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Sec.tZon I

PLASMA THEORY and SIMULATION

A. FILAMENTATION IN CHARGED PARTICLE BEAMS

Lee Buchanan has transferred to LLL where this work will con-

tinue. No further report.

B. DRIFT-CYCLOTRON INSTABILITY PARTICLE SIMULATIONS

Jae Koo Lee (Prof. C. K. Birdsall)

Work continuing on the final report. No furtrier report.

C. LOWER HYBRID DRIFT INSTABILITY SIMULATIONS USING ESI HYBRID CODE

Yu-Jiuan Chen (Dr. B. I. Cohen (LLL) and Prof. C. K. Birdsall)

The linear properties of the lower-hybrid drift instability were

studied using a Id particle-hybrid simulation, as shown in the last QPR. The

model is a slab with a constant density gradient; the ions are unmagnetized

particles, shielded by the strongly magnetized electrons through the linear

electron susceptibility, X×e Ions are initially in a steady equilibrium

state with the ion diamagnetic drift velocity cancelled by the E xB drift,

corresponding to electrostatically confined ions.

The saturation mechanisms of the instability are studied. In

the last QPR, Fig. 5 shows the complex frequency versus vE/Vt. for w 2 = 1
pe ce

m./me =1600, Te =O Ln/LB=O, Ln/LT=O, and the mode number m=5 (i.e., kAD

= 1/2), which is approximately the most unstable mode for the parameters we

used. vE is theE xB drift velocity, vt. is defined as YT.'-m., and Ln, L

and LT are the scale lengths of the density, magnetic field and temperature,

respectively. Since the growth rate y is comparable to the wave frequency,
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the mode has a wide band width Awci"y; and thus quasilinear diffusion is one

of the possible mechanisms for the saturation of such modes. Allowing only

a single mode, we compared the saturation levels of mode 5 with the quasi-

linear theory as given by R. C. Davidson (Refs. I and 2) under assumption

that the spectrum is strongly peaked about the fastest growing mode, for

vE <vi. Figs. I and 2 show that the simulation data are in agreement with

the quasilinear saturation level e in Eq. 48*
S

1+ /2 '(I)

pe ce

where N is the number of ions. However, it is found from the evidence of

oscillations of the wave energy at the trapping frequency wT (Figs. 2a and

2b) and the vortex-like structure in the ion phase space plots after satur-

ation (Figs. 3a and 3b) for vE/vti = 0.57 and 0.85 that the end of wave

growth was accomplished by ion trapping. All of the phase space pictures

are presented in the wave frame, x-v = constant, where v was calcu-

lated from linear theory. It is noted that vortices in Figs. 3a and 3b at

small velocities are not due to the multibeam instability, because those vor-

tices would appear at large velocities.

Our explanation of why the simulations showed that nonlinear sa-

turation was due to ion trapping but saturation levels agreed with the quasiiin-

ear theory isas follows. In deriving the saturation level e (Eq. 1),

Davidson began with an energy conservation equation and the only rea invo-

cation of quasilinear theory seems to be the specification that saturation

occurs when the distribution function has been "flattened" around the mode

In all of Davidson's equations, there is a factor of /2- difference in vti due

2
to his definition of T.i =m v ti12.



-3-

'0-1

10-2-

1 0-

10-51
0.3 0.5 0.7 0.9 1.1 1.3 1.5

v Ev t i

FIG. I Saturation field energy for the most unstable LHDI mode

as function of v E VtThe simulation data (dots) are in

agreement with the theory shown by lines as discussed in

the text.

1 K



-4 --

10-4

I0-
6

10-7

IT 8

10-

0 100 200 300 400 500 600
Wpit
(0)

FIG. 2 Electric field energy history plots for m./m =1600., w 2 /W 2
i e pe ce

e0., kD =1-"., Ln/LB=O., Ln/LT=O., (a) vE/Vti=0.57; the high

frequencies are due to the multibeam instability and low fre-

quencies are due to the LHDI; the growth is that of LHDI as

discussed in previous QPR ts (using w spectrum), and (b) v /V

E ti

=0.85; the multibearring effect is very small (next page).
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FIG. 3 Ion phase space pictures in the LHDI wave frames after saturat ion

for m./m =1600., w 2 /W2 = . T =0., kX =1/v"2-. L /L =0O L /L 0,i e pe ce e D n B n' n T
(a) v E/V.=0.57, and (b) v E/Vt .0-85. The dots were plotted

one of every 5 points.
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phase velocity. Such flattening could in principle be due to a variety of

causes besides the usual quasilinear diffusion, for example, trapping. Fur-

thermore, the trapping frequency is given by

= k e ! , (2)

where

87re
2
k Vm

is the electric potential, and k is the wave number of the most unstable
m

mode. From Eq. 1, we obtain

5/4
wT =  (kmVti h , E (3)

where

w .

W Zh = Wp
/I+ W2' /W7Z

pe ce

is the lower hybrid frequency. From Ref. 1, the corresponding growth rate

and wave number at maximum growth are expressed by

/ 2

VM " r E W(4)
m 8 V~ ti

k = Wh/Vti (5)

Therefore, Eq. 3 can be rewritten as

* - -.
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W r /

= 1 .64 7 (.tsi) (6)

When v E < V t the trapping frequency is larger than the growth rate and hence

the bandwidth iAw as well; and the ion trapping will be the saturation mech-

anism whenever the fastest growing mode is dominant. Then E sin Eq. I is

the saturation level due to ion trapping. Comparison of Eq. 6 with the ob-

served trapping frequencies (as in Fig. 4) indicates fairly good agreement

for cases in which v E<vt"

An estimate of the fluctuation energy at saturation may be made

through the use of the Fowler thermodynamic bound (Ref. 3); one possible

form of this bound on the saturation level can be obtained by assuming that

the system stabilizes via current relaxation (meaning v E-).) as y E drives

the instability. However, this bound is not applicable in our simulations

as our model has assumed a constant density gradient and v E drift.

Finally, multimode simulations have been done, i.e., all the

modes are excited at the initial stage. Typical parameters are the same

as those for the single mode run, which were given in the last QPR. The

fastest growing mode tended to reach the same saturation level no matter

whether only a single mode was kept or all modes were included in the simu-

lations. In the frame of the most unstable mode, the ion phase space plot

reveals a vortex formation about v x=0 after saturation for v E/V =i 0.57

as shown in Fig. 5a. The length of the plasma L -2r, and the number of

grids NG-64. Also a dip appears at the approximate wave phase velocity



-9

4.0

3.0

2.0N

E ENVt

FI. Cmarso f d iultindaa sige od)wih h teoy

-S A

I- WT167 v E.6
max N~



-10-

0.6
v x

0.4

-0.2 a

-0.4

0 1.0 2.0 3.0 4.0 5.0 6.0

16

12

8

4 (b)

-0.4 -0.2 Vph

-0. -. 2 0.0 0.2 0.4
A vx

FIG. 5 Simulation (many mode) of LHDI with N=16384, w /W,12 m./M
pe ce Ie

1600., vE/Vt =0.57, T =0., Ln/LB=O., Ln/Lt0.,x D/a1xO=01 414 .

Displayed are (a) the phase space in the most unstable mode frame,

and (b) the ion velocity distribution function after satuation.

V ph is the wave phase velocity.
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in the ion distribution curve in Fig. 5b. As vE/Vti 0.85, the ion phase

space and the distribution curve are presented in Figs. 6a and 6b for L=

21r and NG=64. The corresponding ion phase space picture for L=4n, and

NG= 128 is given in Fig. 7. It shows that trapping still occurred for a

finer mode spacing, viz. when Ak was reduced to half, i.e., AkX, =0.07.

Figs. 5, 6 and 7 show the dominant mode at saturation to be AD %1/vr-,

which is the fastest growing mode.

Our simulations exhibited strong ion trapping at saturation in

all cases in the low-drift-velocity regime with vE <v t. These results

do not necessarily rule out quasilinear diffusion as a possible cause for

saturation as the simulations had discrete modes (not a continuous wave-

number spectrum); however, as each mode has a large frequency bandwidth

(due to large y), auto-correlation time of the electric field is signi-

ficantly reduced. Trapping was also obtained by D. Winske and P. C. Liewer

(Ref. 4) in their 2d particle simulations with vE larger than v .

REFERENCES

1. R. C. Davidson, "Quasilinear Stabilization of Lower-Hybrid Drift Insta-

bility", Phys. Fluids 21, 1375 (1978).
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ciated with the Lower-Hybrid Drift Instability", Phys. Fluids 18,
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FIG. 7 The ion phase space in the most unstable mode frame after the satur-

ation as N =16384. w 2 W2 = I., m./M = 1600, v /V.0.8 5, T =0.,
pe ce e E ti e

Ln/L B = 0., L n/L T=O0., X/Ax =1.4+4, and AkA D = 0.0707 (i.e., A half

that of Fig. 6, but L twice that, so the dominant mode seen is

the same).
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D. NONLINEAR PERTURBATION THEORY OF THE LOWER-HYBRID DRIFT INSTABILITY

Yu-Jiuan Chen (Dr. B. I. Cohen and Prof. C. K. Birdsall)

The linear theory of the lower-hybrid drift instability is well

understood and has been discussed in detail by Davidson et al. (Ref. 1).

When the amplitude of the wave is small but finite after a time of the

order of the inverse growth rate, its further evolution will be different

from the linear exponential growth. The nonlinear dielectric response func-

tion and an analysis of thenonIinear time evolution of a single unstable

mode are derived self-consistently by using perturbation theory to solve

the Vlasov equation and the Poisson equation. The single-mode approxima-

tion is valid for the instability close to the stability limit which re-

quires vE<<V (the low drift velocity regime) for the lower hybrid drift

instability. Modulation of the Langmuir wave due to the nonlinearity has

been investigated extensively in the single-mode approximation (Refs. 2

and 3). The nonlinear evolution of drift-cyclotron and drift-cone instab-

ilities for plasmas very close to linear marginal stability have been stud-

ied in detail in both theory (Refs. 4, 5, 6 and 7) and simulation (Ref. 8).

For simplicity, we use a one-dimensional slab configuration with

wave propagation in the x direction, uniform magnetic field in the z direc-

tion, and the density gradient in the y direction. The ions are unmagnet-

ized as the wave frequency and growth rate are much greater than the ion

cyclotron frequency, and electrostatically confined with the ion diamagne-

tic drift cancelled by the E xB drift, vE.

In Sect. II, the nonlinear dielectric function is introduced by

solving the coupled Vlasov-Poisson equations. Sect. III is devoted to de-

reive the time evolution of the lower-hybrid drift instability. The nonlin-
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ear dispersion relation obtained is used to determine the field energy level

and the frequency shift due to the finite amplitude of the wave. Finally,

our conclusions are given in Sect. IV.

