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SUMMARY

A method of finding the flexural and torsional normal modes of structures

which have straight stiffness axes and which are mounted as cantilevers is given.

The Lanczos method of minimised iterations is used to obtain intermediate modes

using the integro-differential equations and the mass and stiffness distributions.

The inertia matrix appropriate to the intermediate modes is tridiagonal and the

stiffness matrix is unit. The dominant eigenvalues and vectors of the inertia

matrix give good approximations to the graver normal modes. Results of test

calculations using a computer program which also allows for the presence of

discrete masses are given.
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I INTRODUCTION

In the early stages of the design of wings of moderate-to-large aspect

ratios their structural properties are often given in terms of spanwise mass and

stiffness distributions, the stiffness properties being taken to be concentrated

at a straight spanwise stiffness axis. The normal modes of such wings, mounted

as cantilevers, are needed for investigations of their oscillatory characteris-

tics and aeroelastic behaviour and a method is described herein whereby these

modes can be obtained directly from the distributions of mass and stiffness with-

out the intermediate step of either replacing the continuous mass of the beam by

discrete masses and moments of inertia and the stiffness by a flexibility matrix

with a consequent loss of accuracy or choosing an adequate set of assumed

modes.

The method is based on the numerical solution of the integro-differential

equations describing flexural and torsional oscillations (equation (6)). With-

out the help of a digital computer such solutions are tedious, calling as they

do for the evaluation of numerous integrals. A digital computer removes the

tedium; and accuracy can be achieved by integrating for a large number of span-

wise stations even if the method of numerical integration used is the simplest.

The direct iterative solution of the equations, Stodola's method I, breaks down

when the frequencies of two or more of the modes are close together in just the

same way as does its equivalent, the power method of finding the eigenvalues of

matrices. A possible way of avoiding this, whilst retaining the valuable

properties of Stodola's method, is to find a set of intermediate modes which are

orthogonal to each other with respect to stiffness by Stodola iteration and then

to solve the eigenvalue equation which has the inertia and stiffness matrices of

these modes as coefficients. Not onl: will the stiffness matrix be diagonal but

the inertia matrix will be tridiagonal for this is the Lanczos method of
S2

minimised iterations . For convenience the intermediate modes will be referred

to as Lanczos modes. They can be looked upon as a set of assumed modes with

special properties.

The first Lanczos modes are composed predominantly of the graver normal

modes just as the first mode found by Stodola's method is the fundamental.

In fact Lanczos noticed that, if the frequencies of the normal modes are well-

separated, the inclusion of an extra Lanczos mode adds one more normal mode to

O the solution and corrects the graver normal modes by only small amounts. In
0
00 general the frequencies are not as well-separated as this but the economy that

can be exercised in the number of Lanczos modes used is the principal attraction

NELL
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of the method. Were it not possible to get good results with a restricted number

of Lanczos modes the method would not be used because as the number of Lanczos

modes calculated is increased cancellation results in a crippling losZ of

3
accuracy

In the following sections an iterative procedure for transforming the

integro-differential equations into a tridiagonal-matrix equation is derived

from an established procedure for transforming the full-matrix eigenvalue

equation and some details of the computer program that has been written are given.

Wings often carry discrete masses and, because these cannot be represented

accurately in the simple methods of integration used, provision is made in the

program for the inclusion of discrete-load modes. These are particularly useful

4.in investigations in which the sizes of the discrete masses are varied . Finally

the results of tests to establish the range of applicability of the program are

given.

2 THE ITERATIVE PROCUDURE

2.1 The equivalent matrix equation

The basis of the method, described in section 2.2 below, is derived from

that used for finding the dominant eigenvalues of the equivalent matrix equation

which can be written

(A - AE)qa = 0 (1)

where A and E are square symmetric matrices of structural inertia and stiff--2

ness coefficients, X = w , w is the frequency of a normal mode and qa is
its modal vector.

The Lanczos method of minimised iteration can be applied to find n inter-

5mediate uodes by the following sequence of operations

(1) Take a random vector, , and put i = I

(2) Put i-I = 4Eqi

(3) Normalise by putting qi - qi

(4) Find the direct inertia coefficient, ai = qiAqi

(5) Iterate to obtain next raw vector, 4i+l = E-Aq ; (2)i4*I 1
(6) Orthogonalise with respect to stiffness, i+. qi._ -aq. -i

where 0qo=O ;

(7) Add I to i and repeat from (2) until required number, n , of qi 0
have been obtained when stop at (4).

