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1. Introduction

in this note we consider a nonparametric approach to estimating an unknown

probability distribution function, or equivalently, a reliability function.

That is, nothing is assumed to be known about the specific form or parameters

of the distribution. Specifically, nonparametric empirical Bayes estimation

will be considered in that a prior distribution over the space of all probability

distributions is assumed to exist but is not completely specified. Korwar and

ilollander (1976, 1977) have taken such an approach based on the nonparametric

Bayes estliation of a distribution function given by Ferguson (1973, 1974).

We will present two additional nonparametric empirical Bayes estimators of a

distribution function, examine their properties, and compare them with the

Korwar-lollander estimators. These estimators appear to be plausible alternatives

to the Korwar-Hollander estimators.

Let (1i - ) , i = 1, 2, ..., be a sequence of independent random elements,

where 1P. are random probability measures on the real line and, given1

li = I', Xi = (Xil, ... , Xim) is a random sample from P. Let Fi denote the

corresponding random distribution function for each P., i - 1, 2, .... The Pi

are taken to have a common prior distribution given by a Dirichlet process on

the measurable space (R, 8), where R denotes the real line and 8 is the a-field

of Borel subsets of R. The parameter of the Dirichlet process will be denoted

by a(-), a o- additive finite nonnull measure on (R, 8). (See Ferguson's

(1973, 1974) papers for basic definitions and properties of Dirichlet processes.)

We consider the problem of estimating the distribution function

F n+l(t) = P +l , t]) in this empirical Bayes framework with respect to the
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loss function L(F, F ) )IF(t) - F ]()l dW(t), where W(t) is a specified

nonrandom weight function and F is an estimator of F. Korvar, et al (1976,

1977) proposed the sequence of estimators

(1.1) C r~l(t) - P m n F (t)/n + (1-P mn ) F 'I (t), n- 1, 2,

where p. - a(R)/Ca(R) + m n]. Exact risk expressions were obtained and the
n ii

n

rate at which the overall expected loss for G rl converged to the minimum Bayes

risk (attained by Ferguson's (1973) nonparametric Bayes estimators) was indicated.

Here two other sequences of estimators are proposed and their asymptotic

optimality and comparison with (1.1) are considered.

2. The Estimators and Their Asymptotic Optimality

Let M - {M n+I represent a sequence of estimators of an unknown distribution

tunction F. In our empirical Bayes framework, Ferguson's (1973, p. 222) Bayes

estimator of F based on the (n+l)st stage sample X is given by

A

(2.1) F (t) m F 0 (t) + (1-p Fn(t),mn+l Pmn+l 'n+l

where F0 (t) = c((-Ct)/t(R) and F is the sample distribution function of
ni+1

X n+1. Then the Bayes risk R n+(a) of (2.1) is given by

(2.2) Rn+1 () - EX +fr, F(t)IX (F-t) - 2

and the risk of Mn+1 is

R(Mn+,1 ,a) - EX 1+{S[EF (t)X n+I(F(t) - Mrrl(t)) 2dW(t)).

Denote the expectation of R(Mn+1,a) with respect to X, "'" X by R n+I(M, C).



Definition 2.1. The sequence '1 = Mn+I is said to be asymptotically

optimal relative to a if Rn+l (M, u)/R(n+l(x) I as n -+ .

We note that when the sample sizes at each stage n are equal, then

I)efinition 2.1 reduces to that of Korwar et al (1976, Definition 2.3). In

this case, Rn+ (a) - R(a), the minimum Bayes risk for Ferguson's estimator.

For completeness we state Lemma 2.5 of Korwar et al (1976).

