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Section 1
PLASMA THEORY and SIMULATION

FILAMENTATION IN CHARGED PARTICLE BEAMS

Lee Buchanan has transferred to LLL where this work will con-

tinue. No further report.

DRIFT-CYCLOTRON INSTABILITY PARTICLE SIMULATIONS
Jae Koo Lee (Prof. C. K. Birdsall)

Work continuing on the final report. No further report.

LOWER HYBRID DRIFT INSTABILITY SIMULATIONS USING EST HYBRID COQODE
Yu-Jiuan Chen (Dr. B. . Cohen (LLL) and Prof. C. K. Birdsall)

The linear properties of the lower-hybrid drift instability were

studied using a 1d particle-hybrid simulation, as shown in the last QPR. The
mode!l is a slab with a constant density gradient; the ions are unmagnetized
particles, shielded by the strongly magnetized electrons through the linear
electron susceptibility, Xg* lons are initially in a steady equilibrium
state with the ion diamagnetic drift velocity cancelled by the E xB drift,
corresponding to electrostatically confined ions.

The saturation mechanisms of the instability are studied. In

. 2,2
the last QPR, Fig. 5 shows the complex frequency versus VE/vti for wpe/wCe 1,

mi/me=1600, Te=0’ Ln/LB=0, Ln/LT=0, and the mode number m=5 (i.e., kkD

= 1//53, which is approximately the most unstable mode for the parameters we

used. v is the ExB drift velocity, Vet is defined as VTi/mi, and L, LB

and LT are the scale lengths of the density, magnetic field and temperature,

respectively. Since the growth rate vy is comparable to the wave frequency,

N e A




the mode has a wide band width Aw~~y; and thus quasilinear diffusion is one
of the possible mechanisms for the saturation of such modes. Allowing only
a single mode, we compared the saturation levels of mcde 5 with the quasi-
linear theory as given by R. C. Davidson (Refs. 1 and 2) under assumption
that the spectrum is strongly peaked about the fastest growing mode, for
<v,_,. Figs. ! and 2 show that the simulation data are in agreement with

vE ti

the quasilinear saturation level e in Eq. 48"

v > NT,
= 2 E i
ES = 7 ) ’ (I)
4s/r \vV2v_. V4w /uw
ti pe’ “ce
where N is the number of ions. However, it is found from the evidence of
oscillations of the wave energy at the trappiﬁg frequency wp (Figs. 2a and
2b) and the vortex-like structure in the ion phase space plots after satur-
ation (Figs. 3a and 3b) for vE/vti =0.57 and 0.85 that the end of wave
growth was accomplished by ion trapping. All of the phase space pictures

are presented in the wave frame, x-v_ , = constant, where v ., was calcu~

ph ph

lated from linear theory. It is noted that vortices in Figs. 3a and 3b at
small velocities are not due to the multibeam instability, because those vor-
tices would appear at large velocities.

Our explanation of why the simulations showed that nonlinear sa-
turation was due to ion trapping but saturation levels agreed with the quasilin-
ear theory isas follows. In deriving the saturation level €, (Eq. 1),

Davidson began with an energy conservation equation and the only rea invo-

cation of quasilinear theory seems to be the specification that saturation

occurs when the distribution function has been ''flattened'' around the mode

*
In all of Davidson's equations, there is a factor of /2 difference in Vei due

to his definition of Tisuniviilz.
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frequencies are due to the multibeam instability and low fre-
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quencies are due to the LHDI; the growth is that of LHD! as
discussed in previous QPR's (using w spectrum), and (b) vE/vti

=0.85; the multibeaming effect is very small (next page).
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FiGg. 3 lon phase space pictures in the LHD! wave frames after saturation
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one of every S points.
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phase velocity. Such flattening could in principie be due to a variety of

causes besides the usual quasilinear diffusion, for example, trapping. Fur-

thermore, the trapping frequency is given by

= &%
wT = km m , (2)
where
8re
¢ =
kZV
m

is the electric potential, and km is the wave number of the most unstable

mode. From Eq. 1, we obtain
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where

w .
2 —PR

w
th vl T
+
1 u)pe/wce

is the lower hybrid frequency. From Ref. 1, the corresponding growth rate

and wave number at maximum growth are expressed by

2
zr [ Ve
v, = (=), . (4)
m 8 <0v. th
ti
km = wlh/vti . (5)

Therefore, £q. 3 can be rewritten as




v o, 3/1;
= 1.6#7(-\/3— X (6)
E

When Ve <vti’ the trapping frequency is larger than the growth rate and hence
the bandwidth Aw as well; and the ion trapping will be the saturation mech-
anism whenever the fastest growing mode is dominant. Then g in Eq. 1 is
the saturation level due toion trapping. Comparison of Eq. 6 with the ob-
served trapping frequencies (as in Fig. 4) indicates fairly good agreement
for cases in which VeSSV

An estimate of the fluctuation energy at saturation may be made
through the use of the Fowler thermodynamic bound (Ref. 3)}; one possible
form of this bound on the saturation level can be obtained by assuming that
+0) as v_ drives

E E

the instability. However, this bound is not applicable in our simulations

the system stabilizes via current relaxation (meaning v

as our model has assumed a constant density gradient and Ve drift.

Finally, multimode simulations have been done, i.e., all the
modes are excited at the initial stage. Typical parameters are the same
as those for the single mode run, which were given in the last QPR. The
fastest growing mode tended to reach the same saturation level no matter
whether only a single mode was kept or all modes were included in the simu-

lations. In the frame of the most unstable mode, the ion phase space plot

f
!

reveals a vortex formation about vx==0 after saturation for vE/vti =0.57

as shown in Fig. S5a. The length of the plasma L=27, and the number of

grids NG=64, Also a dip appears at the approximate wave phase velocity
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FIG. 5 Simulation (many mode) of LHDI! with N= 16384, mz /wz =1., m/m = !
pe’ “ce i'e ,

1600., VE/Vti =0.57, Te=0" Ln/LB=O" Ln/Lt=O., )\D/Ax=0.lh14.

Displayed are (a) the phase space in the most unstable mode frame, é

and (b) the ion velocity distribution function after satuation.

vph is the wave phase velocity.
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in the ion distribution curve in Fig. 5b. As vE/vti =0.85, the ion phase

space and the distribution curve are presented in Figs. 6a and 6b for L =

2w and NG =64. The corresponding ion phase space picture for L=1U4n, and

NG =128 is given in Fig. 7. It shows that trapping still occurred for a
finer mode spacing, v{z. when Ak was reduced to half, i.e., AkAD==0.O7.

Figs. 5, 6 and 7 show the dominant mode at saturation to be AD’VI//E,

which is the fastest growing mode.

Our simulations exhibited strong ion trapping at saturation in

all cases in the low-drift-velocity regime with Ve <Vti' These results

do not necessarily rule out quasilinear diffusion as a possible cause for
saturation as the simulations had discrete modes (not a continuous wave-
number spectrum); however, as each mode has a large frequency bandwidth
(due to large v), auto-correlation time of the electric field is signi-

ficantly reduced. Trapping was also obtained by D. Winske and P. C. Liewer

(Ref. 4) in their 2d particle simulations with Ve larger than v ;
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FIG. 6

Simulation (many mode) of LHDI with N=16384, mse/w:e =1.,
mi/me=l600., Te=0., VE/vti =0.85, Ln/LBSO., Ln/LT=O.,
AD/Ax=-0.1b1h. Displayed are (a) the phase space in the
most unstable mode frame, and (b) the ion velocity distribu-
tion function after saturation. vph is the wave phase

velocity.
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D. NONL INEAR PERTURBATION THEORY OF THE LOWER-HYBRID DRIFT INSTABILITY
Yu-Jiuan Chen (Dr. B. 1. Cohen and Prof. C. K. Birdsall)

The linear theory of the lower-hybrid drift instability is well
understood and has been discussed in detail by Davidson et al. (Ref. 1).
When the amplitude of the wave is small but finite after a time of the
order of the inverse growth rate, its further evolution will be different
from the linear exponential growth. The nonlinear dielectric response func-
tion and an analysis of thenonlinear time evolution of a single unstable
mode are derived self-consistently by using perturbation theory to solve
the Vlasov equation and the Poisson equation. The single-mode approxima-
tion is valid for the instability close to the stability limit which re-
quires vE<<vti (the low drift velocity regime) for the lower hybrid drift
instability. Modulation of the Langmuir wave due to the nonlinearity has
been investigated extensively in the single-mode approximation (Refs. 2
and 3). The nonlinear evolution of drift-cyclotron and drift-cone instab-
ilities for plasmas very close to linear marginal stability have been stud-
jed in detail in both theory (Refs. 4, 5, 6 and 7) and simulation (Ref. 8).

For simplicity, we use a one-dimensional slab configuration with
wave propagation in the x direction, uniform magnetic field in the z direc-
tion, and the density gradient in the y direction. The ions are unmagnet-
ized as the wave frequency and growth rate are much greater than the ion
cyclotron frequency, and electrostatically confined with the ion diamagne-

tic drift cancelled by the ExB drift, v

£
In Sect. Il, the nonlinear dielectric function is introduced by
solving the coupled Vlasov-Poisson equations. Sect. Ill is devoted to de-

reive the time evolution of the lower-hybrid drift instability. The nonlin-
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ear dispersion relation obtained is used to determine the field energy level
and the frequency shift due to the finite amplitude of the wave. Finaily,

our conclusions are given in Sect. 1V,
. Derivation of Nonlinear Dielectric Function

According to the general theory of the reductive perturbation
method, we assume that the distribution functions F(y,\_/,t) and the electric

potential ¢(x,t) can be expanded as

o

FS(Y,\_/,t) = F'Z(y,y) + E enF:(y,\_/,t)eine+c.c. (1)
n=1
and
p(x,0) = 3 sn&;n(x,t)eine+c.c. (2)
n=1
where
f’s(y,v,t) = ZSJFS.(y,V,t) , n=0,1,... (3)
n = B nj -
j=0
. _ - j .
06t = X 4, (%) , n=1,2,... (4)
j=0
9 = kx - wt (5)

and ¢ =©(e¢/Ti)« 1. “l'i is the ion temperature, and k and  are the wave

number and frequency of a single mode. Quasilinear analysis indicates the

E

is the ion thermal speed. However, the effect of the current relaxation is

. . 2
current relaxation causes saturation for v <vti (Ref. 9), where Vti =Ti/M
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small for Veqvti' Therefore, the density gradient and vg are kept con-

stant in our derivation. The distribution function Fnj(y,!,t) can be

expressed as

Fnj(y,y,t) = no(y)fnj(y,t) . (6)
The Poisson equation of the system is
- v2¢ = lbmn e fd\_/ (Ff - %) . (7)
Substituting Egs. (1) and (2) into Eq. (6) yields
(nk)2$n = hwnoe jfdy (?; - ?:) . (8)

Since the characteristic frequency of the lower-hybrid drift instability
is much less than the electron plasma and cyclotron frequencies, it is

assumed that electrons respond to the wave linearly, i.e.,
-4mn e [dv F€ = -y (nk nm)(nk)2$ (9)
o = 'n e ' n

where Xg is the electron linear susceptibility. We also assume a zero
plasma beta value (Te-+0) to neglect electron resonance broadening which
can stabilize the instability (Ref. 10). Using Egs. (3), (4), and (9),

Eq. (8) reduces to

[1+ )(e(l'lk,n(,u)](nk)zdzn-j = L“moe_[fr:j dv . (10)

The one-dimensional Vlasov equation for the ion distribution is

aF 3F' e 3 3F
t v x M 3x 3v 0, (1)




-]7-

where M is the ion mass. Since the density is varied in the y direction

only, i.e., BF’/ax=O, Eq. (11) is rewritten as

i i
af  _ e 39 3f
9t M dx adv (12)

With the assumption of a small perturbation, the above equation can be

integrated over the unperturbed orbits, i.e.,

. . t i
i _ i - & 3¢ 3f
fo-f v j.; IS dt' . (13)

or

' j=1
el t x )
= 3 EJ%/ > (inkq;nzc'" + c.c.)
j=1 -o n=1
=0

.

