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It is hoped that this idea will help to clarify the relationship between
splines and generalized inverses.

In (2) the investigator pointed out the relationship between Lard's series
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rate of convergence for a regularization method implies a certain degree of
smoothness for the data.

Paper (4) surveys, extendds and unifies the mathematical theory of parameter
choice in linear regularization. Included are discussions of a priori para-

meter choice strategies, the Discrepancy Principle, the derivative and ratio-
criteria, and a parameter choice criterion for approximating constrained pseudo
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A number of results on general regularization methods for

ill-posed linear problems and related mathematical ideas were

developed during the course of the project. These results are

documented in four papers, all of which have been accepted for

publication. The four papers and the journals in which they will

be published are as follows:

1. Generalized inverses and generalized splines, Numerical

Functional Analysis and Optimization.

2. On the Kryanev-Lardy method for ill-posed problems;

Mathematische Nachrichten.

3. On a class of regularization methods; Bolletino della

Unione Matematica Italiana.

4. The parameter choice problem in linear regularization:

a mathematical introduction, in "Ill-Posed Problems:

Theory and Practice" (M.Z. Nashed, Ed.), Wiley, New York.

The investigator has taken the point of view of generalized

inversion in studying numerical methods for the regularization

of linear ill-posed problems. In paper (1) some ideas of

A. Sard are extended to provide a general axiomatic framework

for both splines (including interpolatory splines and generalized

harmonic functions) and the Moore-Penrose generalized inverse. It

is hoped that this idea will help to clarify the relationship

between splines and generalized inverses.

In (2) the investigator pointed out the relationship between
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Lardy's series representation of the generalized inverse and

Kryanev's iterative method for solution of an operator equa-tion

of the first kind with a closed unbounded operator. Under certain

assumptions on the data an error bound is also established.

Convergence theorems and error bounds for a very general

class of regularization methods are developed in (3). The error

bounds relate the smoothness of the data to a modulus of convergence

for the general regularization method (which includes as special

cases both iterative and noniterative regularization methods).

Work is in progress on inverse results which show that a certain

rate of convergence for a regularization method implies a certain

degree of smoothness for the data.

Paper (4) surveys, extends and unifies the mathematical

theory of parameter choice in linear regularization. Included

are discussions of a priori parameter choice strategies, the

Discrepancy Principle, the derivative and ratio criteria, and a

parameter choice criterion for approximating constrained

pseudo-solutions.

Complete copies of the papers follow as appendixes.
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GENERALIZED INVERSES AND GENERALIZED SPLINES

C. W. Groetsch

Department of Mathematical Sciences
University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

An abstract framework in Hilbert space is provided for gen-
eralized splines and generalized inverses of operators.

Since Atteia [1] introduced an abstract point of view

in the theory of spline functions, a number of authors have
studied abstract splines in Hilbert space and relationships

between spline functions and generalized inverses (see [2],

[3], [4], [6], [7]). In [7] Sard developed a very elegant

theory of "splines" in Hilbert space. Our aim in this brief

note is to enlarge somewhat the context introduced by Sard

so as to provide a framework which encompasses the splines

in the sense of Sard and also the concept of the generalized

inverse of a linear operator in Hilbert space.

Suppose that X and W are linear spaces and that Y and Z

are inner product spaces (the inner product and induced norm

in each space will be denoted by <.,.> and 11-11, respec-

tively). We also assume that there are two linear mappings

F XxW *Z and U :XxW Y

which satisfy

, ik I



(1) F(x.O) = 0 and U(x,O) = 0 implies x = 0

and

(2) F(O,w) = 0 and U(O,w) = 0 implies w = 0.

These linear maps are the bivariate analogues of Sard's "observa-

tion" and "coobservation" operators (see [7]). By virtue of

(1), the bilinear form

[xy] - <F(x,O),F(yO)> + <U(x,O),U(yO)>

is an inner product on X and we will denote by 7 the Hilbert

space which is the completion of X in the norm 1j induced

by this inner product. Condition (2) guarantees that thq bi-

linear form

(w,v) = <F(O,w),F(Ov)> + <U(O,w),U(O,v)>

is an inner product on W and we shall designate the complietion

of W with respect to this inner product by W. Note that the

mappings F and U are continuous on X x W and we will persist

in denoting the continuous extensions of these mappings to

x W by F and U respectively. We assume that for each b c W

the closed convex set p(b) defined by

p(b) = {x c X : F(x,b) = 01

is nonempty (note that p(O) is a closed subspace of 7). One

may view this requirement as an abstract "interpolation"

condition. The symbol IW will designate the subspace of

which is maximal (relative to inclusion) with respect to the pro-

perty that p(b) 0 0 for all b c i. Note that W C W C W. As a

final bit of notation, w will be the mapping which associates

with each closed convex subset of X its unique element of
minimal norm.



Definition. The mapping b b b from W into X defined by bt

rop(b) will be called the generalized spline mapping as-

sociated with the structure (X,W,FU).

Note that if we set M = p(O) , then one sees readily

that p(b) = bt + p(O) and M r p(b) = (b t

Proposition 1. If b c V, then IlU(x,O)H1 is minimal among

all x c p(b) if and only if x = b

Proof. If x c p(b), then since F(x,b) = 0 and F(bt,b) = 0,

we find that x - bt c p(O) = "L. Therefore

IIU(x,0)11 2 + HIF(x,O)11 2 = Ix12 = Ix - bt12 + !btJ2.

But since F(x - b ,O) = 0, it follows that F(x,O) = F(bt,O)

and hence

IlU(x.0)11 2  Ix - btI2 + IbtI2 - IIF(bt,0)1I2,

which establishes the assertion.

Proposition 2. The generalized spline mapping b - bt is a

closed linear operator which is continuous if and only if W

is complete.

Proof. The linearity follows easily from the fact that

p(bI + b2 ) = (x + y : x c p(bl), y c p(b2 )1 and the rep-

I resentation p(b) - b* + p(O). Suppose that {bn } C 'W and

(bt,bn) . (x.b) e Yx W. By the continuity of F, we then
have

I F(x,b) = lim F(b ,bn) n 0.

n



Therefore x c p(b) and hence b c W, by the maximality of W.

Also, since M is closed and {b } C M, we have x c M 0 p(b) =

(bt). Therefore the graph of the generalized spline mapping

is closed, that is, the generalized spline mapping is a

closed operator.

If W is complete then the generalized spline mapping is

continuous by the Closed Graph Theorem. On the other hand,

if the generalized spline mapping is continuous, then it has

a continuous extension b - b# defined for all b c W. Suppose

b c W and choose a sequence (bn} C W with bn 0 b. Then,

since F is continuous,

F(b#,b) = lim F(b b = lim F(bt,b =.

n n

Therefore p(b) 0 0 and hence b U 7. It follows that W C W,

that is, W is complete.

