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THE RICCATI INTEGRAL EQUATION ARISING IN OPTIMAL
CONTROL OF DELAY DIFFERENTIAL EQUATIONS

by

K. Kunisch

Abstract:
In this paper we discuss the linear regulator problem associated with

delay-differential equations. Formulas for the optimal feedback control and

optimal trajectory are derived; this naturally leads to a Riccatl integral

equation in the state space of the delay equation. Finally, the linear regulator

problem for the delay equation is approximated by sequences of regulator

problems associated with ordinary differential equations in Euclidean space.
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Introduction and Notation.

We study the linear-quadratic optimal control problem for a certain class
of delay-differential eqﬁations. In Section 2 an analytical solution in terms
of a Riccati integral equation in the state space of the delay equation is
presented. Subsequently, in the third section, we develop a general scheme for
the approximation of this optimal control problem. The averaging approximation
scheme and the spline schemes are seen to be special cases.

As usual R" denotes the n-dimensional Euclidean space with norm |*] and

inner product . For the interval (a,b) « (-»,©) the Hilbert space of

(-,*)
r" o b 5
equivalence classes of measurable functions x:(a,b) R with I |x(s)| ds < o
a
is denoted by Lz(a,b;IRn) and is endowed with the usual inmer product and norm.
For LZ(-r,O;IRn), r > 0, we simply write Lz. The state space for the presenta-

tion will be Zz =R" x L2

which in an obvious way becomes a Hilbert space with
inner product (-,- )z. Generally, norms of elements will be denoted by |-|

and operator norms by |[-]| . The set of all bounded linear operators between
Hilbert spaces X and Y is Z{X,Y) and A* denotes the Hilber: space adjoint
of the operator A. Finally, for x:[-r,a) -’I{n, o > 0, the symbol X, 0<t<a,

stands for xt(s) = x(t+s) for s€[-r,0].

2. The Optimal Control Problem.

We are concerned with functional differential equations of the type

. 4 0
x(t) = ) Aix(t—ri) + J A_l(s)x(t+s)ds, for t >0
i=0 -r
(2.1)

(x(o)vxo) - (n,(P) € 2

[ B




where Ai’ 1=0,...,% are real n Xn matrices, A—l is an n X n-matrix of
Lz-valued functions and 0 = h €.ae < ry=r. Although we restrict ourselves
to the autonomous case here, the results are remain true in the case where
Ai dezends on t. For convenience we introduce the operator L given by
L= ZAiw(-ri) + JO A_l(s) Ws)ds. It is quite well known that (global)
soluti;gs X = x(°;n:f0) of (2.1) exist and that they do not depend on the
representation of an equivalence class ¢ € L2 [7]; here x(+;n,¥ 1is called
the solution of (2.1) if x(s;n,¥ = ¥(s) almost everywhere on [-r,0] and
x(t;n,¥) = n+ erS(-;n,w)ds for t >0. By T(t):2 +2Z we denote the
family of solutign operators associated with (2.1) via T(t)(n,¢) =
(x(t;n,w),xt(-;n,w)). It is well known that T(t) is a linear Co-semigroup of
bounded linear operators for which ||T(t)]| < M exp(wt) holds for some M
and w in R; see, e.g.,[1].

We can now state the following optimal control problem associated with

(2.1):

(Find u € L2(0,c*;Rm) which minimizes

t* t*
Jo(M®,u) = (Fx(t*),x(t%) + I (px(t) ,x(t))  dt + I (Cu(t),u(t)) dt
R 0 R 0 R
(P) < subject to

x(t) = Lx, + Bu(t) for t € [0,t*], and

L(x(O) 1%g) = (n,9), where t* >0 and (n,p) € 2 are given.

The n X n-matrices F and D, the m X m-matrix C and the n X m-matrix B,
which are assumed to be independent of time for the sake of a simpler presentation,

satisfy: F,D and C and are symmetric and F > 0, D > 0, C > 0. Of course, (P)




is an extenslon to delay-differential equations of the unrestricted finite
terminal time linear regulator problem, which is well known for ordinary
differential equat:ions.\ But, as a consequence of the fact that the statespace
of delay-differential equations is a function space over the delay interval
[-x,0] (in our case Z), the analysis of the problem becomes much more
difficult than for ordinary differential equations. Many an earlier inves-
tigation was directed towards studying (P) and we shall mention some of them

further below. Here we first reformulate (P) in the state Space Z.

fFind u € LZ(O,t*;lRm) which minimizes

t t*
Jon,0,u) = (ﬁ(t*),z(t*))z + Io(.@z(t),z(t))zdt + IO (Cu(t) ,u(t))mmdt
(@)X subject to
t
z(t) = T(t)(n,) + J T(t-8) Pu(s)ds for t € [0,t*] (2.2)
0
for given t* > 0 and (n,9p) € Z.