II. Derivation of Nonlinear Dielectric Function

According to the general theory of the reductive perturbation

method, we assume that the distribution functions F(y,v,t) and the electric

potential (x,t) can be expanded as

FS(yvt) = ps(y,) + yt)ein + c.c. (1)
n=l

and

(x,t) = n- (x,t)e in + c.c. (2)

n=1

where

n(y -'t) F j (y,v,t) , n=0,1,... (3)j=O nj

in(x't) = nj (xt) n=1,2,... (4)
n' j=O n

e - kx -wt (5)

and c =((e/Ti)<<__I. T. is the ion temperature, and k and w are the wave

number and frequency of a single mode. Quasilinear analysis indicates the

2current relaxation causes saturation for vE <vti (Ref. 9), where v tiT/M

is the ion thermal speed. However, the effect of the current relaxation is
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small for vE <<Vti Therefore, the density gradient and vE are kept con-

stant in our derivation. The distribution function F nj(y,v,t) can be

expressed as

F nj(y,v,t) = n (Y)f nj(vt) (6)

The Poisson equation of the system is

S = 4irnoe fdv (f - fe) (7)

Substituting Eqs. (1) and (2) into Eq. (6) yields

(nk)n = 4rnoe !dv (F' _?) (8)

Since the characteristic frequency of the lower-hybrid drift instability

is much less than the electron plasma and cyclotron frequencies, it is

assumed that electrons respond to the wave linearly, i.e.,

-4Tn e !dv fe X (nknw)(nk) 2n (9)o f- nen

where Xe is the electron linear susceptibility. We also assume a zero

plasma beta value (Te 0) to neglect electron resonance broadening which

can stabilize the instability (Ref. 10). Using Eqs. (3), (4), and (9),

Eq. (8) reduces to

[1 + Xe(nk,ni)] (nk) 4Trn e f f idv . (10)eoj nj

The one-dimensional Vlasov equation for the ion distribution is

3F aF , (12±1)
ai+ v ;x •a. ~

at 3x M ax av

. . . . . . . . ...... . . . . . . . . .
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where M is the ion mass. Since the density is varied in the y direction

only, i.e., aF i/ax=0, Eq. (11) is rewritten as

=f e ao af i(2f- '= - f'(12)
at Max av

With the assumption of a small perturbation, the above equation can be

integrated over the unperturbed orbits, i.e.,

ff - 3 aaf
f _ f' _dt, (13)o - M ax ;v

or

00 (f ine

'[j + (fnj e' cc)

E fe(ink~n + C.C.)
j-1 oj n=1 j-

. .. . z f 0  af rij-n-t-ni e c.c dt (14)

3V av

Note that ion trapping is excluded under this assumption. The superscript

i is dropped from Eq. (14). For j=1, comparing the coefficients of exp(inB)

of Eq. (14) yields

f = 0, (15)

and

I
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ell af 00/av (6

whe re V -w/k. Substituting Eq. (16) into Eq. (10), then we obtain

1 +Xekp)124lO 1hrn e 2  af /3v
00 10d0v 1 0 v -V

k kx. (k ,.) 1 (17)

which yields the linear dielectric function D(k,w) as

D(k,w) = 1 + x e(k~w) + X,(k,w) . (18)

(The integral sub 0 means integration over zero order orbits.)

We now proceed to obtain the second order components. Assuming

w w+i6 and 6--0, coefficients of d.c. terms of Eq. (14) give

02 lm~j.-~ e i 10 + 0 af1o (19)02 60 6 0av 10 av

Substituting f1 byusing Eq. (16), we get the quasilinear modification to the

distribution function

e,10 2a (3f /av) (0

M av (v-V)

The component f11 results from the second order terms of Eq. (14) for exp(ie)

as

f ~ 1 11/2 (21)

M v- V
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Then, following a similar method used to derive Eq. (17) or Eq. (18), we

obtain from Eq. (10)

O(k,wo1 = 0 (22)

Coefficients of the second harmonic terms in Eq. (14) give

00 20 00 2 (23)
02 v-V av v-V / M v-V

The first term appearing on the right side of Eq. (23) is the modification

due to the bare second harmonic oscillation of a single wave, and the se-

cond term represents its shielding effect. Similarly, Eqs. (10) and (23)

yield

2 2
02 2W i o 0 a 09ov dv (24)

20 = Bk2 D(2k,2w) M v V-V 3v v - V

For the third order component f12 ' Eq. (14) gives

e (0 fo/, af20 /3v af o/av + 220 af10 /9v12 -10 +12 2

f12 Ml10 v-V -v-V v2 -V v-V /

(25)

Replacing f10, f 0 2 and f20 by Eqs. (16), (20) and (23), we get likewise

10 2 220a /v

f ej e, 1 ' f (00 /v

12 M M (V 3) 2/ I f /2
1 1 a ( 1 (f 00 V(26)
2 v-V av v-V av v-V/

+ p f 12 0( 00 __

+ 2'oo/v dv) -o 1
8k 2D(2k,2w) \Jo v - V av v-V / v -V 3v v-V )
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Substituting Eq. (26) into Eq. (10) for 012 and using Eqs. (2), (17) and

(22) yields the nonlinear dispersion relation

D2 1 2 f-/v\

_ _a i oo d

{j-'- 212) I - dv
k v v-V av vV- V)

f 1-- dv"2 0 v -V avy (v - oo -V))v

2 /2 e$ 1 22 .
+ iafo 0lav dv ep

8k D(2k,2w) Ov-V v v-V /

• C (4 ) -(27)

The first term on the right side is the nonlinear coupling of the potential

with the quasilinear perturbation. The last two terms are the nonlinear

coupling and shielding effect of the second harmonic potential with the

fundamental perturbation. With the definition of

W(z) = v 2 f dv (28)Wtz v_ v = V

where z=V/vt, --/kvti, the quasilinear term gives

I__ a 2 (af00/av dv - 1 d 4W(z) (90 -V av2  (v - V)vv d24Wz) (29)

the bare second harmonic effect becomes

1. . .a.a 0 d 1 d d W(z)

2 v-V av v-V av v-V 16v ti dz

(30)
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and the term associated with the shielded second harmonic oscillation is

W2 [ a a dv 2
=pi 00 .. .d

8k 2D(2k,2w) ov-V av \v-V )
1 [(d2W(w)2

32k 2A vt D(2k,2w) d (1)
Dti

By using Eqs. (29), (30) and (31), we rewrite Eq. (27) as

D(k,wbp 1 d (z) + 221 -(2 Wz)ilI2T 2k2A2D(2k \dz2 /l~Adz D d2w z

(32)

where =eo/T. and AD is the ion Debye length. The quasilinear term and

the bare second harmonic effect are combined in the first term of the right

hand side in Eq. (32).

III. The Evolution Due to the Nonlinear Frequency Shift

In this section, we estimate the field energy at saturation

caused by a finite nonlinear frequency shift by solving the nonlinear dis-

persion relation. As the wave amplitude is very small, Eq. (32) reduces

to the usual linear dispersion

D(k,w) D DR(kw) + iD (k,) (33)

Let us examine Eq. (33) in the low drift velocity regime characterized by

jy/wjl 1 , V and vE C vti (34)
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The dielectric function for the Maxwellian ions is expressed as

2

D(k,w)=1+1
W2 k2 X2 w-k 2 k2 2 ILce k XD w-kvE k XD Ivti

The real part of the frequency is determined to zeroth order in ly/wI by

2

D(kw) = I + - 2 + 0 (36)
R ' 2 k2 X2w k

Lce kAD w-kVE

The solution is

k2

= k2  kv W o (37)

k 2+km E
m

and the growth rate y-D I/(3D R/w) is given by

2 k / (2- ) 2W th (38)

(1 + k2/k) km  vt

where

km = [ +W 2 /W2(39)

1 D pe cel

is the wave number of the most unstable mode, and

L. A) (40)
/1 + 2 /W2

pe ce

is the lower hybrid frequency (Ref. 9). When the amplitude of the wave is
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small but finite, expanding Eq. (32) around w by replacing w with w +0 0

i(3/)t) and using Eqs. (35) and (36), we obtain

i[(I + i a) = (A +iB),pI 2 (41)

where

- (3DI1/w)/(DR/aw)o -Y/w (42)

A o E ) + 2 1 (43)
8kv E  k2X DDR (2k,2w

and

BY (5 6 ) (44)
B = - 5+ 22 1

16\ k XDDR (2k,2w)

By using Eqs. (36) and (39), we get

2 2 -1 k 2

k (2k,2w) = -M (45)

Substituting Eq. (45) into Eqs. (43) and (44), and using Eqs. (29) through

(32), the relative strengths of the nonlinear contributions from the quasi-

linear modification, the bare second harmonic oscillation and its shielding

are given as

k 
2

A AA= 4 3 2 46

AQ.L. : (2k,2uo) b A(2k,2wo 4 -3 m (46)

and

k 2
B 0 -5 8m (47)

Q.L. (2k,2wo b o(2k,2w 0s k2

4



- 24 -

For the most unstable mode, k=km, the quasilinear modification on tie ion

distribution function is the dominant effect. For 'Y=r exp(is) where both

r and s are real, Eq. (42) becomes

cir + r = -Ar 3  (48)

and

- crs -yr = Br3  (49)

Eliminating r, we obtain

s ay A+aB 22 r (50)
1 +2 1 +2

where the first term is the linear correction to the frequency in the

presence of growth, and the second term is the nonlinear frequency shift

which grows in time with r
2 (i.e., let/Ti 2)

Eliminating rs, we obtain

+i B - A r2r
r= Y IA 2r r (51)

Integration of Eq. (51) yields

S 2
2 2 ce2yt/.l + (2r 2 (52)

I+ e2 t / I + CL

where

2 - (53)

T. 'IA-B

. ........................
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is the field energy level at saturation. From Eqs. (42) through (47),)

it is obvious that the quasilinear effect and the shielded second har-

monic oscillation stabilize a single lower-hybrid drift wave, i.e., that

they lower the saturation level. The nonlinearity due to the bare second

harmonic oscillation of the wave raises the saturation level. If r >>

r(t=O) = ro, Eq. (52) gives

2y t
2 1+a7

2 r e
r (t) 0 (54)

2 2yt
ro

2r

and Eq. (50) becomes

2yt

C - r2  1 +a±2

;(t) = A +aB (55)1 2 1 + 2 r2  2yt
o 1 +a21+ci l +ze

r
00

IV. Conclusion

The nonlinear dispersion relation was derived. We obtained

the saturation field energy and the nonlinear frequency shift at satura-

tion caused by the frequency shift only. With use of Eqs. (35) through

(44), Eq. (53) gives

e (15 + m + 4m (56)

T 6 2k2  6

sat
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Therefore, the nonlinear frequency shift will stabilize the lower-hybrid

drift instability at small amplitudes only if k-<k . For the most un-m

stable mode, k=km, we expect that other nonlinear effects will be the

dominant saturation mechanism such as trapping, quasilinear diffusion, etc.
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E. CONTROL OF UNWANTED BEAMING INSTABILITIES

Yu Jiuan Chen (Prof. C. K. Birdsall)

No new work this quarter.

It is planned to look into similar instabilities which occur

in magnetized plasmas with a Maxwellian or other f(v ) made up of rings

in v space at t =O. The multi-ring dispersion relation will be solved

for complex w and real k. Instabilities are expected even with a Max-

wellian distribution. Simulations will be done to find saturation lev-

els and detailed ring-ring interaction in order to aid in finding means

of control of these physical but unwanted instabilities.
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F. TRANSvERSE OSCILLArIONS OF A CURRENT SHEEr IN A PLASA - TNECRY

AleA Friedman

We consider the problem of an infinitesim lIly thin current sheet of

ions, in a background plasma bounded by conducting walls,

The configuratlon is illustrated in Fig. 1; the sheet current JO flows

in the i4 direction, the zero order magnetic field is in the i-z

direction (or x 0 and in the -2 direction for x 0. and the system

o~oBy

JY

-a 0 x--0 a
z

Figure 1. Configuration of current sheet in plasma,

is bounded by metallic walls at A - to. We consider rigid displacements

of the sheet in the A direction given by e exp(-;t.,

rhe zero order magnetic field is given by:

WO= JO=qv()(1

where the zero order current is entirely in the ; direction:
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qv Yx (2)

rhe first order current due to the sheet i* then given by:

= qs E -6(x)"' - ;6(x) ] e-  . (3)

(there ;s no v i  term or;s;ng fron i X 80 because So is zero o the

sheet).

The equation of motion of the sheet is:

Spl a sma, (4)

where 0 is the cyclotron frequency qB/mc. and q/m is the sheet's

charge/moss ratio; since the sheet cannot exert a force upon itself,

fl,=4* is cancelled by (ZO/OX)IO .

rhe analysis proceeds in a manner analogous to that of Ref. 1. The

plasma response is given by:

V; (6)0c 0

which implies, since 80 is zero at the sheet, that El ;s zero at the

sheet. and thus the equation of rnot;on above does not ;nvoive El, and

any excess electrons accompanying the sheet (to prov;de charge

neutrality) provide no current. The feld equot;ons are:

iCV X 7T~ii-is

...........
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cV xE1i = ic 1. (8)

Comrbining eqns. (6) and (8). taking the cross product of eqn. (5)

with 0. and combining the resulting equations. yields:

-,2 v= - vx(,Vx&),

Vv2X 47'. vs]
A C

-WIV x [(j/neC))XB].

The Al fven speed vA is defined as 80/(4np) 11 2 , and we have used the

relation v. - v-j/ne. The lost term on the right of equation (9) is

zero. since it is equal to (iw/nec)O/x(-j.B0), and ix is zero because

A t.(VXa ) is zero.

