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CALCULATION OF THE BIOT-SAVART LAW MAGNETIC FIELD
USING CURRENT DISTRIBUTIONS OBTAINED

FROM A FINITE ELEMENT ANALYSIS

INTRODUCTION

Three-dimensional static magnetic field solutions using finite
elements have been formulated usinv both scalar and vector potential
functions. Guancial and DasGupta, Frye and Kasper,2 and Zienkiewicz

3

have addressed the vector potential formulation.

The use of scalar potential functions provides great computational
advantages over vector potential functions, since the number of unknowns
at a grid point is reduced from three to one. Zienkiewicz et al.'
showed that a finite element scalar formulation was possible using the
Biot-Savart law to account for current terms. Armstrong et al. 5 indi-
cated how the Zienkiewicz formulation could be improved to eliminate
ill-formed matrices by a breakup of the problem region into domains
using different scalar potentials

Although the use of the scalar potential function gives great economy
in the solution of the finite element equations, there are problems where
the evaluation of the Biot-Savart magnetic field requires much computation.
Typically such problems arise where an object produces electric currents
internally in its own structure and externally in the infinite conducting
medium in which it is embedded. Figure 1 shows a diagram of such a
problem. Wikswo6 shows how the evaluation of the Biot-Savart law magnetic
field for such a problem can be reduced to an integration over boundaries
where there is a change in media conductivity and over regions where
current sources are present. Often, when the magnetic field around such
an object must be evaluated, the currents due to the electric field are
calculated using finite element techniques. This is particularly true if
the object is of complex shape or has unusual electric field boundary
conditions with the infinite medium. Typically, the finite element
electric field model of an object will be made up of rod and plate
elements, although volume elements may sometimes also be necessary. The
infinite medium is modeled as a set of volume elements with an appropriate
boundary condition to terminate the finite element mesh. The purpose of
this report is to show the derivation of equations from Wikswo's formula-
tion for evaluating the Biot-Savart law magnetic field by using currents
obtained from a finite element electric field analysis.

7-t|
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THEORETICAL BACKGROUND

In the scalar potential finite element formulations for static mag-
netic fields the total field is assumed to be equal to the sum of two
components.

Component H is the Biot-Savart law magnetic field strength, and
component Am is ihe gradient of a scalar potential function.

~fv I x v
i~ (~)= '~I- 01) dV'(2

H (3)

where I is some known current density distribution; A is the position
vector to the point where Hc is to be evaluated, A' is the positjon
vector of dV', the element volume of the conductor with current 1 ;and
4 is the unknown scalar potential function.

Use of this assumed solution for the magnetic field strength
automatically satisfies the field relation between magnetic field
strength and current density:

Vx =V x Ac = 3 (4)

since x Am =  x i* = 0 (5)

The remaining field relation requiring that the divergence of the
flux density be zero establishes the required relation for determining
the scalar potential function:

= 0 (6)

-C)= 44c(7)

The finite element formulation given by Zienkiewicz et al. 4 for
the solution of the field equation results in a matrix equation that
relates a set of discrete scalar potential unknowns {t} to a set of
loadings {f} obtained from the Biot-Savart law magnetic field strengths
via a matrix [K] calculated with finite element interpolation functions
Ni.

[K]{I} = {f} (8)
Ki =fv ( Ni)'v( NJ dV (9)
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fi = - V Ni)v dV. (10)

It is not necessary to discuss details of the finite element
technique since all such details are standard and are discussed fully
elsewhere.'

The solution of the field problem proceeds by, first, constructing
an appropriate finite element model; second, calculating the Biot-Savart
magnetic field strengths from the known current distributions; third,
computing the loadings f. from equation (10); fourth, solving the matrix
equation (8) for {0}; an finally, fifth, adding the potential gradients
obtained from the finite element solution to the Biot-Savart field strength
to obtain the total field result. The finite element solution acts as a
correction to the Biot-Savart law field strength to account for magnetiza-
tion existing in materials with permeability other than that of free space.

