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THE RICCATI INTEGRAL EQUATION ARISING IN OPTIMAL

CONTROL OF DELAY DIFFERENTIAL EQUATIONS

by

K. Kunisch

Abstract:

In this paper we discuss the linear regulator problem associated with

delay-differential equations. Formulas for the optimal feedback control and

optimal trajectory are derived; this naturally leads to a Riccati integral

equation in the state space of the delay equation. Finally, the linear regulator

problem for the delay equation is approximated by sequences of regulator

problems associated with ordinary differential equations in Euclidean space.
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Introduction and Notation.

We study the linear-quadratic optimal control problem for a certain class

of delay-differential equations. In Section 2 an analytical solution in terms

of a Riccati integral equation in the state space of the delay equation is

presented. Subsequently, in the third section, we develop a general scheme for

the approximation of this optimal control problem. The averaging approximation

scheme and the spline schemes are seen to be special cases.

As usual Rn  denotes the n-dimensional Euclidean space with norm 1.1 and

inner product (.,') . For the interval (a,b) c (-,-) the Hilbert space of1R"rb

equivalence classes of measurable functions x:(a,b) -Rn with JIx(s)I2ds <aneiqedoedwihlheusaline
2 a

is denoted by L2(a,be )- and is endowed with the usual inner product and norm.

For L 2(-r,O'An), r > 0, we simply write L 2 . The state space for the presenta-

tion will be Z x L 2 which in an obvious way becomes a Hilbert space with

inner product (.,.#'. Generally, norms of elements will be denoted by I I

and operator norms by III . The set of all bounded linear operators between

Hilbert spaces X and Y is _AX,Y) and A* denotes the Hilbert space adjoint

of the operator A. Finally, for x:[-r,ct) In , a > 0, the symbol xt, 0 < t < a,

stands for x t(s) - x(t+s) for s E[-r,0].

2. The Optimal Control Problem.

We are concerned with functional differential equations of the type

I Aix(t - ri) r + JAl(s)x(t+s)ds, for t > 0

S-(2.1)
(x(0),x 0) = (n,D) C Z
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2.

where Ai, in0,..., t are real n x n matrices, A 1  is an n x n-matrix of

L2 -valued functions and 0 - r0 < ... < r, - r. Although we restrict ourselves

to the autonomous case here, the results are remain true in the case where

Ai depends on t. For convenience we introduce the operator L given by

L P- I Ai(p(-ri) + A_l(s) qs)ds. It is quite well known that (global)
in0 r

solutions x - x(';n,qP of (2.1) exist and that they do not depend on the

representation of an equivalence class (P L2 [71; here x(.;n,(P) is called

the solution of (2.1) if x(s;n,4P = (P(s) almost everywhere on [-r,O] and

x(t;n,') = n + J0Lx S(.;ntp)ds for t > 0. By T(t):Z - Z we denote the

family of solution operators associated with (2.1) via T(t)(q') -

(x(t;, 4,xt(.;n,(P). It is well known that T(t) is a linear C0-semigroup of

bounded linear operators for which liT(t) jj < M exp(wt) holds for some M

and w in IR; see,e.g.,[1].

We can now state the following optimal control problem associated with

(2.1):

IFind u E L2 (O,t*;XRm) which minimizes

J 0 (r,(P,u) - F~*,~*) + J (Dx(t),x(t)) n t+ f(Cu(t),u(t)) dt

M subJect to

(t) - Lxt + Bu(t) for t E [O,t*], and

I(x(O)xo) - (,(P), where t* > 0 and (Yjr) E Z are given.

The n x n-matrices F and D, the m x m-matrix C and the n x m-matrix B,

which are assumed to be independent of time for the sake of a simpler presentation,

satisfy: F,D and C and are symmetric and F > 0, D > 0, C > 0. Of course, (P)
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is an extension to delay-differential equations of the unrestricted finite

terminal time linear regulator problem, which is well known for ordinary

differential equations. But, as a consequence of the fact that the statespace

of delay-differential equations is a function space over the delay interval

[-r,O] (in our case Z), the analysis of the problem becomes much more

difficult than for ordinary differential equations. Many an earlier inves-

tigation was directed towards studying (P) and we shall mention some of them

further below. Here we first reformulate (P) in the state space Z.

Find u E L2 (O,t*lRm) which minimizes

Jo(,n,q,u) = (,A(t*),z(t*))z + I (9z(t),z(t) zdt + f(Cu(t)u(t))mmdt

(g subject to

z(t) = T(t)(n,p) + f T(t-s)qu(s)ds for t E [O,t* ]  (2.2)

for given t* > 0 and (n,(p) E Z.