Using Eqn. (3) for j., and taking the Z component, yields

£82,x2 ~ -(2/A)(avA/aA)a/8xJB3' (
=(47/c)qav0 [8 2/ax 2 

1- (2 /VA)(8VA/6X)a/6XJ6(X)'

where the subscript z of 81 has been omitted. We define a quantity b

equal to the first order magnetic field everywhere but at the sheet

itself by:

b = El - (4V/c)qs vYo(x) ,  (11)

so that

Ca / -W2/v ~ 2 A)- -(4 mc)qsvo( 
2 / v 2 . <) . (12)

Using the elion (2/vA)(8VA/8x)(8b/8x) = (/v8/a(v2b/ax) -
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8G2 b/K 2 . th; s (fifea to:

b f- 8/x[(v/u 2 )db/6xJ = -{4i/C)q&O6(x). (13)

By integrating this equation across the layer two jump conditions are

obtained:

-f q-vo. (14)

Eb j 0. (15)

We specify a boundary condition oorresponding to zero plasma

density at the wall,

A particular solution of Eqn. (13) ;s

bpart = -(27rlcpqzyo(w'vx)stn(wl V), (17)

rhfs solution satisfies the ju;V conditions at the layer but not the

boundary conditions at the two walls, so we add in a constant a times
tthe homogeneous solution coS(WxlVA)' which is symrmetric cb:out x -0.

rhen. using the boundary conditions (16).

tb/ - - (wlvA:sin( Jx!,A), (Ia)

whe e
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a = -(2v/c)qLvo(W/VA)Cot(LMVA). (19)

Keeping only the plasma contribution to .111, as noted after

Eqn. (4). we use b and not 81 to find the appropriate value of f1(x=O):

or. more concisely.

X ton X - Y, (21)

where

X =MVA and Y -2n~qev~o/mc 2v, 22

Note that Y is real and positive. This equation has an infinite numlber

of discrete. stable solutions for X. which can be obtained in a

graphical manner by rewriting Eqn. (21) in the form:

cot ) = X/Y (23)

and plotting both sides as functions of X on the same axes (see Fig. 2);

it is easy to prove that no unstable solutions exist. Furthermore, for

large values of Y the roots fall near X - :wr/2. t3ir/2 ..... whle for

small Y the roots fall near X - 0 (double rootk), .,, .2..

It is not difficult to extend the calculation to cases where the

layer is not equidistant from two walls at x - -a, and x - oZ , Such an

equilibrium requires the existonce of a uniform externally supplied

magnetic field (in this sense it more closely resemblea the

cylhndricolly-syrrmetric current layer than does the centered-sheet
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xcot X / y

Figure 2. Craphical solution for root of centered-sheet problem.

case); alternately, it may be considered as arising from the

introduction of the conducting walls after the layer is in ploe, thus

freezing the equilibrium fltux appropriately. The particular soI tion

(17) is unchanged, but now the antisyrrnetric homogeneous solution Must

be included; we thus add in Qt cos(wX/vA,) - $ sln(.x/v,), and find

-(41r/C)qeY~p/v ,(4
tan(,al/vA) i- tan(twa 2 (vA)

where for the normal mode frequencies (but no. For thle mode s.r,.tGure)

the value of P ;S irrelevant since the field at the layer '_- the only

value of ;mortance. DeFining

K = 02/01. X = uaL/vAI, and Y = 27qevgal/c 2v (25)

we find the normal mode frequencies to be given by

X C tand XfitnKX /2 = Y, (26)

where Y and K ore real and positive, and with no loss of generality we
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can choose 0 < K :5 1. A graphicol soluton (for K = 0.5) appears in

1/(tanX + tanKX)

5

X/2Y

Figure 3. -roph;col solution of uncentered-sheet problem for K = 0.5.

Fig. 3. Due to cancellations of the two different tangent terms, twice

as many roots are present as in the centered-sheet casa. For snal Y

new roots at t.r/2. .3n/2. etc. join those at tn. _27r. ... For large Y

each root splits into two, but these remain close together and near

tz/2. t3n/2 etc. when K - 1. For lrga Y (dense pi : ,

i.e. when c is near zero, the wave is iocalized to one sik,= of tine sheet

or the other depending upon which of the "split" solu'ions for A s

chosen. The wave is "resonant" with either the left cavity or the

right, and so is of large amplitude (has a large 81) only in that
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Cavity, while in the other cavity the wove suffers destructive

interference between the particular and homogeneous ports of the

solution. When Y is small, a is large and the mode is not localized, as

expected

The author wishes to acknowledge useful discussion w;th M. Carver,

and with D. Horned, whose simulations of this system are presented

elsewhere in this Report.

I HL. Bork and R.N. Sudan, "E-layer Precession in a Plasma,"

J. Plasma Phys. 6p 413 (1971).
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G. TRANSVERSE OSCILLATIONS OF A CURRENT SHEET IN A PLASMA - SIMULATION

Doug Harned (Alex Friedman, Prof. C. K. Birdsall)

Our one-dimensional quasineutral hybrid code QUADI (pre-

vious QPR) was used to study the oscillations of a thin sheet of ions

propagating-through a cold background plasma. Conducting wall boundary

conditions were used. The geometry of this configuration is shown in

Fig. I of the previous section. This problem is analogous to the cylin-

drical problem of the m=O oscillation of a field-reversing ion-layer

in the limit of infinite radius.

Simulations were performed by placing a beam of one cell-width

in a uniform plasma and then applying a small rigid perturbation in the

x-direction. Our simulations have demonstrated the stability of such a

system. The measured layer oscillation frequencies were found to agree

well with analytic results derived in the preceding section. We will

define xw as the half-width of the plasma slab, vA as the Alfven velo-

city, v0 as the beam velocity, and Mb as the total mass of the beam. The

charge-to-mass ratios for the beam and the background plasma have been

assumed to be identical. The analytic expression for the oscillation fre-

quency of the beam,

X tan X = Y (1)

where

X w (2)
VA

2 2, 2 x(M

racA
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2
was solved for the lowest harmonic with a root-solver (SOLVER2 ) and is

plotted in Fig. I. The values obtained from our simulations are indi-

cated on the graph.

The parameter Y on the right side of Eq. I may be expressed

as the ratio of the total background plasma mass to the mass of the beam:

2x mn MY = p P (4)

Mb  Mb

There are two limiting cases.

When M /M >>1 the inertia of the beam is not important.
p b

An initial perturbation to the right sends a compressional Alfven wave

to the right wall. After the wave has reflected and returned to the

center, the beam feels a force to the left. This motion sends a new

compressional Alfven wave toward the left wall. The beam continues

to oscillate about the center in this manner, with a period equal to the

time required for an Alfven wave to traverse the slab twice, i.e.,

TrvA

x

w

An example of this type of motion is shown in Fig. 2.

If the mass of the beam is increased (or the background

density decreased) the inertia of the beam slows its response to the

wave, reducing the frequency. For the case M /M <I the plasma response
p b

is negligible and the motion of the beam is that of a simple harmonic

oscillator, with the only force being due to the magnetic pressure gra-

dient across the beam. The equation of motion is

____________--________________(___________)_____
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0.0
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Y:M P/MB

FIG. 1 Results of theory and simulation. The solution for the lowest har-

monic from Eq. 1 is plotted. The circles represent the simulation

resulI ts.
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FIG. 2 Motion of perturbed beam showing triangular oscillations for

M /M =60.
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FIG. 3 M~otion of perturbed beams showing sinusoidal oscillations for

M p/M b .6.
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2
t2 = 87-. 6

Integration across the layer gives

2 B2

(bx _ 2 (xw +(

where Bois the equilibrium magnetic field. Writing i=ei t and per-

forming a Taylor expansion on the right side of Eq. 7, the oscillation

frequency is found to be

w=B 1 (8)

An example of this type of behavior is shown in Fig. 3. It should be

noted that the beam moves with sinusoidal oscillations, rather than with

the triangular oscillations which occur when the effect is due solely to

Alfven wave reflections (Fig. 2). Eqs. 5 and 8 represent the high and

low frequency limits, respectively, of the lowest harmonic of Eq. 1 (Fig. 1).
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H. FIELD REVERSED PLASMA SIMULATIONS, QUASINEUTRAL, in 2d

Doug Harned (Dr. Alex Friedman Prof. C. K. Birdsall)

We are currently testing a two-dimensional quasineutral code,

AQUARIUS (A QUasineutral AlgoRithm for Ion Simulation). The purpose of

this code is to study the behavior of systems characterized by large ion

-1gyroradii and long time scales (t >,. , where Q. is the ion-cyclotron fre-

quency). Examples of such systems are field-reversed mirrors and ion layers.

Although these particular systems have cyclindrical shape, cartesian

coordinates were chosen for AQUARIUS. While cartesian coordinates make

the application of cylindrical diagnostics and boundary conditions more

difficult, they avoid the problems of poor resolution at large radii and

the singularity of the origin at small radii, often associated with cylin-

drical coordinates. In our r-6 code, there is added limitation that a

Courant condition (At <Ax) must be satisfied throughout the system. This
vA

limitation governs the fineness of the grid near the origin which in turn

may force one to pay a substantial penalty either in accuracy at large

radii or in computational time (if small time step is used to allow a re-

duction in Ax). Cartesian coordinates will allow the treatment of a wide

variety of plasma configurations, including infinite systems, for which

cylindrical coordinates are not well suited (e.g., periodic boundaries

cannot be applied in the radial direction). Cartesian coordinates have

added advantages in that equations in the field-solver are simpler and

avoid difficulties that can arise in cylindrical particle movers.

AQUARIUS is similar to our one-dimensional code, QUADI (see

last QPR). It is non-linear, uses PIC techniques to advance the particles
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and employs a quasineutral Darwin field solver. As in QUADI, the electric field

is advanced with the Darwin approximation of Ampere's law

4TrJ

c

and the inertialess electron momentum equation, which for cold electrons

can be written as

v

E + . (2)
c -

Combining Eqs. I and 2, we have

= - (VxB)xB- __LJ xB (3)
47rne nec

In two dimensions this expression reduces to

E B2 _ 1 J x B (4)
4Trne nec-

The magnetic field is advanced with Faraday's law,

aB

z = -c V E (5)

at

which completes the field solver. Eqs. 4 and 5 are solved as in QUAD1,

using a predictor-corrector method like that of Byers et al. One pre-

dictor-corrector iteration was found to be sufficient for the fields to

converge.

_______________________________________________
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Because the successive application of Eqs. 4 and 5 consti-

tutes two spatial derivatives of the electric field, some care was re-

quired to avoid the appearance of an alternating-cell instability. Such

an instability will occur if E and B are determined using simple centered

differences to represent spatial derivatives on a single grid. To avoid

this problem we are using interlaced grids for the electric and magnetic

fields. Centered differences can then be applied effectively.

The code has been tested on cold Alfven waves. The waves were

found to have correct frequencies and propagation speeds along the horizontal

0and vertical directions, as well as at an angle of 45 . Some error has

been observed at intermediate angles due to the squareness of the present

difference operators in the code. We are presently using four-point oper-

ators to represent derivatives for both the curl and gradient operations.

2 2
Such operators exhibit angle errors proportional to (k!x) , which become

severe at large values of kAx. We would like to reduce the angle errors

presently seen in AQUARIUS. While some improvement has been obtained by

smoothing, it may be possible to further reduce the angle error by the

implementation of a higher order operator.

Twelve-point operators can be derived for the gradient and

the curl. Figure 1 shows the grid points used in the four and twelve-

point operators. Derivatives in each direction may be written as

(-) 3 uil 1~+ui~l _-ui_ 34 - -

ij 4h(l +c+3B)

+ 4 (U i+ ,j+3+U i+ ,j_3-U i l,j+3-Uil,j_3

+ (Ui.3,j+ +U i+3,j-1 i-3,j+1 i-3,j-l)]

S
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4L .1 .I4

- I I
F I I

-- . . . . ..+I. --- J. . .

i II

I I I

I I I

I I

4 L I.

I I I

I I

FIG. I Twelve-point and four-point operators. The dashed lines represent

the grid for V and the solid lines represent the grid for U. To

obtain V at the point x, from the equation V=-AU, one may use (a)

a four-point operator, using the points denoted by circles, or (b)

a twelve-point operatcr which uses, in addition to those of the four-

point operator, the points denoted by triangles.
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(1+a+27a) o -U + 19a3 U +

2(l + + 1 3)j3 ax 3  a3y 2

where h is the grid spacing (h =Ax=Ay). a and 3 are adjustable parameters.

