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1. Introduction

ln this note we consider a nonparametric approach to estimating an unknown

probability distribution function, or equivalently, a reliability function.
i That is, nothing is assumed to be known about the specific form or parameters
of the distribution. Specifically, nonparametric empirical Bayes estimation
will be considered in that a prior distribution over the space of all probability
distributions is assumed to exist but is not completely specified. Korwar and
Hollander (1976, 1977) have taken such an approach based on the nonparametric
Lbayes estimation of a distribution function given by Ferguson (1973, 1974).
We will present two additional nonparametric empirical Bayes estimators of a 1

distribution function, examine their properties, and compare them with the

Korwar-Hollander estimators. These estimators appear to be plausible alternatives ;
to the Korwar-Hollander estimators. i
Let (Pi, ﬁi), i=1,2, ..., be a sequence of independent random elements, {
3 where P, are random probability measures on the real line and, given
E |

» = P =
li P, 51 (xil’ ceny x1m ) 1s a random sample from P, Let Fi denote the

i

corresponding random distribution function for each P., i =1, 2, ... . The P1

are taken to have a common prior distribution given by a Dirichlet process on
the measurable space (R, B), where R denotes the real line and B is the o-field
of Borel subsets of R. The parameter of the Dirichlet process will be denoted
by a(*), a 0- additive finite nonnull measure on (R, B). (See Ferguson's

(1973, 1974) papers for basic definitions and properties of Dirichlet processes.)

We consider the problem of estimating the distribution function

Fm_l(t) =P

n+l((- o, t]) in this empirical Bayes framework with respect to the
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loss function L(F, F ) = IRIF(t) - F (t)l2 dW(t), where W(t) is a specified
*

nonrandom weight function and F 1is an estimator of F. Korwar, et al {1976,

1977) proposed the sequence of estimators

n ~
o F.(8)/n+ (1-p JF (t),n=1, 2, ...,
1 i=1 1 m o n+l ’

(1.1) (t) = P,

Gn+1

where p = a(R)/[a(R) + m J. Exact risk expressions were obtained and the
n

rate at which the overall expected loss for G converged to the minimum Bayes

ntl
risk (attained by Ferguson'’s (1973) nonparametric Bayes estimators) was indicated.
Here two other sequences of estimators are proposed and their asymptotic

optimality and comparison with (1.1) are considered.

2. The Estimators and Their Asymptotic Optimality

let M = {Mn+1} represent a sequence of estimators of an unknown distribution
tunction F. In our empirical Bayes framework, Ferguson's (1973, p. 222) Bayes

estimator of F based on the (n+l)st stage sample is given by

X
(2. 1) Fo@e=p  F()+A-p )F_.(0),
o+l my O m4  TH

where Fo(t) = a((-=,tl)/a(R) and F is the sample distribution function of

ntl
X 41e Then the Bayes risk Rn+1(a) of (2.1) is given by
. ~ 2
(2.2) R (@ =E {f(E (F(t) - F_ (t))71aw(p)},
tl X1 FOOIX L, M+l

and the risk of Mn+l is

' i
2
RM 1,00 = Ey 1{f[l".l,.(t)lx +1(F(t) - M, () 2dw(e)}.

Denote the expectation of R(Mnﬂ'“) with respect to 51. coey g(__ by Rnﬂ(n, a).




Definition 2.1. The sequence'H=={Mh+l} is said to be asymptotically

optimal relative toa if Rn+l(M’ u)/Rn+l(a) +1as n+ o,

We note that when the sample sizes at each stage n are equal, then
Definition 2.1 reduces to that of Korwar et al (1976, Definition 2.3). In
this case, R“+l(a) = R(a), the minimum Bayes risk for Ferguson's estimator.

For completeness we state Lemma 2.5 of Korwar et al (1976).

Lemma 2.1. Let P be a Dirichlet process on (R, B) with parameter a,

and let Xl, crey xm be a sample of size m from P with distribution function

F(t) = P((-~, t]). Let F(t) be the sample distribution function of

X = (Xl, ey Xm). Then for each t € R

E(F(t)]X) = Fm(c).

