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ments in a random order rather than the causal okder in which

they occur.

The off-line use of an extended Kalman filter is illus-

trated in terms of a particular application. This technique

is essentially a sequential version of the Gauss-Newton min-

imization procedure with relinearization being performed after
£

each measurement is processed. Ficticious measurement noise

is necessary to prevent filter divergence and is included in

a very simple manner.

Computational savings over more conventional iterative

minimization techniques are possible if the functions and

partial derivatives involved are sufficiently complex to

evaluate. But there is a real question regarding the extent

to which convergence can be assured. The results of simulatio5

are presented.
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Abstract

The straightforward application of a sequential estimator to

nonlinear regression (curve fitting) priblems is gnerally not possible when

good a priori parameter estimates are not available and also when

minimizing the error over a local portion of the data does not in-

sure that it is minimized globally. However, a sequential estimator

may be easily utilized to perform off-line processing in such a si4

uation. The key is to process the measurements in a random order

rather than the causal order in which they occur.

The off-line use of an extended Kalman filter is illustrated

in terms of a particular application. This technique is essentially

a sequential version of the Gauss-Newton minimization procedure

with relinearization being performed after each measurement is pro-

cessed. Ficticious measurement noise is necessary to prevent filter

divergence and is included in a very simple manner.

Computational savings over more conventional iterative minimi-

zation techniques are possible if the functions and partial deriva-

tives involved are sufficier:ly complex to evaluate. But there is

a real question regarding t a e.%tent to which convergence can be

assured. The results of sin,.-.ations are pre-sented.
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Chapter I

The Problem Statement

We will restrict our attention to nonlinear models of the

form

y(e ) h(8k) + v, kml,2...N (ia)

h(Bk f)k b

where

i) f(B) is a known continuous function that is even and

monotonically decreasing in 0.

ii) lir en-lf ( 0

iii) 0 is a function of time and some parameters whose values

are unknown. The c's are also unknown.

iv) n is known.

v) The number of data points available and the signal-to-

noise ratio are such that a curve fitting technique, that

is estimating parameters by minimizing some error criteria,

is viable.

For the purposes of this paper, it will also be assumed that

* vi) Vkis a Gaussian random vAriable -h(o,2 ). a 2known.

vii) ek - S(tk-TO), where S and T0 are unknown scale and loca-

tion parameters, respectively.

One wishes to estimate the parameters, C1 ,c2 ...nS,TO.

This is a nonlinear (in the parameters) optimization problein.

For off-line processing, there are several well-known iterative mini-
s
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mization techniques (IMT such as those of the descent type, that

are obvious possibilities.

Moreover, the nonlinear model in question is a 'separable' model;

its parameters can be separated into two groups, those which appear

linearly (c1 ,c2 ,c3 ) and those which appear nonlinearly (8,T0). This

class of nonlinear models is significant both because of the wide

variety of applications in which it appears and because it's struc-

ture can be exploited in off-line optimization to achieve computa-

tional efficiency (1].

We will first, however, investigate the suitability of sequen-

tial estimation of the parameters. By 'sequential estimation' is

meant calculating an updated estimate as each sampled measurement of

y(B), that is y(Bk), arrives. This calculation is made using only

the previous estimate and the current observation.

The reason for considering sequential estimation is that in at

least one application, the estimation of ship movement by means of

a fixed sensor measuring magnetic field intensity, the signal can

arrive over a period of a minute or so with the spacing between

sampled points being on the order of tenths of a second. Not only

may enough time be available for real time sequential processing but

it may also be desirable to obtain reasonably accurate estimates as

early as possible.

V
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Chapter 2

Some Difficulties With Secuential Proceasing

The model of (1) can be put in the Kalman estimation framework

I with the state vector, 2 k, comprised of the parameters to be esti-

mated. Then:

Xk+l = 'k

(2)
yk - hk(2k) + vk

where there is no system noise present.

Nonlinear sequential estimators, such as the extended Kalman

filter, are most successful when an initial reference "trajectory",

about which one can linearize, is known to a high degree of confi-

dence. For this discussion and for the latter examples we will
assume that initial nonlinear parameter estimates accurate to about

a factor of two are available.

* The main difficulty that is encountered in attempting to se-
quentially estimate the parameters of (1) is that minimizing the

error (between the observations and those predicted using the esti-
* mated parameters) over a local section of the waveform does not

guarantee a good fit over the entire waveform.

In particular, for a local section of the waveform many sets

P of parameter estimates will produce almost equally good fits.

To illustrate this point, consider the model of (1) with

S u .014
2 a 200.

C2 a 1.0 (3)
C3 a -.1

S62 . 10-4
aI w00 l
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Fig. 1. is a plot

For different values of (5,?0 the least square estimate of

(c]1 c2 ,c3 ) were calculated using the noise corrupted waveform of (

Fig. 1. The sum of the square errors between the y(ak) and the
A A A A c

model using each such set of (S,TOc 1*c2 P 3 ) was also c

Because of the least square error criterion, the linear parameter

estimates, t 1, 2. are a function of the chosen (§, 0) Thus aesimte , V V2 03  hu

three-dimensional plot of the error versus various values of (ST0

is informative.

