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EVALUATION

One goal of Software Engineering Tools and Methods, a subthrust of TPO-5
Software Cost Reduction, is the development of automated tools for use in
the production, testing, and maintenance of Air Force software. This effort

was undertaken in response to that goal.

The objective of the effort was to develop a prototype software system for
formally verifying microcode. The use of microcode (firmware) to implement
computer instruction sets, rather than hard wiring, is a recent development
in computer technology. Hardware diagnostics do not fulfill testing

requirements for these computers.

Formal proof-of-correctness techniques, previously developed, were applied
to develop a system for 'proving' microcode correctness. These techniques
were developed for software written in high order languages. This effort
is significant in that it is the first application of the techniques on

assembly or micro level software.

Development of the system was guided by problems encountered in attempting
to verify the microcoded instruction set of.the SAMSO Fault Tolerant Space
Computer (FTSC). This provided a practical problem to demonstrate the
usefulness of the system. Verification of the complete FTSC instruction

set will be completed in a follow-on effort sponsored by SAMSO.

/C,. IR LT

DONALD F. ROBERTS
Project Engineer
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1. OVERVIEW

The goal of the microcode verification broject at I1S] is to develop both the theory and
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the tools for verification of microcode. Wiiie some prior work has been done in this area,
notably [Pattorson 77, Birman & Joyner 76], the field was (and is) far from ciosed.

Problems exist at every level, from fundamental questions of theory through questions of

strategios of system design to problems of integration with other software engineering
tools and education of users. Our strategy has been to concentrate on developing a 5
working system, letling the theorelical issues emerge--sometimes painfully--amid system
development. We have tried to delay overall consideraticn of the human engineering
questions, but have been forced to consider some of these when it became too difficult

to uso our own system without improving the intarface.

To establish a focus for the project and provide a source of examples, we selected a

particular computer, the Fault-Tolerant Spaceborne Computer (FTSC), under development

by Raytheon for the Space and Missile Systems Organization (SAMSO) of the Air Force.

The FTSC has a number of unusual features related to its design goal for a five-year

maintenance-free survival in space. These features appear primarily at the hardware u

level and in the operating system, however, not in the architecture seen or implemented ’

by the microcode. At the machine language level, the programmer sees a 32-bit machine

with 64K of memory, 8 general purposc registers and the usual types of instructions. At

tho microcodo lavel, the machine is horizontally microprogrammed with 78-bit instructions

docodad into 37 different fields. (As of this writing, the machine has laeen redesigned to

have a shorter microinstruction. We have not taken these changes into account in the i
' prosent work, but will focus on the new dasign in the next effort.) Documentation of the

I'TSC is givon in [Raythoon Corp 70].

One of the criteria in the selection of the FTSC is that it is a real machine developed

outside our control. We believe that it is possible to verify code for nearly arbitrary

machines, irrespective of the technigues used to davelop the tode. This view differs
somawhat from those of othor verification researchers, notably [London 77]. To be fair, i

it is quite clear that much of the Iubor in the vaerification task can be reduced if

varification and. code development sre carried out together and if the strategies,
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practices, and tools used to develop the code are also geared toward verification. But
we view this as a secondary concern and not fundamental to the verification task.

Below, wo will mention where the savings in labor would occur.

We view a microprogram verification system in the following terms. A user prepares
formal descriptions of the host machine and the target instruction set. He also obtains
a copy of the microcode that runs on the host machine and allegadly implements the
target instruction set. He then prepares a proof that the microcode does indeed behave
as desired, and submits all four of these files--host description, microcode, target
description, proof--to the varification system, which then examines the target
dascription to determine all aspects of its behavior needing implementation. For each
sequence of events that must be implemented, the system symbolically executes the
microcode according to the rules of the host machine and demonstrates that the required

saquenco of ovents doos tako placo.

No system can be quite smart enough to carry out all possible demonstrations completely
automatically, so somo help may be noovdod. Some systoms operate on the principie that
the system should try very hard to succeed on its own and then ask for help after it has
tricd ll possible houristics. While this approach seams attractive, it has a fundamental

drawback. Whaon the system asks the user for help, the user is generally unaware of

what the system already has tried 1o do, what level of detail is needed, or even what
problem the system is working on. The underlying difficuity is that the user must have
soma idea of how the system is constructed and understand how to drive the system. At
the same time, we note that the system is really trying to formaily document the
rationale for cach instruction in the microprogram. However, this is just what the
programmer had to do himself when he wrote the program. Combining these two

ohsorvations, we have taken the view that the verification sysiem should be driven by

the user, not the other way around. The user should have a complete understanding of ]
what thoe wverification system will ard will not do, and the user should drive the

verification system toward believing the correctness of the code. In this view, )

interaction botwoen tho systom and the user takes the form of a prepared proof, and it

bacomas maaningful to ask what is the proper language for writing proofs. Wegbreit's




paper [Weqbreit 77] oxplores this area elogantly for well-structured algorithmic
languaqges.  For microcode goenerated with minimal assembly language tools, different
cngumering‘ is required, but the basic idea is the sama. At the present time, our “proof
language" is nothing more than a set of commands to the proofchecker. However, as we

gain expetience with the system, it becomes clear how to structure these commands into

phrases; thus the development of a proof language begins. At the same time, it Is

worthwhile to ask whether the production of both the microcode and the proof of its

correctness can share any tools. The answer must be "yes," but we have hot yet

considered any specific implementation.

Although we wish our system to be as general and as useful as possible, our present

design horicons embody the following limitations:

= The purpose of the microcode must be to implement the instruction set of a ; q
compuler.  This restriction is intended to limit the difficulty of specifying
the intended behavior of the microcode. With this restriction, we rule out
microcode that is just arbitrary lower level code to implement, say,
operating systems, signal processing algorithms, device controllers, etc. ‘
This restriction is not really fundamental to our work and, as we shall see, \ j
dons not quite guarantee that we shall always have a straightforward way
to spucify the intended behavior of the machine. p

~ Since we do not yet have sufficient tools to represent or reason about
concurrency or time-dependent behavior, we demand that our microcode be
written for a sequential machine and that it implement the instruction saet of
a soquential machine.

= Wea iitend that the result of this rasearch be a demonstrable system with
the real possibility that someone other than ourselves should be able to
formulutc a task and carry it out. We do not intend, however, that the
j system bo officient, completoly robust, smoothly human-engineered, or
thoroughly documentod. Usaors of tlie system should understand the state
of development. Their success rate will be higher if they communicate with
us before and during any experimentation.

In addition to the caveats above, the system we are building is not yet ready for

release.

Carrying out a complote proof may be fairly tadious. Preparation of the formal




descriptions often appears to be a straighforward task of encoding the information in the
manuals that accompany the machine, but we have noticed that many important details
are often omitted from such documents, and others are misdocumented. Programmers
doveloping the microcode come to understand these details and use their knowledge to
write or debug their code. If the person writing the formal description is not similarly
steeped in the culture of the machine under consideration, a similar learning period will

beoe required.

Writing the proof may be tedious, for three reasons. First, a complete understanding of
tho code is necessary. The programmer understands the code; the person raesponsible
for verification may not. A period of study may be necessary before any of the proof
can be written. Of course, if the programmer were also responsible for preparation of
the proof, then the verification would proceed all the faster. Unfortunately, with
vaorification still in the rescarch phasc, programmers who build “"real” programs are far
too busy to spond the extra timo required for varification. Also, since verification
roquires soma special knowledge, production programmers may not be skilled in the art of

preparing formal descriptions and proofs.

The second difficulty is that the code mey be relatively complicated to verify. At the
boginning woe insisted that it should be possible to verify code even If it were written
wilhout knowledge that it would be subjected to verification. (We're assuming, of
course, thatl the code does indeed work!) However, it is equaily clear that there are
many strategics for writing code and that some of them may be equally good from the

programmaor's point of view but require very different levels of effort in verification.

The third difficulty is that proofs may be taediously long. We have said that the user
must drive the verification system with a proof and that the verification system must
proceed so as to give the user a clear idea of what the system is doing. However, a
trivial way to build such a system is to inake it extremely simple, with the rasult that
_proofs will be extremely long and require tha user to spend a long time preparing them.
In the extrome, this is not permissible; it Is necessary to build the system with enough
knowledge so the "straightforward" dedustions are carried out automatically. There is

no possibility that any system can know a "maximum" of knowledge, for there will.always




bo problems that can bo proven with a systam, but not provan automatically. At the
samo tima, thera is no limit to making a system smarter; we can always go beyond the
pravious limits and build a next systam that understands more than the last. Clear
measures of the smartness of one system compared to another do not yat exist, but it is
@ question that is likely to gain attenlion as various verification systems are used for

larger and larqger probloms.

As we said earlier, we have restricted our interest to microcode that implements the
instruction sct of some computer. The intention of this limitation is to make it easy to
specily the intended bebavior. Unfortunately, this restriction does not quite work. in the
description of the host architecture, we have no difficulty in formalizing all aspect.s of
concern, excepling, of course, timing and concurrency. We view the host machine as
operating on bitstrings of finite length. The operators for bitstrings are concatenation
and selection, logical operations, e.¢g., AND. OR and NOT, and the simple integer arithmetic
operations. At the target level, howaover, we have not been so fortunate. Bitstrings
remain e dominant datatype, and all of the bitstring operators are still required, but
hew operations exist that are not simply characterized by short descriptions. Floating
point arithmet.c is the most obvious and extensive area, but some machines have other
instructions whose behavior is quite difficult to characterize in terms of bitstrings. Edit
and format instructions provide many examples, as do instructions that find the

loweast-arder or higher-order 1 bit.

The FTSC computer is blessad with the usual complement of floating point instructions;
imdeed, it even has a floating point squarc root instruction. On the grounds that avoiding
these instructions would trivialize the affort and leave us an undetermined distance from
realizmg a system capable of verifying real microprograms for real machines, we decided

to tackle the floating point arithmetic neac on.

W divided the spocification of the target machine Into two jevels. Tha first is written in
the same terms as the host machine description. It is restricted to simple bitstring
opaerators. At this level, the simple targe!l machine instructions, e.g., load, store, Integer
add, jump, etc., urc stated as succincliy as they will ever be stated and no further work

is required.  Tha floating point instructions, however, look like short but complicated

(4]
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alqorithms that provide an explicit view of how the words are divided into a mantissa and

aexponent, how rormalization takes place, otc.

For these instructions, we provide a higher level of specification that shows that the
rosult of that algorithmic specification has certain properties. This higher lavel of
specification requires the introduction of the reals, and the properties are stated in
torms of tho interprotation of the fioating point bitstrings as real numbers. For example,
thae daosired proporty of the square root instruction is that it computes the largest
ﬂo.atinq.poim number whose square is not larger than the original number. (The notion of
"larqest floating point number® requiros even a little more; the granularity of the floating

pomt numbers is also an issue.)

In the work to date. we have written a complete specification of the FTSC at both the
host and algorthmic target level, but we have not defined the properties required of the
floating |mia_nt instructions except for the square root instruction. We have focused on
the square root instruction simply becausc it seemed to expose all of the issues likely to

come up in any othar instruction.

The basic plan for vorifying the correctnoss of tho microcode thus has two parts. One
part is to wverify that the microcode ruinhing on the host machine Iimplemants the
algorithmic target levaol. The second part Is to varify that the algorithmic target level

has the additional properities desired.

At the present time, we have complated tive proof that the algorithmic target description
of the square raot instruction has the desired property. We have not yet proven similar
properties for other instructions, nor have we proven the correspondence between the
host machine and the target instruction set, for the FTSC. We have, however, created a

nole, fictitious machine and carricd out a complete proof of the correctness of its
wucrocode.  This small machine is caliod the TOY machine. Both of these proofs are

[}

documaentad in chapter {our.

Completion of proofs is one measure of prograss, but there is much that precedes the
[
ability to carry aut proofs. A sound theoretical basis must exist or be developed and a

functioning proof system must be daveloped. These activities have consumed the

R AT W Y
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majority of our time and resources.

In chapter two, wo discuss the theorctical basis for our proof system and introduce the
lanquage we use for expraessing the bohavior of machines and the properties of
programs. 0 chaptor three, we outlino the structure of the proof system and give

duetaily for selected components.

Tins work.is still in progress. The details of language, structure and capabilities are all

3
2

avolving.
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2. LANGUAGE AND THEORY

In this chapter we discuss the formal basis of and the language we have chosen for both
encoding our descriptions of machines and reasoning about the course of computations.
Internally, our notation is chosen for its precision and ease of processing, qualities that
contrast with the desire for compactness and richness in the languages read and written
by humans. Both levels exist, and there must be translation between them. As often
happens, subtle and important issues emcrge in the transiation. At 1BM, the difficulties of
using two levels of language have been avoided by designing a special-purpose
language that is both computationally tractable and not too unwielidy for humans. That

language is documentad in [Joyner et al. 78].

2.1 ISPS

To ropresant the host and target machines, we have chosen to use the ISPS language.
ISPS, a doerivative of Bell and Newell's ISP language [Bell and Newell 71], is now in
modest use by a number of organizations. Documentation of the current version is given

in [Barbacci ot al. 77]; the examples in chapter four are written in ISPS.

Duscriptions of machines have been written in ISPS for a number of different purposes,
including simulation, architecture evaluation, documentation, computer-alded design, and
(in variants of ISPS) automatic genoration of code generators and assembiers. This
varioty of activity assoclated with the language is usefui in two ways. On the one hand,
the use by large numbaors of people improves the possibility that a standard will emerge,
that documuntation of computors will be more accurate and more complets, and that the
task of preparing formal descriptions of the host and target levels of a microprogrammed

maching will bo carriod out by the machine designers Instead of by the verification group.

On the other hand, the wide variety of applications using ISPS, each with its own
software to procoss ISPS descriptions, has tended to expose the lack of a precise
somantics for the language. As an expcatiment to gain some leverage on the semantics
of ISPS, Pete Alfvin developed a denctational semantic definition of AMDL, an abstract

syntax version of ISPS in use at ISI [Alfvir. 79].

e et el stk el
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Asi we mentioned in the overview, while it may look simple to encode the details of a
machine's instruction sot in ISPS, it may be tedious in actuality. In the case of the FTSC,
a machine undar development and radesign, a numbar of small but iinportant details were
cither undocumented or misdocumentod. We developed simulation tools to execute the
descriptions we wroto and used the simulations to execute the diagnostics for the
machine at both the host and target lavels. In essence, this amounted to a "verification
by testing" approach; since tho microcode itsolf was used In some of these tests, it is
roasonablo to ask if wo perturbod tho dascription of the machine in order to make the
code work. Stated another way, how do we know that the description of the host
machine is an accurate representation of how the hardware really works, and how do we
know that the description of the target machine Is an accurate representation of how

the targot machine is supposed to work? There can be no completely satisfactory -
answars to these questions. The descriptions at both levels must be accepted; they
cannot be checked in any rigorous sense within the confines of the microcode
veritication paradigm. If there exists another description at a higher or lower level, then
the corresponding descriptions may be checked against it. However, this mergly pushes
the problem off one level, and there is nho ultimate exemption from a requirement to
accept the bottom level description as the way the machine actually works and the top

level description as the way the system is supposed to work.

Complete assurance having been denied us, we can ask what lesser assurance is
available. By using a language undorstood by a number of people (in particular by the
designers of the machine, the microprogrammers of the machine, and the programmers at
tho assembly lanquage level) we can have some hope that they all share the same
understanding of the machine if they were to depend upon the same descriptions as
their reference. This is not yet the case for any machine with any description system,
but we sce no rcason why it coulu not be. In the course of writing the formal
descriptions, the "outsider” may find himsolf in a question and answer dialogue with the
machine daosigners, in ordar to clarify the Informal descriptions. See the appendices for

an axampla of our dialogua with tha dasighars of the FTSC.

To completo our discussion of ISPS, wo again mantion that ISPS does not provide
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primitives for tepresenting floating point operations; we have had to code them in ISPS
as small algorithms. Since the lack of standard notions and designs of fioating point
arithmetic is a common problem, the choice of anothar language would not have improved

mottors.

2.2 STATE DELTAS
In order to build a proof system, a formal basis for reasoning about machines is required.
Ordinary first-order predicate calculus is often used as a foundation, but it provides no

machinery for reasoning about time or situations that change with time.

Thore are many possible solutions. Curs lias been the development of an extension to
the first-order predicate calculus by tha addition of sentencaes called state deltas.
State deltas were first introduced in [Crocker 77). For a more formal treatment see
[Marcus 79]. To motivate the davelopmant of state deltas, we give the observations

and dncisions that support our formulation.

-1t is simple to think in theoretical terms that a computer can be
characlerizerd by a transition function that maps state vectors into state
vectors.  Given an initial state vcctor and a statement of the transition
function, ordinary mathematical 1ools will provide the machinery for
reasoning about successive states of the machine. However, direct use of
this approach becomes unwieldy for uven the simplest example.

= One of tho first difficultics is the doscription of the state vector. It Is
quite inconvaniont to think of the state vector as a single domain. For all
real machines, the state vactor is a massy patchwork of various domains.
Cach of the storage locations in the machine is a piece of the state vector.
The primary memory is perhaps the most regular component, but there arc
Many other compononts. Also, it moy be desirable to subdivide the memory
into smaller pieces. To deal witih this, we use the usual programming
practice of assigning names to diffarent places. A place is essentially a
component of the state vector. Givan the list of places that comprise the
state vector, we will not actually need to symbolize the state vector as a
single objoct. We will not even nead to know exactly how the components
comprise the state vector, o.g.. it is not necessary to know if the state
vector is represented as a tuple or whether the program counter is, say,
the first or second element of that tuplé.

= The preciso granularity of timo is not really of interest. We do not care

11




whathor a particular computation takes one or two time steps. Instead, we
care that certain states follow one another eventually. Accordingly, we
avold describing individual transiticns and describe the cffcct of multiple
transitions instead. The rezult is quite similar to Manna and Waldinger's
intermittent assertion idea [Maana & Waldinger 78], which is derived from
Burstali's paper [Burstall 74]. We make use of a precondition and a
postcondition, and our state deita icodes the idea that

if the procondition holds at some point in time,
then thoro will be a lator timo at which tha postcondition holds.

While it might bo possible to stato the behavior of a machine in a single
sontence, it would be quite unwicldy. We make use of a collection of state
doitas to specify the behavior of a machine. Each state delta defines ihe
behavior of the machine in only particular circumstances. Of course, It is
not noecessary to cover all possible circumstances; it is perfoctly
rocasonable to leave the behavior of the machine undefined in some cases,

Most of the components of the state vector are unchanged at each step.
Any  straightforward description of the transition function would be
dominated by simple statements of cquality between large sections of the
old and now states. To reduce this burden, our formalism encodes the
asswmption that alt of the state remains unchanged except for a list of
places in the state vector explicitly named. Accordingly, a state deita has
a moditication list. The semantics of a state deita includes

if the precondition holds at some point in time,

then thera will come a time at which the new state is the same
as tho prosent state oxcept possibly for the values in the
places listed in the moditication list, and

atl that time the postcondition will also hold.

Cven with the implicit assumption that most of the state remains unchanged
from onc state lo another, it may be necessary to include many details in
the procondition. Quite often the precondition includes the requirement
that much of the present state .s identical to a particular prior state. This
introduces a third time into the formalism. We have encoded this condition
with another list of places, caliod the environment list. The semantics of
state delta aro now stalod as

if tho contents of the plases lsted In the environment list are
tho samo at somo time t.‘ as thay were at an earlier time to. and




if the precondition is trua at time t1.

then there will be a later time t2 in which the new state is the
sama as the state at time t1 everywhere except possibly at the
places listed in the modification list, and

the postcondition will also hold.

- To simplify our hookkeeping about times and states, we organize all of our
thouqghts in terms of a current time. In the formulation above, we anchor to

to the current time. We can restate the formulation as

if at some future time t1 all of the values in the places listed in
the environmont list are the same as they are now, and

if the precondition holds at that time,

thaen there will come a timoe t2 whose values are the same as at
timo t1 everywhere except possibly in the places list in the
modification list, and

thae postcondition will hold.

- While this formulation is quite closa to what we need to support efficient
rcasoning about places and states, the requirements imposed by the
maditication and environment lists are more difficult than they look. As
statod, it is permitted that the values inside the environment list and
outside the modification may change in the interim, as long as they are
restored at the ond of the interval. We have found it more useful to
tinhten this requirement so that the values that must be the same at the
onds of the timoe intervals are in fact nover changed during the intervals.
I turns out that tightening the restriction of the environment and
modification lists does not romove any aessential power. On the contrary,
this now version allows the restrictod use of the modal operator "during” to
form sentences which are not expressible using only pre- and
postconditions. Qur formulation is now

it the values listed in the environment list remain unchanged from
now until some future time, and

if tha procondition also holds «t that timo,

than at the end of some succecding kime interval during which at
most only the values listed in the modification list will have
changed, and




the postcondition will hold.

Note that thero is no requirement that values that are unchanged from now
until  the precondition becomes true remain unchanged when the
postcondition becomes true. In othar words, it is possible that the same
placo may be listed in both the environment and modification lists. Later,
wo will sco tho use and effect of such an intersection.

The syntactical form of a state delta is

(S0 {(pre: P)
(mods M)
{envs E)
{posts Q))

whore P and G are usually first order seatoncos In some language, but may In fact be
state doltas thomselves, and M is a list of placas, as Is E. See Chapter 4 for additional

axumples of state deltas.

Note that the iogical implication P implies G (in a given state) is equivalent to the state

delta

{SU (pre: P}
(mod: )
{env: OMEGA)
(post: Q))

being true in that state, where OMEGA is a list of all places, or equivalently a single

state "containing” all others.

Also note that one state deita may be derived from two others by a kind of case

ahalysis,

It

{50 {(pres P AND P

{mod: M)

{env: E)

(post: Q))
and

(D (pre: P AND (NOT P))
{mods )
{env: E)
{posts Q))
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hold in a certain state, thon

(SO (pre: P} 3
{mod: M)
(envs E) ;
{post: Q)) 3

holds in that state.

An important tool is the "dot" operator .R, which when applied to a place R (for
"Reqister") represents the value or contents of that place. Thus a state change entails

a redefinition of dot, not a reinterpretation of the place itself.

When dot is used in a state delta it always refers to the contents at the time of the

precondition.  In order to reference the contents of a place at the time of the

postcondition, the symbol # is used. For example,

(SO (pre: ,R GTR @)
(mocl: R)
{rnve ) {4
{(post: #R=R-1)} ‘
means that il the value of R is greater than 0, then at some later time the new value will

be one less (and nothing changed along the way except for R).

Here s an oxample of deriving one state delta from another by a form of Induction:

Assumo tho contents of places are nonnegative integers. {f

(SD (pre: P{,R) AND R GTR B)
(mods M)
{env: E)

(post: P(AR) AND R GTIR #R})
holds in a certain stalo, and in addition if M and E rapresent disjoint sets of places, then

(50 {pres P(R) AND R GTR B)
{wods M)

fenve E)
{posts PiB))

hoids in that stato.

It is obvious how an input-output spacfication can be stated using state deitas. In the

[
next scctions we shall explain how a simuletion ralation between two programs can be

provaed using state daoltas,




For now let us point out how a set of state deltas can be viewed as a program. Assume
that we are given a set of state deltas, ordered in some way, and an “initial" state. The
first state delta (according to the aliove ordering) whose precondition is true in the
current state may be "applied”, thus transforming the state into that specified by the
posteondition (and the modification list). Actually the term "state" should perhaps be
replaced by "set of states" since we do not demand that the postcondition completely
detormine the state; for example, the actual values of some places may not be
determined, but rather some propertivs of these values are known. The components
(sentencos) of the old state which wero dupendont on, or "supported by", places In the
madification list are removed from the state, and the list of sentences in the

postecondition are added to the remaining sentences.

Now the procoss is ropeatod in tho now state. This process is called symbolic

exoculion,

It s alko possible to view a somewhat arbitrary program as a sat of state deltas, or to

translate a program into state deltas, as is discussed In Section 2.4.

2.3 SIVIULATION

As stated in the overview, the process of microcode verification can be divided into two
parts: the first showing that the Host Machine implements the Target Machine, the
second showing that the Target Machine satisfies the Top Level Specification. We shall

now discuss the first of these parts.

Lot us think on the level of abstraction where both the host and microcode and the
target may be considered as programs A Az' Intuitively, A1 simulates Az if A1 cen "do"

anything A: can; that is, the state changes due to Az are reflacted in the state changes
that A1 causcs. The stale changos for Al and Az separately are computed using the
syimbolic exccution of tha provious soction. To prove that A1 (symbolically) simulates Az
we neaed to establish a correspondence between the states of A, and those of A, such
that given two corresponding states, &, (for A,) and S, (for A), if S, Is the next state
aftor S: arrived at by exacuting A_, then the (a) state Sl' corresponding to sz' can be

arrivad at by axocuting A, from s1 (though sl' need not be the very next state after st).
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In the systom implementation, a state is spacified (as In the precondition or postcondition
of a state delta) by a list of first order sentences and SDs, and the correspondence
buotwaeen states is spocified by a function called MAPPING. Agaln, recall that "state" as
usad hore is not necessarily a complete description. Thus MAPPING is actually a

correspondoence belween sets of comploto states.

2.4 TRANSLATION OF ISPS INTO SDS

15P5 s a relatively well known language suitable for machine descriptions. We will see
that SD notation is suitable for representing intermediate proot steps, performing
symbolic exccution, and utilizing the efficiancy of the modification list. In order to retain
the advantage of ISPS as an input language and SDs as an internal notation, we need to

translate 1ISPS descriptions into SDs.

If we invent a place to represent the internal control state of a machine and we assign a
symbolic vaiue to the control place for each statement in an ISPS program, the
proqgram coukl be represented with 3 set of SDs, where each 8D represents a possible
stale change. Retorences to control states could be made by including predicates of
the form .PC=label in the precondition and postcondition (PC represents the internal
control state "program countar”; "label” ropresents the control value). Representing all
the state changoes with SDs has two drawbacks: the tliread of control that is implicit in
the ISPS representation is lost and is encoded explicitly into the precondition and
postcondition: the SD notation is differert from the familiar ISPS (and somewhat more

complicaled).
Nested State Deltas

The schemae we are using is motivated by the need to model the control mechanism inside
a machine.  In an earlier formulation, we modelled the control mechanism as a single
variablo that look on oxplicit values. Each precondition and postcondition mentioned the
value, a.q,, .MicroPC=A312, and this control place was also mantioned in the modification
list of every 5D, It did not, of course, occur In tho anvironmant list. Since the names of

the control state valuos were completely artificial and the explicit appearance In the

pro- and postconditions of these equations was very cumbarsome, we revised the
[}
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formulation to an entirely equivalent scheme that simply made implicit use of the vaiue of
control place. The only proporty of the control place we cared about is that it made
some procondition true. By embedding the next SD in the postcondition of the current
SD, the next SD is automatically made valid when the current SD is applied
("oxaccuted"). Of course, its validity disappears when the control place is changed, so it
is nocoessary that the name of the control place appear in the environment list of the
now SD. This is what gives rise to the appearance of the same control place in both the
environment and modification lists. Of course, there are some SDs that will not have the
control place in the eovironmant list. Tho tops of loops need to be around forever, and
wa must resort to using namas for the values of the control place at those points. SDs
that oxit from hiocks will not generally have SDs in their postconditions; instead they will

ot relevant values of the control place.

Inntead of desaribing a program by a sot of 8Ds (one for each possible state changa) we
could doescribe it with one SD that represents the first state change and has a nested
SO that represcnis the rest of the program in its postcondition. During symbolic
exuvcution, the process of applying an SD is repeated. The following happens for each SD
application: the appropriate state change is made; the nested SD that represents the
rost of the program is added to the current state; and the SD just applied is removed

from the current state if it is supported by the (modified) control place.
The TR Notation

The use of the TR notation is a further compression of the translation from ISPS to SDs.
We noticaed that it was unnecessary to translate an ISPS description antirely into SDs
and then work with the SDs. Instcad, we embedded the translation process In the
opcration of the proof system and carried out just one step of the translation at a time.
In esscence, we now encode the value of tha control place as a formula that tells what to
do next. That formula is basically ISPS code, with embellishments to tell us where we

aro in the codo and 1o keep track of the environment established by ISPS scope rules.

To improve the cumbersome notation of nested SDs to represent the tail of a program,
we defined a function called TR that maps an ISPS description into an SD or a set of

S$Ds. We distinguish botween ISPS descriptions whose first statement is an assignment

18
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statemaent and those who start with a control change (conditional or unconditional). In
case of an assignment, the TR maps an ISPS program into an SD whose precondition is
cempty; the modlist includes a control place (MicroPC) and the name of the register that
is being assigned to; the enviist Includes only MicroPC; the postcondition includes the
eftect of the assignment and a TR whose parameter is the tali of the I1SPS program. In
case of a control change, the TR maps an ISPS program into a set of SDs. For each SD,
the precondition includes the condition that leads to the control change, the modlist and
envlist include MicroPC, and the postcondition includes a TR with the corresponding rest
of the ISPS program. The symbolic execution using TRs is very similar to nested SDs,
except that the rest of the program is represented as a TR applied to an ISPS

doescription.
[larking ISPS Programs

The set of SDs that represents an ISPS program is not unique. We saw that it ranges
from an SD for cach ISPS statement to a single SD for the whole program. It depends on
the "qranularity” that the ISPS description is Intended to be broken into. This granularity
is specificd by spocial markings of the ISPS description: Every SD that is part of the
desceription of a marked ISPS program must cover a path of execution between two

markings.

A control stalo of an ISPS description is a label or a procedure-entry (that specities the
“rost of the program®). A marking Is a spaclal kind of control state. The minimum set of
markings needaed to specify simulation are the entries and exits of all the procedures.
Markings could be added In order to aliow more SDs (i.e., a finer granularity). They should
be added to break all the loops, for simplicity. Marking should also be added in order to

avoid covering the same exocution path by more than one SD, for efficiency.

The Translation Procoss

‘A marking M. is a "succassor" of M’ if M' balongs to the set of markings that can be
rqnclmcl by symbolic axecution from M‘ without visiting any other marking. The translation

algorithm  genoratos o'nc SD for each path of execution between two succeeding
markings that aro reachable from tha initial one. The number of SDs generatad is

determined by the granularity (i.e., the number of markings). Whan showing simulation, we
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will usually use a very fine granularity for the lower level machine (the Host) and a

coarser one for the Target. The TR function Is used for performing the symbolic
axcaecution,

l or simplicity we will refer in this paragraph to the translation of the target machine. The

control place for the target machine is MacroPC.

The following information is accumulated during the symbolic execution for generating
cach SD: all the “"path conditions” that have to be true in order to reach a successor;
the list of places that are modified during execution; the new symbolic state. The new
8D cavers the path of execution between a marking and its successor, and includes the
following: in the precondition the accumulated path condition and .MacroPC="initlal label";
in the modiist the accumulated modificd places and MacroPC; the envlist Is empty; In the
posteondition tho accumulated symbolic state and .MacroPC=label. A concrete example

of translation of an ISPS program is shown In a subsaguent chapter.
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2.5 THE SYSTEM -- OVERVIEW
The system is described in detail In Appendix A. Here we Just describe enough to serve

as background for the next chapter. For any additional information, see Appendix A.