Lemma 2.1. Let F be a Dirichlet process on (R, 8) with parameter a,

and let X1 ..... X be a sample of size m from P with distribution function
M

F(t) = P((-.., 0]). Let F(t) be the sample distribution function of

(Xv ... , Xm). Then for each t C R

E(F(t)IX) m m (t)

E(F(t)) Fo(t),

and

E(F2(t)) F 0o(t)/m + (m-l)F0 (t)fF 0 (t)c&(R)+l}/{m(a(R)+l)} ,

where

F m(t) - PmF0 (t) + (1-pm)F(t) and pm - a(R)/[x(R)+m].

Korwar et al (1977) proved the following theorem.

Theorem 2.1 Let a(R) be known. Then the sequence G - {G n+1 } defined by

(1.1) is asymptotically optimal relative to a.

We now introduce two other sequences of estimators which seem to be

natural candidates for empirical Bayes estimation. We discuss their asymptotic
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risk behavior and in Section 3 consider some of their small sample properties

and their behavior during early stages of the empirical Bayes estimation as

compared with the sequence (1.1).

If the sample sizes at the various stages are equal, m n m, n-I, 2,
n

the estimator Gn+1 puts equal weights on each of the previous n sample dis-

tribution functions. In some situations, it might be desirable to place more

weight on samples which occur at the most recent stages than those which are

obs :erved at the beginning of the process. A sequence of estimators which is

appealing in this sense is defined by

(2.3) G-l (t) = pm Gn(t) + (l-Pr) Fn+1 (t), n1l, 2,

where Gl(t) F1(t). The next theorem shows that G {G n+I is not exactly

asymptotically optimal relative to o, but can be made e-asymptotically optimal

as discussed after the proof.

Theorem 2.2. As n - -, R n+1(C ,a) converges to Li + a(R)/(2a(R)+n)1R(o).

Proof. First, we write G M(t) as

G (t) (t) + P, 1 pm)F (t) +

+ Pm(1-Pm)Fn(t) + (l-Pm)Fn+l(t).

Now, similar to Equation (2.12) of Korwar et al (1976), it can be shown that

R n+(C ,a) - R(a) + _ EXi n (F (t) -Gn+l(t))2dW(t).

- -n

After some straightforward algebra and applying Lemma 2.1, it is easy to show

that as n o
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(2.4) Rnq(C ,a) -* R(a) + [a 2 (R)/( (R)+m) (201(R)+m) (c(R)+l)]

xfF0 (t) (1-F0 (t))dW(t).

However, according to Equation (2.19) of Korwar et al (1976),

R(%) = [a(R)/(oL(R)+l)(oa(R)+m)]fF 0 (t)(1-F0 (t))dW(t).

Thus, after simplification, (2.4) becomes

Rn+,(G*,c) - (1 + a(R)/(201(R)+m))R(O&). //

Note that if we increase the sample size m, the difference between

lim R (G ,a) and R() will become smaller, and we can call (G I
ro On+l ii+1

c-asymptotically optimal relative to a in this case, since for any C > 0

we can choose m so that lim Rn+1 (G ,C) is within £ of R().
n-0

The second sequence of estimators which we consider is defined by

(2.5) Hn+l (t) = P n+1Sn(t) + (l-p m  ) n+1 (t), n-1.2,...,
n~l "'n+1 1

wh're SI is the sample distribution function of the pooled observations

AI ...... _E. Note that Hn+l(t) is exactly the same as Gn+1 (t) when mn - m

for each n. However, the asymptotic optimality of {H n+I for the case that

the sample sizes are not constant requires a restriction on the sample sizes

at each step as the next theorem shows. This condition results from the fact

that the pooled sample from which Sn is obtained is of size K n - mI

Theorem 2.3. For unequal sample sizes, the sequence of estimators

H -H n1I is asymptotically optimal relative to i if and only if n

a s n "
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Proof: Let K m Similar to the proof of Theorem 2.2, we have

(2.6) Rn+l(H a ) f Rn,l(a) + fEX, (F mn+(t)-Hn+l(0))dW(t)'

where

2 2
(.7) EX .X (Fmn+1 (t) - Hn+l (t)) 2= P F0n+l F( t)-2Fo(t)ELSn(t)i

A2
+ E[S (t)1.

n

Applying Lemma 2.1 to the expectations on the right side of (2.7), equation

(2.6) becomes

(2.8) Rn+1 (H,a) - [1 + c(R)(a(R)+K n)/K n(a(R)+m n+1 )]Rn+l(Q).