Moreover, Golub has established that there is a direct relation-

ship between the extreme in this plot and those in the space of all

the parameters.

The theorem, which is proven in Golub [11, deals with square

error optimization applied to separable models. One can define two

2 Aerror functions. The first e2 a), is the error as a function of

both linear and nonlinear parameters. Now let 2 be partioned into

T T T Tlinear and nonlinear parameters, I *LN,aTL. The second error

funtio, e2 Afunction, e2 (L), utilizes the fact that for a given nonlinear pars-

meter estimate, IE the least square estimate of the linear para-

meters, 1 IN LS to unique. Since the linear parameter estimates are

then a function of the nonlinear parameter estimates, e2  sa

function-6f only the nonlinear parameters.

For our purposes, the theorem is relevant as it establishes

that for a small enough neighborhood in the nonlinear parameter

space, Q,where the matrix of basis functions has constant rank (see

Appendix 3) the following are true:

US
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i) if is a critical point (or global minimizer in G) ofT T T

then cELIN LSo ) is also a critical point (or global minimizer

for AWL e ') of 02 k.

ii) if NkJ ~) is a global minimizer in *2(k) for §UOO then

2jLis a global minimizer of e~(~ in2

Practically, (i) implies that a local minimum found in one of the

6 previous error surfaces, which are functions 
only of the nonlinear

,trameters, would in fact be a minimum in the space of all the para-

meters. Thig is the space in which the RSKF, as well as iterative

minimization techniques, would operate.

In particular, several plots were made, Figs. 2-5, using the

first 100,200,300 and 400 sampled values of the waveform, respec-

tively. The error was normalized by Z y2 (Bk) and -logl 0 of this
k=l

error was actually plotted so that the z axis is a logarithmic

scale and a peak corresponds to an error minimum.

As one might expect, with only the first 100 sampled values

accesible (Fig. 2), the error surface is quite flat. There is no

clearly optimum set of (S,.0). As more data is available (Figs.

3-5), the optimal (S,10) does indeed develop at about (S=.014,

T0-200), while local minima decrease in significance.

A similar set of plots (Figs. 6-9) were made using

Ve k ) - (l+02)- 5/2. This function arises in a particular applica-

tion that is explained in some detail in Chapter 4. The parameters

of (25) were used in generating these plots. With only 100 sampled

values available, once again the error surface is rather flat.

This situation especially mitigates against the use of esti-

mators that implicitly assume that the current parameter estimate

adequately summarizes the information concerning the parameters
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FIRSI 200 SAMPLES ARE ACCESSIBLE

Figure 3
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FIRST 400O SRMPLES ARE ACCESSIBLE

Figure5



* 14
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Figure 6



15

FIR ST 200 SRMPLES RAE RCCESSIB.E

Figure 7



16

Fl RST 300 SRMPLES RRE RCCESSIBLE

* Figure 8



17

&5. 31FIR ST L4QO SRMPLES ARE RCCESSIB E

Figure9



. 1

The problem with a sequential estimator that processes the

* data in its causal order is that during the early sections of the

waveform there are many parameter values that provide locally al-

most equally good fits. Then, when the filter is processing data

* in the latter section of the waveform it again has no information

available to it concerning the fit in the other (earlier) parts of

the waveform.

* Recursive least square estimation of only linear parameter models

does not suffer from this problem as the estimate at any time, tk v

is the least square estimate for al measurements received up till

St k * Nonlinear estimators generally do not enjoy this property.

An extended Kalman filter, for instance, maintains an error co-

variance matrix, Zk' whose trace is non-increasing - (in the absence

* of system noise). Practically this means that a good fit during the

early part of the waveform leads to unrealistcally loW errow-covariance

ectimates. These represent such a high degree of assumed confidence

... the current estimate that when more recent measurements show a

lack of fit, through the growth of the residuals (innovations), the

gain is set small enough to ignore them and the filter ultimately

diverges.

Before continuing it should be noted that the unsuitability of

sequential estimation has been discussed only for a particular type

of model and only within the limits of our earlier definition of

sequential estimation'. Tenney et.al.[2], for instance, obtained

good results for a somewhat related model through a linearized ver-

sion of the model equations that depended only on a single nonlinear

parameter, thus allowing the use of parallel filters. Also, a real

time estimator is possible if it stored all or some representative

8
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portion of the data received up till time tk and its estimate de-

pended only on this data, not the previous estimate. The diffi-

culty here, though, is computational.

While a simple sequential estimator may be inappropriate for

real time processing, the next section will show that it is possible

to effectively utilize it in an off-line manner.