In the special case when W = X, F(x,b) = Fx - Fb and

U(x,b) = Ux - Ub, where F and U are linear operators, we

recover Sard's theory of splines. Here Vi = X, M = N(F)

is the space of "splines" and b = PrIb, the projection of b

onto M, is the spline approximation to b c X. Proposition

1 is then just a statement of the "optimal interpolation"

property of splines. For specific applications to inter-

polatory splines and generalized harmonic functions see

(7].

As another example, suppose H1 and H2 are Hilbert spaces,

D(T) is a dense subspace of HI and T : D(T) - H2 is a closed

linear operator. Let Q be the orthogonal projection of

H2 into RT. Let X = D(T), W = R(T) + R(T) , Z = H2 and

Y - H1 x H 2. Define the linear operators F : X x W - Z

and It : X x W - Y by F(x,b) = Tx - Qb and U(x,b) = (x,b).

In this case X= D(T) , W= W, p(b) is the set of least

I squares solutions of the equation Tx a b and bt = Ttb,

tt
where T is the Moore-Penrose inverse of T (see e.g. (5)).



Proposition I in this case expresses the well-known extremal

property of the Moore-Penrose inverse and Proposition 2 is

the (somewhat less) well-known characterization of continuous

Moore-Penrose inverses.
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On the Kryanev-Lardy Method for Ill-Posed Problemst

C. W. Groetsch

1. Introduction.

Kryanev's method for solving the ill-posed operator equation

(1) Au-f ,

where A is a linear operator on a real Hilbert space, consists of

choosing a bounded, positive definite operator B and forming the

sequence of iterates defined by

(2) xO - 0 , Ax + Bx Bxn 1 + f

I

I Krayanev [3] established the convergence of the method under the

assumption that A is a bounded positive semi-definite operator and

equation (1) has a unique solution. The author [2] proved the convergence

of a related method in the case when A is a densely defined closed linear

operator, again under the assumption that for a given f equation (1) has

a unique solution. Our aim in this note is to investigate the convergence

of the method to a generalized solution of (1) when A is a closed

unbounded operator and the existence of a unique solution is not assumed.

*tPartially supported by AFOSR Grant 79-0059
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2. Results.

Suppose that HI and H2 are real Hilbert spaces (the inner product

in each space will be designated by <.,.>) and that D(A) is a dense

subspace of H1. Let A : D(A) b H2 be a closed linear operator. We shall

investigate an iterative method for approximating Atf, where At is the

Moore-Penrose generalized inverse of A. We recall that At is the

closed linear operator defined on the dense subspace

D(At) * R(A) S R(A)'

of H2 by Atf - u, where u is the solution of minimal norm of the equation

(3) Ax = Qf

and Q is the orthogonal projection of H2 onto R(AT. We note that this

definition of the generalized inverse is the same as that for a boundedII
operator (see e.g. [1]) and that for f c D(At) the set of solutions of (3)

is convex, nonempty and closed (since A is closed). Therefore the

vector Atf is uniquely defined.

We shall suppose that B :H 1  H1 is a bounded, self-adjoint

operator satisfying

(4) <BX,X> > C2 Ilxll 2

for all x C H1 and some c 0 0. We may define an equivalent inner product

.i - -__- - -'-.--. -
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on H, by

[x,y] z <Bx,y>

and we shall denote the Hilbert space which consists of H1 with the new

inner product [...] by H V The norm in H, will be denoted 11.11B , that

is

2
IIXIIB " <Bx,x> = [x,x]

Since the norms 111 and IIlB are equivalent, the subspace D(A) is

also dense in H1. The adjoint of A considered as an operator on H1 will

be designated by A'. That is,

A' : D(A') - HI

satisfies <Axy> * [x,A'y]

for all y c D(A') = {y e H2 : <Ax,y> - [xz], some z c H2 and all x c D(A)}.

The adjoint of A considered as an operator on H, will be designated by the

customary symbol, A*. Note that these two adjoints are related in a

simple way. Namely, 0(A') - D(A*) and A* = BA'. By [5, page 307] the

operator

(ll + A'A)': H1 . Hl

'I
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where I is the identity operator on H1 , is a bounded, self-adjoint

operator on H1 satisfying

(5) 11(1 + A'A)'111 .! .

4 Lemma 1. Given f c H2, there is a unique u1 e D(A) such that

<Bul,v> + <Aul,Av> = <f,Av>

for all v c D(A). Moreover, iff c D(At), then u1 - u - Wu, where

W ((1I + A'A)'1 and u- Aif.

Proof. Since A is closed, D(A) is a Hilbert space under the inner product

(.,-) defined by

(x,y) - [x,y] + <Ax,Ay>

The linear functional * defined on D(A) by *(v) w <f,Av> is clearly

continuous with respect to the norm induced by the inner product (-,.).

Therefore, by the Riesz Theorem, there is a unique u1 c D(A) with

<fAv> - *(v) - (ulv)

for all v c D(A), which was to be shown.

If f c D(At) and u - Atf, then Au - Qf, and since <f,Av> - <QfAv>

for all v c D(A) and Wu c D(A*A), we have
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<B(u - Wu),v> + <A(u - Wu),Av>

< <Bu,v> - <BWu,v> - <AWu,Av> + <Au,Av>

< <Bu,v> - <(B + A*A)Wu,v> + <Qf,Av>

S<Bu,v> - <B(1I + A'A)Wu,v> + <f,Av> - <fAv>

But then, by the first part of the Lema, u1 - u - Wu, which was to be

proved.

We will study the sequence of iterates defined by

(6) un a Wun.1 + u1  , a - 1,2,3,...

where u1 is given by Lema 1. Note that this is equivalent to the

requirement that

<Bun ,v> + <Aun ,Av> <Bun_1 ,v> + <f,Av>

for all v c D(A), which establishes the connection with Kryanev's method.

This can be established exactly as in the proof of Lemma 1 by considering

the linear functional

#(v) - <Bun.lV> + .f,Av>

- - IV:' +-
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on the Hilbert space D(A). In the case B - I and f c D(A ), the method

(6) reduces to that investigated by Lardy [4].

Lemma 2. If f c D(A ) and u - Atf, then u - u .

Proof. By (6) and Lemma 1, we have

u -un  u- u1 - Wun- l - u -(u - Wu)- Wun l

- W(u Uni l )

Therefore, u - un a wnu. n a 192,39....

We may now provide an error bound for the method (6). For convenience

we will henceforth denote the operator A*A by A.