For problems with infinite conductor domains, the evaluation of the
Biot-Savart law magnetic field value from equation (2) requires a great
amount of computation because the diffuse nature of the current densities
results in an extensive required region of integration. Wikswo6 has shown,
in the case where current densities are known to approach zero in regions
of the infinite conducting medium removed from the domain of interest, that
equation (2) can be replaced by the following relation:

I ( f ' x dV'.

The advantage to this relation is that, since steady currents can be
related to the gradient of a scalar potential function, the curl of the
current density is zero at all points in the volume of the problem except
at surfaces where there is a change in conductivity or a current source.
Thus, the integration of equation (11) reduces from a volume integration
to a surface integration. For practical purposes we can break this sur-
face integration into that over the surface of rods, plates, and volume
conductivity interfaces. Most metal structures can be characterized,
for the purpose of defining current distributions, as a collection of
rods that carry currents in a one-dimensional manner and of plates with
two-dimensional current sheets. The currents in the conductive medium
in which the metal body is embedded can be accounted for by integrating
over the interface between the surface of the metal body and the conductive
medium, and along the interfaces of differing conductivity in the media.
In the following sections, separate equations will be developed from
equation (11) for the rod and plate surfaces and the volume interface
surfaces. The equations are developed based on the assumption that the
current density outside the region of the rod, plate, or volume is zero.
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It will later be shown that the summation of separate integrations appro-
priately accounts for the situations where this assumption is not the
case.

INTEGRATION FOR RODS

Figure 2 shows the rod geometry and the coordinate systems used to
describe the rod integrations. The rod axis is assumed to lie along a line
between two points in space called grid points 1 and 2. The two grid points
have their position in space defined by global coordinates x, y, and z. The
rod axial coordinate z is taken as having its origin at grid point 1 and
as having a positive s~gn in the direction of grid point 2. The axial
coordinate direction vector is given by zR.

A A - - Y + (Z2 - zj)
R J 2 - A l y A 2 - A ll JA2 - A ll (12)

The rod coordinate direction vector xR is taken as the cross product
of the global y direction and the ZR directiont

A xR
XR A

Y x Z R (13)
A

In the case where y and zR are parallel, xR^is taken as being the same
as x. The rod coordinate direction vector YR is the cross product of
the zR direction and the xR direction.

A A A

YR = ZR x xR . (14)

The XR and YR direction vectors can be expressed in terms of their
respective components as

A A A

xR = x XRx + y XRy + z XRz (15)

YR = X YRx + Y YRy + z Y Rz • (16)

The rod is assumed to have a circular cross section and to have a
radius (a) that is small with respect to the distance to the point where
the Biot-Savart law magnetic field value is to be calculated. In other
words, the calculations are not to be made in the nearfield of the rod,
at least from the standpoint of rod cross-sectional geometry.

5
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a << (17)

Using cylindrical coorlinates, we can define the radial rod direction
r and tangential direction t in terms of the xR and YR directions as

R AR

= cose xR + sine YR (18)

t = -sine xR + cose YR (19)

The vector - can be rewritten as

- = - (A + 'r") 1 (20)
where = A (xI + ZR.X) + Y (YI + zR-) + A (z1 + A) (2)

zR = zR zR (22)

r r r (23)

zR and r are the amplitudes of the axial and radial coordinates.
c is the vector to a point on the rod axis. -k can also be written in

terms of its global coordinates as
A

c rcX + y + z (24)

Substituting equations (15), (16), (18), (19), and (24) into equation
(20) and evaluating th abolute value of the vector expression gives the
following result for I- :

- l= (x - xc - r LcoseXRx + sineYRx])2

+ (Y - Yc " r [coseXRy + sineYRy]) 2

+ (z - zc - r [coseXRz + sineYRz ])2 (25)

Since r will always be small in relation to JA - cl, [A - All can
be accurately approximated as

1 (i _ -cl2 _ r(x-xc) [coseXRx + sineYRx]

r(y-yc) [coseXRy + sineYRy]

r(z-z c [coseXRz + sineYRz]) (26)

7
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The current in the rod is assumed to be fl owing in the axial direction
of the rod; hus, Jpx and JRy components of the 3 current density are zero.
The curl of 3 in terms of rod coordinates is given by

A A A

TP~ r t z RR R

ar at azR [ arr

0 0 JRz

If the rod current density is assumed constant over the rod,zhen

aL z-is always zero,even along the sides of the rod parallel to the axis.