9fo j~n=% - afn‘ -n=%-n' in's!
o) e, tntx E —J-ntrtn + c.c. dt' . (14)
v =1 v

Note that ion trapping is excluded under this assumption. The superscript

i is dropped from Eq. (14). For j=1, comparing the coefficients of exp{ing)

of Eq. (14) yields

fo, = 0, (15)

and
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ed af  /ov
flo - 10 | 00 (16)
M v=-V
where V =uw/k. Substituting Eq. (16) into Eq. (10), then we obtain

2 4mn e Bfoo/av
1+ x (k,w)lk ) = —9 ) f —— dv
e 10 Ly o J T

= - kzxi(k,m)zb]o : (17)

which yields the linear dielectric function D(k,w) as

D(k,w) = 1+ xe(k,w) + xi(k,m)

(The integral sub O means integration over zero order orbits.)

We now proceed to obtain the second order components. Assuming

w= wtid and § -0, coefficients of d.c. terms of Eq. (14) give

3f Y
. ik * 10 10

f - ],mi_' <-¢ —— ¢ — . (19)
02 T oM\ "0 T 10 7

SubstitutingﬂO by using Eq. (16), we get the quasilinear modification to the

distribution function

2
e¢]0 3 afoo/av
for = |—1 — (=) - (20)
M v (v-V)

The component fll results from the second order terms of Eq. (14) for exp(ig)

as




-]9_

Then, following a similar method used to derive Eq. (17) or Eq. (18), we

obtain from Eq. (10)

D(k,m)¢” = 0, (22)

Coefficients of the second harmonic terms in Eq. (14) give

2
c . }_(e¢10> 1 (afoo/av> . €9, 3f o/3V 23)
02 2 M v-V 3v v=-V

The first term appearing on the right side of Eq. (23) is the modification
due to the bare second harmonic oscillation of a single wave, and the se-

cond term represents its shielding effect. Similarly, Egs. (10) and (23)

yield

2 2
w_ . ed af /av

by = > p! 10 /._‘__i 20 __ 4y . (24)

8k“D(2k,2w) M 0 v-V dy v=V
For the third order component f12, Eq. (14) gives
] . ef, afoz/av ) ¢* afzo/av . afoo/av . 2 afm/av
12 w710 T 107 T 127 20 7 Ty
(25)

Replacing f,,, f02 and f20 by Egs. (16), (20) and (23), we get likewise
ed 2 ed 2 af /v
10 ( 1o> 1 % ( 00 >
M ‘ M vev gy (v-\l)z
af  /av
1 1 ] 1 3
-7 = —= (= (26)
v-V v v -\ 3v v=V
2 3 /oy 3 /3
- “pi (/ ] 3 < 00 >d> 13 00 v>
2 —— e ————————— v . ——
8k D(2k,2w) \Y0 v -V 3v v=-V vV 3v v-V

T S SIS SRR L e e
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Substituting Eq. {26) into Eq. (10} for 41y and using Eqs. (2), (17) and

(22) vields the nonlinear dispersion relation

2

w_, 2 af  /dv
D(k,u)f, = _% / 1 .§_2_<__°_°__2_>dv
k Q0 v-V 3v {(v-Vv)

1 f 13 R afoo/ev>>
-3 = o e Y
0 v-V 3v v=V dv v-V

2 2) |- |2
. wo (/ 1 3 <af°°/av>d ) e, N
7 AT O Tt
8k“D(2k,2w) \70 v -V av v-y M
4
+OE™) . (27)

The first term on the right side is the nonlinear coupling of the potential
with the quasilinear perturbation. The last two terms are the nonlinear
coupling and shielding effect of the second harmonic potential with the

fundamental perturbation. With the definition of

af /Jov
W(z) = vif—°—°—- dv (28)
! o} v=V

where Z=V/Vti =m/kvti, the quasilinear term gives

: 32 afoo/av ) . dbw(z)
o — F\=Eg ) = — E (29)
v-V avc \(v-V) 12v).  dz .7

the bare second harmonic effect becomes

-l/‘ 1 _a_< 13 <afoo/av>>dv _o a*(z)
2 Ov-Vav \v-V 3av v=-V

e e e s e M e -t — =
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and the term associated with the shielded second harmonic oscillation is

2 2
u)Pi /‘ ] ) <afoo/av> d
2 -_— \"4
8k“D(2k,2w) 0 v-V av v -V

5 2
- 1 d w(z)>
32k2Ag ;iiD(Zk,Zm) dz? g (31)

By using Eqs. (29), (30) and (31), we rewrite Eq. (27) as

2

4 2
1 1 d'W 1 dw 2
16k Ao dz 2k ADD(Zk,Zw) dz

(32)

! where w'=ec»/Ti and XD is the ion Debye length. The quasilinear term and

the bare second harmonic effect are combined in the first term of the right

hand side in Eq. (32).
. The Evolution Due to the Nonlinear Frequency Shift

In this section, we estimate the field energy at saturation
caused by a finite nonlinear frequency shift by solving the nonlinear dis-

persion relation. As the wave amplitude is very small, Eq. (32) reduces

to the usual linear dispersion

D(k,w) = DR(k,m) + iD‘(k,m) . (33)

Let us examine Eq. (33) in the low drift velocity regime characterized by

fy/w| « 1, VvV and ve € Voo (34)
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The dielectric function for the Maxwellian ions is expressed as

2
Dlkw) = 14 REy do_ g fr J_ (35)
T 2 k22 - kv Vz k22 [k|v »
D E D ti

The real part of the frequency is determined to zeroth order in |‘(/m‘ by

2
w
= _pe 1w
DR(k,m) L+ 5=+ = o . (36)
w KA, w-kv
ce D E
The solution is
k2
w = kv, = w (37)
, k2+ki E °

2,2 2
k“/k v
2 g+tndd o )
m m ti
where
3
1 1
! k = - 5 (39)
m 2 2 2
}‘D l+mpe/u)ce

is the wave number of the most unstable mode, and

wpi
m =

th —————— (40)
T +we Jul
pe’ ce

is the lower hybrid frequency (Ref. 9). When the amplitude of the wave is
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{ small but finite, expanding Eq. (32) around 0y by replacing w with wo+
}, i(3/t) and using Eqs. (35) and (36), we obtain
. . J . 2 f
[ i[(0+ia) 7oyl = (A +iB) [w]%¢ (41)
where
a = (3D, /3w)/(3D,/3w) = -y/w (42) {
- 1/ oy R o o
2
{w -kv.)
A=__°__E_<%+22] > . (43)
8kvE k ADDR(Zk,ZwO)
and
8 = - é%—<5 + = 6 > . (bb)
k XDDR(Zk,ZwO)
By using Eqs. (36) and (39), we get

(45)

r ~
[NV =

-1
2.2 ] -
[k ApDp (2K, 20)

Substituting Eq. (45) into Eqs. (43) and (44), and using Egs. (29) through

(32), the relative strengths of the nonlinear contributions from the quasi-
linear modification, the bare second harmonic oscillation and its shielding

are given as

A (46)

X *
mlz"

Q.L. ° A(Zk,Zmo)

: A
b (2k’2mo)s

and

x~
an ~

B : B( 20 : -15 : 8 (47)

Q.L. F By

Zk,ZwO)b 2k,2w°)s

=~
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For the most unstable mode, k=km, the quasilinear modification on tie ion
distribution function is the dominant effect. For t=r exp(is) where both

r and s are real, Eg. (42) becomes

3

ar + rs = -~ Ar

) (48)
and
F-oars - yr = Br3 . (43)
Eliminating r, we obtain
< ay _ A+aB 2

5T (50)

1+c.2 1+a

where the first term is the linear correction to the frequency in the
presence of growth, and the second term is the nonlinear frequency shift

which grows in time with r2 (i.e., lecb/Tilz).

Eliminating rs, we obtain

Fo= Y2+E:L/2\r2r. (51)
1+a 1+a

Integration of Eq. (51) yields

2
2yt/{1 +a°)
P2oa plee > (52)
l+ce2,‘Y‘-t/(1 tar)
where
R LR N (53)
T aA-B
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is the field energy level at saturation. From Eqs. (42) through (47),)
it is obvious that the quasilinear effect and the shielded second har-
monic oscillation stabilize a single lower-hybrid drift wave, i.e., that

they lower the saturation level. The nonlinearity due to the bare second

harmonic oscillation of the wave raises the saturation level. If r »
r(t=0) = Fo Eq. (52) gives
2yt
2 1+a2
2 ro ¢
re(t) = —m——— (58)
r2 2yt
1 +— el+u
2
rcn
and Eq. (50) becomes
2yt
o r2 1+a2
. l A+aB o &
s(t) = - - . (55)
2 2 2 2yt
1+a 1442 r ————
c 1 +q2
1+— e
2
roo

V. Conclusion

The nonlinear dispersion relation was derived. We obtained
the saturation field energy and the nonlinear frequency shift at satura-

tion caused by the frequency shift only. With use of Egs. (35) through

(44), Eq. (53) gives
1
2 4
2 k k
' Ei = —5— + —mz + —% . (56)
|7 16 2k° 6k
I ]sat
- e A A ORI 17 L ey
e " Lo . I . . . . s _—, bl




Therefore, the nonlinear frequency shift will stabilize the lower-hybrid
drift instability at small ampliitudes only if k«:km. For the most un-
stable mode, k =km, we expect that other nonlinear effects will be the

dominant saturation mechanism such as trapping, quasilinear diffusion, etc.
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E. CONTROL OF UNWANTED BEAMING INSTABILITIES
Yu Jiuan Chen (Prof. C. K. Birdsall)

No new work this quarter.

[T ——

It is planned to look into similar instabilities which occur

in magnetized plasmas with a Maxwellian or other f(yL) made up of rings
in v, space at t =0. The multi-ring dispersion relation will be soived
for complex w and real k. Instabilities are expected even with a Max-
wellian distribution. Simulations will be done to find saturation lev-
els and detailed ring-ring interaction in order to aid in finding means

of control of these physical but unwanted instabilities.
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A F. TRANSVERSE OSCILLATIONS OF A CURRENT SHEET IN A PLASMA -~ THECRY

Alex Friedmon

we consider the prokiem of an infinitesimally thin current sheet of
ions, in @ background plasma bounded 5y conducting walls,
The configuration is iilustrated in Fig. 1: the sheet current J® flows
in the +y direction, the zero order magnetic field is in the +Z

direction for x <« 0 and in the -z direction for x > 0, and the system

~ -
~ =
~ b
~ o
{ -
~ »
4 -
if ~ T =
~ 0 b~
] o}
~4 0 -
N C>J Y u
~ b~
~ P
gy b
-a 0 x- a
Z
v

Figure 1., Configuration of current sheet in plasma.

is bounded by metallic walls at x = xa. We consider rigid d;spiccements
of the sheet in the X direction given by ¢ exp{-iwt).

The zero order magnetic field is given by:

8s°

“8x

= Js = qVDG(X>. {l)

where the zero order current is entirely in the 9 direction:
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49 = gvgb(x)¥ (2)

The first order current due to ths sheet is then given by:

il = qa[—voglﬁ(x); - jws{x)k ] emivwt, (3)

{there is no v; term arising from & X §° because 8% {s zero at the

sheet ).

The equation of motion of the sheet is:

-w?e = VOleosno' {4)

where (1 is the cyclotron frequency qB/mc, and g/m is the shest’s

charge/mass ratio; since the sheet cannot exert a force upon itself,

Dleee is canceiled by {28/0x)0°.

The analysis proceeds in @ manner analogous to that of Ref. 1. The

plasma response is given by:

pv! = ji x 8%, (5

E' + vl x8% =0, (6)

which implies, since 8% s zero at the sheet, that £' is zero at the

sheet, and thus the equation of motion cbove does not invoive E', end
any excess electrons accompanying the sheet {to provide charge

neutrality) provide no current. The field equations are:

v x 8" = an{j o), (7

A
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c? x £ = 8. (8)

Combining egns. {6) and {8), taking the cross product of eqn. {3)

with 8%, and combining the resulting equations, yields:
-8 =2 [ Pox. . - vwa').]
= = VA C_ J.s;. - '( - )A.
4r,
+wix[ -l -98'l (@)
+ ¥ X [{j/nec)x8°].

The Alfven speed v, is defined as B%/(4m0)'/2, and we have usad the

reigtion v, = v—j/ne. Tha last term on the right of egquotion (§) is
zero, since it is egual to (iu/nec)b/ﬁx{—jl8°}. ond j, is zero becousz
x*{9x8') is zero.

