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A number of results on general regularization methods for
i11-posed linear problems and related mathematical ideas were
developed during the course of the project. These results are
documented in four papers, all of which have been accepted for
publication. The four papers and the journals in which they will

be published are as follows:

.

1. Generalized inverses and generalized splines, Numerical
Functional Analysis and Optimization,

2. On the Kryanev-Lardy method for ill-posed problems;
Mathematische Nachrichten.

3. On a class of regularization methods; Bolletino della
Unione Matematica Italiana.

4. The parameter choice problem in linear regularization:
a mathematical introduction, in "I11-Posed Problems:

Theory and Practice" (M.Z. Nashed, Ed.), Wiley, New York.

The investigator has taken the point of view of generalized
inversion in studying numerical methods for the regularization
of linear il11-posed problems. In paper (1) some ideas of
A. Sard are extended to provide a general axiomatic framework
for both splines (including interpolatory splines and generalized
harmonic functions) and the Moore-Penrose generalized inverse. It
is hoped that this idea will help to clarify the relationship
between splines and generalized inverses.

In (2) the investigator pointed out the relationship between
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Lardy's series representation of the generalized inverse and
Kryanev's iterative method for solution of an operator equation
of the first kind with a closed unbounded operator. Under certain
assumptions on the data an error bound is also established.

Convergence theorems and error bounds for a very general
class of regularization methods are developed in (3). The error
bounds relate the smoothness of the data to a modulus of convergence
for the general regularization method (which includes as special
cases both iterative and noniterative regularization methods).
Work is in progress on inverse results which show that a certain
rate of convergence for a regularization method implies a certain
degree of smoothness for the data.

Paper (4) surveys, extends and unifies the mathematical
theory of parameter choice in linear regularization. Included
are discussions of a priori parameter choice strategies, the
Discrepancy Principle, the derivative and ratio criteria, and a
parameter choice criterion for approximating constrained
pseudo-solutions.

Complete copies of the papers follow as appendixes.
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GENERALIZED INVERSES AND GENERALIZED SPLINES

C. W. Groetsch

Department of Mathematical Sciences
University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

An abstract framework in Hilbert space is provided for gen-
eralized splines and generalized inverses of operators.

Since Atteia [1] introduced an abstract point of yiew
in the theory of spline functions, a number of authors have
studied abstract splines in Hilbert space and relationships
between spline functions and generalized inverses (see [2],
(3], [4], [6], [7]). In [7] Sard developed a very elegant
theory of "splines" in Hilbert space. Our aim in this brief
note is to enlarge somewhat the context introduced by Sard
so as to provide a framework which encompasses the splines
in the sense of Sard and also the concept of the generalized
inverse of a linear operator in Hilbert space.

Suppose that X and W are linear spaces and that Y and Z
are inner product spaces (the inner product and induced norm
in each space will be denoted by <<,+> and ||+||, respec-
tively). We also assume that there are two linear mappings

F:XxW+Z and U: XxW=>Y

which satisfy




[|
o

(1) F(x,0) = 0 and u(x,0) =0 implies x =
and

(2) F(O,w) =0 and u(o,w) = 0 implies w

]
o

These linear maps are the bivariate analogues of Sard's "observa-
tion" and “"coobservation" operators (see [7]). By virtue of
(1), the bilinear form

[x,y) = <F(x,0),F(y,0)> + <u(x,0),u(y,0)>

is an inner product on X and we will denote by X the Hilbert
space which is the completion of X in the norm |+| induced

by this inner product. Condition (2) guarantees that thg bi-
1inear form

(w,v) = <F(0,w),F{O,v)> + <u(O,w),u(o,v)>

is an inner product on W and we shall designate the completion
of W with respect to this inner product by ﬁ. Note that the
mappings F and U are continuous on X x W and we will pergist
in denoting the continuous extensions of these mappings to

T xW by F and U respectively. We assume that for each b ¢ W
the closed convex set p(b) defined by

p(b) = {x ¢ X : F(x,b) = 0}

is nonempty (note that p(0) is a closed subspace of X). One

may view this requirement as an abstract "interpolation"
condition. The symbol W will designate the subspace of W

which is maximal (relative to inclusion) with respect to the pro- ‘
perty that p(b) # # for all b ¢ W. Note that WC W C W. As a ;
final bit of notation, = will be the mapping which associates
with each closed convex subset of X its unique element of
minimal norm.

o RS T




Definition. The mapping b - b’ from W into X defined by b¥ =
nop(b) will be called the generalized spline mapping as-
sociated with the structure (X,W,F,U).

1
Note that if we set M = p(0)", then one sees readily
that p(b) = bt + p(0) and M N p(b) = T

Proposition 1. If b ¢ W, then ||U(x,0)|| is minimal amang
all x ¢ p(b) if and only if x = bt.

Proof. If x ¢ p(b), then since F(x,b) = 0 and F(b*.b) =0,
we find that x - b' ¢ p(0) = HL. Therefore

[u(x,0112 + |IF(x,0)]]2 = |x]2 = |x - bT[2 + |pT|2.

But since F(x - b¥,0) = 0, it follows that F(x,0) = F(b",0)
and hence

Hu(x,0)112 = |x - bT[2 + [bT|2 - [|F(bT,0)1]2,
which establishes the assertion.

Proposition 2. The generalized spline mapping b ~ b' is a
closed linear operator which is continuous if and only if W
is complete.

Proof. The linearity follows easily from the fact that
p(b] + bz) = {x+y:Xxe p(b]), y e p(bz)} and the rep-
resentation p(b) = bt + p(0). Suppose that {bn} c Wand
(b;’bn) + (x,b) ¢ X x M. By the continuity of F, we then
have

F(x,b) = 1im F(b;.bn) = 0.
n




Therefore x ¢ p(b) and hence b ¢ W, by the maximality of W.
Also, since M is closed and {b:} C M, we have x ¢ M Np(b) =
(bf}. Therefore the graph of the generalized spline mapping
{ is closed, that is, the generalized spline mapping is a

| closed operator.

If W is complete then the generalized spline mapping is
continuous by the Closed Graph Theorem. On the other hand,
if the generalized spline mapping is continuous, then it has
,5 a continuous extension b - b¥ defined for all b ¢ W. Suppose
beW and choose a sequence (bn} C W with bn + b. Then,
since F is continuous,

e e et s

F oy 2 o1s "IN ooy
F(b",b) = I;m F(bn,bn) l;m F(bn,bn) 0.

Therefore p(b) # ¥ and hence b ¢ W. It follows that WC W,
that is, W is complete.

In the special case when W = X, F(x,b) = Fx - Fb and
: uU(x,b) = Ux - Ub, where F and U are linear operators, we
11 recover Sard's theory of splines. Here W =X, M = N(F)'L
i is the space of "splines" and bt = PMb, the projection of b
onto M, is the spline approximation to b ¢ X. Proposition
1 is then just a statement of the "optimal interpolation"”
property of splines. For specific applications to inter-
polatory splines and generalized harmonic functions see
! [71.
‘; As another example, suppose Hy and H2 are Hilbert spaces,
D(T) is a dense subspace of H, and T:DB(T) ~ Hy is a closed
linear operator. Let Q be the orthogonal projection of
H, into RTTT. Let X = D(T), W = R(T) + R, 2= H, and
‘ Y = H] X HZ’ Define the linear operators F : X x W ~ Z
¢ and U : X x W+ Y by F(x,b) = Tx - Qb and U(x,b) = (x,b).
In this case X = D(T) , W = W, p(b) is the set of least
squares solutions of the equation Tx = b and b¥ = T*b.
where T' s the Moore-Penrose inverse of T (see e.g. [5]).
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Proposition 1 in this case expresses the well-known extremal

property of the Moore-Penrose inverse and Proposition 2 is
the (somewhat less) well-known characterization of continuous
Moore-Penrose inverses.

(1]

(2]

(3]

(4]

(5]

[6]

(7]
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On the Kryanev-Lardy Method for I11-Posed Prob]ems*

C. W. Groetsch

1. Introduction.

Kryanev's method for solving the ill-posed operator equation
(1) Au = f .

where A is a linear operator on a real Hilbert space, consists of
choosing a bounded, positive definite operator B and formjng the

sequence of {terates defined by
(2) Xg ™ o ., Axn + an = an_] +f .