The MICROVIFR system consists of the following components: User Interface, ISPS
Translator {(describad in the previous saction), Kernel, Data Base, Place System, and
Simplificr.  The User Interface, with the help of the ISPS Translator, converts the user's
input to u scquonce of basic proofsteps. The Kernel processes the proofsteps with the
help of the Data Base, Place System, and Simplifier. The Data Base keeps track of the
current state, the Place System keeps interdependencies among places, and the

Simplitior simplifies oxpressions in the current state.

The Data Base contains facts which may change as the state changes through symbolic
exacution, say. Thus it contains facts relating to the contents of places (these facts do
not necessarily uniquely determine those contents, e.g., contents of A greater than 0), or

relating to some arithmetical variables like induction variables.

The Place Systcm holds "permancnt" facts about places, for example which places are
subplaces of other places. This is the "Covering" relationship:
(Covering A ((B1 L1) ... (Bn Ln)))

means Ais a place with disjoint subplaces B1 of length L1, ..., Bn of length Ln.

The MICROVER system as a whole can be thought of as performing deductions involving
dynamic statoments (state deitas). The Simplifier is the component performing static
deductions.  Thus the simplifier contains procedures for simplifying expressions In a
givan state. if the expression is a sentence (e.g., predicate), and the simplified result is

T, then that sentence is true in tho givon state.

.
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3. EXPERIENCE AND EXAMPLES

The bulk of our work has used examples taken from the FTSC. As we outlined in the
overview, we have divided the FTSC target description into two levels. One level
provides an algorithmic description for the instructions. For the simple Instructions, e.g.,
load, store, and integer arithmetic instructions, this level of description is easy to read
and requires no further refinement. However, for the floating point instructions, an
algorithmic description of the effect of an Instruction is nearly opaque and is useful only
to a speclalist who needs to track down the detalled resuits for particular cases. For
these instructions, we need to prove that the results guaranteed by the algorithmic

description may be understood in terms of some simply stated properties. The square

S ol R e

root instruction is the most interesting example in this area, and we have focused most
of our attention on proving just the simple property that the etfect of the square root
Instruction as described by the algorithmic description does indeed compute the largest

floating point number whose square is not greater than the original number. We felt this

R e

example would expose the hardest issues first and provide some chance that the rest of
" the proot would be comparatively easy. We have not yet determined whether this

strategy will be successful.

At the same time, we have been concerned that the mechanics of carrying out a
complete proof should be well understood. Accordingly, we have hedged our bets a bit
and constructed a very small fictitious example of a microcoded machine, written the
microcode to implement a simple instruction set for that machine, and prepared a

complete proof. We call the machine the "TOY" machine.

This chapter details the proofs for both of these examples. To give the flavor of a

complete proof, we present the TOY machine first.

3.1 THE TOY MACHINE

The TOY machine is a simple microprogrammed machine. We have provided a formal
description of its target instruction sut and of its host architecture. We have written
the microcode for the host level that imploments the target instruction set, and we have
specified the states in the host and target levels that correspond to each other. Finally,
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we have written a set of commands for the proofchecker to guide it toward proving that
when the microcode runs on the host machine, it correctly implements the target
instruction set. For a problem this simple, the commands to the proofchecker are entirely
devoted to setting up the proof. The actual detalls are carried out completely

automatically.
The TARGET Machine

in order to keep this experiment simple, but still deal with a realistic machine, we

designed the TARGET machine according to the following requirements:

= 4K-word 16-bit memory

- a 12-bit program counter, a 16-bit accumulator, and a 16-bit instruct
register

= Infinite indirect addressing

- six possible operations: add, subtract, store, load, skip or negative, jump.

We declided on the following word format:

1s - 13 12 11 0

OPCODE |IND €A

P e e P
P o e w—
P e
P e ———— e

TOY starts operating by fetching the instruction from location 1 in memory. It proceeds
by repeating the cycle of execution and fetching.

Fetching Is performed as follows: the machine loads the instruction register from the
memory location that the program counter points to; while the indirect bit is set, the 13

. least significant bits of the instruction register are overwritten by the contents of the

memory location that the effective address (EA) points to; then the program counter is

incremented.

The execution performs one of the following operations according to the 3-bit opcode:
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edd MEM[EA] to the accumulator; subtract MEM[EA] from the accumulator; load the
accumulator with MEM[EA]; store the contents of the accumulator in MEM[EA); skip the
next operation if the most significant bit of the accumulator is one (negative

accumulate); jump to EA.

The precise ISPS description of the TARGET machine was written according to the
English description and is shown in Figure 3-1. The ISPS program is divided into the
following declarations: the memory; the registers; the tetching algorithm; the execution

algorithm; the main cycie.

The markings we selected in the TARGET machine are the labels MAIN, XFETCH, FLOOP,
and EXEC. The paths that the algorithm found were one from MAIN to FETCH, one from
FETCH to FLOOP, one from FLOOP to FLOOP, one from FLOOP to EXEC, nine from EXEC to
FETCH,

MacroPC is a duhmy place that holds the control state (the label) and TinvReg covers
the internal registers. The complete set of SDs that the ISPS to SD algdrithm found is
shown in Figure 3-2. Let us look closer, for example, at the third SD: it describes the
path from FLOOP to EXEC which is denoted by .MacroPC=FLOOP in the pre: and
#MacroPC=EXEC in the post:. The pre: also includes .IR<12>=0, which is the precondition
for taking this particular path. The post: includes also the new value of PC, .PC+1,

The HOST Machine and the Microcode

The HOST machine is the actual hardware that implements the TOY machine. Because
the goal of this experiment is microprogram verification, we chose a microprogrammed
HOST. The HOST machine was somewhat taliored to the TARGET, for simplicity, but still
much generality and extendability were maintained. The description of the HOST machine

explicates all the details of registers, combination circuits, and data paths.

‘We decided to keep the microprogram in a 84-word 21-bit ROM. ROM words contain

21-bit microinstructions with the following tormat:
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TARGET := BEGIN
veve Memory v

MEM([B:4k]) <15: 0>

veve Reginters

PC<11:0>, ! program counter
ACC<15:8>, ! accumulator
1R<15:8>, ! instruction register

OPCODE<2:8> := [R<15:13>, ! operation code
EA<l1l:0> := JR<11:8> ! effective address

ver Instruction.Fetching sor
XFETCH := BEGIN
IR « MEM{PC] NEXT
FLOOP]1 := REPEAT
FLOOP := DECODE IR<12> =>
BEGIN
8 := LEAVE FLOOP1,
1 := JR<12:8> « MEMIEA)
END
NEXT PC « PC + 1
END

vee Instruction.Execution v
EXEC := BEGIN
DECODE OPCODE =>
BEGIN
O\ADD := ACC « ACC + MEMIEA],
I\SUB := ACC « ACC - MEMIEA],
2\STR := MEMIEA} « ACC,
3\LOAD :=« ACC « MEMIEA),
4\SKPN 1= [F ACC<15> o> PC « PC + 1,
S\JMP :« PC « EA,
6 :« NO.OP (),
7 s« NO.OP ()
END
END

we Execution.Cycle v
CYCLE {MAIN} 3« BEGIN

PCe1 NEXT ! program counter init

REPEAT '
BEGIN
XFETCH() NEXT ! call fetch algorithm
EXEC() | call execution algorithm
END

END

Figure 3-1: ISPS description of the TARGET machine




((sD

(SO

(sD

(SO

(s

(SO

(SD

{pre: (.MacroPC)=MAIN)
(mod: TInvReg MacroPC PC)
(env:)
{post: #MacroPC«XFETCH #PCe1(12)))
(pre: (.MacroPC)=XFETCH)
{mod: TinvReg MacroPC IR)
(env:)
{post: #MacroPC«FLOOP #1Re(DOT (WORDS MEM .PC .PC)
(pre: (,MacroPC)=FLOOP
(NZEROP (USEQL (DOT (BITS IR 12))
8)))
{mod: TlnvReg MacroPC PC)
(env:)
(post: MMlacroPCeEXEC #PCe(BITPLUS .PC 1(12))))
{pre: (.MacroPC)=EXEC
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
8))
(mod: TInvReg MacroPC ACC)
(env:)
(post: #MacroPC=XFETCH #ACCe(BITPLUS
+ACC
(DOT (WORDS MEM (USSUB .IR 11 @)
(USSUB .IR 11 @]
(pre: (.MacroPC)=EXEC
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
10
(mod: TinvReg MacroPC ACC)
{env:)
{post: MMacroPC«XFETCH #ACCs{BITPLUS
QACC
(BITMINUS (DOT (WORDS MEM
(ussuB .1IR 11 B)

(ussuB .IR 11 @)
(pre: (.MacroPC)=EXEC
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
2))) :
(mod: TInvReg MacroPC
(WORDS MEM (DOT (BITS IR (PAIR 11 8)
(env:)

{post: #MacroPCsXFETCH #(WORDS MEM
{UssuB .IR 11 @)
(USSUB .IR 11 @))=(.ACC)))
{pre: (.MacroPC)=EXEC
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))

3))) ’
{mod: TlnvReg MacroPC ACC)
(envs)

{(post: #MacroPCXFETCH HACC=(DOT (LORDS MEM
(ussus .IR 11 @)

(UssuB .IR 11 @)

Figure 3-2: The SD description of the TARGET




(S0

(SD

: (SO

(SO

(S0

(SO

(pre: (.MacroPC)<EXEC
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
4))
(NZEROP (DOT (BITS ACC 1S)
(mod: TinvReg MacroPC PC)
(envs)
{post: #MacroPC<XFETCH #PC=(BITPLUS .PC 1(12))))
(pre: (.MacroPC)=EXEC
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
4))
~(NZEROP (DOT (BITS ACC 15]
{mod: TInvReg MacroPC)
(env:)
(post: #MacroPC<XFETCH))
{pre: (.MacroPC)=EXEC
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
5)))
(mod: TlnvReg MacroPC PC)
(env:)
{post: #MacroPC=XFETCH #PC=(USSUB .IR 11 B)))
{pre: (.MacroPCJ)=EXEC
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
6)))
(mod: TInvReg MacroPC)
(env:)
{post: #MacroPCeXFETCH))
{(pre: (.MacroPC)=EXEC
(NZEROP (USEGL (DOT (BITS IR (PAIR 15 13)))
7))
{mod: TInvReg MacroPC)
{env:)
{(post: #MacroPCsXFETCH))
(pre: (.MacroPC)=FLOOP
(NZEROP (USEQL (DOT (BITS IR 12))
1))
{mod: TInvReg MacroPC IR)
(envy)
(post: MacroPC<FLOOP #1R=(USCONC
{UssuB .IR 15 13)
(USSUB (DOT (WORDS MEM (USSUB .IR 11 @)
{ussus .IR 11 8)))
12 8)

Figure 2. (continued)
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The HOST machine (see schematic in Figure 3-3) includes the following: two memories,
STORE, and ROM; registers R1, R2, R3, MAD, MPC (microprogram counter) and Ml
(microinstruction register); combinational circuits ALU, MD, and MUX; data paths; the
scanner. R1 holds the value from the ALU that receives its value either from STORE or
from R1; R2 holds the value from R3 or increments its old value; R3 holds the value from
MD that receives its value from STORE or R3; MAD holds the value from MUX that

receives its value either from R2 or R3.

The HOST repeats the cycle of loading the microinstruction register from the location in
ROM that the microprogram counter points to; incrementing the microprogram counter; and
scanning the microinstruction and decoding a field at a time. The scanner sends signals
that establish data paths and latch values into registers. It also recelves values from

registers.

The precise ISPS description of the HOST machine is shown in Figure 3-4, and the
description of the ROM in Figure 3-5. The description of the HOST includes the following
declarations: the memories; the registers; the combinational logic; and the execution
cycle that fetches and scans the IR. The microprogram is specified as a set of
assignments to ROM. The comment in each assignment shows the microinstruction in a
mnemonic form: The nonzero fields of each microinstruction are separated by @. The
mnemonics correspond to the ones in the DECODE statements in Figure 3-4. For example,

MUXR3@LMADRONIND@10 means that MUX = 3, ALU = O, MD = 0, LATCH = 6, MPC = 2 and
MNEXT = 10.

The first phase of the proof converts the ISPS degcription of the HOST Into a single SD
whose post: field includes the complete rapresentation of the HOST. This SD is used In
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HOST :e BEGIN

veve Nemorg Veve
ROM (B:63] <20: 8>,
STORE (B:4k) <15:0>

ve Registers v

MPC<S5: 8>, ! micro program counter

Ml <28:0>, ! micro instruction register
MNEXT<5:8> :a MI<5:8>, ! next micro instruction
R1<15:8>, ! Accumulator

R2<11:0>, ! Program Counter

R3<15: 8>, ! Instruction Register
MAD<11:8> ! memory address

vve Combinational.Circuits v

ALU<15:8>, ! arithmetic, logic unit
MUX<11:8>, ! memory address multiplexer
MD<15:0> ! memory data multiplexer

voe Execution.Cycie v
CYCLE {MAIN} := BEGIN
REPEAT
BEGIN
M] « ROMIMPC) NEXT
MPC « MPC + 1
NEXT :
DECODE MI<19:18> =>
BEGIN
@ := NDO.OP O,
1 1= NO.OP (),
2\MUXR2 t= MUX « R2<11:0@>,
3\MUXR3 1= MUX « R3<11:8>
END NEXT

DECODE MI<16:15> =>
BEGIN
@ := NO.OP O),
1\ALUNOP 1= ALU « STORE [MAD],
2\ALUADD := ALU « R1 + STORE [MAD],
3\ALUSUB := ALU « R1 - STORE (MAD)
END NEXT

DECODE Mi<13:12> o>
BEGIN , ]
@ := NO.OP 0}, |
1 te N0.0P (). :
2\ALL := MD « STORE [MAD), 1
3\ADD :» MD + R3<15:13> STORE [MAD) <12:0>
END NEXT

Pigure 3-4: ISPS description of the HOST
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END

DECODE MI<11:9> e>

BEGIN

a twm NOQOP ().

I\LR! :e R1 « ALU,

2\LR2 :e R2 « R3<11:0>,
3\LR3 := R3 « MD,

4\INCR2 :« R2 « R2 + 1,
S\WRITE :« STORE [MAD) « R1,
6\LMAD s« MAD « MUX,

7\INIT := R2 « 1

END NEXT ’

DECODE MI<8:6> =>

END
END

BEGIN
8 :« NO.OP (),

INONPOS := ‘IF NOT Rl<15> => MPC « MNEXT,
2\ONIND := IF R3<12> «> MPC + MNEXT,

3 := NO.OP (),

G\NXT 1= MPC « MNEXT,

S := NO.OP (),

6 := NO.OP O,

7\ONOP :» MPC « R3<]5:13>
END

Figure 4. (continued)




ROM 3=

BEGIN
voie Memory vev

ROM (8: 63} <28: 8> é

vor Execution.Cycle w

CYCLEMAIN! :e
BEGIN ]

ROM(B) « #8201418 ; ! ALUADDelL.R1eNXTe8
ROM(1] « #0301418 ; ! ALUSUBeLR1eNXTe8
ROMI[2) « #BPOS41D ; ! WRITEeNXTe8
ROM(3) « #0101410 ; ! ALUNOPeLR1eNXTe8
ROM(4) «~ #0800416 ! NXTeld

ROM(S] « #0882418 ; ! LR2aNXTe8

ROM(E) « #00DB4G1A ; ! NXTe8

ROM(7) « #0880418 ; ! NXTe8

ROM{8] « #200c000 ; | FETCH: MUXR2eLMAD
ROM(9] « #8823413 ; ! ALLeLR3eNXTell
ROM(1@) « #0233008 ; ! ADDeLR3

ROM(11) « #3006212 ; ! FLOOP: MUXR3eLMADeONINDe1@
ROM(12) « #wo@Bs4e08 ; ! EXEC: INCR2
ROM[13) « #PPPR700 ; ! ONOPe8

ROMI14) « #0000110 ! ONPOSe8

ROM(15) « #0084410 ; ! INCR2aNXTe8
ROM[16] « #B0B7418 | INITeNXTe8

NEXT EXEC := NO.OP ()
END
END

Figure 3=8: The specification of the Microcode




the next section as the specification of the control state of the HOST In the mapping.
The ISPS description of the microcode is converted to SD notation too.

The current implementation requires that the ISPS description of the HOST consist of a
single cycle, for reasons of simplicity. The HOST will indeed usually be a single cycle
because it represents hardware. Minor implementation changes will accommodate

arbitrary ISPS descriptions of the HOST.

The next section introduces the mapping and the following section explains how the
symbolic simulation of the TARGET by the microprogrammed HOST machine is set up and

performed.
Relating the TARGET and the HOST

In order to show that one machine simulates another, a relation between the two must be
established. The relation addresses control issues and data issues. The control part of
the re|at‘lon specifies all the pairs of control states (in the TARGET and HOST,
respectively) that have the following properties: whenever a control state is reached in
one machine then the corresponding one is reached in the other machine. Two obvious
pairs are the pair of initial states and the pair of final states. A necessary condition for
simulation (of terminating machines) is that corresponding initial states always lead to
corresponding final states. The data part of the relation specifies the pairs of carriers
that should have the same contents whenever a pair of control states is reached. This

data relation is celled a covering.

The control states in the TARGET machine to be mapped from or to were selected as the
set of all the markings. For the particular TOY machine example the fdllowing markings
were selected: the Initial state is MAIN; the top of the main cycle is XFETCH; the infinite
fetch loop is broken at FLOOP; the fetch algorithm is separated from the execution
algorithm at all the control states in the TARGET map to or from a state described by the
top of cycle of the HOST and an additional predicate (usually the value of the

microprogram counter).

The top of Figure 3-8 shows a set of control ‘relations; the first element of each is a
marking (represented by an ISPS label) in the TARGET and the rest Is a predicate that
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together with the code of the HOST makes up its control state. The bottom of Figure 3-6
shows the coverings that specify the relation between registers (or memories) in the

TARGET to registers (or memories) in the HOST.

During the first phase of the proof, a set of internal MAPPING records is generated from
the concise representation of Figure 3-6. Figure 3-7 shows two out of the eight
mappings. A MAPPING record has three fields: from:, that specifies the control state of
either the TARGET or the HOST; to:, that specifies the corresponding control state of the
other machine; and map:, that specifies the covering. The notion of MAPPING records is

bullt into the SD proofchecker and is used in the second phase.

We have described the TARGET, the HOST+microcode, and the relation between them in
three forms: English, formal, and a form that can be processed by the SD proofchecker.
The first phase of the proof generated the batch of SD commands from the formal

descriptions.
Symbolic Simulation

The previous sections presented the TARGET machine, the HOST machine with It;
microprogram, and the mapping between the machines. This section shows how the proof
of simulation of the TARGET by the HOST with respect to the mapping was performed
using the SD command batch. The simulation is performed within the state delta symbolic

execution framework, thus it is called symbolic simulation.

The SD proof system operates by maintaining a "current state” of the execution, which
can be manipulated by opening or closing proofs, or by applying SDs or mappings. A SD is
a notation for specifying a segment of execution, either as the "goal" or for changing
the current state. A SD has 4 fields: pre:, mod:, env:, and post:. When a SD is used to
Open a proof, then the pre: is added to the current state and the post: becomes the
goal; when it Is being "applied", then the pre: must be true in the current state, and the
effect of the SD Is removing from the current state everything that depends on mod: and
adding post:. A MAPPING has three fields: from:, to:, and map. When a mapping is
"applied”, its from: must be true in the current state, and the effect of the mapping Is

adding to: and map: to the current state.
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((MAIN (.MPC)a=16)
(XFETCH (.MPC)=8)
(FLOOP (.MPC)e11)
{EXEC (.MPC)=13 (.MAD)«{USSUB .R3 11 8)))

{({Covering MEM <<«STORE 16 16>>)

{Covering PC <<R2 12>5)

(Covering ACC <<Rl 16>>)

{Covering IR <<R3 16>>)

(Covering MacroPC <<MicroPC 2> <MPC 6>>)

(Covering HinvReg <<Ml 21> <MAD 12> <ALU 16> <MUX 12> <MD 16>>)
{Covering TIinvReg <<HInvReg 22>>))

Figure 3-6: Mapping between TARGET and HOST
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: (MAPPING (from: (.MPC)=l1
] (SD (pre:)
{(mod: MicroPC Ml)
(env: MicroPC)
{post: #M1=(DOT (WORDS ROM .MPC))
(TR ((SEQ (USSET MPC 8)
(OECCDE ¢ $ 8 ¢ 8)
(OECODE 8 s 8 8 8)
(DECODE $ $ ¢ 8 8)
(DECCDE s s s $ S8 88
$)
(DECODE s s $ s $ 8 88
$))

(REPEAT 8)
{ProcMark HOST)
{to: (.MacroPC)=FLOOP)
{map: (.MEM)=(.STORE)
(.PC)=(.R2)
{.ACC)=(.R1)
(.1IR}=(.R3)))
(MAPPING {(from: (.MacroPC)«EXEC)
(to: (.MPC)e13 (.MAD)«(USSUB .R3 11 @)
(SD (pre:)
{mod: MicroPC MI}
(env: MicroPC)
(post: #MI«(DOT (UWORDS ROM .MPC))
(TR ((SEQ (USSET MPC §8)
(DECODE $ 8 8 §
(DECODE 8 8 8 8
(DECODE $ 8 ¢ §
(DECODE 8 8 8 §
(DECODE s $ 8 ¢ 8
(REPEAT 8)
(ProcMark HOST]
(map: (.STORE)=(.MEM)
{(.R2)=(,.PC)
(.R1)=(,ACC)
(.R3}e(,IR}))

$)
$)
$)
$$888)
$s88))

Figure 3-7: Two of the MAPPING records
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Fiqure 3-8 shows an outline of the batch of commands that drives the proof in the
socond phase.  Tho first Open and NewDecomposition declare the memories and
rogisters in the HOST machine. The pre: of the second Open includes the microcode and
tha mapping between the TARGET and the HOST. The post: of the same command includes
the sot of 8Ds that describes the TARGET machine. Executing this command adds the
microcode and mapping to the current state and makes the TARGET the “goal". A
sequence of seven NewComposition commands declares the memories and registers in
the TARGI.T machine and their relation to the places in the HOST. The command
SymSimulate poerforms the symbolic simulation according to a heuristic that we have

daevelopod,

The SymSimulate command exccutes a heuristic that drives the symbolic simulation. For
each S in the "goal® do the following: opan the SD; apply a mapping from the TARGET to
the HOST; symbokcally execute (i.e. keep applying SDs) until the state can be mapped
back 1o the TARGET; apply the mapping to the TARGET; close the SD. Finally close the

whule "qoa”.

Tho combined effoct of the two phases of the proof Is the generation of a set of SDs
from the TARGET using symbolic execution of the TARGET and proving these SDs by using
symbohe oxecution of the HOST and microcoda. The rest of the effort is setting up the
right relations among the registers and memories and between the HOST and TARGET to
asuure intogrily of the proof. Note that the only input needed is the ISPS description of
the TARGLT, 1HOST. and ROM and the concise representation of the mapping between the

machines. The rest is done automaticaily.

3.2 TRE F73

The 1 15C was chosen as the real example on which to try out the microcode verification
system hecause it is a general=purpose computer with enough features to thoroughly
tent the system: in addition, it is stil in the development stage, so that successful

ventication or discovery of bugs would influence the final version.

Soma of the churacteristics of the FTSC (as of May 1870) are:




({Gpen (vare: NieralC EXP MO X ALU 114D R3 R2 R1 M1 MPC STORE ROM UNDEF INED
3 CLNLOCS LABLOCS ASSLOCE ARRLOCE)
; (50 re: (Covering ONEGA
<<llicrolPC 1> <EXP 44Q> <MD 16> <MUX 12>
ALU 16> «<1AD 12> <R3 16> <R2 12> <Rl 16>
1] 21> <lPC 6> <STORE 16 10881C>
<ROM 21 1080> <UNDEFINED 440> <CLKLOCS& 44Q>
<LABLUCS 660> <ASSLOCS 440> <ARRLOCS 440>>))

{uaradt ONEGA)
(onve)
(posts b))
tlvlecomasi tion (Cover ing ONEGA
<<cHicroPl 1> <EXP 440> <MD 16> <MUX 12>
<hLU 16> <MAD 12> <R3 16> <R2 12> <Rl 16>
1 21> <«MPC 6> <STORE 16 108810>
<ROM 21 1890> <UNDEFINED 44Q> <CLKLOC& 440>
_ <LABLOCS 440> <ASSLOC& 440> <ARRLOCS 44Q>>))
[Given (varcs MicralC EXP IR ACC PC MMt UNDEFINED CLKLOCE LABLOC& ASSLOCS
ARRLCCS)
(G0 [pre: (DOT (WORDS ROM 81)=(OCONST 28l418Q 21)

vee. 11 Specification of microcode H1l

(MAPPING (trome (JHacroPC)=MAIN)
[to: (MPC)]l6
(SO (pro:) ;
(mac: MicroPC NI) i
{env: MicroPC)
{post: #Mi={(DOT (WORDS ROM LMPC))
(TR ({SEQ (USSET MPC &)
(DECODE 8 8 8
(DECODE ¢ 8
(DECODNE 8 8
(DECOLE 8 $
(DECODE 8 & 8
(REPEAT 8)
(ProcMark HOST]
(map: (. STORE) = (,MEM)
(.R2)=(.PC}
{,R1)«(.ACC)
{.R3)=(.1R)))

8
888
g8¢8
$§8$88888)
$88888))

eves 111 AL mappings 11}

Figure 3-8: Outlina of the command batch
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(mod:)
(env:)
{(post: (SO (pre: (.MacroPC)=MAIN)
{mod: TInvReg MacroPC PC)
{env:)
{post: H#MacroPC=XFETCH #PC=1(12)))

et R AR akaiani

«ves 111 State Delta representation of TARGET 1}1}

{ilsuComposition (Covering MEM <<STORE 16 16>>))
i (HewComposition (Covering PC <<RZ 12>>))
) {HieuComposition {Covering ACC <<Rl 165>))
(HeaCoupo=ition {Covering IR <<R3 16>>))
Gievilonposition (Covering MacroPC <<MicroPC 2> <MPC 6>>))
tilenComposition (Covering HinvRey
<Ml 20> <MAD 12> <ALU 16> <MUX 12> <MD 16>>))
GlenCouponition (Covering TlnvRey <<HinvReg 22>>))
(Susimulnte))

Figure 8. (continued)
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= 112 instructions, including integer, floating point, and vector operations

data formats: fixod point (32-hit, two's complement integer) and fioating
point (24-bit, two's complement inantissa; 8-bit, two's complement
aoxponent)

9 addross modes

8 qeneral-purpose registers (that sorve as accumulators, index registers,
or addrass pointors) and 8 working reglsters

10 interrupt levels

- 61K of addressablo program memory

The first step in the verification process is writing the formal host and target machine
descriptions in ISPS.  ideally, the designer of the machine would write the formal
doscription along with the informal description ("user's manual”). In lieu of this, the
writer of the formal descriptions must submit them to the designer for "description
verification” (that this is really the machine informally described in the manual) before
proceading with the proof. In addition, the writer of the formal descriptions may discover
“bugs" (inconsistencies or incompieteness) in the user manual. As a formal description is
being written, its writer will probably be in need of information which was either omitted

from the machine user manual or prescnted there in an ambiguous or contradictory way.

Our expericnce yiclded approximately 120 questions on the documentation, accumulated
over a period of about six months. Approximately 80 answers were finally obtained from
various persons who had "inside" information about the construction of the FTSC.
Typical difficulties are missing Information, multiple names for the same value, e.g.,

ANODE and AM, and inconsistencies between written and diagrammed specifications.

As explained ecarlier, we consider the total problem of microcode verification as
consisting of two parts: the proof that the host machine with its microcode implements
tho target machine (as described in & language containing only those operations
available to the host) and the proof that the target machine, instruction by instruction,

salistios somo highor level specification. For example, the targat machine description of

a1




TR LTy T

the integer multiply and divide instructions, and all floating point instructions, would most
L likely consist of an algorithm using the host machines operations of shifting, testing,
adding, XORing. etc. The higher leve! spacification would be that these instructions do in
fact find the product, quotient, otc. to a given precision. The instruction definitions given
in the user manual, which are largely English, are most likely those instructions needing

this socond level of proof.

All of our work o date on the verification of the FTSC has been concerned with the step

from the target to the higher specification. This seemed a wise choice, since we knew [
that at the start of our project the FTSC host machine design was not finalized, although
the target machine would remain more or less the same. In addition, many aspects of the

system had to be developed before a truly large example could be attacked.

The particular instruction chosen was square root. Square root was chosen because of 1
the relative compactness of its algorithmic description in the target machine, and the ]
wide difference botween the algorithm and its higher specification.  Although the
second-lovol verificalion has nothing to do with the microcode or the host machine, one
charactoristic making it less than general program verification is that the data types
used in the target and highor level descriptions are usually restricted to be bitstrings

and integors in tha target, and values of bitstrings and reals in the higher level. Thus we

usad the square root Instruction as a testing ground for deveioping the automatic

i
simplification of expressions in these data types. ]
\
i
The status of our work on the square root algorithm Is that the simplifier is able to handle %
automaticaliy all the derivatiorrs naedad to complete the proof of correctness. Smoothing i
the usor interface and gracefully setting up the induction needed for the loop remain to ‘
be donco.
It is hoped that many of the special simplfication rules adopted in proving the square root
will also be useful in the other proofs of higher level correctness.
Square Root Proof
In this section we give the ISPS version of the algorithm that constitutes the FTSC y

target machine description of the floating point square root instruction (SRTF). See
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Figure 3-9. This description of the algorithm was writton on the basis of the microcode

flowchart, which is derived diroctly from the host description and the microcode. Then
wo show tho darivations the simplifier is abla to accomplish automatically in proving that

SRIF tinds the square root to within a certain accuracy.

T e —

§ Lot us "taik through" the algorithm now: Tho first lino decides if the input is to be from
redistor GPXRA or registor MD. If the input is negative, the algorithm is terminated with
; overflow flag set.  If the input is 0, the algorithm Is terminated with output register
: GPXRB set to the floating representation of 0. From hare on tha algorithm splits into two |

parts: the calculation of the new exponent and the calculation of the new mantissa. The

exponent calculation splits depending on whether it is even or odd. if the old value Is
evaen, the new exponent is haif the old vaiue. if the old value Is odd, It Is made even by
adding 1 and shifting the mantissa accordingly (in the even case the mantissa Is shifted

two bits: in the odd case, only one bit). Now the new value is half the old value (with a

PP —————— T b

check for exponent overflow thrown in). The mantissa is now calculated by a variation

of the lonqghand high school square root aigorithm. The mantissa is shiftad two bits at a

time through the loop 23 times. The loop has two branches according to the sign of the

PRI E————

"remainder," the register SUM. ;

The theorem which expresses the correctness of SRTF is

Theorem: If FL(INPUT)=x20, then SRTF terminates with FL(OUTPUT)? $x € FLY(OUTPUT)%.