Using Eqn. (3) for j., and taking the 2 component, yields

[82/8x2 + w?/v2 + (2/v,){Bv,/Bx)8/8x B! (1%
= {4n/c)qevg[82/8x2 + (2/v,)(8v,/8x)8/3x]6(x),

where the subscript 2z of Bl has beesn omitted. We define a quantity b
equal to the first order magnetic field everywhers but at the shset

itself by:

b =8' - {(4n/c)qevgs{x). (n

30 that

12
[82/8x2 + wz/vﬁ + (2/v ) {Bv,/8x)8/8x]b = —(4ﬂ/c)qzv0(w2/V§)6{x}. ¢12)

Using the relation {2/v,){8v,/3x){8b/3x) = (1/v2)8/8x{v2db/ax) -~




-~

-3]-

8%n/3x2, this simplifies to:

b + 8/8x[(v2/?)db/8x] = —(4n/c)qevgb{x). (13)

B8y integrating this equation across the iayer two jump conditions are

obtained:

g_)b& J = -4‘.31 QEvqg, (14)

[D]:O (%)

We specify a boundary condition corresponding to zero plasma

donsity at the wail,

1
B =0
Ox |y=ea (16}
A particular solution of Eqn. {13) is
Bpare = ~{2n/c)qevgl{wsvy )sin{ul x| /v, ). (17)

This solution satisfies the jump conditions at the layer byt not the
boundary conditions at the two walls, sO we add in @ constant « times
the homogeneous solution cos{wx/v,}, which is symmetric cbout x = 0.
Then. using the boundary conditions {16},

8b/0x = F{2n/¢)qevglw?/v2)cos{wrsv,) = alw/v,)sin{wssvy), (18)

where
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a = ={2n/c)qevglw/v, )cot{wasv, ). (19)

Keeping only the plasma contribution to n', as noted after

Eqn. (4), we use b and not B! to find the appropriate vaiue of N'{x=0):

% = Vo) asna = —{2W/cZ){qeevd/m){w/v, Jeotiwarv, ). (20)

or, more concisely,

Xtan X = Y, (21)

where

X = walv,, and Y = 2ngevia/mcZv2 > Q. (22)

Note that Y is real ond positive. This equation has an infinite number
of discrete, stable solutions for X, which can be obtained in a
grophical manner by rewriting Eqn. {21} in the form:

cotl X = X/Y (23)

and plotting both sides as functions of X on the scme axes (see Fig. 2):
it is easy to prove that no unstable solutions exist. Furthermore, for
large values af Y the roots fall near X = &1/2, £3n/2, ..., while far
small Y the roots fall near X = 0 {double roat), &r, £2x, ...

It is not difficult to extend the calculation tao cases wihare the
layer is not equidistant from two walls ot x = -a, and x = g,. Such an
equijibrium requires the existance of & wuniform externally supplied
magnetic field (in this sense it mare closely resembles the

cylindrical ly-symmetric current loyer than does the centered-shest
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X/Y

Figure 2. GCraphical solution for root of centered-sheet problem.

case); alternotaly, it may be considered as arising from the
introduction of the conducting walls after the layer is in place, thus
freezing the equilibrium flux agpropriately. The particular soiuticon
(17) is unchanged, but now the antisymmetric homogeneous solution must

be inciuded; we thus add in a cos{wx/v,? + § sin{wx/v,), and find

- ={4r/C )qevgw/vy (24)
ton{wo,/v,) + ton{way/v,)

where for the normal mode frequencies {but nok for the mozZe structure)
the vatue of £ s irrelevant since the field at the layer iz the oniy
value of importonce. Defining

K = 0,/0,, X = wo,/v,, and Y = 2ngevia,/mc?v2 (25)

we find the normal mode freguencies to be given by

X[tanX+tankx ] /2 = v, (26)

where Y and K are real ond positive, oand with no loss of generality we




- 34 -

can choose 0 < K £ 1. A graphical solution {for K = 0.B) appeoars in

1/ (tanX + tanKX)

Figures 3. GCraphical solution of uncentered—sheet problem for K = 0.8,

Fig. 3. Due to cancellations of the two different tangent terms., twice
Qs many roots are present Qs in the centered-sheet coss., for smat! Y
new roots at £n/2, <£3x/2, etc. join those at zm, £2rx, ... Ffor large Y
each root splits into two, but these remain close tegether and near
tx/2, £3r/2 etc. when K =~ |, For lcrge Y f{dense p1 o ),
i.8. when £ is near zero, the wave is localized to one sic= of trne sheet
or the other depending wupon which of the "split" solutions for X is
chosen. The wave is "resonant" with either the Ieft cavity or the

right, ond so is of large omplitude {(has a farge B') only in that
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cavity, while in the other cavity the wave suffers destructive
inter ference batween the particular and homogeneous parts of the
solution. Wnen Y is smoll, o is large aond the mode is not localized, as

expected,

The author wishes to acknowledge useful discussion with M. Cerver,

and with 0. Harned, whose simulations of this system are presented

elsewhere in this Report.

I H.L. Berk and R.N. Sudan, “E-loyer Precession in a Plasma,"

J. Plasma Phys. 6§, 413 (1971).
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: G. TRANSVERSE OSCILLATIONS OF A CURRENT SHEET IN A PLASMA — SIMULATION

Doug Harred (Alex Friedman, Prof. C. K. Birdsall)

Our one-dimensional quasineutral hybrid code QUAD1 (pre-
vious QPR) was used to study the oscillations of a thin sheet of ions
propagating- through a cold background plasma. Conducting wall boundary
conditions were used. The geometry of this configuration is shown in 1
Fig. 1 of the previous section. This problem is analogous to the cylin-
drical problem of the m=0 oscillation of a field-reversing ion-layer
in the limit of infinite radius.

Simulations were performed by placing a beam of one cell-width

in 3 uniform plasma and then applying a small rigid perturbation in the
x-direction. Our simulations have demonstrated the stability of such a
system. The measured layer oscillation frequencies were found to agree
well with analytic results derived in the preceding section. We will
; define X, as the half-width of the plasma slab, v, as the Alfven velo-

A

city, v, as the beam velocity, and Mb as the total mass of the beam. The
charge-to-mass ratios for the beam and the background plasma have been
assumed to be identical. The analytic expression for the oscillation fre-

quency of the beam,

X tan X = Y
where
wx
x = —X
Ya
2ne2v2x M
- o'wb
Y =
mzczv2
A
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was solved for the lowest harmonic with a root-solver (SOLVERZ) and is
plotted in Fig. 1. The values obtaincd from our simulations are indi-

cated on the graph.

The parameter Y on the right side of Eq. 1 may be expressed

as the ratio of the total background plasma mass to the mass of the beam:

wamn M
Y = ——B = —R (L‘)
M

Mb b

There are two limiting cases.

When Mp/Mb »1 the inertia of the beam is not important.
An initial perturbation to the right sends a compressional Alfven wave
to the right wall. After the wave has reflected and returned to the
center, the beam feels a force to the left. This motion sends a new
compressional Alfven wave toward the left wall. The beam continues
to oscillate about the center in this manner, with a period equal to the

time required for an Alfven wave to traverse the slab twice, i.e

.

An example of this type of motion is shown in Fig. 2.

If the mass of the beam is increased (or the background
density decreased) the inertia of the beam slows its response to the
wave, reducing the frequency. For the case Mp/Mb« 1 the plasma response
is negligible and the motion of the beam is that of a simple harmonic

oscillator, with the only force being due to the magnetic pressure gra-

dient across the beam. The equation of motion is

!
]
]
[
1
{
5
!
3
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Results of theory and simulation. The solution for the lowest har-

monic from Eq. 1 is plotted. The circles represent the simulation

results.
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2 2
-7 <3—> (6)
8n

Integration across the layer gives

(=24
Naal

3
[}

Q
rr
n

2 B 1 l
a & o
-my i = 2 - )
TS S WO N e Tk
where Qois the equilibrium magnetic field. Writing E'=€elwt and per-

forming a Taylor expansion on the right side of Eq. 7, the oscillation

frequency is found to be

w o= Bo1 /———l——— (8)
ZﬂMb

X
w

An example of this type of behavior is shown in Fig. 3. [t should be
noted that the beam moves with sinusoidal oscillations, rather than with
the triangular oscillations which occur when the effect is due solely to

Alfven wave reflections (Fig. 2). Egs. 5 and 8 represent the high and

low frequency limits, respectively, of the lowest harmonic of Eq. 1 (Fig.




- 42 -

H. FIELD REVERSED PLASMA SIMULATIONS, QUASINEUTRAL, in 2d
Doug Harned (Dr. Alex Friedman Prof. C. K. Birdsall)

We are currently testing a two-dimensional quasineutral code,
AQUARIUS (A QUasineutral AlgoRithm for lon Simulation). The purpose of
this code is to study the behavior of systems characterized by large ion

gyroradii and long time scales (t >Q;], where Qi is the ion-cyclotron fre-

quency). Examples of such systems are field-reversed mirrors and ion layers.

Although these particular systems have cyclindrical shape, cartesian
coordinates were chosen for AQUARIUS. While cartesian cocrdinates make
the application of cylindrical diagnostics and boundary conditions more
difficult, they avoid the problems of poor resolution at large radii and
the singularity of the origin at small radii, often associated with cylin-
drical coordinates. |In our r=9 code, there is added limitation that a
Courant condition (At <%5) must be satisfied throughout the system. This
limitation governs the f?neness of the grid near the origin which in turn
may force one to pay a substantial penalty either in accuracy at large
radii or in computational time (if small time step is used to allow a re-
duction in Ax). Cartesian coordinates will allow the treatment of a wide
variety of plasma configurations, including infinite systems, for which
cylindrical coordinates are not well suited (e.g,, periodic boundaries
cannot be applied in the radial direction). Cartesian coordinates have
added advantages in that equations in the field-solver are simpler and

avoid difficulties that can arise in cylindrical particle movers,

AQUARIUS is similar to our one-dimensional code, QUAD! (see

last QPR). It is non-linear, uses PIC techniques to advance the particles
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and employs a quasineutral Darwin field solver. As in QUAD}, the electric field

— s~

is advanced with the Darwin approximation of Ampere's law

VxB = — (1)

and the inertialess electron momentum equation, which for cold electrons

can be written as

Combining Egs. 1 and 2, we have

(7xB) xB - ——J x8 . (3)
hrne nec '

In two dimensions this expression reduces to

i ! vBZ--—1 '-Jixsi . (4)

z 2z
brne nec

The magnetic field is advanced with Faraday's law,

i 382 .
—=z = -c VxE (5)
at
which completes the field solver. Egs. 4 and 5 are solved as in QUADI,

using a predictor-corrector method like that of Byers et al.1 One pre-

dictor-corrector iteration was found to be sufficient for the fields to q

converge.
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Because the successive application of Eqs. 4 and 5 consti-
tutes two spatial derivatives of the electric field, some care was re-
quired to avoid the appearance of an alternating-cell instability. Such
an instability will occur if E and B are determined using simple centered
differences to represent spatial derivatives on a single grid. To avoid
this probiem we are using interlaced grids for the electric and magnetic
fields. Centered differences can then be applied effectively.

The code has been tested on cold Alfven waves. The waves were
found to have correct frequencies and propagation speeds along the horizontal
and vertical directions, as well as at an angle of 450. Some error has
been observed at intermediate angles due to the squareness of the present
difference operators in the code. We are presently using four-point oper-
ators to represent derivatives for both the curl and gradient operations.
Such operators exhibit angle errors2 proportional to (kAx)z, which become
severe at large values of kax, We would like to reduce the angle errors
presently seen in AQUARIUS. While some improvement has been obtained by
smoothing, it may be possible to further reduce the angle error by the
implementation of a higher order operator.