If a and a are both set to zero, the second-order accurate four-point oper-

ator is obtained:

3U 1 (Ui ,3 iuU ~r~1 jl~~ jl
x 4h i]jlUiIjl iIjl -'-

h 2  );+ (6)33
6 3x3 ~axay2+(6

By appropriately adjusting a and a, it is possible to obtain fourth-order

accuracy in the twelve-point operator. However, it would be more desir-

able to minimize the angle error in order to reduce the effects of the

grid squareness on cylindrical problems.

Consider the gradient operator, V--7u, where u is a scalar
ik x

potential. Using the twelve-point operator, and writing u as u=u 0e

e ky Y, the gradient can be expressed by

X= (4 +4a +12$) [/i Axik j~ ik

+ aL (ekxxe 2 ( kY +e 2 kty)

(i~kx xei~k Ax) 1*kyyij1~

+8 u (7a)

- ~~A Y_____________e________________U___
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ri k Ay 7ky A y i 7k Ax -i Ik Ax\______xX -, \x(e'
e -e x

y (4 + 4ca 12B) y

1*3k Ay -i- A
+2 ~ eY ye LY) -:2 X' x 2k~

+ B +e u . (7b)

Ay

sin xDefining X=kx Ax, Y=k yAy, and dif(x) x, Eqs. 7 reduce to

x ky

vx (I+ 3)if -Cos x-+c d if TCosa2

k 3
+3B-Ldi22x dYf

+3 a dif-Cos T u (8a)
2 2 2 ] 

I
8a

Vy I k Y dif C os + k dif + Cos3

3B - dif 3- cos u . (8b)

Since V iku, we have*

K
X12. ___ F.Y

- [ dif - cos I + ad if - cos -+ 35df-cos -
k (I+ca+36) 2 2 2 2 2 2

(9a)

K
Y2 [ dif . cos + dif -L cos -+ 3dif cos -[x L
k (1 + + 3a) 2 2
y

(9b)

______
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where K 12 is the effective wave vector produced by the twelve-point

operator. It is possible to compute the angle error (A 12) of the twelve-

point operator. The angle error is defined as the sine of the angle be-

tween the actual wave vector, k, and the finite difference approximation,

K2 following Ref. 2,

x y
A1 ie = kX I -k k(1o)

12 2 K k2

x y

The angle error will be minimized when the numerator,

XY I2_ sin 1cos -+ a sin - cos -+ sin-- cos 2I(x12) 2 22 22 2

sin T cos y + a sin -- cos + sin cos (11)
(Y/2) 2 2

goes to zero. A Taylor expansion may be performed on the sines and

cosines:

I- sin X= 1- ( + (-) (12a)
(x/2) 2 3! 5!

o 1 - " +-+ (12b)

2! 4!

When these expansions are used in Eq. 11, and terms beyond second order

are dropped, the following expression is obtained to minimize the error:
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I - 9a + 3a = 0 . (13)

This equation provides a means of determining a and 3 to give accuracy in

angle to (kAx)4 for small k~x. The freedom to choose one parameter is still

available and this may be done to effect some reduction in magnitude error.

If the derivatives in the second-order, magnitude error terms (;3 u/;x 3 and

D3u/axay 2 ) are assumed to be comparable, then the optimum values of A and

a are found to be -.04 and .0533, respectively. Figure 2 provides a compar-

ison between the angle errors (from Eqs. 9 and 10) given by this twelve-

point operator and the standard four-point operator. In Fig. 2 the mini-

mum angle errors, which occur at an angle n/8 relative to either the x or

y axis, are plotted for each operator (a =-.04, 6 = .0533 for the twelve-

point operator).
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[. FEELD REvERSED PLA3W A SrAaELLY;

LINEARIZED SEMULArZONS rN 30"

Alex Fr;edman

(rho following is on abstract submitted as a contribution to "TheO

Physics of Mirror Machines," a handbook under preparation a: La-rence

Livermore Laboratory. rho abstract is reproduced in its entirety here;

it may appear in edited form in the handbook.)

rhe low frequency stability of strong ion rings and axisytri,,atrrc

field reversed mirror plasms is being studied, using ti,"la-dapandank

computer simulation methods. rho techniques employed ara appl~cable

over a wide range of parameters, from the large-orbit field reversed ion

ring (which might be used to confine cdditional dense, less anerGetic

fusion plasma as conceived of for the Astran device), through FR

plasmas with Rp/oa - 5. reversed-field theta pinch plasrras, and

spheormak plasmas having much smaller nominal ion gyrorodii. rna effort

has, until recently, been concentrated on ion ring configurntions wTfh

RP/o Z I and having a dense cold background plasma componert. Present

work is on creating appropriate FRM equilibria with R P/o _ 2 for

stobllity studies.

rhe simulation program is a lineorized three dimensional hyirid

code called "RINGOYBRID" tFRIEDMPAN, SUDAN. and DENAVIr I97ri7 ). s

program models on ion ring (represented by particles) in a plasma

consisting of a cold, uniform background ion componon tnd an

inertioless electron component of density appropriate for Iccal
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quosmneutral~ty (bath modeled by flwrd equat~on3). Si'nCe th-: cz :zqrcurd

plasma components are assumed to be pressureless, the only zaro order

current ;s due to the rng Zon, conent. ro lowest crcer the r~rg

part'cles (or the hot aons ;n an FRM run) are 0A~syfmetr~c rilrg h.vlr

r~z coardinote3 and r,O~z veloc~tes. First order perturboccna hciaving

azrmuthal mode number Iare consrdered. so that each part~c~e k Zs

deformed by an 7nfn~tea~mol d;3plocement akeAp(;10). F>aIds cind

currents are represented by oxsyailtrc zero order ports, plus F,-rst

arder ports varyng as exp(iIO). all defned an an Euleron a.sh ;n the

r-z plane. Since each s~rmuiat~an part~cla represents a set of real

parti~cles lying an a nonoxsymvetrinc rnng. a cansinderoble econciny of

computat;on ralatinve to a nanlinnear 3d code in3 possinble. ci.plinng

between modes of d;fferent ~, nonlnear saturatinon. and other

lorge-cmplintude effects cannot be investgoted winth the )Inearzed

simuloton. whrch serves largely as a replacement far tIrneor ttheory,

sinnce the latter ;s d&fficult for such complincated confinguratincns.

A method of generatng quescent equinlibrina through the acfditinon of

a resstinve relaxaton term (-a05AO/at to the zero order Fed equation

has been developed (FRIEOWM and SIJCAN, 1978). Because of the chaotic

self-fineld betatron matron (or bounce motinan) of the hot inans, and their

limited number in the simulatinons, only an approxinmate equbrun is

poasble. the goal of the method ins the miniminzatinon of fluctuotincns ;n

the ;mpartant macroscapno moments (especlily the Current densinty).

Code performance has been van fined by studying the normc; -.,das of

the cold background plasma, which has been represented both es o FlQ'd
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and by d;screte particles centered in cells and on cell edges (With

zero-order velocities set to zero). A consistent bour,=ary condition

arises from setting the tangentiol components of the Frst-order

electric Field to zero at the walls; this necessarily io a nonzero

normal component of the plasma veloc;ty at the wall in th;S gecrnatry.

Further code verification has included a study of plasma return currents

across a magnetic field, in cylindricol geometry and Y/jir no center

conductor (FRIEDMAN, SUDAN, and DENAVIr, 1979).

The stability of ;nf;nitely-long current layer equ~iobr;o has been

examined (A. Friedmon, in preporation). Both stable and unstoble 'knk

and precessional motion have been observed; the unstable = mot;on in

a radially decreosing field can be identified with the WD-iD precession

first noted by BERK and SUDAN (197Q . and described in detoal by

LOVELACE (1979).

The stab;ity of thin, weak rings (;.e.. rings which are not

encircled by field lines) has been studied. A new tilting instability

of the weak ring - plasma system has been observed in the s rulot~ons.

rhe mechanism is similar to that of the kink instability of a strong

beam; however, unlike the strong ring case, the stab;Ity threshold is

dependent upon the background density. A simple heuristic cnolyt;col

model which contains the essence of this mode has been develcped

(A. Friedman, in preparation).

Effects of ergodc single-port;cle orbits ore observed in mony oF

our simulations tFRIEDMA:4, 1979); due "o the structural ZnstcbTIlty of

particle trojector;es, neighboring orbits diverge exponen-;ally (and
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noisily) w~th t~me. En the zero order mat~on, this effect icds only to

a lass of left-r~ght mirror syimetry. However, ;n the first order

moton the a33oc~oted "growth" due to single-particle ;nstcbiIty can

often be 3uff;C;ently ropid as to mask the collect~ve mo~das whzch are

the true objects of study (the rote of orbt separoton depen~ds strongly

upon the detols of the equ~lbrum; see FrNN. 1979). Seccusa of the

F~r~te numbter of 3;muloton port~cles employed, the rondam phas o,! the

;nd~v~dual growng dsplacements a. cannot force macroscopic r-cex.3nts to

be zero as they would ;n a true Vlosov p1asMa wth an ;nfLnta nurber of

partcles. Smiaor effects have been observed ;n tha crude FRM

equ~l~broa we have generated to date; ths has been the major iihped*mant

to mare rapd progress ;n ths d~recton. This problem ;s also I;:kly

to occur ;n future opplcatons of nanl~near codes to proble.-n of !;near

3tabtlUty if certain "quiet-start" loadings are used (;.e. partcies on

c~rcles ;ntolly).

The stobl~ty propertes of some F~eld reversed ;on ri~ng equ;Ibrta

have been e~afn~ned (A. Fredman, 7n preparat~on). One motera'sly th~ck

;on rng wth aspect roto of order 4:1, for whch the s7g.9e-pcrtcie

;nstablty was not excessively rapid, has been studied ;n detl.. This

equl~br~um ;s stable to the WHO preces3;on (~=1 radal rnode) because

o conductng wall 93 present at F~nte rod~us; k~nK mode tehov~cr I'

observed to agree closely wth predicton3 based Upon thE trin-f~ng

theor~es of LOV'ELACE (1975) and SUDAN and ROSENBLUN- II751.

Specf~cally, the =2 and .3 radoal k~nk mdes, and the 1 ord 2

oxol modes, are the only ones whch show roprd growth. Scmnc, evitece
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for the possible existence of betatron-resonance ;nstab;l;ti aa (FIINN and

SUOAN, 1979) has been observed for larger values of 9. The study of

thicker rings has proven difficult because the sigle-part-cle

instability masks the expected (slower) growth.

The RINCA model, a 2d3v (axiaymnetric) nonlinear code, was used

earlier in studies of ion ring formation, equilibrium, and ccrpression

(FRIEDMAN et.ol. 1977; MONKOFSKY et.ol. 1970). The physics contoined in

this program is similar to that of the version of the SUPERLAYER code

used for mirror studies, although the algorithms employed ore omnot

entirely different. Companion runs using RINGA and SUPEL.RA( hove

showed good agreement, thus verifying the performance of both codes.

Future applications of these simulations may concern ton lkinet;c

(e.g. loss cone) instabilities which are present in the ;nfini-e plo

(BYERS et.ol., 1975). However, the primary concern is with gross

conF;gurot;onal instabilities (Ni4D-like kink, sausage, etc.) and with

ion kinetic modes whose instability depends upon the detailed shape of

the field reversed equilibrium, (e.g. betatron resonance or bounce

resonance effects).