U~i

0
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.Chapter 3

Off-Line Use of a Seagential Estimator

3.1 Introduction

* The main impediment to the on-line implementation of a sequen-

tial estimator, in the context of the model (1), is that for the

most recent estimate of the parameters, the error is only evaluated

* over a local section of the waveform. While one would like to

evaluate the error over the entire waveform, this can only be done

once the data has been completely received, that is, off-line. Since

p off-line processing may be justifiable in some applications, it will

now be considered.

Given samples from the entire waveform, how can a sequential

D estimator, such as the extended Kalman filter, perform off-line pro-

-sing? The simplest way would be to process the measurements not

ii, their causal order (y1 ,y2 ,y3 ...) but in some random order (Y3 7 '

Y2 0 5 ,Y 8 0 ... ). An obvious possibility is equiprobable sampling

without replacement. The advantage of such a random sampling esti-

mator is that over a number of iterations the filter obtains a mea-

t sure of the error over the entire waveform.

Again, the three dimensional error plots of Chapter 2 can be

used for illustrative purposes. Figs. 10-13 were generated with
2

* f(9k) - e-k and the parameters of (3), owever, the measure-

ments were randomly sampled (without replaceent). Thus Fig. 10 is

based on the first 10 randomly selected measurements. Fig. 11 uses

* an additional 30 measurements for a total of 40 randomly selected

measurements and so on.

What these plots Indicate is that in contrast to Fig. 2, even

with 10 random measurements, there is a clearly global optimum.
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Additional measurements, of course, improve its "visibility".

Henceforth, an extended Kalman filter which processes pre-

recorded measurements in a random order will be referred to as a

random sampling Kalman filter (RSKF).

3.2 Relation to the Gauss-Newton Technique

There is a close relationship between the extended Kalman filter

for (2) and the iterative and off-line (batch) Gauss-Newton optimiza-

tion technique. Both express the measurement nonlinearity as a

first order Taylor series expansion so as to obtain equations that

are linear in the state/parameter deviation (dx -kk+l-Ek). Linear

solution methods then can be applied.

It is well known that if an extended Kalman filter does not

relinearize (continue using the original 7 estimate for generating

basis functions and partial derivatives), after each measurement

is processed, it can be made to produce results identical to those

of a single Gauss-Newton iteration (8]. That is, without relinear-

ization, an extended Kalman filter is a sequential version of the

Gauss-Newton technique. It follows that the RSKF described previously

can be thought of as a sequential version of a Gauss-Newton iteration

where relinearization is performed after each measurement is process-

ed.

While such relinearization offers the potential for faster con-

vergence (8], there are often divergence problems associated with

extended Kalman filters. Furthermore, for certain models the

filter may converge to points other than the convergence points of

the off-line hatch) technique [8,12). Steps to mitigate against

the former difficulty are discussed in sec. 3.4. The remainder

of this section is devoted to a more detailed exposition of the
p

previous points.
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In the Gauss-Newton approach one starts with N measurement

equations modeled as
Y M i Z) +L (4)

where each term is a Nxl column vector and the statistical properties

of £ are assumed to Justify a least squares fit. Expanding the

nonlinearity one has:

Y1 ) = (5)

# The least squares estimate of the deviation, dxk=ik-+ .lk

follows from:

minIX-j(1k) 112 (6)

aItk

It should be noted that in practical use the correction term,

Aak, is multiplied by a scalar which is optimized during each

iteration [3]. We are not considering this.

As was mentioned above, if the a used for generating the

measurement function matrix, j(). and its partial derivatives is

held fixed (no relinearization), then J+1 above can be arrived at

through a set of sequential estimator equations. These are de-

rived in the same way that the recursive least squares alforithm
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can be derived from the off-line (batch) least squares solution

[13]. One obtains:

Jk+1- t k + 4 i-b k)-l 00 ' 10))

where hi(x) is the measurement function from (2) and H. (x) is

the nxl vector of partial derivatives of hi (2). The subscripts

on the gain expression, k and i, represent the iteration and ran-

domly chosen measurement, respectively. JR is the measurement noise

covariance matrix and.Ek is the error covariance matrix.

The k+i of (8) can be made arbitrarily close to the I re-
sulting from a single iteration of (7) on the same k+l measurements

that the sequential estimator (8) has processed if the sequential

estimator is properly initialized. This is usually accomplished by

setting the initial oovariance matrix, PO" to a diagonal matrix

with arbitrarily large diagonal terms [13,14). While in linear

sequential estimators 20 is often set at zero, this is not appro-

priate in the nonlinear case wbere the measurement function partial

derivatives are functions of I. The initial estimate of K is in-

stead used.

The above sequential estimator equations correspond to the

'linearized" filter of Gelb [15) for the model (2). That is,

is the reference estimate (trajectory) and the filter equations
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are linearized about it. If the equations are relinearised after

each measurement (10-4). the last term in the equation for

1k+l drops out and (B) represents the extended Xalman filter

equations for (2).