A dash in the above signifies transposition.



5

It has been shown2 ,3,5 that

Q'AQ = A (3)

where Q= (qlp 29 "''3 qn)

and A is a symmetric tridiagonal matrix with leading diagonal
(a s' 2, .... L ) and sub- and super-diagonals each (6V 62' . n_|)

In the sequence (2) the qi have been normalised so that Q'EQ = I and

so the solutions of

(A - XI)q b = 0 (4)

are approximations to the dominant eigenvalues of equation (M). The eigen-

vectors, qa , are then given by

q a = Qqb (5)

The order, n , of the matrices in equation (4) need only be about twice the

number of eigenvalues required.

2.2 The integro-differential equations

The integro-differential equation which governs a wing vibrating in

flexure and torsion can be written

(n)l W 2 (n)0 60) /dn I /&n)(n)+ ,(n2)6(n2) Idn 2(6n nI

ni

6)40) / d(00 (n jTE(f 2)( 2) K )J( 2 )(r) )dn 2  6

where n is a spanwise coordinate, zero at the root and unity at the tip,

(n) is a scaled heave displacement,

e() is an incidence displacement,

(n), 'e ), (n) Wn) are the direct and cross-flexibilities,

P() is the line density of the mass,

C (PE) is the line density of the first moment of mass about the stiffness
axis,

00 -2
PK (n) is the line density of the second moment of mass about the local

centre of gravity,

and dashes here signify differentiation with respect to n.
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The 2 x 2 matrix of flexibilities includes crossflexibilities so that

account may be taken of the special properties of fibre-reinforced plastics with

asymmetric lay-ups.

The essentials of the method can be demonstrated by considering only heave

and so the equation considered is

= 2 (7)

where p is the bending moment distribution, the repeated integral in

equation (6). For our immediate purposes the suffices can be omitted.

In the Stodola method the sequence of operations is:

(1) Choose a deflection mode containing components of all the graver

normal modes and put i I

(2) Put | =
1

(3) Make the mode orthogonal to previous modes with respect to mass by

putting i) j  + where the Kk are chosen to make

I k=1i

f -(j) kd ri = 0 (i> I only);
0

I 1

(4) Find the bending moment distribution, Pi  = i 2 ;

Si 2'
ni n]

(5) Find the curvature distribution, (8)(j+]) = I1 1 (8)

(6) Integrate t,(j+l) twice to obtain the deflection mode (j+1)

and normalise by putting (j+) = ((j+,) 2Z(j+l) , where 'j+l)
i \ I - I I

is determined by the condition (+)) = I
I tip

1 2

(7) Test for convergence. If f (ii - -ii) dn > c , a suitable
0

small number related to the numerical accuracy of the computer,

add I to j and go to (3); otherwise, accopt the normal mode,
i -(j~l) . I(j ad t)

, and natural frequency, w 9. ) add to O

and go to (2).tO

Noma"
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In the proposed method, following (2), the sequence of operations is:

(1) Choose an initial moment distribution, 1 • and put i = I

(2) Find the curvature distribution, t = iJ and put a2 f c 1d
1 1 0

(3) Put = '-8i I .

(4) Integrate twice to obtain C and put a. = 2 dq
I I 

(9)

(5) Find the bending moment distribution, i+ = n 2

(6) Make it orthogonal to distributions in previous modes,

i+I , i+I - ai i - 8i-l~i-l , where a010 = 0

(7) Add I to i , repeat from (2) until required number of have been

obtained when stop at (4).

All the operations are numerical, of course, and the variables *, P, r, etc

are represented by their values at a large number of spanwise stations. Again

the a. and Bi  form the leading diagonal and stib- and super-diagonal of the11

matrix A in equation (4). Similarly the eigenvectors are given by

a =  Zqb (10)

where Z = I 2 "'"n n) , and here the i are column vectors of the values

of 4 .

At stage (6) in each sequence the orthogonality to previous modes can

deteriorate catastrophically due to cancellation3 and it is necessary that

i+i (in the present case) be re-orthogonalised. This can be done by the

sequence:
C"(r) -

i+1 i+l

C)- I*"()dn (ll)

(r+) -j(r) (r)

i+1 i+1 Xj I
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the sequence being repeated with the same value of j until Xj is smaller than

some number c whose size depends upon the numerical precision of the computer.