" rhis work has been carried out in collaboration with Profs. J, Oenovt

of Northwestern University and R. N. Sudan of Cornell University; more

recently, the author has gained much from nteract~on with

Or. J. A. Byers of LLL. rhe author gratefully acknowledges :;'9 Support

of Prof. C. K. Birdsall (U.C. Berkeley).

| ___________ - - o,.
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J. PULSAR SPARKING

Dr. W. M. Fawley

A great deal of progress was made in simulating the initial

growth, saturation, and final states of electron-positron pair creation

cascad-s (=sparking) in pulsar magnetospheres. In brief, it appears that

sufficiently copious pair creation always shorts out background electric

fields (i.e., those induced by the rotation of the pulsar magnetic field)

and that charge of both signs will periodically be able to flow out through

the light cylinder. For all initial conditions studied to date, the initial

burst of pair creation turns itself off by shorting out electric fields all

the way to the neutron star surface. The accelerating electric fields build

up again only after the relativistically hot pair plasma becomes sufficiently

rarified via expansion through the light cylinder that the plasma suffers

what is essentially a dielectric breakdown. Due to transit time effects,

the pair creation rate then oscillates about an equilibrium. It is not clear

yet as to whether these oscillations fully clamp out to zero or whether a

certain amplitude is maintained indefinitely. The oscillations have a time

scale (10-6 to 10-5 seconds) suggestive of the microstructure observed in many

radio pulsars. A more detailed report will be given in a later QPR.

K. DIGITAL FILTERING IN TIME

Dr. W. M. Fawley (Prof. C. K. Birdsall)

We have made some progress in developing time filtering algor-

ithms and give a short report here. A more detailed version will appear in

a later QPR.

I-
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Following the ideas of Denavit et al., we have employed a back-

ward-biased electric field in the acceleration subroutine of the l-d electro-

static code ESI. However, we used a somewhat different biasing scheme. Using

V N+,I-iV - q + (lI-E) EN-1)

t 2 2

N+ Irequires a predictor-corrector scheme to determine E which we prefer to

avoid. Instead we found that substituting

a ((I+E.:. EN+l/M + (-_.e_) EN-1/M (2)
m 2 2

for the right hand side of Eq. (1) for M> I reproduced all the useful damping

characteristics of the original equation. For sufficiently large M (we used

M=5 and e=0.5 in most runs), it is not necessary to use a predictor-corrector
to determine EN-+ /M inasmuch as one may advance VN- to VN using E and E-I

and then fairly accurately predict XN+l/M and thus EN./ Computationally,

this method is somewhat faster than a predictor-corrector with only one cor-

rection step and is much faster if convergence of the predictor-corrector scheme

requires more than one iteration.

We have testeJ a version of ESl employing Eq. (2) on cold plasma

oscillations and find that for w , t<2, the algorithm is stable and that the
P

damping rate increases quadratically with oscillation frequency. The algor-

ithm is not generally stable for w at>2, though a "hybrid" version using many
p

short time steps followed by a single, moderately long time step is stable for

some parameters regimes.
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The damping algorithm also appears to inhibit the growth rate

of the multibeam instability at low spatial mode numbers, but it does not

suppress the instability at higher mode numbers. We plan to investigate

this problem further with Y. J. Chen.

L. NONPHYSICAL BEHAVIOR OF HYBRID OSCILLATIONS DUE TO ALIAS ING

Vincent Thomas (Prof. C. K. Birdsall)

While simulating hybrid oscillations of a cold plasma excited

at large kAxlarge variations in the total energy were observed. These

variations were due to an overall variation in the kinetic energy; there

was no overall change in the electrostatic energy during the simulations.

Moreover, the field energy was contained entirely in the mode initially

excited. These characteristics are shown in Figs. 1, a through e. All figures

are from simulations with the following parameters unless otherwise noted:

L =32 Wp= 1 MODE = 14

NG -32 wc = 3 x 1(0) = E-06

v y(0) = - C X 1 (0)

The growth in the kinetic energy was imperceptible when the

lower modes were excited, but increased monotonically to become many

times the initial kinetic energy when the higher modes were excited initially

(Fig. 2). The frequency of the kinetic energy variation (beat frequency)

changed gradually from approximately 0.1 of the hybrid frequency for modes

where the growth has just become noticeable to less than 0.01 of the hybrid

frequency for higher modes. This beat frequency variation is fit well by

the quantity j /2w (Fig. 3). The plasma frequency and the hybrid
p H

frequency are taken to be the mode dependent quantities in this expression.
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FIG. 2 The peak kinetic energy of the beat divided by the initial kinetic

energy, as a function of kAx, the mode initially excited (modes

4 through 14).
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FIG. 3 The beat period T, for the kinetic energy vs ktx. The crosses show

the period for w=,wH -Wc - /2w the predicted value.
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The total energy variations due to the kinetic energy variations were

much less than the energy variations due to the overemphasis by the grid

of the electrostatic energy for the first 6 modes of a 16 mode system.

In this sense, the kinetic energy variation is not important for these modes.

Phase space plots showed generation of aliasing (Fig. 4). Plots

of v vs. v displayed differences in phase that are not to be expectedx y

if the motion is that of anormal mode (Fig. 5). Histories of a single

particle velocity space motion showed alternating growth and decrease with

no drift (no E/B mistake) (Fig. 6). The simulation run for Fig. 6 was less

than the period of an overall beat variation so that the particle is seen

to be still spiralling outward. If the simulation was run longer, then the

particle radius would seen to return to its original value. The particles

showed different growth rates, with longest growth in positions where the

amplitude of the electric field was largest.

When the time step was changed from wH t=O.15 to wHZt=l.5, the

amplitude and frequency of the energy variation changed only very slightly.

When the mode number was held constant and the number of grid

points increased (meaning kAx decreased), the variations decreased, becoming

negligible when enough grid points were added. 'Enough" means that kAx<7/2.

The nonphysical behavior remained for all excitations in x (0)

tried from 0.01 of a grid space (just a little less than the particle separa-

tion) to 10- 6 of a grid space (which was approximately 10-4 of the particle

separation. The frequency of the energy variation did not change when the

excitation was varied and the relative amplitude remained the same.

w was varied from 0.5 to 4 with the w at 1. Increasing thecP

cyclotron frequency yielded a larger amplitude and a longer period. Exhaus-

tive studies were not done, but for all cases tried the frequency of the

1,
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variation was given by Hc. Through Fourier analysis of the kinetic energy,

a high frequency component was also observed at ;H+,C, which can be observed

if H-w is not much smaller than w and so is separated from the peak at

Changing the number of particles from 2048 to 256 did not change

the relative amplitude of the variation.

In an attempt to investigate possible beating between the cyclo-

tron frequency and the hybrid frequency (which would have a large period due

to the decrease in the effective plasma frequency at high mode numbers), a

simulation was done at mode 1 with a plasma frequency corresponding to the

effective plasma frequency of mode 14. No nonphysical results were observed

which implies that the poor aliasing properties of the higher modes is essen-

tial for the generation of the nonphysical results.

One simulation was done by perturbing the x velocity only but

the unphysical results still occurred.

The frequencies of the energy variations can be calculated by

making use of the fact that the electric field is sinusoidal and does not

change its amplitude. An essential feature of this calculation is that it

depends upon the nonsinusoidality in space of the force (or electric field)

at high mode numbers. A typical electric field and its Fourier transform

(treating the electric fields as a continuous function, rather than a grid

quantity) are shown in Figs. 7 and 8. For lower modes only the principle

term would be present. The analysis follows.

The equations of motion for hybrid oscillations, with B=iB , are

-mm

i- "



-66

0

LU

-50

10 20 30
Position

FIG. 7 Electric field at time zero. Note that NG =32, mode 14 only excited

kinetically (i.e., intial particle displacement and velocity) pro-

duces E at mode 14, plus other.
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FIG. 8 The magnitude of the Fourier components of E obtained from E(x) of

Fig. 7 using a very fine grid NG=2048. The principal term near 3

corresponds to mode 14, the others are spatial harmonics which

fold into mode 14, e.g., 18 (not seen).
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-- qE + (2)

m C

Integrating Eq. (1) with the special initial conditions of (O)- c x(O)

and k(O)=O gives

= -0 x . (3)

Putting Eq. (3) into Eq. (2) yields

2 W (4)
C m

Fourier transforming this equation in x yields.
1

2 q S(-k) E(k,t)
k 4 Xk m5)

Here k is to be treated as a continuous variable, going from 1 to =. Note that
2

the r.h.s. is not replaced by -wPxk. From the simulations, we have observed

2 2+ 2(;teeoe etk
that E(t) goes as cos(w t) where H 2 +W (k); therefore, we takeHH c p

E(kt) = A k cos W Ht (6)

The most general solution to Eq. (5), using initial condition k(0)=0, is

S(-k) Ak
Xk(t) = ClcS Wt - q 2 cos Ht

p

For those modes which are not initially excited in displacement

or velocity (but A excited in that an Ak exists), Xk(O)=O, Yk(O)=O, we have

See Chap. 8 in C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer
Simulation.
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A k qS(-k){

xk(t) k q 2 -os W ct + Cos WHt} (8)

p

The velocity components are vxk=Xk and v yk=k=W cXk which produces

(K) I M V + V2k  y kyk

2
2

2w2 + -PI - cos 2w t) + W c(W -W) cos (WH+W)t
C 2 H cH c H c

(WH +W c) cos (W H-W c)t] (9)

The high frequency at 2wH is clearly seen and the low (beat) at (w H-Wc)

w2 /2w is clear; the frequency (wH+W ) was also observed through Fourier

analysis of the kinetic energy.

However, if we are sufficiently clever to excite xk at t=O so

that CI=O, that is, with proper normal mode amplitude

X q S(-k) Ak (0)
k 2

p

then the solution is

Xk (t) = q s(-; ) E(k) cos wHt (11)

p

with no beating; only one Ak is excited.

The point is that the force, F(x,t), seen by the particle (inter-

polated from the grid), isneverpurely sinusoidal. F(k,t)=S(-k)E(k) will

contain more and more harmonics as the particle excitation is made at larger

and larger k.x--.i. Fcr excitation at small k-x<< 7, F(k,t) will contain essen-

tially only the excitation wavenumber k; this will be
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q S(-k) AkX k(0) 2 (12)

kM 2
p

because

q S(-k) q 2
Ak  - E(k) = -w x

m k m P

and

2-(w
p

- I.

P

A lesson from this exercise is that initial excitation at large

kAx is highly undesirable, producing large alias fields and subsequent non-

physical beat motion. In addition, as plasmas excited at small wavenumber

will, due to nonlinearities, excite modes at harmonic k's and also produce

nonphysical beats, it is recommended that smoothing be used, probably for

all modes kAx>Tr/2.
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Section II

CODE DEVELOPMENT and MAINTENANCE

A. ES I CODE

(No special report this quarter)

B. EM,'i CODE

(No special report this quarter)

C. EZOHAR CODE

(No special report thi s quarter)

D. ESI-EFL CODE

(No special report this quarter)

E. RICHYBRD CODE

Alex Friedn,-n

A new version of the user's monual (or this coCe is availcbie; this

version contoins a descrpon o( the funcicons of all code parcmters

and varoales. To obtain a copy, type (on the CDC-7600):

FrLEM ROS .cLRRENr MANUAL / t v

NER.Ur [usc] ,,-,.,UAL JLC. vx ] ',' . 1 t v

where [usc] is rle ,:Ser's Ic00jticm, and [rnf] the box um er.
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F. RADIAL SIMULATION CODE ES1RB

Niels Otani (Prof.C. K. Birdsall)

A radial plasma simulation code has been developed for the pur-

pose of improving simulation methods in an r-e coordinate system. Thus far,

the code has been tested on simple plasma problems. These methods are in-

tended to be useful in the study of a wide variety of problems including

intrinsically radial problems in both the tokamak and magnetic mirror fu-

sion machines and inother cylindrical devices, such as magnetrons.

Our code is a I -d (r,v r'V) code resembling in many respects

the cartesian electrostatic code ESi, developed by A. B. Langdon (1970).

However, our code operates without the grid used by ESI on which charge

density is accumulated and fields are calculated. Instead, particle

accelerations are computed directly from particle-pair interactions. The

main purpose for this is to study the effects of finite particle width

independently of grid effects.

Particles used in this code are cylindrical shells with finite

thickness with shape characterized by

for r. <r<r. +w
S(r,r) w

0 otherwise

where X is the charge per unit length of the particle in the axial direction.

S(r,r i) is the "radial profile" of a particle said to be at coordinate r.

and is defined by S(r,r.) =27rrp (r). The charge density corresponding to

this radial profile is shown in Fig. 1. As shown elsewhere in this QPR,

this is the only particle radial profile which will conserve both energy
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pi(r)

rrri r,+ w

FIG. 1 Particle charge density as a function of radius.