.9

9

I

9

S

S
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3.3. The Correction Vectors IX
Now do the correction vectors, dkw generated by the RSKF

compare to those produced by one of the standard iterative descent

techniques ?

In an iterative descent technique, the vector of all para-

meters, at the k+l iteration, is:

Ak~ - - aJL(lk)ff (1k (9)
A

where VE(Rk) is the gradient of the error function, jL is a

matrix depending on the particular descent technique employed and

the scalar a is chosen small enough to assure convergence. For a

square error criterion.

N

f k) - 3 I jly [-b ) 2

N (10)
= -2 Z HI'T(A.)tyj-hj(101

where H! (A ) is the matrix of partial derivatives of b (A) with

3 k = k
respect to the parameters.

Thus the iterative descent technique is

S.T (gk>[ Y5_h5 (1k])zz
A1- k+ 2a1L(gk) Z B,~)~~j A~ (11)

u--,

while the RSKF is

-k+l z k~i (Ak) [Yi-bi(1k)1 (12)

41-



30

* In the RSKF estimation equation, (12). the magnitude of the

correction vector, 1 is inversely proportional to a Measure

of the uncertainty due to both the measurement noise and the un-

certainty in the current estimate. The matrix Pk weights the cor-

rection vector components so that directions corresponding to

greater uncertainty are favored. Most importantly, the vector

summation operation of 'improvement' vectors, -kjlk), weighted by

the pointwise errors, (yi-hidk)), has been replaced in the RSKF

by only a single such term.

* What can be said about this approximation as it affects the

RSKF? By itself, minimization of the error at a single point

(given more than one linear parameter) is an undetermined problem.

The intention is that over a number of iterations, that is on

average, the direction of the correction vectors will be towards

.ecreasing error, with respect to the error surface of all the

available measurements.

At each iteration of the RSKF the single measurement that is

processed leads to a correction vector. Depending on which measure-

ment is randomly chosen for processing, different correction vectors

will result. It might initially be believed that they would all be

roughly of the same direction and magnitude but this is not

necessarily true. Individual iterations of the RSKF may produce

estimates worse than the previous estimates in spite of a trend of

reduced error over a number of iterations.

One might also suppose that at least close to the error mini-

mum, the possible correction vectors would have similar characteris-

4 . . .. -.- -- _. ] i .. .. , . .. ., _ .. ..--- - : -. . ,.--, .A ; 
-c - - - , - II I
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tics. While this is true to some extent, very close to the error

minimum it becomes important to appreciate the effect of the mea-

surement noise in the RSKF equations.

There are two sources accounting for the pointwise errors:

One is the measurement noise. Even for the optimal A, the

differences are non-zero. This can be thought of as a random error.

The second is due to using an estimate of the parameters that is not

the optimal estimate. This can be thought of as a systematic error.

Such concepts are discussed in the regression and filtering litera-

t7ure[1.

If ones' estimates are far from the optimal parameter estimates

this second source of error dominates. But close to the optimal

parameter estimates the measurement noise is more appreciable. As

the optimum is approaced, the pointwise errors above take on the

statistical characteristics of the measurement noise. That is, they

are approximately zero mean Gaussian random variables of variance

2

Since the correction vectors are proportional to the pointwise

errors, close to the optimum they will be pointing 1800 away from

the direction they would have, had there been no measurement noise,

almost 50% of the time (See Appendix A). Also the correction

vectors' magnitude becomes more dependent on the measurement noise. ()
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This in itself in not fatal to the RSKF's operation. The

same sort of statement could be made concerning clearly optimal

linear estimation procedures. It is mentioned to show the effect

of the measurement noise on the RSKF's correction vectors.

- -- Finally, with a qualification, the RSKF is as likely

to converge upon a local minimum as any iterative descent

technique. The qualification is that because the RSKF

does not move strictly in the direction of decreasing error,

it conceivably could leave the region of a local minimum.

Conceivably too, an unfortunate choice of correction vector

could place the estimates close to a local minimum.

3.4 the RSKF with Ficticious Measurements Noise

In Chapter 2 it was pointed out that if the measurements are

causally processed through on extended Kalman filter, divergence

.,ill occur simply because many values of parameter estimates provide

almost equally good fits. While random sampling eliminates this

difficulty, divergence can still occur for other reasons.

Divergence in extended Kalman filters occurs when error sources

that are unaccounted for do, in reality, exist so that the error

covariance matrix elements take on unrealistically low values. One

very simple modification of the filter equations, described below,

has been used with some success in practice to overcome this problem.

A first order approximation of the effect of uncertainties in

the parameter estimates upon the measurement equation is:

Yi = hb dh i( I db) d+ - hi(tk) 4v (13)

Y i -i(1k) + dx Ix - 2 d..v (3

.t ._.__ .__.__. __. _
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This is the measurement model used in both Gauss-Newton

optimization and the extended Kalman filter where

- & (14)

and one can linearly solve for dx and hence A.+i [3].