Twelve-point operators can be derived for the gradient and
the curl. Figure 1 shows the grid points used in the four and twelve-

point operators. Derivatives in each direction may be written as

3u 1 [
— = U, . T, B I
<3x>i’). Bh{1 +a+38) i+l,§+1 i1, 51 "i=1,5+1 "i-1,5=-1

*Winr, je3™ien, 37, 503708

+ 3

”a+3,5+1*”i+3,j-1'”i-3,J+1'“i-3,J-1)]

e n i i b i Ak N
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Twelve-point and four-point operators. The dashed lines represent
the grid for V and the solid lines represent the grid for U. To
obtain V at the point x, from the equation V=-AU, one may use (a)

a four-point operator, using the points denoted by circles, or (b)

a twelve-point operatcr which uses, in addition to those of the four-

point operator, the points denoted by triangles.
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where h is the grid spacing (h=4x=A4y). a and 8 are adjustable parameters.
If o and B8 are both set to zero, the second-order accurate four-point oper-

ator is obtained:

N1 i )
ax = o Wis,jerYien, o1 Yior, jer Vi 0!
h2 (8 a3y
- — —3-+3 7 + ... . (6)
6 Ix 3Ix3dy

By appropriately adjusting « and 8, it is possible to obtain fourth-order
accuracy in the twelve-point operator. However, it would be more desir-
able to minimize the angle error in order to reduce the effects of the
grid squareness on cylindrical problems.

Consider the gradient operator, V =-Yu, where u is a scalar

ik x
potential. Using the twelve-point operator, and writing u as u=ue x
ik 'y
e v , the gradient can be expressed by
. L
=1 e'%kxAx_e Pak, Ax itk Ay =itk Ay
v = e Y +e Y
% (4 + ba +128) Ax
ilk Ax -i]-k A 3
Q2 X x% gk oy ik ay
+a £ e +e Y
Ax
.3 .3
2 -id 1 N
elzkxAX_ nzkxAx l_z_k Ay -'Ek Ay
+8 etV 4e u (7a)
Ax

P G B ta S o=

R % U - -




B

?4

13k Ay =ik A
RSy Thak By

1 A -e i%kxAx -i‘zkxAx
\ = e +e
Y (4+ba+128) Ay
ilk Ay -ink d 3 3
Zyy I2yy izk Ax =izk Ax
e -e 2% 2 %
+ a e +e
Y
.3 _:3
e‘ZkyAy_e 'ZkyAy i-lz—k AX -i%k ax 1
+ B e X +e X% u . (7b) :
Ay
sin X

Defining X=kxAx, Y=kyAy, and dif(x) = , Eqs. 7 reduce to

. k k
S —— [—xdificosi+e¢—xdit‘—x—cos—3-i

<
]

X (1+0+38) 2 2 2 2 2 2
k
X gi3X Al
+382 dif 5 Cos :l u (8a)
. k k
vV o= — [—%dif%—cos-§-+a—%dficos§;—
Y (1 +a +38) 2
335’- difd cos 2| o (8b)
2 2 2 . ’
Since V=iku, we have®
Kx
-
12 ___{’___[difécos%+ adif%coség—'#mdif%cos -—;—?
K, (1+a+38) Lo
(9a)
l‘(Y
—1z . : [di’r‘ %- cos é-f adi f TY cosiz)-(-+36dif %Ycos -’;—],
ky (1 +a+38) -
(9b)
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where K,, is the effective wave vector produced by the twelve-point

operator. It is possible to compute the angle error (A of the twelve-

12)
point operator. The angle error is defined as the sine of the angle be-

tween the actual wave vector, k, and the finite difference approximation,

5]2, following Ref. 2,

“ Ky .

[[%12]

|
A12 sin 912 ‘5

The angle error will be minimized when the numerator,

XY (sinécos—;—+asinxTcos%+B sin%xcos %—)
(x/2)

2 2 2 2 (m

(sin ; cos 2(-4- a sin X cosﬂ+ 8 sin%{cos —X—)
(v/2)

goes to zero. A Taylor expansion may be performed on the sines and

cosines:

— sin 7 = 1 = =S L, (12a)
(x/2) 3! 5!
(&) ()
cos é- = 1 - YRRV VN e (12b)
21 b1

When these expansions are used in £q. 11, and terms beyond second order

are dropped, the folilowing expression is obtained to minimize the error:




-[;9-
1 -9% +38 = 0. (13)

This equation provides a means of determining 2 and 3 to give accuracy in
angle to (kAx)h for small kax. The freedom to choose one parameter is still
available and this may be done to effect some reduction in magnitude error.
If the derivatives in the second-order, magnitude errcr terms (83u/3x3 and
83u/8xay2) are assumed to be comparable, then the optimum values of 1 and

R are found to be -.04 and .0533, respectively. Figure 2 provides a compar-
ison between the angle errors (from Egqs. 9 and 10) given by this twelve-
point operator and the standard four-point operator. In Fig. 2 the mini-
mum angle errors, which occur at an angle n/8 relative to either the x or

y axis, are plotted for each operator (a=-.04, B=.0533 for the twelve-

point operator).
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L. FIELD REVERSED FLASMA 3TA3ILLTY;
LINEARIZED SIMULATIONS [N 30°

Alex Friedman

{The following is aon abstroct submitted as o contribution to “The
Physics of Mirror Machines,” a hondbook under preparation at Lawrsnce

Livermore Laboratory. The obstract s reproduced in its entirsty hare;

it moy oppear in edited form in the hondbook.)

The iow frequency stobility of strong ion rings and axisymistric
field reversed mirror plasmas is being studied, using tiie-dependent
computer simulotion methods. The technigques emploved arz applicable
over o wide range of parameters, from the large-orbit fieid reversed ion
ring (which might bes used to confine cdditional dense, less snargatic

fusion plasma as conceived of for the Astron device), through FRM

plasmas with R, /a; ~ 5, reversed-field theta pinch plosmas, and
spheromak plasmas having much smatler nominal fon gyrorodii. The effort

hos, until recently, been concentrated on ion ring configurations with

Rp/a; 2z 1 ond hoving o dease cald background plosna component. Present

work i3 an c¢reating appropriate FRM equilibria with Rp/ai 2 2 far

stability studies,

The simulation progrom is o linearized three dimensioncl hyobrid
code called "RINCHYBRID" (FRIEDMAN, SUDAN, and DENAVIT 1978,137%). This
pragrom modeis an ion ring {represented by particles) in o ¢losma
' consisting of a cold, uni form background ion component ond  an

t inertioless electron component of density appropriate for lecal




quasineutral ity {both modeied by fluid equations). 5Since thz tcikgrourd

plasma components are assumed to be pressureless, the oniy zzro orcer
current is due to the ring ion component. To lowest oroer the rirg
particles {or the hot ions in an FRM run) are axisymmetric rings nRaving
r,z coordinates and r,8,z velacities. First order perturbaiicns having

ozimutha! mode number ! are considered, so that each particie kK s
deformed by an infinitesimal displacement gkexp{ife). Fizlgds cnd
currents are represented by oxisymmetric zero order parts, pius first
order parts varying as exp{i{8), ail defined on an Eulerian mash in the
r-z ptane. Since each simulation particle represents a szt of reci
particles lying on a nonoaxisymmetric ring, o considerable econcmy of
computation relative to o nonlinear 3d code is possible. Cecupiing
between modes of di fferent t, nonl inear saturation, ond other
large—omplitude effects cannat be investigated with the 1ineorized
simulation, which serves largely os o replacement for !inrear theory,
since the latter is difficult For such complicated configuraticns.

A method of generalting quiescent equilibria through the acddition of
a resistive relaxation term {—aoaAglat} to the zero order field equation
has been develogped ({(FRIEOMAN and SUCAN, 187B). Because of the chaoctic
sslf-fiald betotron motion {or bounce motion) of the hot ians, and their
limited nunber in the simulations, only an opproximote equ:iibrium is
possibie; the goa! of the method is the minimization of fluciuaticas in
the impartant macroscaopic moments {especiclly the current density).

Code performance has been verified by studying the normc! 7odas of

the cold tockground plasma, which hos been represented both o3 o flu'd

s lenbiatlibing siuailinmeneSatiatnaliiilit ki PR s

s Bl i
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ond by discrete particles centered in cells and on cell edges {with
zerg—order veiocities set to 2zero). A consistent bourdary condition
qrises from setting the tongential components of the first-orcer
electric field to zeco at the walls; this necessarily implies o nonzero
normal component of the plasma velocity at the wall in this gscmatry.
Further code verificotion has included a study of plasma return curreats
across a magnetic field, in cylindrical geometry and witin no center
canductor {FRIEDMAN, SUDAN, and DENAVIT, 1979).

The stability af infinitely—-long current layer equilioria has been
exomined {A. Friedmon, in preparation). Both stable and unstable Kink
and precessional motion have been obsecrved; the unstable f = | motion in
o rodiglly decrecsing field can be identified with the MiD aprecession
first noted by BERK and SUDAN {1971), and described in cetail by
LOVELACE (1979).

The stability of thin, weak rings {i.e., rings which are not
encircled by field !ines) has been studied. A new tilting instabiliity
of the weck ring -~ plaosma system hos been observed in the simuiations.
The mechonism s similar to that of the kink instability of o strong
beam; however, unlike the strong ring cose, the stability threshoid is
dependent upon the background density. A simple heuristic crolyticaol
mode!l which contaoins the essence of this mode has been develcged
{A. Friedman, in prepacation).

Effects of ergodic single-particle orbits are observed in many of
i

our simulations {FRIEOMAN, 1973); dues o the structural instaoility of

porticle trojectories, neighboring orbits diverge exponentiolly {and
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noisily) with time. [n the zero arder matiaon, this effect lz2cds cnly to
e loss of left—right mirror symmetry. However, in the first order
motion the ossociated "growth” due to single-particie instchbility con
often be sufficiently rapid as to mask the collective madas which ar2
the true objects of study (the rate of orbit separation depands strongly
upon the dstails of the equilibrium; see FINN, 1973). Becousa of the
finite number of simulation particles empioyed, the rondom pizses of the
individuol growing displocements &, connot force macroscosic memants to
be zero as they would in a true Viasov plaosma with an infiaite number of
particles. Similar effects have been observed in the crude FRV
equilibria we have generated to date; this has been the major impediment
to more rapid progress in this direction. This problem is also likezly
to occur in Future applications of nonlinear codes to probiens of !insor
stability {(f cartain "quiet-start” loadings are used {i.e. garticles on

circles initially).

The stability properties of some field reversed ion ring equilibria
have been exomined {A. Friedmon, in preparation). One mocsraotely thick
ion ring with ospect rotio of order #4:1, for which the singie-particle
instability was not excessively ropid, has been studied in detail. This
equilibriun is stable to the MHD precasssion (! =1 radial mode) because
o conducting wall s present at finite rodius; kink mode tehavicr 1S
observed to agree closely with predictions based upan the thin-ring
theories of LOVELACE  {1875) ond SUDAN and ROSENBLUTH {1975;.

¢

Specifically, the ! =2o0nd 3 rodial kink modes, and tre § = 1 and 2

oxial modes, are the only ones which show ropid growth. Scme evicence
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for the possible existence of betotron—-resonance instabilitizs {FINN ord
SUDAN, 1979) hos been observed faor larger values of §. Thz study of
thicker rings has proven difficult because the single—particle
instability masks the expected (siower) growth.

The RINCA mode!, a 2d3v {axigymmetric) nonlinear cccdz, was usad
earlier in studies of ion ring formation, equitibriun, and ccmpression
{FRIEDMAN et.ai. 1977; MANKOFSKY et.al. 197B). The physics containsd in
this program is similar to that of the version of the SUPERLAYER coce
used for mirror studies, although the algorithms employed ors cimoat
entirely different. Companion runs using RINGA ond SUPERLAYER nave
showed good agreement, thus verifying the performance of botn codss.

future aoppiications of these simuiations moy concern izn kingtic
{e.g. loss cone) instobilities which are present in the infinite plosmo
{BYERS et.qt., 187B). However, the primary concern is with gross
corfigurational instabilities (MHD—1ike kink, sousage, etc.) ond with
ion kinetic modes whose instability depends upon the detoilied shope of

the field reversed equilibrium, {e.g. betatron resonance or bounce

resonance effects).