Theorem 1. Suppose R(A) QR(A'A) and Qf * AAz for some z c H1 , then for

some y c H1,

2 nlu - Un11B <- (1 - ')lTB , for n > 1

Proof. Since R(A) R(A'A), we have Az - A'Ay, for some y c H1. Let

(E X be the resolution of the identity in H 1 induced by the self-adjoint

operator A'A. Since Qf - Aiz and Az e N(A)L , we have Az - Atf. Therefore

by Lemma 2,

U - Un m nA'Ayuf 1E1+ )n



I7

It then follows that

2  [ + d[Exy,y]ni unl 0 (1 + ,) n

--4- (1 - 1) f dExy,y ]n n 0

n 2
n T 1) lIIB•

We note that if we make the weaker assumption that f c D(A ) (i.e.

Qf c R(A)), rather than the stronger assumption that Qf c R(AA), then the

method still converges. For in this case we have by Lemma 2.

2 "- )nd[uu
Iu - UniB ( . d[,u.u - 0 as n-*m0

However, if f j D(At), then the sequence {un ) diverges and in fact has no

weakly convergent subsequence. For if the subsequence (unk) converges

weakly to y, then since W is bounded and therefore weakly continuous, we

have by (6)

(7) y - Wy u l

Since ul c D(A) and Xy c D(A) cD(A), we find that y c D(A). Also, by

Lemma I and (7)
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<f,Av> < <By - BWy,v> + <AY - AWyAv>

< <By,v> - <(B + A)Wyv> + <Ay.Av>

= <AyAv> , for all v e D(A)

Therefore, f - Ay £ R(A) , that is, f c D(A). We summarize these results
I

in the following:

Theorem 2. If f £ D(At), then un * Atf. However, if f 0 D(At), then

{un } has no weakly convergent subsequence.

Since bounded sets in Hilbert space are weakly compact, we obtain

immediately the following:

Corollary. If f 0 D(A), then llunil I -.

Finally, we investigate the method under the assumption that the exact

data f is unavailable, but an approximation f satisfying Ilf - fil < 6 is

on hand. The first approximation 6, (corresponding to the corrupted data

S) then satisfies

(51,V) a <B ,v> + <AtI,Av> < cf,Av>

for all v c D(A). By Lemma 1 we then have

(u1 - 51 .V) < 'f - fAvI
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for all v c D(A). Setting v - u-lI this gives

(8) (uL, u - u,) -<f - f, A(u1 - UL1 )>

If we designate the norm on D(A) induced by the inner product (-,.) by

if" IIl then we have

IAx 1
2 < Bx,x> + <AxAx> - I1xl

for all x c D(A). Therefore by (8). it follows that

$l -112 <--Ii - ;11 2 <- I ul - blI I

and hence

Ilul - aIlIB 25- Ilul -1 1  .

Later approximations using the data f satisfy by (6)

un -WUn.+u 1 ,

and therefore

nn U wk 2un~ k -Wn" - (Ul " 1 ) n-1,3,. .
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But 11W11, 1, by (5), and therefore

H un - UnIB-< nlul -u llB *n6.

It then follows that

Iun - ulIB -11%un " unlIB + 1un - u IB _n6 + un - u1IB.

But I un - ul 'B - 0 as n .- iff c D(At). Therefore, given e > 0 there is

a d(c) and n such that

116n u1B < e for 0 < a < 6(c),

that is, the method is a regularizing algorithm in the sense of Tikhonov

(see [6]) if f c D(At).
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On a Class of Regularization Methodst

C. W. Groetsch (Cincinnati)

Zusammenfassung

Wir studieren eine ailgemeine KMasse von Regularisierungsrnethoden

fUr eine inkorrekt gestellte lineare Operatorgleichung im Hilbertsraum.

tPartially supported by AFOSR grant 79-0059.



On a Class of Regularization Methods
+

C. W. Groetsch

In this note we will investigate a general class of regularization methods

for the ill-posed operator equation

(1) Tx = b

where T is h rounded linear operator from the Hilbert space HI into the Hilbert

space H The Moore-Penrose generalized inverse of T will be denoted by Tt , that

is Tt : P(Tt) H1 is the linear operator which associates with each vector

b c V(Tt) R(T) 0 R(T) the unique least squares solution of minimal norm of

equation (1) (see e.g. [3]). By a least squares solution of (1) we mean any

solution of the equation

(2) T Tx = T b,

where T is the adjoint of T. We will denote the operator T T by T and *.he operator

TT by T. Note that T and T are self-adjoint linear operators whose spectra lie in

the interval [0,11T2]. If 0 1 o(T) (the spectrum of T), then by (2) we have

Tt = I*. In general, however, 0 c a(T), but this last equation nevertheless

leads us to seek approximations to Tt by operators of the form U(T)T* where U is a

continuous function on [0,11TH 12 ] which approximates the function f(t) = t-1 in

some sense. Specifically, we will consider a family (net) of real valued functions

(U8 (t) B c S), indexed by a subset S of the positive real numbers with - c

where each U8 is continuous on [0,IITI1
2 ] and such that

t Partially supported by AFOSR grant 79-0059.

_____.. .._____.____________ :' ' ---- " -'-
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(3) 1tua(t) l < M for all t and a

and

(4) U (t) ,t-I  as a 4. for each t # 0.

Such a class of regularization methods for equation (1) was studied previously

by Bakushinskii [1] under the assumption that b c R(T). (The author was unaware

of Bakushinskii's studies when this research was performed.)

The following is proved in [3].

Proposition 1. Suppose b e V(Tt) and let x,= U (T)T*b. Then x, .T b as a+-.

To this we now add,

Proposition 2. If b J D(Tt), then (x has no weakly convergent subnet and

hence H(x,8 ( -- as 6 =.

Proof. Suppose {x8,} is a subnet of {x6} which converges weakly to z c Hl, de-w
noted x,, w z. By the weak continuity of bounded linear operators we then have

w 
_Ty_,_heTx, , P Tz. Now, if we denote the projection of H2 onto RTby P, then

Pb - Tx8 = Pb - TU (T)T*b

= Pb - TU (f)Pb.

However, by (3) and (4), the operator iU8(T) converges pointwise to the projection

of H2 onto N(T) = N(T) = R-RT. Therefore Pb - TxB ,  0. It then follows that

Pb - Tz, a contradiction. #

In the proof above we have used the fact that U (T)T T *U This is

easy to see if U is a polynomial. In the general case the identity follows from

the Weierstrass approximation theorem.



3

Several authors have established rates of convergence for various approx-

imations to Ttb under the stronger assumption that Pb c R(T) (see [9], [5],

[6]). We see from Proposition 2 that the very least we must require to get

convergence at all is that b c V(T t), i.e., Pb c R(T). In order to strengthen

this condition only slightly and thereby obtain a rate of convergence we note

that
.