Hence, R rl(H,ca)/Rn+(a) 1 as m n -- ///

We can compare the performance of the estimator H n-l to that of the sample

distribution function Fn+1 at each stage. The following corollary to Theorem 2.3

showF that, under certain mild conditions on the sample sizes mn+l, Hn+ is

better than the sample distribution function in the sense that H n+ has smaller

overall expected loss.

Corollary 2.1. For each n = 1,2,..., R(Fn+lc) > Rn+l(H,u) if and only

if mn+l"

Proof. From equation (3.3) of Korwar et a] (1976),

(2.9) R(Fn,) [n+l]n+l

Hence, comparing (2.8) and (2.9), the result follows. ///

We have considered the asymptotic optimality of the proposed sequences of

I



estimators of a distribution function in an empirical Bayes setting. in

general, however, the comparison of the three sequences for small values of n

by analytical methods is difficult, if not impossible. Monte Carlo simulations-

htv. been performed, assuming that Fi is a Weibull distribution with a known

shape parameter and random scale parameter a. Some of the results of the

simulations are given in the next section.

3. Monte Carlo Comparisons

In this section, we implement Monte Carlo simulation of random lifetimes

to study properties of and compare the empirical Bayes estimators discussed

in Section 2.

The Weibull distribution F(t) = l-exp[t Y/01, (t a 0), was taken to be the

failure model and was assumed to be the "correct" model reflecting past knowledge.

With the parameter y fixed, we assume 0 is randomly distributed with the

exponential distribution as the prior distribution (Canavos and Tsokos (1973)).

For each fixed Y,a(R), and X (the parameter of the exponential prior

distribution for a),the simulations were performed as follows:

1. Fifteen values of 8 were generated from the assumed exponential prior

distrihlition with parameter X. The true reliability R(t) for the Weibull dis-

tibutiion was computed and stored for each of the 15 stages, where t is chosen

such that R(t) = 0.4.

2. A sample of size m was generated from a Weibull distribution for eachn

of LeLl 15 values of 0, representing 15 stages of the process. Three sequences

of estimators were then computed according to (1.1), (2.3) and (2.5), and the

squared error between those values and the true reliabilities were stored for

each of 15 stages.
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3. With the same 15 values of 0, step 2 was repeated 100 times, and the

average squared error was calculated.

4. Steps 1 through 3 were repeated 100 times (at each time, 15 new 0 values

were gonerated in step 1). The mean of the average squared errors of each

estimator from the true reliability stored in step 3 for each of the 100

repetitions was computed, giving an estimated mean squared error (MSE).

The above procedures were repeated for several different values of y, a(R),

and X. Some of the results of the simulations are given in Tables 1 and 2.

The tables give the average true values of reliability and the MSE's of the

three sequences of estimators at each of the 15 stages.

The results indicate that the estimated mean squared errors of G are

generally smaller than those of G at each stage when the sample sizes are equal.

Also, for each of the estimators, the mean squared errors for sample size 10

are smaller than those for sizes 3 and 5. This, however, follows from the

observation that pm - 0 as m - o. Also, G and H perform equally well in the

sense that neither of the MSE's of G or H is uniformly smaller than the other

throughout the 15 stages when sample sizes are unequal.

Hence, nothing can be said definitely about which estimator is generally

better than either of the other two for small n. Obviously, the Korwar-

liollander estimators C perform better in the sense of smaller asymptotic risk

than G , although for unequal sample sizes C and H are very close. In addition

it was observed that the choice of the value of 0x(R) had little effect on the

results after the first few stages of the process.
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