I FLANPUT)CO, then SRTF terminates with OVFF=1.

Explanation of notation: FL(R) is the value of tha bitstring R as a floating point number in
the FTSC format: 24 leftmost bits coding two's complement fractional mantissa and
rightmost 8 bits coding two's complement exponent. INPUT is either the register GPXRA
or MD, depending on AMODE. OUTPUT is the register GPXRB. FL’(R) is floating successor
to FL(R), i.c.,

FL*(R) = (TCVAL(RC31:85)+1) » 2T CVAL(RC7:02)-23

Letting MAN(R) = TCVAL(RC31:82) * 2™ and EXP(R) ® TCVAL(RC7:0)), it is sufficient to

provo
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BEGIN
DECODE AMODE=> (WB-W1+GPXRA,W3-U1-MD) NEXT
IF HUB LSS Be> (OVFF«1 NEXT (LEAVE SRTF) NEXT
IF WQ<31:8> EQL B=> (CPXRB~"88 NEXT LEAVE SRTF) NEXT
W3<31:8>«U0<31:8> SLO 1 NEXT
WB<7: 08>8 NEXT
DECODE Wl<@>a>
BEGIN
D¢ = (GPXRB~WB<31: 38> NEXT
Wo-WB SLB 2 NEXT
W1<31:85«8  NEXT
Wl<7:85<Ul<75all<7:15 ),
1:= (GPXRB«UB<31> NEXT
HW3-~WB SLB 1 NEXT
Wl<31:8>«8 NEXT
EXPOUTN1<7>8W1<7:8> + 1 NEXT
H1<7:8><EXPOUT<7:8> NEXT
Wl<7:8>eWl<7>al1<7:1> NEXT
IF EXPOUT<8> XOR EXPOUT<7>a>Ud1<7:8>-%108 )
END
REXT
SLH-GPXRB-1 NEXT
GPYHB«CUM<29: B>allB<31: 30> NCIXT
COUNTER-Y NEXT
SLOOP: =
REPEAT
BEGIN
COUNTERCOUNTER+1 NEXT
W0~3118>lB<31s8> SLB 2 NEXT
DECODE SUNM<31>=>
BEGIN
B:e (W1e3118>-2vN1<31:8> + 1 NEXT
IF COUNTER EQL 23=>(LEAVE SLOOP) NEXT
W2e4vl1<31:3> « 1 NEXT
SUM~GPXRB-W2 NEXT
GPXRB~SUM«<29: B>alB<31:30>),
lte (Wl1e3l:@>e2ull<Rita> NEXT
[F COUNTER EQi. 23=> (LEAVE SLOOP) NEXT
W2ebold]1 «31:8> + 3 NEXT
SUM-GCPXRB+W2 NEXT
CPXRB-SUM<29: 9>alB<¢31138>)

END

END
NEXT
CPXRB«W1
END

Figure 3-9: ISPS description of the square root algorithm

44




TR

(1) it EXPONPUT)=c is aven and MAN(INPUT)'Z“;-ARG. then SRTF terminates with
2*EXP(OUTPUT)=e and (MAN(OUTPUT)*2%%)" < ARG < (MAN(OUTPUT)*223+1)?, and

(1) If EXP(INPUT)=e is odd and MAN(INPUT)"Z‘S = ARG, then SRTF terminates with
2*EXP(OUTPUT)=e+1 and (MAN(OUTPUT)*2) < ARG € (MAN(OUTPUT)*28+1)2.

So the proof is carried out by

(1) symbolically exccuting through the end of the exponent calculation for
even and odd input exponent, and proving the relevant parts of (i) and (il)
at that point (note that OUTPUT is assigned the contents of working
register W1 at the end of SRTF);

(2) at that point, for even input exponent,

MAN(INPUT)*2‘® = USVAL(GPXRBC1:0>@W0<31 :103)*2% = ARG,

and for odd exponent,
MAN(INPUT)*2*® = ARG.
Thus to complete both (1) and (i) it remains to show that

CLAIM: TCVAL(OUTPUT<31:8>)% € ARG STCVAL(OUTPUT(31:8>+1).

Here is where we use induction to prove loop Invariants that lead to a proof of the
CLAIM. Lot R. denole the conlenls of R ufier i limes through the loop, that is, the last

contents baefore COUNTER changes from | to i+1.
The CLAIM is proved from

. ; 2
SUBCLAIM: Far 15i€23, USVAL(W1.<30:8>) S int(ARG*2"™*%) < (USVAL(W1<30:8>)+1)".

(The actual calculation with the integer part function int is done by noting that if i

X=USVAL(R), then int(X*2™) = USVAL(R SRO k).)

The CLAIM is proved from the SUBCLAIM by taking i£23. The SUBCLAIM is implied by the i

first three of the following loop invariants for 18i€22. ((H1) is shown here for the case

of aven exponent only).




(H1) (2'USVAL(W1‘<30:8))¢1)Z + TCVAL(SUMﬁ) = USVAL(a<30:8>@0(23) SRO 44-2i)

(112) TCVAL(SUM) < 4*USVAL(W1¢30:8>) + 2
(H3) =TCVAL(SUM) < 4*USVAL(W1¢30:8)) + 1
(H4) wo us (a<28:8>@0(11) SLO 2i)
(H5) W1 <31:i+8> =us 0(24-0)
(HOG) W2 <31:i+2> *Us 0(30-i)
(17) SUM<29:0> =ys GPXRB(31:2>
(H8) SuUM =rc GPXRB<31:2)
[} [}

(HY) GPXRB.U:O) 2Us W0<31:30>

Thus wo prove that if (H1)-(H9) are true for 1<i<21, then they are true for i+1.
Additional induction hypotheses ((H4)-(H0) were found to facilitate the proof of
(11)-(113)). Then we prove that if the SUBCLAIM is true for 1€i€22, then it is true for i+1.

The simplifier automatically carries out theso deductions.

The tollowing is the batech containing the proof of the square root algorithm as it is read

into MICROVLR in form 1o be automatically chucked.1

(BATCHSORT
[(nitProo! SQRTM)
(InstantiateContents GPXRA a)
(Prove
(SO (pro: ((LAMODE)=0 (TCGEQ (USSUB a 31 8)
0)
(TCNEQ (USSUB a 31 8)
0)
(USEQL (USSUB a 0 0)
0)

‘Aclun"y. n the present form of the system the INVARIANT and LABEL must be given in expanded form at every
occurrence.

v-mv_; "i" CE T




(SD (pre: (NZEROP (USEQL .AMODE 0)))
(mod: MicroPC)
{cnv: MicroPC)
(post: @Program)))
{(mocl: OMEGA)
(env: GPXRA)
(post: (NZEROP (REALEQUAL (PRODUCT (EXPVAL #GPXRB)
2)
(EXPVAL a)))
[NZEROP (REALLEQ (POWER (PRODUCT (MANVAL #GPXRB)
(POWER 2 23))
2)
(PRODUCT (MANVAL a)
(POWER 2 560
(NZEROP (REALLEQ (PRODUCT (MANVAL a)
(POWER 2 56Q))
(POWER (REALPLUS (PRODUCT (MANVAL #GPXRB)
(POWER 2 23))
1)
2]
((ProposcMode ((COUNTER)=1)
[ProvebyCases [SD (pre:)
(mod: OMEGA)
(cnv: OMEGA)
(post: #COUNTER=(1@Invariant)
(SD (pre:)
(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)

31 0)@Label]
(((USSUB .SUM 31 31)=1

([ProposeMode ((.COUNTER)=1
and (SD (pre:)
(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB
(TCPLUS .COUNTER 1)

31 0)@Label]
(Close)))

((USSUB .SUM 31 31)=0
([ProposeMode ({.COUNTEF.)=1
and (SD (pre:)
(mod: MicroPC COUNTER)
(env: MicroPC)
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(post: #COUNTER=(USSUB
{TCPLUS .COUNTER 1)
31 0)@Label]
(Close]
[ApplySD (SD (pre: ((USSUB .SUM 31 31)=1 or (USSUB .SUM 31 31)=0))
(mod: OMEGA)
(onv: OMEGA)
(post: (TorT)
#COUNTER=1 @Invariant
(SD (pre:)
(mod: MicroPC COUNTER)
(env: MicroPC) :
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 1
31 0)@Label] ‘

(Prove [SD (pre:)
(mod:)
(onv: OMEGA)
(post: (.COUNTER)=1 @invariant |
(SD (pre:) i
{mod: MicroPC COUNTER)
{env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)
31 0)@lLabel]
{{(ProposcMode)))
[(ProvebyCases [SD (pre: (NZEROP (REALLEQ 1 .COUNTER))
(NZEROP (REALLEQ .COUNTER 21))@Invariant i
(SD (pre:)
(mod: MicroPC COUNTER) j
{env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 5
31 0)GLabel)) ‘

(mod: OMEGA)
(env:)
(post: #COUNTER=(RCALPLUS .COUNTER 1)@Invariant
(SD (pre:)
(mod: MicroPC COUNTER)
{env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)
31 0)GLabel]
((((usSSUB .SUM 31 31)=1 and (USSUB .GPXRB 31 31)=1)
((ProposeMode)))
(((USSUB .SUM 31 31)=0 and (USSUB .GPXRB 31 31)=0)
((ProposeMode] .
(Prove [SD (pre: (NZEROP (REALLEG 1 .COUNTER))

48

[Ty i kil Bl o




AL

L R

. i, A

(NZEROP (REALLEQ .COUNTER 21))@invariant
(SD (pre:) ‘
(mod: MicroPC COUNTER) ‘
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)
31 0)@Label)))
(mod: OMEGA)
{env:)
(post: #COUNTER=(REALPLUS .COUNTER 1)@invariant
(SD (pre:)
(mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)
31 0)@lLabel]
([ApplySD (SD (pre: ((USSUB .SUM 31 31)=1
and (USSUB .GPXRDB 31 31)=1
or (USSUB .SUM 31 31)=0
and (USSUB .GPXRB 31 31)=0)
(NZEROP (REALLEQ 1 .COUNTER))
(NZEROP (REALLEQ .COUNTER 21))@invariant
(SD (pre:)
{mod: MicroPC COUNTER)
{env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)
31 0)@Label)))
{mod: OMEGA)
(env:)
(post: (TorT)
#COUNTER=(REALPLUS .COUNTER 1)@Invariant
(SD (pre:)
{mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER
1)
31 0)@Label]
(Close)))
(Pertorminduction (SD $)
(SD (&)
$)
(ProposoMode (SD (pre:)
{mod: MicroPC COUNTER)
(env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1)
31 0)@Label)))
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(instantiateContonts W1 wi)
[ProvebyCases
[SD {pre:)
(mod: OMEGA)
(env: OMEGA)
(post: (NZEROP (REALEQUAL (PRODUCT (EXPVAL #GPXRB)
2)
(EXPVAL a)))
[NZEROP (REALLEQ (POWER (PRODUCT (MANVAL #GPXRB)
(POWER 2 23))
2)
(PRODUCT (MANVAL a)
(POWER 2 56Q]
(NZEROP (REALLEQ (PRODUCT (MANVAL a)
(POWER 2 56Q))
(POWER (REALPLUS (PRODUCT (MANVAL #GPXRB)
(POWER 2 23))
1))
2)
(((USEQL (USSUB .SUM 31 31)
0)
((ProposeMode)))
((USEQL (UsSsuB .suM 31 31)
1)
((ProposeMode]
(ProposeMade])
(BATCHSQRT)
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4. CONCLUSIONS

PLANNED EXTENSIONS

The Dbasic theoreticai work for proots of correctness of sequential microcode is
reasonably complete, and a preliminary system for carrying out proofs has been built and

exercised. Within the scope of the present work, the following extensions are planned.

Proof Language

The system is divided into a user interface and a rigorous proofchecker. in the present
implementation, the user interface knows too little about the direction of the proof. In a
proof by cases, for example, the separate cases are presented to the proofchecker,
then combined. It is possible to declare the intended result in a superior proof, but no

use is made of this information in either the user interface or tha kernel.

We now see that tho user interface can Interpret a simple goal-oriented language. For a
proof by cases, the user would specify what lemma is to be proven and would specify
that the form of the proof is to be by cases with a given predicata. Room for specitying
the details of each subproof would also exist, but the packaging of the separate proofs

would be carried out by the proofchecker. In the present system, a proof by cases now

looks like the following:

(Open P)
(Open P and €)
<dctails of the proof of the tirst case)
(Close P and C)
(Open P and not C)
<details of the proof of the second case)
(Close P and not C)
(CombineCascs)
(Closao P)

In many Instances, the proof of each case may be carried out automatically. In the

present system, a ProposeMode statement is required. We can eliminate the "obvious"
proofs if we uso null lists where proof details are permitted. Combined with the

automatic setup and packaging of compound proofs, the proof above might become the

foliowing:

61




soxa— -

(Prove P (Casos C <room for details of positive subcase)
<room for details of negative subcase))

Similar savings would result in proofs by induction. Some of the savings are not apparent

r from proof sketches like the ones above. The lemmas are often quite lengthy. Even with

the lemma suppressed from the Close command, the current system requires three

copies of the main lemma, one for the statement of the lemma in the main proof, and two
more for the subcase proofs. The compressed form requires only one appearance of the
lemma. In addition, the compressed form is much more readable and, we hope, more

writable.
Editing
The present system permits only limited editing of the proof. Using the structured proofs

ilustrated above, it should be possible to edit a proof quite freely and have the proof

restarted from the last point it was changed.

Efficiency

The present system is fairly siow. Witl a little experimentation, it has become clear that
a lot of time is expended In the simplifier. The simplifier has evolved through an
accretion process, and is due for a complete redesign. We have also studied Derek

Oppen's work (see, for exampie, [Nelson and Oppen 78]), and it appears reasonable to

use his simplifier for parts of the system. His simplifier is carefully crafted and should be

much faster.
FUTURE CONSIDERATIONS

A number of ideas for logical next steps have emerged, though these are beyond the

scope of the presont effort,
Floating Point Arithmetic Specification

It is obvious that we must allow other floating point formats than that of the FTSC. The
parameters neoded to specify the format should be variables which can be set by the
user to fit his particular application. In addition, fioating point arithmetic needs to be
characterized precisely. Notation to describe thé intended precision of the results and

relationship botween floating point operations and the corresponding abstract operations
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on the reals would materially reduce the size of the target machine description and

remove the need for proving a separate set of constraints.

Somc of the initial work has been done by Brown and others [Brown 77, Brown

78, Wijngaarden 64, Kahan 77a, Kahan 77b].

i Timing

A

Performance characteristics play a large part in the design of host machines and In the

desigh of the microcode. However, to date no work has been done to characterize the

e Mgk

running timo of microcode. Proofs of running time limits should be reasonably

straightforward, but work is needed on the specifications.
Concurrency

Essentially no work has been done on correctness proofs of truly concurrent microcode.
The present work requires a sequentialized model of the host and target machines.

Extensions to the basic theory will be reqtired to model concurrancy.
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Appendix A
THE SYSTEM

This appendix describes the operation of the proofchecker, the state delta expression

language, and the simplifier.

A.1 PREPARING AND RUNNING A PROOF

The MICROVER systom is a LISP program that is loaded from TOPS20 exec by typing
<AMDSYS)MICROVER.EXE2. The program Is started by the LISP function StartExec, and
can be restarted by the function ContinueExec. Both functions put the system in exec

mode, which provides a set of commands to prepare and run proofs.

The proof checker is driven by a sequence of proofsteps. Each proofstep is submitted
one at a time to the kernel, which checks its applicability and updates the state of the
proolf according to the specific proofstep. Although the user is responsible for preparing
the proofsteps, the MICROVER system provides vatious aids for preparing and submitting
them. The most important aid is the the batch. The batch consists of a sequence of

proofsteps that is submitted by MICROVER under user supervision.

A.1.1 Exec Mode
Execc mode provides several ways to prepare and submit proofsteps, as well as some

misccllaneous tasks.

The following commands are used to prepare and submit proofs:

UserMode This command puts the system in a mode that provides the user
with convenient facilities to prepare individual proofsteps. In
particular, it completes key-words, prompis with parameter names,
etc. The proofsteps are prepared one at a time, and submitted
immediately.

SavoTranscript This command accumulates the successtul prootsteps from the last
sassion into a batch. The batch (in the form of a LISP function) can

be stored away, submitted again, or otherwise manipulated.

2
The system is currently available on the ISIE machine, accessible over the ARPANET,

14
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BatchMode This command controls the submitting of a batch. See below for
more details.

FixLast Lets the user edit and resubmit the proofstep that was last
submitted. The full power of the INTERLISP editor is available. It is
a convenient way to recover from an error.

GenBATCH GenBATCH prepares a batch of proofsteps according to the ISPS
descriptions of the target-machine, host-machine, ROM, and
mapping. This command is used for symbolic simulation.

Three TOPS20 files and two LISP variables must exist before
executing GenBATCH: The description of the target, host and ROM
should reside in the files TARG.ISP, HOST.ISP and ROM.ISP,
respectively. The mapping should reside in the LISP variables
MAPPINGSLIST and COVERINGS$LIST.

The result of GenBATCH is a list of proofsteps for submission in
batch mode. The user is queried as to where to store the list.

The following miscellaneous commands are provided by exec mode:

ResetProof Clears the whole proof, ready to begin a new session.
SetSwitch Sets, resets, or checks the value of a trace switch.
DisplaySWLIST Displays the value of all the trace switches.
DisplayStato Dieplays the current state of the proof.

DisplaylLast Displays the last proofstep that was submitted.

Quit Returns the system to the LISP level.

A.1.2 BatchMode

Batchmode initializes and controls the submitting of a batch that exists as a TOPS20 file.
This batch could be generated off line using an editor, by the SaveTranscript command,
or by the GenBATCH command (see next section). it provides the following batch
commands: ‘

OpcanBatch Reads the batch from a file and initializes the batch-pointer to the
first proofstep in the file.
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DisplayNext Displays the proofstep to which the batch pointer is pointing.

PerformNoxt Submits the proofstep to which the batch-pointer is pointing and
advances® it.

Doit Performs a fixed number of proofsteps from the batch file. The
user is asked for the number.

WholeBatch Displays the compiete list of proofsteps in the batch file last read
by OpenBatch.

Quit Returns to the exec mode.

A.2 BASIC PROOFSTEPS

The basic "proof action" that MICROVER uses is setting goal to sd:post, and advancing
the current state untit the goal becomes true. Using combinations of this proof action for
the right state deltas can accomplish symbolic execution, symbolic simulation, proofs by

cases, or proofs by induction.

MiLHOVER provides a data base to hold the current state and a kernel that processes a
sequénce of basic proofsteps. Before carrying out a proofstep, MICROVER checks that
al of the requirements are satisfied. If they are not, an error message is printed and the
proofstep Is aborted with no change to the data base. The following basic proofsteps

are available in the system:

A.2.1 Beginning and Ending a Proof
(Open vars-list sd) meaning: Initiates proof of sd.

arguments: sd is a state deita and vars-list is a list of places or
variables.

requirements: The places in sd:mod and sd:env must be registered
(see below).

effects: Creates a current state consisting of sd:pre and those

%n case of faiure, the exec command DisplayLast and FixLast still points to the tailed proofstep (and can be used for
recovery)




(Close)

predicates from the previous state whose support is contained in
sd:env; creates a new goal of sd:post; the prior state of the
database and the place graph are restored when the proof is
complete, except that the proven state delta is added to the prior
state. (See Close, below).

meaning: Terminates the proof of the most recently Opened state
delta (goal) assuming the postcondition of goal is true in the
current state.

arguments: none
requirements: sd:post simplifies to true.

effects: Restores the proof system to its state prior to the most
recent Open, with the addition of the proven state delta.

A.2.2 Registering Places

(NewDccomposition covering)

{NowComposition)

=y

meaning: Registers new subplaces.

arguments: Covering is of the form (Covering place ((subplace
length) ... (subplace langth))).

requirements: Mother place must be registered; doughter places
must not be registered.

effects: The place graph is extended with new covering
relationship,

meaning: Registers nhew superplaces.
arguments: Covering as above.

requirements: Mother place must not be registered; daughter
places must be registered and disjoint.

effects: The place graph is extended with new covering
relationship.
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A.2.3 Advancing the Computation

(ApplySD sd)

meaning: Advance the execution by applying sd.
arguments: sdis a state deita.

requirements: sd:pre must simplify to true in the current state, and
sd:mod must be contained in the modification list for the most
recently Opened state deita.

effects: Deletes from the current state all predicates supported
by places in sd:mod, and adds sd:post.

A.2.4 Case Analysis and Loops

(CombineCases sd-list)

meaning: Combines the state deltas in sd-list into one state deita.

arguments: sd-list is a list of state deitas (sd1 sdn) where sdi
is of the form

(S0 (pre: case,

pred)
(mod: NODi)

(env: ENVi)
(post: POSTi)).

requirements: All sdi must be true in the current state.

effects: Adds the foliowing state deita to the current state:

(S0 (pre: (OR case; ... casen)

pred)
(mod: NOD1 U... U HODn)

(env: ENV:l U..o U ENVn)
(post: (OR PCIST1 POSTn))

(Performinduction loop-sd base-sd)

meaning: Derives a state delta representing the state
transformation from the start of a loop to its termination (the
number of times through the loop being known in advance).

arguments: base-sd is a state delta representing the state
transformation for the first time through the loop, and loop-sd is the
state delta representing the state transformation once through the
loop, starting after an arbitrary number of iterations. In the
following from and to are numbars, /ndvar is a bitstring term, claim
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Is what Is to be proved (written as a list (or conjunction) of
predicates in the state deita expression language), and program is
a state delita encoding the execution of the ioop.

base-sd must be of the form:

(SD (pre:)
(mod:)

{env: OMEGA)
(post: indvar=from

claim(from/to)
program)

loop-sd must be of the form:

(8D (pre: from < indvar
indvar < to
claim
program)
(mod: ([no restrictionl)

{env: )
{post: indvar(#/.) = indvar + 1

claim(#/.)
program))

requirements: base-sd and loop-sd must be in the current state.

effects: if base-sd and loop-sd are in ‘the current state,
Performinduction adds the following state deita to the current
state:

(SO (pre: program)

(mod: |oop-sd:mod)

{env: OMEGA)
(post: indvar(#/.) = to

claim(#/., to/indvar}
program))

A.2.6 Mapping Between Levels

(ApplyMapping)

meaning: Searches the current state for an "applicable" mapping
and "applies" it.

arguments: none
requirements: There must be an applicable mapping.
effects: Finds a mapping with mapping:from true in the current

state, and adds mapping:to and mapping:map to the current state.
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A.2.6 Static Reasoning

(instantiateContents place var)
meaning: Instantiates the contents of place to be var.

arguments: Place is already registered and var is new; both are

atoms.

requirements: Place must be registered, var must be new, and
both must be atoms.

effects: Substitutes var for (.place) everywhere in the current
state, and adds the predicate (.place)=var.

oo M b S il

(Derive exp) meaning: Inserts exp into the current state.

L

arguments: Typically exp is a predicate.

requirements: none

effects: Allows direct user alteration of the current state; thus
would not be used in a completely system-checked proof.

BT

A.3 HIGH LEVEL PROOFSTEPS

Our experience with dotailed proofs has shown that there are patterns of proofstep

sequences that can be lumped together to a single (more abstract) proofstep. High level

proofsteps are generally only necessary for setting up a proof, for symbolic execution of

straight line code, for execution of alternation, for execution of iteration, and for

performing symbolic simulation.

The set of high level proofsteps forms a language that is compact and structured. Using

this language makes it easier to read or write proofs.

(Prove sd proof) meaning: Proves sd by proof.

arguments: sd is a state delta and proof Is a list of proofstaps.

requirements: Those of Open.

effects: Performs (Open NIL sd) and then sequentially processes
the elements of proof.

(ProposeMode breakpoint)




B S

meaning:  Symbolically executes from the current state until
breakpoint is reached or until a (Ciose) can be performed.

arguments: breakpoint is a predicate.
requirements: none

effects: Checks to see if Breakpoint is true in the current state; if
yes, halts; if not, checks to see if (Close) is possible; if yes,
(Close) is performed:; if not, chacks to see if there is an applicable
state delta sd; if yes, parforms (ApplySD sd); if not, halts with the
message "Proofchecker has nothing to propose®.

(ProvobyCases sd case-proof-list)

(SymSimulate)

meaning: Proves (a state delta equivalent to) sd, by using the
case analysis specifiod in case-proof-list.

arguments: sd is a state delta, and case-proof-list is a list of the
form

((casel proofl) vee (t:ase',1 proofn))
where tI' . cases are predicates specifying the different cases and
the proofs are lists of proofsteps which prove sd in case case, is
true.

requirements: Those of (CombineCases).

effects: Sequentially treats the elements of case-proof-list by
adding pred to sd:pre and then sequentially processing proof.
After the last element of case-proof-list is processed,
(CombineCases (sd1 sdn)) is performed where sdi is sd with

case, added to its precondition.

meaning: Proves a series of simulation relationships.
arguments: none

requirements: none

effects: Assumes that the goal is a list of state deitas to be
proved (sd ...). For each sd in the goal performs the following
sequence of proofstieps: (Open NiL sd), (ApplyMapping),
(ProposeMode b), (ApplyMapping)., (Close). The breakpoint b in
ProposeMode is mapping:from of the mapping for which mapping:to
is true in sd:post.
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(InitProof program) meaning: Initializes the system in order to prove something (to be
specified in a latar (Prove) proofstep) about program.

arguments: program.isp is a file containing an ISPS program.
requlré"ments: program must be a valid ISPS program.

effects: Translates program Into the internal state delta
representation, and initializes the placesystem using the
information on the declared places in program.

A.4 STATE DELTA EXPRESSION LANGUAGE

In this section we describe the function symbols used in the state delta language. This
language is intended to accommodate all the needs of the whole system, from translating
a machine-description program in ISPS, to writing down the high level specification, to
writing down the proof. Thus we deal with placenames (program identifiers), bitstrings,

arrays, and several varieties of numbers.

DATA DOMAINS
P Places (in a machine; or in general any set of "names")

B Bitstrings

N Natural Numbers

Y4 Integers

Q Ratlonals

A Arrays (considered as a supersat of B)

{T.NIL} Truth values

in tho following we give the definitions of the function symbols. The constant bitstrings
aro value-length palrs written m(n) where m<2". Note that there is only one legal
bitstring of length 0, that of value 0. The symbols =,+,-,*,and £ are logical equality, and
arithmetical symbols. Additional "support funct'lons" are mod, int(x)=integral part of X,
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maxih(a,b) = max{(LH a), (LH b)}, and tctous(in) (2's complement to unsigned), which
takes i(Z and nCN such that -2""1<i<2™"! and returns that non-negative number which is
the unsigned value of the bitstring -of length n representing | in 2's complement. Thus,
tctous(i,n)=if i20 then i else 2"+i. So, tctous(-3,4)=13, tctous(-4,3)=4, and tctous(-3,2)
is undefined. Notice that in all the uses of tctous below, the arguments satisfy the

conditions for the definition. "Exp=lf p then x else y" is a short form of writing a

definition of Exp by cases: If p is true, then Exp=x; if p is false, then Exp=y. The union
of two sets is denoted by U; thus, for example, in the specification of LH, LH:PUAUN-->N i
means that LH is a function taking either a place, array (and hence bitstring), or number,

and returning a number.
(DOT p) P Contents of p
DOT:P--)A -

DOT is an arbitrary function subject to the restrictions that (LH p)=(LH .p)
and (HT p)=(HT .p).

s sk

(LH x) Length of x

LH:PUAUN-=>N

The length of a place is an arbitrary natural number.

The length of an array is the same as the length of all its rows.

The length of a bitstring b is a natural number j such that |<2’,

where i=(USVAL b).

The length of a natural number is one more than the number of binary digits:
neecded to represent it.

PN RURATII SO ¥
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(HT x) Height of x !

HT:PUAUN--> N !
The height of a place is any natural number

The height of an array is the number of its rows.

Tho height of a bitstring or natural number is 1.

(USVAL b) Unsigned value of bitstring b

USVAL:B-->N

The case by case definition is given below.

Note that Places do not have USVAL's; however Numbers,
considered as bitstrings, do.

P vy




{TCVAL b) Two's complement value of b

TCVAL:B-->2Z
(TCVAL b)=if (USVAL b)<2{LH B)=1 44 o (USVAL b) else (USVAL b)y-2(LH P)

{(varBs i )) Bitstring of USVAL | (almost) and LH
VarBS:NXN-->8
(USVAL (VarBS | j))=i mod 2

(LH (VarBS | )))=)
(BSEQL a b) Equality between bitstrings

BSEQL:BXB-~->8

(BSEQL a b)=if (USVAL a)=(USVAL b) and (LH a)=(LH b) then 1(1) eise 0(1)
(USCONC a b) Concatenation of a and b

USCONC:BXB-->B
(USCONC a b)=(VarBs [(usvAL a)*2{LH B) 4 (USVAL b)] (LH a)+(LH b))

(USSUB a m n) Substring of b from bit m down to n

USSUB:BXNXN-->B
(USSUB a m n)= it m>(LH a) then (USSUB a (LH a)-1 n)
elseif m<n then 0(0)

olse (VarBS int(((USVAL a) mod 2™*1)22°™) m-n+1 ).

(USSUB a m) m-th bit of a
(USSUB a m)=(USSUB a m m)

(BITS p (PAIR m n)) Subplace of p from bit m down to n

BITS: PXNXN-=->P
(DOT (BITS p (PAIR m n))=(USSUB (DOT p) m n)

(BITS p m) Aiternative form for (BITS p (PAIR m m))
(DOT (BITS p m)=(USSUB (DOT p) m)

(BITPLUS a b) Same length bit addition

BITPLUS:BXB-->B

(BITPLUS & b)=(VarBS [(USVAL a)+(USVAL b) mod 2™@XIN(@b)1 g in(a,b))
BITPLUS (essentially) zero-extends & and b to be the same length, adds them,
and drops the carry, if any.

BITPLUS can be used to uniformly deflne USPLUS and TCPLUS.
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(USPLUS a b) Unsigned addition

USPLUS:BXB-->8B

(USPLUS a b)=(VarBS (USVAL a)+(USVAL b) maxih(a,b)+1)

or: :

(USPLUS a b)=(BITPLUS (USCONC (VarBS O maxlh(a,b)+1~(LH a)) a)
(USCONC (Var3$ O maxlh(a,b)+1-(LH b)) b))

(TCPLUS a b) Two's complement addition

TCPLUS:BXB-->8B
(TCPLUS a b) is that bitstring of length maxih(a,b)+1 whose TCVAL is
(TCVAL a)+(TCVAL b). There are several possible ways to describe that
in terms of VarBS.
(TCPLUS a b)=
(VarBS tctous((TCVAL a)+(TCVAL b),maxih(a,b)+1) maxih(a,b)+1)).
Or in terms of BITPLUS:
(TCPLUS a b)=(BITPLUS (USCONC 0(1) (SE a maxIh(a,b)))
(USCONC 0(1) (SE b maxlh(a,b)))),
where SE Is dafined below.