Thus, the curl of simplifies to

i' xa -t ar (28)

ar
aRz

The derivative --- is zero at all points on the rod except along

the rod longitudinal surface,where the value of JRz is assumed to drop
to a zero value.

In evaluating the integral of equation (11) it is necessary to
evaluate onlythelimitovera film of volume at the rod longitudinal sur-
face as the film thickness goes to zero. Figure 3 illustrates such a
film of volume. The differential volume dV' can be expressed as

dV' = a 6r do dzR (29)

The partial derivative can also be expressed as the following
limit:

aJRz - lim JRz(a + 2 ) - JRz(a - j )

3r 6- o 6r (30)
The combination of the terms of equations (29) and (30) produces

the following expression:
aJRz W lim dRz(a + 2H - dRz (a  a 6r o d

ar dV' = 6r-o 6r a 6r de dzR. (31)

JRz (a + -,-)is interpreted to be the current density just outside
the rod volume and is zero. The current density JRz (a - i) Is the

j .. .. . . ... ... ..
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current density just inside the rod surface and is equal to JRz" Thus,
expression (31) becomes,after the evaluation of the limit,

aRza--"r--dV' = -ORzad~dzR .(2

r(+a

The volume integration for the rod given by equation (11) then
reduces to the following integration over the rod's longitudinal surface:

L 21r^

= 1 ( f R---r adOdzR. (33)

The integration limit from 0 to 2w can be changed to a limit that
varies from 0 to 71 by adding up the contributions of elemental surface
areas at e and 8 + 7 radians simultaneously;

_1 (F Jr_ tR adedz (34)c 4y 0 R -R e IR-R'1l+J

The first term in the integration accounts for the elemental area
at O,and the second term accounts for the elemental term at 0 + T. Here
we have accounted with a minus sign for the fact that the tangent vector
at 0 + 71 is in the 9posite direction from the tangent vector at e. The
terms Ii- le and I-R' Io+7 can be calculated from equation (26) by setting
r = a.

=AAl i [I ci a(A-Ac )-r] (35)

C 
I

If equations (35) and (36) are substituted into equation (34) and
the expression inside the integration is placed under a common denominator,
we obtain the following:

L T A A

H 2tJRz dedzR (37)

10

4 - ________________________7
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Performance of the integration with respect to e, which involves the
algebraic expansion of equation (37), results in

.T J2JRz(- c ) XrR x YR((R  -- jf_ l dzR  (38)

If IR is the total current flowing in the rod, then JRz is equal to

IR divided by the rod cross-sectional area:

IR 39)
Rz 7

Also zR X R x YR (40)

Substitution of equations (39) and (40) into equation (38) results in
the final form for the integration of the rod current contribution to the
Biot-Savart law magnetic field strengthi

L ALI R̂   x (U-c)

Ac (A) = 1f RR dzR (41)

The integration with respect to a volume given by equation (11) is
then reduced for the rod to an integration along the rod axis.