Krayanev [3] established the convergence of the method under the
assumption that A is a bounded positive semi-definite operator and
equation (1) has a unique solution. The author [2] proved the convergence
of a related method in the case when A is a densely defined closed linear
operator, again under the assumption that for a given f equation (1) has

a unique solution. Our aim in this note is to investigate the convergence
of the method to a generalized solution of (1) when A is a closed

unbounded operator and the existence of a unique solution is not assumed.

*partially supported by AFOSR Grant 79-0059




2. Results.

Suppose that H] and H2 are real Hilbert spaces (the inner product
in each space will be designated by <.,.>) and that D(A) is a dense
subspace of H]. Let A : D(A) » H2 be a closed linear operator. We shall
investigate an iterative method for approximating A*f. where AT is the
Moore-Penrose generalized inverse of A. We recall that At is the

closed linear operator defined on the dense subspace
D(A') = R(A) ® R(A)"
of H2 by Atf = u, where u is the solution of minimal norm of the equation
(3) Ax = Qf ,

and Q is the orthogonal projection of H, onto R(AY. We note that this
definition of the generalized inverse is the same as that for a bounded
operator (see e.g. [1]) and that for f ¢ D(AT) the set of solutions of (3)
is convex, nonempty and closed (since A is closed). Therefore the
vector A*f is uniquely defined.

We shall suppose that B : H] + H] {s a bounded, self-adjoint
operator satisfying

(4) Bxox> > 2 |]x]|?

‘for all x ¢ H] and some ¢ ¥ 0. We may define an equivalent inner product

e A -SRI SN . B ST 2 S e I YRR
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on H1 by
[x,y] = <Bx,y> ,
and we shall denote the Hilbert space which consists of H] with the new

inner product [-,-] by Hl‘ The norm in H.l will be denoted lI-lIB, that
is

2
Hxllg = <Bx,x> = [x,x]
Since the norms [|-|| and ||-||; are equivalent, the subspace D(A) is
~

also dense in H1. The adjoint of A considered as an operator on H] will

be designated by A'. That is,

A" D(R') + H,
satisfies <AX.y> - [on.y]
for all y ¢ D(A') = {y e H, : <Ax,y> = [x,2], some z ¢ H, and a1l x ¢ D(A)}.
The adjoint of A considered as an operator on H] will be designated by the
customary symbol, A*. Note that these two adjoints are related in a
simple way. Namely, D(A') = D(A*) and A* = BA'. By [5, page 307] the

operator

S |
(11+AA) D Hy »Hy
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where I, is the identity operator on H]. is a bounded, self-adjoint

operator on H.| satisfying
tav=]
(5) H(ry + &' <1
Lemma 1, Given f ¢ Hy, there is a unique u; € D(A) such that
<Bu].v> + <Au].Av> = <f,Av>

for all v ¢ D(A). Moreover, if f ¢ D(Af). then u; = u - W, where
W (I, + A7) and u = ATy

Proof. Since A is closed, D(A) is a Hilbert space under the inner product
(-,°) defined by

(x,y) = [x,y] + <Ax,Ay>

The linear functional ¢ defined on D(A) by ¢(v) = <f,Av> is clearly
continuous with respect to the norm induced by the inner product (-,-).

Therefore, by the Riesz Theorem, there is a unique up € DfA) with
<f,Av> = ¢(v) = (u].v)
for all v ¢ D(A), which was to be shown.

If f ¢ D(A') and u = ATf, then Au = Qf, and since <f,Av> = <Qf,Av>
for a1l v ¢ D(A) and Wu ¢ D(A*A), we have




| <B(u = Wu),v> + <A(u - Wu),Av>

= <Bu,v> -~ <BWu,v> - <AWu,Av> + <Au,Av>
= <Bu,v> = <(B + A*A)Wu,v> + <Qf,Av>

= <Bu,v> - <B(I] + A'A)Wu,v> + <f Av> = <f Av> .

But then, by the first part of the Lemma, uy*u- Wu, which was to be

proved.

We will study the sequence of iterates defined by

(6)

u, * Wty s m= 12,3,

where Uy is given by Lemma 1. Note that this is equivalent to the

requirement that
<Bun,v> + <Aun,Av> a <Bun_.|,v> + <f,Av>
for all v ¢ D(A), which establishes the connection with Kryanev's method.

j This can be established exactly as in the proof of Lemma 1 by considering

the 1{near functional

. vttt

$(v) = <Buj_y.v> + <f,Av>

- ——

— ——
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on the Hilbert space D(A). 1In the case B = I and f € D(A'), the method
(6) reduces to that investigated by Lardy [4].

Lerma 2. If fe D(Af) and u = A+f. then u - u, = W.

Proof. By (6) and Lemma 1, we have

U=up = U=y =W go=u- (U= W) - W
= W(U - un-v‘)

Therefore, u - u, = w"u. n=1,2,3,...

We may now provide an error bound for the method (6). For convenience

we will henceforth denote the operator A*A by A.

Theorem 1. Suppose R(A) < R(A'A) and Qf = AAz for some Z ¢ Hy» then for

some y € H].

HU-U”B '—r(]"‘) “‘YHB y forn>1 ,

Proof. Since R(A) < R(A'A), we have Az = A'Ay, for some y € H;. Let

{Ex) be the resolution of the identity in H] induced by the self-adjoint

-~ - L -
operator A'A. Sfnce Qf = AAz and Az ¢ N(A) » we have Az = A'f. Therefore
by Lemma 2,

u-u, = WA'AY = j“”)nde,‘y




It then follows that

2 A
“u e un“B - IO (] + A)n d[EA.V..V]

n L J
ey 0D J dLEy.]
1 1" 2
ol e S ||¥||B .

We note that if we make the weaker assumption that f ¢ D(A*) (i.e.
Qf ¢ R(A)), rather than the stronger assumption that Qf ¢ R(AR). then the

method still converges. For in this case we have by Lemma 2,
2 - -n
Hu = ullg=f (0 +2)™d[E,uu] +0 as n+=.
0 o

However, if f ¢ D(A*). then the sequence {un} diverges and in fact has na

weakly convergent subsequence. For if the subsequence {un } converges
k

weakly to y, then since W is bounded and therefore weakly continuous, we
have by (6)

(7) y - Wy =y .

Since uy ¢ D(A) and Wy ¢ D(A) = D(A), we find that y ¢ D(A). Also, by
Lemma 1 and (7)




|

<f,Av> = <By - BWy,v> + <Ay ~ AWy,Av>
= <By,v> - <(B + Z\)wy,v> + <Ay,Av>
= <Ay,Av> , for all ve D(A) .

1
Therefore, f - Ay ¢ R(A) , that is, f ¢ D(A*). We summarize these results
in the following:

Theorem 2. If f e D(A'), then u  + A'f. However, 1f f ¢ D(AT), then
{un) has no weakly convergent subsequence.

Since bounded sets in Hilbert space are weakly compact, we obtain

immediately the following: —
Corollary, If f ¢ D(AT), then |[u || + =.

Finally, we investigate the method under the assumption that the exact
data f is unavailable, but an approximation ¥ satisfying ||f - f|| < § is
on hand. The first approximation E] (corresponding to the corrupted data
f) then satisfies '

(G].v) - <861.v> + <A61.Av> = <f,Av>

for all v ¢ D(A). By Lemma 1 we then have

(Uy = Gy,v) = <f = f,AV>
17 W) o




a——

for all v e D(A). Setting v = u; - ﬁl. this gives
(8)  (uy - Uy, uy = uy) = <f - f, Aluy = Uy)> .

If we designate the norm on D(A) induced by the inner proguct (-,*) by

Il'lll. then we have
2 2
[[AX]|™ < <Bx,x> + <Ax,Ax> = ||x||]

for all x € D(A). Therefore by (8), it follows that

~

. 2 ~ - 2 -
luy = uybly < 11F = £} PAGe < udll < 8lluy = 4y)],

and hence

||u] - G]”Bi ”“] - G]“] <6

Later approximations using the data f satisfy by (6)

uy ® Hun-l + Ups
and therefore

- n‘] k -
Uy = Y, * kzow (u, - u]) » Nn=1,2,3,....

g —— —— - U
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But IIHHB <1, by (5), and therefore

”un - unllgin”u] - u]llgina-

It then follows that

But Ilun -ullg+0asn+w=iffe D(AT). Therefore, given ¢ > 0 there is
a &(e) and n such that

HGn -ullg<e for 0 <& <s(e),
€

that is, the method is a regularizing algorithm in the sense of Tikhonov
(see [6]) if f ¢ D(AT).
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On a Class of Regularization Methods

C. W. Groetsch (Cincinnati)

Zusammenfassung

Wir studieren eine allgemeine Klasse von Regularisierungsmethoden

fur eine inkorrekt gestellte lineare Operatorgleichung im Hilbertsraum.