(USDIFFERENCE a b) Unsigned difference

USDIFFERENCE:BXB-->B
(USDIFEERENCE a b)=
(VarBS tctous({USVAL a)-(USVAL b),maxlh(a,b)+1) maxih(a,b)+1)

(TCDIFFERENCE a b) Two's complement difference

TCDIFFERENCE:BXB-->B
(TCDIFFERENCE a b)=
(VarBS tctous((TCVAL a)-(TCVAL b),maxih(a,b)+1) maxih(a,b)+1)

(USTIMES a bb) Unsigned multiplication
USTIMES:BXB-->B
(USTIMES a b)=(VarBS (USVAL a)*(USVAL b) (LH a)+(LH b))
(TCTIMES a b) Two's complement multiplication

TCTIMES:BXB--)>B
(TCTIMES a b)=
(VarB$S tctous((TCVAL a)*(TCVAL b),(LH a)+(LH b)) (LH a)+(LH b)))

(USEQL a b) Unsigned equality
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USEQL:BXB~-~>B
(USEGL a b)= if (USVAL a)=USVAL b) then 1(1) else O(1)

(TCEQL a 1) . Two's complement equality

TCEQL:BXB-->B
(TCEQL a b)= if (TCVAL a)=(TCVAL b) then 1(1) else O(1)

(USNEQ a b) Unsigned inequality

USNEQ:BXB-~>B
(USNLQ a b)= if (USVAL a)=(USVAL b) then 0(1) eise 1(1)

and similarly for the other bit relations: TCNEQ, USLSS, TCLSS, USLEQ, TCLEQ, USGTR,
TCGTR, USGEQ, TCGEQ

(BITMINUS a) Same length two's complement negation
BITMINUS:B-->B
(BITMINUS a)=(varBs (2" 8)_(ysval. a) mod 2¢tH 8)) (LH a))

(USMINUS a) Unsigned negation

USMINUS:B-->B
(USMINUS a)=(VarBS tctous(-(USVAL a),(LH a)+1) (LH a)+1)

(TCMINUS a) Two's complement negation

TCMINUS:B-->B
(TCMINUS a)=(VarBS tctous(-(TCVAL a),(LH a)+1) (LH a)+1)

(SE am) Sign extend a to length m
SE:BXN-<>B

(SE a m) has the sign TCVAL as a (if m2(LH a)). Thus:
(SE a m)= if m<(LH a) then (USSUB a m-1 0)
else (VarBS tctous((TCVAL a),m) m).

(USSLO a m) Shift left m bits shifting in O

USSLO:BXZ-->B
(USSLO a m)= if m<O then (USSRO a ~m)

else (USCONC (USSUB a (LH a)-1-m 0) (USSUB (VarBS O (LH a)) m-1 0)).
This last clause can also be written as:

(VarBs (USVAL a)*2™mod 2(tH @) )

o
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(UssSL1 am) Shift left m bits shifting in 1

USSL1:BXZ-->B
(USSL1 a m)= if m<O then (USSR1 a -m)
else (USCONC (USSUB a (LH a)-1-m 0)

(ussuB (Vargs 2tH 8)_4 (LH a)) m-1 0))

(USSLR a m) Shift left rotate

USSLR:BXZ-->B
(USSLR a m)= if m¢O then (USSRR a -m) else
(USCONC (USSUB a (LH a)-m=-1 0) (USSUB a (LH a)-m))

(USsSLD a m) Shift left duplicate right bit

USSLD:BXZ-~->B
(USSLD a m)= if (USVAL (USSUB a 0 0))=1 then (USSL1 a m)
else (USSLO a m)

(USSRO a m) Shift right m shifting In O

USSRO:BXZ-->8
(USSRO a m)= if m<0 then (USSLO a -m)
clse (USCONC (USSUB (VarBS O (LH a)) m-1 0) (USSUB a (LH a)-1 m))

(USSR1 a m) Shift right m shifting in 1

USSR1:BXZ-=>B
(USSR1 a m)= if m¢O then (USSL1 a -m)

else (USCONC (USSUB (varBs 2¢tH 8.y (Li a)) m-1 0)
(USSUB a (LH a)-1 m))
(USSRR a m) Shift right rotate

USSRR:BXZ-->B
(USSRR a m)= if m<O then (USSLR a -m) »
else (USCONC (USSUB a (LH a)-1 m) (USSUB a m-1 0))

(USSRD a m) Shift right duplicate left bit

USSRD:BXZ-->B
(USSRD a m)=if (USVAL (USSUB a (LH a)-1 (LH a)-1))=1 then (USSR1 a m)
eise (USSRO a m)

Note that all of the resuits of the shifts have langth (LH a)

(USNOT a) Bitstring-logical NOT




USNOT:B-->8

(USOR a b) Bitstring-logical OR

USOR:BXB-->B
Zero-extends to maximum length and ORs

(USAND a b) Bitstring-logical AND

(USEQV a b) Bitstring-iogical equivalence

(USXOR a b) Bitstring-logical exclusive OR
Similarly

(EXPVAL a) TCVAL of right 8 bits
EXPVAL:B-~>Z
(EXPVAL a)=(TCVAL (USSUB a 7 0))

(MANVAL a) Fractional value of left 24 bits
MANVAL:B-->Q

(MANVAL a)=(TCVAL (USSUB a 31 8))* 2722

(FLVAL a) , Value of a as a floating number

FLVAL:B-->Q

(FLVAL a)=(MANVAL a)*2(EXPVAL a)

(NZEROP a) Not zero predicate
NZEROP:B-->{T.NiL)
(NZEROP a)= if (USVAL a)=0 then NiL else T

(POWER q i) Integer exponentiation of rationals
POWLER:QXZ-->Q

(REALMINUS q) Unary arithmetic negation
REALMINUS:Q-->Q

(PRODUCT q r) Multiplication
(REALPLUS q 1) Addition
(REALDIFFERENCE q r) Subtraction
(REALQUOTIENT q r) Division

All these from QXQ-->Q

1
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(REALEQUAL g v) (Provable) equality between arithmetic terms
REALEQUAL:QXQ-->8
(REALEQUAL q r)=if g=r then 1(1) else 0(1)

(REALLEQ qr) (Provable) less than or equality

REALLEQ:QXQ-->B
(REALLEQ q r)= if qSr then 1(1) eise 0(1)

Now we describe the terms dealing with arrays. Two arrays are the same iff they have
the same height and the same sequence of words. Thus: We have no function analogous
to USVAL for arrays, aithough it is an easy matter to uniquely assign a number to an array
on the basis of the USVALs of its words. We number the rows of an array from top to
bottom, starting with 0. We have learned to view as natural the apparent discrepancy
between the top-down ordering of rows in an array and the right-left ordering of bits in a

bitstring.

(WORDS a m n) The rows of a from m down to n

WORDS:AXNXN-=>A
(HT (WORDS a m n))=it n2(HT a) then (HT (WORDS a m (HT a)-1))
alseif m>n then O
eise A-me+1d

(WORDS a m) m=-th word of a
(WORDS a n)=.WORDS a n n)

(SUBARRAY a i j) The coiumns of a from i to |

SUBARRAY:AXNXN-=>A
(HT (SUBARRAY a i }))=(HT a)
(WORDS (SUBARRAY a i j) m m)=(USSUB (WORDS a m m) i j)

(RANGE a) The concatenation of the rows of a




RANGE:A-->B

(RANGE a)=(USCONC (WORDS a 0 0)..(WORDS a (HT a)-1 (HT a)-1))

It is convenient to define (RANGE x y) for two bits of the explicit form
x=(USSUB (WORDS a jx jx) ix ix) and y=(USSUB (WORDS a )y jy) Iy ly)
or in the degenerate case where a is of length 1,

x=(WORDS a jx jx) and y=(WORDS a jy jy). its value is the word
consisting of ali bits from x to and including y inside a.

(ARRAYNGE h b) Forms b into an array of height h .

ARRAYNGE:NXB-=->A

Dctined only for b such that hj(LH b)

(HT (ARRAYNGE h b))=h

(WORDS (ARRAYNGE h b) i i)= if i<h then
(USSUB b (LH b)=1-i*(LH b)/h )
else 0(0)

(ARRAYCONC h a b) Forms a and b into an array of height h

ARRAYCONC:NXAXA=-DA

Defined only for h,a,b such that | divides the areas of a and b.

(HT (ARRAYCONC h a b))=h

(WORDS (ARRAYCONC h a b) ii)= if i<h then

(USCONC (WORDS (ARRAYNGE h (RANGE (USSUB (WORDS a 0 0) (LH a)-1)
(USSUB (WORDS a (HT a)-1 (HT a)-1) 0 0))) i i)
(WORDS (ARRAYNGE h (RANGE (USSUB (WORDS b 0 0) (LH b)-1)

(USSUB (WORDS b (HT b)~1 (HT b)-1) 0 0))) i i)
eise 0(0)

A.5 THE SIMPLIFIER

SIMPLIFIER STRUCTURE
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In this section we describe the structure of the simplitier and give a brief description of

the purpose of each of its files. Entry to the simpiifier is through the function SIMPEVAL.

SIMPLVAL(X) returns a term equivalent to X if X is a term (legal expression) in the

simplifier's language. The simplification is processed recursively; that is, if X is not

atomic, then the arguments of X are first passed to SIMPEVAL, and likewise for their

arguments. If no simplifcation or evaluation is possible (by the system) then the original

argument is returned.




SIMPLIFY

SIMPLIFY consists of two levels. At the top level, the function SIMPEVAL is the entry
point to the simplifier. An expression to be simplified is sent to the appropriate second
level routine by SIMPEVAL after its arguments have been recursively simplified by the
same process. This appropriate routine is chosen on a one-to-one basis depending on

the principal function symbol of the expression.

The second level routines consist of three parts: if the simplified arguments are not
symbolic, the expression is evaluated and the value retumed;4 If not, then the
expression is passed to one of the files listed below for further processing; if this does
not result in further simplification, the original expression with simplified arguments is

roturned.

If the expression is of type real numbers or integers, or relations on them, and the
simplificd arguments are constant numbers, then the evaluation is done by LISP
functions. If the arguments are symbolic, then the computation calis a routine in

REALSIMP,

If tho expression s of type bitstring and the arguments are constant bitstrings, then the
evaluation is done by functions in MDTE. If the arguments are symbolic then the

computation calis a routine in ISPSSIMP.

If the expression is of type value of bitstring, and the arguments are constant bitstrings,
then the evaluation is done in SIMPLIFY by LISP functions and perhaps other second
level functions. if the arguments are symbolic, the computation calls a routine in

VALUESIMP,
If the oxpression is of type arrays then ARRAYSIMP is called.

If the expression is of type propositional calculus, and the arguments are not logical
constants (T or NIL), then LOGSIMP is called,

‘Th's convention is not strictly observed; some functions at this level do simplification on symbolic expressions and/or
examine the data base.
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Each of these files may call SIMPLIFY, each other, or OTHERBITSIMP and AUXILIARYSIMP.
In addition, they all search the data base for current facts which may imply some

simplification that is not generally true.
REALSIMp

This file contains the main routines for simplification of algebraic expressions over the
domain of the real numbers. Tha relations and functions recognized, along with their
internal syntax, are addition (REALPLUS), subtraction (REALDIFFERENCE), multiplication
(PRODUCT), division (REALQUOTIENT), exponentiation (POWER), unary negation
(REALMINUS), equality (REALEQUAL), strict order (REALLESS), and weak order (REALLEQ).

In addition, the maximum and/or minimum bound on a real variable is Tound where possible
by searching the data base for the entries of the form (REALLEQ var n) or (REALLEQ n
var) where n is a numerical constant. The internal syntax for these minimum and

maximum values is REALMIN and REALMAX.
ISPSSIMpP

ISPSSIMP is the file simplifying bitstring expressions (more or less those of ISPS). An
important point is that we allow bitstring variables to have variable lengths (including
zero) as well as variable contents. A constructor exprassion (formed of concatenation,
substring sciection, and shifts) is reduced to a standard form as a concatenation of
substrings, where two adjacent substrings may not be combined any further. This
standard expression is almost canonical; that is, two equivalent bitstrings reduce to the
same standard expression except in certain cases involving registers whose variable

length may include zero.

Two's complement or unsigned plus and difterence are replaced by an equivalent
addition or subtraction between two bitstrings of equal length and sent to OTHERBITSIMP
for processing. In the case of bitstring muitiplication, some simplification is accompiished

iIf ono of the arguments is a bitstring with known value.

If the expression is an equality between bitstrings, then simplification is accomplished in
many cases, either completely (i.e., to the bitstrings 1 or O representing T and F) or
partially. There is also some use made of REALSIMP and VALUESIMP, for example, in the
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equivalence between unsigned equality of bitstrings and real equality between their

unsigned values.
OTHERBITSIMP

OTHERBITSIMP contains routines for use In simplifying bitstring expressions, and is in
principle subordinate to ISPSSIMP. Included are routines for simplifying the non-carry
bitstring addition BITPLUS, sign-extension, substrings of concatenations, squashing
together two adjacent substrings in a concatenation, and replacing a substring of the
form A<ih(a)-1:0> by A.

VALUESIWMP

The two main expressions simplified in VALUESIMP are USVAL(A) and TCVAL(A), the
unsignad and two's complement value of the bitstring A. In addition FLVAL(A), EXPVAL(A),
and MANVAL(A) are expressions representing the value of A as a floating number (of
customized 24-bit mantissa and 8-bit exponent), the two's complement value of the

exponent of A, and the two's complement value of the mantissa of A, respectively.

Typical steps In a recursive simplification are changing a TCVAL into a USVAL where
possible (and sending the result back to S/IMPEVAL), changing TCVAL(A) Into TCVAL(B)
where B is simpler than A, returning an integer instead of TCVAL or USVAL, or "pushing

TCVAL in" and roturing an expression of the form TCVAL(A)+TCVAL(B).
ARRAYSIMP

ARRAYSIMP simplifies expressions in the array language described in Microver Note #12.
This language allows all possible row and column and subatray selection, reshaping, and
concatenation of two rectangular arrays of constant height and length. it is completely
intcgrated with the bitstring language in that a word in an array is a bitstring, an array of
height 1 is a word, and the length of an array is the (common) langth of its words. The
height and area of arrays are calculated here, but the length is calculated in

AUXILIARYSIMP.
LOGSIMP

LOGSIMP racognizes formulas of the propositjonal calculus written with implication and

disjunction. Free individual variables are allowed, and in this case we treat the formula
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as if all tho tree variables were universally quantified.
AUXILIARYSIVMP

This file contains the simplifications of the other "service" functions used in the
simplifier. First, we have the representation of an arbitrary continuous plecewise linear
function on bounded domain:

(SLANT v (a ) ¢, s,) (12 s,) .. (I s)).
where v is the function's argument variable, a is the left endpoint, h is the helght of the
graph at a, and from thon on the graph continues l1 units to tha right with siope 0 and

then || units with slope s, etc. There arc routines for adding slant functions, finding

maximum or minimum of two slants, converting from standard arithmetic notation to slant

notation, etc. Slants are used mostly as langths of variable length bitstrings.

There are routines for calculating the length of bitstring expressions, inserting and
extracting parentheses, "multiplying out" arithmetic expressions, solving linear
equations, and converting from rationals to bitstrings representing them in fioating point

format.
PRINCIPLES

In the following we describe the principles behind some simplifications for expressions in
the state dclta language. This is not intended to be a complete survey of all possible
simplifications, but rather a representative list of those simplifications found useful in the
actual practice of verification, especially the square root algorithm of the FTSC. Thus
there is a close correspondence between these simplifications and those actually
impiemented in the system. Here, though, we describe only the "interesting" ones, and
some of these may be stated in different form without mentioning all the cases and

specifying the implementation details.
BSC (bitstring constructor) terms

The primitive operations for constructing bitstrings are concatenation a@b, substring
sclector ali:j>, and shifts. The definitions of concatenation and shifts are standard. Our
conventions for substring selector are that bitstrings are numbered from the right-most
bit a<0> to the left-most a<ih(a)-1> where Ih(a) is the length of a. Note that we shall
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allow bitstrings to have variable length. These are called generalized bitstrings. For
integer i, J a<i:)> represents the string consisting of bits | down to ] of a, that is,
a<id@adi-1>...Qa{j>. If j is greater than i, then this string is nonexistent, and is called
EMPTY. If i<O or i2ih(a) then a<i> is EMPTY. In the following f(i) and g(i) will be functions
attaining integer values at integer values of the argument i. We will occasionally omit

mention of | and write just f, g.
A (gencralized) substring is a term of the form a<f:g> where a is atomic.

A simplificd substring is the EMPTY string or is a substring of the form a<f:g> where

Vi 1(i) < Ih(a), Vi g(i) 2 O, =Vi £(i) < g(i).

Note that when f and g are constants, these conditions become fdh(a), 920, f2g. Note
also that we cannot demand Vi f(i)2g(i), since for example a<0:-i> is either EMPTY or
a<0> depending on i. From our definition of the semantics of substring, it follows that
any substring is equivalent to a simplified substring: a<f:g>= admin{f, ih(a)-1},
max{g,0}> or EMPTY. If a canonical simplified substring Is desired, some standard values

of { and g will have to be taken in the case that f(i)<g(i), for example f(i)=0 and g(i)=1.

Length is defined for a (gencoralized) substring as the following function of i: (Let a, f,

and g be functions of i)

Thia<fig>) (i) = if £(i)2 th(a(i)) then Ih{acih(a)-11g>(i})
elseif gli) < 8 then lhfacf:@>(1))
elseif f(idegli) then D
else fli)-g(i}s+l,

An oquivalont closed form is
i(a<f:g>) = min{ih(a), max{min{f, Ih(a)-1) - max{g, O} + 1, 0})

This allows the following rewriting: Let O(1) denote a string of f zeroes.

If ais of the form O(f)<g:h>, then a = 0(Ih(a)). (1)

A BSC (bitstring constructor) term is any term formed from atomic bitstrings,

concatonation, substring, and shifts.
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A simplificd BSC term is of the form b1@b,@...@bn whare n21 and each b,, is a simplified

substring.

It car be shown that every BSC term is aquivalent to a simplified BSC term. The main

simplification rules used in simplifying a BSC term are

(a@b)<T:g> = adf-In(b): g-Ih(b)> @ b<f:gd (2)
a SLO 1 = O(min{In(a),~f})@a<ih(a)-f-1:max{-f,0}>@0(min{Ih(a),f}) (3)
°<’1:gx)<f2:gz) > a(min(fl.fza-gl):max{gi.gl-bgz)) (4)

Example Assume th(a)=4, Ih(b)=5, Ih(c)=6.

(a@(b@c) SLO 5)<13:3%¢6:1> =
(0(-5)(a®@(b@c))<9:0>@0(5))<9:4) =
(EMPTY@(a<-2:~11>@(bEc)<9:0>)R0(5))€9:4> =
(b<3:0>@c(9:0>@0(5))<9:4> =

(b<3:0>@cR0(5))¢9:4> »

c€4:0>@0(1)
BSA (bitstring arithmetic) terms

All the bitstring addition operators are translated into BITPLUS; BITPLUS is noncarry
addition between two bitstrings of equal iength. When the sign + appears between
bitstrings it will always denote BITPLUS. We also use + for numerical addition, but it is
clear from the cor..xt which is intended. USVAL(a) is the nonnegative integer

represented in binary by the bitstring a.

It b and ¢ are constant bitstrings and USVAL(b)+USVAL(c) < 2"‘“”. then
(a@b)+c = a@(b+c)<ih(b)-1:0> (5)
A similar simplification rule holds for c+(a@b). Of course the two sides of 5 are

oquivalent even If b and ¢ are not constants, but then the right side is not necessarily
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simpler.

BSR (bitstring relational) terms

There are two main classes of bitstring relations: unsigned value and two's cbmplement.
Every unsigned bitstring relation is equivalent to the the corresponding real relation on
the USVAL's of its arguments. For example, USEQL(a,b) is equivalent to
USVAL(a)=USVAL(b). 'Similarly for two's complement. The simplification of this type of

relation will be given in this section. The section on real relations will include (among
others) "mixed relations", i.e., those containing both USVAL and TCVAL. TCVAL(a) is the

(signed) integer which is the two's complement interpretation of the bitstring a.

Equality

We et a sys b denote USEQL(a,b)=T and similarly for TCEQL. We write = with no
subscript if identity between bitstrings is intended.

if Yij (fl(i)<j512(i) v f.‘,(i)<ijx(i) -=>a{j>=0), then

. = . (6)
a(ll.g> Us a(fz.g)

if a, *ys 9, and bl
32@b2<lh(b2)- 1 :lh(blb, then

7
@b, (7)

*us Y, and lh(bx)=lh(b2).or if b1 2us b2<|h(bl)-1:0> and 8, *us

a,@b, =5 a,

if o Sys O and b 2ys O then
A = (8)
a@b usS 0]
Of course, thero are the obvious generalizations when an arbitrary constant is in place of
0.

It 8, =ys 9, and bl 2Us bz ora =g bz and bx ®us & then

- (8) ' 3
a,+b, =g a,+b, !
it USVAL(a)22'M(8) 21 or o>TCVAL(a)>-2 -1, then
adf> = 1 (10)

14 ““x’gx> 2us O for some fIZf. 9159. then
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. = 11
a<f:g> = o O (11)

ifa =us D and a<in(a)-1> = b<ih(b)-1> (or Ih(a)=Ih(b)), then
asreb (12)

It 2<1> = adf+1> = ... 3 alih(a)-1), then

:0) = 13
acf:0> =;. a (13)

If a<f+1>=alf>=alf-1)> and b{fe1>2b{{>=b<f=1), then
(a £ b)XI> = (8 2 b)Cfe1d (14)

= o ooty R ) l ‘" ‘' _o}_o;
W1 -a,=0ma, a<t,"1g'> =5 b<I, 0>, 120, 0,'Sg, '~ = £,~F, 9.0 = 0,70,

or if a<lh(u)-1:gl) =Us b<lh(b)-1:g2>, a(flﬂ)l...aa(lh(e)ﬂ >=0, b<f2+1>=...=b<lh(b)-1>=0.

then

acf iq,> =,c b<f :q,> (15)
Ordoring

0 STC a (16)

if and only if acih(a)-1>=0.
BSV (bitstring value) terms

It ac<ih(a)=1>=0, then

TCVAL(a) = USVAL(a) (17
If a<ih(a)=1>=0, then

USVAL(a) = USVAL(a<Ih(a)-2:05) - (18)

TCVAL(a@b) = 2M(ParcvaL(a) + USVAL(b) (19)

USVAL(a@b) = 2MP)xysyai(a) + usvAL(b) (20

I Ih(a)=Ih(b), a<f-1>eb<f-1>=0, alf>=acfe1ds...xacih(a)-13, bef>=b<f+1>x...2b<Ih(b)-15,
then

TCVAL((a+b)<f:05) = TCVAL(asb) (21)
If ih(a)=lh(b) and TCVAL(a) + TCVAL(b) 2 2M(8)"1 then

TCVAL(a+b) = TCVAL(a)+TCVAL(b)-2'"(®) (22)
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If Ih(a)=ih(b) and TCVAL(a) ¢ TCVAL(b) ¢ -2'M(8)*1, than
TCVAL(a+b) = TCVAL(a) + TCVAL(b) + 2"(®) (23)

It Ih(a)=in(b) and -2(8)°1 <TcvAL(a) + TCVAL(D) <2'M(@)°), then
TCVAL(a+b) = TCVAL(a) + TCVAL(b). (24)
RA (real arithmetic) terms

We list here only the rules concerning RA terms which contain BSV terms.

Let c, and c, be functions of i (as are the f's and g's). If c,.c,>0, f.2f,, g,=g,, and
Vi(e (D¢ (i) = g,()>1,(D), then
: - . (25)
c,"v(a<f :g ) cz'v(a<f2‘gz>)=
<:1'2"""‘“2'92*‘| '0)'v(a<f1:gl+max(fz-gz+1 0).

Note that we do not demand that Vi(f2292).

it a<ih(a)-1>=1, then
TCVAL(a) + 2'M8) & ysvaL(a). (26)

RR (real relational) terms

TCVAL(a<ih(a)-1:nd>) € 2 ™TCVAL(a) (27)
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Apnendix B
FTSC HOST

FTSC HOST

'FTSC.MICROMACHINE

!This version (Mar.24, 1978) has made it through slftst 618-63A(16).
MICROFTSC: = (
wﬁhain.ﬁcmoru*w

MEMT8: 37K1 <31:8>1ACTUALLY MEM 1S 4B BITS WIDE BUT HERE
'WE JUST DEAL WITH THE PART THAT FITS
IONTO THE CPU DATA BuS.

YexeROMyer
{FTSC.CONTROM P214-216

CONTROMI (:1823)<31:8>, | THREE SLICES OF CONTROM
CONTROM2(8: 10231 <31: 08>,
CONTRON3(8:1823) <13:8>,
MICHORD1<31: 8>,
MICHORDZ<31: 0>,
MICUORD3<13:8>,

RFB1<4:0>, IMICWORD1<31:27>,
RFBZ<3:8>, 'M]CLORD1 <26:17>,
RFB3<Z: 0>, 'MICHORD1<16: 14>,
RFB4<2: 0>, 'MICWORD1<13:11>,
RFB5<2:8>, 'M]CLORD] <10: 8>,
RFBG<Z: 8>, MICWORD1<7:5>,
RF37<8>, IMICWORD] <45,
RFAS<B>, 1M CWORD1 <35>,
RF83<Z: 0>, IM]CWORD1<2: 8>,
RF18<2:8>, !M1CWORD2<31: 29>,
RF11«<3>, "MICWORD2<28> ,
RF12<8>, MICUORD2<27> ,
RF13<@>, 'MICWORD2<26> ,
RF14<3>, 1MICWORD2<25> ,
RF15<2:8>, IMICUWORD2<264:22> ,

RF16<2:8>, IMICUORD2<21:19> ,
RF17<3:8>, IMICWORD2<18:15> ,
RF18<3:0>, IMICUORD2<14:11> ,
RF19<8>, {MICWORD2<18> ,
RF20<8>, {MICLORD2<9> ,
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RF21<8>, THICUWORD2<8> ,
RF22<2: 0>, tMHICUORD2<7:5> ,
RF23<0>, IMICUORD2<4>
RF24<0>, IMICUDRD2<3>
RF25<0>, IMICUORD2<2> ,
RF2G<0>, MICWORD2<1> ,
RF27.8>, '"MICWDRD2<A> ,
RF28<3>, MICWORD3<13>,
RF29.0>, {MICWORD3<12>,
RF30<«0>, ‘MICWORD3<11>,
RF31<4:0>, tMICUORD3<18:6>,
RF32<B>, 1M1 CWORD3<S5>,
RF33<d>, M1 CWORD3<4>,
RF34<0>, MICWORD3<3>,
RF35<0>, {MI1CWORD3<2>,
RF36<3>, 'MICWORD3<1>,
RF37<08>, 1M1 CWORD3<B>,

'FTSC. ROMSEQUENCER P213,217

RECONFIGROM[B:1023) <31:8>, !RECONFIGURATION ROM P121
IRECONFIGROM: =MEM ("F7FF: "FBGB] P63

RAD<9:8>, 'NEXT ROM ADDRESS

ROMAG <D>: «RF2<5>,

ROMAS<B>: =RFB2<4>,

ROMAG<B>: =RFD2<3>,

ROMAZ7«B>: «RFD2<2>,

ROMAS~D>: «RFD2<]>,

ROMA9<8>: «RFB2<B>,

AMODE<D>, 1=8 [FF ADDRESS MODE=8

MONND<O>, =1 IN MONITOR CPU

CNTRL<B>, !=] [F CONTROL PANEL WANTS ACCES TO CPU

SUMM1 <8>, 1"SUM<32>", THE INPUTS TO THE ALU

YARE SIGN-EXTENDED TO 48 BITS AND THEN A DIFFERENCE BETWEEN
ISUMML AND SUM<31> INDICATES OVERFLOW (OVFF).
SUMM2<B>, 1 "SUM<33>"

!F T5C. ROMFUNCT I ONDECODER P.228

RFDB3<0=,
RFDOI'ZB>|
RFODC<B>,
RFDD3<B>,
RFDB4<D>,

RFan(ﬂ" 0
RFODG<8>,
RFDQ7<B>,
RFDB%<8>,
RFDD9<0>,
RFD10<8>,
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RFD11<B>,
RFD1Z<8>,
RFD13<8>,
RFD14<B>,
RFD15<8>,
RFD1G<B>,
RFD17<0>,
RFD18<0>,
RFD19<B>,
RFD20<0>,
RFDZ1<P>,
RFDZ22<0>,
RFD23<0>,
RFD24 <0,
RFD25<«8B>,
RFD2G<D>,
RFD27<8>,
RFD28<0>,
RFD29<0>,
. RFD30<0>,
g RFD31<8>

b NS s A

vewExternal.Connectionsy

SETROM: «SETROM(CONTROM1, CONTROM2, CONTROM3)
verlRegister s
!FTSC.GENERALPURPOSEREGiSTERS P2@9

MANGPR18:7] <23:8>, '8 MANTISSA GEN PURP REGS ;
MANGPRIN<23:8>, IFICTITIOUS MANTISSA INPUT :
EXPGPR[8:7) <7:8>, 18 EXPONENT GEN PURP REGS
EXPGPRIN<7:0>, IFICTITIOUS EXPONENT INPUT

IFTSC. WORKINGREGISTERS P.203

MANWR (0:7) <23:8>, '8 MANTISSA WORKING REGISTERS

EXPWR (B:7]<7:08>, '8 EXPONENT WORKING REGISTERS
MANEXTREG<23: 8>: =MANUR [4) <23: 8>, IMANTISSA EXTENSION REGISTER
EXPEXTREG<7:0>: =EXPWR [4) <7:8>, 'EXPONENT EXTENSION REGISTER
MANMEMDAT<23:8>: «MANWR [5) <23: 8>, {MANTISSA MEMORY DATA
EXPMENMDAT<7:8>: =EXPUR (5] <7: 8>, 1EXPONENT MEMORY DATA
MANHEMADD<23: B>: «MANWR (6] <23: 8>, IMANTISSA MEMORY ADDRESS
EXPMEMADD<7:0>: =EXPUR [6) <7: 8>, !EXPONENT MEMORY ADDRESS
MANPC<23: 8> 1 «IMANWR [7) <23: 8>, IMANTISSA PROGRAN COUNTER
EXPPC<7:8>: =EXPWR (7] <7: 8>, {EXPONENT PROGRAM COUNTER
MANWRIN<23:@>, !FICTITIOUS MANTISSA INPUT

EXPURIN<7:8>, {FICTITIOUS EXPONENT INPUT

MANWX <231 8>, IMANTISSA WX OUTPUT
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WRYB<31:8>, {WRYB OUTPUT

MANWRYB<23:8>: =WRYB<31:8>, IMANTISSA WRYB OUTPUT
EXFURYB<7:8>: =WRYB<7:@>, lEXPONENT WRYB QUTPUT
EXPUX<7:8>, |IEXPONENT WX OUTPUT

Rl i s oA a2

"IFTSC. INSTRUCTIONREGISTERP289,213

INR<31:8>, VINSTRUCTION REGISTER
. RA<2:0>:=]NR<21:19>, ISEE PED
RB<2:8>: wINR<24:22>,

'OTHER REGISTERS

HSH1<15: 8>, '"HARDWARE STATUS WORD 1

HSWZ<31:0>, 'HARDWARE STATUS WORD 2

MRAR<15:8>, 'MOST RECENT ADDRESS REGISTER
MONMSKREG<31:8>, 'MONI TOR MASK REGISTER (REALLY?)