We used the notation JO,J') = (FO,O), (e,IP) = (De,O) and (0, )

(BO,0). In 11] it is proved that the solution z(t) - z(t;u) is related to

the solutions x(t;n,tp,u) of

x(t) - Lxt + Bu(t)

(x(O),xo) - (T)P)

via z(t;u) - (x(t;np,u), xt(';n,i,u)) for all (n,v) E Z. Therefore, (9)

and (P) are equivalent in the sense that u* with associated trajectory

x*(.;n,,au*) is a solution of (P) if and only if u* with associated

trajectory t * (x(t;n, u*), xt(';n, %u*) is a solution of (9). The usual
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solution of (P) for the ordinary differential equation case (or even in the

case of functional differential equations) involves a Riccati differential

equation of one appearance or another [3, pp.130; 4, 13]. In our approach

the place of the Riccati differential equation will be taken by an appropriate

Riccati integral equation, which we shall explain next. First, note that ( )

obviously has a unique solution u*; this is a consequence of the fact that

0 (n,P,") :L2 _+ is a strictly convex, continuous and radially unbounded

functional [9]. The optimal control u* can be found from the equation

J 0 (n,w,u)v i 0 for all v E L (O,t*'Rm, (2.3)

where Jo(ri,(P,u )v denotes the Frechet derivative at u in direction of v.

After some calculation one finds that u* is given by

u*(t) - -((V0)-WO(n,o))(t) for almost every t E [0,t*],

where V0 E V.f(L2 (O,t*.Rm) ,L2 (Ot*;Rm)) and W0 E .V(Z,L
2 (O,t*m)) are

given by

V - C +o + _Q * o_0 0 06~~~ ~*0*50

and

Wo " - * %0"9o + Q*9o* 5rT ( t * ) "

0 0 I II -
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Here E- E .'(L 2(O,t*;Z),L 2(0,t*;Z)), ,50 E.-(L 2(Ot*;Z),Z) and
0 20

T 0E .V(Z,L (O,t*;Z)) are defined by

_560 (s) = T(s-n)(n)dn for cpE L2 (O,t*;Z)

5= (o)(t*), (Toi)(t) = T(t) for i E Z,

($%*p) M t T*(-t)p(n)dn, ( 0 *z)(t) = T*(t*-t)i.

Now for s E [O,t*] let us consider the optimal control problem (P) s which

is defined by replacing '0' by 's' in (P). Then, similar to the way we

found u*, one can derive the optimal control (u*) of (P)s which is

given by (u*) s(t) = ((Vs)-l s (n,p))(t) almost everywhere in [s,t*] with

V E .(L 2(s,t*eR), L 2(s,teR)) and W E _V(Z,L 2(s,t*Rm)) defineds s

analogously to V0  and W0 . For (n, ) E Z the optimal trajectory corres-

ponding to (P) is therefore given by

St

S(t,s) (1,(P) = T(t-s) (n, P) - fT(tO)_((v)lW(n,))(a)da. (2.4)

It can be shown [6] that 4S(t,s)0 < s, t < t*J is an evolution operator on Z.

Taking a slightly different route in the calculations after (2.3) we find that

u* is also given by

u*(t) . -C-1.*X(t)S(t)(np) almost everywhere, (2.5)
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with [(t)(,(P) = T*(t*-t)_9S(t*,t)(n,(P) + fT*(jt)9S(at)(n,P)dq, for

t E [O,t*]. Moreover H(t) E _V(Z,Z) is found to be nonnegative, self-adjoint

and is a solution of the following Riccati integral equation in Z;

H(t)(n,(P) = T*(t*-t)YT(t*-t)(n,(P) +

(2.6)

+ IT*(Gt)[9 - R(U) qC- 1_q*H(a)]T(o-t) (n,p)dco

for t E [O,t*]. Much of the above development is greatly facilitated by

recent results [6] on the regulator problem in a general Hilbert space; the

details for the case of delay-differential equations are given in [9]. Formal

differentiation of (2.6) leads to

t R(t)z -A*]]t)z - 11(t)Az + fl(t)jRC 1  q[(t)z - 9z for t E [0,*] (2.7)

f(t*)

where z - (n,P) and A and A* are the infinitesimal generators of the

semigroups T(t) and T*(t), respectively. Of course, (2.7) resembles the

well-known Riccati differential equation arising in optimal control theory for

the linear ordinary differential equation x(t) - AOx(J), and many former

investigations have been directed towards finding the "correct" form of the

analogous Riccati equation for delay equations. This is not an easy task,

since the operators A and A* are differential operators with

Dom(A) - {(P(O),P)ItP absolutely continuous and p E L2 }, A(0(O),() - (IP, );

for a characterization of A* we refer to [14]. For one discrete delay
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(= 1, A_, 0) coupled systems of nonlinear partial differential equations

of Riccati-type in Euclidean space have been derived in [5,10,12,13]. For

the more general functional L it is shown in [4] that (2.7) can be properly

1,2 1,2*studied in the densely injected triple of spaces 1, 'C Z C (1,2)