We used the notation 0,y) = (FO,0), 2(0,V) = (D6,0) and H(O,¥) =
(89,0). In [1] it is proved that the solution z(t) = z(t;u) 1is related to
the solutions x(t;n,¢p,u) of

x(t) = Lx_ + Bu(t)

(X(o) ,xo) = (n.‘D)

via z(t;u) = (x(t;n,p,u), xt(';n,(p,u)) for all (n,y) € Z. Therefore, (&)
and (P) are equivalent in the sense that u* with assoclated trajectory
x*(-;n,@u*) 4is a solution of (P) 4if and only if u* with associated

trajectory t -+ (x(t;n,@qu*), xt(-; ,Qu*) is a solution of (). The usual

e T S e i ——— ——— e ‘ 4.




solution of (P) for the ordinary differential equation case (or even in the
case of functional differentfal equations) involves a Riccati differential
equation of one appearance or another [3, pp.130; 4, 13]. 1In our approach

the place of the Riccati differential equation will be taken by an appropriate
Riccati integral equation, which we shall explain next, First, note that (%)
obviously has a unique solution u#*; this is a consequence of the fact that
Jo(n,u),'):L2 4-lf+ is a strictly convex, continuous and radially unbounded

functional [9]. The optimal control u* can be found from the equation
]
JoM,@u)v = 0 for all v € L2(0,tx®"), (2.3)

where Jé(n,wﬂj)v denotes the Fréchet derivative at  in direction of v.

After some calculation one finds that u* 1s given by
ur(t) = -((Vg) W (n,@))(t)  for almost every t € [0,t*],

where V, € L120,t% & ,1.2(0,t%K™) and Wy € Lz,120,ex ™)  are

given by
Vy = C+BI*D T B+ B* TP 7P
and

wo = @g* _%*g‘ro + g*_?o*y'r(t*).

SURSS e




Here .56 € 5{1L2(0,t*;z),LZ(O,t*;Z)), 56 € EZKLZ(O,t*;Z),Z) and

T0 € £{KZ,L2(O,t*;Z)) are defined by
s 2
(Fy0) (s) = J T(s-nw(n)dn for @€ L7(0,t*;Z)
0
(F®) = (T En), (Tg2) (1) = T()Z for Z € 2,
t* -
(w0 () = [O TH(EXe(mdn, (FHE)(8) = TH(ER-£)F

Now for s € [0,t*] let us consider the optimal control problem (P)s, which
is defined by replacing '0' by 's' in (P). Then, similar to the way we
found u%*, one can derive the optimal control (u*)s of (P), which is
given by (u*)s(t) = ((Vs)_lws (M,¥)) (t) almost everywhere in [s,t*] with
v_e€ AL’ (s, txRY), 12(s,t;R™) and W, € Az,1%(s,t* ™) defined
analogously to Vo and W,. For (n,w) € Z the optimal trajectory corres-
ponding to (I’)s is therefore given by

t
s(t,s)(n,w) = T(t-s)(n,¥) - [ T(t-G)Q((vs)'lws(n,(p))(g)'dg, (2.4)
8

It can be shown [6] that {S(t,S)IO_f 8, t <t*} is an evolution operator on Z.

Taking a slightly different route in the calculations after (2.3) we find that

u* 1is also given by

ut(t) = -c'lg*ll(t)s(t)(n,cp) almost everywhere, (2.5)




. ek
with [(t)(n,0) = T*(t*-t) FS(t* t)(n,0) + f T*(0-t)Zs(0,t) (n,0)da, for

t
t € [0,t*], Moreover I[i(t) € £(2,2) 1is found to be nonnegative, self-adjoint

and is a solution of the following Riccati integral equation in Z;

() (n,9) = T*x(t*-t) FT(t*-t)(n,v) +
(2.6)
t* 1 )
+ I T*(0-t)[D - 1I(0) FC "B *(5)]T(0-t) (n,¥)dg

t
for t € [0,t*]. Much of the above development is greatly facilitated by
recent results [6] on the regulator problem in a general Hilbert space; the
details for the case of delay-differential equations are given in [9]. Formal

differentiation of (2.6) leads to

g? N(t)z = -A*t)z - N(t)Az + N()BC BM(t)z - Dz for t € [O,t*]}
(2.7)
N(t*) = %

where z = (n,9¥) and A and A* are the infinitesimal generators of the
semigroups T(t) and T*(t), respectively. Of course, (2.7) resembles the
well-known Riccati differential equation arising in optimal control theory for
the linear ordinary differential equation x(t) = A (t), and many former
investigations have been directed towards finding the "correct" form of the
analogous Riccati equation for delay equations. This is not an easy task,
since the operators A and A* are differential operators with