However, proceeding with the philosophy used in Tenney [2].

-k can be considered to be a zero mean Gaussian random vector whose

covariance matrix is the already available parameter estimated co-

variance matrix, P . Assuming that the ficticious measurement noise

is independent of the actual measurement noise. the new measurement

-noise covariance matrix is:

+
n ew  H'. T (-k) (15)

lut the second term in the sum is already available in the Kalman

denominator so that one has:

P HI [j~2R! =*)=i(.k) + (16)

This modification can be generalized. Consider the gain denominator

to consist of two measures of uncertainty, one due to the measure-

ment noise and one due to the inaccuracy in the current parameter

estimates. The nominal weighting of these two quantities is 1:1.

A weighting of 2:1 as indicated in (16) corresponds to the statistical

model of (13). But certainly other weights are possible. That

is, we might use

!Sk i Rk i(1k) [akn!j(141i!~ (1k) *'A±Ji(17
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where ak is suitably chosen.

As ak is made greater than one, the rate of filter convergence

decreases as the filter behaves more cautiously, believing an

increasing amount of uncertainty is present in the measurements.

Specifically, when the RSKF's estimates are far from the optimal

estimates, H!( A)P H'k) should be much greater than R so that

the magnitude of the correction vector is 1/a of what it would be

had ak=l.

Examples of the filters'performance using different values of

ak are presented in Chapter 4.

Although a weight of ak= 2 corresponds to the statistical model

of (13), one should not conclude that this is the best possible ak

setting. Rather the model of (13) is a heuristic device for adding

an (not necessarily minimal or even sufficient) amount of ficticious

measurement noise in order to prevent divergence.

The statistically unsatisfactory nature of (13) is two fold.

First, even though the ficticious measurement noise random variables,

A2'k and the parameter uncertainty, lk-4 are the same random

LI
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variables, in going from (15) to (16) we implicitly assume that

they are uncorrelated. Secondly, the effect of parameter uncertain-

ties in the partial derivative evaluations has not been included.

The former point can be demonstrated explicitly using

Schmidt's [16) model for including the effect of parameter uncertain-

ties in the measurement equation:

Y M(X,V,t) + q(t)
am aM

y [jj, ItX_ + G= (t]v + q(t)

E v)-9 V(q) 0 0

E(._t w E (qqt)-Q

Here y,x and v are the deviations from the nominal estimates

of Y,X and V. These are the measurements, states (parameters) and

uncertain parameters, respectively.

The resulting qain and covariance updating expressions are:

_Kw ' T + C GIT '_ T+ ,cGT+ GC H'T+ G'W T -1

Ie LH-_K _!I + BIC T,+

- _I- E A JP -K GCT

These reduce to the expressions for the gain in (16) and the

covariance in (8) if = -0, W - p and ftlw'. These are the

assumptions under which Schmidt's model is equivalent to (13).

We also mentioned that the effect of parameter uncertainties

in the partial derivative evaluations has not been included.
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Accounting for it using a measurement noise formulation is not

directly possible. If one expands the partial derivatives in the

linearized measurement equation (13) in a Taylor series about the

current estimate, the first order terms in the series (which are

second order partial derivatives) are multiplied by_.. However,

as discussed in sec. 3.2, the extended Kalman filter implicitly

assumes this term to be zero: To be more specific, it assumes

dx(k+lA), that is dx at k+l given k measurements, to be zero and

linearly solves for dx(k+lA+l).

Considering Ak to be a random variable, as in sec. 3.4, be-

comes statistically involved. The following quadratic term must

then be added to the linearized measurement equation

T BH1

where dxT comes from the partial derivative expansion and & k from

the measurement function expansion.

Whether one considers these to be the same random vector

* (h(OEk))or uncorrelated random vectors with identical distributions,

utilizing the resulting non-Gaussian distribution is a problem.

3.5 The Matrix 4k
In the previous discussion of the RSKF little has been said

about the matrix 4k except that it favorably weights correction vec-
tor components towards the region of greatest uncertainty. It has

no strict statistical meaning in the RSKF. It arises naturally in

linear Kalman filtering since it and k describe the statistical

distribution of the current parameter estimate as being I(1,.4).

when the system and obser ation noise is additive and Gaussian.
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For nonlinear filtering using an excellent reference trajectory,

one might hope that k is still meaningful. The often-encounted

Kalman filter divergence indicates that this is not necessarily so.

One is attempting to represent the non-Gaussian conditional distri-

bution function (the estimate distribution conditioned on the data

received up till the present iteration) with only two moments. In

the problem described by (1), a good reference trajectory is not

assumed to be available. This makes matters worse. One's only

hope is that after an initial rapid convergence to a neighborhood

near the optimum, the conditional density is asymptotically Gaussian

through a central limit type operation. The empirical success of

the 'ficticious' measurement noise suggests that considering J k as

as N(OE) may indeed be meaningful. The random sampling will also

tend to eliminate correlations in the error(due to inaccuracy in the

current estimate)between samples that are adjacent in real time.