INTEGRATION FOR PLATES

Figure 4 shows the coordinate systems used in the development of
expressions for integrating over the region of plates. The plate shown in
the figure is quadrilateral, but the coordinate system definition is essen-
tially the same for triangular plates. The plate is defined by four grid
points, at the vertices of the plate edges, that have their locations
specified in terms of global x, y, and z coordinate directions. These
points are known as grid points 1, 2, 3, and 4. The normal to the plate
surface can be calculated by taking the cross product of a vector directed
between the first and second grid points and a vector directed between the
first and fourth grid points and normalizing the result:

a x

n = (42)
Ia x

11

a!
4- - _ ___ __ ___ ___ __ _-- --- - ~-------"---
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where a= (x 2 - x1) x+ (Y2 - y) y + (z2 - z1) z (43)

y + ( Z z(44)(x4 - Y1 x + (Y4 " l yd + z4 " Zl1 .(4

Xl, Y,~ Z1, X2, Y2, z2 , and x4 , Y, z4 , are global coordinates of
the first, second, and fourth grid points,respectively.

The first tangential plate coordinate direction,known as t1,is in
the same direction as a;

A -

= a (45)

The second tangential coordinate direction is obtained by taking the
cross product of n and t1

A A A

t2 = n x t (46)

The advantage of using these coordinate directions is that finite
element programs that analyze current fields often use these coordinates
when listing components of a current vector.

The curl of the current density for a current flowing in the plate
is p it2  tJ A Jt 2 ra t 1

xiI-=-n-aI -t -j7n + t 2  (47)I
ati I t2J ann

Note that there is no component of current density normal to the
plate as all currents are assumed to be flowing parallel to the plane of
the plate.

The current in the plate can be expressed as being equal to the
plate material conductivity times the gradient of a potential function:

t @2  (48)
ti t

Bt ¢ (49)dt2  at2

Substituting equations (48) and (49) into the first term of equation
(47), we have

2 'LL2 .. . (50)

at1  t2  aat at at2
tI - -t 2  atlat2  1tl 2

The component of the curl term normal to the plate drops out. The
remaining terms in the curl relation are normal derivatives of current
terms tangent to the plane of the plate. These terms are zero everywhere

13
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except at the surface since the current is assumed not to vary across
the plate thickness. At the surface, the current vector amplitude changes
abruptly from some value to zero. Figure 5 shows a diagram of the ele-
mental volumes at the upper and lower surfaces of the plate. The expres-
sion for the elemental volume may be written as-

dV = 6T dtI dt2 . (51)

BJt I  Bt

The derivatives and t can also be written as limits

h 6T 1)

2.n lim t T 
(52)

t 2 = i m t 2 2 1 2( 5 3 )an 6T- o .

On the upper plate surface the current densities above the plate
are zero, and on the lower surface the current densities below the plate
are zero:

UPPER SURFACE J1  1h+ ST = h + T =0(54)

LOWER SURFACE J (h-6T~ - h _6T 0(52 t) - 2  ~-T-F)O (55)

On the upper surface the current densities below the surface are
the plate current densities, and on the lower surface the current den-
sities above the surface are the plate densities:

UPPER SURFACE it1 (Z - ) =  t1  
(56)

J :2 6 t) =(57)

LOWER SURFACE Jt l (h+6T) = J (58)
Jt (h + 6 (59)

m2 2t 2

14
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Substituting equation (47) and equations (51) through (59) into
equation (11) gives

AA A

1 t j t 2 t2 t1  - t'j2 t J1) d,()t (60)

where 'A A' theus ie t s t dtr

where JA - 'us is the amplitude of the vector to the upper surface

and JA - A'Ils is the amplitude of the vector to the lower surface

The amplitudes 0A - 'lus and A - AI s can be written in terms of
vectors to the plate midsurface and the normal of the plate;

IA A' Ius A &A-A.- r ni (61)

IJA- Al is = A -Am + -n , (62)

where Am is the vector to the midsurface.