R(T) = R(TPN(T)')

and, in the pointwise sense,

PN(T) ±  = Tim+ T
V-*O

It therefore seems reasonable to replace the hypothesis b c D(Tt), i.e., Pb c R(T),

by the hypothesis Pb c R(TTV) for some v > 0. In order to gauge the rate of con-

vergence we will replace (3) by the stronger condition

(5) tVtl - tu0(t)l < ,(B,v) for v > 0

where ,(a,v) 1 0 as 0 -- for each v > 0 (the case v = 1 was considered in [43).

The proof of the following lenna, being routine, is omitted.

Lema 1. If v > 0, then R(tv)c N(T)

We now state a rate of convergence result. The vector T b will be denoted

by x and the error x - x by e 0.

Proposition 3. If Pb TVw, where v 0 0, then Ile11 W(O9V)IlwII.

Proof. Since Tx -Pb= TTvw and since x - TVw c N(T) ,we see that x = Tvw. Now,

F a U8(T)T*b - U8(T)T*Pb

0 U (T)x - U (T)Tv+lw.

.. .. .~ ~ 0 m I I I
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Therefore ea = x  - x = T"(I - UB(T)T)w. By the Spectral Mapping Theorem

and Radius Formula, we then have

llell <w(,v)lJwll. #

In our next result we become more cavalier in our assumptions on the data.

Lemma 2. If Pb = Tvw where v > 1, then Ileall 2 < w(a,v-)ITeII llwll.

Proof. As in the previous proof we find that x = T*TV-lw. Also,

x0 = U (T)T*Pb = U (T)T T w

= T Ua(T)TVw.

Therefore e, = x - x0 = T*(I - Ua(T)T)TV-lw, and

Ile,11 2 = (e,T*(I - Ua(T)T)V- w

= (Te8,(I - U B(T)T)TVlw) < (,v-l)llwll IITeBII. #

Proposition 4. If Pb = TVw where v > 1, then lell 2 < W(av)W(Ov-l)Ilwjl.

Proof. In Lemma 2 we saw that

e, T*(I - U ( )T 'Tw,

therefore

Te * TTV(I . U (T)T)w.

We then have

IITe 8II2  (Te 8,e 8 ) = (Tv(I - U (T)Tw,Te8 )

w(av)IITe8 II, i.e., IITe8 II w(O,v).

Substituting Into the result of Lemma 2 completes the proof. #
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In the next section we will give a number of examples of specific com-

putational techniques to which the above results apply.

We have avoided for long enough the problem of polluted data. We now take

up this question. Suppose that the data b is the result of measurements so that

instead of b we have in our possession a corrupted version be satisfying

lb - bell < e. We operate on the vector be to obtain the approximations xe

given by
i£

x8 =U(T)T b .

Let *(B) = sup{(tU (t)l t c [O, IIT1 2 )}, and recall that *(s) is bounded (by (3)).
tC

Lemma 3. IITx8 - Txll < C 0(s).

Proof. T(x8 - x ) = TU (T)T*(b - be), therefore

IITx8 - Txcll 2 = T~x8 - x),xB - xE)

(iU (T)T*(b - bc),x - x)
= (TU (T)(b - bc),T(x8 - x))

. O(s)Ij b - bell JIT(x8 - xC)ll

<e.(B)llTx8 - Txll. #

Suppose now that g(B) = sup{IUB(t)l: t c [O,llTll 2]}. We note that

(6) g(B) as B

Indeed, if this were not the case, then there would be a constant L such that

S0uB(t) < L for all t and B. But then ltU8(t)l ! Lt - 0 as t o0, contradicting (4).

Lemma 4. IIx - xCII /£g(sB).

Proof. Since X T U (T)(b - be), we have, by use of Lemma 3,
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xlII2 . (x8 - x,T*UB(i)(b - be))

= (T(x8 - xa),U 8(T)(b - be))

< *(C)g(8). #

Suppose how that Pb = Tw (we could also use the other hypotheses considered

above, but we choose to consider this simple case to Illustrate the ideas). By

the triangle inequality we have

1x - x11 < lx - X61I + IIXB - 4II.

Lemma 4 and Proposition 4, then give

Proposition 5. If Pb = Tw, then

1ix - 411 . (lwIW(Bl)W(BO)) + e(g(B)O(W)) .

The first term on the right hand side of this Inequality goes to zero as

B - -. However, by (6) and (4), the second term becomes infinitely large as B -.

This illustrates the classis dilemma in the numerical treatment of ill-posed pro-

blems. Even 'If computations are performed exactly, small errors in the data may

eventually grow and overpower the approximations.

EXAMPLES

In this Section we will consider some specific choices for the functions

{UM(t)} and we will find functions w(B,v) which determine rates of convergence.

The index set S in all examples below will be either the set of nonnegative reals

or nonnegative integers. In the discrete case, the parameter B will be denoted by n.

As a first example we consider Showalter's integral formula [8):

Tb= exp(-uT)T*bdu.
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The functions U6 for this example have the form

U(t) exp(-ut)du
0

and may be motivated in terms of Borel summability [3]. It is not difficult to

see that a function w(s,v) satisfying (5) is given by

W(O) = (v > 0).

The choice U(t) = (t + B) (a > 0) leads to Tychonov's regularization of

order zero (see [1] and [10]). Here one can readily verify that

w(B,v) -v for 0 < v <.

In order to obtain approximations with this rate for v > I we may use extrapolated

regularization [5]. That is, for a given 0 > 0 we set

--( = (t + -I

and define Richardson extrapolants by

u a)(t) = (2J"(J-)(M - u J-l(t))/(2j - 1). j =1,2..

It is not difficult to show (see [5, Lemma 2.1]) that for k = 0,1,2,...

k+l k tt l - tu k)(t)l"=H.

i=0 2 t + l

< O3
k-I

Therefore, for the kth extrapolant we may apply Theorem 4 with

TO,k) - 0 k ', k - 1,2,..., to obtain the rate B3"I  (see [5, Theorem 3.2)).

We now consider some iterative regularizatlon methods. Below, a will be a

parameter satisfying 0 < a < 211TJ1- 2.

I ___ ___
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If the functions U n(t), n = 0,1,2... are defined

nnUn(t)= I (l - at) k

k=O

then (3) and (4) are satisfied and one can show that

nVtVll - tUn(t)l = nVtUJl _ ctln+l

is uniformly bounded. From this we find that the rate of convergence of the

iterative process

x= aT b, Xn+l = (I - OT)xn + aT b

is determined by the function w(n,v) = n-v.

Newton's method for approximating t-l leads to the sequence of functions de-

fined by

Uo(t) = a, Un+l(t) = Un(t)(2 - tUn(t)).

