPXRB<-MD<:8> NEXT
RB'RB1+ NEXT
GPXRB<31:8>*-O31s8 NEXT
GPXRB<7: e".
END,

LOOPS:.

134

BEG IN
REPEAT

BEGIN
DECODE GPXRB<31s29>o>
BEGIN
[e,7]e (GPXRB,-GPXRB SL8 2 NEXT

IF SUMM1 XOR W1<7> ->(OVFF.4 NEXT LEAVE LOOPS) NEXT
I HERE SUMMI IS THE EXTRA HARDWARE BIT TO THE LEFT OF THE EXPONENT
AND IS USED TO CALCULATE OVF8 (-SUMMI XOR THE LEFT MOST REAL BIT OF

1 EXPONENT.)

SUMMle~l<7:8>,-WI<7>etJl<7:0>-2).

! THE EXPONENT PART OF W1 IS ALL THAT IS USED IN THE CONTINUATION.
[1,61:- (IF SUMM1 XOR W<7> ->(OVFF*.1 NEXT LEAVE LOOPM) NEXT

SUMMle <7:0>,-I(<7>1II<7:8>-1 NEXT
GPXRB-GPXRB SLO 1 NEXT
IF SUMMI XOR U1<7> -.(OVFF*.. NEXT LEAVE LOOPS) NEXT
GPXRB<7:B>,.WI<7:9> NEXT
LEAVE LOOPS),

2:5:- (IF SUMM1 XOR U<7> ->(OVFF#- NEXT LEAVE LOOP8) NEXT
GPXRB<7:8>,-W<7:> NEXT
LEAVE LOOPS)

END
END

END,

PKF:- !TAKES EXPONENT(GPXRB OR MD) AND MANTISSA(GPXRA OR MEM[MA])
!AND PUTS THEM TOGETHER IN GPXRB AS ONE FLOATING POINT NUMBER.
! THIS NEEDS TO BE CHECKED AGAIN,
BEGIN
DECODE AMODE->

BEGIN
0:- (WI-GPXRB NEXT !EXPONENT

GPXRB-GPXRA). !MANTISSA
OTHERWISE:- (MA-MA+l NEXT

GPXRB,-MEM[MA] NEXT IMANTISSA
W I -MO) 1EXPONENT

END NEXT
IF GPXRB EOL 0-> (GPXRB*."88 NEXT LEAVE PKF) NEXT
LOOPS()
END,

LAND:-
BEGIN
GPXRB4MO AND GPXRB
END,

LXOR:-
BEGIN
GPXRB M'I XOR GPXRB

13

END.

IOR:-
BEGIN
GPXRB-MO OR GPXRB
END,

AN I:-
BEG IN
GPXRB.-NOT 110 AND GPXRB
END,

LOOPIB: -
BEGIN
REPEAT

BEGIN
MO-MD+2 NEXT
DECODE GPXRB<219:27>->

BEGIN
18,71:. GPXRB,-GPXRB SLO 2,OTHERWISE:. (OVFF,.1 NEXT

GPXRB,-GPXRB SLO 2)END NEXT
IF D<7:B> EOL 0->LEAVE LOOPB
END

END,

LOOP11:-
BEG IN

MOD-MD+2 NEXT
IF GPXRB EOL e> LEAVE LOOPi, NEXT
DECODE GPXRB<31: 29,,>

BEGIN
(87,7:- GPXRB-GPXRB SLO 2.

OTHERISE:. (OVFF*-I NEXT
GPXRB.GPXRB SL8 2)

END NEXT
END, IF MD<7sB> NED B->LOOPh8()' END,

LOOPS:-
BEGIN
REPEAT

BEGIN
1O0M0-2 NEXT
GPXRB<,GPXRB<31 : 2> NEXT
IF 1047:8> EL 8->LEAVE LOOPS
END

END.

188

ARS:. !SHIFTS GPXRB THE NUM1BER AND DIRECTION OF THE SIGNED EXPONENT
!PART OF GPXRA OR MOD. RIGHT SHIFT CAUSES SIGN-EXTENSION

BEGIN
IF MD<7:0> EOL Su> LEAVE ARS NEXT
DECODE MD<7t10cO>>

BEGIN
0:. LOOP9O,
1:.* (MO'-tD-1 NEXT

GPXRB<-GPXRB<31: 1> NEXT
IF l1D'7:0>. NED 0->LOOPS(),.