* This work has been carried out in collcboration with Prafs. J. Denavit
of Northwestern University and R. N. Sudan of Cornell University; more
recentiy, the author has gained much from interacticn with
Or. 4. A. Byers of LLL. The oauthor gratefully ocknowledges tihe auppart
of Prof. C. K. Biragsall {U.C. Berkeley).
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J. PULSAR SPARKING
Dr. W. M. Fawley

A great deal of progress was made in simulating the initial
growth, saturation, and final states of electron-positron pair creation
cascad~s (=sparking) in pulsar magnetospheres. In brief, it appears that
sufficiently copious pair creation always shorts out background electric
fields (i.e., those induced by the rotation of the pulsar magnetic field)
and that charge of both signs will periodically be able to flow out through
the light cylinder. For all initial conditions studied to date, the initial
burst of pair creation turns itself off by shorting out electric fields all
the way to the neutron star surface. The accelerating electric fields build

up again only after the relativistically hot pair plasma becomes sufficiently

H
i
i

rarified via expansion through the light cylinder that the plasma suffers
what is essentially a dielectric breakdown. Due to transit time effects,

the pair creation rate then oscillates about an equilibrium. It is not clear
yet as to whether these oscillations fully clamp out to zero or whether a
certain amplitude is maintained indefinitely. The oscillations have a time

-6 5

scale (10 to 10 7 seconds) suggestive of the microstructure observed in many

radio pulsars. A more detailed report will be given in a later QPR.

K. DIGITAL FILTERING IN TIME
Dr. W. M. Fawley (Prof. C. K. Birdsall)

We have made some progress in developing time Yiltering algor-
ithms and give a short report here. A more detailed version will appear in

a later QPR.
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Following the ideas of Denavit et al., we have employed a back-
ward-biased electric field in the acceleration subroutine of the 1-d electro- !

g static code ES1. However, we used a somewhat different biasing scheme. Using *

(1)

. . . + .
requires a predictor-corrector scheme to determine EN ! which we prefer to
avoid. Instead we found that substituting

q ((Hs) gNHIM | (1-¢) EN-]/M)
m

(2)
2 2

for the right hand side of Eq. (1) for M>1 reproduced all the useful! damping

characteristics of the original equation. For sufficiently large M (we used

M=5 and ¢=0.5 in most runs), it is not necessary to use a predictor-corrector

N+1/M N-1

to determine E inasmuch as one may advance VN-* to VN using EN and E

and then fairly accurately predict XNt]/M and thus ENt]/M. Computationally,

this method is somewhat faster than a predictor-corrector with only one cor-

rection step and is much faster if convergence of the predictor-corrector scheme

requires more than one iteration. |
; We have tested a version of ES1 employing Eq. (2) on cold plasma

oscillations and find that for upAt<2, the algorithm is stable and that the

damping rate increases quadratically with oscillation frequency. The algor-

ithm is not generally stable for mpAt>2, though a ‘'‘hybrid' version using many

short time steps followed by a single, moderately long time step is stable for

some parameters regimes.
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O N

The damping algorithm also appears to inhibit the growth rate
of the multibeam instability at low spatial mode numbers, but it does not
suppress the instability at higher mode numbers. We plan to investigate

this problem further with Y. J. Chen.

L. NONPHYSICAL BEHAVIOR OF HYBRID OSCILLATIONS DUE TO ALIASING
Vincent Thomas (Prof. C. K. Birdsall)

Ces T e R T TR R

While simulating hybrid oscillations of a cold plasma excited
at large kAx, large variations in the total energy were observed. These
variations were due to an overall variation in the kinetic energy; there

was no overall change in the electrostatic energy during the simulations.

Moreover, the field energy was contained entirely in the mode initially
excited. These characteristics are shown in Figs. 1, a through e. All figures

are from simulations with the following parameters unless otherwise noted:

L = 32 wy = 1 MODE = 14
NG = 32 w, = 3 X, (0) = E-06
VY(O) = 'mcx1(0) .

The growth in the kinetic energy was imperceptible when the
lower modes were excited, but increased monotonically to become many
times the initial kinetic energy when the higher modes were excited initially

(Fig. 2).  The frequency of the kinetic energy variation (beat frequency)

changed gradually from approximately 0.1 of the hybrid frequency for modes
where the growth has just become noticeable to less than 0.0t of the hybrid

frequency for higher modes. This beat frequency variation is fit well by

the quantity »g/ZwH (Fig. 3). The plasma frequency and the hybrid

frequency are taken to be the mode dependent quantities in this expression.
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FIG. 1 (a) Total electric field vs
time; mode II initially excited (b)

mode II electric field energy vs time.
(¢} +(e) kinetic energy vs time. |If
the simulation ran longer, the kinetic
energy would be seen to return to its

original value.
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@
1

r

i FIG. 2 The peak kinetic energy of the beat divided by the initial kinetic

energy, as a function of kAx, the mode initially excited (modes
L through 14).
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FIG. 3 The beat period T, for the kinetic energy vs kdAx. The crosses show

the period for w=uw -wc%wﬁ/ch the predicted value.
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The total energy variations due to the kinetic energy variations were
much less than the energy variations due to the overemphasis by the grid
of the electrostatic energy for the first 6 modes of a 16 mode system.
In this sense, the kinetic energy variation is not important for these modes.

Phase space plots showed generation of aliasing (Fig. 4). Plots
of Vy vs. vy displayed differences in phase that are not to be expected
if the motion is that of anormal mode (Fig. 5). Histories of a single
particle velocity space motion showed alternating growth and decrease with
no drift {no E/B mistake) (Fig. 6). The simulation run for Fig. 6 was less
than the period of an overall beat variation so that the particle is seen
to be still spiralling outward. |f the simulation was run longer, then the
particle radius would seen to return to its original value. The particles
showed different growth rates, with longest growth in positions where the
amplitude of the electric field was largest.

When the time step was changed from w

At=0.15 to w At=1.5, the

H H
amplitude and frequency of the energy variation changed only very slightly.
When the mode number was held constant and the number of grid
points increased {meaning kix decreased), the variations decreased, becoming
negligible when enough grid points were added. ''Enough'' means that kax<w/2.
The nonphysical behavior remained for all excitations in x](O)
tried from 0.01 of a grid space (just a little less than the particle separa-
tion) to 10-6 of a grid space (which was approximately 10-4 of the particle
separation. The frequency of the energy variation did not change when the
excitation was varied and the relative amplitude remained the same.

mc was varied from 0.5 to 4 with the wp at 1. Increasing the

cyclotron frequency yielded a larger amplitude and a longer period. Exhaus-

tive studies were not done, but for all cases tried the frequency of the




e
- M
- O\J —
0 QK
I [
QO o
= €
........ Ho X =
. ’ o)
. x i)
; T > X
e
- g
' >
>
— M
)
wn
11 1 | | | o
o — — 2
™ © v 9w u
, _ 1x) An
= (9-0
)
TR - 49 gm
™M
. 46 P
. - 7)
Cm e &
- : . v O
. O .. —— a wm
) . ]
1 A e L g g
- o - " * o o E
L > & Ho . 5 ¢
L bt .- u— o]
- - < ..L — ~
b S ¥ X > va
- O ? e > w "
- B -1l = X . > m
; ) P 0 N L A.u. R
- X
ST > LG ~
- ]
) b TN e -~ .
Y WY I Y R B . o
o~ w (@) nmu o o u
- a ™

(,.01) XA




variation was given by 24

W Through Fourier analysis of the kinetic energy,

a high frequency component was also observed at uH+uc, which can be observed

if » +mc is not much smaller than w, and so is separated from the peak at

H H
Z“H‘
Changing the number of particles from 2048 to 256 did not change

the relative amplitude of the variation.

In an attempt to investigate possible beating between the cyclo-
tron frequency and the hybrid frequency (which would have a large period due
to the decrease in the effective plasma frequency at high mode numbers), a
simulation was done at mode 1 with a plasma frequency corresponding to the
effective plasma frequency of mode 14. No nonphysical results were observed
which implies that the poor aliasing properties of the higher modes is essen-
tial for the generation of the nonphysical resuits.

One simulation was done by perturbing the x velocity only but
the unphysical results still occurred.

The frequencies of the energy variations can se calculated by
making use of the fact that the electric field is sinusoidal and does not
change its amplitude. An essential feature of this calculation is that it
depends upon the nonsinusoidality in space of the force (or electric field)
at high mode numbars. A typical electric field and its Fourier transform
(treating the electric fields as a continuous function, rather than a grid
quantity) are shown in Figs. 7 and 8. For lower modes only the principle
term would be present. The analysis follows.

The equations of motion for hybrid oscillations, with §=iBo, are

(1)
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FIG. 7 Electric field at time zero. Note that NG =32, mode 14 only excited
kinetically (i.e., intial particle displacement and velocity) pro-

duces E at mode 14, plus other.
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FIG. 8 The magnitude of the Fourier components of E obtained from E(x) of
Fig. 7 using a very fine grid NG =2048. The principal term near 3
corresponds to mode 14, the others are spatial harmonics which

fold into mode 14, e.g., 18 (not seen).
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X = —+wy . (2)

Integrating Eq. (1) with the special initial conditions of 9(0)=-wcx(0)

and x(0)=0 gives

e
[}

"W X (3)

Putting Eq. (3) into Eq. (2) yields

x+uix = & . (4)
c m
i Fourier transforming this equation in x yields.‘
3
.2 _ g 5(-k) E(k,t)
xk *ucxk = - . (5)

Here k is to be treated as a continuous variable, going from 1 to ». Note that

. From the simulations, we have observed

the r.h.s. is not replaced by -wﬁx

N x

that E(t) goes as cos{w,t) where w =w§<+m;(k); therefore, we take

H

E(k,t) = AL cos wt (6)

The most general solution to Eq. (5), using initial condition ik(0)=0, is

S(-k) A
xk(t) = C1cos w t - q —5— cos wyt (7)
mmp

! For those modes which are not initially excited in displacement

or velocity (but are excited in that an Ay exists), x(0)=0, y, (0)=0, we have

1
See Chap. 8 in C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer
Simulation.
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A, q S(-k)
( xk(t) =-———-;;§-——— {-cos w .t * cos th} . (8)
! p

The velocity components are v =X, and vyk=yk=—wcxk which produces

xk

12 2
(KE), = gm (v * vy

2
w
A Zmi + -fl (1 - cos ZwHt) + wc[(wH-wc) cos (w +wc)t

- (wH+wc) cos (mH-mc)t] . (9)

; The high frequency at 2w, is clearly seen and the Yow (beat) at (wH -wc) N

mi/Zuc is clear; the frequency (mH+wc) was also observed through Fourier
analysis of the kinetic energy.

However, if we are sufficientiy clever to excite x, at t=0 so
that C]=O, that is, with proper normal mode amplitude

q S{-k) A

x (0) =K (10)
™o

then the solution is

xk(t) = 9_§£:S)2E(k) cos w,t {11)
™

with no beating; only one Ak is excited.

The point is that the force, F{x,t), seen by the particle (inter-

i polated from the grid), isneverpurely sinusoidal. F(k,t)=S(-k)E(k) will
contain more and more harmonics as the particle excitation is made at larger
and larger kax>7. Fcr excitation at small kix« T, Flk,t) will contain essen-

tially only the excitation wavenumber k; this will be
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g S(-k) Ak
xk(O) X o~ (12)
mw
because
q S(-k) q
—— > = E() = - ulx
m m p
and
2
W
p
-— = 1
wz
P

A lesson from this exercise Is that initial excitation at large
kAx is highly undesirable, producing large alias fields and subsequent non-
physical beat motion. In addition, as plasmas excited at small wavenumber

will, due to nonlinearities, excite modes at harmonic k's and also produce

nonphysical beats, it is recommended that smoothing be used, probably for

all modes kax > /2.
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Section I
CODE DEVELOPMENT and MAINTENANCE
A. £51 CODE

(No special report this quarter)

B. 1 CODE

{No special regort this quarter)

c. £Z0HAR CODE

(No special repact this quarter)}

D. ES1+EFL CODE

{No special report this quarter)

E. RINCHYBRID CCOE

Alex Friedman

A new version of the user”s manua!l for this code (s availichie; this
version contains a description of the functicons of all code parcmsters

ond variables. To cbrain a copy, type {on ths COC-7800):
FILEM RDS .CURRENT MANUAL / t v

NETCUT [use] WANUAL ULC. 22K [arn] wanlaL / bty

where [usc] is tre user’s lccaticn, ond [nan] the box Aumbar.
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F. RADIAL SIMULATION CODE ESIRB
Niels Otani (Prof.C. K. Birdsall)

A radial plasma simulation code has been deveioped for the pur-
pose of improving simulation methods in an r-8 coordinate system. Thus far,
the code has been tested on simple plasma problems. These methods are in-
tended to be useful in the study of a wide variety of problems including
intrinsically radial problems in both the tokamak and magnetic mirror fu-
sion machines and inother cylindrical devices, such as magnetrons.