For this sequence of functions it is not difficult to see that

tVjl - tUn(t)J = 0(2
-vn) for v > 0.

Therefore the rate of convergence of the corresponding iterative method is deter-

mined by the function W(n,v) = 2-vn

Showalter and Ben-Israel [9] have extrapolated on the previous method to obtain

methods with a higher rate of convergence. For a positive integer p 12 they define

the hyperpower methods in terms of the sequence

p-I k.
Uo(t) -, Un+l(t) - Un(t) 0 (1 - tUn(t))

For these methods the results above may be used to obtain the convergence rate

O(p'vn).
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In [2] the following Krayanev-type method [7] is studied

=0, Txn + 81x = b1 x + T (6 > 0).

One can verify, as in the first iterative example above, that the function

w(n,v) = (an) " determines a rate of convergence.

The iterative method

x 0 = T *b, xn+l = xn + (T b - Txn)/(n + 2),

was investigated in [6]. Following the analysis given in [6] one can show that

the rate of convergence of this method is governed by the function w(n,v) =

(log n)"v.
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THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION:

A MATHEMATICAL INTRODUCTION

C. W. Groetsch

1. INTRODUCTION

The concept of well-posedness for an equation of the form

Tx - b (1.1)

was formulated at the turn of the century by Hadamard. The

equation (or problem) (1.1) is said to be well-posed in the sense

of Hadamard if for each b the equation has a unique solution

and this solution depends continuously on b. If T is a

transformation from a topological space X into a topological

space Y, then the idea of well-posedness may be dissected by

noting that the following three conditions on the triple (T,X,Y)

are required:

(I) for each b c Y, equation (1.1) has a solution,

(i) the solution x is unique,

and (iii) the mapping b - x is continuous.I

1. ___
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jIn this formulation it is evident that the well-posedness of

(1.1) depends not only on T but is also intimately connected

with the spaces X and Y and the topologies that they carry.

Obviously, if the space Y is too broad, or if X is too

narrow, then (i) cannot be satisfied. While if X is too large

then (ii) will not hold. Moreover, if the topology of Y is

too weak or that of X too strong, then (iiji) will be violated.

In this exposition we shall restrict our attention to the

case in which X and Y are Hilbert spaces and T is a

bounded linear transformation from X to Y. With this con-

text in mind, let us assume for the moment that for a given

b e Y equation (1.1) has a solution. Condition (ii) will then

hold if and only if N(T) - (01 (N(T):= (xcX: Tx=O1 is the

nullspace of T). If, however, N(T) # {0}, then (1.1) has

infinitely many solutions, namely all vectors of the form x + y

where x is a particular solution and y cN(T). This family

of solutions is clearly a closed convex set and therefore con-

tains a unique member of smallest norm. An elementary geometri-

cal argument characterizes this minimal norm solution as the

unique solution which is normal (i.e. orthogonal) to N(T). We

will therefore call the minimal norm solution, of (1.1) the

normal solution. Since the normal solution is unique we see

that (ii) is satisfied if we replace "solution" by "normal

solution".

The normal solution exists of course only if b c R(T)



THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION 3

(R(T):- (Tx:xcX) is the range of T). If b j R(T) one might

reasonably broaden one's notion of solution by seeking a vector

In X which minimizes the functional

f(u) = IITu-bll .

It is a simple matter to show that the minima of f are

precisely the solutions of the equation

Tx = Pb (1.2)

where, here and henceforth, P denotes the orthogonal projec-

tion of the Hilbert space Y onto RT, the closure of the

range of T. Any solution of equation (1.2) will be called a

pseudo-solution of (1.1). Equation (1.2) has a solution if and

only if Pb c R(T) which is immediately seen to be equivalent

to b e R(T) + R(T)1 . Assuming that (1.2) is solvable, i.e.

that b e R(T) + R(T)1, we will call the normal solution of

(1.2) the pseudo-normal solution of equation (1.1). The opera-

tor which associates with each b c R(T) + R(T)l the pseudo-

normal solution of (1.1) is called the (Moore-Penrose)

generalized inverse of the operator T. The generalized in-

verse of T, which is denoted by Tt, has dopiain M(Tt): =

R(T) + R(T)M 1 , which is a dense subspace of Y, and is a closed

linear operator (see e.g. [20]). We therefore see that the

triple (T,N(T)1,.&(Tt)) satisfies (I) and (ii) if we are

willing to extend our notion of "solution" to "pseudo-normal
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solution". Moreover, the "solution operator" in this context

is the generalized inverse T . For further information on

generalized inverses the reader may consult (6], [36], [50) and

[20).

The scheme of things developed above does not however

satisfy criterion (iii) (if it did there would be no linear

ill-posed problems and this paper would not exist!). Indeed it

Is not difficult to show that the operator Tt is continuous

if and only if R(T) is closed (see e.g. [20]) and in the im-

portant example of Fredholm integral equations of the first kind

the range is closed if and only if the kernel is degenerate, i.e.

only quite rarely. We are therefore led to consider stable

approximations to the pseudo-normal solution. A natural way to

'do this is to find bounded linear operators which approximate

T in the pointwise sense. One approach to this problem is to

view pseudo-solutions as solutions of the so-called normal

equation

T*Tx - T*b , (1.3)

where T* is the adjoint of T. It is easy to show that equa-

tions (1.2) and (1.3) have the same solution sets (see e.g.

[20]). If we denote, as we shall in the sequel, the self-ad-

Joint operator T*T by T, then we see that the set of all

pseudo-solutions is i-1 T*b. One might therefore reasonably

attempt to form stable approximations to a pseudo-solution by

I I l I- I --.-I



THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION 5

using vectors of the form U (T)T*b, where {U (t)) >0  is a

family of continuous real-valued functions on the spectrum of T

(which is contained in [O,I1T1 2 ]) which approximates in some

sense the function t - t"]. In [20], it is shown that if

Itu(t) is uniformly bounded and U (t) -C- as a 0

for each t > 0, then

x U (T)T*b * T b

as = * 0 for each b e D(Tt). We shall call such a family of

operators {U (T)T*} a regularizor of equation (1.1). This

method of constructing regularizors via spectral theory was

previously investigated in a somewhat different context by

Bakushinskii [5]. We remark that the condition b E 49(T )

is also a necessary condition for the convergence of the

regularizing algorithm. In fact, if b I &iT t) then it can be

shown that {U (T)T*b) has no weakly convergent subnet [21].