Under the assumption that the plate thickness is small in relation
to the distance to the point where the field strength is to be calculated,
equations (61) and (62) can be approximated by

A-Ius I-,I -A, -1 A(1 A- 2_] (63)

[ l 1 A k2+ hn.( 64

Substituting equations (63) and (64) into equation (60) and placing
the two terms in the integral under a common denominator results in

1 f h n.(A - k)(1 x n)]
Ac(A) m dtl dt2  (65)

If the sheet current Ts is defined as the current density times the
thickness of the plate, then equation (65) can be rewritten in the follow-
ing wayA

Alc() = 1 f . 1 dtt dt2  (66)

TV fm 1A- Bi5

Thus,the integration of the plate is reduced to an integral over
the midsurface of the plate.

16
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VOLUME INTERSECTION SURFACE

Figure 6 shows the coordinate systems used in the development of
expressions for integrating over surface regions of volumes. The region
shown in the figure is quadrilateral, but the coordinate system definition
is the same for triangular regions. The surface region is defined by four
grid points, at the vertices of the region's edges, that have their loca-
tions specified in global x, y, and z coordinate directions. The grid points
are numbered counterclockwise when viewed from outside the conductive medium.
The vector directions n, t1, and t2 are defined in the same manner as with
the plate coordinates, i.e., with equations (42), (45), and (46).

In the case of a surface region of a volume,there may be components
of current density flowing in a direction normal to the surface as well
as tangent to it. Thusthe curl of the current density contains all com-
ponents of the current density:

("t2 ( (."n at 2) I dnS7+nt+ t t'atl ~ -"1n 2 t tjnti *5~. (67)

As with the plate element, the normal component of the curl of
always vanishes because the cu'rent density can be written as the gradient
of a scalar potential function in the region of the conductive medium.
In fact,all components of the curl vanish at all points in the domain of
the conductive medium except at points on the surface region where the
current density vanishes just outside the surface.

Figure 7 shows a diagram of the elemental volume of integration on
the surface region of a volume. The expression for the elemental volume
may be written as

dV = 6udt1dt2 . (68)

ait 1  DJt 2

The derivatives - and -can be written as the following limits:an an

tl lim dtl ti) T (- ))
5n 6u-o0" 6u (69)

2 lim t 2 t 2 T, (70)
- 6u.o 6u

17



TR 6281

wu

a 0u

cc 0

2
w CL

LU

-4

OC 43

-S

C

181



TR 6281

SPACE OF NO CURRENT

CONDUCTIVE

MEDIUM SURFACE

Aj \ INTEGRATION

CONCONUCIVE SURAC
MMEDIUM

Fiue7.Eeeta oue fIterto o h uraeReino4aVlm

A __ ____ ____ ____ ____ ___I



TR 6281

J 6u 6u
J'--) and Jt (Y-) refer to current densities just outside the

1 2 6u
conductive medium and are both zero. Jt (- 6-) and Jt (- - -) refer tot to

1 2
current densities just inside the conductive medium and are equal to

and ,respectively.

Using equations (67), (68), (69), and (70) in equation (11) and noting
that the curl term in the direction normal to the surface vanishes, we
obtain

lim {adn .- 2) ]

= t2 t ( u . u

+ . 2dtt 2  (71)

Evaluation of the limits of equation (71) results in the final expres-
sion for the integration over the surface region. In evaluating the limit
it should be noted that the tangential derivatives of the normal component
of current are finite since the discontinuity in the normal component of
current density,if it exists,is in the direction normal to the surface,
not tangential to it:

AC = f n ds (72)

S

It is interesting that the components of the current density normal
to the surface region do not enter into the magnetic field strength cal-
culations. Only tangential current density components are of importance.

SURFACES WITH NONZERO CURRENT DENSITIES ON BOTH SIDES

In all of the discussions thus far, integration equations have been
developed for surfaces that have current densities on one side of the
surface and not the other. To consider the case where a current density
exists on both sides of a surface,it is necessary only to add the results
of two separate integrations where the surface normal is defined separately

20
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and with a different positive direction in each integration. Consider
figure 8,which shows a surface r between two regions, A and B, of dif-
fering conductivity. A is the current density in region A, and 1B is
the current density in region B.