S A E

'FTSC.PIN  (PRIORITY INTERRUPT NETWORK) P229 FF

i PERMGKREG<31: 8>, {PERIPHERAL MASK REGISTER ,
INTREQREG<7:8>, ' INTERRUPT REQUEST REGISTER /
'HOW 1S THIS LOADED? SEE 236 AND 112.
!RTI AND ARFLT ARE LOADED FROM INSIDE CPU.
'THE BITS CORRESPOND TO INTERRUPTS IN THE ORDER
IGIVEN ON P74 FOR INTMSKREG.
INTREQFF<7:8>, | INTERRUPT REQUEST FLIPFLOPS

REQPRIORITY<31:8>, IHIGHEST ON-BIT OF INTREQFF
INTHMSKREG<7: 8>, ' INTERRUPT MASK REGISTER

PENDING<7:8>, IPENDING INTERRUPTS REGISTER
PRIORITYLEVEL<31:8>, !PENDING INTERRUPT PRIORITY LEVEL P112

INPROCFF<3]:8>, { INTERRUPT IN-PROCESS FLIPFLOPS
ENADISFF <> 'ENABLE/DISABLE FLIPFLOP (1=D1SABLE?)

g e e P O T e i Sy ey s

veveALUveve

IFTSC.ALUINPUTSELECTOR P,208
IMANT I GSA

MANINA<23: 0>, IMANTISSA ALU A INPORT
MANAZS<2S: 0>, 'EXTENDED INPUT FOR
ICALCULATING OVERFLOW AND CARRY
MANINB<23:8:, 'MANTISSA ALU B INPORT
MANB25<25: 8>,

IEXPONENT
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EXPINA<7: 8>, 'EXPONENT ALU A INPORT
: EXPAG<8: 8>,
3 EXPINB<7:8>, '/EXPONENT ALU B INPORT
EXPBO<8: 8>,

{FTSC.FUNCTIONINVERSION P.287

IMANT [ SSA

MANCIN<@>, IMANTISSA CARRYIN
MANSELECT<3: 0>, IMANT]SSA SB-53
INVHFN<B>, HIANTISSA INVERTER
EXPCOUT<B>, IEXPONENT ALU CARRY-0UT

i T TN oy

1EXPONENT
EXPCIN<B>, |EXPONENT CARRY IN

EXPSELECT<3:8>, !/EXPONENT 58-53
INVEFN<B>, IEXPONENT [INVERTER

'FTSC. ALUFUNCTIONSELECTOR P.286
IMANTISSA  ALU OUTPUT FUNCTION (IN2=8)
MANOVF <8>, IMANTISSA OVERFLOW

MANCOUT<@>, IMANTISSA CARRY OUT

'EXPONENT ALU OUTPUT FUNCTION

EXPOVF <B>, {EXPONENT OVERFLOW

'FTSC. AUTOMULDI VSUBP222
TAUTOMULTIPLY FUNCTION P224
ITHIS IS A VERY TENTATIVE VERSION

AUTOMULFN<3:8>, 'AUTO MULTIPLY BITS
INVERTOR<O>: =AUTOMULFN<3>, ' INVERT ALU FUNCTION
ALUBLS<@>: sAUTOMULFN<2>, {ALUB LEFT SHIFT
ALUBZ <@>: «AUTOMULFN<1>, !ALUB ZEROS

CRYSTS<B>: =AUTOMULFN<8>,  INTERNAL CARRY STATUS
MULBITS<1:@>, !MULTIPLIER BITS

i A T A I P

IFTSC. ALUGUTPUTS P284
SUM<31:8>, !SUM OUTPUT
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2078<B>, 'ZERD DETECT SIGNALS
Z0T2644<B>,
ZDT32<8>,
FOT32<B>, IFULL DETECT SIGNAL
CRYBB3<B>, 'MANT]SSA CARRYDUT
OVF3<P>, \EXPONENT OVERFLOW

IWHAT ABOUT MANTISSA OVERFLOW?

EXGC3<B>1=1 |FF EXPONENT (1.E.SUM<7:8)> GTR 23

voeSignals, Flipflopsi

IFTSC.ENOCONDI TIONSGENERATOR P223

INOTE THE QUESTION MARKS BELOW!
ENDCONDS<12: 8>, '1LIST OF ENDCONDITIONS
SUIMRS<0>: =ENDCONDS<12>,
SUMMZRS<8>: ~-ENDCONDS<11>,
SUMHMLS<B>: =ENDCONDS<18>,
SUMMZLS<B>: =ENDCONDS<9>,
SUNELS<B>: =ENDCONDS<8>,
SUMEZLS<B>: =ENDCONDS<7>,
WRYNRS5«0>: ~ENDCONDS<B>,
WRYMZRS«B>: =ENDCONDOS<5>,
WRYMLS<8>: =ENDCONDS<4>,
WRYMZLS<B>: =ENOCONDS<3>,
WRYERS<8>: =ENDCONDS<2>,
WRYELS<B>: -ENDCONDS<1>,
WRYEZLS<B>: =ENDCONDS<8>,

IFTSC.FSFG(FLAG AND SPECIAL FUNCTION GENERATOR)
'P.226,34

EXTADD<D>, 'EXTERNAL {TO THE CPU) ADDRESS SIGNAL
ROMADD<@>, !RECONFIGURATION ROM ADORESS
HSUWIEN<B>, 'HARDWARE STATUS WORD 1 ENABLE
HSWZEN<B>, {HARDWARE STATUS WORD 2 ENABLE
LDBMRAR<8>, 'LOAD MRAR; HOW IS THIS SET? SEE 228.
PERMGK <0>, 'PERIPHERAL MASK SIGNAL
INTHSK<8>, ' INTERRUPT MASK SIGNAL

MONMSK <>, 'MONITOR MASK SIGNAL

RHTIME<D>, 'READ HARDENED TIMER SIGNAL
PROFLAG<2: 8>, !PROGRAM FLAGS

INRPT<B>, | INTERRUPT SIGNAL FROM PIN TD ROM SEQUENCER

FLTINT<8>, IFAULT INTERRUPT SIGNAL
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{FTSC. ILLEGALOPCODEDETECTOR P219

1LLOPC<@>, ' ILLEGAL OPCODE SIGNAL
FETCHMAX<15: 8>, {MAXIMUM VALUE FOR FETCH OPCODES
STOREMAX<15:8>, IMAXIMUM VALUE FOR STORE OPCODES

IFTSC.OVERFLOW DIVIDE CHECK AND CARRY QUT STATUS FLIP FLOPS
L (FTSC.OVFDIVCRYFF)

OVFF<B>, 'OVERFLOW FLIP FLOP

CRYFF<8>, 1ICARRY QUT FLIP FLOP

DIVFF<0>, !DIVIDE STATUS FLIP FLOP

ARFLT<B>, 'ARITHMETIC FAULT SIGNAL
FCHSTR<5:8>, {CPU FETCH/STORE CONTROL SIGNALS

IFTSC. GENERALPURPQOSEFL I PFLOPS P219

GPSFB1<8>, 1GENERAL PURPOSE FLIP FLOP |
GPSFR2<@>, !GENERAL PURPOSE FLIP FLOP 2
GPSFB3<B>!GENERAL PURPOSE FLIP FLOP 3

yov:CPU, Busesnw
IFTSC. CPUFE TCHANDS TORE P230

[MAB<15:8>, ICPU ADDRESS BUS
1MDB<31:@>!CPU DATA BUS

yevlloop. Timeryne
IFTSC.LOOPTIMERP21S

SEQ11<B>, 1LOOP BRANCH CONDITIONS
SEQI5<8>,
SEQ22<B>,
SEQ30<0>,
SEQ113<8>,

CPLCLK<8>, ICPU CLOCK PULSE
COUNTER~6:8>, {COUNTS UP TO 113 PULSES
ASUBFF <0>, tAUTOSUBTRACT FLIP FLOP
INTMUL<1:0>, !FOR AUTOMULTIPLY
FLOMUL<1:8>

veeProcessesior

P221




1FTSC. ROMSEQUENCER P213,217

SEQUENCER: =

BEGIN
IF FLTINTw>
(RAD«-B MNEXTIP115,218
IMDR-RECONF [GROM (9] NEXT
PERMSKREG«<7>+1 NEXT
LEAVE SERUENCER) NEXT
IF ILLOPC=>1P218
(RAD.-2 NEXT LEAVE SEQUENCER)
NEXT
RAD<9:6><RFB2<9:6> NEXT
DECODE RFQl «»>
BEGIN
0: = (RAD<55>«ROMA4 : RAD<4><ROMAS : RAD<3>+-ROMAG
RAD<2>«ROMA7:RAD<] >~ROMA8 ;: RAD<B>~R0OMAS) ,
1: = (RAD<S>«INR<3B>:RAD<4>=]NR<22>: RAD<3>«INR<28>;
RAD<2>«INR<27>:RAD<] >«INR<26>; RAD<B>«INR<25>) ,
2= (RAD<S55>eR0MA4 ; RAD<4>-EXG23:RAD<3>«0VF8: RAD<2>«5UM<B>;
RAD<1>+«ZDT78:RAD<B>+SUM<7>5) ,
3: = (RAD<5>ROMA4 : RAD<4><SUMML ; RAD<3>«20T24; RAD<2>«SUM<293> ¢
RAD<15«SUM<38>:RAD<B>~SUM<31>},
4: = (RAD<5>«RNMASG ; RAD<4><ROMAS : RAD<3>«1NR<31>;RAD<2>«INR<18>;
RAD<1>«[NR<17>:RAD«<B>+INR<16>},
S: = (RAD<S><ROMAL ; RAD<4>«ROMAS; RAD<3>«VF8; RAD <25 «SUM<295 ¢
RAD<1>«50i1<30>; RAD<B@>=5UM<31>),
6: = {RAD<5>«R0OMAGL ; RAD<4>~ROMAS : RAD<3>+20T24 ; RAD<2>«5UM<295 3
RAD<15>«SUM<385>;: RAD<B><SUNM<31>) ,
71 (RAD<5>eROMAG ; RAD<4><ROMAS ; RAD<3>«20T732: RAD<2>+SUM<295>
RAD<«]>«5UM<38>:RAD<B>«5UM<3]>),
8: « (RAD<5>+ROMAL ; RAD <4 >ROMAS ; RAD<3>+JVF8: RAD<2>«SUM<27>
RAD<1>«5UM<29>: RAD<B>~5UM<28>) ,
I: = (RAD<S5>«ROMA% ; RAD <4 > «ROMAS ;: RAD«3>«30MAB ; RAD<2>«GPSFB3:
RAD<]>«CPSFB2:RAD<B>~CPSF@L ),
18: = (RAD<55«RONMA4 ; RAD<4>~ROMAS : RAD<3>~ROMAB ; RAD<2>«SUM<B>
RAD<1>+ZD0T78:RAD<B>«SUM<T7>),
11:a(RAD<5><ROMA4 ; RAD<4>«ROMAS : RAD<3>~ROMAB ; RAD<2>«20T32;
RAD<] >«5UM<B>; RAD<B>~SUM<31 51,
12: « (RAD<S>+ROMAG s RAD<4><ROMAS ; RAD<3>-ROMAG ; RAD<2>«ROMA7 s
RAD<1>«5UMM] s RAD<B>+-SUM<31 5},
13: = (RAD<5>~R0OMA4 ; RAD<4>«ROMAS : RAD<35«~ROMAG : RAD<2>«ROMA7
RAD<] >~20T724:RAD<B>«SUM<3]1>),
14: « (RAD<S>~ROMASL : RAD<4>~ROMAS ; RAD<3>~-ROMAG ; RAD<2>+«ROMA7
RAD<15eZDT32:RAD<D>-5UM<3]>),
154 @« (RAD<5>~ROMAG ; RAD <4 >«ROMAS : RAD<3>«~ROMAG : RAD<2>«ROMA7;
RAD<]>«SUM<®>:RAD<B>+SUM<]>5),
163 « {RAD<5>«ROMA4 ; RAD<4>+~ROMAS ; RAD<3>~ROMAB ; RAD<25>«ROMA7
RAD<]>«5UM<8>: RAD<B>+-SUM<S>) ,
17: « (RAD=55«ROMA4: RAD <4 >~ROMAS ; RAD<3>-ROMAB ; RAD«2>«ROMAT
RAD<I>~GEQL113;RAD<B>-0VF8),
18: « (RAD<S>~ROMAGL; RAD<4>+ROMAS; RAD<3>-ROMAB; RAD<2>+ROMA7;
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RAD<]>CNTRL;RAD<B>«INRPT) ,
19: « (RAD<5>+ROMA4 ; RAD<4 >-ROMAS : RAD<3>~ROMAB ; RAD<2>«ROMA7
RAD<15>«ROMAZ:RAL -B>-2D732),
2B8: = (RAD<S>«R0OMAG ; RAD<4>«ROMAS : RAD<3>~R0OMAG ; RAD<2>«ROMA7;
RAD<1>~ROMAZ;RAD<B>~SEQLL),
21: = (RAD<S~ROMASG : RAD<4><ROMAS: RAD<3>«~A0OMAG ; RAD<2>«ROMA7 ;
RAD«]1>«ROMAS:RAD<B>+~SEQLS),
22: = (RAD-5>ROMAGL s RAD<4><ROMAS ; RAD<3><ROMAB : RAD<2>+«ROMA7 ;
RAD«]>-~ROMAS;RAD<B>+SEQ22),
23: = (RAD-5:«ROMAL ; RAD <4 >~ROMAS ; RAD<3><R0OMAB ; RAD<2>«R0OMA7
RAD<]1 ~~ROMA8: RAD<B>~SEQ30) ,
24 = (RAD-5>«R0OMAG ; RAD<4><ROMAS: RAD<3>~R0OMAG : RAD<2>+R0OMA7 3
RAD<] >«ROMAB:RAD<B><SUM<T>) ,
26: « (RAD<5>«R0OMAG s RAD<4><ROMAS : RAD<3>«R0OMAG : RAD<2>«ROMA7 5
RAD<1>~R0OMA8;RAD<B><0VFF),
262 = (RAD<S5>-R0OMAL : RAD<4><ROMAS s RAD<3>~ROMAB ; RAD<2>«ROMAT 3
RAD<] >« ROMAS:RAD<B>~CRYFF) ,

27: « (RAD<S>-ROMAG : RAD <4 >«ROMAS : RAD<3>«ROMAG ; RAD<2>«ROMA7 ¢
RAD<]>«ROMAS:RAD<B>«FDT32),

281 = (RAD-5>R0OMAG ; RAD<4>ROMAS : RAD<3»>~ROMAG : RAD<2>«ROMA7 ¢
RAD«1><RONAS:RAD<B>-ZDT8},

29: « (RAD<S>«R0MAL s RAD <4 >ROMAS ; RAD<3>«ROMAB s RAD<2>«ROMA7
RAD<1>«ROMAS: RAD<B>«MONMD) ,

30: = (RAD< B> RUHASG s RAD<4><ROMAS ; RAD<35>«ROMAG ; RAD<2>«ROMA7
RAD<1>«ROMAS : RAD<B>SUM<31 >},

31t = (RAD<GRONAG : RAD<6><ROMAS ; RAD<3>«~HOMAB s RAD<25>«ROMA7 ¢
RAD<] >«RONAS; RAD<B>+ANODE)

EHD

NEXT

DECODE 1NR<18:16>=>

BEGIN

0:= AMODE.D,

OTHERW]SE: «AMODE <1

END

END, !'OF SEGQUENCER

NEXTROMUWORD: »

BEGIN

MICWORDL-CONTROML [RAD] NEXTINEXT ROMWORD
MICUOBRDZ«CONTROM2 [RAD] NEXT
MICHORDZ-CONTROM3 [RAD] NEXT
RFD] <4:D><MICUORD] «31:275NEXT
RFD2<J: 0>-~M]CHUORDL <262 175>NEXT
RFO3<2:B>«MICWORDL <162 145NEXT
RF34<2:0><MICWORD1 <13: 115NEXT
RFOS<2:8>~M]CUWORD1 <1B: 8>NEXT
RF35<2: B>MICUORDL «7:5>NEXT
RFO7<8>«~MICWORDI <4>NEXT
RFBS<0>~MICWORD1 «3>NEXT
RFB3<2: B8>«MICWORD1 «2: B>NEXT
RF10<2:8>~MICWORD2<31: 29>NEXT
RF11«8>~M]CUORD2<28> NEXT
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RF12<B>~MICWORD2<27> NEXT
RF13<R>«MICWORDZ<26> NEXT
RF14<B~<MICUNRDZ<25> NEXT
RF15«2:0>MICUORD2<24:22> NEXT
RF1G<2:80><MICUORD2<21:19> NEXT
RF17<2:0>-MICUORDZ2<18:15> NEXT
RF18<3:0><MICUORDZ<14:11> NEXT
RF13<0>«MICUORD2<18> NEXT
RF2B<0>«MICUDRN2<Y9> NEXT

RF21 <B>«MICUORD2<8> NEXT
RFZ22<2:0~«MICLORD2<7:5> NEXT
RF23<0:>«MICUMRDZ<4> NEXT
RFZ4<0>eM]CUORD2<3> NEXT
REZ25- 0> CUORNZ<2> NEXT

RFZ26<B>«MICUORDZ<1> NEXT
RFZ7<0>«MICHURDZ<B> NEXT
RFZ2S<0>eMICUNRD3 <1 3>NEXT
RF 29U« 0>eNICHRDR«1 2SNEXT
RFZD3><NICUORD3 <1 I >NEXT
RF31<4:0>11]CHORD3 <] B8: 85NEXT
RF32<3:eMICUORN3<ESNEXT
RF33¢0~eMICWORD3 <4>NEXT
RF34<0~-MICUORD3«3>NEXT
RF35<8><M] CUORD3<2>NEXT
RF3G-0>~MICUORD3<] >NEXT
RF37<3>«MICHORD3<0>

END, 10OF NEXTROMWORD

'FTSC. ROMFUNCT ] ONDECODER P.228

DECODER: =
BERTN
RFOB0-8 NEXT
RFDOOL-0 NEXT
RFUBI-8 MEXT
RFDD3-~8 NEXT
RFO4-8 NEXT
RFDOS0 NEXT
RFEDDG-N HNEXT
RFDO7-0 NEXT
RFDOS-B NEXT
RFDO0-~0 NEXT
RFO10-0 NEXT
RFO11«8 NEXT
RFU120 NEXT
RFD13-0 NEXT
RFD]4«B NEXT
RFD15~8 NEXT

02

-




INCLASSIF IED
2 w2

s

UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO--ETC F/¢ 9/2
MICROCODE VERIFICATION PROVECT.(U)

MAY 80 S D CROCKERes L MARCUSs» D VAN=MIEROP F30602-78'C-0000
RADC-TR-80-42




|O :: N2 s
=] :: 22 ““3=2—

e
i - o
— e

Jizs. flis. s

S
O

MICROCOPY RESOLUTION TESI CHART




g o o A TN NSNS O 5 1S A A e A 55 s 20 A S AN 30 S A3 AN hoithi 0.3 5 e T o o S "

RFD16~8 NEXT
RFD17~8 NEXT
RFD18+8 NEXT
RFD19-8 NEXT _
RFDZ8-8 NEXT

RFDZ1«8 NEXT ’

RFD22-8 NEXT q
RFD23-@ NEXT 1
RFOZ4-B NEXT 1
RFD25-8 NEXT
RFD26~8 NEXT
RFD27-8 NEXT
RFD28«8 NEXT
RFD29-8 NEXT
RFD38~8 NEXT
RFD31+8 NEXT

DECODE RF31 => 4
BEGIN

8: ~-RF0N3-1,
1:«RFD01-1,
2:=RFO021,
3: =RFDB3-1,
4: ~RFOQG],
S:=RrONG-1,
6: «RFO0G~-1,
7:=RFDB7-1,
8: «RFO0S-1, ;
3: ~RFDQ9-1 , ;
18: =RrFp10-1,
11:=RFDL1-1,
12:«RFD12-1,
13:=RFD13+1,
14:=RFDl 4.1,
15: «RID15-],
16: ~RFOlE-1,
17:=RFD17-1,
18:=RFD18~1,
19: «RFD19~1,
28:=RFO20-1,
21:=RFD21+1,
ot =RFD22-1,
23:=RFD23-1,
:43*”’70:6»1. y
251 -RFOC51, 1
<6: ~RFD2G~1,
27:=RFD271,
28:=RFD28-1,
29: =RFD29-1,
38:=RFD30-1,

31:RFD31<1
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END
ENO, 'OF DECOOER

!THE NEW VALUES OF MANOVF AND MANCOUT STILL HAVE TO BE CALCULATED
YALONG WITH MANOUT BELOW.

MANOUT<24:0>: =

BEGIN

DECODE RF37=>

BEGIN

0: = (MANAZS <241 0><=MANINA  NEXT MANB25<24:8><=MANINB NEXT
(DECODE MANSELECT w>

BEGIN

8: «MANCOUT=MANOU T (MANA25<24: B> AND MANB25<24:85),

1: =MANCOUT ~MANOUT - (MANA2S <24 : B> EQY MANB25<24:8>),

<1 =MANCOUTAIANDUTS (NOT MANA2S5<24:8>) + BaMANCIN,

3: »MANCOUTEMANOUT-MANBZS<24: 8> + BaMANCIN,

4: ~MALCOUTHHANOUT- (NOT MANB25<24:8>) + B@MANCIN,

5: MANCOUTSHANOUT=MANAZS<24:8> + BaMANCIN,

6: ~MANCOUTMANOUTMANA2S<26: 8> + MANB2S<24: B>+BaMANCIN,

72 =MANCOUTEMANGUT«#1777777774+ (BaMANCIN) ,

8: =MANCOUTMANOUT-MANB2S<24: B>+NOT MANA25<24:8>+ B@MANCIN, !Sometimes it
!looks 1ike MANA2S<24:8> above should be just MANINA., Similarly in next !ine.
9: «MANCOUTHIANOUTMANA25<24: B85>4NDT MANB25<24: B>+8@MANCIN,

18: «MANCOUTANANOUT-MANA2S <261 B>+~ (BaNOT MANCINI,

11: =MANCOUTSNMANOUT- INOT MANBZ5<24:8>)+ - (BeNOT MANCIN),

12 «MAHCOUTMANOUTMANB25<24: B>+- (BeNQT MANCINI ,

13: =MANCOUTAMANOUT - (NOT MANAZS<24:8>)+ - (BaNOT MANCIN),

143 «MANCOUTHMANOUT = (MANAZS<24: 8> XOR MANB25<24:85),

15: «MANCOUTAMANDUT« (MANA25<24: 8> DR MANB25<24:8>)

END)),

1: e« (MANAZS<«MANINA NEXT

MANBZG<=MANINB NEXT

JIF ALUBLS=>MANB25«MANB2S SL@ 1 NEXT

'FOR AUTOMULTIPLY SIGN-EXTEND MANTISSA TWO BITS BEFORE SHIFTING
1BUT NOT EXPONENT?

(DECODE MANSELECT >

BEGIN

8: =MANCOUTeMANOUT« (MANA2S AND MANB2S),

1: =MANCOUTSHMANDUT- (MANA2S EQV MANB2S),

<3 =MANCOUT®MANOUT~ (NDT MANAZS) + BaeMANCIN,

3: «MANCOUTRNANOUT~MANB2S + BeMANCIN,

43 «MANCOUTAMANOUT« (NOT MANBZ2S) + BeMANCIN,

5: «MANCOUT@MANOUT«MANAZS + BeMANCIN,

6: =MANCOUTAMANOUT~MANAZS + MANB25+B3@MANCIN,

72 «MANCOUTeMANOUT=#177777777+ (BeMANCIN) ,

8: «MANCOUT®MANOUT~MANB2S+NOT MANAZS+ BaMANCIN, !Sometimes it )
!fooks Iike MANAZS above should be just MANINA, Similarly in next |ine.
91 «MANCOUT@MANOUT=MANA2S+NOT MANB2S+BaMANCIN,
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18: ~MANCOUTAMANGUT-MANA2S +- (BaNOT MANCIN),

11: «MANCOUT@MANOUT- (NOT MANBZS)+ - {BaNOT MANCIN),
12: «MANCOUT=MANOUTHMANB2S+- (3aNOT MANCIN),

13: «MANCOUT@MANOUT« (NOT MANA2S)+ - (B2NOT MANCIN),
14: =MANCOUT®MANQUT« (MANA2S XOR MANB2S),

15: «MANCOUT@MANOUT« (MANA2S OR MANB2S)

ENDY)

ENO

END, 'OF MANOUT

!THE NEW VALUES OF EXPOVF AND EXPCOUT MUST STILL BE CALCULATED ALONG
'WITH EXPOUT BELOW. SEE LINES 8-13 BELOW.

EXPOUT<8:3>: =
BEGIN
EXPAQ<=EXPINA NEXT
EXPBO<=EXPINB NEXT
IF ALUBLS~>EXPBI-EXPBY SLB 1 NEXT
({DECODE EXPSELECT =»>
BEGIN ’
0: ~CXPCOUTHIXPOUT-EXPAS AND EXFB9,
s «EXPCOUTHEXPOUT-EXPAS EQV EXPBI,
2:=DECODE EXPCIN=»> (EXPCOUTREXPOUT-NOT EXPAS, )
EXPCOUTREXPOUT-NDT EXPAD + BaRF19 +Bel),
3:~DECCOE EXPCIN=> (EXPCOUTREXPOUTEXPRY,
EXPCOUTREXPOUT-EXPBI +BeRF19 +8el),
4:=DECODE EXPCIN=> (EXPCOUT@EXPQUT<NOT EXPBI,
EXPCOUTEEXPOUT-NOT EXPBS +BeRF19 +8al!),
5:«0CCODE EXPCIN=> (EXPCOUTHEXPOUTEXPAS,
EXPCOUT@EXPOUT-EXPAS +8eRF19 4+Bel),

G: =EXPCOUTHEXFOUTSEXPAS + EXPBY + BeEXPCIN,

7: ~EXPCOUTREXPQUT #7774+ (BeEXPCIN) ,

8: ~EXPCOUTHEXPOUT-EXPBI+NOT EXPAS + BeEXPCIN,

J: =EXPCOUTEEXPOUT-EXPAS+NOT EXPBS + B=EXPCIN,

18: ~DECODE EXPCINe> (EXPCOUTREXPOUT~EXPA9+- (BaRF1941) ,
EXPCOUTEXPOUT~EXPA3),

11:«DECODE EXPCIN=> (EXPCOUTEEXPOUTNOT EXPB9+- (BaRF19+1),
EXPCOUTeEXPOUTNOT EXPBI),

121 «DECODE EXPCINe> (EXPCOUT@EXPOUT<EXPBI+- (BeRF1941),
EXPCOUT@EXPOUT-EXPBY) ,

13: «DECOGE EXPCINe> (EXPCOUT@EXPOUT-NOT EXPAS+- (BeRF19+1),
EXPCOUT@EXPOUT-NOT EXPAS),

14: «EXPCOUTAEXPOUT-EXPAS XOR EXPBI,

15: «EXPCOUTWEXPOUTEXPAS OR EXPBI

ENDY

NEXT

OVF 8-EXPOVF-EXPOUT<8> XOR EXPOUT<7>

END, 'OF EXPOUT

e, T
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i IFTSC.FSFG(FLAG AND SPECIAL FUNCTION GENERATOR)
'P. 226,94

e e

FSFG: = !FLAG AND SPECIAL FUNCTION GENERATOR
BEGIN

FONMSK~RHT ] ME~PROFLAG~8 NEXT

EXTADO~ROMADD~HSW1 EN-HSW2EN«PERMSK«INTMSK«B NEXT

DECODE IMAB =>

BEGIN

"FE00: = HSWIEN-1,

"F8Q1:e HSW2EN-],

"FE02: = MONNSKS],

"F&03:= PERNGKe],

"FOO4ra INTHMIK.],

"FS05: = RHTIMES],

'IF IMAB GTR "F8@5 AND IMAB LSS "F883 => ERROR?

"F8QJ: ~PROFLAG-1MAB<2: 8>,

"FEOA: sPROFLAG-1MAB<2: B>,

“FS0D: =PROFLAG~1MAB<2:8>,

"F&OC: ~PROFLAG-IMAB<2: 3>,

"F&OU: «PROFLAG~]MAB<2: 8>,

"FEOE: »PROFLAG-1MAB<2: 8>,

"FSUF : «PROFLAG~1MAB<2: 8>,

OTHERWISE:=!SEE P 63 |

((IF ((IMAB GCQ "FB0@) AND (IMAB LEQ "F7FF))=>

RONADD-1)

(IF ((IMAB LSS "FB@8) OR (IMAB GTR "F7FF))e>

EXTADD~1))

END
END, !OGF FSFG

DR, T - WYy
aindatifckiniaiin.

{FTSC. ILLEGALOPCODEDETECTOR P219

DETECTOR: =
BEGIN

IF RFD12=>(ILLOPC~8 NEXT LEAVE DETECTOR) NEXT ]
IF (RFDB1 OR RFD11)=> . k
(ILLOPC~IMDB<28> NEXT LEAVE DETECTOR) NEXT
10R IMDB<21>? ON PG4 [T SAYS BlT11«1MDB<2@>
1BUT ON 285 IT SHOWS BIT1@«1MDB <21> AS INPUT.

DECODE INR<3l>e>

BEGIN

B:e IF B2INR<38:25> GTR FETCHMAX w»ILI.OPCel,
1= IF BalNR<38:25> GTR STOREMAX «>ILLOPCe1

END

END, 'OF DETECTOR
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LOOP: »

BEGIN

PENDING-PENDING OR INTREQFF NEXT

{IF REQPRIORITY LEQ PRIORITYLEVEL =>LEAVE LOOP) NEXT
PRIORITYLEVEL « REQPRIORITY NEXT

(IF PRIORITYLEVEL LEQ INPROCFF => LEAVE LOOP) NEXT
(1F ENADISFF => LEAVE LOOP) NEXT

INRPT~1 NEXT

IF RFZ7 «>INTREQREG<PRIORITYLEVEL> « @ NEXT
INPROCFF<PRIORITYLEVEL> « 1

END, '0OF LOOP

PRIORITY: =

BCGIN

REPEAT

BEGIN

REQPRIORITY « REQPRIORITY + 1 NEXT

(IF (INTREQFF SR@ REQPRIORITY) EQL 1 =>

LEAVE PRIORITY) NEXT

(1F (REQPRIORITY EQL 8) > (REQPRIORITY «@ NEXT
LEAVE PRIORITY))

END

END, 'REQPRICRITYathe leve!l of highest interrupt requested.

MFTSC.PIN  (PRIORITY INTERRUPT NETWORK) P229 FF

PIN: =

BEGIN

IF PERMSK=>PERMSKREG-I1MDB NEXT

IF FLTINTe>PERMSKREG<7>+1 NEXT

[F ARFLTe>]NTREQREG<7>+~] NEXT

YADD THC OTHER PRIOR]TIES HERE.