1'Partiall,y supported by AFOSR grant 79-0059.
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On a Class of Regularization Methods+

C. W. Groetsch

In this note we will investigate a general class of regularization methods

for the il1-posed operator equation

(1) Tx = b

where T is i hounded linear operator from the Hilbert space H] into the Hilbert
space HZ‘ The Moore-Penrose generalized inverse of T will be denoted by T+, that
is T D(T*) > H] is the linear operator which associates with each vector

be D(T*) : = R(T) @ R(Tflthe unique least squares solution of minimal norm of
equation (1) (see e.g. [3]). By a least squares solution of (1) we mean any

solution of the equation
(2) TTx = T'b,

where T* is the adjoint of T. We will denote the operator T*T by T and *he operator
TT* by i. Note that } and % are self-adjoint linear operators whose spectra lie in
the interval [0,||T|[2]. If 0 ¢ o(}) (the spectrum of ?). then by (2) we have

T = ?']T*. In general, however, 0 ¢ o(f), but this last equation nevertheless
leads us to seek approximations to il by operators of the form U(f)T* where U is a
continuous function on [0,||T||2] which approximates the function f(t) = ! in

some sense. Specifically, we will consider a family (net) of real valued functions
{UB(t) : B eS), indexed by a subset S of the positive real numbers with = ¢ S,

where each U, is continuous on [0,||T||2] and such that

1bPartially supported by AFOSR grant 79-0059.




(3) ltUB(t)l.i M for all t and 8
and

-1
(4) Ug(t) ¢

as B +» for each t # O.
Such a class of regularization methods for equation (1) was studied previously
by Bakushinskii [1] under the assumption that b ¢ R(T). (The author was unaware

of Bakushinskii's studies when this research was performed.)

The following is proved in [3].

Proposition 1. Suppose b ¢ D(T*) and let Xg = UB(i)T*b. Then Xg * ™ as 8 + .

To this we now add,

Proposition 2. If b ¢ D(TT), then {xs} has no weakly convergent subnet and

hence lesll +® 35S B + o,

Proof. Suppose {xB.} is a subnet of {xB} which converges weakly to z ¢ H], de-
noted Xg 3 Z. By the weak continuity of bounded linear operators we then have

TxB. 5 Tz. Now, if we denote the projection of H, onto R(T) by P, then

Pb - Tx

Pb - TU (T)T'b
8 B 8(

Pb - ?UB(?)Pb.

However, by (3) and (4), the operator fUB(f) converges pointwise to the projection
-4 i

of H, onto N(T) = N(T*) = R(T). Therefore Pb - TxB. + 0. It then follows that

Pb = Tz, a contradiction. #

In the proof above we have used the fact that UB(?)T* * T*Ua(i). This is
easy to see if UB is a polynomial. In the general case the identity follows from

the Weierstrass approximation theorem.
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Several authors have established rates of convergence for various approx-
imations to T'b under the stronger assumption that Pb ¢ R(%) (see [9], [5],
[6]). We see from Proposition 2 that the very least we must require to get
convergence at all is that b e D(T*), i.e., Pb ¢ R(T). In order to strengthen
this condition only slightly and thereby obtain a rate of convergence we note

that

R(T) R(TPN(T)*)

and, in the pointwise sense,

L = 3 v
It therefore seems reasonable to replace the hypothesis b ¢ D(T*), i.e., Pb e R(T),
by the hypothesis Pb ¢ R(T?V) for some v > 0. In order to gauge the rate of con-

vergence we will replace (3) by the stronger condition
(5) t'n - tU ()] < w(8,v) for v > 0

where w(B,v) ~ 0 as B + » for each v > 0 (the case v = 1 was considered in [4]).

The proof of the following lemma, being routine, is omitted.
v i
Lemma 1. If v > 0, then R(T' )c N(T) .

We now state a rate of convergence result. The vector T*b will be denoted

by x and the error x - x_, by e

B G

Proposition 3. If Pb = T™w, where v > 0, then llesll < w(B,v)||w]].

- -~ l -
Proof. Since Tx = Pb = TT'w and since x - T'w ¢ N(T) , we see that x = T'w. Now,

i )
Xg = uB(T)T b = UB(PT Pb
= Uy(DTx = uB(T)T"”w.




P

Therefore e = X - X = f“(l - Us(f)f)w. By the Spectral Mapping Theorem

and Radius Formula, we then have

llegll < ul8,w)|Iwl[. #

In our next result we become more cavalier in our assumptions on the data.

Lemma 2. If Pb = T'w where v > 1, then ||e8||2 g_w(B.v-l)llTeBII Flwl].

™V 1w, Also,

Proof. As in the previous proof we find that x
_ 2y 1¥on = AR 2N
xB = UB(T)T Pb UB(T)T Tw
= T*Us(f)f“w.
. ot 213y 3v-1
Therefore € = X = Xg = T(I - UB(T)T)T w, and
2 _ *ero RNl VEY |
||e8|| = (eB’T (1 UB(T)T)T W
= (Teg, (1 - U(HTIT™W) < wlg,w-1[[wI[ [1Teyll. 4
Proposition 4. If Pb = T'w where v > 1, then ]leell2 < w(Bsv)uw(B,v-1)|]w]].

Proof. In Lemma 2 we saw that

- T5(1 - Sveyrv-l
eg =T (1 UB(T)T)T W,

therefare
fey = 711 - uy(P)1)
Tea TT(I - B( W.
We then have
2 - - \V} - ol
[1Teg 1% = (Tegseg) = (T'(I - Ug(T)Tw,Te,)
g‘u(B.v)IITeBII. i.e., ||Te8|| < w(B,v).

Substituting into the result of Lemma 2 completes the proof. #
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In the next section we will give a number of examples of specific com-
putational techniques to which the above results apply.

We have avoided for long enough the problem of polluted data. We now take
up this question. Suppose that the data b is the result of measyrements so that

instead of b we have in our possession a corrupted version b® satisfying

€

|Ib - b%|] < €. We operate on the vector b® to obtain the approximations Xq

given by

€ _ TVT¥RE

Xg = UB(T)T b~.
Let o(8) = SUP{ItUB(t)I tte [0,||T||2]}, and recall that ¢(8) is bounded (by (3)).
Lemma 3. ||Tx, - Tx§||_g e ¢(8).

Proof. 'i‘(xB - xg) = iUB(f)T*(b - b%), therefore

IITxB - Txgll2 (%(xB - xg),xB - xg)
(TU (T (b - b%),x, = x5)
(Tu(T)(b - b%).T(xg - X))
¢(8) [ b = b|] 1IT(xy = xg)]]

eo(8)]|Tx, - Tx§||. #

A " "

[A

Suppose now that g(B8) = sup{IUB(t)l tte [0.||TI|2]}. We note that
(6) g(B) +» as B+ w

Indeed, if this were not the case, then there would be a constant L such that

IUB(t)l <L for all t and B. But then ltUB(t)| <Lt +0as t +Q, contradicting (4).
Lemma 4. |]xg - X;Il.i ev9(8)¢(8).

Proof. Since Xg = x; = T*UB(%)(b - b%), we have, by use of Lemma 3,




[l = G112 = (g = 5T Ug(Deb - 5%))
(T(xg - x5)sUg(T)(b - b¢))
€2¢(8)9(8). #

1A

Suppose tow that Pb = fw (we could also use the other hypotheses considered
above, but we choose to consider this simple case to illustrate the ideas). By

the triangle inequality we have

l'X - xgll h3 le = xBll + I'XB = xgl|'

Lemma 4 and Proposition 4, then give

Proposition 5. If Pb = fw, then

[ = oE1 < (W u(8,1)a(8,0)% + e(g(8)e(8))*.

The first term on the right hand side of this inequality goes to zero as
B + ». However, by (6) and (4), the second term becomes infinitely large as B + =.
This i1lustrates the classis dilemma in the numerical treatment of ill-posed pro-
blems. Even if computations are performed exactly, small errors in the data may

eventually grow and overpower the approximations.

EXAMPLES

In this Section we will consider some specific choices for the functions
{Ue(t)} and we will find functions w(8,v) which determine rates of convergence,
The index set S in all examples below will be either the set of nonnegative reals
or nonnegative integers. In the discrete case, the parameter 8 will be denoted by n.