E(F(v)) = Fo(t).
and

E(F2(t)) = Fo(t)/m + (m-DF (tHF (D)a(R)+1}/ {ma(R)+1)},
where *

F (6) = p Fo(t) + (1-p )F(t) and p = a(R)/[a(R)+m].

Korwar et al (1977) proved the following theorem.

Theorem 2.1 Let a(R) be known. Then the sequence G = {Gn+1} defined by

(1.1) is asymptotically optimal relative to a.

We now introduce two other sequences of estimators which seem to be

natural candidates for empirical Bayes estimation. We discuss their asymptotic




risk behavior and in Section 3 consider some of their small sample properties
and their behavior during early stages of the empirical Bayes estimation as

compared with the sequence (1.1).

If the sample sizes at the various stages are equal, mo=m, n=l, 2, ...,
the estimator Gn+l puts equal weights on each of the previous n sample dis-
tribution functions. In some situations, it might be desirable to place more
weight on samples which occur at the most recent stages than those which are

observed at the beginning of the process. A sequence of estimators which is

appealing in this sense 1is defined by
2 ;* = p GY(t) + (1-p) F_. (), n=1, 2
(2.3) (Jlﬂ'l(t) = Pm Gn(t) "'Pm n+l y D51, &, o0

* ~ * *
where Gl(t) = Fl(t). The next theorem shows that G = {Gn+1} is not exactly
asymptotically optimal relative to a, but can be made e-asymptotically optimal

as discussed after the proof.
*
Theorem 2.2. As n -+ ®, Rn+l(C ,@) converges to [1 + a(R)/(2a(R)+m) IR(a).
» * ()
Proof. First, we write Gn+l as
* n n-1 2
Gn+1(t) = pmfl(t:) + P, (1 pm)l-‘z(c) + ...
+ pm(l-pm)Fn(t) + (1-pm)Fn+l(t).
Now, similar to Equation (2.12) of Korwar et al (1976), it can be shown that

* ~ * 2
R, (G ,a) = R(a) +!s§1m§“ (F () - €, (£)) aw(e).

After some straightforward algebra and applying Lemma 2.1, it is easy to show

that as n + @
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(2.4) R, (6,a) » R@) + [a®(R)/ (a(R)+m) (2a(R)+m) (a(R)+1)]
x[Fy(t) (1-F(t) )dW(t) .
3 However, according to Equation (2.19) of Korwar et al (1976),
R(a) = [a(R)/(G(R)+1)(G(R)+m)JfF0(t)(l-Fo(t))dW(t)-

Thus, atfter simplification, (2.4) becomes

R, (6",@) » (1 + a®)/(0®+m)IR@.  ///

Note that if we increase the sample size m, the difference between

* *
lim R_. (G ,a) and R(a) will become smaller, and we can call {G .}

c-asymptotically optimal relative to a in this case, since for any € > 0

*
we can choose m so that lim Rn+1(G ,0) 1s within € of R(a).
n+ %

The second sequence of estimators which we consider is defined by

(t) = Py Sn(t) + (l-plll )Fn+1(t)’ n=1,2,...,

3 (2.5)
1 n+l n+l

L)

where Sl is the sample distribution function of the pooled observations

X ""’§i' Note that Hn+l(c) is exactly the same as Gn+l(t) when mo~m

for each n. However, the asymptotic optimality of {“n+1} for the case that
the sample sizes are not constant requires a restriction on the sample sizes
at each step as the next theorem shows. This condition results from the fact

that the pooled sample from which Sn is obtained is of size Kn = Z:-l mi'

Theorem 2.3. For unequal sample sizes, the sequence of estimators

H= {Hn+l} is asymptotically optimal relative to & if and only if L

as n + o,




Proof: Let Kn = 2?31 m, . Similar to the proof of Theorem 2.2, we have

(2.6) R (H@) =R, (@) + fEx X (Fm (t)-Hn+1(t))2dW(t),
=1 =n n+l
where
. ~ 2 2 -
.7 E (F () -H  (eN°=p {F_(t)-2F (t)ELS_(t)]
51"’!n T+l wtl s 0 0 n

a2
+ E[S_(©)]}.