From the practical viewpoint the crux of the difficulty

with ill-posed problems is the fact that the right hand side is

typically the result of measurements and is therefore only

approximately determined. Since the solution, operator is in

general discontinuous, it then happens that small errors in the

right hand side can lead to large variations in the computed

solution. Specifically, if 6 is some approximation to

b a )(Tt) and the approximations x are defined by

- - - v -

- - , .,- - ~ ------ ------ I
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ia :- U4(i)T-b ,

then one can establish the bound

Ilx-T bll . !lxj-Ttbll + llb-61l (Mg(a))1/2  (1.4)

where ItU_(t)l < M and g(a) = sup JU (t)l (see [21]).

t

As has already been noted, the first term on the right hand side

of this inequality tends to zero as 0 - 0, however, the

hypotheses on the functions {U (t)) imply that g(a)

as 0 * 0. Therefore, this bound illustrates the typical di-

lemma in the numerical analysis of ill-posed problems: the

error consists of two components, one of which is independent

of the measured data and tends to zero while the other in-

creases without bound for a fixed level of error in the input

data. Too small of a choice of a, for a fixed level of

error In the data, will consequently cause the quality of the

computed approximations to be debased under tpe influence of

this error. The effective numerical treatment of such problems

therefore requires criteria which relate the regularization

parameter to the error level in the input data in such a way

that as the error tends to zero the regularized approximations

i tend to the pseudo-normal solution. The choice of a proper

parameter is therefore in the words of Baker [3], "a practical

detail of great relevance".

Thus the first step in the numerical solution of (1.1)

_________*- -- - -- -P - "
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involves two essential choices: the selectior, of a regularizcr

and the choice of a criterion for selecting the regularization

parameter. The regularizor which has been stLudied most exten-

sively is the so-called Tikhonov [61] regularizor given by

U (t) = (t+a)-

(see also [53] and [66)). Our aim in the sequel is to give a

theoretical presentation of various parameter choice strategies.

II. A Priori Parameter Choices

We shall suppose that b c &(T #) and b6  is some

measured approximation to b satisfying {[b-b 6 11 < 6 (this

will be relaxed below). The actual approximations with which we

are forced to work are given by

x : U (T)T*b
6

a IL

while the "idealized" approximations are

x :* U (T)T*b

The earliest parameter choice criteria involvd some a priori

choice of a depending on the error level, scy a -(6).

such that

Sxa()-TblI . 0 as 6 - 0

Of course, the optimal choice would be some value a - O

satisfying

. .. . . . .. . .. . . , , II i I I II i I I - I II
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j1x6 -T'bII = inf llx'-T'b ,

C>O0

but such a value of the parameter is for practical purposes

impossible to find. Alternatively, we might r.aconsider the

bound (1.4) to obtain

.6- TtbII <_ Hx,-TtbHj + 6(Mg())I1/ 2  (2.1)

and seek a quasi-optimal value of a, that is a value which

minimizes the right hand side. The difficulty here is that

even an asymptotic bound for the quantity 11x.T *bI usually

requires information on the unknown vector b which is

generally unavailable (see [21], [22]). Kdckler [33] has shon

however that in the case of Tikhonov regularization for matrices

it may be possible to find an a posteriori estimate of the quasi-

optimal parameter.

Leaving aside questions of optimality, we ee from (2.1)

that the method converges if we simply choose a value a(6)

of a such that a(6) - 0 and 6(Mg(a(6)))1 /2 _ 0 as 6 0.

In the special case of Tikhonov regularization, i.e. U (t)

(t+)- 1, we have M = I and g(c) = a and therefore a suf-

ficient condition for convergence is a -+ 0 and 6//a-- 0

as 6 0 0. Phrasing this slightly differently, if we choose

positive functions a1(6) and 82(6) which converge to zero

as 6 -0 and take a so that 03(6) >a and 6// <

/ jT6T. that is,

-.- .-t----w-~ v- -
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a ( / - 2(6) , (2.2)

then convergence is assured. The formulation (2.2) appears

in Tikhonov and Arsenin [64].

For the remainder of this paper we will be concerned ex-

clusively with the Tikhonov regularizor. During the past decade

and a half the analytical theory of Tikhonov regularization has

been developed to a very high level. The success of this

effort is due largely to the fact that the Tikhonov regularizor,

unlike the general class of regularizors considered in the in-

troduction, possesses a very simple and natural variational

property. Recall that our goal is to approximate the pseudo-

normal solution, that is, the vector x satisfying

Tx - Pb

for which lixil is minimal. In other words, we wish to

minimize lixil 2  subject to the constraint IITx-PbHJ2 = 0.

Since I-P is the orthogonal projector of Y onto R(T)'

we have

IITx-bl1 2  . iTx-PbII 2  + )I(I-P)b Hl
2

and hence we wish to minimize 1x1I2  subject to lITx-b112

Sl(I-P)bHJ2 . Classical Lagrange multiplier theory leads us

to consider the functional

AJJTx-bll 2 + 1lxll 2
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or equivalently, the functional

I [x;b,a] = HjTx-bI 2 + ti{xI1 2  (0>O) (2.3)

When no confusion ensues we will simply refer to this functional

as I [x]. Note that I Ex] is a positive quadratic functional

and hence has a unique minimum given by

grad !I x] 0.

But

grad 1 [x) = 2T*(Tx-b) + 2%x

and therefore the unique minimum x of E Cx) is given by

x a (T+ "I) T*b (2.4)

(recall that T := T*T). The Tikhonov regularized approximation

to the pseudo-normal solution of (1.1) is therefore precisely

the minimizer of the functional (2.3). This opens the door for

the application of powerful variational techniques in the study

of these approximations.

We now present a minor variant of a classical result of

4Tikhonov [62] which shows that, at least for weak convergence,

j condition (2.2) on the parameter is not necessary. We shall

suppose that b e W(T) and b6 satisfies I Pb-Pb6 l L 6.

This last condition allows b and b6 to differ by an arbitra-

rily large component in R(T)' * N(T*). a reasonable assumption

- - -.. ~----.---- -......-.. -,-.--- -



THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION 11

since any such component is annihilated by T* in the regular-

ization process. In this regard, note that by "lumping" any

6
component of b which lies in R(T)' into the vector b we

may as well assume that b c R(T), that is, the condition

.t
b e &q(T ) and 1lPb-Pb6 11 < 6 may always oe replaced by

b e R(T) and fib-Pb61, <6

Before proving Tikhonov's theorem, we take note of the

following simple fact.