New position< 9 t

'4(N

Origin Old position

FIG, 2 Schematic illustration of ESIRB method of advancing particles.

ir v,,e  vr ,ve  Vr ,ve v ,ve

o r

FIG. 3 Summary of the time centered leapfrog method used by ESIRB

(1) 1-accel, rotation, j-accel

(2) radial coordinate mover

(3) velocity component mover
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and momentum away from the origin in the limit At -0, and therefore is

the natural choice for the particle shape.

The equations of motion to be simulated are

2
'r - r +- S(r) Er(r) dr + Lwcv (la)

v v r W-- V Wv (ib)

r c r

where, by Gauss' Law,

E~ 2
(r)= - S(r',rj) dr'r j

m is the mass per unit length in the axial direction, and wc is the cyclotron

frequency, XB /mc. In other words, we consider only forces derived fromo

a uniform external axial magnetic field, and from a self-consistent elec-

tric field, as in ES1.

The ACCEL routine of our code employs Langdon's half-accelera-

tion-rotation-half-acceleration scheme modified for cylindrical coordinates:

Vr = (v)oId +) I"tfS(r) E (r) dr (half-acceleration) (2a)rl rod+m 2 r

Vr 2 = Vrl + (caot)(Vl)old " S(rotation) (2b)

(V) new = (V) old - (WcAt)v rl I
1 At f(V)ne = Vr +- 1(r) Er(r) dr . (half-acceleration) (2c)

I' - - - ___ ____ ___ __m__2
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75

A time-centered leapfrog method of advancing particles is used:

(v)d =v(t) y)new v(t+&t), and r=r(t+At/2). Provisions also exist in

this portion of the code for adding velocity-proportional damping and uni-

form background charge.

The MOVER advances both the coordinate and the velocities to

the new position according to the formulae:

mew = (r + v it) 2 + (voAt) 2 (3a)
new 2 old 2 r

(Vr new = (v r)ol d cos a + (Ve)old sin a (3b)

(V0) new = - (Vr)old sin a + (v )old cos 8 (3c)

where

Cos 8 - (3d)
r + w/2

new

r + w/2 + vot

sin 8 r old (3e)
r + w/2

new

These relations are derived from the schematic illustrated in Fi. 2.

We wish to have the center of mass of each angular section of the cylindrical

particle moving according to Eq. (1). As is evident from Fig. 2, the center

of mass coordinate, r +w/2, changes according to (3a), and the components oF

velocity vector v are rotated by angle 8, owing to the rotation of the coordi-

nate system at the new position relative to the old. Note that the rotation

does not advance v in time. It is however equivalent to the -v v r/r term ini8
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Eq. (b), and the centrifugal force term in Eq. (la). The steps involved in

advancing the particles are summarized in Fig. 3.

Initialization of the particles is achieved by means of an input

file containing r, vr, and v values of all the particles. Pre-processor

programs have been developed to generate these input files. This method of

loading particles allows a great deal of flexibility with a minimum amount

of effort. For instance, a simple method for establishing a one-dimensional

radial equilibrium is to load the particles arbitrarily and use ESIRB itself

with damping to damp the particles to equilibrium. ESlRB then produces a

record of the equilibrium positions and this is used as the input file for

the pre-processor, which can modify the equilibrium in whatever way desired.

The modified file is then accepted as an input file by ESIRB for the main run.

To start the leapfrog scheme a routine analogous to the ESI SETV

is called once immediately after the particles loaded. This routine performs

an acceleration followed by a rotation backwards in time by an amount Lt/2,

and thus provides the proper offset between position and velocities.

Some Results

The equilibria for all simulations run so far have been established

by the damping method just described. This process is illustrated in Fig. 4.

It was found that the desired equilibriLm was most efficiently achieved using

a two-stage damping scheme. The first stage used a decay constant of W (theP

plasma frequency) while in the second stage, damping is reduced to O. .

Radial plasma osciallations were simulated quite nicely by esta-

blishing equilibrium in the presence of a uniform background charge distribu-

tion. This equilibrium was perturbed slightly and used as the initial configur-

L
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FIG. 4 Equilibrium for the main run is established using this preliminary

damping stage. Only one stage was needed for thie particular run.

Number of particles = 50, 2ir/tw =4.42, damping constant 1I.0w
width of particles =0.05.
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ation for the main run. The result is shown in Fig. 5. The Fourier spec-

trum of the kinetic energy peaks quite sharply at 2wj , as expected. We alsop

find that the use of wider particles and larger perturbations produces a

more complicated kinetic energy spectrum, for reasons not yet completely

understood.

Using a similar method, hybrid oscillations were also simulated

(Fig. 6). The kinetic energy spectrum shows components at w as well as

2w . This was found to be a result of the initialization of all particlesP

with ve =0. This leads to a superposition of a E xB drift on the hybrid os-

cillation motion of the particles. A calculation taking this E xB drift

into account quantitatively agrees with the relative amplitudes of the )
P

and 2w Fourier peaks of 4 to I found computationally.P

We have also found that the code accurately reproduces the equil-

ibrium configurations of a completely non-neutral plasma column in the pre-

sence of an axial magnetic field as described in Davidson's Theory of Non-

Neutral Plasmas, Ch. 1.

At the present time a study is being made of the possibility of

the presence of a two-stream instability in the magnetic insulation sheath

surrounding a cylindrical cathode.

Of considerable concern in this project is the fact that an ade-

quate method of dealing with the passage of particles through the origin has

not yet been developed. As suggested in another article in this QPR, accurate

(i.e., energy conserving) methods of simulating particle motion through the

origin may not be easy to come by.
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FIG. 5 Plasma oscillations using the equilibrium established by

the run illustrated in Fig. 4. Note the agreement in the

plasma period (theoretical 27/.j p 4.4+2).



-80-

TotalI Energy (orb. zero)

I TotalI Kinetic Energy

24 I J1

20 (,

16

8

00 I 2 0 2 4 6 8 10
Energy Radial coordinate

FIG. 6 Simulation of hybrid oscillations with superimposed E xB

drift. Number of particles=50, w c =wp =1.414.
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SUMMARY

Work on the problems involved in radial plasma simulation is con-

tinuing. So far we have limited projects to the simulation of known results

and have met with moderate success. Some difficulties involving the passage

of particles through the origin have been encountered. In the future, the

code will be expanded to either a gridded 2-d, r-e code, or to a 11-d gridded

code employing a Fourier transform method 2 in 6 to simulate a 2-d code.
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G. CONDITION ON PARTICLE SHAPES IN ID RADIAL CODES

Niels Otani (Prof. C. K. Birdsall)

A simple analysis shows that, away from the origin, only parti-

cles with S(r,ri)=S(r-ri) can simultaneously conserve energy and momentum

in the limit At-O. (Here S(r,r.) is defined by S(r,rk)=2rPi(r) for a parti-

cle located at r..) If particles are forced to pass through the origin,

energy conservation is impossible.

For energy to be conserved, we require

dK dU

dt dt

where K is the total kinetic energy:

2K 2mv. (2)

in which v. is the radial velocity of the i-th particle, and U is the

total electrostatic potential energy:

E (r)
U =f 27rrdr 8Tr (3)

It is understood that we are working in cylindrical coordinates and that all

extrinsic quantities are per unit length in the axial direction. We as-

sume that the electric field is due to the presence of all the charged

particles and to a fixed background charge distribution. Thus, from

Gauss' Law,

Err) 2 [Qb(r) + r . S(r',rj) dr'I (4)
r 0 i
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where Qb(r) is the background charge inside radius r. We find then that

dK dv.
= mvI  = vi  dr S(r,ri) E (r)dt " dt " 0

= fdr (.vi S(rri)) (Qbr) + J S(r ,r.)dr (5)
0 i

while

dU I r dr 2E (r) .EL
dt 0 r dt

/O .r \ /SJd rA FJS(r',r) dr'j ~- (r) + ]S r' ,r) dr')

[=I "dr, Jfr asi 1 rJ

dr _ (r,r) dr Qb(r) + IS(r',r dr
0 ir /

(6)
For all practical purposes, this necessitates

dr.
" (r',r.) dr' = - v. S(r,r) (7)

dt 03r.
I

using Eqs. (5) and (6) in Eq. (1). In the most general case, we need not

have dr./dt=v!, indeed, a mover using an algorithm of the form
I I

f((r)ne) = f((ri)old ) + v iAt

df dri
is conceivable. In the limit At-O, we then have v. dri. Allowing

•dr. dt
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for this possibility, we see Eq. (7) is equivalent to

-(r,r) = - -S(rr ) (8a)
ir. i dr. ar i

and

S(r=O,r i) = 0 (8b)

If f(ri) =r i, then (
8a) is equivalent to

S(r,r i) = S(r-r i) (8a')

In other words, if energy is to be conserved, the radial profile S must be

rigid and cannot change shape as the particle moves in and out. Clearly,

such a restriction is incompatible with Eq. (8b) when particles pass

through the origin; therefore energy conservation is impossible in any

1-d radial system in which particles pass through the origin.

A similar calculation can be done in the spherical case; here

we find the same theorem true when the radial profile S is defined by

S(r,r) 4r r 2pi(r) (9)
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H. RADIAL CODE NOTES (R, RO, RZ, ROZ)

1. INTRODUCTION (C. K. Birdsall)

Simulations using radial coordinates or grids pose a number of

problems for which some solutions will be presented. The problems and solu-

tions to be presented art not claimed to be new or unique or exhaustive.

The object is to gather together in this and succeeding QPR's some of the

problems, solutions, and experiences with radial simulations.

Radial coordinates may be preferable to rectangular in Id simula-

tions using cylindrical and spherical R only, in 2d (cylindrical with Re or

RZ, and spherical with Re, RD, O() and in 3d (cylindrical with RGZ, spherical

with Re@).

An object of using radial coordinates or grids is to emphasize

radial behavior, usually implying that the physical and simulation models

have adefinite origin (R=O). There may be strong radial forces and motion or

radial (circular or spherical) boundary conditions such that circular or

spherical harmonics are more easily identified. Radial coordinate use is

also promoted by the concern that using a rectangular mesh with rectangular

boundaries will introduce unwanted moments in the grid quantities. This

argument may hold for XY contrasted with Re, but not for XY contrasted with

RZ. However, some conventional wisdom argues against abandoning rectangular

meshes, pointing out that with XY meshes, problems with the origin are obvi-

ated, the equations of motion are more easily handled, the radial boundary

conditions can be handled to good approximation and the circular harmonics

diagnostics are obtainable to good approximation. Preferences, we think,

i.
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will be made easier and more rational by displaying the details of using ra-

dial coordinates and meshes.

The QPR radial code reporting comes from several sources, identi-

fied section by section.

2. ONE DIMENSIONAL MODELS (C. K. Birdsall)

One dimensional radial coordinates or meshes are clearly of gen-

eral interest and eminently useful. An example is the set of electrostatic

plasma diode problems solved by Barnes. Let all of the charges be cylin-

drical shells (spherical shells can be done by inference) which move radially

due to radial electric forces. The electric field within the st h shell at

r (see Fig. 1) may be obtained directly from Gauss' Law,

f r p dV = f DdS. (1)

The electric force on the sth shell is dependent only on the net charge within

th
that shell. The radial force on the s shell of uniform charge density p,

line density p,= I(b 2-a 2 ) due to all other charges is

F fs p 'r dI (2

Fr = Jhell r (2)

Specifically, the radial force on Shell I due to Shell II is (for

uniform density shells)

F S E1 1  PZII 2qr dr dzFri S o I Eri I dV = I 2Tr

1Christopher W. Barnes, "The Computer Simulation of a Spherically Symmetric Plasma",
SUIPR Report No. 344, Inst. for Plasma Research, Stanford Univ., March 1970.

- . _.- . . .r -L" .. .... .. . , ... ....... i l, . . . .... ... . " 
' '
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0 a b

FIG. I Radial shells of charge.
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- 3 dz (3)

27rE:

using

p2(b-a) = [ (ba) 17

whe re

a+b
r =

s 2

That is, when Shell II is wholly inside of Shell I, then the force due to Shell

II acts as if applied at the geometric middle of Shell I, independent of shell

thickness.

The self force on Shell I, due to Shell I (after some algebra), is

Frfp dV
F rsel f fpI E rI

P2 _ 2
,ia+/31 O zI ,u (4

S+ dz t3 - - i dz for t<<a'b"r (4)

This force is always radially outward; this effect is not found in planar slab

models.