Applying Lemma 2.1 to the expectations on the right side of (2.7), equation

(2.6) becomes

(2.8) Rn+l(H,a) =[1+ a(R)(Q(R)+Kn)/Kn(a(R)+mn+l)]Rn+l(u)'
Hence, Rn+l(H,a)/Rn+1(a) + 1 as m + o, /1

We can compare the performance of the estimator Hn+1 to that of the sample

~

distribution function Fn+1 at each stage. The following corollary to Theorem 2.3

shows that, under certain mild conditions on the sample sizes m is

nt1’ Mot
better than the sample distribution function in the sense that Hn+1 has smaller

overall expected loss.

Corollary 2.1. For eachn = 1,2,..., R(F ) > Rn+l(H,a) if and only

nt1®

if Kn g Ml
Proof. From equation (3.3) of Korwar et al (1976),
(2.9) R(F /%) = 1+ a(R)/mn+1]Rn+1(a).

Hence, comparing (2.8) and (2.9), the result follows. l//

We have considered the asymptotic optimality of the proposed sequences of
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estimators of a distribution function in an empirical Bayes setting. In
general, however, the comparison of the three sequences for small values of n
by analytical methods is difficult, if not impossible. Monte Carlo simulations
live been performed, assuming that Fi is a Weibull distribution with a known

shape parameter and random scale parameter . Some of the results of the

simulations are given in the next section.

3. Monte Carlo Comparisons

In this section, we implement Monte Carlo simulation of random lifetimes
to study properties of and compare the empirical Bayes estimators discussed
in Section 2.

The Weibull distribution F(t) = l-—exp[tY/B]. (t 2 0), was taken to be the
failure model and was assumed to be the 'correct" model reflecting past knowledge.
With the parameter Yy fixed, we assume B is randomly distributed with the
exponential distribution as the prior distribution (Canavos and Tsokos (1973)).

For each fixed y,a2(R), and A (the parémeter of the exponmential prior

distribution for B),the simulations were performed as follows:

1. Fifteen values of B were generated from the assumed exponential prior
distribution with paramecter A. The true reliability R(t) for the Weibull dis-
tribution was computed and stored for each of the 15 stages, where t is chosen
such that R(t) = 0.4,

2. A sample of size m_was generated from a Weibull distribution for each
of the 15 values of B, representing 15 stages of the process. Three sequences

of estimators were then computed according to (1.1), (2.3) and (2.5), and the

squared error between those values and the true reliabilities were stored for

cach of 15 stages.




3. With the same 15 values of B, step 2 was repeated 100 times, and the

average squared error was calculated.

4. Steps 1 through 3 were repeated 100 times (at each time, 15 new B values

werce generated in step 1), The mean of the average squared errors of each
estimator from the true reliability stored in step 3 for each of the 100

repetitions was computed, giving an estimated mean squared error (MSE).

The above procedures were repeated for several different values of Yy, a(R),
and A. Some of the results of the simulations are given in Tables 1 and 2.
The tables give the average true values of reliability and the MSE's of the
three sequences of estimators at each of the 15 stages.

The results indicate that the estimated mean squared errors of G are
generally smaller than those of G* at each stage when the sample sizes are equal.

Also, for each of the estimators, the mean squared errors for sample size 10

are smaller than those for sizes 3 and 5. Thils, however, follows from the
observation that P, 0 as m + =, Also, G and H perform equally well in the
sense that neither of the MSE's of G or H is uniformly smaller than the other
throughout the 15 stages when sample sizes are unequal.

Hence, nothing can be said definitely about which estimator is generally
better than either of the other two for small n. Obviously, the Korwar-
Hollander estimators G perform better in the sense of smaller asymptotic risk
than G*, although for unequal sample sizes G and H are very close. In addition
it was observed that the choice of the value of a(R) had little effect on the

results after the first few stages of the process.

o
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