In the evaluation of the Biot-Savart law magnetic field strength,

we have seen that it is necessary to evaluate the integral J i dV over
the surface of the intersection of two regions of differing conductivity.
To do this, the limit is taken of the product of the derivative and the
infinitesimal volume element as the side of the element approaches zero-

faiJT = im - 6B

J an J6nB B 6nB dS (73)

Here we have taken 6nB as positive-pointing away from the B region.
Equation (73) can easily be rewritten as

-JT dV lim (-JTA)+ lim /-JTB ds

fi = im 0_O-TA. +6imnOJ B d

6nAko n A 6n ( n
ke o - -A (

A)T a im TA B 2
n ( -6n A  6nnd

taken to
ezero 6n A n

aiT fi TA +2) TB 2 6nd

i ( + ) - J T B ( -
I

6nB- 6nB dS

J i TA raJTT dV + dV
anfaA n Bn

region outside region outside
A has zero cur- B has zero cur-
rent density rent density (74)

21
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JA 000 REGIONS AAND B

Figure 8. Surface Between Two Regions of Differing Conductivity
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The integration over the surface of the intersection between two
volumes of differing conductivity is seen to be equivalent to the sum of
the separate integrals over the two regions, with the assumption that the
current density in all other adjacent regions is zero. As a result, the
Biot-Savart law field strength may be evaluated by summing the rod, plate,
and volume intersection surface integrations of equations (41), (66), and
(72).

This conclusion perhaps could have been reached in a more direct
manner by simply noting that equation (11) is the volume integral taken over
regions of nonzero current density and that this integration can be evaluated
by summing the integration over separate regions.

2

23

I



TR 6281

REFERENCES

1. E. Guancial and S. DasGupta, "Three-Dimensional Finite Element
Program for Magnetic Field Problems," IEEE Transactions on
Magnetics, vol. MAG-13, no. 3, May 1977, pp 1012, 1015.

2. J. W. Frye and R. G. Kasper, "Analysis of Magnetic Fields Using

Variational Principles and CELAS2 Elements," Sixth NASTRAN Users'
ColloquiuNASA Conference Publication 2018, October 4-6, 1977,

3. 0. C. Zienkiewicz, "The Electromagnetic Problem, Two and Three-
Dimensional Treatment by Finite Elements," Dept. Civil Engineering,
University College of Swansea, Wales C/R/127/70, 1970.

4. 0. C. Zienkiewicz, J. Lyness, and Dr. J. Owen, "Three-Dimensional
Magnetic Field Determination Using a Scalar Potential--A Finite
Element Solution," IEEE Transactions on Magnetics, vol. MAG-13,
no. 5, September 1977, pp 1649, 1656.

5. A. G. Armstrong et al., "The Solution of 3D Magnetostatic Problems
Using Scalar Potentials," Rutherford Laboratory Report RL-78-088,
Rutherford Laboratory, Chilton, Didcot, Oxon, England OXl1 OQZ,
September 1978.

6. J. P. Wikswo, "The Calculation of the Magnetic Field from a
Current Distribution: Application to Finite Element Techniques,"
IEEE Transactions on Magnetics, vol. MAG-14, no. 5, September 1978,
pp 1076, 1077.

7. 0. C. Zienkiewicz, The Finite Element Method in Engineering Science,
McGraw-Hill, New York, 1971.

24



TR 6281

INITIAL DISTRIBUTION LIST

Addressee No. of Copies

ONR, Code 427, 483, 412-8, 480, 410, Earth Sciences Division
(T. Quinn) 6

NRL, Code 6451 (J. Davis, W. Meyers, R. Dinger, F. Kelly,
D. Forester), Code 6454 (J. Clement) 6

NAVELECSYSCOMHQ, Code 03, PME-117, -117-21, -117-213, -117-213A,
-117-215 6

NELC, Code 3300 (R. Moler, H. Hughes, R. Pappert) 3
DTNSRDC/Annapolis, Code 2704 (W. Andahazy, D. Everstine, F. Baker),