Our code is a 1 3-d (r,vr,ve) code resembling in many respects

the cartesian electrostatic code ES!, developed by A. B. Langdon (1970).
However, our code operates without the grid used by ES1 on which charge
density is accumulated and fields are calculated. Instead, particle
accelerations are computed directly from particle-pair interactions. The
main purpose for this is to study the effects of finite particle width
independently of grid effects.

Particles used in this code are cylindrical shells with finite

thickness with shape characterized by

>

for r. crer;tw
s(r,r,) =

0 otherwise

where A is the charge per unit length of the particle in the axial direction.
S(r,ri) is the '"radial profile' of a particle said to be at coordinate v
and is defined by S(r,ri) =2wrpi(r). The charge density corresponding to

this radial profile is shown in Fig. 1. As shown elsewhere in this QPR,

this is the only particle radial profile which will conserve both energy
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FIG. 1 Particle charge density as a function of radius.

Old position

FIG. 2 Schematic illustration of ESIRB method of advancing particles.
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FIG. 3 Summary of the time centered leapfrog method used by ESIRB
{1y & - accel, rotation, § - accel
(2) radial coordinate mover

(3) velocity component mover
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and momentum away from the origin in the limit 4t ~+0, and therefore is
the natural choice for the particle shape.

The equations of motion to be simulated are

<o
[}

2
v
—ra— + %fs(r) Er(r) dr + ucve (1a) i

(1p)
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€
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where, by Gauss' Law,

E(r) =

R

r
2: s(r',r,) dr' ,
J/; ’

m is the mass per unit length in the axial direction, and w, is the cyclotron
frequency, ABo/mc. in other words, we consider only forces derived from
a uniform external axial magnetic field, and from a self-consistent elec-
tric field, as in ESI1.

The ACCEL routine of our code employs Langdon's half-accelera-

tion-rotation-half-acceleration scheme modified for cylindrical coordinates:

1 At .
Vey = (vr)old + - 7;-J[S(r) Er(r) dr {half-acceleration) (2a)
Yeo T Ve * (wcAt)(Ve)old
(rotation) (2b)
(ve)new (ve)old B (wcAt)vrl
(v) = v .+ l A—t./‘S(r) E (r) dr (half-acceleration) (2c¢)
r new r2 m 2 r :
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A time-centered leapfrog method of advancing particles is used:

{v)

old =v(t), (y)new==v(t+At), and r=r{t+At/2). Provisions also exist in

this portion of the code for adding velocity-proportional damping and uni-

form background charge.

The MOVER advances both the coordinate and the velocities to

the new position according to the formulae:

W W YA v 2
Cnew © 2 \//(rold+ ;'+ VrAt) * (veAt) (3a)
(vr)new = (vr)old cos 9 + (ve)old sin @ (3b)
(Ve)new s (Vr)old sin 9 + (Ve)old cos © (3¢)

: where
veAt
cos § = ————— (3d)
r +w/2
new
r +w/2 +v_ At
sin 8 = old S (3e)
r +w/2
new

These relations are derived from the schematic illustrated in Fic. 2.
We wish to have the center of mass of each angular section of the cylindrical
particle moving according to Eg. (1). As is evident from Fig. 2, the center
of mass coordinate, r +w/2, changes according to {(3a), and the components of
velocity vector v are rotated by angle 3, owing to the rotation of the coordi-
nate system at the new position relative to the old. Note that the rotation

does not advance v in time. It is however equivalent to the -vavr/r term in

O S s K
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Eq. (1b), and the centrifugal force term in Eq. (la). The steps involved in
advancing the particles are summarized in Fig. 3.

Initialization of the particles is achieved by means of an input
file containing r, Ve and vy values of all the particles. Pre-processor
programs have been developed to generate these input files. This method of
loading particles allows a great deal of flexibility with a minimum amount
of effort. For instance, a simple method for establishing a one-dimensional
radial equilibrium is to load the particles arbitrarily and use ESIRB itself
with damping to damp the particles to equilibrium. ESIRB then produces a
record of the equilibrium positions and this is used as the input file for
the pre-processor, which canmodify the equilibrium in whatever way desired.
The modified file is then accepted as an input file by ESIRB for the main run.

To start the leapfrog scheme a routine analogous to the EST SETV
is called once immediately after the particles loaded. This routine performs
an acceleration followed by a rotation backwards in time by an amount At/2,

and thus provides the proper offset between position and velocities.

Some Results

The equilibria for all simulations run so far have been established
by the damping method just described. This process is illustrated in Fig. 4.
it was found that the desired equilibrium was most efficiently achieved using
a two-stage damping scheme., The first stage used a decay constant of wp (the
plasma frequency) while in the second stage, damping is reduced to 0.lw .
Radial plasma osciallations were simulated quite nicely by esta-
blishing equilibrium in the presence of a uniform background charge distribu-

tion. This equilibrium was perturbed slightly and used as the initial configur-
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Equilibrium for the main run is established using this preliminary

damping stage. Only one stage was needed for thie particular run.
Number of particles =50, 27r/mp=l¢.1+2, damping constant = 1.0mp,

width of particles =0.05.
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ation for the main run. The result is shown in Fig. 5. The Fourier spec-
trum of the kinetic energy peaks quite sharply at Zup, as expected. We also
find that the use of wider particles and larger perturbations produces a
more complicated kinetic energy spectrum, for reasons not yet completely
understood.

Using a similar method, hybrid osciltations were also simulated
(Fig. 6). The kinetic energy spectrum shows components at “o as well as
pr. This was found to be a result of the initialization of all particles
with ve'=0. This leads to a superposition of a ExB drift on the hybrid os-
cillation motion of the particles. A calculation taking this ExB drift
into account quantitatively agrees with the relative amplitudes of the «
and Zmp Fourier peaks of 4 to 1 found computationally.

We have also found that the code accurately reproduces the equil-
ibrium configurations of a completely non-neutral plasma column in the pre-
sence of an axial magnetic field as described in Davidson's Theory of Non-

Neutral Plasmas, Ch. 1.

At the present time a study is being made of the possibility of
the presence of a two-stream instability in the magnetic insulation sheath
surrounding a cylindrical cathode.]

Of considerable concern in this project is the fact that an ade-
quate method of dealing with the passage of particles through the origin has
not yet been developed. As suggested in another article in this QPR, accurate
(i.e., energy conserving) methods of simulating particle motion through the

origin may not be easy to come by.
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FiG. S Plasma oscillations using the equilibrium established by

the run illustrated in Fig. 4. Note the agreement in the

plasma period (theoretical 27:/»p=4.1+2).
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SUMMARY

Work on the problems involved in radial plasma simulation is con-
tinuing. So far we have limited projects to the simulation of known results |

and have met with moderate success. Some difficulties involving the passage

of particles through the origin have been encountered. |In the future, the
code will be expanded to either a gridded 2-d, r-% code, or to a 1¥-d gridded

code employing a Fourier transform method2 in 9 to simulate a 2-d code.
REFERENCES

1. Lovelace, R. V., Ott, E., 'Theory of Magnetic Insulation', Phys.
Fluids 17, June 1974, p 1263.
2. Cheng, C. Z., Okuda, H., 'New Three-Dimensional Simulation Models
: ‘ for Cylindrical and Toroidal Plasmas', J. Comp. Phys. 25, Oct. 1977,

i p 133.
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G. CONDITION ON PARTICLE SHAPES N 1D RADIAL CODES
Niels Otani (Prof. C. K. Birdsall)

.

A simple analysis shows that, away from the origin, only parti-
cles with S(r,ri)=S(r-ri) can simultaneously conserve energy and momentum
in the limit At+0. (Here S(r,ri) is defined by S(r,rk)=2wpi(r) for a parti-
cle located at ri.) If particles are forced to pass through the origin,
? energy conservation is impossible.

For energy to be conserved, we require

dK . du
Et—-"d—t-— 0 (1)

where K is the total kinetic energy:

K = Zimv? (2)
)

in which v is the radial velocity of the i-th particle, and U is the

total electrostatic potential energy:

2
= E”(r)

U = 2nrdr — (3)
Jg gm

It is understood that we are working in cylindrical coordinates and that all

extrinsic quantities are per unit length in the axial direction. We as-
sume that the electric field is due to the presence of all the charged
particles and to a fixed background charge distribution. Thus, from

Gauss' Law,

.
e(r) = %[Qb(r) + Z S(ri,ry) dr (4)

e aa_bdne & e ssndhac it i il setatisaitosnith ikl S sl




where Qb(r) is the background charge inside radius r. We find then that
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J
(6)
For all practical purposes, this necessitates
dr, r
i f B (rr) a2 -y s(er) (7)
dt 0 ar, ' '

i using Eqs. (5) and (6) in Eq. (1). In the most general case, we need not

have dri/dt =v;, indeed, a mover using an algorithm of the form

f((ri)new) = f((ri)old) * viAt

is conceivable. In the limit At-0, we then have vi=-£UL Tﬁ}' Allowing
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for this possibility, we see Eq. (7) is equivalent to

25 . _ g 3s

;;(r,ri) = ar; Sprry) (8a)
and

S(r=0,ri) = 0. (8b)
\f f(ri) =ro then (8a) is equivalent to

S(r,ri) = S(r-ri) . (8a")

In other words, if energy is to be conserved, the radial profile S must be
rigid and cannot change shape as the particle moves in and out. Clearly,
such a restriction is incompatible with Eq. {(8b) when particles pass
through the origin; therefore energy conservation is impossible in any
1-d radial system in which particles pass through the origin.

A similar calculation can be done in the spherical case; here

we find the same theorem true when the radial profile S is defined by

s(ror) = bnrlo (r) . (9)

T PO
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H. RADIAL CODE NOTES (R, R9, RZ, ROZ)

— e

1. INTRODUCTION (C. K. Birdsall) E

Simulations using radial coordinates or grids pose a number of
problems for which some solutions will be presented. The problems and solu-

tions to be presented are not claimed to be new or unique or exhaustive.

St et i i 1 =

The object is to gather together in this and succeeding QPR's some of the
problems, solutions, and experiences with radial simulations.
Radial coordinates may be preferable to rectangular in 1d simula-
E tions using cylindrical and spherical R only, in 2d (cylindrical with R8 or
RZ, and spherical with R8, R¢, 8¢) and in 3d {cylindrical with R8Z, spherical
with R8®).
An object of using radial coordinates or grids is to emphasize

radial behavior, usually implying that the physical and simulation models

have adefinite origin (R=0). There may be strong radial forces and motion or
radial (circular or spherical) boundary conditions such that circular or
spherical harmonics are more easily identified. Radial coordinate use is

also promoted by the concern that using a rectangular mesh with rectangular

boundaries will introduce unwanted moments in the grid quantities. This
argument may hold for XY contrasted with RO, but not for XY contrasted with
RZ. However, some conventional wisdom argues against abandoning rectangular
' meshes, pointing out that with XY meshes, problems with the origin are obvi-
ated, the equations of motion are more easily handled, the radial boundary
conditions can be handled to good approximation and the circular harmonics

diagnostics are obtainable to good approximation. Preferences, we think,




- 86 -

o~

will be made easier and more rational by displaying the details of using ra-

dial coordinates and meshes.
The QPR radial code reporting comes from several sources, identi-

fied section by section.

2. ONE DIMENSTIONAL MODELS (C. K. Birdsall)

One dimensional radial coordinates or meshes are clearly of gen-
eral interest and eminently useful. An example is the set of electrostatic
plasma diode problems solved by Barnes.1 Let all of the charges be cylin-
drical shells (spherical shells can be done by inference) which move radially

th

due to radial electric forces. The electric field within the s shell at

re (see Fig. 1) may be obtained directly from Gauss' Law,

/;r pdv = f D-dS . (1)
-] r

th‘shell is dependent only on the net charge within

th

The electric force on the s
that shell. The radial force on the s shell of uniform charge density o,

line density pz=wo(b2-a2) due to all other charges is

Foo= / 0 E dv . (2)
shell

Specifically, the radial force on Shell I due to Shell II is (for

iRt ans- o ig.

uniform density shells)

F ooz E .. dv = UL g g
rI'S"I eIl S"I 2mer -Tr dr az

1 .
Christopher W, Barnes, ''The Computer Simulation of a Spherically Symmetric Plasma',
SUIPR Report No. 344, Inst. for Plasma Research, Stanford Univ., March 1970.
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Radial shells of charge.




using

l pI(b-a)(b*-a)w
pI(b-a) =
9 (b +a)
g
where

. atb
r =
S 2

That is, when Shell II is wholly inside of Shell I, then the force due to Shell
I acts as if applied at the geometric middle of Shell I, independent of shell
thickness.