IF PERMSKREG<7> o>INTREQFF@INPROCFF«8 NEXT

IF INTHMSK =~ INTMSKREG~IMDB NEXT

IF NOT PERMSKREG<7> =>INTREQFF « (INTREQREG AND NOT INTMSKREG) NEXT
! IF FLTINT w>,.. LEAVE PIN NEXT

! IF ILLOPC e>... LEAVE PIN NEXT

REQPRIORI TY<==1 NEXT

PRIORITY () NEXT

LOOP () NEXT

IF (RFD18 OR RF27 OR PERMSKREG<7>) => INPROCFF«@ NEXT!ALL OF THEM.
!THERE STILL MAY BE SOME IN PENDING

IF (RFOB1 OR RFDlB)->ENADISFF~IHDB<23> NEXT
IF RFD13 «>ENADISFFel NEXT

IF RFOL12 «>ENADISFF«8

END, !OF PIN
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IFTSC.LOOPTIMERP219

TIMER: =

BEGIN

COUNTER-COUNTER +1 NEXT

IF RFD14 =>(COUNTER~SEQ11+~SEQ15+SEQ22+SEQ38+SEQ113 +B) NEXT

L R A S i v a

DECODE COUNTER =>
BEGIN
11:SEQ11¢],
15: «SEQ15-],
22:«SEQ221,
30: «SEQ38~1,
113:«SEQ113e},
114:«COUNTER-8  !Maybe not; or maybe need tuo counters:
lone for setting SEQ and one for counting microsteps.
END
END!OF TIMER

swllicroinstruction.Cyclesn

CYCLE (MAIN) : @
BEGIN

DELAY (1) NEXT
RAD-1 NEXT
FETCHMAX-"35 NEXT ITHESE ARE THE MAXIMUM OP-CODES FOR

'INR<31>+8,1 RESPECTIVELY
STOREMAX~"68 NEXT
COUNTER-B NEXT
REPEAT
BEGIN
NEXTROMUORD () NEXT
SEQUENCER () NEXT
OECODER() NEXT
IF RFD21e> (GPSFB1+GPSF@2+GPSFO3+-ASUBFF«8) NEXT
TAUTO MULTIPLY FN, P224

DECODE RF37e> (AUTOMULFN«8,
(DECODE RF23a>"

BEGIN

8: =MULBI TS« INTMUL,, | INTEGER FORMAT

é : «MULB] TS«FLOMUL IFLOATING POINT FORMAT
o _

NEXT

DECODE CRYSTSeMULBITS =>

BEGIN

81 «AUTOMULFN-2,




I ot g AR AL, 5 A1 S S N 21 Ll i M A B A LI B 005 it b B R S0 5 QRS T T

g

4

oA 2 R e K i gy AL <

11 «AUTOMULFN«@,
21 »AUTOMULFN«-#15,
3: =AUTOMULFN.#11,
43 «.AUTOMULFN«D,
S: «sAUTOMULFN«4,
6: =AUTOMULFN.#11,
73 «AUTOMULFN.-#13
END) )

NEXT

]
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MANWX-MANLIR [RFB3) NEXT

MANWRYB«MANWR (RFBS) NEXT

EXPUX-EXPUR (RFB4) NEXT

EXPURYB-EXPWR (RFBB) NEXT

IF TSC. GENERALPURPOSEREGI STERS P2839

IFTSC. ALUINPUTSELECTOR P.208 #
IMANTISSA ;

DECODE RF28 «>
BEGIN .
B: =MANINA-MANGPR [RA] , 7

1: =MANINA-MANGPR [RB]
END _
NEXT W
DECODE ALUBZ =>

BEGIN
@: =DECODE RF21 OR AMODE=> (MANINB«MANGPR [RA) , MANINB-MANWX) , ﬂ
1:=MANINB-O

END _
NEXT 1

TEXPONENT

DECODE RF28 «>
BEGIN

8: «EXPINAEXPGPR (RA] ,

1: «EXPINA-EXPGPR (RB)

END

NEXT

OECODE ALUBZ e>

BEGIN

8: «DECODE RF21 OR AMODEe=> (EXPINB-EXPGPR (RA) , EXPINBEXPUX) ,
1:=EXPINB-8

END

NEXT




IFTSC.FUNCTIONINVERSION P.207
INVERTOR«(RF36 AND INVERTOR) OR (RF37 AND INVERTOR) NEXT

DECODE RF23=>

BEGIN

@: = (INVEFN-INVERTOR; INVMFN-INVERTOR),
1: =INVMFN«INVERTOR

END

NEXT

DECODE INVEFN =>

BEGIN

8: = (EXPCIN-RF24; EXPSELECT+RF18),

1:« (EXPCIN-NOT RF243EXPSELECT+NOT RF18)
END
NEXT

o WIS ity i o

YFTSC. ALUFUNCTIONSELECTOR P.206

IMANTISSA ALU OUTPUT FUNCTION (IN2.8)

IEXPONENT ALU OUTPUT FUNCTION

EXPOUT () NEXT

IF ASUBFF > (INVMFN+RF33) NEXTIINVERT CARRY IN BITS TO MANTISSA.SEE P 222
DECODE INVMFN o> .
BEGIN
0: « (DECODE RF23 «>

BEGIN

8: «MANCIN. EXPCOUT,

11 «MANCIN«RF25

END;

MANSELECT-RF17),

1:=(DECODE RF23 =>
BEGIN
B: «MANCIN«~ EXPCOUT, !Note this deviation(?) from the documentation.
1: «MANCIN&NOT RF25
END:
NDHANSELECT~N0T RF17)

NEXT

MANOUT () NEXT ’
IFTSC. ALUOUTPUTS




1MDB+~SUM-MANOUT<23: B>0EXPOUT<7:@> NEXT  IHere | assume that
{SUMLSBEN, SUMMSBEN are aluays on so that

lany output of the ALU goes to IMOB and SUM.
SUMM1MANOUT<24> NEXT

SUMM2-MANCOUT NEXT
DECODE SUM<31:8>e>
BEGIN

8: «Z20T24+1,
OTHERWISE: «20726+8
END

NEXT

DECODE SUM<7:8>=>
BEGIN

9:=20781,
OTHERUW]SE: =ZDT8+0
END

NEXT

DECODE SUMe>

BEGIN

8: = (20732+-1:FDT32.0),

¥37777777777: = (FDT32-13207132+0) ,
OTHERW]SE: « (FDT32+20732+8)

END -

NEXT

EXG23+8 NEXT

IF (SUM<7:8> GTR 23) OR (SUM<7:8> LSS ~23) «> EXG23¢1 NEXT
IFTSC. ENDCONDI T1ONSGENERATOR P223

INOTE THE QUESTION MARKS BELOW!

OECODE RF22 o>
BEGIN
0: =ENDCONDS~SUM<B>e5UM<1 >eWRYB <31 >slRYB<308>a5UM<31 >aSUM<30>
oURYB<31>allRYB<31>0(RF25 XOR INVMFN)e’ BellRYB<31>e' @0,
11 <ENOCONDS~SUMM1 eSUMM2eWRYB <31 >elRYB<30>¢’ BBaSUM<8>
oSUM<9>e (RF24 XOR INVEFN) o' BeSUM<8>e' 00,
ITHERE 1S STILL SOME DOUBT IF THE ABOVE LINE 1S CORRECT. SEE P223
23 «ENOCONDS+* 1 9SUM<31>85UM<7>8SUM<E>a5UM<31 >a5UM<38>
o5UM<8>aSUM<I>e(RF25 XOR INVMFN) @' GeSUM<8>e'B1,
3: =ENDCONDS~* 8BeSUM<7>eSUN<E>0°’ BBaSUM<8>eSUM<I>
o (RF25 XOR INVMFN)e' BeSUM<8>aSUM<31>e5UM<38>,
42 =ENOCONDS~WRYB<B>aURYB<1 >@SUM<7>aSUM<E>elRYB <31 >elRYB<38>
o5UM<P>95UM<1 >aWRYB<7>0WRYB<E>05UM<B>0 (RF26 XOR INVEFN)e’l,
51 «ENDCONDS-SUMM] @SUM12eSUNM<7>0SUM<B>aliRYB<31 >8URYB<38>
oSUM<@>eSUM<1 >aliRYB<7>elRYB <6>eS5UM<B>e" BO,
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61 «ENOCONDS-SUM<31 >aSUM<31 >@SUM<7>aSUM<E>elRYB <31 >eURYB<38>
oSUN<B>eSUM<] >aliRYB<7>elRYB<E>aSUM<B>0’ 11,
73 «<ENOCONDS«~ " B0@SUM<7>eSUM<6>eWRYB <31 >elRYB<38>a5UM<B>
£ ' eSUM<] >ellRYB<7>eWRYB<B>eSUM<B>aSUM<31 >e5UM<30>
ND

NEXT

YAUTODIVIDE FUNCTION P.225
IF RF36=> (INVERTOR«SUM<31>) NEXTIPREVIOUS SUM

{AUTOSUBTRACT FUNCTION
IF RFD22«> (ASUBFF«1) NEXT

IF RFDB7«>GPSFBl«1 NEXT
IF RFD@8w>GPSF@2~1 NEXT
IF RFD@9«sCGPSF@3+1 NEXT

'FTSC. CPUFETCHANDSTORE P238

IF RF26e>1MEMORY REQUEST ("SPEED UP")

(DECODE RF32e>

BEGIN!ADDRESS

8: =11MAB-URYB<15: 8>eEXPURYB,

1:«1MAB~ (URYB<15:8>eEXPURYB) + #10009 1ADD 64896
END) NEXT

IF LOBMRAR «> MRAR-[MAB NEXT.

{THE FLAG AND SPECIAL FUNCTION GENERATOR COMES HERE (FTSC.FSFG)
1(STILL INSIDE IF RF26a>?) '

!ISINCE 1T COMPUTES THE VALUE OF EXTADD WHICH 1S NEEDED BELOW.
FSFG() NEXT

DETECTOR () NEXT

! CRYFF-@ NEXT'OR IS RESTORING ENOUGH? SEE BELOW
! DIVFF«@ NEXT!DITTO

IF RFO@3e>0VFFe1 NEXT

IF RFD@4=>0VFF«@ NEXT

IF RFD@S=>CRYFF+MANCOUT NEXT
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IF RFDB6 «>DIVFFel NEXT
IF RFO1@e> (QVFF-1MDB<21> NEXT!RESTORING

CRYFF«[MDB<18> NEXT

Ol VFF«I1MDB<22>) NEXT
IF RF28«> (IMDB-ENADISFFeD! VFFeOVFFolLLOPCeCRYFF

oPRIOR] TYLEVEL <2: B>aMANPC<7: 8>@EXPPC) NEXT
ARFLT«JIVFF OR OVFF NEXT
FCHSTR«RF 26@RF 27eRF 28eRF 30e™~D1BeEXTADD NEXT
INOTE ORDER 1S DIFFERENTTHAN ON 238
'Is EXTADD set in FSFG before type of address is knoun?

OECODE FCHSTRe>

BEGIN

#45:« IMDB-MEM[IMAB), INDRMAL FETCH (INR<31>=8)

#41:= MEM[IMAB)«IMDB, \NORMAL STORE (INR<31>=l)

H44:= (IF HSUIEN «>]MDB-HSW1aMRAR NEXT ICPU FETCH P226,P88
IF HSUW2EN «>1MDB-HSW2 NEXT!P98

IF MONMSK w>1MOB-MONMSKREG NEXT!P87

IF PERMSK =>]MDB~PERMSKREG NEXT

IF INTMSK «>I1MDB-INTHMSKREG), P68

'ET CETERA,

#48: = 'CPU STORE

(IF HSUIEN =>HSW1«~IMDB<31:16> NEXT
IF HSUZEN w> HSW2-[MDB NEXT

IF MONMSK «>MONMSKREG-1MDB NEXT

IF PERMSK =>PERMSKREG~IMDB NEXT

IF INTHSK =>INTMSKREG-IMDB),

1ET CETERA,
H24:H25: « (INAB-"FP88 + PRIORITYLEVEL NEXT

I"VECTOR JUMP"= INTVEC ON 216.
IMDB«~MEM [IMAB] ),
IPIN SENDS OUT ADDRESS OF INTERRUPT SERVICE ROUTINE; SEE 73.
#1B:411:=(IMAB-PRIORI TYLEVELNEXT!"JSB1"= INTRET ON 216.
MEM[IMAB)~I1MDB),
18:1:=1J5B82
1SPC1 1S SAME DECODE VALUE AS JSB1
ISPC2 IS SAME DECODE VALUE AS NORMAL STORE
#47:«1MDB-MEM [IMAB] IRFI
'RET IS SAME DECODE VALUE AS RFI

END
NEXT

'FTSC. GENERALPURPOSEFL | PFLOPS P219
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PIN(Y NEXT
DECODE RFPJa=>
B8EGIN 1P.218
D: «ANGPRIN-SUM<31: 8>,
12 =MANGPRIN-SUMNNZRSaSUMMRS@SUM<31:18>,
S ~MANGPRIND,
3: =1ANGPRIN-111DB<31:8>,
43 -MANGPRIN-SUM<30: 8>aSUMMLS,
5 =NALGPRIN-SUMMRS@SUM<31 19>,
G: ~MANGPRIN-SUM<29: 8>eSUMMLS@SUMM2LS,
7: =NANGPR ] N<=]MDB<15: 8>
END
NEXT
DECOMNE RF}18»>
GCGIN
0: -EXPGPRIN~SUM<7: 8>,
1 «EXPOPRIH-GUNCS: 2>,
D eEXPGRIINSD,
3:~EXPGPRIN-11DB<7: B>,
42 eIXPGPHTN-SUNM<B: B>@5UMELS,
5: «EXPGPRINSUMS: 1>,
G2 ~EXPGPRN-GUM<G: BaSUMELSaSUMEZLS,
73 aEXPGPRIN<HMUB<7: 8>
END

NEXT

IF RF1lle> (DECODE RFZBw=>
BEGIN
8: =MANGPR [RA] «MANGFRIN,
1: -MANGPR [RB] «MANGPRIN
END) NEXT
IF RF1le> (DECODE RF2Be>
BEGIN
8: =EXPGPR [RA)«EXPGPRIN,
1: -EXPGPR [RB] «EXPGPRIN
END) NEXT

IFTSC. WORK INGREGISTERS P.203

DECODE RF)S5=>

BCEGIN

B: «MANWHRIN-LRYB<31: 8>,

1 : !l AR IN=WRYMZRSAWRYMRS@UWRYB<31: 18>,
2¢ «MANWRIN-SUM<3]: 8>,

3: AMALURIN-TMDB<31: 8>,

43 =MANWRIN-URYB<38: 8>aWRYMLS,

5: «MANURIN=WRYMRS2WRYB<31: 9>,

6: «MANWRIN-WRYB<29: 8>aWRYMLSaWRYM2LS,
7: «1ANURIN<=IMDB<15: 8>

END

NEXT
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DECODE RF16=>
BEGIN
B: =EXPLRIN-WRYB<7: 8>,
1: «EXPURIN-LURYB<9: 2>,
1 «EXPURIN-SUM<7:8>,
3: =EXPURIN-IMDB<7:8>,
43 «EXPURIN-WRYB<6: B8>alRYELS,
! S: =EXPURIN-LAYB<8: 1>,
1 6: =EXPURIN~WRYB<S5: 8>aWRYELSeWRYE2LS,
b 7:=EXPURIN-IMDB<7:0>
END

NEXT

IF RF13e>
(DECODE RFO7=> - 3
BEGIN .
0: «MANLIR (RFBS) «MANWIRIN,
1: «MANLIR [RFB3] «MANLIRIN
END) NEXT

IF RFlée>

(DECODE RFB8a>

BEGIN

B: «<EXPUR [RFB6) «EXPURIN,
1:«EXPLR [RFB4) «EXPURIN
END) NEXT

R

DECODE RF37w~> (INTMUL-FLOMUL+,
(INTHUL-WRYB<3:2> NEXT
FLOMUL+WRYB<11:18>)) NEXT

IFTSC. INSTRUCTIONREGISTERP289, 213 B

IF RFO020 => INR~IMDB NEXT
IF RFD1IS «>{RA-RA + 1 NEXT
RB-RB + 1) NEXT{WHAT HAPPENS IF RA OR RB GETS TOO LARGE?
IF RF35 «> RB<RB + 1 NEXT
TIMERQ)

END!OF REPEAT IN CYCLE
END'OF CYCLE
2!END OF MICROFTSC
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FTSC TARGET

MACROFTSC: » (

veslemoryse
MEM(B:32K) <31: 8>
vwRegistersy

COUNTER<31:8>,

—— a5 S R

Appendix C
FTSC TARGET

iLoop counter

'WATCH QUT: THE COUNTER HERE 1S NOT THE SAME AS IN FTSC.MIC!

GPXR{8:71<31:8>,

UB<31:0>,
Wl<31:0>,
W2<31:0>,
H3<31:8>5,
EX<31:8>,
f0<31: 8>,
MA<31:8>,
PC<31:0>,
EXPOUT<8:8>,
SUM<31:8>,
ALUA<33:8>,
ALUB<33:0>,
EXPA9<8:8>,
EXPB9<8:8>,
INTPRIOR<31: 0>,

INR<31:8>,

18 general purpose registers
Working register B

Working register 1

Horking register 2

lUorking registr 3
1Extension register

tMemory data

{Memory address

tProgram counter

19-bit output of exponent ALU
132-bit output of ALU

'highest pending interrupt level

AMODE<2:@>:«INR<18:16>,
RA<2:0>:« INR<21:19>,
RB<2:0>:wINR<c26:22>,
OPCODE<6:8>: «INR<31:25>,
MACRO GPXRA:={GPXR{RA] 1,
MACRO GPXRB:=IGPXRIRB) |

S i gnal sve

OVFF <8>,
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CRYSTS<0>,

SUMM2<0>,

SUMM1 <@>,

OVF8<0e>,

DIVFF<B>,

CRYFF <B>,

INVERTOR<@>,

EXG23<0>,

INRPT<@>,

MON<B>,

ASUBE<8>,

EXMODE <@>, |Executive mode

ILLOPC<B>,

DISINT<@>, idisable interrupt
MACRO STATUS:«IEXMODEeDISINTeD] VFFeOVFFelLLOPCeCRYFFeINTPRIOR<2: 8> |

nivAddressing.Fetchingsny

INSTRUCTION: =
BEGIN
INR-MEMIPC] NEXT
MA<=]NR<15:8> NEXT

PCePC+1
END,
ADDRESS: «
BEGIN
DECODE AMODE«>
BEGIN
\ 8:2:=NO, 0P (), {Reg-reg, immediate, direct
31 =MAMEM [MA] , lindirect '
43 (MAMA+GPXRA NEXT | indexed, post-increment
GPXRA«GPXRA+1) ,
Ss @ (GPXRAGPXRA-1 NEXT |indexed, pre-decrement
MA-MA+GPXRA) ,
63 =MA-MA+GPXRA, | indexed
71 «MAMEM (MA+GPXRA) {indexad, indirect
END
END,
OPERAND: »
BEGIN

[F NOT INR<31>e>
(DECODE AMOOE >
BEGIN
B: «MD-GPXRA, !This is slightly different from
! the real machine: there AMODE is checked in esach function and sometimes
-1 even it AMODE « 8, GPXRA does not have to go through MD.

SO THERE'S NO NEED FOR ALL THE "DECODE AMODE"'S IN THE BOOY OF THE PROGRAM!
18UT MAYBE IT°S BETTER TO LEAVE THEM IN, AND ELIMINATE THE (THEN) EXTRANEOUS
{OECODE AMOOE IN OPERAND, IN ORDER TO MAKE THE AUTOMATIC PROVING EASIER.
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!0R INDEED IN ORDER TO MAKE 1T POSSIBLE: IF THE MACRODESCRIPTION SAYS
IMD-GPXRA BUT IN FACT THAT DOES NOT HAPPEN » THEN IT CANNOT BE PROVED.
'WE COULD INTRODUCE ANOTHER VARIABLE "ARG" TO TAKE THE PLACE OF
1"GPXRA PH]I MD".

1:=MDeMA,

OTHERWISE: « MD-MEM[MA)
i END)
END

wiProcessesi

! THE COMPLETE INSTRUCTION CYCLE 1S CODED UNTIL CONTROL RETURNS TO INR FETCH
! OR "ALPHA", DEPENDING ON THE INSTRUCTION. THIS DIFFERENCE WILL HAVE
! TO BE COMPENSATED FOR LATER. !

LOR: =
BEGIN L
GPXRB«MD '
END,

BEGIN
EX+HD
END,

'LWB-LU3 ARE NOT CODED, BUT IF NEEDED CAN BE CODED LIKE LDR AND LDE.

LOE: =

LOOPl: = .
BEGIN i
MA-MA+1 NEXT b
i DECODE AMODEs>
BEGIN
. 8: =GPXRBGPXRA,
OTHERW | SE: «GPXRBMEM (MA]

END
END ,

[ -

LOR2: =
BEGIN o
LOR() NEXT !
RA-RA+1 NEXT ;
RB~RB+1 NEXT '
LooP1 ()
END,

LOOP2: =
BEGIN
LOOP1 ()} NEXT
RA-RA+1 NEXT
RB«RB+1
END [ ]
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LOR3: =

LOR7: =

LDN: =

! From

BEGIN

LDR() NEXT
RA-RA+1 NEXT
RB~RB+1 NEXT
LOOP2 () NEXT
LOOPL ()

END,

BEGIN

LOR() NEXT
LOOP2() NEXT
LOOP2() NEXT
LOOP2 () NEXT
LOOP2() NEXT
LOOP2() NEXT
LOOP1 ()

END.

BEGIN

ALUB<32:8><«MD NEXT

SUMM1eSUM.--ALUB NEXT

GPXRB«SUM NEXT

é:DSUﬂﬂl XOR SUM<31>=>0VFFe] {OVERFLOW DETECTION

here to the end of NORMAL has been checked uith DIVF, Mar.8,78.

! as DIVFML.
NMLOOP: »

BEGIN

REPEAT

BEGIN

IF OVF8e> (OVFF«1 NEXT LEAVE NMLOOP) NEXT
DECODE GPXRB<29:27>e>

BEGIN ‘

[8, 7] 1 =« (EXPOUT«(GPXRB<7>eGPXRB<7:8>) +-2 NEXT
OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB«GPXRB<29: 8>e’ 00eEXPOUT<7:0>),

215:=LEAVE NMLOOP,

(1,6) 2= (EXPOUT« (GPXRB<7>0GPXRB<7:8>) +-1 NEXT
OVF8+EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB+GPXRB<30: 8>e' DeEXPOUT<7:8> NEXT
IF OVF8«>0VFFel NEXT
LEAVE NMLOOP)

END

e e |




- s B . o kDS

END,
NORMAL: e ICALLED IN ADDF, SUBF,DIVF, LDAF,LDNF.
tMake sure that a test for OVF8 is made at the end of above instructions
'before entry into NORMAL.
BEGIN
IF SUMM1eSUM<31:8> EQL B=> (GPXRB-"88 NEXT
LEAVE NORMAL) NEXT
DECODE OVF8aSUMM1eSUM<31:29>=>
BEGIN
(#18:#13) s =« (EXPOUT«~ (GPXRB<7>eGPXRB<7:08>) +1 NEXT
GPXRB«'1aGPXRB<31:9>eEXPOUT<7: 8> NEXT
OVF8~EXPOUT<8> XOR EXPOUT<7> NEXT
IF OVF8a«>0VFFe+l),
! THAT'S RIGHT: IF BOTH THE PREVIOUS EXPONENT AND THE PRESENT ONE
! OVERFLOW THEN THERE 1S NO GENERAL OVERFLOW.
{430: #33) 1 « (EXPOUT« (GPXRB<7>aGPXRB<«7:0>) +1 NEXT
GPXRB«' 16GPXRB<31:9>eEXPOUT<7:8> NEXT
OVF8<EXPOUT<8> XOR EXPOUT<7> NEXT
IF NOT OVF8«>0VFFe«l1),
: (437) : « (EXPOUT« (GPXRB<7>@GPXRB<7:8>) +1 NEXT
! GPXRB«* BaGPXRB<31:9>eEXPOUT<7:8> NEXT
: OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT
IF OVF8s>0VFFe1),
(#26:#27) s =« (EXPOUT+ (GPXRB<7>eGPXRB<7:0>) +1 NEXT
GP\RB«' DeGPXRB<31:9>eEXPOUT<7:8> NEXT
OV-8<EXPOUT<8> XOR EXPOUT<7> NEXT ‘
1F NOT OVF8=>0VFFe«1), :
(1,#16) s « (EXPOUT+ (GPXRB<7>0GPXRB<7:8>) +-1 NEXT 3
OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB~GPXRB<30: 7>all1 <31>eEXPOUT<7:@> NEXT
! WHAT DOES W1 CONTAIN IN ALL THE CASES WHERE NORMAL 1S CALLED?
! IT LOOKS LIKE IN ALL THE ABOVE CASES WleB. NO; THERE'S AT LEAST
! ONE CASE FROM ADDF WHERE W1 IS NOT ZERO. q
IF  OVF8«>0VFF+1), ;
{#21,#36) : « (EXPOUT~ (GPXRB<7>aGPXRB<7:0>) +-1 NEXT
OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB-GPXRB<38: 7>el1 <31 >eEXPOUT<7:8> NEXT
IF NOT OVF8=>0VFF«1), :
(428,#437,0,#17] : =« (EXPOUT~ (GPXRB<7>aGPXRB<7: 8>) +-2 NEXT
OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB~GPXRB<29: 7>el1<31: 38>eEXPOUT<7:@> NEXT
NMLOOP (),

s 2

R e 2

(#22,#23,434,#35) 1= |F QVF8=>0VFFel,
(2:3,4164:415) 1«]F OVF8e>0VFFel

END
END,
! From NMLOOP to here has been checked uith DIVF
LONF: e
BEGIN 1

SUMM1 eSUM<31 18>+~ (MD<31>eMD<3118>) NEXT
GPXRB«SUM<31:8>8M0<7:8> NEXT ;




Ul-@ NEXT
NORMAL ()
END

LDAs=
BEGIN
LOR() NEXT
IF GPXRB<31>=>
(SUMM1eSUMe«~ (GPXRB<31>eGPXRB) NEXT
GPXRB-SUM NEXT
END IF SUMML XOR SUM<31l>«>0VFFel)

LDAF: =

BEGIN

LOR() NEXT

IF GPXRB<31l>=>
{SUMM1@SUM<31: 8>+~ (GPXRB<31>eGPXRB<31:8>) NEXT
GPXRB«SUM NEXT
W18 NEXT
NORMAL ())

END,

LDC:e
BEGIN
GPXRB~NOT MD
END,

LAOs =
BEGIN
IF NOT MON=>LDR()
END,

BEGIN
IF MON=>LDR ()
END,

LMO: =

STRi e
BEGIN
DECODE AMOOE=>
BEGIN
8: «GPXRA-GPXRB,
OTHERW!] SE s «MEM [MA) GPXRB

ENO
END,

STE:e
BEGIN
DECQDE AMOCE=>
BEGIN
8: «GPXRA-EX,
OTHERWISE : »MEM [MA) «EX

112




END
END,
!1SWB-SW3 ARE NOT COOED HERE, BUT IF NEEDED THEY ARE LIKE STR, STE.
STD:»
BEGIN
DECODE AMODE=>
BEGIN
@i« (MA<=MEM(PC] <15:8> NEXT
INR-MEM [PC] ) ,
OTHERWISE: = (MEMIMA)GPXRB NEXT
ME™ [MA+4896] «GPXRB)
END
END.
STZ:=
BEGIN
DECODE AMODE=> x
BEGIN .
8: =GPXRA«D, |
OTHERUISE: «MEM [MA) <8 .
END !
END, -
SZ20: - o
BEGIN
DECODE AMODE«=> |
BEGIN |
‘ @:= STD(), !NO STORING OF ZERO IF AMODE=B? 3
OTHERWISE:= (MEMI[MA)«8 NEXT g
MEM (MA+40836) «8) | f
END ;
END,
STR2: = :
BEGIN -
DECODE AMODE=> f
BEGIN
B:= (GPXRA-GPXRB NEXT J
RA-RA+1 NEXT |
RB«RB+1 NEXT
GPXRAGPXRB) ,
OTHERWISE: = (MEM(MA) ~GPXRB NEXT
MA-MA+1 NEXT ‘
RB-RB+1 NEXT ;
MEM (MA) «GPXRB)
END
END.
STR3: =
BEGIN

DECOOE AMODEs=>
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BEGIN
@ie (GPXRA<GPXRB NEXT
RA<RA+1 NEXT
RB~RB+1 NEXT
STR20)),
OTHERWISE: = (MEMIMA) ~GPXRB NEXT
MA«MA+]1 NEXT

RB-RB+1 NEXT j

STR2()) |

END ;

END, {

|

LOOP4: = ITHIS 1S ONLY CALLED WHEN AMODE=1 g
BEGIN ;

STD() NEXT |

RA~RA+1 NEXT i
RB~RB+1 NEXT :
MA=MA+]

END. !

STD2: =

BEGIN

DECODE AMODE=> A
BEGIN .
@:e STDO),

OTHERWISE: = (LOOP4 () NEXT ]

ST00))

-END

END,

STD3: =
BEGIN 1
DECODE AMODE->
BEGIN
B:« STOO),
OTHERWISE:= (LOOP4 () NEXT
ST020)
END
END.