2:. LOOP1lO,
3:m (MO-D'0+1 NEXT

IF GPXRB EaL 0.>LEAVE ARS NEXT
DECODE GPXRB<31: 29>.>

BEG IN
(0,,6,]:.GPXRB4-GPXRB SLO 1,

OTHERWISE:- (OVFF..1 NEXT
GPXR84GPXRB SLS 1)

END NEXT
IF I1D<7:0> NED 8->LOOP110)

END
END.

LOOPi 88:-
BEG IN
REPEAT

BEG IN
tIO.-t1O.2 NEXT
DECODE GPXRB<29: 27>->

BEG IN
[0,71:. (GPXRB4.PXRB<298 >eEX<c31 303> NEXT

EX-EX SLO 2),
OTHERISE:- (OVFF4. NEXT

GPXRB4-PXRB<29: 0>EX<31 239> NEXT'
EX..EX SLO 2)

END NEXT
IF M104:8> EOL e.>LEAVE LOOP18S
END

END.

LOOPli:.
BEGIN

MO#-flO.2 NEXT
DECODE GPXRB<31:2S,>I- BEGIN(8,71: * (GPXRB4GPXRBcZ~s: S>EX41 :38)- NEXT

EXI,-EX 91.9 21,I OTHERWISE. (OVFF*.1 NEXT
GPXRB4-PXRB<Zts:bEXc3ls:3Sl> NEXT

EX..EX 94.9 2)
END NEXT

137

IF MD<7:8> NEO 8->LOOP188()
END,

LOOPSe: -
BEGIN
REPEAT

BEGIN
MD.-MlD-2 NEXT
GPXRBcGPXRB<31: 2> NEXT
EX,-GPXRB<I =: >eEX<31" :2 NEXT
IF 110<7:8> EOL O->LEAE LOOP90
END

END,

ARL:. !SHIFTS GPXRB*EX THE NUMBER AND DIRECTION OF THE SIGNED EXPONENT
PART OF GPXRA OR MD.

BEGIN
EX-EX SLO I NEXT
IF jD<7:8> EOL 8-> (EX.EXc31:i> NEXT LEAVE ARL) NEXT
DECODE l1D<7>1D->

BEGIN
0:. LOOP90),
1:- (MO-MD-1 NEXT

EX,-GPXRB<8>@GPXRB<31: 1> NEXT
GPXRB<-GPXRB<31:1> NEXT
IF MD<7:9> NEO 8->LOOP98()),

2:m LOOP110),
3:- (MD,.ID+I NEXT

IF GPXRB EOL g,,>(GPXRB,-GPXRBc3Bt9>eEX<31> NEXT
EX4-EX SLO 1 NEXT
(IF MOD NEO On>LOOP111() NEXT

LEAVE ARLI NEXT
EX,-EX SRO 1 NEXT
LEAVE ARL) NEXT

DECODE GPXRB<31 : 29>->
BEG IN
[8.1,6,71:, (GPXRB-GPXRB<38O-vEX31> NEXT

EX,-EX SL8 1),
OTHERUISE,- (OVFF, NEXT

GPXRB.GPXRB<30: 8-eEX<31> NEXT
EX.EX SL8 1)

END NEXT
IF M<7:> NED 8->LOOPIIO())

END
END.

LOOPi2B N
BEGIN

138

REPEAT
BEGIN
MD,-MO-2 NEXT
GPXRB,-GPXRB SRR 2 NEXT
IF MD<7:8> EL On> LEAVE LOOP12
END

END.

LOOPI3:-
BEGIN
REPEAT

BEGIN
IO,M1+2 NEXT
GPXRB,-GPXRB SLR 2 NEXT
IF 1D<78> EQL O.> LEAVE LOOP13
END

END,

RRS:- !ROTATES GPXRB NUrMBER OF PLACES AND DIRECTIONS GIVEN
!BY THE EXPONENT PART OFGPXRA OR '10.

BEGIN
IF D<7:0> EOL O-> LEAVE RRS NEXT
DECODE D<7>@MD.>

BEGIN
0:- LOOP120.
1:. (11D.1O-1 NEXT

GPXRB-GPXRB SRR 1 NEXT
IF MD<7:8> NEO O->LOOP12(),

2:.- LOOP130.
3:. (MD.MDI NEXT

GPXRB-GPXRB SLR 1 NEXT
IF MO<7:8> NEQ 0.>LOOP13())

END
END,

LOOP14:,
BEGIN
REPEAT

BEGIN
MD,-MD-2 NEXT
SUM*-GPXRB NEXT
GPXRB-EX<1:8>GPXRB<31 2> NEXT
EX,.SUMId: O>*EX<31 :2> NEXT
IF lO<7:8> EOL O->LEAVE LOOPI4
END

END.