Dom(A) = {(¥(0),9)|® absolutely continuous and &>€ Lz}, A(@(0),p) = (up;b);

for a characterization of A* we refer to [14]. For one discrete delay




(L =1, A_1 2 0) coupled systems of nonlinear partial differential equations
of Riccati-type in Euclidean space have been derived in [5,10,12,13]. For
the more general functional L it is shown in [4] that (2.7) can be properly
studied in the densely injected triple of spaces 7’1’2 cZc (5"1’2)*,
where 371’2 = {(@W0),y) € Z| ¢ absolutely continuous and 6 € L2} and
(3'1’2)* is the dual of 271’2. The Riccati integral equation (2.6) avoids
many of the technical difficulties arising in the development of [4] and is
also more appropriate for our next goal, the discussion of approxima-

tion schemes for (P). Finally, we mention that the equations derived in this

section hold for more general right-hand sides than those included in L.

3. Approximation Schemes.

Recent results on the approximation of linear delay-differential equations
allow discussing approximation methods for (P) within a general framework, including
a number of examples of specific schemes. The objective is to approximate
(P), or equivalently (&%), by a sequence of optimal control problems for
ordinary differential equations in Euclidean space (linear regulator problems)
for which computer algorithms are readily available. We shall make use of
the following definitions and hypotheses. With {ZN}, N=1,2,... Qe denote
a sequence of linear, finite dimensional subspaces of Z, the canonical

N

projections from Z onto ZN are denoted by P, and QO: Z > 2 {is the

operator given by Q,(n,¥) = (n,0).

(H1) There exists a family of semigroups TN(t): 22, for N=1,.,.

and t € [0,t*], such that




(1) ||TN(t) | < M exp(wt) for some M >0, w € R and t € [0,t*]

N

(11) T™e)ZY e ZV for all t € [0,t*]

(111) IT(t)z-TN(t)z| f_E(N,z) for some real valued mapping P.
Of course, in the examples that we have in mind ¢ will tend to 0

at a certain rate, as N goes to .

(H2) 1im Pz =z for all z € Z.

Nooo
(H3) There exists a sequence of linear operators QN:iRp - ZN, N =1,2,... such
that
(1) |‘QN-QOH = p _(N) for some real valued mapping
n.Z Q
p, with lim p.(N) =0
(i1) IIQNH a < q for some q > 1 independently of N.
Z®R,2)

Conditions (H1) and (H2) are satisfied if ZN are chosen as the
subspaces arising from averaging approximations [l] or spline functions

{2]; in these cases 1lim p(N,z) = 0 for all z € Z, (H3) will be of

N
importance in the approximation of (2.2), which can be written as
t
z(t) = T(t)z + [ T(t-s)QoBu(s)ds, with z = (n,¥). The obvious approach
0

N N N t N N
to approximate (2.2) is to study z (t) = T (t)P z-FJOT (t-s)P QOBu(s)ds
as N tends to e, In [9] it is shown that although this leads to
satisfactory convergence results, rate of convergence results for the
optimal control, payoff and trajectory cannot be expected in general.
Thus we are led to study an approximate optimal control problem of a

more elaborate form:




( Minimize

Jo(PN"““Z.u) = (PVHgNH NN pay MW (s )y +

t*
+[ (MR (e 2 M), + (Cul),u(e)) de
(_QN’“) 0 r®

over u € L2(0,t*ﬂRm), subject to

.

2VM(e) = TV H )PV + I TV (e0)Q Bu(o)do, for t € [0,t*].
0

L

It is well known that estimates on the approximation of a real valued function
by plecewise polynomial functions depend on powers of the derivative of the
approximated function [11]; this explains, roughly speaking, the problem for
convergence rates for (2.2), which contains the "jump operator" QO. In
@V we try to avoid this difficulty by introducing the
family of operators QN. In certain cases QN will act as "“smoothing
operators'" by mapping R" in the subspace ZN consisting of smoother
functions than Z. In practice QN could be chosen to be PNQO, or also

as some interpolating operator appropriate for a previously chosen ZN. It

is quite clear that (£7N’u) can be solve& analytically in the same fashion
as (%) and we denote the optimal controls and optimal trajectories of
(EQN,U) by V¥ and zN’u(t:GN’u), respectively. In the convergence results
below we shall use p(N,z) = p(N,z) + M exp(Et*)lPNz—z[ for N=1,2,... and

z €2, and S(N+u,QN) = max 5(N+u,[QN]j), where [QN] is the
i=1,...,N

n X n-matrix representation of QN:nf’+-ZN

, whose column vectors [QN]j are
elements of Z. Employing (2.4)-(2.6) one can derive the following convergence

results:

—— = e e g e e




10.