Lemma 2.1. For any b c Y, x. = (T+0I) " T*b c N(T)

Proposition 2.2. Suppose b -E &(Tt), jlPb-Pb6 H <6 and

that for some positive constants C1 and C2, L satisfies

2 2 Then

x6 w _

•- T'b (weak convergence)
o6

as 6-, 0, where x, = (T+I)"1 T*b6

t ~ 6
Proof. Let x = T b. Since x minimizes -[.;b 6,c] and

! [y;b 6,a] = ITy-bj 12 + C113YI 12

, Ty-Pb6tt 2 + l(I-P)b61( 2 + aIlyl 2

I [y;Pb6,a] + II(I-P)b6l 2

it follows that x minimizes I [.;Pb6 ,]. Therefore

max(IlTx6-Pb611 2,C16211xl1 2} < I [x6;Pb6 ,]
i _, Ex;Pb'.a] =  IxP612 + =x[ 2 _.,'2+ C6tx[

1 Ix;x-b II alIX112 <I 211X112
6' C

*1- 7__ _ _ _ __ _ _ _ _
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It follows that

Tx - Pb as 6 * 0 and (Ix 1l2 is bounded.

For any sequence {6n) of positive numbers converging t3 zero

we therefore have a subsequence, again denoted by {6n},
x n w 62 2such that x _n . u for some u c X, where C1 n < n < C26 n

But since T is weakly continuous, this implies that
T 6 w
Tx n + Tu and hence Tu = Pb, i.e. u is a pseudo-solution.

n 6nSince x e N(T)' for each n (by Lemma 2.1) and since N(T)'

is closed and convex (and hence weakly closed), we have

u c N(T)'. Therefore u = x, the pseudo-normal solution, and

for each sequence (6n) converging to zero lhere is a subse-6n  6

quence with x x. From this it follows ;hat x x as

6"0. #

The essential features of the argument above, i.e. the use

of the variational principle to bound the approximations and

then the exploitation of the weak continuity of the operator,

will be used several times in the sequel.

It should be remarked that the weak convergence of the

regularized approximations may be quite satisfactory if X has

a sufficiently strong norm. For example, if we take for X

the Sobolev space WP[a,b], being the completion of the space

C"a,b] with respect to the norm

2 (b p 1dt
lixil, I J I-4 dt.

a 1-0 (dt J

- - -,.



THE PARAMETER CHOICE PROBLEM IN LINEAR REGULARIZATION 13

then weak convergence of a sequence of smooth functions implies

the uniform convergence of the sequence. The regularized ap-

proximations x in the space W2 a,b] are called pth order

regularized approximations by Tikhonov.

A number of early papers on regularization use a priori

choices of the regularization parameter. Tikhonov and Glasko

[65] have given a number of illustrations of the use of a choice

of the form a = C62  in the numerical solution of integral

equations of the first kind by second order regularizors.

Franklin [11] suggests the choice a = 62/W2 if w is an a

priori bound on the norm of the solution. Ivanov [28] has shown

that the condition 6 = o(&') is necessary and sufficient for

the strong convergence in L2 of regularized approximations

for Fredholm Integral equations of the first kind, while the

condition 6 = 0(1iW) is necessary and sufficient for weak con-

2
vergence in L . Khudak [30] shows that if the kernel of the

integral operator K is continuous and if the solution lies in

R(K*), then the regularized approximations in L2 converge

uniformly if 6 = O(c). For a positive definite self-adjoint

compact operator A, Bakushinskii [4] has studied the "simpli-

fied" regularization procedure

x a (A+aI) I b6.

If b i R(A) and H b-b6 1l 6, he shows that a sufficient

condition for convergence is 6 = o(a) (see also Ivanov [27)

- .• . _____ II
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and Khudak [31]). A more general regularization procedure of

this type was investigated recently by Franklin [12] from a

variational point of view. Finally, we mention that Tikhonov

[63) and others have given criteria for an a priori choice of

the parameter in the regularization of certain nonlinear pro-

blems. In particular, see Pyazantseva [54] and Al'ber [1] for

recent results on the regularization of problems involving

nonlinear monotone operators.

III. Morozov's Discrepancy Principle

The discrepancy principle of Morozov is based on the

reasonable view that the quality of the results of a computa-

tion cannot be greater than the quality of the input data. To

quote from Morozov [45] "the magnitude of the error must be in

agreement with the accuracy of the assignment of the input data

of the problem". The discrepancy principle in its simplest form

states that if b e R(T) and Hib-b6ll 1.6 < 1lb I 1, then

there is a unique value of the parameter a, which we shall call

a(5), such that

IITx0( 6)-bH =

Here x6  is the Tikhonov regularized approximation (2.4).

Moreover, as 6 -P 0, x,(6 ) - x, where x is the normal solu-

tion of (1.1). This result, in a slightly altered form, was

also published independently by Arcangeli [2] (see also Ivanov

[26]) and was to a certain extent implicit In an algorithmic
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form in the works of Phillips [53] and Twomey [66].

In this section, we will prove a discrepancy principle

under the assumption that b E 6(T t) which we have seen is

the least we can expect of the data in order to obtain conver-

gence even in the error free case. We shall suppose that

I ITI2 <K and that the available data consist of a vector

b6 e Y satisfying I Pb-Pb611 6 (note again that this

allows b and b6 to differ by an arbitrarily large component

in R(T)l and therefore we could just as well assume that

b c R(T)). Our measure of the "discrepancy" in the approxima-

tion Is specified by the function

pa) := Ix- T*b6 I I
2

A direct application of Morozov's principle to approximating the

pseudo-normal solution would call for monitoring the size of

IITx -Pb6 11. However, the projection P is not available in

the computations which necessitates a slight modification in the

method such as the one we now present.

Lemma 3.1. P is an increasing continuous function of the

positive variable a. Moreover, c(-) = 2lT~b lI and

p(O) - 0.
6 62Proof. First note that x = 0 and hence p(-) = IT*b6112.

If we denote the spectral resolution of the positive self-ad-

joint operator T by (EA), then we have the representation

* - - - -
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f 2 0 d IIET*b 1112

0-

from which it follows that p is increasing and continuous.

Also, p(O) = 11P N(T) T*b j j2 = 0 since T*b6 c N(T)'. #

Note that if y is any pseudo-solution then

jIiy-T*b 6112 - IIT*Pb-T*PbdII 2 < K6 2 (3.1)

Moreover, a vector z of minimal norm satisfying the above

Inequality also satisfies

! i z..r2b61 2

for if

a := jjiz-T*bG1t < 1/2a and y = min l, K12

then the vector y = (l-y)z has norm smaller than ljzHj and

satisfies (3.1). This suggests considering the regularized

approximations

x' = (T+cI)l'T*b6
CL

where the parameter a is chosen according to the condition

p(c) Tx x-T*b K 2 (3.2)

From the lemma it follows that if K6 < flT*b61l 2 , then

there is a unique number a(6) satisfying 0(0(6)) K 62

tV
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The following result shows that this choice of the parameter,

which relates the discrepancy in the approximation to the level

of error in the input data, gives a stable approximation scheme

for computing the pseudo-normal solution.