However, this should be considered as vague speculation. At this

time we can say nothing definite.

3.6 Computational Considerations

Why would one employ an estimator such as the RSKF instead of

one of the well known iterative minimization techniques? One rea-

son might be computational.
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This involves the difference between a RSKF "iteration" and an

iterative minimization technique "iteration". During the former

only a single pointwise error evaluation and partial derivative

matrix calculation is made. In the latter type of "iteration",

such quantities are calculated for all of the available data.

Even if the latter algorithm converges in many fewer of its

"iterations", each one involves many more nonlinear function evalua-

tions. This computational cost could be significant.

Furthermore, the RSKF may be stopped when sufficiently accurate

estimates are obtained. Although the waveform measurements need be

stored off-line, not all of them need be processed.

To examine the question of computation time in some detail,

let:

N = the number of measurements.

IMT = iterative technique (I.M.T.) of the form (8).

D = the number of computational units necessary to evaluate

hi (A) and H!Tfj). Henceforth, a computational unit is

assumed to be a single multiplication.

M IMTMRsKF - the number of computational units necessary to perform

one iteration of an IMT or RSKF, respectively, dis-

regarding MFlb and logic costs (program loops, etc...)

IIMTIRSKF - the number of iterations for an IMT or RSKF, respec-

tively, to sufficiently converge.

. tIMTtRSKF - the time necessary for each of the two techniques, to

converge, expressed in computational units.

It will be assumed that it is sufficient to compare only the

number of multiplications and function/derivative evaluations. In

a first analysis logic costs will also be neglected, We have:
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t - INT F/D + MZMTI

tRK I SF '/ + M (18)

How large must IiMT be before the RSXF becomes caiputationally

more economical? This can be found by letting tiMT M t RSKF for

(MFD + MRSKF) )I(19)
("*F/£ + IMT~ RK

The simplest iterative technique of the form (8), is steepest

descent Here

N.MF/D >> MIMT (20)

and we will assume

RSKF > F/D (21)

1 RSKF N

Then (19) reduces to

M RSKF (22)

The inclusion of logic costs will increase M41T and MRSKF though

the increase in the latter will be most significant both because of

the more complex computational structure of the RSKF and because

MIMKF is a larger fraction of (MF/D + MRSKF) than KIMT is of

(NeMF/D + MINT}, assuming that the inequalities of (20) and (21)

are true. In Chapter 4 the inclusion of logic costs in a S parameter

problem will be seen to incremse %'.SK F by a factor of three.
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r | Asymptotically, as N and/or Mp/D increases, the RSKF is favored.

The asymptotic effect of an increase in the number of parameters is

more involved, not only because the convergence behavior may be af-

fected, but also because the increase in MF/D and NMT viii be

favorable to the RSXF while that in FRSKF will not be.

There are a number of other computationally related issues that

involve the rate of convergence and accuracy of the estimate one

obtains.

Numerically, the classical Kalman filter equations are known

to be unreliable [4). Our simulations have been obtained using

double precision on an IBM 370 machine. There is no conceptual dif-

ficulty with utilizing the more recently developed Kalman filter

formulations with improved numerical properties (4] though addi-

tional computation is involved.

Specifically, the term that is invertedin (17) does not appear

in the inverse form of the Kalman filter equations, the square root

ariance filter or the square root information filter. Because of

this the use of the scalar ak , as in (17), is not possible. How-

ever F can be replaced during each iteration with the increased Rnew

of (15). The evaluation of eWrequires about n2 multiplications,

where n is the number of parameters.

Since a random sequence determines the processing order, one

might ask if there is an optimal order. Could the randomly selected

samples be concentrated in certain sections of the waveform that

contained the most information about the parameters so as to achieve

a faster convergence? Alternately, given the waveform, what are

the sampling locations which provide minimum variance estimates?
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Unfortunately, expressions for the trace of the error covariince

matrix, while independent of the parameters for a linear estimation

problem, do indeed depend on the parameters to be estimated for non-

linear models.

Therefore, this approach could only be viable if very good a

priori estimates of the nonlinear parameters are already available.

It could be employed once the filter had sufficiently converged,

but there is a real question concerning the cost of the extra com-

putation needed to minimize the trace expression.

Another point is that if it is possible to process only one

measurement per iteration, it is also possible to process several

simultaneously during each iteration. This could reduce the number

of iterations required for convergence but the additional measure-

ment equations increase the Kalman filter's computational complexity.

Conceivably one could also process measurements that had already

been used. In the simulations presented in the following chapter

the RSKF made only a single pass through the data. While this

seemed adequate, additional passes through the data could have been

made in order to refine the estimate.

ii INN
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Chapter 4

# An Arplication

4.1 Introduction

Sensors are available that are capable of measuring a ship's

magnetic field intensity. Sunahara [5) has considered sensors

placed under a harbor entrance for traffic control purposes. Air-

craft, engaged in anti-submarine activity, may also carry such

sensors. In this case, the submarine is assumed stationary and the

sensor moves in a straight line relative to it.