Let the shell be placed in a uniform background density of value

h opposite in sign, so as to oppose the self-force, with inward force on a

thin shell of

Fin (Z bs) dz

F. = P (5)

4 ____,_____________

- -- - - - - - - - - - -
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The self and background forces compete, as shown in Fig. 2, going to zero at

Vs=re obtained from

--2,dz -. - -I redz
2

2c 'Te 

or

,, r2 b dz P1
e b dz

or

(background charge enclosed) (half of the shell charge)

The net force is

2

F ' Z+ PZPbrs
net 2 27r r 2e

I 2 I-r 2

~2e Zb e )( r)

r s2 P, Z b ( r re Mr+ re

m P Zr e)rs - re
m~rs 2c r

which reads



self

0 0

Force 0
re n rs

Fn

FIG. 2 Force acting on a thin shell at radius r in a uniform

background, tending to return the shell to equilibrium

at r
e

-~ --.-----
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s\ e)rs er~q. b rI \r ~ . . ....r (r s  - re)

Us ing

2 PZ Pb

- (sign because pQb <0)

then, for r =r (1+6),
e

2 __+_/2 2

6 W, 6 (L+ 62) -W2 6
p p

The motion is always oscillatory about r ; it is simple harmonic only for

6<< Ir s-r 1<<r e  In contrast, a planar slab in a uniform background always

has simple harmonic oscillations at w .P

3. PARTICLE WEIGHTING TO GRID (C. K. &taL2Z)

Several methods for assigning particles to a radial grid will be

given here. In all methods, the particles have coordinates r. and charges

qi which are to be assigned to nearby grid points r.. The particle shapes

will fall out, with some differences from rectangular particles and grids;

e.g., the shapes (ordensity profiles) may not be symmteric about a center,

or, the average charge density of a particle will decrease as the charge (of

fixed radial thickness) moves radially outward, or, the assignment at the

origin may differ from that elsewhere, etc.

METHOD A (from B. I. Cohen, historical origin obscure)

The charge q." is located at r. between r. and r.+1, as
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q.

r r. rj+ I

Let q, be assigned to r., rj+ 1 by linear interpolation as derived from the

charge density, which is

pi E qi/(volume of charge)

which, in cylindrical coordinates, for a cylindrical shell, is

q.

(2UTr.ar6z)

where 6r,6z are the nominal fixed dimensions of the charge. The density to be

associated with r. is linearly weighted from r., as

(r.r p r I

where Ar-: r +l-r j and the density associated with rj+1 is

p(rj ) = p)i I r
p(j+l P

However, charge is to be assigned, as follows:

q(r.) = p(r.) 2Trr Sr 8z ,
J J 6

qj+l) = ~ j+ I ) 2.j+l rz

___________________"
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which is

q(r.) q (ir (i

q (rj+ 1) q r+)(ii~

The check on charge conservation

q(r.) +q(r j+ I ) = qi

is observed. Applying these weights produces q(r.) as a function of r. as

shown in Fig. 1.

A similar approach works in spherical coordinates with spherical

shells, where

q i
S (47r 2 6)

'r

with assignment of density done quadratically, as

p~rr j+ 1  - r

(r) rJ+1  r

;D(r + )  -- i \j+1

leading to
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q()

a rj >> Lr

Cr 1"a -b b intermediate

c r r. -few A r

FIG. 1 Charge assigned to r. as a function of charge position r.. For

r. >Ar, the familiar planar linearly weighted triangular shape is
Jseen. For r. a few Ar, the shape is distorted, as shown.

J

" . .. .. .. ,,a n, . .. .. , - . ... . . . . . ....... . . 4.. ..,... ... . "" "
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S2 / 2 2

r 2 r. 
j+1 r.

j+1

which also conserves charge, q(r ) +q(r l=q

1. RJET DEVELOPMENT

(No special report this quarter)
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J. SOFTWARE DEVELOPMENTS

H. Stephen Au-Yeung

(1) FREX

FREX allows the user to extract selected frames from one or more
FR8t graphic files on the CRAY into one FR8U output file.
This program can be obtained by typing:
rfilem read 1222 .cray frextESC)end 2 t v

This document corresponds to the FREX version of October 10,
i5tJ. Later versions of FREX will be stored in FILEM directory
.cray of user number 122. The user should periodially check the
date of this file tfilem how !Ze .cray frexJ to see if the
program has been updated. The file FREX is a LIB file, it
contains the latest sources as well as the latest documentation.
To get the documentation, type:

lib frexkLFJx frex/dockLF)end 9 t v
netout CuscJ frex/doc [swp.] box nnn frex / t v

The commands in FREX are similar to those in DDEX. a DD88 file
frame extracting program that resides on the CDC-$bt tsee LIBRIS
V5/). The following is a summary of all FREX commands!

kinteger) -
The frame trepresented by the number kinteger)J to be
extracted. tFREX allows only the second one of the two
header frames to be extracted by the user; it is referred
to as frame number o. The first graphic frame is referred
to as frame number 1, and so on.)

kinteger) thru -integer) -
"thru" can be replaced by "t" or "to". It causes all frames

between the two integers, inclusive, to be extracted.

infile 'file name) -
Change the input file. All selected frames of the previously

opened file are extracted before opening the new one.

end,-
Terminate, processing all selected frames.

quit -
LiKe "endn, but whien entered after he "infileu command causes

previously entered frames to be extracted without chanqing
the input file or causing termination? more frame numbers
can then be entered.

box (nnn) kid) -
The id string consists of up to 24 alphanumeric characters;

embedded 5pace5 m011 appear incorrectly and are not
recommendod? use the poriod or slash instead, the output
tile name is constructed from the id line? it Is of
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theo f.r ithfirst six characters of id;. If id consists
of fewer than six characters, the filename is right-filled
with asterisks to ensure an oigth-chiracter file name.
If the file to be gerorated oxists. the user is given
the option of oucrurit inq it.

size.Kintger) -
To spocify the size tin words) of the outlut file Ideiaults

to e J0t1Ub). Fhis commrand has to be issued before thie
box and id is ontered otliers-.e'. tihe doaul SiLz will
be u.od.

family thc first file name of a file family) -
Thi is the sore as the "inf ile" command oxcopt that when the

end of file is encoun toed FP,(TE> tiJi oIeon: t.he next f ile
within the family. 1k11I f ile nrnos r,,us" be oxactIy 8
character! long. The last name in the family should ond
with an N" te.g. flf5rpt or fJtevst4x, etc.). rho lost
two characters of other f iles ust be nuiieric boLuon
"1" and "J'.
Note' rhe BiASELIB routine ZSEOHSPZ is used.

cancel ..integer) -
Cuncel the frame number kinteger) that has previously

entered for extraction t.fram nust be cancolled I-by-I).

nochar. -

Eliminate all alphanumeric characters from all frames. Useful
for suppressing croded labels on xes uhOen preparing
figures for publication.

char -
Reverse the effect of "nochar" ti.e. return to default modeJ.

offset Uinteger) -
Set offset for calculation of frame numbers tdefault. to

0 and usually not required). For exampio, if the number
3 is entered, all frome numbers entered after this
command will hove 3 added to them before processing.

Restrict ions'

L) The routine will fail if the output excoeds the size
specified by the "size" command.

Example I!

This example shous how to extract frames from different FRUS:1(iii'
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user: frex size 400000b box b22 solv / I .
routine/user: )infile fld4.a.l
routine/user! )1
routine/user: >infile fII4.a.d
routine ! Processing file: fle4.a.l
routine/user: )1 2 3
routine/user: )infile flk4.b.1
routine : Processing file: flla4.a.
routine/user: >I t 3
routine/user! >end
routine ! Processing file: fll4.b.l
routine ! all done

The output file in this case will be "f~solv**".

Example 2:

One thing not mentioned above is that the first input file appearing
on the execution line right after "frex" needs no "infile" command.

user: frex fltSrpdx box b22 casel / 1 .1
routine/user: >b t 63
routineuser: >cancel 15 cancel 2l end
routine : Processing file! fl05rpax
routine ! all done

rhis will cause frames b-14, lb-l, and 4d-30 to be extracted from
the file 'flISrpux" and to be put into the file "flcaselS".

Example 3!

It is often best to input everything on the execution line (if
possible).

user: frex flO5rqx I t 4 box b22 xl-4tLFiend / 1 .1
routine ! Processing file! flU5rqx
routine all done

Example 4:

This shows how to obtain both frames with and without alphanumeric
characters.

user: frex fifOrqx box b22 char+- / 1 .1
routine/user! >1 t 6 Inflie quit nochar I t £ end
routine ! Processing file! Fl05rqux
routine : Processing file: fltSrqUx
routine ! all done
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In the output file "fIchar+-, the first three frames are identical
to those in "fl0'5rqkx""' but all alphanumeric characters in frames 4
to b are eliminated.

Warning! some tmaybe all) characters generated by DISSPLi are
drawn and hence cannot be eliminated.

Example 5!

This is an example of having a file family as input.

user' frex family fIl5arkll box b-2 ar/fam / 1 .1
routine/user! >1 t 500 end
routine : Processing file! f lt5ar !
routine N Next f ile in famiily! fI0artL
routine : Last file in family! flfSarfx
routine W JARNING! INPUT FILE CONTAINS ONLY 4 FAMES
routine ! all done

The.warning given above is to tell the user the number of
frames extracted when reaching the end of file.

AcKnowledgments

I would like to thank 11aurie Nanning LNI'IFECC) for providing
information on the data format of FRLI files, and Alex Friedman
for reviewing this documentation.

Now
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(2) COMOUT

S !-co I I-:'FU' r r cle s c heador c:nct a (railer for every f jiG, it is
k0o5 irablo to ecaa -ri1 SOji, ii jet ;,to une. before using NITOUT.
LutiOUfCu e- c inij nurt c;' oi f ilr.s into o,:.c file; yet ocon file C~fl
hI so Aoi' G!2 i ~ o. CLU-lOtiY if, cvcia lu.o u n bolh the £2A& I and it h

- ~ . C ; ci k ,:u t (LV)scnd/ t v

ii 's i -n-'r-.(, IL- uo CO!IuUT vors iOf of August 10P 197(9.
ii y Jo iii hr !raOC :ILE!]directorices .cray

-,c - . vI-- ". - I Uv -is, i-ipc ily) of user
- taa-ju (K pcvzudXculy checK the date of these

f ; CA ic< i..L !L'22 . saiGl comou t) (ii Z

Ujp C<!. ttUiLS(SVl1c h t~ia i <U. T)ic T ilIL LOMOLUT (on b-othI mach is

. -ak - C1- i- is CO Gbt'Ui this docuiment, Ltype:

-i 1z . . Laiala (Aricu t t v

fhoio c' i ri ii. LUIOUT; theyj c-rca

gluci'-- -, c-i 1I he -rut 1linc is as sumed to b e N-ETO'JT
d, :.c:- crs;iboi n'c f i l. 01t most 5 optians

S 91 'oji l s:-" occurred more than
<I. ;. .cc or overt ices ti-o f ormer.

end - 011if I'Ce-.. LUHOUT

Coth F~W.n:;hca';-, to be- the fir-st symbol of a input 1 inc.

La:est i no i on (sito (clnd boa, Cici should be entered from input

DtinatIa4n must be the fir-st symbol of a input line, and
to I-d must' Lie the0 lust; three symbols of a input 1ime.
If lhey c:rc mp'iftd ic than once, only the firsFt one

ais triu.
(4)! aiJto;j)ri Is " , desFtjnaton, and b:ox&id are all optional.
(S) ( the, aSOO, tha ": o~ption is specified for "globals.

sa -i a 5(1 1 ij. UiritI opt:i sl~cr. o f i cd under "gl obalI s: t ha t
i losthe UG. (.I;o, is r -ot a1 Clod.