LOOPIS: -
BEGIN
REPEAT

BEGIN

169

110.410+2 NEXT
SUMI-GPXRB NEXT
GPXRB.GPXRB29: 8>eEX431 :3g> NEXT
EX.-EX<23: 8>eSUIMc31 :30' NEXT
IF flD<7:80 EOL 8->LEAVE LOOKS5
END

END.

RRL: - !ROTATES GPXRB*EX THE NUMTBER OF PLACES AND DIRECTION OF THE SIGNED
!EXPONENT PART OF GPXRA OR MO0.

BEGIN
IF M104:B>.EOL O-> LEAVE RRL NEXT
DECODE flO<7>o11DgBnu>

BEG IN
0:- LOOP140.
1:- (MD0.41-1 NEXT

SUM1.GPXRB NEXT
GPXRB.-EX<c8>GPXRB<31:1 > NEXT
EX.SUIMcS>eEX<31: 1- NEXT
IF t1D<7:0> NEU 6.>LO0P14(1),

2s- LOOPISO.
3:w (110.410+1l NEXT

SUM'-GPXRB NEXT
GPXRB.-PXRB<30:9>*EX<31 > NEXT
EX*-EX<30:O>9gSUM<31>~ NEXT

EDIF MlO4:8> NEU O9.LOOPI5O))
END.

LOOKS6:
BEGIN
REPEAT

BEGIN
110.410-2 NEXT
GPXR84.PXRB SRO 2 NEXT
IF MDW7:S EOL O.>LEAYE LOOP1G
END

END.

LOOP17sw
BEG IN
REPEAT

BEGIN
110.410,2 NEXT
GPXRB#-GPXRB SLO 2 NEXT
IF MlO4:02, LOL 8.,.LEAVE LOOP17
END

END,

140

IRS:. !ZEROS ARE SHIFTED IN.
BEGIN
IF NOT AMOOE.M.-GPXRA NEXT
IF Ml04:0> EOL @->LEAVE LRS NEXT
DECODE I1D<7,,tD<B~.

BEGI N
0:. LOOPi1fJ.
Its IMD'.tl-1 NEXT

GPXRB.-GPXRB SRO 1 NEXT
IF M0D4:0> NEU 8a.LaOP16O),

2t. LOOPI7O,
3:. (MD&-tD+1 NEXT

GPXRBi-GPXRB SLO 1 NEXT
IF IDOt& NEO 0.>LOOP16O))

END
END.

LOOPl8:.
BEGIN
REPEAT

BEGIN
MlD.M1-2 NEXT
EX'-GPXRBcl :8>@EX<31 : 2 NEXT
GPXRB&.GPXRB SRO 2 NEXT
IF M04;9>e EOL 0-> LEAVE LOOKSB
END

END.

LOOPIS:.
BEGIN
REPEAT

BEGI N
MD.-rD+2 NEXT
GPXRB-GPXRB<c29: 0>EX<31 :38> NEXT
EX,.EX SLO 2 NEXT
IF M047:0> EOL @->LEAVE LOOP19
END

END.

LRL:- !ZERO IS SHIFTED IN.
BEGIN
IF i1O4:O> EOL 8->LEAVE LRL NEXT
DECODE 11Oc7)-*MDcB,.

BEGIN
0:- LOOPI80,
Ism (MD-0D10- NEXT

EX..-GPXRB8>EX<31: 1> NEXT
GPXR84-PXRB SRO 1, NEXT
IF M?<0tg> NEU 0.'LOOP180),

2:. LOOPiBO,
3:s* (110410. NEXT

141

GPXRB'--GPXRB<30:0>EX<31ih NEXT
EX*-EX SLO 1 NEXT
IF MD<0s:> NEU 9.LDDP1SO)

END
END.

BEGIN
OISINT-l
END,

EN!:.
BEGIN
OISINT#.6
END.

RFI:o !return from interrupt
BEG IN
PC-MEM [MAI <15: 8> NEXT
EXMOOEe-MEM (MA]c24> NEXT
OISINT'.MEMIWA) 23> NEXT
DI VFF-MEM1 MA]c22> NEXT
OVFF*.MEM WA) (21 > NEXT
I LLOPC.MEMEMI) 4B NEXT
CRYFF..MEM (MA] (18> NEXT
I NTPRI OR*-E (MA] cl8:16>
END.