1,2*2

where 1fl2 (9(0),q) E Z I v absolutely continuous and OE L2 } and

(W 1,) is the dual of 1',2. The Riccati integral equation (2.6) avoids

many of the technical difficulties arising in the development of [4] and is

also more appropriate for our next goal, the discussion of approxima-

tion schemes for (P). Finally, we mention that the equations derived in this

section hold for more general right-hand sides than those included in L.

3. Approximation Schemes.

Recent results on the approximation of linear delay-differential equations

allow discussing approximation methods for (P) within a general framework, including

a number of examples of specific schemes. The objective is to approximate

(P), or equivalently (6), by a sequence of optimal control problems for

ordinary differential equations in Euclidean space (linear regulator problems)

for which computer algorithms are readily available. We shall make use of

the following definitions and hypotheses. With {zNI, N - 1,2,... we denote

a sequence of linear, finite dimensional subspaces of Z, the canonical

projections from Z onto ZN are denoted by PN, and QO: Z - Z is the

operator given by Qo(r,10 - (,0).

(Hl) There exists a family of semigroups TN(t): Z - Z, for N - I,...

and t E [Ot*], such that

- - m m m m -A ,
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Ci) IITN(t)II < R expCwt) for some R > 0, w E R and t E [O,t*]

(ii) TN(t)ZN C ZN  for all t E [O,t*)

(iii) IT(t)z-T N(t)zl < p(N,z) for some real valued mapping P.

Of course, in the examples that we have in mind p will tend to 0

at a certain rate, as N goes to .

(H2) lim PNz = z for all z E Z.
NN

(W3) There exists a sequence of linear operators QN :R n- Z N , N = 1,2,... such

that

(i) IIQN-Q 0 j = PQ (N) for some real valued mapping

PQ with lim pQ(N) = 0,
N-

(ii) 11QNli < q for some q > 1 independently of N.
.oORn, Z)

Conditions (H1) and (H2) are satisfied if ZN  are chosen as the

subspaces arising from averaging approximations [11 or spline functions

(2]; in these cases lim p(N,z) = 0 for all z E Z. (H3) will be of
N

importance in the approximation of (2.2), which can be written as

z(t) = T(t)z + T(t-s)%Bus)ds, with z - (n,P). The obvious approach

to approximate (2.2) is to study zN (t) - TN(t)PNZ+f0TN(t-s)PNQoBu(s)ds

as N tends to -. In [9] it is shown that although this leads to

satisfactory convergence results, rate of convergence results for the

optimal control, payoff and trajectory cannot be expected in general.

Thus we are led to study an approximate optimal control problem of a

more elaborate form:
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Minimize

J 0cPN+ Jz' u) -- (PN+1 PN+jzNl(t*)'zN'I(t*) )Z +

( N,) + t (( PN+PPN+zN'p (t) 'zN,1 (t) )Z + (Cu(t),u(t)) )dt

over u E L2 (O,t*4Rm), subject to

zN'p(t) = TN' (t)pN+pz + JT N+1(t-o)Q NBu(CT)da, for t E [O,t*].

It is well known that estimates on the approximation of a real valued function

by piecewise polynomial functions depend on powers of the derivative of the

approximated function [i]; this explains, roughly speaking, the problem for

convergence rates for (2.2), which contains the "Jump operator" Q0* In

( N,P) we try to avoid this difficulty by introducing the

family of operators QN. In certain cases QN will act as "smoothing

operators" by mapping Rn in the subspace ZN  consisting of smoother

functions than Z. In practice QN could be chosen to be P NQ0 , or also

Nas some interpolating operator appropriate for a previously chosen Z . It

is quite clear that (yN,P) can be solved analytically in the same fashion

as (?) and we denote the optimal controls and optimal trajectories of

( Ni) by , and zN' (t;uN'1), respectively. In the convergence results

below we shall use P(N,z) - P(N,z) + H exp(Wt*)IPNzzl for N = 1,2,... and

z E Z, and P(N+ ,QN) = max P(N+P,[QNlj), where [QN] is the
j =l,... ,N

x n-matrix representation of QN:,kn , ZN , whose column vectors CQNI a
nR- hs ounvcos £ are

elements of Z. Employing (2.4)-(2.6) one can derive the following convergence

results:
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Theorem 3.1. Assume that (H1)-(H3) hold. Then for each e > 0 there exists

an index N and a constant K1 such that

lu NO9-u l 2 m< e + K1(P(N 0+,Q NO ) + p(No+V1,z)).L (O,t*)R )