As a first example we consider Showalter's integral formula [8]:

™ = g exp(-uT)T bdu.

PUNIPUTINN e mitimm o wme e ey RN
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The functions UB for this example have the form
8
Ug(t) = [ exp(-ut)du
0

and may be motivated in terms of Borel summability [3]. It is not difficult to

see that a function w(B,v) satisfying (5) is given by
w(B,v) = g~ (v > 0).

The choice UB(t) = (t + 8'])'] (8 > 0) leads to Tychonov's regularization of

order zero (see [1] and [10]). Here one can readily verify that
w(B,w) =80 for 0 <v <1,

In order to obtain approximations with this rate for v > 1 we may use extrapolated

regularization [5]. That is, for a given 8 > 0 we set
Ui (e) = (¢ + 67!

and define Richardson extrapolants by

) = @Dy - oI Nt -0, -

It is not difficult to show (see [5, Lemma 2.1]) that for k = 0,1,2,...

k
<) . tU(k)(t)I )

i=0 2 gt + 1
< B-k-l

Therefore, for the kth extrapolant we may apply Theorem 4 with

w(8,k) = 7K1

., k =1,2,..., to obtain the rate B'k’;5 (see [5, Theorem 3.2]).
We now consider some fterative regularization methods. Belqw, a will be a

parameter satisfying 0 < a < 2||T||-2




If the functions Un(t), n=0,1,2,... are defined
n k
Un(t) =a J (1 - at)
k=0

then (3) and (4) are satisfied and one can show that

n't°|1 - tU (t)] = a"t" - at]n+]

is uniformly bounded. From this we find that the rate of convergence of the

iterative process

* ~ *
Xg = aT b, Xp4] = (I - aT)Xn +aT b

is determined by the function w(n,v) = n~".

1

Newton's method for approximating t = leads to the sequence of functions de-

fined by
Ug(t) = a, U (t) = U (E)(2 - tu ().
For this sequence of functions it is not difficult to see that
t')1 - tu (t)] = 0(2")  for v>o0.

Therefore the rate of convergence of the corresponding iterative method is deter-

mined by the function w(n,v) = 27",

Showalter and Ben-Israel [9] have extrapolated on the previous method to obtain
methods with a higher rate of convergence. For a positive integer p > 2 they define

the hyperpower methods in terms of the sequence
p"AI k
Up(t) = ay Uy (t) = U (t) kzo (1 -ty ()"

For these methods the results above may be used to obtain the convergence rate
o(p™").

s e e s eme—a s L= e




i+ e e -

In [2] the following Krayanev-type method [7] is studied

1 -1

I - *
Xg =0, Tx, +8 'x, =8 'x 1 +Tb (8 > 0).

One can verify, as in the first iterative example above, that the function

w(n,v) = (8n)~" determines a rate of convergence.

The iterative method

+* * ~
Xg = Tb, Xoe1 = Xy * (Tb - Txn)/(n + 2),

was investigated in [6]. Following the analysis given in [6] one can show that

the rate of convergence of this method is governed by the function w(n,v) =

(10g n)~V.
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THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION:
A MATHEMATICAL INTRODUCTION

C. W. Groetsch

1. INTRODUCTION

The concept of well-posedness for an equation of the form
Tx = b (.

was formulated at the turn of the century by Hadamard. The
equation (or problem) (1.1) is said to be well-posed in the sense
of Hadamard if for each b the equation has a unique solution
and this solution depends continuously on b. If T is a
transformation from a topological space X into a topological
space Y, then the idea of well-posedness may be dissected by
noting that the following three conditions on the triple (T,X,Y)
are required:

(1) for each b ¢ Y, equation (1.1) has a solution,

(11) the solution x {s unique,
and (11i) the mapping b + x 1{s continuous.
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2 THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION
In this formulation it is evident that the well-posedness of
(1.1) depends not only on T but is also intimately connected
with the spaces X and Y and the topologies that they carry.
Obviously, if the space Y 1i{s too broad, or if X is too
narrow, then (i) cannot be satisfied. While if X 1is too large
then (ii) will not hold. Moreover, if the topology of Y is
too weak or that of X too strong, then (i{i) will be violated.
In this exposition we shall restrict our attention to the

case in which X and Y are Hilbert spaces and T is a

bounded linear transformation from X to Y. With this con-
text in mind, let us assume for the moment that for a given

b eY equation (1.1) has a solution. Condition (ii) will then
hold 1f and only 1f N(T) = {0} (N(T):= {xeX: Tx=0} is the
nullspace of T), If, however, N(T) # {0}, then (1.1) has
infinitely many solutions, namely all vectors of the form x + y
where x 1is a particular solution and y ¢ N(T). This family
of solutions is clearly a closed convex set and therefore con-
tains a unique member of smallest norm. An elementary geometri-
cal argument characterizes this minimal norm solution as the
unique solution which is normal (i.e. orthogonal) to N(T). We

will therefore call the minimal norm solution of (1.1) the

normal solution. Since the normal solution is unique we see

that (if) 1s satisfied if we replace "solutipn" by “normal
solution®.

The normal solution exists of course only if b ¢ R(T)
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THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION 3
(R(T):= {Tx:xeX} 1is the range of T). If b / R(T) one might
reasonably broaden one's notion of solution by seeking a vector

fn X which minimizes the functional
f(u) = ||Tu-b]|

It is a simple matter to show that the minina of f are

precisely the solutions of the equation
Tx = Pb (1.2)

where, here and henceforth, P denotes the orthogonal projec-
tion of the Hilbert space Y onto R(T), the closure of the
range of T. Any solution of equation (1.2) will be called a

pseudo-solution of (1.1). Equation (1.2) has a solution if anrd

only if Pb ¢ R(T) which is immediately seen to be equivalent
to b e R(T) + R(T)*. Assuming that (1.2) is solvable, i.e.
that b e R(T) + R(T)*. we will call the normal solution of

(1.2) the pseudo-normal solution of equation (1.1). The opera-

tor which associates with each b e R(T) + R(T)* the pseudo-
normal solution of (1.1) is called the (Moore-Penrose)

generalized inverse of the operator T. The generalized in-

verse of T, which is denoted by T', has domain A(T):=
R(T) + R(T)*, which 1s a dense subspace of Y, and is a closed
1inear operator (see e.g. [20]). We therefore see that the
triple (T.N(T)*.AB(T*)) satisfies (i) and (ii) if we are

willing to extend our notion of “solution" to "pseudo-normal

!
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4 THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION
solution". Moreover, the "solution operator" in this context
is the generalized inverse . For further information on
generalized inverses the reader may consult 6], [36], [50] and
[20].

The scheme of things developed above does not however
satisfy criterion (iii) (if it did there would be no linear
il11-posed problems and this paper would not exist!). Indeed it
is not difficult to show that the operator T+ is continuous
if and only if R(T) 1is closed (see e.g. [20]) and in the im-

portant example of Fredholm integral equations of the first kind

the range is closed if and only if the kernel is degenerate, i.e.

only quite rarely. We are therefore led to consider stable

approximations to the pseudo-normal solution. A natural way to

‘do this is to find bounded linear operators which approximate

™ in the pointwise sense. One approach to this problem is to
view pseudo-solutions as solutions of the so-called normal

equation
T*Tx = T*b , (1.3)

where T* 4s the adjoint of T. It is easy to show that equa-
tions (1.2) and (1.3)vhave the same solution sets (see e.g.
[20]). If we denote, as we shall in the sequel, the self-ad-
Jjoint operator T*T by f. then we see that the set of all
pseudo-solutions is 71 T+b. One might thergfore reasonably

attempt to form stable approximations to a ps¢udo-solution by

e LI e T O L -
1
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THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION S
using vectors of the form Ua(f)T*b. where (Uu(t))“>0 is a

|
i
!
family of continuous real-valued functions on the spectrum of T |
(which is contained in [O,IITIIZ]) which approximates in some f