RET:. !return from subroutine
BEGIN
PC'-MEM (MA] (15: 6> NEXT
DISINTs-MEM (MA] 43> NEXT
DI VFF*.MEM ([I]22> NEXT
OYFF-MEM [MA] 21> NEXT
JLLDPC41-E11 MA] 28> NEXT
CRYFF*-IEl (MAI cl9>
END.

XEC.
BEGIN
DECODE AMODEw>

BEGIN
B:. INR...PXRA,

OTHERWISE:-* INR41EM MA]
END

NEXT
flA<.INR<4S:9> NEXT
IF INRPT.:,(PC..PC-1 NEXT LEAVE XEC) NEXT
ADDRESS() NEXT
OPERAND() NEXT
OPERATION() NEXT

142

GPXR IRA) -GPXRA NEXT
GPXR [RB) 4.PXRB NEXT
INRPT*.OVFF OR OJYFF
ENO

Operat ion. decode

OPERATION:- !opcode decode.
BEGIN

DECODE OPCODE->
BEGIN

ILOAD (FETCH 3/STORE

"68:-LORo. ILOAD REGISTER

"81:.LDEO, ILOAD EXTENSION REGISTER
I "30:-LUO(J, !LOAD WORKIlNG REGISTER 8

"31-Lll,!LOAD WORKING REGISTER1
I "32: -LW2O). !LOAD' WORKING REGISTER 2

"33:-LU3(). !LOAD WORKING REGISTER 3

"02:-LOR2(), !LOAD MUILTIPLE
"83: -LDR3 ,
"604: .LOR7.
"BS:-LON0, !LOAD NEGATIVE
"86:-LDNFo. !LOAD NEGATIVE FLOATING
"67: -LOAf), !LOAD ABSOLUTE VALUE
"88: -LOAFo !) LOAD ABSOLUTE VALUE FLOATING
"89:-LOCo, !LOAD ONE'S COMIPLEMlENT
"BA:-LAO(). !LOAD ACTIVE ONLY
"0B: .LI1O(, ILOAD MIONITOR ONLY

"48: .STR(), I STORE REGISTER
"41:--STEo, ISTORE EXTENSION

I "65:uSW8(), !STORE WORKING REGISTER 8
"66: -SWll, !STORE WORKING REGISTER 1
"67:-SU2(). !STORE WORKING REGISTER 2

1 "68:.5L31), !STORE WORKING REGISTER 3
"42:-STOO), !STORE DOUBLE
"47:-STZo. ISTORE ZERO
*43:-SZD(), !STORE ZERO DOUBLE
"62:-STR2(). !STORE MIULTIPLE SINGLE
"63: .STR3(),
"44:.5T02(), ISTORE DOUBLE MIULTIPLE
"4S: -ST03 0.
"46:4ST770
"49:-STHI), !STORE TO HARD ADDRESS
"48: .SPSo. I STORE PC AND 'STATUS SINGLE
"4A:-SPC(), ISTORE PC AND STATUS DOUBLE

I "48teSBPAI(). ISTORE BAD ADDRESS PARITY ONES
I "4C:.SBPASO(, ISTORE BAD ADDRESS PARITY ZEROS

143

"40: =SBPD1 0, !STORE BAD DATA PARITY ONES
"4E:.SBPOO(), !STORE BAD DATA PARITY ZEROS

! JUMP

"S8: wJMP(), !JUMP
"SE:-JSBo, !JUMP SUBROUTINE
"4F:=JPZ(), !JUMP IF POSITIVE OR ZERO
"5I:=JMI(), !JUMP IF NEGATIVE
"5 :..JZE, !IJUMP IF ZERO
"s3:uJZEFO, !JUMP IF ZERO FLOATING
"$4:=JNZ), IJUMP IF NON-ZERO
"55:,JNZFo, !JUMP IF NON-ZERO FLOATING
"S6:.JPS(), IJUMP IF POSITIVE AND NON-ZERO?)
"S7: JPSF 0), !JUMP IF POSITIVE AND NON-ZERO FLOATING(?)
"S:-JMZ), !JUMP IF NEGATIVE OR ZERO
"59:-JMZFo, IJUMP IF NEGATIVE OR ZERO FLOATING
"SA:.JONO, DECREMENT RB. JUMP IF NON-ZERO
"SC:-JOS(), !JUMP IF OVERFLOW SET. RESET OVERFLOW
"SD:-JCS0. !JUMP IF CARRYOUT SET. RESET CARRYOUT