ST07: =
BEGIN
OECODE AMODEe>
BEGIN
B:= STO(),
OTHERWISE:s = (LOOP4 () NEXT
LOOP4 () NEXT
LOOP4 () NEXT
LOOP4 () NEXT ’
ST03()) ;

O

s PWFRPPIPCS = P
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AT PP

END

END,
STHS -
BEGIN
MEM(MA)«MA SLO 16 ”?
END,
SPS: =
BEGIN
MEM[MA] «STATUSePC<15: 8>
tsee p.66 of FTSC instruction set document
END,
SPCse
BEGIN
DECODE AMODE=>
BEGIN
8:= NO.OPO),
OTHERWISE : «MEM (MA] «MEM (MA+4896] «STATUSePC<15: 8>
END
END,
1SBPAl: =
* BEGIN

DECODE AMODE=>

1:= MEM(MA]«GPXRB NEXT

IMAEC<7:@8> ARE MEMORY ADDRESS ERROR CODE BITS. SEE 226 LINE 6 AND LAST
IFOR CONTRADICTORY INTERPRETATIONS.
|

! END

| END,

1SBPAD: =

! BEGIN

! OECODE AMODE=>

| BEGIN

' B:= GPXRA-GPXRB,

! 1:= MEMI(MA]-GPXRB NEXT
' MAEC-8,

' END

! END,

1SBP01: =

! BEGIN

! DECODE AMODE=>

| BEGIN

! @:= GPXRA<GPXRB,

| 1:e MEM{MA]«GPXRB NEXT
' NDEC<'1 "’ ¢
1 1MDEC<7:8> 1S MEMORY DATA ERROR CODE.
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JPi=

JSB: =

JPZ: e

JMlte

JZE1=

JZEF: e

END

END,
BEGIN
OECOOE AMODEw>
BEGIN
8: =GPXRA-GPXRB,
1:« MEM[MA)«GPXRB NEXT
MDEC-@,
END
END,
BEGIN
OECODE AMODE=>
BEGIN
8: =PC-GPXRA,
OTHERWISE: =PCeMA
END
END,
BEGIN

GPXRB+STATUS@PC<15:8> NEXT
DECODE AMODE=>

BEGIN

@: «PC+GPXRA,
OTHERWISE: =PC-MA

END
END,
BEGIN
IF NOT GPXRB<31>=>JMP ()
END,
BEGIN
IF GPXRB<31>e>JMP ()
END,
BEGIN
IF GPXRB EQL Be>J1P()
END,
BEGIN

IF GPXRB<31:8> EQL B=>JP ()
END.
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R siaise

INZt -

JNZF: =

JPS: =

JPSF: =

JMZ: e

JMZFse

JON: =

JOS: =

JCStm

DISN: =

BEGIN
IF GPXRB NEQ 8e>JP ()
END,

BEGIN
IF GPXRB<31:8> NEQ Ba«>JMP ()
END,

BEGIN
IF GPXRB NEQ 3 AND GPXRB<31> EQL @=>JP()

END,

BEGIN
IF GPXRB<31:8> NEQ @ AND GPXRB<31> EGL Be>JMP ()

END,

BEGIN _
éF GPXRB<31> EQL 1 OR GPXRB EQL @ =>JMP ()
ND,

BEGIN
IF GPXRB<31> EQL 1 OR GPXRB«<31:8> EQL Be>JMP()

END,

BEGIN

SUMM] @SUMe (GPXRB<31>eGPXRB) -1 NEXT
GPXRB«SUM NEXT

IF GPXRB NEQ 8e>JMP ()

END,

BEGIN

IF OVFFe>JMP () NEXT
OVFF«@

END,

BEGIN

IF CRYFFa>R1P() NEXT
CRYFF«B

E~D|

BEGIN
HO-NOT MO NEXT
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01S0: =

ASNZ:w

ASZ: =

IF (GPXRB OR MO) NEQ #37777777777 =>
(PC~PC+1)
END,

BEGIN

MD-NOT MD NEXT

IF (GPXRB OR MO) EQL #37777777777 =>
(PCPC4+1)

END,

BEGIN
IF (GPXRB AND MD) NEQ @=>PCePC+1
END,

BEGIN
IF (GPXRB AND MD) EQL B=>PCePC+1
END,

ICSNE AND CSEQ ARE NOT ON THE FLOWCHART DIAGRAMS

ADD: =

MPY:=

BEGIN

SUMMZaSUMM1 eSUM-GPXRB<31>eGPXRB + MD<31>eMD NEXT
IF SUMM2=>CRYFFe1 NEXT

GPXRB«~SUM NEXT

IF (SUMHM1 XOR SUM<31>)=>0VFFel

END,

BEGIN

SUMM2eSUMM1 oSUM-GPXRB<31>eGPXRB + - (MD<31>eMD) NEXT
IF SUMM2«>CRYFF«~1 NEXT

GPXRB+SUM NEXT

IF (SUMM1 XOR SUM<31>) «>0VFFel

END,

BEGIN
EX«GPXRB NEXT
GPXRB«B NEXT
COUNTER«~@ NEXT
CRYSTS«8 NEXT
LOOPS: =
REPEAT
BEGIN

ALUA<«GPXRB NEXT |IT APPEARS THAT WE NEED GPXRB AND MD SIGN
!} EXTENDED TWO BITS, SO HERE ALUA AND

| ALUB SHOULD BE 34 BITS.
ALUB<eMD NEXT
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DECODE CRYSTSeEX<1:8>=>

BEGIN
8:e (SUMM2@SUMM1@SUMALUA NEXT
CRYSTS.Q),
l:= (SUMM2@SUMM1@SUM-ALUA+ALUB NEXT
CRYSTS-8),
2:= (SUMM2eSUMM1@SUM-ALUA-(ALUB SL@ 1) NEXT
CRYSTS-1),
3:= (SUMM2eSUMM1@SUM-ALUA-ALUB NEXT
CRYSTS«1),
4:= (SUMM2eSUMM1@SUM-ALUA+ALUB NEXT ;
CRYSTS-8), '
(SUMNM2eSUMM1@SUM-ALUA+ (ALUB SL@ 1) NEXT
CRYSTS+8),
(SUMM2aSUMM1 @SUM-ALUA-ALUB NEXT
CRYSTS1),
7:= (SUMM2@SUMM1@SUM-ALUA NEXT
CRYSTS«1)
END NEXT ‘
GPXRB+~SUMM2@SUMM1 @SUM<31:2> NEXT
EXeSUM<1:8>@EX<31:2> NEXT
COUNTER-COUNTER+1 NEXT
IF COUNTER EQL 16«>LEAVE LOOPS
END NEXT
1At this point in the computation, the sign appears in GPXRB<31:30>
; tand the msb's to Isb's are in GPXRB<29:@>aEX.
H EX«-EX<33:8>aGPXRB<31> NEXT
: CPXRB+~GPXRB<3@:@>@EX<31> NEXT
' We-GPXRB NEXT !IS THIS NEEDED FOR SOMETHING? FOR EXAMPLE
'IF MPY IS EXITED ON OVFF,
IF GPXRB<31> XOR GPXRB<38>=> (OVFF«1 NEXT LEAVE MPY) NEXT
GPXRB-EX SRR 1 NEXT !EX ROTATED RIGHT ONE BIT
EX-WD
END,

PPLOOP: =
BEGIN
REPEAT
BEGIN
COUNTER-COUNTER+1 NEXT
DECODE INVERTOR=> (SUM-GPXRB-MD, SUMGPXRB+1D) NEXT
GPXRB«~SUM<38: B>aEX<31> NEXT
EX-EX<3@:8>aNOT INVERTOR NEXT
INVERTOR«SUM<31> NEXT
IF COUNTER EQL 38=>LEAVE PPLOOP
END
END,

R A e %
[+4] o
£l e
[ ] L}

oot l

R R

PMLOOP: =
BEGIN
REPEAT
BEGIN
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DIVPP: e

DIVPM:

COUNTER~COUNTER+1 NEXT

DECODE INVERTORe> (SUM~GPXRB+MD, SUMGPXRB-MD) NEXT
GPXRB«SUM<30: 8>aEX<31> NEXT

EX+EX<30:8>eINVERTOR NEXT

INVERTOR-SUM<31> NEXT

IF COUNTER EQL 29«> LEAVE PMLOOP

END

END,

BEGIN
EX~EX SL@ 1 NEXT
SUM~GPXRB-MD NEXT IIN D1V GPXRB=B@ HERE.
IF NOT SUMc31>e>(DIVFF«1 NEXT LEAVE DIVPP) NEXT !DENOM=8 IN DIV
1AND MSB HALF OF NUMERATOR GEQ DENOMINATOR IN LDV
GPXRB~SUM<38: 8>aEX<31> NEXT
EX<EX SLD 1 NEXT
INVERTOR«1 NEXT
COUNTER«B NEXT
PPLOOP () NEXT
DECODE INVERTOR=> (SUM-GPXRB-MD, SUM-GPXRB+MD) NEXT
GPXRB~SUM NEXT
EX-EX<38:8>aNOT INVERTOR NEXT
DECODE GPXRB<31>w=>
BEGIN
0:= (LUB-CPXRB NEXT
GPXRB«~{EX SLO® 1) + 1 NEXT
EX«U8),
1:e (WB-GPXRB + MD NEXT
GPXRB-EX SLB 1 NEXT
EXWB)
END
END,

BEGIN
ITHE STEP EX«EX SLB 1 IS TAKEN CARE OF A FEW LINES HENCE. .
SUM«GPXRB+MD NEXT !IN DIV GPXRB=B HERE.
IF SUM GTR Bae> (DIVFF«1 NEXT LEAVE DIVPM) NEXT
1THIS 1S IMPOSSIBLE FOR DIV. FOR LDV THIS CHECKS IF MS HALF
I0OF NUM GTR ABSOLUTE VALUE OF DENCMINATOR,
IF (SUM EQGL B) AND (U@ NEQ @) e>(DIVFF«1 NEXT LEAVE DIVPM) NEXT
ITHIS 1S ALSO IMPOSSIBLE FOR DIV. IN LOV IT CHECKS IF MS HALF
10F NUMERATOR EQL ABSOLUTE VALUE OF DENOMINATOR AND LS HALF
10F NUMERATOR NEQ @,
GPXRB+~SUM<30:B>aEX<38> NEXT
EXeEX<29:8>0°B1 NEXT
IF SUM EQL Be>INVERTOR-B NEXT 1AT THIS POINT LS HALF OF

INUM IN LDV IS5 KNOWN TO BE ZERO.
IF SUM LSS Ba>ti
SUM-GPXRB-MD NEXT

e ek i 3 SR 5 i S
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OIVMP: =

GPXRB«~SUM<30: 8>eEX<31> NEXT

EX<EX SL1 1 NEXT

INVERTOR-SUM<31>Y NEXT

COUNTER-B NEXT

PMLOOP () NEXT

DECOOE INVERTOR=> (GPXRB«GPXRB+MD, GPXRB-GPXRB-MD) NEXT

EX-EX<30:0>eINVERTOR NEXT

DECODE GPXRB<31>=> ((WB-GPXRB NEXT EX«EX SL8 1),
(WB-GPXRB-MD NEXT EX«EX SL1 1)) NEXT

GPXRB+EX+1 NEXT

EXWD

END,

BEGIN

EX+EX SLB 1 NEXT

GPXRB«GPXRB+MD NEXT !MERE IN DIV GPXRBMD-1.

IF GPXRB<31>=>(DIVFF~1 NEXT LEAVE DIVMP) NEXT !CHECK FOR DENOM«8

! ACTUALLY WE MAY HAVE TO EXECUTE ALSD 646 IN ORDER THAT THE PROPER
! VALUES BE IN GPXRB AND EX WHEN CONTROL GETS THE INTERRUPT SIGNAL.

OIviiMs »

GPXRB-GPXRB<308: @>eEX<31> NEXT
EX«EX SL1 1 NEXT
SUM-GPXRB-MD NEXT
INVERTOR<SUM<31> NEXT
GPXRB-SUM<30: B>8EX<31> NEXT
EX«EX SL1 1 NEXT
PPLOCP ()} NEXT  {SAME LOGP AS FOR +/+
DECODE INVERTOR=> (SUMGPXRB-MD, SUM=GPXRB+MD) NEXT
GPXRB«-SUM NEXT
EX«EX<30:0>aNOT INVERTOR NEXT
IF GPXRB GTR O@w=> (UB-GPXRB-MD NEXT !E.G.-4/5
EX«EX SL1 1 NEXT
GPXRB+EX + 1 NEXT
EXeUB NEXT
LEAVE DIVMP) NEXT
IF GPXRB EQL @e>(GPXRB+~(EX SLB 1) + 1 NEXT ME.G.-6/64
EXeD NEXT LEAVE DIVMP) NEXT
IF GPXRB LSS @e> (GPXRB~GPXRB+MD NEXT
IF GPXRB EQL B=>(GPXRB-EX SLB 1 NEXT !E.G.-4/2
EXe@ NEXT LEAVE DIVMP) NEXT
IF GPXRB NEQ @=> (WB-GPXRB-MD NEXT !E.G.-4/3
EX<EX SLB® 1 NEXT
GPXRB«EX + 1 NEXT
EX«U8))

-

END,

BEGIN

EX+EX SLB 1 NEXT

SUM-GPXRB-MD NEXT !IN DIV GPXRB=-1 HERE.

IF SUM LSS Bw>(DIVFF«1 NEXT LEAVE DIVMM) NEXT

!THIS 1S IMPOSSIBLE FOR DIV, IN LDV THIS CHECKS IF MD GTR GPXRB
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'1.E., IF ABS.VALUE OF MS HALF OF NUMERATOR GTR ABS. VALUE OF

1DENOMINATOR.
GPXRB~SUM<30: B>aEX<31> NEXT

EX+EX SL@ 1 NEXT
IF (SUM EQL @) AND (EX EQL 8)=>(DIVFFe1 NEXT LEAVE DIVMM) NEXT

S0 *1XB...8/-1 YIELDS DIVFF IN DIV SINCE SUM EQL B<=> MD=-1 IN DIV,
'IN LDV THIS CHECKS IF MS HALF OF NUM = DENOMINATOR AND LS HALF =
1°1X8...8 AS [N DIV, AGAIN THIS DOES NOT MAKE SENSE.
COUNTER«B NEXT
INVERTOR-B NEXT
PMLOOP () NEXT !SAME LOOP AS +/-.
DECODE INVERTOR=> (GPXRB~GPXRB+MD, GPXRB+GPXRB-MD) NEXT
EX+EX<30: 8>aINVERTOR NEXT
IF GPXRB EQL Be>(GPXRB+~(EX SL@ 1) + 1 NEXT IE.G.-4/-4
EX+@ NEXT LEAVE DIVMM) NEXT
IF GPXRB GTR @=> (UB-GPXRB+MD NEXT !E.G.-4/-5
GPXRB+EX SL8® 1 NEXT
EX<WB NEXT LEAVE DIVMM) NEXT
IF GPXRB LSS @w> (WB-GPXRB-MD NEXT
IF W@ EQL Bs>(EX-EX SL1 1 NEXT !E.G.-4/-2
GPXRB<EX + 1 NEXT
EX«B NEXT LEAVE DIVMM) NEXT
IF W@ NEQ B=> (WB-GPXRB+MD NEXT !E.G.-4/-3
EX«EX SLB 1 NEXT
GPXRB+EX+1 NEXT
EXUB))

END,

DIVi:e IGPXRB CONTAINS NUMERATOR AND MO DENOMINATOR. QUOTIENT GOES IN
! GPXRB WITH REMAINDER IN EX. SIGN OF REMAINDER IS SAME AS
! SIGN OF NUMERATOR.
BEGIN
EX~GPXRB NEXT
OECODE GPXRB<31>aMD<3l>=>
BEGIN
B: = (GPXRB«B NEXT DIVPP(}), l4/+
1:«(GPXRB+-B NEXT DIVPM(}), Y4/-
s = (GPXRBe-1 NEXT DIVMP()), !-/+
3: .+ (GPXRB~-1 NEXT DIVMMQ)) 1-/-
END
END,

LDV:e INUMERATOR IS EXeGPXRB, DENOMINATOR IS MD, (PROBABLY) EX<31>=GPXRB<31>.

'0THER DETAILS AS IN DIV,

1 (AT THE START EX AND GPXRB ARE [NTERCHANGED)
BEGIN

WB-GPXRB NEXT

GPXRB-EX NEXT

EX«WB NEXT

WB-EX SLB 1 NEXT
IF (GPXRB GEQ @) AND (MO GEQ 8)=>(DIVPP() NEXT LEAVE LOV) NEXT
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IF (GPXRB GEQ @) AND (MD LSS B)a>(DIVPM() NEXT LEAVE LDV) NEXT
IF (GPXRB LSS 8) AND (MD GEQ 8)«>(DIVMP () NEXT LEAVE LOV) NEXT
IF (GPXRB LSS 8) AND (MD LSS 8)=>(DIVMM() NEXT LEAVE LDV)

END,

ACO: =
BEGIN
SUMM2eSUMM] aSUM« (GPXRB <31 >aGPXRB) + (MD<31 >eMD) +CRYFF NEXT
GPXRB«SUM NEXT
IF SUMM2=>CRYFF«1 NEXT
IF SUMML XOR SUM<31>w>0VFFe]
END,

LOOPE: =
BEGIN
REPEAT
BEGIN
GPXRB+GPXRB SL@ 2 NEXT

Wleldl-2 NEXT

IF NOT((GPXRB NEQ @ AND GPXRB<31:29> EQL @) OR
(GPXRB <31:29> EQL 7))e> LEAVE LOOPB

END

END,

CFL:w 'TAKES GPXRA OR MD INTEGER AND CONVERTS TO FLOATING IN GPXRB.
! THE MANTISSA 1S INTERPRETED AS A BINARY FRACTION LESS THAN 1.
BEGIN
GPXRB-MD NEXT
W18 NEXT :
IF (GPXRB NEQ @) AND (GPXRB<31:29> EOL @ OR GPXRB<31:29> EQL 7)w=>
LOOPE () NEXT
ILOOPE CAN CHANGE THE VALUE OF M1.
IF GPXRB EQL 8=> (GPXRB«"80 NEXT LEAVE CFL) NEXT
IF GPXRB<31> XOR GPXRB<305=>
YALREADY NORMALIZED
(GPXRB<7:8>+H1<7:8> NEXT GPXRB<7:0>+«GPXRB<7:8>+31 NEXT LEAVE CFL) NEXT
IF (GPXRB<31:29> EQL 6) OR (GPXRB<31:29> EQL 1) =>
INORMALIZE FIRST
{GPXRB-GPXRB SLO@ 1 NEXT GPXRB<7:8>«Wi-1 NEXT
£ GPXRB<7:8>+GPXRB<7:18>+31)
ND,

ADDLP]1: =

BEGIN

REPEAT
BEGIN
GPXRB<31:8>~GPXRB<31 >aGPXRB<31>aGPXRB<31:18> NEXT (?
Wi<7:8>«l1<7:8>42 NEXT
GPXRB<7:8>+-MD<7:8> NEXT ,
IF W1<7:8> EQL @=>LEAVE ADOLP1
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END

ENOD,
ADDLP2: =
BEGIN
REPEAT
BEGIN
Wl<7:8>+UW1<7:05>-2 NEXT
MD<31:8>+MD<31>eMD<31>eMD:31:18> NEXT
IF Wl<7:8> EQL @=>LEAVE ADDLP2
END
END,
ADDF : =
BEGIN

IFIRST COMPARE THE TWO EXPONENTS, THEIR DIFFERENCE GOES IN EXPOUT.

EXPOUTGPXRB<7>aGPXRB<7: B>-MD<7>aMD<7: 8> NEXT
W1<7:8>S5UM<7:B>«EXPOUT<7:8> NEXT
! WHAT DD WE NEED W1 FOR?
IF SUM<7:8> EQL 0=> (DECODE ASUBE=> {GPXRB<31:8>«GPXRB<31:8>+MD<31:8>,
GPXRB<31:8>«GPXRB<31:8>-MD<31:8>) NEXT
W1@ NEXT NORMAL () NEXT LEAVE ADDF) NEXT
{ SO FROM HERE DN SUM<7:B> NEQ 8.
OVF8~EXPOUT<8> XOR EXPOUT<7> NEXT
EXG23~(EXPOUT<7:9> GTR 23) OR (EXPOUT<7:8> LSS -23) NEXT
DECODE EXG23e0VF8eSUM<B>eSUM<7>=> :
BEGIN
{437 ,814:#417):=((IF GPXRB<7>=> !]F GPXRB EXPONENT <@
(DECODE ASUBEe> (GPXRB«MD,
GPXRBe« (-MD<31:8>)eMD<7:8>) ) ) NEXT
LEAVE ADDF),
(#11,#13):« (DECODE ASUBE=> (GPXRBMD,
GPXRBe{-1MD<31:8>) @MD<7:8>) NEXT
LEAVE ADDF),
(#18,#12]: =LEAVE ADDF,
1:= ADDLPL (),

3:e (GPXRB<31:8><GPXRB<31>eGPXRB<31:9> NEXT
W1<7:@><U1<7:@>+1 NEXT
GPXRB<7:0>+MD<7:8> NEXT
ADOLPLO)),

@:= ADDLP2(),
2ie( Wlec7:B>«N1<7:8>-1 NEXT
MD<31:8>«MD<31>0MD<31:9> NEXT
ADOLP20))
END NEXT
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END,

SUBF: =
BEGIN
ASUBE«~1 NEXT
ADDF ()
END,

ALUA<=GPXRB NEXT ISIGN EXTEND ONE BIT

ALUB<sMD NEXT

DECODE ASUBE=>

BEGIN

0: =SUMM2aSUMM1eGPXRB<31: 8>«
GPXRP<31>eGPXRB<31: 8>+MD<31>eMD<31: 8>,

1: =SUMM2aSUMM1aGPXRB<31: 8>«
GPXRB<31>aGPXRB«<31:8>-110<31>0MD<31: 8>

END NEXT

IF SUMM2=>CRYFFel

1AUTO SUBTRACT ENABLE

IFrom here to the end of MPYF has been checked in MPYFML

Version of Mar.3,1978
MINUSL: e .
BEGIN

MINUS2: =
BEGIN

MPYFlAse
BEGIN

MLOOP1: =

GPXRB<31:8>0PXRB<38: 8>eEX<31> NEXT
EX«EX SL® 1 NEXT

EXPA9<»GPXRB<7: 8> NEXT
EXPOUT<EXPAS-1 NEXT

OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB<7:8>+EXPOUT<7:18>

END,

GPXRB<31:8>«GPXRB<29: 8>0EX<31:30> NEXT
EX<EX SL® 2 NEXT

EXPA9<=GPXRB<7: 8> NEXT

EXPOUT<EXPA9-2 NEXT

OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB<7:B>+EXPOUT<7:8>

END,

REPEAT
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BEGIN

IF (OVF8eGPXRB<31:29> NEQ 8 AND
OVF8eGPXRB<31:29> NEQ 7)=>
LEAVE MLOOP1 NEXT

HINUS2 ()
END !'0f MLOOP1
NEXT

IF (OVF8eGPXRB<31:29> EQL & OR
OVF8eGPXRB<31:29> EQL 1) =>
MINUS1 () NEXT
EX<31:8>+"BaEN<31:9> NEXT
IF OVF8=>0VFF«1

END,
"pVFIBS -
BEGIN
REPEAT
BEGIN
DECODE OVF8aGPXRB<31:29>=>
BEGIN
{1,6):=MINUSE (1,
(8,7 :=MINUS2(),
(#11,#16) : = (MINUSL () NEXT
EX<31:8>«'BaEX<31:9> NEXT
IF OVF8=>0VFF<] NEXT LEAVE MPYF1B),
[2:5) : =« (OVFF<1 NEXT LEAVE MPYF1B),
(#12:#15) : = (EX<31:8>"BeEX<31:9> NEXT LEAVE MPYF1B),
(#18,#17] : = (MINUS2 () NEXT
MPYF1A () NEXT LEAVE MPYF1B)
END lof decode
END : 1oREPEAT
END, lof MPYFLB
MPYF: » 1 TAKES NDRMAL1ZED GPXRB AND MD (OR GPXRA) IN FLOATING POINT

IFORM AND PUTS THE SIGN OF THE PRODUCT AND 23 MSB'S IN
IMANTISSA OF GPXRB, 23 LSB’S IN BITS <3@:8> OF EXTENSION
'REGISTER, AND EXPONENT [N EXPONENT OF GPXRB.

BEGIN

EX-GPXRB<31:8>0"' 00008088 NEXT

GPXRB<31:8>~8 NEXT

IF NOT AMODEe> (MD-GPXRA) NEXT !OTHERWISE USE OLD MD
COUNTER«8 NEXT :
CRYSTS«@ NEXT

LOOPSF! -

REPEAT
BEGIN
ALUA<33:8><eGPXRB<31:8> MEXT IHERE ALSO(AS IN MPY INTEGER)

ISIGN-EXTEND TWO BITS)
ALUB<33:8><elMD<31:8> NEXT
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DECODE CRYSTSaEX<9:8>=>
BEGIN

B:= (SUMMZ2aSUMM]1 eSUM<31:8>«ALUA<33:8> NEXT
CRYSTS8),

l1is (SUMM2@SUMM1@SUM<3]: 8>¢ALUA<33: 8>+ALUB<33:8> NEXT
CRYSTS«8),

2:= (SUMM2aSUMM1eSUM<31:8>¢

ALUA<33:8>~ (ALUB<33:8> SL@ 1) NEXT

CRYSTS«1),

1= (SUMM2eSUMMIeSUM<31:85-ALUA<33:8>-ALUB<33:8> NEXT
CRYSTS<1),

G:= {SUMM2aSUMM1aSUM<3]:85>-ALUA<33:8>+ALUB<33:8> NEXT
CRYSTS-Q),

Sie (SUMM2aSUMMLaSUM<31: 85>«

ALUA<33:8>+ (ALUB<33:8> SL8 1) NEXT

CRYSTS«8),

6:e (SUMM2eSUMM1@SUM<31: 8>«ALUA<33:85>-ALUB<33:8> NEXT
CRYSTS«1),

7:= (SUMM2eSUMM1aSUM<3]: 8>«ALUA<33:8> NEXT
CRYSTS«1)

END NEXT
GPXRB<31:85>+SUMM2eSUMM1@SUM<31: 18> NEXT
EX<31:8>-5UM<9: 8>0EX<31:18> NEXT
COUNTER-COUNTER+1 NEXT
IF COUNTER EQL 12«>LEAVE LOOPSF
END NEXT
IF GPXRB<31:8> EQL 8=>(GPXRB-"8@ NEXT EX-@ NEXT LEAVE MPYF) NEXT
! THAT IS THE FLOATING REPRESENTATION OF ZERO.
'Eliminate GPSDECODE GPSDECODE () NEXT LEAVE MPYF) NEXT
EXPA9<=GPXRB<7:@> NEXT  IHERE WE ARE USING THE MICROMACHINE NOTATION.
EXPBI<=MD<7:8> NEXT
EXPQUT-EXPAS+EXPBI NEXT
GPXRB<7:8>«EXPOUT<7:8> NEXT
OVF8+EXPOUT<8> XOR EXPOUT<7> NEXT
DECODE GPXRB<31:29>w=>
BEGIN
(8,7) 3= (CPXRB<31:8>+GPXRB<29: 8>0EX<31:38> NEXT
EX<EX SL@® 2 NEXT
DECODE DVF8a>
!Ne do the decode on OVF8 here , even though the first 4 lines
'in both cases are the same, because OVF8 is recalculated immediately
'and ] didn't see any other uway that would not introduce fictitious
fregisters or something like the DELAY. 4
BEGIN
B:e (EXPA9<=GPXRB<7:8> NEXT
EXPOUT-EXPAS-1 NEXT
OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB<7:@>«EXPOUT<7:@> NEXT
MPYFIA()),
l1e (EXPA9<aGPXRB<7:8> NEXT
EXPOUT«EXPAS-1 NEXT
OVF8EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB<7:@>«EXPOUT<7:18> NEXT




MPYF1B())
END), : :
{1,6)s= (GPXRB<31:8>+GPXRB<30:8>6EX<31> NEXT
EX«EX SLB 1 NEXT
EX<31:8>¢«'BoEX<31:9> NEXT
IF OVF8=>0VFFe1),

] 2:= (DECODE OVF8=>

BEGIN

0: « (EXPAQ<=GPXRB<7: 8> NEXT
EXPOUT-EXPAS+1 NEXT
OVF8<EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB<7:8>«EXPOUT<7:8> NEXT
EX<31:8>+'BeEX<31:9> NEXT
IF QVF8=>0VFFe«1),

11 = (EXPAS<=GPXRB<7:8> NEXT
EXPOUT<EXPAS+1 NEXT
OVF8+EXPOUT«<8> XOR EXPOUT<7> NEXT
GPXRB<7:8>«EXPOUT<7:8> NEXT
EX<31:8>«"BaEX<3119> NEXT
IF NOT OVF8«>0VFF«l) lhere’'s the difference

o Twdn L,

END)
END
'WHY ARE 3 AND S IMPOSSIBLE? Because GPXRB<31:38> contains

Ithe sign bit repeated. 2 is only possible for -2923x-2123.
END,

! Frqm the last landmark to here has been checked as MPYFML

L3

! From here to the end of DIVF has been checked along uith NORMAL,Mar.8,78

! as DIVFML.
FPPLOOP:
BEGIN
REPEAT
BEGIN
COUNTER~COUNTER+1 NEXT
DECODE INVERTORe> (SUM<31:8>«GPXRB<31:8>-MD<31:8>,
SUM<31:8>=GPXRB<31:8>+MD<31:8>) NEXT
EX<31:8>+EX<30:8>eNOT INVERTOR NEXT
INVERTORSUM<31> NEXT
IF COUNTER EQL 23=> LEAVE FPPLOOP NEXT
GPXRB<3118>+5UM<38:8>0EX<3]1>
END
END,
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FPMLOOP: = ’
BEGIN '
REPEAT
BEGIN
COUNTER~COUNTER+1 NEXT
DECODE INVERTOR=> (SUM<31:8><GPXRB<31:8>+MD<31: 8>,
SUM<31:8>+GPXRB«<31:8>-MD<31:85) NEXT
EX<31:85«EX<30:8>@ INVERTOR NEXT
INVERTOR-SUM<31> NEXT
IF COUNTER EQL 23=> LEAVE FPMLOOP NEXT
GPXRB<31:8>+5UM<30: 8>0EX<31>
END
END,
DIVF:e I{GPXRB/MD
BEGIN
IF NOT AMODE=>MD<GPXRA NEXT

W1<7:8>"FF NEXT 1??
EX<31>«GPXRB<8> NEXT
GPXRB<31:8>=GPXRB<31>aGPXRB<31:9> NEXT
IF MD EQL Ba=>(DIVFF«1 NEXT LEAVE DIVF) NEXT
DECOOE GPXRB<31>aMD<21l>e>
BEGIN
@: = (COUNTER«-B NEXT
SUM<31:8>«GPXRB<31:8>-MD<31:8> NEXT
GPXRB<31:8>+5UM<30:8>aEX<31> NEXT
EX<31:8><EX<30:8>2' B NEXT
INVERTOR<SUM<31> NEXT
FPPLOOP () NEXT
GPXRB<31:8>+~SUM<31:8> NEXT
W1<31:8>+8 NEXT IFOR USE IN NORMAL O) ??

DECODE GPXRB<31>=>

BEGIN

01 (LB<31:8>-CPXRB<31:8> NEXT
GPXRB<3118>EX<31:8> SLB® 1 + 1 NEXT
EX<3118>+LB<30:85e'1), 17

13 (WB<3]:8>-GPXRB<31:8>+MD<31:8> NEXT

[ GPXRB<31:8>+EX<31:8> SLB 1 NEXT

EX<31:8>+40 SLB 1)

END),

1:= (COUNTER-8 NEXT
SUM<31:8>GPXRB<31:8>+MD<3118> NEXT
GPXRB<31:8>+5UM<30: 8>0EX<31> NEXT
EX<31:8>EX<38:8>a’1 NEXT

1 INVERTOR-SUM<31> NEXT

1 FPMLOOP () NEXT

¥ OPXRB<31:8>+SUM<c31:8> NEXT

4 W1<31:8>-0 NEXT

DECODE GPXRB<31>e>
BEGIN
B: = (WB<31:8>«GPXRB<31:8> NEXT
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GPXRB<31:8>«EX<31:8> SLO 1 + 1 NEXT
EX<31:8>-UB<30:8>2"1),!?
1:=(lB<31:85<CPXRB<31:8>-MD<31:8> NEXT
GPXRB<31:8>«EX<31:8> SL1 1 + 1 NEXT
EX<31:8>+lB<38:8>08"1) 1?