1

sense the function t -+ t']. In [20], it is shown that if

1

|tUa(t)| is uniformly bounded and Ua(t) +t " as a=0

for each t > 0, then
x 1= U (T)T*b » T'b
a a

as a +0 for each b e.éD(T*). We shall call such a family of
operators {Ua(f)T*} a reqularizor of equation (1.1). This
method of constructing regularizors via spectral theory was
previously investigated in a somewhat different context by
Bakushinskii [5]. We remark that the condition b e LQ(T*)
is also a necessary condition for the convergence of the
regularizing algorithm. In fact, if b / (XT') then it can be
shown that {Ua(f)T*b} has no weakly convergent subnet [21].
From the practical viewpoint the crux of the difficulty
with 111-posed problems is the fact that the right hand side is
typically the result of measurements and is therefore only
approximately determined. Since the solution operator is in
general discontinuous, it then happens that small errors in the
right hand side can lead to large variations in the computed

solution. Specifically, if b6 1is some approximation to

be QD(T*) and the approximations ia are defined by
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* 6 THE PARAMLTER CHOICE PROBLEM IN LINEAR REGULARIZATION

ic t. Ua(T)T*B ,

then one can establish the bound
[13,-T"[] < [Ix,-T%]] + |]b-6]| (Mg(a))/Z  (1.4)
where |tUu(t)| <M and g(a) = sup IUa(t)l (see [21]).
t

As has already been noted, the first term on the right hand side
of this inequality tends to zero as o + 0, however, the
hypotheses on the functions {Ua(t)} imply that q(a) + =

as a + 0. Therefore, this bound illustrates the typical di-
lemma in the numerical analysis of ill-posed problems: the
error consists of two components, one of which is independent

of the measured data and tends to zero while the other in-
creases without bound for a fixed level of error in the input
data. Too small of a choice of a, for a fixed level of

error in the data, will consequently cause the quality of the
computed approximations to be debased under tpe influence of
this error. The effective numerical treatment of such problems
therefore requires criteria which relate the regularization
parameter to the error level in the input data in such a way T

that as the error tends to zero the regularized approximations

ia tend to the pseudo-normal solution. The choice of a proper
parameter {s therefore in the words of Baker [3], “a practical
detail of great relevance".

Thus the first step in the numerical solution of (1.1)

st okt T R e
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THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION 7
involves two essential choices: the selectior, of a reqularizcr
and the choice of a criterion for selecting tte regularization
parameter. The regularizor which has been studied most exten-

sively is the so-called Tikhonov [61] regularizor given by
U_(t) = (t+a)}
a

(see also [53] and [66]). Our aim in the sequel is to give a

theoretical presentation of various parameter choice strategies.

II. A Priori Parameter Choices

We shall suppose that b ¢ O(t?) and bS s some
measured approximation to b satisfying llb-bsll < & (this
will be relaxed below). The actual approximations with which we

are forced to work are given by
xS 1=y (T)T*b°
a a
while the "idealized" approximations are
om - *
X, Uq(T)T b .

The earliest parameter choice criteria involved some a priori
choice of a depending on the error level, say a = a(6),

such that
§ + -
||xa(6)-T bl]| »0 as &§-0

of course.; the optimal choice would be some value a = ag
satisfying
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X8 -1t = inf |Ix$-TTb)|
a a
0 a>0

but such a value of the parameter is for practical purposes
impossible to find. Alternatively, we might raconsider the

bound (1.4) to obtain
llx:' ™| < lea‘7+bl| + 6(Mg(a))'/2 (2.1)

and seek a quasi-optimal value of a, that is a value which
minimizes the right hand side. The difficulty here is that
even an asymptotic bound for the quantity I]xu-T+b|| usually
requires information on the unknown vector b which is
generally unavailable (see [21], [22]). Kdckler [33] has shorn
however that in the case of Tikhonov regularization for matrices
it may be possible to find an a posteriori estimate of the quasi-
optiﬁal parameter.

Leaving aside questions of optimality, we see from (2.1)
that the method converges if we simply choose a value als)
of o such that af6) -0 and 6(Mg(m(6)))”2 -0 as 6 +0.
In the special case of Tikhonov regularization, i.e. Uq(t) =

-1 and therefore a suf-

(t+a)']. we have M =1 and gla) = a
ficient condition for convergence is o » 0 and 6&//a + 0

as 3§ »‘0. Phrasing this slightly differently, if we choose
positive functions B](c) and 82(6) which converge to zero

as §+0 and take a so that B,(8) 2o and &//a <

Ja] (8), that is,

L-.—u-—-—.———-—v—..,-—- O v I T——— e —— = = = —ae e g me e e - - - ——— e
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2
8°/81(8) < a < 8,(5) » (2.2)

then convergence is assured. The formulation (2.2) appears

in Tikhonov and Arsenin [64].

For the remainder of this paper we will be concerned ex- i
clusivg]y with the Tikhonov regularizor. During the past decade |
and a haif the analytical theory of Tikhonov regularization has
been developed to a very high level. The success of this
effort is due largely to the fact that the Tikhonov regularizor,
unlike the general class of regularizors considered in the in-
troduction, possesses a very simple and natural variational
property. Recall that our goal is to approximate the pseudo-

normal solution, that is, the vector x satisfying
Ix = Pb

for which ||x|| s minimal. In other words, we wish to
minimize ||x||2 subject to the constraint llTx-Pbll2 = 0.
Since I-P 1{s the orthogonal projector of Y onto R(T)*

we have
HTx-b] |2 = |[Tx-Pb[| + [|(1-P)b] |

and hence we wish to minimize ||x|l2 subject to llTx-blI2
= ||(I-P)b||2. Classical Lagrange multiplier theory leads us

to consider the functional

Al |Tx=b| |2 + []x] |2

e o P - AT ——  Pw o = - oy - - - reee g e o . L. - . - ————— e -




P

VS VORI S

10 THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION

or equivalently, the functional
T [xibual = ||Tx-6[]% + al{x]1Z  (a>0) . (2.3)

When no confusion ensues we will simply refer to this functional
as @ [x]. Note that § [x] 1is a positive quadratic functional

and hence has a unique minimum given by
grad §J[x]=0.

But
grad § [x] = 2T*(Tx-b) + 2ux

and therefore the unique minimum x, of 9 [x] 1is given by
x, = (Tal)7 ™ (2.4)

(recall that T := T*T). The Tikhonov regularized approximation
to the pseudo-normal solution of (1.1) is therefore precisely
the minimizer of the functional (2.3). This opens the door for
the application of powerful variational techniques in the study
of these approximations.

We now present a minor variant of a classical result of
Tikhonov [62] which shows that, at least for weak convergence,
condition (2.2) on the parameter is not necessary. We shall
suppose that b e 1Y) and b® satisfies ||Pb-Pb5]| < §.
This last condition allows b and bS to differ by an arbitra-

rily large camponent in R(T)* = N(T*), a reasonable assumption
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THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION 1
since any such component is annihilated by T* in the regular-
ization process. In this regard, note that by "lumping” any
component of b which lies in R(T)* into the vector b6 we
may as well assume that b € R(T), that is, the condition
b e AQ(T+) and |IPb-Pb5|] < & may always pe replaced by
b e R(T) and ||b-Pb%|] <5,

Before proving Tikhonov's theorem, we take note of the

following simple fact.
Lemma 2.1. For any b e ¥, x = (Trl)™ o € N(T)*

Proposition 2.2. Suppose b € 49(T*). \le-PbGl‘ <$é and

that for some positive constants C; and C,, o satisfies

Clcz <a < C262. Then

GW

Xg * T (weak convergence)

as & - 0, where x: = (f+ul)'] %% .

Proof. Let x = T'b. Since xg minimizes §:[-;b6.u] and

T Lysb%oal = [1Ty-b%1(2 + a[ly] |2
= ||Ty-Pb®112 + 1 (1-P)b8| 12 + a|ly]|2
= T [y;Pbl,al + |](1-P)b] |2

it follows that xg minimizes E_[-;Pbé,a]. Therefore

max (| [Tx$-Pb]12,¢,621 1x811%) < T [xS:pb%,a]
< TOxipb®ial = |[Tx-Pb®[|2 + allx||? < 82 + Cp8?|Ix]12 .

- e G e w—— g g — e - . ch e . ——————— -
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12 THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION
It follows that

Tx: +Pb as 6+0 and f||X3||2} is bounded.

For any sequence {6n} of positive numbers converging to zero

we therefore have a subsequence, again denoted by {cn}.
such that x:: 2 u for some u e X, where C15§ <a
But since T s weakly continuous, this implies that
Tx:: 2 T: and hence Tu = Pb, i.e. u 1is a pseudo-solution.
Since xu: € N(T)l for each n (by Lemma 2.1) and since N(T)*
is closed and convex (and hence weakly closed), we have

2

< Cyép -

n

u € N(T)*. Therefore u = x, the pseudo-normal solution, and

for each sequence {sn} converging to zero there is a subse-
§ W W

quence with xan + x. From this it follows that x: + X as

n
§+0. #

The essential features of the argument above, i.e. the use
of the variational principle to bound the approximations and
then the exploitation of the weak continuity of the operator,
will be used several times in the sequel.