The magnetic field of the ship can be modeled as originating

from a magnetic dipoleC(61. The field intbnsity measured by the sensor

can in turn be approximated by some "suitable" deterministic func-

tion. Sunahara, who was interested primarily in detecting this

"signal" in the presence of substanial noise, modeled the field

intensity waveform as a single cycle of a sine function of unknown

-mplitude and phase. Another representation for the field

intensity, in a simplified form is:

h(Ik) - (1+12)5/2(cl c2Ok+C3Ok 2)

(23)

sk - s(tk-To)

This is somewhat representative of other tracking models in that

the location parameter, To o represents the time at which the

closest point of approach (CPA) between ship and sensor is

made and the scale parameter, s, is proportional to the velocity

of the moving object and inversely proportional to the distance

between ship and sensor at CPA.

$

-. D. - .... -. .,,. * -" " '-, l
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One artifice employed to insure a satisfactory filter perfor-

mance was to replace S with a' and estimate P. This replaces the

physically constrained S(S.*0) with the unconstrained P (otherwise,

the filter may converge to a local minimum with a negative scale

estimate). The variance in (25) is that of P.

4.2 Computational Comparison

Based on expressions for the computational requirements of

Kalman filters appearing in Mendel's work [71, one finds that for

a five parameter, single measurement equation problem, approximately

600 computational units are necessary for multiplication and 1500

if logic costs are included. (A logic operation is assumed to be

ten times faster than a multiplication.) The minimum number of com-

putational units necessary to evaluate (23) and the associated par-

tial derivatives is about 64 (see Appendix C).

Assuming that MF/,D > NMT and IIMT * N - 40Q the number of

IMT iterations at which the RSKF becomes computationally competitive

is:

' MF= 64+1500 ^o 25 (24)

if logic costs are included.

4.3 An Example

Several simulations were performed using an IBM 370 with double

precision. The classical extended Kalman filter equations were

used with the parameters:

L .0
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Actual Intal Estimate Initial Variance

S = .016 .030 2.4

TO  200. 250. 1600.

1  .1 4.0 160.

c 1.0 1.9 1.0

c 3  .15 -4.0 16.0 (25)
a 2 = 10 - 4  known

N 400 known

- 2.8 a 9k a 2.8

4.3.1 The Weight ak 2.0

Figs. 14-20 illustrate the operation of the RSKF with the weight

in the Kalman gain denominator set equal to two.

Fig. 14 illustrates the received waveform and the waveform cor-

responding to the initial parameter estimates.

Fig. 15 is a plot of a measure of the error of the parameter

estimates. Specifically, the following quantity is plotted for each

iteration.
__I__-_l I c2-,21 .E .i~c-3 iI4 1T-TIc- -, C2 c .,S Tl- (2,6)

1 c 3 0O

Fig. 16 is a plot in the nonlinear state space of the conver-

AI
gence of S and too It can be seen that the correction vectors gen-

erally decrease in magnitude as the optimum is approached. Further-

more, although the general trend of the trajectory is to approach

the optimal parameter estimate, it can be seen that individual cor-

rection vectors often do not point toward it. This leads to a number

of "knots" and "loops" in the trajectory.

Fig. 17 is a plot of the normalized covariance trace:
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1P k (2,2) P k (2,2) P k (3.3) Pk (4.4) Pk (5,5)

s[To1,1 ) + + + + (27)P0PO0(227 0 (33) P 44

Fig. 18 displays the filter innovations (yi-hi dk)). They

seem to settle out at about 100-150 iterations. This is consistent

with Fig. 17.

Fig. 19 displays the Kalman gain denominator. Since the mea-

surement noise covariance component of the denominator is at about

zero on the scale of the graph, one is seeing only the other com-

ponent, the uncertainty due to the uncertainty in the curren para-

meter estimate. This term appears to have a 'spiky' nature. It

generally decreases in amplitude.

Finally, Fig. 20 is the received waveform along with the wave-

form corresponding to the final parameter estimates:

mean variance

S W .0160 .20k10- 4

To  M 201. .16

c .102 .30.10-  (28)

c 2  .999 .30i10- 4

c 3  .145 .23-10 - 3

These may be compared to the actual parameter values in (25).

The next eight plots (Figs. 21-28) illustrate the population of

correction vectors that the RSKF randomly samples from. Each plot

corresponds to a particular iteration of the previous example

(ak-2 .0). The common point shared by all the vectors is the current

estimate in the nonlinear state space. Each vector corresponds to

the particular correction vec*Or that would result if one of the
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400 measurements were processed during the iteration.