END),

2: = (COUNTER-B NEXT

SUM<31:85><GPXRB<31:8>+MD<31:8> NEXT
GPXRB<31:85+5UM<38: 85@EX<31> NEXT
EX<31:8>«EX<30:8>0"'1 NEXT
INVERTOR~SUM<31> NEXT
FPPLOOP () NEXT
GPXRB<31:8>«SUM<31:8> NEXT
W1<31:8>8 NEXT
DECODE GPXRB<31>=>
BEGIN
B: = (WB<31:8>-CPXRB<31:8>-MD<31:8> NEXT
GPXRB<31:8>«EX<31:8> SL1 1 +1 NEXT
EX<31:8>+-l8<30:8>a°1), 1?
1:=(GPXRB<31:8>+EX<31:8> SLB 1 + 1 NEXT
END EX<31:8>-LB<30:8>0"1) 1?
),

3:« (COUNTER-8 NEXT

SUM<31:8>~CPXRB<31:8>-MD<3138> NEXT
GPXRB<31:8>+5UM<30: 8>8EX<31> NEXT
EX<31:8>-EX<38:8>8°8 NEXT
INVERTOR-SUM<31> NEXT

FPMLOOP () NEXT
GPXRB<31:8>+5UM<31:8> NEXT
W1<31:8>-8 NEXT

DECODE GPXRB<3l>=>

BEGIN
B:=(WB<31:8>-GCPXRB<31:8>+MD<31:8> NEXT

GPXRB<31:8>«EX<31:8> SLO 1 NEXT
EX<31:8>+U0<31:8> SLO 1),
1:=(GPXRB<31:8>«EX<31:8> SLB 1 +1 NEXT
END EX<31:8>.LB<30:8>0"1) !?
ND)

& e

END
NEXT

SUMM1@SUM<31: 8>+GPXRB<31>0GPXRB<31: 8> +

GPXRB<31>aGPXRB<31:8> NEXT

GPXRB<31:8>«SUM<3]:8> NEXT
EXPOUT«GPXRB<7>aGPXRB<7:8> ~ MD<7>eMD<7:8> NEXT
OVF8-EXPOUT<8> XOR EXPOUT<7> NEXT

GPXRB<7: B>-EXPOUT<7:8> NEXT

NORMAL ()

END,
IFrom FPPLOOP to here has been checked along with NORMAL.
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'From here to the end of SRTF has been checked as SQRTML

SRTF: -

!TAKES FLOATING GPXRA OR MD AND PUTS SQUARE ROOT IN GPXRB.
1A = m x 2%e, (? indicates exponentiation)

BEGIN
IF NOT AMODE=> (MD-GPXRA) NEXT
IF MD LSS 8=>(0OVFF~1 NEXT LEAVE SRTF) NEXT
IF MD EQL B=> (GPXRB+"8@ NEXT LEAVE SRTF) NEXT
H1-MD NEXT !This register transfer is pure machine dependence.
HB<31:8>«MD<31:8> SLB 1 NEXT !This too.
1UB<31:9> = M = m x 2423,
WB<7:8>-8 NEXT
DECODE MD<@>=> {Even or odd exponent
BEGIN
8: = (CPXRB~WA<31:38> NEXT !If even, shift argument two bits
ue-ua sLe 2) , lleft into GPXRB.
! GPXRBall@<31:108>=2M, Wlee.
1:=(GPXRB~WB<31> NEXT !lf odd, shift argument one bit left
Le-Wd SLB 1 NEXT !into GPXRB and add 1 to exponent.
EXPOUT«MD<7>aMD<7:8> + 1 NEXT !Exponent overflou check.
W1<7:0>EXPOUT<7:8>)
! GPXRBel0<31:10> = M, Wl=e+l,
END
! In any case, at this stage sqrt(GPXRBelB<31:185) x 2%(W1/2) equals
! 2912 x sgrt(m) x 21(e/2). So all we have to do 18 take W1/2 for
!the exponent of the answer and for the mantissa (in its fractional
'form) take sqrt(GPXRBellB<31:10>) x 24(-12). UWhat is the same s
'to take sqrt(GPXRBelB<31:18> x 2922) x 2%(-23), in other wWords,
!take the square root mentioned here as an integer, and then just
Yinterpret it as a fraction in the bits <38:18> of the register
'containing the answer (bit <31> will be zero, since we are finding
Ithe positive square root). Notice that GPXRB<1:B>elB<31:18> x 2122 is
'a 46-bit number, and the range of values is >=2%44 and <=2146 - 2122,

NEXT
Wl<7:8>«01<7>0l1<7:1> NEXT IExponent of root is 1/2 previous value.
IF EXPOUT<8> XOR EXPOUT<7>=>W1<7:8>-#188 NEXT
IThis is 1/2 of previous value
lin the case of overflou.
!So from here to the end we will be finding the square root of the
linteger GPXRB<l:8>aWB<31:18> x 2122,
IFor proof of the follouwing, see <MARCUS>SRTFPROOF.XOF.
COUNTER-8 NEXT
Wi<31:8>+8 NEXT 1Zero is partial square root.
SUM-GPXRB-1 NEXT
GPXRB«-SUM<29: B>aW0<31:38> NEXT
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VADDF: =

VHPYFs =

SLOOP: =
REPEAT
BEGIN
10+-U8 SL8 2 NEXT
COUNTER+COUNTER+1 NEXT
DECODE SUM<3i>=> {positive (or zero) or neg remainder
BEGIN
Bis (M1<31:8>¢201<31:8> + 1 NEXT
IF COUNTER EQL 23=>{LEAVE SLOOP) NEXT
W2ebvld1<31:8> + 1 NEXT
SUM-GPXRB-W2 NEXT
GPXRB+SUM<29: @>all@<31:38>),
1te (U1<31:8>2:M1<31:8> NEXT
IF COUNTER EQL 23e>(LEAVE SLOOP) NEXT
W2eGrld1<31:8> + 3 NEXT
SUM-GPXRB+W2 NEXT
GPXRB~SUM<29: B>alB<31:38>)

END
END
NEXT
GPXRB«U1
ENO.
BEGIN

ADDF () NEXT

RA-RA+1 NEXT

RB-RB+1 NEXT

MA-MA+1 NEXT

IF AMODE>MD-MEM (MA] NEXT
ADDF () NEXT

RA-RA+1 NEXY

RB-RB+1 NEXT

MA-MA+1 NEXT

IF AMODE«>MD-MEM(MA) NEXT
ADDF ()

END,

IVSUBF 1S NOT ON FLOW DIAGRAMS

BEGIN
MPYF () NEXT
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RA-RA+1 NEXT
RB«RB+1 NEXT /
MA=~MA+1 NEXT i
IF AMODE=>MD-MEM [MA) NEXT
MPYF () NEXT

RA«RA+1 NEXT

RB«RB+1 NEXT

MA«HMA+1 NEXT

IF AMODE=>MD«MEM [MA] NEXT
MPYF ()

END,

VIPF;: =
BEGIN
MPYF () NEXT
W3-GPXRB NEXT
MA-MA+1 NEXT
RA«~RA+1 NEXT
RB«RB+1 NEXT
IF AMODE =>MD«MEM [MA] NEXT
MPYF () NEXT
W2+GPXRB NEXT
MA-MA4+1 NEXT
RB«RB+1 NEXT
RA<RA+]1 NEXT
OECODE AMODE=>
BEGIN
8: «LIg-~GPXRA,
DTHERW | SE : =MD~MEM [MA)
END

NEXT

MPYF ()} NEXT

DECODE AMODEe«>
BEGIN
B: =GPXRAU2,
1:=MDW2

END
NEXT
ADDF () NEXT
DECODE AMODE=>
BEGIN |
Bie (GPXRAC2 NEXT !
ADDF () NEXT |
GPXRA-B) ,
OTHERWISE: w (MDeW3 NEXT
ADDF ())
END

END,
VSHF: =
BEGIN

MPYF () NEXT }
RB«RB+1 NEXT ;
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3 MPYF () NEXT
RB~RB+1 NEXT
MPYF ()

END,

LOOP7: «
BEGIN
3 REPEAT

BEGIN

H1el142 NEXT

GPXRB-GPXRB<31>aGPXRB<31>aGPXRB<3132> NEXT

IF W1<7:8> EQL B«> LEAVE LOOP?7 )
END i

END,

CFX: = YCONVERTS GPXRA OR MD IN FLOATING TD GPXRB INTEGER.

BEGIN
GPXRB«MD NEXT
IF GPXRB<7:0> EQL @ => {EXPONENT«8

{GPXRB-GPXRB SLB 1 NEXT

(IF GPXRB EQL @ =~> GPXRB<=1 NEXT LEAVE CFX) NEXT

(IF GPXRB NEQ B => GPXRB«B@) NEXT LEAVE CFX) NEXT
! CONVERTS <X@8...8> TO -1 AND A NON-ZERO NUMBER OF ABSOLUTE
! VALUE <1 10 B.
IF GPXRB<7>w> {GPXRB«~B NEXT LEAVE CFX) NEXT INEG EXPONENT GOES TO B.
IF GPXRB<7:8> NEQ 8 AND GPXRB<7> EQL @ => !POSITIVE EXPONENT
{H1<31 NEXT
W1«GPXRB<7:0>-W1<7:8> NEXT
GPXRB<7:18>«8 NEXT
DECODE W1<7>alll <B>e>

BEGIN

B:= IF Wl<7:8> NEQ @ =>0VFFel,

'IF Wl<7:8> EQL B, JUST LEAVE CFX.

lis OVFF&1,

2:= LOOP70),

3= (Wlelilal NEXT

GPXRB-GPXRB<31>alGPXRB<31:1> NEXT
0 IF Wl NEQ @«>L0O0P7())
END)

e M bl B i 2%

o st s kg

END,

UPF:e !TAKES GPXRA OR MD AND PUTS THE EXPONENT (SIGN EXTENDED) AND
YTHE MANTISSA IN SUCCESSIVE GP REGISTERS.
BEGIN
GPXRB<aMD<7:8> NEXT
RB-RB+1 NEXT
GPXRB<31:8>«MD<31:8> NEXT .
GPXRB<7:8>«0 .
END, ‘

LOOP8; »




L e e sl

PKF: =

LAND:

LXOR: »

BEGIN
REPEAT
BEGIN
DECODE GPXRB<31:129>s>
BEGIN
(8,7):e (GPXRB-GPXRB SLB 2 NEXT
JF SUMML XOR Wl<7> =>(0OVFF«1 NEXT LEAVE LOOP8) NEXT

! HERE SUMM1 IS THE EXTRA HARDWARE BIT TO THE LEFT OF THE EXPONENT
! AND IS USED TO CALCULATE OVF8 (SUMML XOR THE LEFT MOST REAL BIT OF
! EXPONENT.)

SUMMLeWl <7:8>-U1<7>eld1 <7:8>-2),

! THE EXPONENT PART OF W1 IS ALL THAT IS USED IN THE CONTINUATION.

{1,61:= (IF SUMM1 XOR Wl<7> =>(OVFFe+] NEXT LEAVE LOOP8) NEXT
SUMMlell<7:8>«l1<7>0Wl<7:8>-1 NEXT
GPXRB~GPXRB SL@ 1 NEXT
IF SUMM1I XOR W1<7s> =>{(0VFiel NEXT LEAVE LOOP8) NEXT
GPXRB<7:8>~U1<7:0> NEXT

LEAVE LOOP8),
2:S:=  (JF SUMM1 XOR Wl<7> =>(DYVFF«] NEXT LEAVE LOOP8) NEXT

GPXRB<7:8><W1<7:8> NEXT
LEAVE LOOP8)
END
END
ENO,

!TAKES EXPONENT (GPXRB OR MD) AND MANTISSA(GPXRA OR MEM(MA])

1AND PUTS THEM TOGETHER IN GPXRB AS ONE FLOATING POINT NUMBER.
! THIS NEEDS TO BE CHECKED AGAIN,

BEGIN
OECODE AMODE=>
BEGIN
B:= (U1-GPXRB NEXT  'EXPONENT
GPXRB~GPXRA) , IMANTISSA

OTHERNISE:= (MA-MA4+1 NEXT
GPXRB&MEM [(MA) NEXT IMANTISSA

WiMD) IEXPONENT

END NEXT
IF GPXRB EQL @=> (GPXRB-"88 NEXT LEAVE PKF) NEXT
LOOP8 ()
END,
BEGIN
GPXRB+MD AND GPXRB
END,
BEGIN

GPXRB+MD XOR GPXRB




Ty

END,

I10R:
BEGIN
GPXRB«MD OR GPXRB
. END,
ANl t =
BEGIN
GPXRB-NOT MD AND GPXRB
END,
LOOP10: «
BEGIN
REPEAT
BEGIN
MD-MD+2 NEXT
DECODE GPXRB<29:27>=>
BEGIN
(8,7):= GPXRB-GPXRB SL® 2,
OTHERWISE: e (DVFF«] NEXT
GPXRB«GPXRB SLB 2)
END NEXT
IF MD<7:8> EQL @=>LEAVE LOOP1O
END
END,
LOOPll: e
BEGIN
MD~MD+2 NEXT
IF GPXRB EQL ©@«> ILEAVE LOOP11 NEXT
DECODE GPXRB<31:29>=>
BEGIN
[0,7]:=« GPXRB~GPXRB SL@ 2,
OTHERWISE: = (OVFFe«1 NEXT
GPXRB~GPXRB SL@ 2)
END NEXT
IF MD<7:8> NEQ B«>L0OP1B()
END,
LOOP3: =
BEGIN
REPEAT
BEGIN
MD-~MD-2 NEXT
GPXRB<wGPXRB<31:2> NEXT
IF MD<7:8> EQL B=>LEAVE LOOPS
END
END,
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ARS: = ISHIFTS GPXRB THE NUMBER AND DIRECTION OF THE SIGNED EXPONENT
égg?g OF GPXRA OR MD. RIGHT SHIFT CAUSES SIGN-EXTENSION
IF MD<7:8> EQL @=> LEAVE ARS NEXT
DECODE MD<7>aMD<@>=>

BEGIN
B:= LOOPS (),
l:= (MD-~MD-1 NEXT
GPXRB<=GPXRB<31:1> NEXT
IF MD<7:08> NEQ @=>L00P9()),
2:= LOOP11 (),
3:e (MD-MD+1 NEXT
{F GPXRB EQL @=>LEAVE ARS NEXT
OECODE GPXRB<31:29>=>
BEGIN
(8,1,6,7):= GPXRB-GPXRB SLO 1,
OTHERUWISE: = (OVFFel NEXT
GPXRB+GPXRB SLB 1)

END NEXT
IF MD<7:8> NEQ B«>LO0OP110())
END
END,
LOOP100: «
BEGIN
REPEAT
BEGIN
MDMD+2 NEXT
DECODE GPXRB<29:27>=>
BEGIN
[0,7):e (GPXRB-GPXRB<29:B>eEX<31:38> NEXT
EX-EX SL@ 2),
OTHERUWISE: = (OVFF«1 NEXT
GPXRB~GPXRB<29: 0>eEX<31:30> NEXT’
EX<EX SLB 2)
END NEXT
IF M0<7:8> EQL @=>|.EAVE LOOP188
END
END,
LOOP118: «
BEGIN
HD~HD+2 NEXT
DECODE GPXRB<31:29>=>
BEGIN
(8,7)1= (GPXRBGPXRB<29:@>eEX<31:308> NEXT
EX-EX SLO 2),

OTHERWISEse (OVFFel NEXT
GPXRBGPXRB<29: @>eEX <311 30> NEXT
EX-EX SL8 2)

END NEXT
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IF MD<7:8> NEQ 8->L00P188()

END,

LOOP90: « j
BEGIN »
REPEAT P

BEGIN e
MDMD-2 NEXT
GPXRB<=GPXRB<31:2> NEXT
EX<GPXRB<1:B>aEX<31:2> NEXT
IF MD<7:8> EQL Be>LEAVE LOOP9@
END
END,

ARL: e ISHIFTS GPXRBeEX THE NUMBER AND DIRECTION OF THE SIGNED EXPONENT
IPART OF GPXRA OR MD.
BEGIN
EX<EX SLB 1 NEXT
IF MD<7:8> EQL Be> (EX<EX<31:1> NEXT LEAVE ARL) NEXT
DECODE MD<7>aMD<B>=>
BEGIN
0:« LOOPIB (),
l:e (MD-MD-1 NEXT
EX-GPXRB<B>@GPKRB<31:1> NEXT
GPXRB<=GPXRB<31:1> NEXT
IF MD<7:8> NEQ 8=>LO0PSB()),
2:= LOOP11BO),
3:= (MD-MD+1 NEXT
IF GPXRB EQL Be> (GPXRB-CPXRB<30: B>eEX<31> NEXT )
EX<EX SLB 1 NEXT
(IF MD NEQ @~>LO0P118() NEXT
LEAVE ARL) NEXT
EX<EX SRB 1 NEXT
LEAVE ARL) NEXT

DECODE GPXRB<31:29>=>
BEGIN
(8,1,6,7):« (GPXRB-GPXRB<30:8>eEX<31> NEXT
EX<EX SL@ 1),
OTHERWISE:= (OVFFel NEXT
GPXRB+-GPXRB<30: @>eEX<31> NEXT :
EX+EX SLO 1)
END NEXT \
IF MD<7:2> NEQ B=>LO0OP118()) |
END
END,

LOOP12: E
BEGIN




Attt Sl it b,

REPEAT
BEGIN
MD-MD-2 NEXT
GPXRB~GPXRB SRR 2 NEXT
IF MD<7:8> EQL @=> LEAVE LOOP12

END
END,
LOOP13: =
BEGIN
REPEAT
BEGIN
MD-MD+2 NEXT
GPXRB-GPXRB SLR 2 NEXT
IF MD<7:8> EQL @=> LEAVE LOOP13
END
END,
RRS: = IROTATES GPXRB NUMBER OF PLACES AND DIRECTIONS GIVEN
!BY THE EXPONENT PART OFGPXRA OR MD.
BEGIN

IF MD<7:8> EQL @=> LEAVE RRS NEXT
DECODE MD<7>aMD<B>=>
BEGIN
@:= LOOP120),
1:= (MD~MD-1 NEXT
GPXRB~GPXRB SRR 1 NEXT
IF MD<7:8> NEQ 08+>L00P120)},
2:= LOOP130(),
3:= (MD-MD+1 NEXT
GPXRB-GPXRB SLR 1 NEXT
IF MD<7:8> NEQ @=>LO0P130))

END
END,
LOOPl4: =
BEGIN
REPEAT
BEGIN
MD-MD-2 NEXT
SUM-GPXR8 NEXT
GPXRB~EX<1:8>eGPXRB<31:2> NEXT
EXeSUM<1:B>8EX<31:2> NEXT
IF MD<7:8> EQL @«>LEAVE LOOP14
END
END,
LOOP15: =
BEGIN
REPEAT




MD<MD+2 NEXT

SUM-GPXRB NEXT
GPXRB«GPXRB<29: B>eEX <313 38> NEXT
EX-EX<29:08>aSUM<31:30> NEXT
é:DHD<7=8> EQL B«->LEAVE LOOP1S

END,

RRL: = IROTATES GPXRBaEX THE NUMBER OF PLACES AND DIRECTION OF THE SIGNED
IEXPONENT PART OF GPXRA OR MD.
BEGIN
IF MD<7:9>-EQL @=> LEAVE RRL NEXT
DECODE MD<7>aMD<@>=>
BEGIN
@:= LOOP14 (),
lte (MD~MD-1 NEXT ]
SUM«GPXRB NEXT ;
GPXRB-EX<B>aGPXRB<31:1> NEXT
EX«SUM<B>aEX<31:1> NEXT
IF MD<7:08> NEQ B«>LO0P14()),
2:= LOOP1S1),
3:e (MDeMD+]1 NEXT
SUM«GPXRB NEXT
GPXRBGPXRB<30: B>8EX<31> NEXT :
EXeEX<30:0>e5UM<31> NEXT 1

1F MD<7:8> NEQ 8=>L00P15())
END 1
END,
LOOP16s =
BEGIN
REPEAT ;
BEGIN |
MD~MD-~-2 NEXT E
GPXRB«GPXRB SR@ 2 NEXT }
IF MD<7:0> EGL @e>LEAVE LOOP16 g
END
END,
LOOP17:»
BEGIN
REPEAT
BEGIN
MD-MD+2 NEXT

GPXRB«GPXRB SL@ 2 NEXT
IF MD<7:8> EQL B~>LEAVE LOOP17
END

END,




LRS:= 12EROS ARE SHIFTED IN.
BEGIN
IF NOT AMODE=>MD-GPXRA NEXT
IF MD<7:0@> EQL B=>LEAVE LRS NEXT
DECODE MD<7>eMD<B>w=>
BEGIN {
8:= LOOP16(), :
1:e (MD-MD-1 NEXT
GPXRB~GPXRB SRB 1 NEXT '
IF MD<7:8> NEQ 8->L0O0P161()), ]
2i« LOOP17(),
3:e (MD«MD+1 NEXT
GPXRB«GPXRB SLB 1 NEXT
IF MD<7:8> NEQ @«>LOOP16())

A i N S i 5 A, ' 3 W O Rkl s

END
END,
LOOP18: =
BEGIN ?
REPEAT %
BEGIN
MO-MD-2 NEXT
EX-GPXRB<l1:B8>8EX<31:2> NEXT
GPXRB.GPXRB SR8 2 NEXT
IF MD<7:@> EQL @=> LEAVE LOOP18
END - 4
END, |
. E
LOOP19: =
BEGIN
REPEAT
BEGIN
MD-HD+2 NEXT %
GPXRB-GPXRB<29: B>@EX<31:38> NEXT
EX-EX SLB 2 NEXT
IF MD<7:@> EQL @~>LEAVE LOOP19
END
END,

LRL: = 1ZERD IS SHIFTED IN.
BEGIN
IF MD<7:0> EQL B«>LEAVE LRL NEXT y
DECODE MD<7>eMD<B>=> '
BEGIN
8:= LOOP18(},
lies (MD~MD-1 NEXT
EX-GPXRB<B>aEX<31:1> NEXT
GPXRB~CPXRB SRB 1 NEXT
If MD<7:8> NEQ 9->L0OP18()),
2:= LOOP190),
31= (MD-MD+1 NEXT
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0Si:=

ENI:e

RFl:e

RET:»

XECt e

e itn e

dhala i i

GPXRB~GPXRB<30: 8>#EX<31> NEXT

EX<EX SL@® 1 NEXT
- END

IF MD<7:8> NEQ 8->L00P130))

END,

BEGIN
DISINT«1
END,

BEGIN
DISINT-8
END,

lreturn from interrupt

BEGIN

PC«MEM[MA) <15:8> NEXT
EXMODE~MEM [MA) <24> NEXT
DISINT«MEMIMA) <23> NEXT
DIVFF«MEM[MA) <22> NEXT
OVFF<MEM (MA] <21> NEXT
JILLOPCMEM [MA) <28>. NEXT
CRYFF<MEM(MA] <19> NEXT
éNTPRlDR~ﬂEH(HA]<18:IG>
ND,

Ireturn from subroutine
BEGIN
PC-MEM[MA) <15:8> NEXT
DISINTMEM(MA) <23> NEXT
DIVFFMEM [MA) <22> NEXT
OVFF«MEM [MA) <21> NEXT
JLLOPC+-MEM {MA] <28> NEXT
CRYFF«MEM(MA) <19>
END,

BEGIN
DECODE AMODEe>

BEGIN

B:= INR-GPXRA,
OTHERWISE: = INR«MEM[MA]

ENO
NEXT
MA<=INR<15:0> NEXT

IF INRPTe> (PC-PC-1 NEXT LEAVE XEC) NEXT

ADORESS () NEXT
OPERAND () NEXT
OPERATION () NEXT




GPXR {RA] «GPXRA NEXT
GPXR [RB] «GPXRB NEXT
INRPT«OVFF OR DIVFF
END

wlQperation.decodei

OPERATION:= lopcode decode.
BEGIN

DECODE OPCODE~>
BEGIN

ILOAD (FETCH) /STORE

"00:=LDR(),
“Bl:«LDE(),
*38:=LUB (),
"31:=LUl 1),
"32:=LU2(),
*33:=LU30),
"02:«LOR2()
"83:«LDR3(),
"04:=LOR7 (),
"8S:=LON(),
"86: =LONF (),
"07:=LDA(),
"88: «LDAF (),
"03:«L0C(),
"BA:=LAO(),
*8B:=LMO(),

"48:«STR(),
*41:=STEL),
"6S:=SWB(),
*66:=«SUl (),
"67:aSW2(},
"68:eSN31(),
*42:=ST00),
*47:«ST20),
*43:25200),
*"82:=STR2()
"63:=STR3 ()
*44:eSTD2()
"45:=STD3()
"46:«STD7 ()
*49:«STH(),
"48:=5PS (),
"4A3=SPC(},
| "4B:«SBPAL (),
! *4Cs «SBPAB (),

ILOAD REGISTER

ILOAD EXTENSION REGISTER
{LOAD WORKING REGISTER @
ILOAD WORKING REGISTER 1
ILOAD WORKING REGISTER 2
'LOAD WORKING REGISTER 3
ILOAD MULTIPLE

ILOAD NEGATIVE
ILOAD NEGATIVE FLOATING :
ILOAD ABSOLUTE VALUE 4
ILOAD ABSOLUTE VALUE FLOATING :
ILOAD ONE’S COMPLEMENT

ILOAD ACTIVE ONLY

ILOAD MONITOR ONLY

{STORE REGISTER
ISTORE EXTENSION ]
1STORE WORKING REGISTER 8
'STORE WORKING REGISTER 1
!STORE WORKING REGISTER 2
ISTORE WORKING REGISTER 3
!STORE DOUBLE

ISTORE ZERO

ISTORE ZERO DOUBLE

ISTORE MULTIPLE SINGLE

ISTORE OOUBLE MULTIPLE

T

ISTORE TO HARD ADDRESS

{STORE PC AND 'STATUS SINGLE
ISTORE PC AND STATUS DOUBLE
ISTORE BAD ADDRESS PARITY ONES
ISTORE BAD ADORESS PARITY ZERQS
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1Jump

“40:=58P01 (],
"4E: «SBPDAI() ,

"S8:=JMP (),
"GE:eJSBI(),
"4F:aJPZ(),
"SlieJHl (),
"62:=JZE(),
"G3:=JZEF (),
"Sh:edNZ(),
"655: = JNZF O,
"S6:=JPS (),
"67:=JPSF (),
"E8:edMZ (),
"69: «JMZF ()},
"SA:«JON(),
"6C:=J0S (),
"60: »JCS 1),

'TEST AND SKIP

"29:=0I8N{},
"2D:=01500),
"2A:=ASNZ (),
"2C:=ASZ(),

"36:=CSNE (),
"35:=CSEQ (),

YINTEGER ARITHMETIC

"19:«A000),
"1A:=5UB(},
"1B:=MPY (),
"1C:=01VI ),
“10: LDV (),
"2B:=ACO0),
"1E:«CFLO),

IFLOATING POINT ARITHMETIC

"0C: «ADOF O,
"80: »SUBF (),
"QE: =MPYF (),
"BF: =DIVF (),
"10:«SRTF (),
"11:=VADDF (),
"12s=VSUBF (),
"13:=YMPYF (),
"l4a:=VIPF(},
"15:=VSHF (),
"16:=CFX{),

ISTORE BAD DATA PARITY ONES
ISTORE BAD DATA PARITY ZEROS

1JuMP

!JUMP SUBROUTINE

YJUMP 1F POSITIVE OR ZERO

1JUMP IF NEGATIVE

1JUMP IF ZERO

!JUMP JF ZERO FLOATING

{JUMP IF NON-ZERO

{JUMP 1F NON-ZERO FLOATING

IJUMP IF POSITIVE AND NON-ZERO(?)
{JUMP |F POSITIVE AND NON-ZERO FLOATING(?)
{JUMP [F NEGATIVE OR ZERO

1JUMP IF NEGATIVE OR ZERD FLOATING

IDECREMENT RB. JUMP IF NON-ZERO
1JUMP IF OVERFLOW SET. RESET OVERFLOW
{JUMP IF CARRYOUT SET. RESET CARRYOUT

10R INVERTED AND SKIP IF NOT ONES
I0R INVERTED AND SKIP IF DNES
IAND AND SKIP IF NOT ZEROS

IAND AND SKIP IF ZEROS

ICOMPARE AND SKIP IF NOT EQUAL
ICOMPARE AND SKIP IF EQUAL

!INTEGER ADO

VINTEGER SUBTRACT

VINTEGER MULTIPLY

!SHORT DIVIDEND DIVIDE

ILONG OIVIDEND DIVIDE

YADD CARRYQOUT

ICONVERT INTEGER TO FLOATING

'ADD FLOATING

ISUBTRACT FLOATING

IMULTIPLY FLOATING

IDIVINE FLOATING

'SQUARE ROOT FLOATING

IVECTOR ADD FLOATING

IVECTOR SUBTRACT FLOATING
IVECTOR MULTIPLY FLOATING
IVECTIR INNER PRODUCT FLOATING
IVECTOR-SCALAR MULTIPLY FLOATING
ICONVERT FLOATING TO INTEGER
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“17:<UPF (1,
"18:=PKF (),

1LOGICAL
"1F:=LAND (),

"208: =LXOR (),
"2l:=I0R0),
“22:=8N1 O,

ISHIFT/ROTATE

"23:«ARS (),
"24:=ARLAT,
"25:«RRS (),
"26:=RRL 1),
"27:«LRS (),
"28:=LRL (),

1MISCELLANEDUS

*eg: =050 (1,
"SF:«ENI (),
"GO:=RF1 (),
"G4:«RET(),
"Gl:=XECO)

END
END

sevExecution. cycledn:

CYCLE IMAINI s »
BEGIN
OELAY (1) NEXT
PCe1 NEXT
REPEAT

BEGIN
INSTRUCTION() NEXT
ADDRESS () NEXT
OPERAND () NEXT
OPERATION() NEXT

GPXR (RA1=GPXRA NEXT

IUNPACK FLDATING
IPACK FLOATING

ILOGICAL AND (Name changed because of conflict

luith ISPS)

IEXCLUSIVE OR (ditto)

{INCLUSIVE OR
JAND INVERTED

LARITHMETIC SHORT SHIFTY
JARITHMETIC LONG SHIFT

{ROTATE SHORT
'ROTATE LONG

ILOGICAL SHORT SHIFT
ILOGICAL LONG SHIFT

1DISABLE INTERRUPTS
IENABLE INTERRUPTS
IRETURN FROM INTERRUPT
YVRETURN FROM SUBROUTINE

{EXECUTE




alad -

ek ot

GPXR [RB) «GPXRB NEXT i
INRPT-QVFF OR DIVFF

! IF INRPTa>(,,,
END

END
) ﬂ

STOP

’ i o
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MISSION
of
- Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition proghams Lin support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas of technical competence
{8 provided to ESD Program Offices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic gudldance and control, sur-
velllance of ground and aerospace objects, intelligence data
collection and handlina, information system technology,
Lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.
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