It should be remarked that the weak convergence of the
regularized approximations may be quite satisfactory if X has
a sufficiently strong norm. For example, if we take for X
the Sobolev space wg[a,b], being the completion of the space
C[a,b] with respect to the norm

b p i |2
2 J d'x
X = b dt
™=, 5 [dt'] '
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then weak convergence of a sequence of smooth functions implies
the uniform convergence of the sequence. The regularized ap-
proximations Xy in the space wg[a,b] are called pth order
reqularized approximations by Tikhonov.

A number of early papers on regularization use a priori
choices of the regularization parameter. Tikhonov and Glasko
[65] have given a number of illustrations of the use of a choice
of the form a = C62 in the numerical solution of integral
equations of the first kind by second order regularizors.
Franklin [11] suggests the choice a = 62/m2 if w is ana
priori bound on the norm of the solution. Ivanov [28] has shown
that the condition & = o(Y/a) 1is necessary and sufficient for
the strong convergence in L2 of regularized approximations
for Fredholm integral equations of the first kind, while the
condition & = 0(/a) is necessary and sufficient for weak con-
vergence in L2. Khudak [30] shows that if the kernel of the
integral operator K 1is continuous and if the solution lies in
R(K*), then the regularized approximations in L2 converge
uniformly if 6 = 0(a). For a positive definite self-adjoint
compact operator A, Bakushinskii [4] has studied the "simpli-

fied" regularization procedure
xz = (A+ql)'] bS.

If beR(A) and ||b-b®|| < &, he shows that a sufficient

condition for convergence is & = o(a) (see also Ivanov [27]
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and Khudak [31]). A more general regularization procedure of
this type was investigated recently by Franklin [12] from a
variational point of view. Finally, we mention that Tikhonov
[63] and others have given criteria for an a priori choice of

the parameter in the regularization of certain nonlinear pro-

. A blems. In particular, see Pyazantseva [54] and Al'ber [1] for
1 recent results on the regularization of problems involving
% ' nonlinear monotone operators.

IIT. Morozov's Discrepancy Principle

] The discrepancy principle of Morozov is based on the
j reasonable view that the quality of the results of a computa-

tion cannot be greater than the quality of the input data. To

e

guote from Morozov [45] "the magnitude of the error must be in
agreement with the accuracy of the assignment of the input data
of the problem". The discrepancy principle in its simplest form
; states that if b e R(T) and ||b-b%|| < 6 < |[b%!], then
there is a unique value of the parameter o, which we shall cail

a(8), such that
) =
IITXG(G)'bH = § .

Here x6

! o is the Tikhonov regularized approximation (2.4).

Moreover, as § + 0, x:(s) + X, where x is the normal solu-
tion of (1.1). This result, in a slightly altered form, was
also published independently by Arcangeli [2] (see also Ivanov
P [26]1) and was to a certain extent implicit in an algorithmic
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form in the works of Phillips [53] and Twomey [66].

In this section, we will prove a discrepancy principle
under the assumption that b e O(TT) which we have seen is
the least we can expect of the data in order to obtain conver-
gence even in the error free case. We shall suppose that

||T||2 < x. and that the available data consist of a vector

PR satisfying ||Pb-Pb6|| < & (note again that this

allows b and b® to differ by an arbitrarily large component
in R(T)! and therefore we could just as well assume that
b ¢ R(T)). Our measure of the "discrepancy" in the approxima-

tion is specified by the function
e 1[TeS 8,2
pla) := ||Txa-T*b HE .

A direct application of Morozov's principle to approximating the
pseudo-nomal solution would call for monitoring the size of
||Tx:-Pb6||. However, the projection P is not available in
the computations which necessitates a slight madification in the

method such as the one we now present.

Lemma 3.1. p 1{s an increasing continuous function of the

positive variable a. Moreover, p(=) = ||T*b6||2 and
p(0) = 0.
Proof. First note that xi = 0 and hence o(=) = [|T*b6||2.

If we denote the spectral resolution of the positive self-ad-

Joint operator T by {Ex}’ then we have the representation
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16 THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION

pla) = JIITIIZ {;%;Jz d HEAT*bsll2 .
0-

from which it follows that p is increasing and continuous.

Also, 0(0) = ||Py ) Tb%[1%2 = 0 since T*b® ¢ N(T)*. #
Note that if y 1is any pseudo-solution then
[Ty-T#68[2 = ||T*Pb-T*Pb®||% < w6 2 . (3.1)

Moreover, a vector z of minimal norm satisfying the above

inequality also satisfies
[|Tz-T*%| |2 = «s?
for if
a := ||Tz-T%8|| < /25 and y = min {1, 5;%;%?%}

then the vector y = (1-y)z has norm smaller than ||z|| and
satisfies (3.1). This suggests considering the regularized

approximations
x$ = (Tra1) 14’

where the parameter o 1is chosen according to the condition

pla) = [TxS-1#8(|% = «6? . (3.2)

From the lemma it follows that if s> < ||T*6%{{% , then

there is a unique number o(8) satisfying p(a(s)) = x62 .
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The following result shows that this choice of the parameter,
which relates the discrepancy in the approximation to the level
of error in the input data, gives a stable approximation scheme

for computing the pseudo-normal solution.

Proposition 3.2. Suppose b ¢ LD(Tf), IIPb-Pb6|| < § and

es? < [T]1? where [IT112 <y then x&yy » T as

§ +0 if p(a(s)) = KGZ.

Proof. We first recall that the Tikhonov approximation X, =

(f+al)']T*y minimizes the functional § defined by
T [z:Pysal = ||Tz-py||% + al2[|? .
Therefore, if x = T*b, then
T 0xC .y sP%hals)] < 8 [xiPbé,a(s)] o
a(s) -
and hence

1§20’ 112 + a(8) xS (5112 < 11Tx-POE] 12 + a(e) 1] |2
= 11po-po¥11% + a(e)lx]1% < & + alo)| Ix|? .

However,

1175 ()P0 *11% 2 TR o811
2 &7 [T T8 12 = < Tolals)) = 62

Substituting this in the inequality above, we have

lxg(gyl 1 < Fixl] (3.3)
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for all & > 0. Therefore the set {x:(é):6>0} is bounded
and hence weakly pre-compact.

Suppose now that {Gn} is any sequence of positive numbers
converging to zero. Then there is a subsequence, again denoted
by {s}, with xé?a ) s y. Also,

||Tx als, )-Txll < IITx (s, )-T*b "]+ |[T* "-Txll
s + [IT* PoTep) | |

6
‘/25 + ||T*P(b "-b)]| ;
1/2

< 2« +0 as n+ o, J
— n t
!

Gn W - Gn -
Therefore x v+ y and Tx +Tx as n-+e« ., It now
u(Gn/ G(5n)

follows as in proof of Proposition 2.2 that y » x and
s ¥ :
xa(a) +x as 6+ 0. (3.4) |
Sn
For any convergent sequence {IIxu(5 )Il) we have
n
3 8
2 n . n
[Iel1? = Tim fox 0 gl e Hxl] Tim [l g
and therefore
[
Hx i.lfﬂ aﬂf Hxgsytl - :
But by (3.3) ?

lim SUP |1x8 a(s) 1 < 1Ixll

and hence ||x|| = 1im llx6(6)|| . This combined with (3.4)
, &0
proves that

v r—ry C e e g A e ——— - [ C s . - ———————
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- _
llg xa(d) = X. #

In using the discrepancy method it would be helpful to have

an a priori bound on the regularization parameter. Vinokorov
[67] has provided such a bound. A slight modification of

Vinokorov's argument yields the following result. !

Proposition 3.3. If the parameter a 1{s chosen according to

criterion (3.2) above, then

a < 2 5y() 1146812 - My .

e~ ep—

We have considered the discrepancy method only in a very
simple context but we wish to point out that the method has been
highly developed by Morozov and his colleagues (jee the works of

Morozov and Goncharskii et al. in the references). ‘

IV. OTHER A POSTERIORI METHODS

The discrepancy method is but one of a number of a
posteriori strategies which have been proposed for choosing the
regularization parameter. In order to motivate some of these
methods we recall some facts about the accuracy in Tikhonov
regularizatfon. It is well known that if Pb ¢ R(TT*) then the

172 (see

(error-free) Tikhonov method converges with a rate a
e.g. [29]). However, if the data satisfy stronger assumptions
methods can be devised with a corresponding higher rate of

convergence (see [21] for a general result along these lines).