Each plot shows 400 possible correction vectors. However, this

is merely for illustrative purposes. In actual operation the RSKF

samples the measurements without replacement. This means that the

size of the sample population decreases by one after each iteration.

The most important feature in these plots is that the possible

correction vectors generally do not point in the same direction.

Also, as the processing continues, the fluctuation in the mag-

nitudes ot l acent correction vectors tends to increase. This is

due to the increased effect of the measurement noise on the correc-

tion vector magnitude (and direction if there is a sign change).

4.3.2 Suboptimal Weights

The next several plots will illustrate the effect of the use

of different weights in the Kalman gain denominator.

Figs. 29 and 30 are plots of the normalized covariance trace

when ak- 4 .0 and ak-8.0, respectively. These may be compared to

Fig. 17 where a -2.0. The slower convergence that results from in-

creasing the weight beyond 2:1 is evident in the longer time it takes

for the trace to converge to zero.

The filter's performance with ak-l.0 is illustrated in Figs.

31, 32 and 33. Fig. 31 shows that a reasonable fit has not been

achieved. In Fig. 32 it can be seen that the trajectory of the non-

linear parameter estimates has failed to correctly converge. As

previously mentioned, the problem is that of nonlinear filter diver-

gence. The filter takes an overly optimistic view of the accuracy

its estimates. The very rapid decrease in the normalized covariance

trace of Fig. 33 in comparison to that of Fig. 17 confirms this.
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Chapter 5

Conclusion

An application of off-line processing by means of a sequential

estimator has been presented. The technique is essentially

a sequential version of Gauss-Newton optimization with ficticious

measurement noise added to prevernt filter divergence.

The RSKF described does not implicitly make use of the form of

the model (1), its separability and most of the associated assump-

tions. Therefore, it would appear to be possible to use if for

other non-linear square error regression problems and, in particular,

for curve fitting. Such a method would seem to be most appropriate

in situations requiring fast off-line processing.

However, computational savings if they are posible at all,

will depend on the complexity of the model being employed. Also,

the extent to which convergence can be guaranteed has not been suf-

ficiently delineated. Furthermore, the numerical properties of the

filter equations are crucial to the feasibility at their implemen-

tation in a limited precision computer.
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Appendix A

At first glance it may appear that the well known optimization

maxim, that one's estimates should proceed in a direction of non-

increasing error, is being violated. The confusion apparently arises

because a distinction must be made between the error surface based

on all the data that will eventually be received and the error sur-

face based on only the data received up to the point of the current

iteration. There is no reason to think that ones' estimate should

always be moving toward an optimal point on an error surface that

depends on data not yet received.

To illustrate this, consider the sequential estimation of the

stationary mean of a sequence of N i.i.d. Gaussian random variables,

Yk ,,...N.

Akl k k k k()

A + 1(2x k+1 Ak k {yk- Ak) (2)

At each iteration A is clearly the optimal (say square er-

ror) estimate on the error surface of data received so far. However,

as Ak converges toward the actual mean. (2) is adding what is almost

1 kj

a zero mean (actually k ) Gaussian random variable to the

current estimate in order to produce the updated estimate.

Therefore, with respect to the error surface of all the data

to eventually be received, the estimate k moves swaysftom the op-

timum point of that surface a percentage of times that asymptoti-

cally approaches 50%. Put another way, the current estimate moves
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away from the final extimate almost as many times as it moves to-

wards it.

0
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Appendix B

The rank condition can be violated in models such as

B *t * 2 tk Batk

Y(tk) Ie + C22 +...+cme

The problem is that columns in the matrix of basis functions

may become linearly dependent, reducing the matrix rank. In the
A A

above model this will occur if Bi wE

Blt I  B2tI  St I

e e eml

BEt2  Bt 2

eB1t2  e e

I (Bi l....B )

eBt B2tn B t
Le1ne 2ne 

m n

In the Anderson model the basis functions are linearly indepen-
A A

dent for any S and TO , and so, analytically, present no problem.

Under certain circumstances though, columns could 'numerically'

resemble each other. For instance if the location parameter esti-

mate and/or scale estimate are quite far off the columns in the

matrix of basis functions will assume values close to zero.
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Appendix C

The number of computational units (multiplications) necessary

to evaluate the model (23). and associated partial derivatives, de-

pends on how much extra programming complexity one Ls willing to

accept.

To establish a lower bound, one should note that the function

evaluation (and thus linear parameter partial derivatives) requires

at least six multiplications. The evaluation of the nonlinear para-

meter partial derivatives each require about 18 multiplications.

In addition, a quantity must be raised to the 2.5 power. This

is equivalent to one multiplication, one logarithm and one expo-

nentiation. Nonlinear function evaluations are approximately

equivalent to eight to twenty multiplications, depending on the

accuracy desired [91, [10].

Assuming that ten multiplications per nonlinear evaluation is

a good estimate, the time required to evaluate the function in ques-

tion and its associated partial derivatives is equivalent to per-

forming 64 or more multiplications.
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