Example:
u:or re:meuLt glebcsls-: uc.

r-out o10/' l-*rri"ciec box 1,22 comout

f illt ilt a ' . ii e- id i!s comajut rxucb/Ka
u-lull flu ci I clug
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(3) OB

DO is a simple data bose manc~omsnt systom that uses a hashirng
-3chanism to !tore and retrieve a record. DO is available on

.. e03-7233 and can be c:Dtoired by typi-ng:
iilem read 1222 .sajG db(LF~c-nd /tv

This report ccrrozpondin , to the DS varsion oF Ccteber 2,
:979. La;ter vers i on of DO Wit I be s-tcred in FI7L!E1 d rectczt.j
.scyCf5 of user numbe~or 1222. The ussr shocuilcriiell ;k
-a dotel of th is f~i .",f i em !-ow 1222 . LctTG7 Cb)' Io a z- i f h

procjram has been updated. The file 3 is a LI 73 1e; it o~an
'.hoU latest sources as veIl as thelastdcmn-io.T
ceta iHn the oau~nz c. t

iit db(LF)x Udb./doocL?7)end /t v
netlout, E us) 3Cib/c~tzc ulo . Es 3 Uox, nnn ce /t

,1. T1he ACCESS cp t i on

The ACdISS option iz usedGc to create cnd-'cr to Latt:te acssar.
A has The foll bum; sytox
c.: cces-Ds <newj or ad >(cdacto hosea file name-.> /tI v

: NW iz sprecifid tf! he use:r will be as:,,ed to inete aa
7:z. oh faolr~ co theD :rormpe ro ssce and v

f iel d .ame: - Each record in 4Sarz Osed by field s. i .a iu
of 22 7i'cicsz in oCllove. 2Ccn1 r :&: .;zx oa
haveD !-p to 5 3 ohrosor 5 usr ioz twjit';; cac~h
worc of loss than:;- 10 chara;cters?.
N!ote Tha ;te rs f eo-d iz C11wauz us&'J .

of that! i eld has -to beuficUJ
field lercjth: - The lencj; in characters of thei fiel-d. The-,

mo:;mum ienct h al loweci isz S0Oh;csrz
new f ield namez: - Thin willI appear ci"y i h otF~lnm

entered exists.

mhiz prcoess can be terminated b-y entering "ond" '-totnf ield namg:".

If ter thie data bca is defiinod. or I f OLD is so ocjh, zare
>"wilt aippear and t.he user can then updatetedtaos

the2 foflovincj commands:

Cdi (flIash toy> - .cd o. record witkh the fi.rst f jo~t U = (has 1'.c..
delci e as ltcu> -Doil" etc the rocerd wit'h the irst f iz!: ,

u~ose '%--, ot:>- Ujc~ot th reord w: ittef iont3 f ienld =
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user has to delete h uhIolerc and, oddc
a1 ,lou ne. 7The u,!er mom, n z, j r retur
lhayL to those f icoI as thatrc::i ren:

-t W I1' J P :*t ,o r c r wi- -

<hash1 ',eyj>.
done am Trrnrac- c 1).

~amp 1 e
user: dID access. ,low=frionds

routine/user: fild nae na m -
routine/user: fiel c r.;th: 40
rout :nc?/uzor: 0' Cid nIcrre.: paione nu~r.:
routi4ne/user: cYield lencjth I',
rout 4ine/user: field n, aea: stIree
rsutine/user: field length: 50
routline/user: fiel, 1d nao: ci1,ty
rou~ina/user: field lenqth: 25
routine/user: f 1Id: c nrac,: state
routine/user: field lenguth: C
rcutirne/uzer: f ield i ame:-C~ *. iC.
routine/usr: fiel l0CIoncth: 5
rout in-usr oi id narr*: end
rout irvD-uzer: )ccd tp

ouinc/user: 1 Cn nuZr 415C2277
rout inc/useor: strcet: Interrot lanaI Housez
rout -inc/user: cityU: CorlI Le
roui ne/user: stoe
rout ino/user: zi:£42
rout ire/user: >done

-; aZ zaocrtont to noteo that arn u;:,v::r czne, chlar:c-er sr:r
Th-linal'I yz~ bytre."roon )'is thez Zhow' 'oLor

n7 ofD1 coto ion'.ab

To geneDrate a lis ofte taae ne u-ss theRZNT &z
as io!lo.s:

a. print <-'data leaz-s file name>.? Eoutput f -ie nane£zte.-2 v

U he output f4le name. is om.,ittr4 d, it de'fa~ults t o "l c ou.: '
3i site iz g~iven after t.he output fi-e name. tIhe output
=rnt to te destinatio-n <site> !:t, run. in; the :27CU7 r;c.

The user ui l then beo che,,d the fields,- that hle ~'&''
sorted. Th-is should be ntered from the- hicheost rbr ;l;

:s,42az anl terminated byL entecring "end".

user: c:: print friend frie nd .p
routineo/usr: field to !:e sorted: stateq
routine/u5ser: field to be sorted!: name.-.
routi ne/usevmr: ficd to' 'e ote:Q
rocut rv sot c r minc o ,crmc P. u
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(4) TIME

TINE allows any proaram (enxcet TIME itzelf) to be run under
its control. It prritz the time used by the controlleo when the
c-ontrollee terminatols. 71isavailable on -. C.AY-l and can
bes obtaine-d by tpnJ

rfilem road !222 .cray timo(LP)e-nd /tv

This c:ocumnnt correspondis to the TIME vorsion of July 23S 1979.

Later Yaitsjo of TINE will be zicrod in JiEIdirector!2 .crry of
user numbner 1222. T:-* user should peri'odically chnck, the dot of
this file (iilem how 1222 cray tim-2) to see if the program has
bee-,n updated. The f'lo TIN2 is a LID f 41e; it contains the latest,
s-. urces as well as the late st documesntton. To cbtain the
documnt at icon. lice:

iib tiri*eCLF)x timez/c~cc(LF)eni / t v
netout Eusa) t.ime',dcc box b-nn time- / t v

There is only cne commacnd in TINE - fin, to terminata the progjram.
Th-e user con soquonlt cl li run as rncny procrtsz (control loes) as
;-/she wishes. Lofar. enterin9 the nones of !h*:2 next conir-ollee,
tra User sh-ould ci u i for the proimpt ">' o c-p,:oar.

4- -___ ____ ___ ____ ____ _iL
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K. REPORT GENERAriON

Alex Friedman

Recent developments have made report generation on the NIFECC

computer facilities more convenient for users at sites serviced by

min;-USC's, such as U.C. Berkeley. The first of these is the

av lability of the output options "nice" and "xnice" in the "FRNT"

command of TREX AC; these options send output to the NIPS printer with

drown type fonts. To find out more about them, obtain a copy of the

latest RED report. as described in the previous OPR. Note that NIPS

output arrives more promptly than high-quality hordoopy output, and is

for less costly. Also note that plot files generated in any manner can

be sent to the NIPS by use of utility routine "NIPIT", and so if the

user prefers to invoke REDPP directly rather than through th-e TRIX PRINT

cotmmnd, this is possible.

The second development is the ;mplementation of the " h.''  iOcn

of NETPLOr, the routine which is used to send graphics filks to the

local Versatec printer/plotter. This option is useful for all plotted

output, as the plots ore rotated by 90 degrees and so the user con ieaf

through the output in book form. However, it is particularly uceful for

plotting text, as one can now obtain output where the pag=s cppeor in

"forward" order. The "ampersand zq" conand to REDPP can be cleted. A

sa mple COSIXS Ceck to perform the cppropriate processing on tlie file

"exarple" of the previous OPR is the revised file "swopexmi", wiich

contons:
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*select~ p-swaprec

*netout ucb examnple s, ulc. box b34 example

v-exanple

[ :Ipopersrze 66 72 .94 1 .32 0. 0.

-- nf ( temrpo)

.-ormat( taipO. temp 1)

-redpp temipl star tp. 1 pcperr. keep. defont. 2 2hi ts, &c

--filesiza. 1350000 frI30brk. 1300000
--boA b34 example

.rie'plot uc~b alwith, fOhcy fxhoy f'. 1. turn. tox b34 examipie

- - - - - - - - - - - - - - - - - - -- - - - - - - -
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Section III
PLASMA SIMULATION TEXT

One publisher has manuscript for review, looking favorable. As this

has drayyecu on (their problem), up-dating will be required, when and if accepted.

We have been out of copies for months and do not plan to reprint, at present.

Section IV

SUMMARY of REPORTS, TALKS, PUBLICATIONS IN PAST QUARTER

Abstracts follow of papers submitted (this quarter) for Division of

Plasma Physics Meeting, American Physical Society, Boston, Mass., Nov. 12-16,

1979 (next quarter).

Jae Koo Lee and C. K. Birdsall, "Velocity Space Ring-Plasma Instab-

ility, Magnetized, Part I: Theory, Part II: Simulation", Phys. Fl. 22,

7, Pp. 1306-1314, 1315-1322, July, 1979.

H. Stephen Au-Yeung and Alex Friedman, "Solver: An Analytic Function

Root Solving and Plotting Package", ERL Memo No. UCB/ERL M79/55, 31 August

1979.

4 - - - - ----



Saturation of the Lower-Hybrid Drift Instability.
YU-JIUAN1 CHEN and C.K. BIRDSALL, U.C. Berkeley*-The - 107 -

linear properties and the saturation mechanism of the
lower-hybrid drift instability are studied using a ID
particle-hybrid simulation. The model is a slab with a
constant density gradient; the ions are unmagnetized par-
ticles, shielded by the strongly magnetized electrons
through the linear electron susceptibility, Xe- Ions are
initially in a steady equilibrium state with the ion dia-
magnetic drift velocity cancelled by the ExB drift, cor-
responding to electrostatically confined ions. At small
amplitudes, the simulation shows good agreement with lin-
ear theory, such as the linear growth rate, the real fre-
quency, and the influence of finite beta effects associ-
ated with the nonresonant 7B0 electron orbit modifications.
At large amplitude, allowing only a single mode, it is
found that the end of wave growth is due to ion trapping,
even when a wide band (Aw'Vy) of the mode occurs, with the
growth rate Y Lomparable to the wave frequency. Contrast
with the end of growth by quasilinear diffusion will be
given.

Particle Simulation of Instabilities due to Steep
Density Gradients. JAE KOO LEEtandC.K. BIRDSALL, U.C.
Berkeley*- Instabilities may occur in collisionless Max-
wellian magnetized plasmas, driven by the free energy as-
sociated with a spatial density gradient. Electrostatic
particle simulations were used to study such instabilities
with both species magnetized and treated fully nonlinearly.
During the linear stage, simulations showed exponential
growth in time with the growth rates in fair agreement
with a linear nonlocal theory, while the real parts of
frequencies were not well resolved in the short growth

period. The simulation saturation levels were somewhat
above those predicted by existing nonlinear theories. At
the time of saturation, the phase space pictures of elec-
trons and ions show bunching in some cases. Clear dis-
tinction between drift cyclotron and lower hybrid drift

instabilities was not possible; both may have been pre-
sent.

Field Reversed Ion Rinq Stabilitq - Recent Results;
Ergodic Orbits and Particle Simulation.* A. FRIEDMAN,
U. C BerKeley. J. DENAVIT. Northuestern Univ., and R. N.
SUDAN, Cornell Univ. - We present now results regarding
stability of a field-reversed ion ring in a dense plasma,
obtained by numerical sirulation using RINGHYBRID. a
linearized 3D hybrid code". The ring is moderately thicK.
with effective aspect ratio of order 4:1. and reversal
factor 1.35 on axis. Nonaxisymmetric modes of azimuthal
number Q are studied. The =l radial mode (precession) is
stable, whereas the axial mode (tilt) is unstable. Axial
Kink modes with b>2 and radial KinK modes with >3 are
stable, as predicted on the basis of thin-ring theoryl ,3 .

We have observed effects of ergodic particle orbits
in our simulations. In the nonlinear 2D3V zero order be-
havicr the main effect is a loss of left-right symmetry
due to the exponential divergence of "neighboring" mirror
image trajectories. Howeever, in linearized codes where the
perturbation quantities represont dizplacements between
neighboring orbits, the collective behavior can be masked
in some cases by rapid single-particle orbit separation.

*Supp.by USDOE ConIrs. DE-AS03-76SF8OO34/DE-AT@3-76ET53064
and EY76-S-02.2200.
A.Friedman, R.H.Sudan, J.Denovit. Cornell Lab. of Plasma
Studies Rept.0268 (1979), submittod to J. Comput. Phys.

1 R.V.Lovelace. Phys. Fluids 19. 723 (1976).
}R.N.Sudan & M.N.Rosenbluth, Phys. Fluids 22, 282 (1979).
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