D I — ——— = -
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In particular what we might recall the iterated Tikhonov method

given by

z = u(f+al)-]xa * X,
where

x_ = (T+al) 1T

a

has been investigated by Dorofeev [9] and King and Chillingworth
[32]. 1f Pb e R(TT*T) then it can be shown that z con-
verges with a rate a3/2 [32]. Note that
dxa ot -2 il -]
i «(T+al)™© T*b = -(T+al) Xq
and hence
dxn = -1
Ll ol a{T+al) X, =X, "2 -
Therefore a choice of a which minimizes
dx
o

* Tda

(4.1)

tends to move the "cheap” approximation Xy closer to the
generally more accurate approximation za . In the presence

of erroneous data a value of a which minimizes (4.1) is called
in the Soviet literature a quasi-optimal choice of the parameter
([64],(65]), but we shall call it a choice by the derivative
criterion. For a numerical example of the use of this parameter

choice criterfon in an inverse problem in heat conduction, see
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Glasko et al. [13].

Another approach, Tikhonov and Arsenin's ratio criterion,

in our context advacates maximizing the ratio
5.6 8 .6 8
||Tzu-T*b ||/||Txa—T*b ] »

é
o

which tends to make the residual of x

relative to the residual of zi .

as small as possible

We now present some arguments of Leonov [38] who has es-
tablished the convergence of the simplified Tikhonov method in
finite dimensiona) space using the derivative criterion for the
choice of the parameter. We shall therefore assume that

T: 8" +R" {s linear. Then the pseudo-solutions of equation
Tx =Db

are the solutions of
Ax = y (4.2)

where A= T*T js an n by n symmetric matrix and

y=T* ¢ N(A)' = R(A). We assume a vector y6 ¢ & is on
hand satisfying ||y-y6||‘5 6 (Euclidean norm) and we seek to
approximate the normal solution of (4.2) by the simplified

Tikhonov approximation
§ .. -1,6 _. 8
Xq ° (A+al) 'y  =: UQ(A)y .

The §deal simplified Tikhonov approximation will be denoted by

N S o

.- e et m gy n ————————— ¢ . 7~ e ————
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X 5 viz.
a
xg 1= (AaD)ly = U (A)y

Suppose that 0 < A, Shy L S is the complete system of
positive eigenvalues of A and {”k}z=l is a corresponding |

system of orthonormal eigenvectors. Since y e R(A) = N(A)*

—t——

we have a representation of the form

r
y= I au, . !
Also, for suitable coefficients {aﬁ} we have f
r |
$ § §
y =w + I au
k=1 KK

where W e N(A). We therefore have

2 2 8 r 6,2 6,2
2 vy 1 = IR n (a2 WP (43)
We now set
dxd1 (2
F(a) = Tz'

[au_ (A)2y%] (2
{|w6‘|2/a2 + uZ

r 2 4
T @8/ an )t .
k=1 KTk

A little calculus shows that F has a smallest relative
minimum which we denote by o' (the choice of & by the
derivative criterion). From the fact that F'(a') = 0 one

obtains
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r 1
Hwé[[2/at? = 2 o I‘ - a’zgx_k] (ai)zl(“'”k)4 (4.4)
r
5.2, 4
<2 1 (a9
Tk KTk

and therefore ||w6||2/a'4 is bounded for small 6. Moreover
the equality above shows that o' 1is bounded as & - 0, for
otherwise the left hand side would become negative for small s.

If we suppose that o' <m, then

r r
26" ) (2612 (argy yd 2n
el [] e ”k) w2 [l ] '"”kJ

§\2 4
(3 )/ (m*a, )" .
Since ai ~a, as §+0, it follows from (4.4) that for &

sufficiently small
62 > | w8112 > ot

for some positive constant C and hence o' +0 as § - O.
To establish the convergence of x:. to the normal solu-

tion x we note that
§ 8
IR I RN

But it is well known that in the absense of error in the right
hand side the simplified Tikhonov method converges to the normal
solution. Since a' + 0 as & - 0 we therefore have

leu.-xll +0 as & -+ 0. Therefore, we need only estimate the

quantity le:.-xa.ll . To this end, we give the following

T PR PO AT e e @~y ¢ | - s -~ = < = L ce———————
- B i )
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1emma.

Lemma 4.1. |[|x¢
-_— Qa

xg < Wl 1/a + oy

Proof. Note that

.
x3-x_ = U_(A)(y®-y) = Um(ll\)[w6 "3 (aﬁ-ak)ukJ

= U (A) (wiaz)

where

6

But by (4.3),

2
1128 =
k

Since ||U°(A)||

6 2
| xS-x ||

" 8
zZ = k:H (ak-ak)uk/xk .

r r
) 2,2 -2 $ 2 -1.42
L3 (ag-3 )"/a < 2 5 (a-a )" < (3 &) -

<o’ and [[AU_(A)]| <1 we then have

s s
= <x§-xa.Uu(A)w5> + <x -Xg, AU (A)z >

< [ISax 11 CIWsl1/a + 67200 . 4

Finally, for the choice a = a' we have seen that there

is a constant, say C,, such that C]dell]/2 <a' for &

sufficiently small. Substituting this in the lemma and using

(4.3) we have
[
l lxuc'xqt l l
which proves:

Proposition 4.2.

< 78/Cy + §/3, ~0 as & -0,

In the case of simplified Tikhonov regulariza-
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tion in a finite dimensional space the choice of parameter by
the derivative criterion gives a method which converges to the
normal solution.

The choice of the regularization parameter by the deriva-
tive criterion is related to a method for selecting the
regularization parameter investigated by Hilgers [24]. He notes
that the optimal vaiue of the regularization parameter is a

value which minimizes the function
e(a) = 11x5-Tt]|2 .
a
Differentfiating this with respect to o we havg

dxé

' - § + -2
e'(a)/2 = <xa-T b, > -

Therefore, the optimal value of the parameter, ags shoutld

satisfy
8
dx
b -1hy, —2 >=0 . (4.5)
aq da| _
a ao

If we assume that we have a genuinely il11-posed problem then

ag > 0 and this condition is equivalent to

<x:°-7*b.a = »>-o0.
G-Go

Since

dx$ dx:
mLI

s
‘x:-T*b.u 1? < ||x°-T*b|| |la s

Sl - o ——— -
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we may view the derivative criterion as an attempt to approxi-
mately satisfy (4.5). Hilgers takes a different tack. Since
Tt = Pb and

dx<s -

=& = U (M2t =y ()50,
where T := TT*, he writes (4.5) as

ob-Txé L U (T)%S = o. (4.6)
“% %

A1l of the quantities on the left are computable except for the
projection Pb. But if b e R{(T) (or if T is self-adjoint

and one-to-one) then Pb = b and (4.6) becomes
<b-Tx$ s U (f)2b6> =0.

But of course the vector b dis also unavailable and therefore

Hilgers advocates a choice of & which minimizes the expression
<l)6-TX6 »U (f)2b6>
a a
Note that this quantity is nonnegative because

8§.7.8 o (1.1 (3 §
bé-1x{ = (1 TUQ(T)T*)b
. (I-TUG(T))b6
. aUa(f)bd

and therefore

b’ u ()25 = au_(Tpd,u (125 = of ju_(1)¥/2%%] 2 .

——— e —
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We might also notice that this equality also gives the bound

<b‘-Tx:.Ua(f)2b6> < (Ilb‘sII/u)2

since ||Ua(f)|| g_a']. The use of this method of choosing the
parameter has been tested on sample problems in [23] and [24].
It should be remarked that the choice of the parameter by Hil-
ger's criterion requires an additional inversion as Ua(f) is
not obtainable directly from Ua(f).

One can also verify the convergence of simplified Tikhonov
regularization in a finite dimensional space with Hilger's
choice of the parameter. The essential point is to find an
upper bound for ||w6|| in terms of the parameter and use
Lemma (4.1). To this end, we will use the notation established
above in the discussion of the simplified regularization method
for the equation Ax = y.

We will denote by o« a value of a which minimizes the

n
function

Fla) = a<Ua(A)y6.Ua(A)2y6>
r
< (M ra 1 @D an)? .
k=1
Using F'(ah) = 0, we find that
r
2 w]1%/ad < 2 (a$)2nd .