)i+l must be reorthogonalised to all Y. , j = I, i

3 SOME DETAILS OF THE PROGRAM

The part-span integrals are evaluated by the trapezium rule and full-span

integrals by Simpson's rule.

The initial moment distribution, 1 , taken is that due to the deflection

of the wing under a combination of discrete heave load and torsional moment at

3
4 span. This is in the spirit of the recommendation of Lanczos (Ref 2, p.270)

that the initial vector should be an arbitrary vector multiplied twice by the

dynamical matrix.

The value of the accuracy criterion, c , is obtained by factoring a user-

supplied value by an approximation to the next value of e so that the criterion

is one of relative accuracy rather than absolute accuracy.

Normal modes are calculated by using the procedure of Ref 6.

Discrete-load modes are included after the norn.al modes of the bare wing

have been calculated. In their initial form they are the modes for discrete

force in heave and moments in roll and pitch at the loaded station. Thus three

extra modes are included for each loaded station. The modes are subsequently

made orthogonal, with respect to stiffness, to each other and to the normal

modes of the bare wing. The orthogonalisation used is that of sequence (II).

It is repeated because the initial discrete-load modes will be similar in shape

to the bare-wing modes already included. The modes are normalised so that their

stiffness coefficients are unity. The inertia matrix is transformed to tri-

diagonal by the procedure tred2 of Ref 6.

4 RESULTS OF TEST CALCULATIONS

The accuracy of an approximate normal mode is usually judged by the

difference between its frequency and the exact frequency. When the data for a

normal-mode calculation are in the form of assumed modes whose inertia and

stiffness coefficients are known exactly the approximate frequencies will be

equal to or higher than the exact frequencies and generally the percentage error

will increase motonically with the order of the mode. This was often the case in

the present calculations but not always. Sometimes the error decreased after
0

first increasing and in these cases the mode at which the decrease first occurred

and higher-order modes were considered inaccurate. Another indication of
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numerical inaccuracy in the formation of the Lanczos modes was the appe"rance of

spurious modes so that two modes appeared with the same characteristics at

different frequencies. Higher-order modes (and, of course, the spurious modes)

were considered inaccurate.

4.1 Bare wing

The majority of test calculations were made for a uniform beam because the

exact natural frequencies are known. There were two program variables to

investigate: one was the number of spanwise elements used in the numerical

integration and the other was the number of Lanczos modes calculated. The amount

of computer store needed is roughly proportional to the product of these numbers

and it is important to know which to reduce if storage is limited.

Calculations were made for a beam in flexure and the results are given

in Table I. Within the range covered the accuracy of the modal frequencies

increases as the number of spanwise elements is increased but there is a limit

Table I

Uniform beam in flexure

No. of No. of normal modes found with
No. of Lanczos frequency error less than:integration modes calculated

elements 1% 0.1%

500 9 8 7

400 II 9 8

300 15 12 7

9 8 7

200 22 6 5
15 10 5

100 22 7 2
15 8 2

9 7 2

after which further increases do not seem worthwhile. When the number of

Lanczos modes calculated is increased, the number of modes found to the higher

accuracy does not increase. However, the number of modes found to the lower

accuracy does vary with the number of Lanczos modes. For 300 elements the

0number found to the lower accuracy increases with the number of Lanczos modes

0 but with lesser numbers of elements the number of normal modes found decreases

4 -
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as the number of Lanezos modes is increased. In both the 200- and 100-element

cases, when the number of Lanczos modes was 22 the sequence of good modes was

terminated by a spurious mode. In both cases, when the number of Lanczos modes

was 15, the limit was taken as the highest mode whose frequency error was

greater than that of the previous mode. From these results it is more important

to take a large number of elements. In fact it is dangerous to extract a large

number of Lanczos modes because of the effect of cancellation which the results

for 22 modes illustrate. The number of accurate modes found will obviously

depend on the numerical precision in the computer. All the present calculations

were made using a computer in which the mantissa is 37 bits in length. A greater

number of accurate modes will be found in toto if there is torsion as well as

flexure. A calculation with both flexure and torsion, on a beam described below,

gave 15 satisfactory normal modes from 200 elements and 22 Lanczos modes.