The self force on Shell I, due to Shell I (after some algebra), is

= o E dv
Fself /I rl

-
m

2 2
o} [
= 21 a+tt/3 dz -~ ! £l dz for t<«<avbnr (4)
2 \2ner (3
21rerS 2rS

This force is always radially outward; this effect is not found in planar slab

mode ls.

Let the shell be placed in a uniform background density of value
pb’ opposite in sign, so as to oppose the self-force, with inward force on a

thin shell of

S e A"ttt g e <

e e e
(S A 4
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vssrequilibrium’ obtained from

P r 02
pl b e dz = - % ! dz
2¢e 2ner
e
or
Torg ey dz = ) dz
or

The self and background forces compete, as shown in Fig.

2, going to zero at

(background charge enciosed) = (half of the shell charge)

The net force is

2

o] p,p, I

net 2 2rer 2e
. -r2

2e P2 pb —_—+r
r
]
N Py (rgrdir -r)
Ls 2¢ r
s

which reads

& Gt ol s ot oo dish ncinieih,

! -
|
]
>
k
;

t




Force

F1G6. 2

background, tending to return the shell to equilibrium

at

r .

e
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Force acting on a thin shell at radius Fos in a uniform
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o\ ° r ok
Foo= U2 2 &) (ro-r)
s s e
m 3 2r
4 S
Using
p, P
Wz Lk (sign because p p, <0)
p L°b
m €
2
then, for r_=r (1+3),
s e
o= gl s(1E8/2Y N 2
P 1+6

The motion is always oscillatory about o it is simple harmonic only for
§< 1 ]rs-re]«re. In contrast, a planar slab in a uniform background always

has simple harmonic oscillations at mp'
PARTICLE WEIGHTING TQO GRID (C. K. Bindsall)

Several methods for assigning particles to a radial grid will be
given here. In all methods, the particlies have coordinates r and charges
q; which are to be assigned to nearby grid points rj. The particle shapes
will fall out, with some differences from rectangular particles and grids;
e.g., the shapes {ordensity profiles) may not be symmteric about a center,
or, the average charge density of a particle will decrease as the charge (of
fixed radial thickness) moves radially outward, or, the assignment at the

origin may differ from that elsewhere, etc.

METHOD A (from B. |. Cohen, historical origin obscure)

The charge q; is located at r. between r. and rj+1, as

e A




i T+

Let q; be assigned to rj, r. by linear interpolation as derived from the

j+1

charge density, which is

p, = qi/(volume of charge)

which, in cylindrical coordinates, for a cylindrical shell, is

9;

(Zﬂriéréz)

where 8ndz are the nominal fixed dimensions of the charge. The density to be

associated with rj is linearly weighted from ro» as

Foel "y Fipp ™15
o(rj) = 0, et p. L
rj+1 -rJ Ar ‘
where Ar Srj+1-rj and the density associated with rj+] is |
s 1
o(r.. ) = p. (—1—4) . |
j+1 i !

However, charge is to be assigned, as follows:

{(r.) = ofr.)2nr, 6r 82 ,
g J J J

q(rjﬂ) = O(rj_n)Zn g sr 8z
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( which is
r Fip1 ™1
q(r.) = _J- —J———l- q‘
J rl Ar !
- j+1 j j
3 = !
: q(rJ.H) 4= : q;
r Ar

The check on charge conservation

q(rJ.) +q(rJ.+,) = q

is observed. Applying these weights produces q(rj) as a function of r, as
shown in Fig. 1.
A similar approach works in spherical coordinates with spherical

shells, where

9;

i (hvr?ér)

with assignment of density done quadratically, as

2 2
r., -r,
o(r.) = o 1
J "\,2 .2
BN
22
rio-r
I (P R
: a(r. ) N2 .2
: J j+ ]

H leading to
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a r] >> AT

b intermediate

c rj~few Ar

FIG. 1 Charge assigned to rJ. as a function of charge position ro For
rJ. »Ar, the familiar planar linearly weighted triangular shape is

seen. For r‘j a few Ar, the shape is distorted, as shown.
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2 2
r T
q(r.) = 1 AL
] . l.2 _ r2 i
i RN
r 2 rz--r2 i
J+] i i 1
q("j+1) g 72 a, :
i jH j :
{
which also conserves charge, q(rj) +q(rj+1) =q;.
3 :
| i
1 l. RJET DEVELOPMENT (

(No special report this quarter)




J. SOFTWARE DEVELOPMENTS
H. Stephen Au-Yeung

(1) FREX

FREX allows the user to extroct selected frames from one or more
FREY graophic files on the LRAY into one FRYY output file.
This program can be obtained by typing:?

rfilem read ld22 .croy frexlESClend ~» t w

This document corresponds to the FREX version of October 19,
l$/9. Later versions of FREX will be stored in FILEM directory
.cray of user number |224. The user should periodially check the
date of this file Lfilem how 1222 .cray frexs to see if the
program has been updated. The file FREX is o LIB file? it
contains the latest sources as well as the latest documentation.
To get the documentation. type!

lib frexiLFJx frex/doclLFlend /7 t v

netout Luscl frex/doc Lswp.d box nnn frex 72 t v

The commands in FREX are similar to those in DDEX, o DDBY file
frame extracting program that resides on the CDL-/b¥WY (see LIBRIS
5 ¥3/). The following is a summary of all FREX commaonds!

linteger/) -

The frame L(represented by the number iintegers) %o be
extraocted. L(FREX allows only the second one of the two
header frames to be extracted by the user:! it is referred
to as frome number B. The first graphic frame is referred
to as frome number l. ond so on.)

linteger’ thru linteger) -
"thru" caon be replaced by "t" or "to". It causes all frames
between the two integers, inclusive. to be extracted.

y infile {file names ~
Chonge the input file. HI1l selected frames of the previously
opened file are extracted before opening the new one.

end,-
Terminate. processing all selected frames.

quit -
Like "end”. but when entered after ‘he "infile' command causes
previously entered frames to be extracted without changing
the input file or causing termination! more frome numbers i
can then be entered.

box &nnns Lids -
The id string consists of up to Z4 alphanumeric characters:? i
embedded spaces mm) appear incorrectly ond are not
recommonded? use the period or slash instead. The output
file name is construcled from the id line! it is of
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the form fUfirst six characters of id,. If id consists
of fewer thon six charocters, the filenume is right-iilled
with asterisks to ensure un cigth-character file nume.

If the file to be gervrated oxistis. the user is given

the option of owverwriling iti.

zize lintger) -

To specify the size Uin words) of the outpul filo deiaults
to 289888 . This command has (o be issued bBofore the
box and id is ontered: otherwize. the doefaull sizoe will
be used.

fomily *the first file nome of o file family, -

This i35 tho some us the "infile" commard oxcept that uwhen the
end of file is encountered. ["REX will open thoe next 7ile
within the fomily. HI1 file names nus: be exactly B
characters long. The last name in Lhe {amily should end
with an "x" le.g. flUSrpdx o fYiestdx. etc.). Tha last
two chardcters of othor files nust be numeric botwoen
"Rt and "ugt,

Note! The BASELIB routine ZSEQHSPZ is used.

cancel linteger} -

Lancel the frome number integer/ that has previously
entered for exiroction Lframe must be concelled l-by~1).

nochar .-
Eliminate all alphanumeric choracters from oll frames. Useful
for suppressing crowded labels on ukes uhen preparing
figures for publication.

char -
Revarse the efiect of "nochar" li.e. return io default mode).

offset Linteger/ -
Set offset for calculotion of frome numbers ldefaults to
3 and vsuolly not required). For exampie. ii the number
3 iz entered. all firame numbers entered after this

command will hove 3 added to thom before processing.

Restrictions!

Ul) The routine will fail if the output exceoeds the size
specified by the "size" command.

Example 1

Thiz exomple shows how to extract fromes from different FRUY
filon.
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user! frex size 49V¥8¥b box bel solv 2 | .2
routine/user! Jinfile fl¥d.a.l
routine/user! 5l
routine’suser:! Jinfile fiBd.a./2
routine ! Processing file! flod.a.l
routine/user! 51 2 3
routine/suser! Jinfile fi8d.b.1l
rout ine ! Processing file! flvd.a.l
routine/user: 5] t 3
routine/user! Jend
rout ine ! Processing file: flod.b. 1
rout ine H all done

The output file in this caose will be "fVsoluxk”,

Exomple 2%

One thing not mentioned above is that the first input file appearing
on the execution line right after "frex" needs no "infile" command.

user! frex fIlW5rpd¥x box bl casel 7 | .|
routine’/user! b t 3V
rout ine’user! Jcancel 1% cancel 21 end
routine ! Processing file! f 105~pBx
routine H all done

This will cause frames b-14, |b-2U. and 2Z-3¥ to be extracted from
the file “fIUSrpYx" and to be put into the file "fBcaselx®.

Example 3!

It is often best to input everything on the execution line lif
possible).

user frex flB0rg¥x | t 4 box bes x1-d4\LFjend ~» | .l

rout ine ! Processing file! f 195rqVx
rout ine : all done

Example 4!

This shous how to obtaoin both frames with and witheut alphanumeric
characters,

user! frex flU3rqU¥x box b2l char+- 72 | |
routine/user! J1 t 3 infile quit nochar | t & end

routine ! Processing file! F 199rqB¥x
rout ine ¢ Processing filo! f 1¥3rqVx
routine : all done




In the output file "fUchar+-". the first three frames are identical
to those in “{1¥5rqgdx"! but oll alphanumeric choracters in fromes 4
to b are eliminated.

Warning! some \maybe allJ) characters generated by DISSPLA ore
drawn and hence cannot be eliminated.

Example 5°

This is on exomple of having a file fomily as input.

vser:
routine/user!
rout ine :
rout ine H
routine :
rout ine :
rout ine H

The.warning given above is ta tell the user the number of
frames extracted when reoching the end of fiie.

HcKnowl edgment s

1 would like to thank Faurie Manning WNMFECCJ for prowviding
information on the dato format of FRYY files. and Hlex Friedmon :
for reviewing this documentation.

_99_

frex fomily fl¥Sard!l box bdd ar’fom 2 1 .1
1t 508 end

Processing file! £ 185aryl

Next file in family! fld5ardd

Last file in fomily® f185ar¥x

WARRNING: INPUT FILE CONTAINS ONLY 242 FAIMES
all done




m. o - EEN . T A.‘"V’ -

- 100

(2) COMOUT

e .

Jirmce LITOUT crootes @ header aned o drailer for overy file, it is
vosiroialoe Lo conning soveiral viles Into oho pefore using NITOUT.
LOMBUT condsines any numbcs of viles into one files yet coch file con
ST PR At LUm U1 e cvailaobic on both the CRAY--1 and tho
1 To o«
ULy Qe tles Ulod-

erioen ool 1220 Lwrny conioul{ (LPTend StV
LAY e chey CEO00N
ciloan reewd 1L2E cnegiGocomout P lond /4t v

Ghis dotumant corrosponds Lo L COMUUT “wrsion of August 18, 1379,
A : be wiared in VILEM directorices .coray

Lo s
LOLD voersions, :edpeux-velq) of user
iUl porciodlicdr iy chooll the date 2f these
coiny cenout UL how 1222 (soy?s comout) Lo cseo
eo. The rile COMOUT (on both machirae:)
sl Lhe bolell souircos s well as the latest

i Tooobiioin this document. lype:
el ond 0 4w
Loss Ly concut 70 Loy

o L

Thoro oo cn o stiessnds i COMDUT: theoy aro:

globalst = Yiw oo ol the inpul line is assumed to ke NETOUT
S lans f Lo comained file. Nt most 5 options
v H

ciris. L "gleobolis:" ococurred more than
recLor cvertidos the former.,

ond - Tormivoeon COMILT

liotos:
iy D iias hovo Lo be the first symbol of o input line.
2y Thae Lol oo oo ware: bines as hiesshe wants.  Each

input Tine ihal doos not condain o command has to be
walbid foir HETOUT.  Line feed ond oscape Keys are not
allowed. Ihe promst fieom COMOUT is .