Therefore for & sufficiently small, we have ap 3_‘(:2||\»:6||2/3

for some positive constant C2. As in the proof of Proposition

. L ameanl 2ol o g - - — v - e - ————————
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4.2 we may now conclude that

x6 +x as §-+0 .
%

V. IVANOV'S CONSTRAINED PSEUDO-SOLUT IONS

Ivanov and his colleagues ([25],[8]) have studied genera-

11zed solutions of the linear operator equation
Tx = b (5.1)

which are required to satisfy a certain norm constraint (see also
Miller's [41] "method 4"). In studying the parameter choice
problem for a regularized approximation to such a generalized
solution we shall employ terminology and notation which is more
consistent with that which we have used in the previous sections
rather than adhering to that used by Ivanov.

We suppose that T 1is a bounded linear operator from a
Hilbert space X into a Hilbert space Y and that R is a
fixed positive number. The closed ball in X of radius R
will be denoted by Bp, 1.e. Bp = {xeX: l1x[| <R} . Byan

R-pseudo-solution of (5.1) we mean a vector X e By satisfying

[1Tx-b|| = inf {||Tz-b[| : z € By}

We note that an R-pseudo-solution always exists since BR is
weakly compact and the functional f(z) = ||[Tz-b|| is weakly
lower semicontinuous. It is useful to characterire the set of

R-pseudo-solutions in a more geometrical way. First note that

L E Y
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the set TBR is weakly closed and convex and therefore strongly
closed. If we denote by Q the metric projection of Y onto
TBR » that is if Qy 1is the unique element of TBR which is
nearest to‘ y eY, then Q 1is continuous. It follows directly
from the definition that x 1{s an R-pseudo-solution of (5.1)
if and only if

Tx = Qb.
If we denote the set of all R-pseudo-solutions by XR. j.e.
XR = (X € BR: Tx = @b} ,

then XR js closed, convex and nonempty. The set XR therefore

has a unique element of smallest norm which we will denote by

Xg and call the R-pseudo-normal solution of (5.1). The term

normal 1is used since
i
XR n N(T)™ = {xR} .

Indeed, if u € XR and u = Up +uy e N(T) & N(T)*, then since
||u||2 = ||u]||2 + ||u2||2 we see that u, ¢ By and moreover
Tu, = Tu = Qb. Furthermore ||u||2 is minimal if and only if
u = 0, f.e. ueNT.

Note that 1f equation (5.1) has a pseudo-solution, that is
i beOT), then xp =T 4f and omy if |[TH|| <R .

Lema 5.1. 1If |[T*b|| >R, then |[|xpl| =R.
Proof. First note that b ¥ Qb. For if Qb =b then b = Tx

P e
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for some x e BR and hence
b=Pb=Tx.

Therefore x Js a pseudo-solution and hence
R< |1TI] < x|l <R .
Suppose that |[[b-Qb]| =y >0 and
S, = lye¥: |ly=bl| < v} .

Then
SY n 1By = (@b},

each of SY and TBR is convex, and SY has an interior.
Therefore by the Hahn-Banach separation theorem there is a
linear functional ¢ such that ¢(y) <1 for y ¢ T8, and
¢(y) >1 for ye S, - If leRII <R then there is a 8 > 1
such that  Bxp e Bp- We then have

1 < 8= 8o(Q0) = Bo(Txp) = ¢(TBxR) <1. #

Lema 5.2. The functional g(z) = ||Ttz|| s lower semi-

continuous on AB(T*).
Proof. Suppose {y,} ¢ O(TT), y +y and [Ty || <.
Then there is a subsequence {yn } anda 2z ¢ X with
k
W

+
Ty, +z.
"k

St anans £2e 2J
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Since B_ s weakly closed we have [{zIl <m. Since T' is
a closed linear operator, it is also weakly closed. But
ynk 2 y and T+yn z Z then implies that y € AD(T*) and

Ty = 2. Therefore ||T'yll <m. #

Lemma 5.3. Suppose b € O(T') and [ITl| > R. 1f

|1pb-pb® | < &, then for all sufficiently small & there is a
unique o = a(68) such that le:(6)|| = R where

x$ = (TraD)7 148

Proof. It is not difficult to see that the function

g(a) := ||x2|| is continuous, decreasing and satisfies

g(«) = 0. If bS ¢ (9(T*) then g(0) = « (see the introduc-
tion). While if b% ¢ O(TT) then g(0) = ||T™®|] =
llT*Pbsll > R far & sufficiently small by Lemma 5.2. The

result now follows. #

Proposition 5.4. If b e &(TT), lIT*bII >R and |[Pb-Pb6||5§ ’

then
6 -
Proof. Since x: minimizes the functional
T [xib®ial = [Tx-65((% + a]|x||?

we have 0§ [xz;b‘s.a] <0 [xR;b‘s.a]. that is,

‘6 2 8§12 2 2
HTxd-b8 (1 + al[x311% < [[Txg-b%(1 + aR” .
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For the choice a = a(s) we have llxﬁ(a)llz = R% and hence

1T 5)0° 112 < 1ITxg-b%11% = 11ao-b°117
+ ||Qb-b|[% as &~+0.

Therefore
tim sup {[Tug )01 < [He-oll .

Since {||x:(6)||} is bounded, for any sequence {5} of posi-
tive numbers converging to zero there is a subsequence, again
6 w
denoted by {6 )} such that x 7, \ + x. We may conclude as in
n a(s) 6 W
previous proofs that x ¢ N(T)* n B, and Tx n + Tx .
R a(sn)

Now if z e¢Y and ||z|| =1, we have
. 6q
| <Tx-b,2z>| = 1:n l<Txa(6n)-b.z>l < ||Qb-b]|
Therefore ||Tx-b|| < ||Qb-b]| and hence Tx = Qb, i.e.

X € Xp n N(T)! = {xg) -

w
§
We now have x:(c) - xR as 6 +0 and lea(s)ll =R

* |Ixgll and hence
x6 +xp as 6+ 0 #
a(8) R .

The result above gives a parameter choice criterion for
approximating the R-pseudo-normal solution assuming some a
priori information on the pseudo-normal solutiom, namely that its

norm {s greater than R. If the pseudo-normal jolution has norm
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less than or equal to R then the R-pseudo-normal solution
coincides with the pseudo-normal solution and any of the para-
meter choice criteria from the previous sections may be used in

computing the regularized approximations.

VII. CONCLUDING REMARKS

The mathematical theory of reqularization far linear i11-
posed problems has developed very rapidly and in many directions
during the past seventeen years. OQur presentation of the para-
meter choice problem was rather narrowly aimed and in this sec-
tion we wish to take our last opportunity to briefly mention
some related topics.

The parameter choice criteria presented above are theoreti-

cal in that they do not indicate how the parameter is chosen in

actual computational practice. One rough and ready way to choose

the parameter in practice is to perform a regularization for
several values of the parameter, say a, /10, a/102. ces
where o 1{s fixed (and not “too small"). One then takes the
value of the parameter which comes closest to satisfying the
chosen criterion. This has been called the "selection” method.
Gordonova and Morozov [19] (see also [18]) have investigated the
use of Newton's method as a more sophisticated procedure for
solving numerically for the chosen regularization parameter.

The point has been made above that the great analytical

success of Tikhonov's method is due in large measure to its

simple variational interpretation. There are other types of
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34 THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION
reqularization methods, for example iterative methods ([34],
[35], [39]) in which the role of the regularization parameter is
played by a discrete parameter (e.g. the iteration number) and
for which there is no natural variational interpretation. There

seems to be no satisfactory parameter choice criterion for such

methods. I11-posed problems may also be reqularized by the use

———— — r—

of expansion methods ([3], [37], [55]) or finite element type

methods ([51], [68], [40]) which also depend on a discrete

o ———

parameter (the dimension of a subspace).
We have taken a purely deterministic point of view in this

presentation but there is a substantial literature on regulari-

e —— o —

zation in which statistical properties of an error distribution

cr———

are assumed and corresponding stochastic coOnvergence properties

of the regularized approximations are derived. We refer the

—pwm—a

reader to [7], [10], [46] and [59] for details and references.
Finally, we mention that Strahov and his colleagues [56], :
[57], [58] have studied a somewhat more general linear ill-
posed problem than the one we considered above. Namely, they
study the problem of constructing the values of a closed un-
bounded operator. Since the generalized inverse is in general

closed and unbounded their results apply in our context.
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