!TEST AND SKIP

"29:-OISNo, !OR INVERTED AND SKIP IF NOT ONES
"2D:--DISOl). !OR INVERTED AND SKIP IF ONES
"2A:-ASNZ(, !AND AND SKIP IF NOT ZEROS
"2C:-ASZo, !AND AND SKIP IF ZEROS

i "34:-CSNEo. !COMPARE AND SKIP IF NOT EQUAL
i "35:-CSEQ(). !COMPARE AND SKIP IF EQUAL

INTEGER ARITHMETIC

"19: -ADD(). INTEGER ADD
"1A:-SUB), INTEGER SUBTRACT
"1B: .MPY0, INTEGER MULTIPLY
"IC:-DIVI, !SHORT DIVIDEND DIVIDE
"ID.-LOV(), !LONG DIVIDEND DIVIDE
"2B-ACO , !ADD CARRYOUT
"IE:-CFLo. !CONVERT INTEGER TO FLOATING

!FLOATING POINT ARITHMETIC

"OC: .AOF 0 , !ADD FLOATING
"OD:-SUBF(, !SUBTRACT FLOATING
"OE:.MPYFo. !IULTIPLY FLOATING
"OF: -01 VF 0, DEVIIE FLOATING
"18: .SRTFo. 1SQUARE ROOT FLOATING
"11:-VADDFo, !VECTOR ADD FLOATING
"12: .VSUBF 0 . !VECTOR SUBTRACT FLOATING
"13:-VMPYFo. !VECTOR MULTIPLY FLOATING
"14:-VIPFo, IVECTOR INNER PRODUCT FLOATING
"1S: .VSMF (, ! VIECTOR-SCALAR MULTIPLY FLOATING
"16: =CFXo). CONVERT FLOATING TO INTEGER

144

" 7- .UPF0. (|!UNPACK FLOATING
"18.PKF(), IPACK FLOATING

!LOGICAL

"1F:-LAND(, !LOGICAL AND (Name changed because of conflict

(with ISPS)
"280.-LXOR0, ;EXCLUSIVE DR (ditto)
$21: -IOR(, iINCLUSIVE OR
"..: ANi), !AND INVERTED

!SHIFT/ROTATE

23:-ARS 0, ARITHMETIC SHORT SHIFT
4. -ARL!, ARTHM1ETIC LONG SHIFT

"ZS: .RRS , !ROTATE SHORT

".-G: .RRL ., !ROTATE LONG

".7:-LRS). !LOGICAL SHORT SHIFT

"28:-LRL(), ILOGICAL LONG SHIFT

!1l SCELLANEOUS

"ss:-OS[(I, !DISABLE INTERRUPTS

"SF: .,ENI (I, !ENABLE INTERRUPTS

"GO3: RFI 0, !RETURN FROM INTERRUPT

"G4: -RET(). !RETURN FROI SUBROUTINE

"G:=XEC() IEXECIJTE

END
END

*, Execut ion. cc I ew**

CYCLE IAINI:-
BEGIN
OELAY (1) NEXT
PC-l NEXT
REPEAT

BEGIN
INSTRUCTION() NEXT
ADDRESS() NEXT
OPERAND 1) NEXT
OPERATION() NEXT
GPXR(RAI-GPXRA NEXT

145

GPXR [RB) '.GPXRB NEXT
JNRPT4OVFF OR OIVFF
IF INRPT.>(..,
END

END

STOP

1 48

MISSION
Of

Rome Air Development Center
RAVC ptanA and executes te6 eatch, devetopment, tes-t and
&6e~ected acquisiLtion ptrog'am in suppoct oj Command, Conttot

* Communications and InteLL~gence (C31)J activiLties. Technicato
and engineet.2ng .ciappo%t withi~n atea,6 o4 .technicaZ competence
is ptovided .to ESO Pxog~am O64ie6 (POA) and otheA ESV
e~ement6. The ptincipat technicot mZ6sion a~eaz a~e
commun4 .cations, etecttomagnetic guidance and cont'w4 .6uA-
veittance o4 gtowid and ae~w4 pace object, intetl.Zgence data
cottecton and handt~no, injo'wmation .6q6.tem technotogy,
iono~sphe~iuc potopagation, Ao0V4 sta-te sciences, miAowakwe
phy~ic6 and eteetLonic %etia~bZLty, mainta.nabitity and
compoatibitt.