Yo bestination (sitel! wnd boxbid should be entered from input
vines oiher {hoan thol globul oplions ore specified.
Doztinulion musi be thoe first symbol of a input line. and
Lapakoiad must be the lust {(hiree symbols of o input line.

If thoy ore zpecifiod more thoan once. only the first one
is fLalen,
(4  ‘“mlobals:". destination, ond box&id are all optionul. :
(3 O the VOBG, the "C Y cplion is specified for "globals:"
libernally. Ang oplion spocificd under “"globals:® that

wen oo

conflicls the "8." oplicn is not ollowed.

N

Exompleo: '
Loor s comout globals: ue,
ot ineMa Teomosdoe box L2 comout
voabinestoogr T T oncdwith, S,
Ut feesoor SIS

PRI PENVICI

ot e S twmmoud™ T filee id s comout = rxucb/Ka
vt i B rll dune




'
»

(3) o8

I3 is o simple cotlc boce monogement sysiem that uses o heshing
T2chanism to store ond roeirieve o record. D3 is availabls en
e CDC-FECT and con be o2icined by tuping:

filem read 1222 .(sayvd coilliflend 7 Lt v

This report correcpending tc the DB varcicn of Cciaober 2,
978, L;&er version of D3 will be sicrad in ’!L_H di rec‘:r“
LSay?3S of uzer numder 1222, The user shcwld poriodically oinask
L2 date of this flle (filem how 1222 .ccurd cbl to sco if in2
program nas beon updated. The file DB is u LI3 fiies it osoicins
X lal lest deocumentalio 7o

Sources s well oz the la
cocumzniction., tuges

Fix dpscoc (Ll end t v
uscl abscoe vle. fTswp ol box nnn dd /L v

')\0

to crgoie anoser fo wpaala iz Zata beee,

oL ohas tho
3

0
5 <{neuw or oldr=lceia Base file nomaY> /7 oW

carire n2 oota

r
)
n
v
o
o
-
o

1
hpned miscog2s and dhele Lolaings:

field noma!t - Each roczird
of 20 fie
havea
worc
Mate

ne ‘eng;n in

2]
mecifmum lengih cllcuwsd is 53 GG lIrs.
new field namad - This will cppears cnig if e lost Jisla nome

enterszd existis,

This process cen ke tormincted by entering "eond!
'fiald nama:",
After the data base is deiinads or if SLD is soo
o will eppear and the usgr con then epdeie tha
L2 following communds:
aad <ameEn Royd =~ fdd o record with thﬂ firs!
Z2lela “hazh Keyd - Deloia the roecrd e

<haso Re>.

Lreata dwsh Reyr - Upoaie the rocord with ino
<hash i ;
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user hng to deliete lhe un
g hew che. The uger moy
Loy o thosze ficlas that ronain
chow <nazh Hayd> = Jrint tie record Jita Lie §irst
<hazh Hey.
done ~ Termincie DB.

Zxampla:

user: ob oocess nouwsfrients
Ut inasusert:  Jicld nome: noma
rout in2/user:  field lengih: <3
roct inasuser:  Jieid nom2d Bacng nwinaer
routinasusert {ield lengtht 12
routinasuser: Jiold nomad Sireel
routinesuser: dield lengih: S0 )
routlinesuser:  field nom2t city
routinesuser: Jield length: 295
roulinesuser: field nam2: state
~outinesusert:  §ield lenginh: 6
routinesuzer: rield romel Ziy
routinesusar: {ield lencik® S
routinesusert  fi2ld nomzl end
routinasucert:  Jood Au-Veung. H. Steophe
routinesuser:  phone aumber: 413—Cw:-:4??
routinasuser:  sircet: Intornat lcnal Hevso
routinesuser: city:d Eorleley
rout inasuser:  siuted Ipte}
routinas/usar:  zin: eara!
routine/ue@r. >aisne
routing : all deno
Tk meirtant o note thal on Upzor cozo choroctior s rozre2zanied
AN ly oy throo ohortciors - plus he lowdit oGz IaLsoslor.

caic boze, cne vees no FIINT zsiicn

namar [owiput file neme Dsiioll ~ tow

caitded, L aefoulis to "dboul. 't
cuipul file nama. h2 ouiput ne
ien <s5iiod DU running «ne WITCUT pr:\.ha. ;
1
Tha user will then Be csied ‘the fields ifhal he would oo i
zarted.  This sheuld Be entersd froem tihe highest sri i3 o f
zuw3st and terninclied by eniering "end".

< .r,.ne.
uger: ol print friend irdizne.n
roguiinesusar: {iald Lo e soricedl sicle
rouiinesuser:  Jicld (o ke sorrod? neme
rouiingsoser: fisld o e sonled: ood
PoUl ing : cordt iorminalcd normolly
roUt inD : all cone
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(4) TIME

TIME sllows cny progrcm f(axcept TIMZ itself) to be run under
itz control. It prints the time vsed by the controllac when the
controllee terminaics. TINME is availabie on iie CRAY-! wund can
D2 ohiained by tuningt

rfilem road !222 .croy timellFlend ~ v

This document corresponds to the TINMZ version of July 23, 1978,
Later varsicn of TIME will be stered in ¢FILEM directory .croy of
cger number 1222, The user should periodically check the datc of
this file (filem hew 1222 .cray time) to see if the program has
Leen updated. The file TIMZ is a LIB filer it contains tho laotest
souress as well as the lotest documenticiion. To cbtain the
documentat icn. wmes

ik time{lFIx timescdccllFlend - t v

B

3
netaout Cuscl timarscdoc box onn time / L v

There is only cne command in T2 = fin, lo torminate the progrom.
e user cuon sagueniiclly run as meny procrans (conirolleess ds
nes/sme wishes., Befcro entering e nemz of ih2 nexi: controllee.
ho Lser should wait for the prowmgpt "22" 1o cof

- — B ey A-»-.T- *——“Wv—-w‘
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K. REPORT GENERATION

Alex Friedman

Recent developments have made report generation on the HWECC
computer facilities more convenient for wusers at sites serviced by
mini-USC”s, such as U.C. Berheley. The first of these s the
availability of the ocutput options "nice" and “xnice® {n the “FRINT"
command of TRIX AC; these options send output to {he NIPS printer with
drawn type fonts. To find out more cobout them, obtain a copy of the
latest RED report, as described in the previous QPR. Note that MIPS
output arrives more promptly than high—quality hardcopy output, and is
far less costly. Atlso note that plot files generated in any manner can
be sent to the NIPS by wuse of utilily routine "NIPIT", and so if the
user prefers to invoke REDPP directly rather than through tie TRIX SRINT
command, this is possible.

The second development is the implementation of the “TUSN." ostion
of NETPLOT, the routine which is wused to send graphics filass to the
local versatec printer/plotter, This option is useful for all plotted
output, as the plots are rotated by 90 degrees and so the user con ieaf
through the output in book form. However, it is particularly useful for
plotting text, Qs one <an now obtain output where the pagss ¢zpsar in
"forward" order. The “"ampersond zq" command to REDPP can be wzizted. A

somplie COSMOS ceckh (o perform the cppropriate processing on the file

"example” of the previous OPR is the revised file "swapexen", which

contains:




o es e r—p—————
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sselect p=swaprec

enetout ucb example s, ulc. box b34 exomple
L atrix oc

«—red7

+«-Q

+-exampie

a=rll,2
«—fpapersize 66 72 .94 .1 .32 0. 0.

«-nf{temz0) f
«—format{temp0, templ)

+-&nd

«redpp templ startp. 1 péperr. keep. defont. 2 2hits, &
«—filesize. 1350000 fr8Cbrk. 13G0000
+-box b34 example

«rietpliot ucb alwith, fOhcy fxhcy f. 1. turn. box b34 exomple




Section 111
PLASMA SIMULATION TEXT

One publisher has manuscript for review, looking favorable. As this
has drayyea on (their problem), up-dating will be required, when and if accepted.

We have been out of copies for months and do not plan to reprint, at present.

Section 1V
SUMMARY of REPORTS, TALKS, PUBLICATIONS IN PAST QUARTER

Abstracts follow of papers submitted (this quarter) for Division of
Plasma Physics Meeting, American Physical Society, Boston, Mass., Nov. 12-16,
1979 (next guarter).
Jae Koo Lee and C. K. Birdsall, 'Welocity Space Ring-Plasma Instab-
ility, Magnetized, Part |: Theory, Part Il: Simulation', Phys. Fl. 22,
7, pp. 1306-1314, 1315-1322, July, 1979.
H. Stephen Au-Yeung and Alex Friedman, ''Solver: An Analytic Function
Root Solving and Plotting Package'', ERL Memo No. UCB/ERL M79/55, 31 August

1979.




Saturation of the Lower-Hybrid Drift Instability.
YU-JIUAN CHEN and C.K. BIRDSALL, U.C. Berkeley*—The
linear properties and the saturation mechanism of the
lower-hybrid drift instability are studied using a 1D
particle-hybrid simulation. The model is a slab with a
constant density gradient; the ions are unmagnetized par-
ticles, shielded by the strongly magnetized electrons
through the linear electron susceptibility, Xe. Ions are
initially in a steady equilibrium state with the ion dia-
magnetic drift velocity cancelled by the ExB drift, cor-
responding to electrostatically confined ions. At small
amplitudes, the simulation shows good agreement with lin-
ear theory, such as the linear growth rate, the real fre-
quency, and the influence of finite beta effects associ-
ated with the nonresonant VBy electron orbit modifications.
At large amplitude, allowing only a single mode, it is
found that the end of wave growth is due to ion trapping,
even when a wide band (Awvy) of the mode occurs, with the
growth rate Y comparable to the wave frequency. Contrast
with the end of growth by quasilinear diffusion will be
given.
Particle Simulation of Instabilities due to Steep
Density Gradients. JAE KOO LEET and C.K. BIRDSALL, U.C.
Berkeley*—Instabilities may occur in collisionless Max-
wellian magnetized plasmas, driven by the free energy as-
sociated with a spatial density gradient. Electrostatic
particle simulations were used to study such instabilities
with both species magnetized and treated fully nonlineariy.
During the linear stage, simulations showed exponential
growth in time with the growth rates in fair agreement
with a linear nonlccal theory, while the real parts of
frequencies were not well resolved in the short growth
period. The simulation saturation levels were somewhat
above those predicted by existing nonlinear theories. At
the time of saturation, the phase space pictures of elec-
trons and ions show bunching in some cases. Clear dis-
tinction between drift cyclotron and lower hybrid drift
instabilities was not possible; both may have been pre-
sent.

Field Roversed lon Ring Sitobililu - Recent Results:
Erqodic Orbits and Perticle Simulation.®* A, FRIEDMAN,
J. T. Berkeleuy, J. DENAVIT. Northuastern Univ., and R, N.
SUDAN. Cornell Univ. -* Ue present new results regarding
stability of a field-reversed ion ring in a dense plasma.
obtaoined by numerical s;mulaixon using RINGHYBRID. a
linearized 3D hybrid coce'. The ring is moderately thick.
Wwith effective asgpect ratio of order 4:1, and reversal
factor (.35 on axis. Nonaxisymmetric modes of azimuthol
number | are studied. The =1 redial mode (precession) is
stable, whereas the axial mode (tiit) is unstable. Axial
Kink modes with 132 and radial Kink modes with 4>3 are
stable. as predicted on the basis of thin-ring theory®? .,

We have observed effects of ergodic porticle orbits
in our simulations. In the ron!inear 2D3V zero order be-
havicr the main effect is a loss of lefi-right symmetry
due to ihe exponenticl divergence of "neighboring® mirror
image trajectories. However. in linearized codes where the
perturbation quantities represent dicgplacements between
neighboring orbits, the collective behavior can be masked
in some cases by rapid single-particle orbit sepcaration.

#Supp.by USDOE Contrs. DE-ASO3-r65FOCB34,DE-ATA3-76ETS3064
and EY?76-S-82.2208.
A.Friedman. R.N.Sudon, J.Denowvit, Cornell Lab. of Plasma
Studies Rept.#Z68 (1379). submitted to J. Comput. Phys.
1R Y.Lovelace., Phys. Fluide 19, 723 (1376).
*R.N.Suden & M.N.Rosenbluth, Phys. Fluids 22, 282 (1979).
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