Theorem 3.1. Assume that (H1)-(H3) hold. Then for each € > 0 there exists

an index N0 and a conpstant Kl such that

...Nosu ~ No
lu © —ux| <&+ K (p(NH,Q ) + p(Nytu,z)).
L7 (0, 4R

N+

In the above theorem € = Kz(pQ(N)+||P QO—QOH ); the constants K. and

1
K2, and the index N0 can be calculated explicitly in terms of the parameters

of (P). Theorem 3.1 therefore establishes that the rate of convergence of
the approximating optimal controls GN’U of (EVN’H) into any specified
e-neight orhood of u* is determined by the rate of convergence of the un-
perturbed semigroups TN(t) to T(t) when acting on [QN]j and z. Of

course, for U = 0 Theorem 3.1 asserts convergence of the optimal controls

GN’O to u* if only p(N,z) and BKN,[QN]j) tend to 0 as N goes to

infinity.

Theorem 3.2. Let (H1)-(H3) hold. Then

@) Jz(esu)-2"H(esi M| < kLo, 2)+0 0, Q)+ )+ ur-u Y ]
Q L% (0, e ™)

an [zt @,y ) | <k B, 2 +ly] Totwina+|z o, o) +

+ Jur-ao¥| + Jz] g + |2| llg2™ oyl 17,
Q 0 0

12(0, % ™)

for all y and z 1in Z; the constants K3 and KA can be calculated ex-

plicitly and KA does not depend on y or =z,




11,

It is simple to see that Theorems 3,1 and 3,2 imply an estimate on the

N+u

rate of convergence of *JO(P z,GN’u) to Jo(z,u*), see (9].

N,0

Finally, we also have the following result on convergence of u in

the supremum norm:

Theorem 3.3. If (H1)-(H3) hold and if 1im p(N,z) = 0 for all z € Z, then
N-roo :

1im sup hJN’C(t)-u*(t)I = 0.

Mo t € [0,t*]

To use the above theorems for actual computations we choose bases
(BI;,... ,BI;N) of the 1SN—dimensional spaces zN. The matrix representations
of the infinitesimal generators TN(t) and TN(t)* with respect to the chosen

basis in ZN are denoted by AN and Ali, respectively. Similarly, we use

N N

[F'] and [D'] for the matrix representation of P"#eN and P2V, For

any pair of integers N and U the coordinate vector of the representation
of zN’u(t;uN’u) in ZN'H‘l is denoted by WN’u(t) and ﬂN’u(t) stands for
the matrix representation of HN’u(t). Due to the fact that QN maps r"

into ZN we need an additional, but not restrictive, hypothesis:

(H4) For each N = 1,2,... there exists an integer p > 0 such that

N N+u

Z c z L]

For N = 1,2,... we assume that u = u(N) 1s chosen according to (H4)

*
and we let [QN] and [(QN) 1 denote the matrix representations of

N+ N+u
*
QN:Rn -+ ZN"'u and (QN) : 2 +R® with respect to the bases

(B:,...,BT%) of Z. Ve are now prepared to present the solution of (9“’“)




12,
Al
in terms of an ordinary differential equation in R u, coupled with a
matrix-~Riccati differential equation and a feedback control law.
W) = AR + Q) Bou ), for 0 < <er, )
Mooy = Wl
d_ MUy = AN RN ey ool ey AN (p 4
dt *
N (3.1)
N H
+ oY) (Q ]N+u3(t)c(t)B*(t)[(QN)*]m_uTT ()
mlex) = [PV
- *

W) = et @M 1, T )W ()

N+

“yom
where wg’uis given by PN+uz = 2 6§+u(w%’u)i. The system (3.1) is a con-
i=1

sequence of (2.4)-(2.6), where we replaced all operators by their respective
approximating operators and z by PN+uz; since TNﬂ"ZN’u c ZN+1J and by
(H3) and (H4) these equations are then actually equations in the finite
dimensional space ZN+u.

1f according to Theorem 3.1 we want to determine NO for a specified

€ and subsequently take the limit as U goes to infinity, then (H4) has to

be replaced by

(H4*) for each N = 1,2,... there exists a nontrivial sequence Uy = uk(N)
N N (D)
such that Z < 2 , for k=1,2,...
For subspaces of averaging approximations and also for subspaces of
spline functions many of the details that are necessary todetermine (3.1) as well

as estimates on the rate of convergence can be found in [9].
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