Code 2782 (B. Hood, D. Nixon), Code 2813 (E. Bieberich) 6
DTNSRDC/Cardarock, Code 1548 (R. Knutson), Code 1102.2 (J. Stinson),

Code 1844 (M. Hurwitz) 3
NAVSURFWPNCEN, Code WE-12 (K. Bishop, M. Lackey, W. Menzel, E. Peizer,

Code WR-43 (R. Brown, J. Cunningham, Jr., M. Draichman;
G. Usher) 8

NAVCOASTSYSLAB, Code 721 (C. Stewart), Code 773 (K. Allen), Code 792
(M. Wynn, W. Wynn) 4

NAVSEA, Code 5431 (C. Butler, G. Kahler, D. Muegge) 3
NAVFACENGSYSCOM, Code FPO-IC (W. Sherwood), Code FPO-1C7

(R. McIntyre, A. Sutherland) 3
NAVAIR, Code AIR-0632 B (L. Goertzen) 1
NAVAIRDEVCEN, Code 2022 (J. Duke, R. Gasser, E. Greeley,

A. Ochadlick, L. Ott, W. Payton, W. Schmidt) 7
NISC, Code 20 (G. Batts), Code 43 (J. Erdmann), Code 0W17 (M. Koontz) 3
NOSC, Code 407 (C. Ramstedt) 1
NAVPGSCOL, Code 06 (R. Fossum) 1
U.S. Naval Academy/Annapolis (C. Schneider) 1
GTE Sylvania/Needham, MA (G. Pucillo, D. Esten, R. Warshamer,

D. Boots, R. Row) 5
Lockheed/Palo Alto, CA (J. Reagan, W. Imhof, T. Larsen) 3
Lawrence Livermore Labs/Livermore, CA (J. Lytle, E. Miller,

L. Martin) 3
Raytheon Co./Norwood, MA (J. deBettencourt) 1
U. Nebraska/Lincoln, NB (E. Bahar) 1
Newmont Exploration Ltd./Danbury, CT (A. Brant) 1
IITRI/Chicago, IL (J. Bridges) 1
Stanford U./Stanford, CA (F. Crawford) 1
U. Colorado/Boulder, CO (D. Chang) 1
SRI/Menlo Park, CA (L. Dolphin, Jr., A. Fraser-Smith, J. Chown,

R. Honey, M. Morgan) 5
Colorado School of Mines/Golden, CO (R. Geyer, G. Keller) 2
U. Arizona/Tucson, AZ (D. Hastings) 1
U. Michigan/Ann Arbor, MI (R. Hiatt) 1
U. Washington/Seattle, WA (A. Ishimaru) 1
U. Wisconsin/Madison, WI (R. King) 1
U. Wyoming/Laramie, WY (J. Lindsay, Jr.) 1
U. Illinois/Urbana, IL (R. Mittra) 1
U. Kansas/Lawrence, KS (R. Moore) 1

_ .- - - - . . .? ' • . •/ . ••. ... :



TR 6281

Addressee INITIAL DISTRIBUTION LIST (Cont'd) NoofCpe

Washington State Univ./Pullman, WA (R. Olsen) 1
N. Carolina State Univ./Raleigh, NC (R. Rhodes) 1
Ohio State Univ./Columbus, OH (J. Richmond) 1
MIT Lincoln Lab./Lexington, MA (J. Ruze, D. White, J. Evans,

A. Griffiths, L. Ricardi) S
Purdue Univ./Lafayette, IN (W. Weeks) 1
U. Pennsylvania/Philadelphia, PA (R. Showers) 1
EB Div. General Dynamiics/Groton, CT CR. Clark, L. Conklin, H. Hemond,

G. McCue, D. Odryna) S
Science Application Inc./McLean, VA (J. Czika) 1
JHU/APL, Silver Spring, MD (W. Chambers, P. Fueschel, L. Hart,

H. Ko) 4
DTIC 12