Calculations of the torsion modes with the beam having 300 elements gave

the results of Table 2. The modal displacements were within about 1% of the

exact values. To test the program on a non-uniform beam the graver flexural

Table 2

Uniform beam in torsion, 300 elements, frequency error <0.1%

No. of Lanczos modes 15 9 5I

No. of normal modes 110 5 12

normal modes of truncated cones with tip diameters 0.4 and 0.5 of the root

diameter were calculated and compared with the reference values provided by
7

Downs . These calculations were made using 500 elements and nine Lanczos

modes. In each case the first seven modes were within 0.1% on frequency.

The fundamental frequencies found were below those given by Downs but within

0.01%.

To test the ability of the program to deal with modes close in frequency

the normal modes of a uniform beam with both flexure and torsion allowed were

calculated. There was no coupling of flexure and torsion and the exact

frequency of the fundamental torsion mode was within 0.01% of the exact

frequency of the first overtone flexure mode. The results of the calculation are

given in Table 3. The criterion for acceptability in this case was the quality O

of the orthogonality of flexure and torsion. Because there was no coupling

between flexure and torsion the normal modes calculated should have been either O



Table 3

Uniform beam with close frequencies in flexure and torsion,
300 elements

No. of Lanczos modes 15 13 1I 9 8 7 6 15

No. of normal modes 9 8 8 5 5 5 1 1

pure flexure or pure torsion. However calculated flexural normal modes con-

tained some torsion and v'ice versa but the impurity could be satisfyingly small.

There was always a distinct division between modes with satisfactory and

unsatisfactory orthogonality and the frequency error of the modes that were

acceptable was less than 0.05%. It is noticeable that the number of approximate

normal modes does not increase regularly as the number of Lanczos modes is

increased. In this example not only are the second and third frequencies almost

the same but the fourth and fifth frequencies are within 7% of each other and the

sixth and seventh frequencies are within 10% of each other and so the observation

of Lanczos on systems with widely-spaced frequencies to the effect that another

normal mode is obtained for every intermediate mode added to the calculation does

not apply.

4.2 Loaded wing

Test calculations were made for a loaded wing to prove that part of the

program in which discrete-load modes are involved. In the tests very large

masses and moments of inertia were put at the tip so that the overtone modes

could be compared with the modes of a propped cantilever and built-in beam.

In all the calculations 200 elements, eight Lanczos modes and five bare-wing

normal modes were used.

For only a mass at the tip (propped cantilever) the first five frequencies

of the loaded wing were found to within 0.1%. For both mass and rolling inartia

at the tip (built-in beam) the first four frequencies were found to within 1%.

For only pitching inertia at the tip (built-in beam) the first four torsiol.A4

frequencies were found to within 0.1%. These test cases are severe and show

that good results can be obtained even when the numbers of integration elements

and bare-wing modes used are not large.

4.3 Comments-on use

Ln From the results obtained the method should give good approximations to as
CD

CO many of Lhe graver normal modes as are needed in aeroelastic investigations.
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In view of the results in Table 3 it is probably wise to use at least seven inter-

mediate modes but it is quite possible that five good normal modes can be obtained

from these seven intermediate modes if the beam is divided up into an adequate

number of elements. If five or more modes are needed however it is better to use

more intermediate modes but there seems to be little point in using even as many

as twice the number of normal modes required. Indeed, if the number of normal

modes required is large, some restraint needs to be shown in the number of inter-

mediate modes used if numerical difficulties are to be avoided but the position

is eased if the beam can distort in both flexure and torsion.

Little mention has been made of the accuracy of the shape of the calculated

mode because evaluating it is difficult. However, the calculated modes were

studied and it is thought that the maximum error in deflection will be of the

order of 1% for a mode with a frequency error of less than 0.1%.

5 CONCLUSIONS

The Lanczos method of minimised iterations has been developed to calculate

the graver normal modes of cantilever beam-like structures directly from the

distributions of their mass and stiffness. The method is not one for purely

mechanical application but the computer program written has given accurate

results for as many modes as will be required in most practical cases. No

definite rules are given for the number of intermediate modes that should be

used because this will depend on the numerical precision of the computer being

used. However illustrative results have been found which indicate the relative

merits of having a large number of integration elements and a large number of

intermediate modes. The program also includes provision for discrete-load

modes and the application of these has been demonstrated by calculating the

normal modes of beams carrying large concentrated masses.

0
0
C)
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