In the above theorem C = K2(PQ(N)+IIPN+ IQo-QoII ); the constants K1 and

K2 , and the index N0  can be calculated explicitly in terms of the parameters

of (P). Theorem 3.1 therefore establishes that the rate of convergence of

the approximating optimal controls N, I of (9 N,6 ) into any specified

e-neighlorhood of u* is determined by the rate of convergence of the un-

perturbcd semigroups TN (t) to T(t) when acting on [QN j and z. Of

course, for P = 0 Theorem 3.1 asserts convergence of the optimal controls

jN,0 to u* if only p(N,z) and p(N,[QN]j) tend to 0 as N goes to

infinity.

Theorem 3.2. Let (Hl)-(H3) hold. Then

(i) Iz(t;u*)-zN(t;uN)I < K3 [P(N+1,z)+P(N+,QN)+PQ(N)+Iu*-uN'PL 2
-- L (O,t,1Rm)

(ii) I(t)z-fN'(t)PN+ z,y)z I < K4 {P(N+P,y) Iz+Iyl[P(N+,2+Izlp(N+,QN) +

+ Lu*-uN'IL2 (O,t*Rm) + IzP 0Q(N) + Izi 1Q0-PN+ Q0 11 ]),

for all y and z in Z; the constants K3 and K 4 can be calculated ex-

plicitly and % does not depend on y or z.
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It is simple to see that Theorems 3.1 and 3.2 imply an estimate on the

rate of convergence of 3 0(PN+pz,uN 'p) to J0 (z,u*), see (9].

Finally, we also have the following result on convergence of UN,O in

the supremum norm:

Theorem 3.3. If (Hl)-(H3) hold and if lim p(N,z) = 0 for all z E Z, then

lim sup buN 'C(t)-u*(t)l - O. N-o
N- tE [O,t*]

To use the above theorems for actual computations we choose bases

(f 1 ... 8) of the ku-dimensional spaces ZN . The matrix representations
1 kNN 

Nof the infinitesimal generators T (t) and T (t)* with respect to the chosen

NN Nbasis in Z are denoted by A and A;, respectively. Similarly, we use

[F N  and [D N  for the matrix representation of PN5 pN and FNq pN. For

any pair of integers N and p the coordinate vector of the representation

of zN'1(t;uN,)) in ZN+" is denoted by wN'4I(t) and 7N,p(t) stands for

the matrix representation of 0N'(t). Due to the fact that QN maps En

into ZN we need an additional, but not restrictive, hypothesis:

(H4) For each N - 1,2,... there exists an integer p > 0 such that

ZN = ZN+V.

For N 1,2,... we assume that V - V(N) is chosen according to (H4)

and we let [QN ]N+ and ((QN)*]N+ denote the matrix representations of

QN:3Rn - zN+i and (QN)*: zN" -+n with respect to the bases

(ON,...,kN ) of ZN. We are now prepared to present the solution of (3 N 'p)
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nxkN~l

in terms of an ordinary differential equation in IR coupled with a

matrix-Riccati differential equation and a feedback control law.

wN' ) = AN+"wN '(t) + IN] B(t)uN p(t) , for 0 < t < t*,

wN,1 (0) N, 1

d N,(t )  - TN(t)AN+i-DN+]+I
dt INN (3.1)

+ N,I (t) [QN] N+B(t)C(t)B*(t)[((t)*]N+ N 'f t)

TN,lj(t*) = [FN+U ]

uN,1J (t) = _C-1 B*[(QN) ]N+Il N(t)w N'(t)

N, 11 given by+- N.+1 N all
where w0  is given by PN+ = (w )i* The system (3.1) is a con-

sequence of (2.4)-(2.6), where we replaced all operators by their respective

approximating operators and z by PN+iz; since TN+1IzN,'. a ZN+ and by

(3) and (4) these equations are then actually equations in the finite

dimensional space ZN + U.

If according to Theorem 3.1 we want to determine N0  for a specified

C and subsequently take the limit as P goes to infinity, then (H4) has to

be replaced by

(H4*) for each N = 1,2,... there exists a nontrivial sequence p k a Pk(N)

such that ZN C Z k  , for k - 1,2,...

For subspaces of averaging approximations and also for subspaces of

spline functions many of the details that are necessary todetermine (3.1) as well

as estimates on the rate of convergence can be found in [9].

- - - . - n-a ___n n ______•
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