Proposition 3.2. Suppose b (E&(T), lIJPb-Pb'I < 6 and
I62< IIT*b 6112 where ITI1 2 < o , then 6 T b as

6 -+ 0 if p(a(6)) = K62

Proof. We first recall that the Tikhonov approximation x

(T+oI) T*y minimizes the functional defined by

1 [z;Py,] = I ITz-PyI I2 + a1 IzI 2

Therefore, if x = Ttb, then

c,[x(6);Pb6,a(6)] <1 [x;Pb6,()

and hence

IITx( ()-Pb 61 2 + a(6)11x6(6)112 < IlTx-Pb6II 2 + (6)Ijxil 2

62 2 2 2IIPb-Pb I + a(6)IIxI _ <6 + Q(6)lIxll

However,

ITx Q6) " Pb 1 2  > K '11TIJ I ITx SC,(6)' Pb( I1

-~ 1 12= -1 =2>'IlIx, 6)T*b611Z K =-(Q(6)) =8

Substituting this in the Inequality above, we have

I(3.3)

11 1 6 1 1 ,X I
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for all 6 0 0. Therefore the set {x6 (6 ):

and hence weakly pre-compact.

Suppose now that (6n} is any sequence of positive numbers

converging to zero. Then there is a subsequence, again denoted
6 n  w

by (6n), with x ( 6  y. Also,

Ilix:1an)'TxII _ JIT (6 )-T*b nil + jJT*b n-TxlJ

K 1/26 I IT*b6n-T*bJJ

= /n + IIT*P(bn-b)ll

< 2K1 / 2 6 .0 as nl=,
-6n

6 n  w TX n
Therefore x C( I -y and Tx( ) Tx as n-*- , It now

follows as in proof of Proposition 2.2 that y a; x and

6 nx ()x as 6.--0. (3.4)

For any convergent sequence {Ix( 6 )II} we have

lIxi 2 n- lim <x,x( 6n)>I lIxl lim llxO(6n)1l

and therefore

{{xl{ 11m inf llx 6 )l

6 0

But by (3.3)

lim sup I xI(6)1 Ixll

and hence I xil lira Ix°'6( l . This combined with (3.4)
posh

i proves that

p. . .
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lim x 6

6-.0 a( x.

In using the discrepancy method it would be helpful to have

an a priori bound on the regularization parameter. Vinokorov

[67] has provided such a bound. A slight modification of

Vinokorov's argument yields the following result.

Proposition 3.3. If the parameter a is chosen according to

criterion (3.2) above, then

a 3/2 6/(lIT-b 6112 - 1/26)

We have considered the discrepancy method only in a very

simple context but we wish to point out that the method has been

highly developed by Morozov and his colleagues (*ee the works of

Morozov and Goncharskii et al. in the references).

IV. OTHER A POSTERIORI METHODS

The discrepancy method is but one of a number of a

posteriori strategies which have been proposed for choosing the

regularization parameter. In order to motivate some of these

methods we recall some facts about the accuracy in Tikhonov

regularization. It is well known that if Pb E R(TT*) then the

(error-free) Tikhonov method converges with a rate a/2 (see

e.g. [29]). However, if the data satisfy stronger assumptions

methods can be devised with a corresponding higher rate of

convergence (see [21] for a general result along these lines).

• I
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In particular what we might recall the iterated rikhonov method

given by

z :W C(T+sl) Ix + x

where

x (T+aI)-IT*b

has been investigated by Dorofeev [9] and King and Chillingworth

[32). If Pb e R(TT*T) then it can be shown that z. con-

verges with a rate [/ (32]. Note that

dx .( -2 -)1
a -(T+d) T*b - -(T+alI)'lx

and hence

dx1
OL --- (T-% I- o - x. - z.

Therefore a choice of a which minimizes

dx
, dxa (4.1)

tends to move the "cheap" approximation x0 closer to the

generally more accurate approximation z . In the presence

of erroneous data a value of a which minimizes (4.1) is called

in the Soviet literature a quasi-optimal choice of the parameter

([64],[651), but we shall call it a choice by the derivative

criterion. For a numerical example of the use of this parameter

choice criterion in an inverse problem in heat conduction, see

.. .,Y-- __ . . . . -
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Glasko et al. [13].

Another approach, Tikhonov and Arsenin's ratio criterion,

in our context advocates maximizing the ratio

I I z6-T*b6 I I/I ITx'-T-b5 l I

which tends to make the residual of x6  as small as possible

6relative to the residual of z

We now present some arguments of Leonov [38] who has es-

tablished the convergence of the simplified Tikhonov method in

finite dimensional space using the derivative criterion for the

choice of the parameter. We shall therefore assume that

T m * n Is linear. Then the pseudo-solutions of equation

Tx= b

are the solutions of

Ax w y (4.2)

where A - T*T is an n by n symmetric matrix and

y - T*b e N(A) ' - R(A). We assume a vector y R n is on

hand satisfying Ily-y 6 11 . 6 (Euclidean norm) and we seek to

approximate the normal solution of (4.2) by the simplified

TIkhonov approximation

x :- (A+GI)'y =: U (A)y6

The ideal simplified Tikhonov approximation will be denoted by

- .------- -a - -. m.- I
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x , viz.

x := (A+cd)1 y = U (A)y

Suppose that 0 < x < < ' . is the complete system of

positive eigenvalues of A and {Uk krl is a corresponding

system of orthonormal eigenvectors. Since y e R(A) =N(A)

we have a representation of the form

r
y r a aku k •

k=l

Also, for suitable coefficients {a } we have

r 6i
y w + Z aku

k=l k k

where w c N(A). We therefore have

2> 2 2 -a 622 (4 3_ ly-y 6 11 11w + E (ak-ak) > 11w11 (43)
k=l

We now set

F ( 
x) 

z , d a

= Il1Ua(A)
2y611 2

= 11W11122 + a2 Z (ak)2 /(a+Xk4
k=l

A little calculus shows that F has a smallest relative

minimum which we denote by a' (the choice of a by the

derivative criterion). From the fact that F'(a') - 0 one

obtains
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11w 6112/ 4 - 2 =.l - H (a)2 (a'+xk) (4.4)

r 62 4
< 2 z (ak) /Ak

k=1

and therefore 11w 6 112/a '4 is bounded for small 6. Moreover

the equality above shows that a' is bounded as 6 -, 0, for

otherwise the left hand side would become negative for small 6.

If we suppose that ' < m, then

r [1r [z(a )Z ( '  > z I "

k=l -a+xk) +xk)4  k=l

6)2 4(a k21(m+x k)4

Since a k - ak as 6 0 0, it follows from (4.4) that for 6

sufficiently small

6 2 > C 4

for some positive constant C and hence & - 0 as 6 - 0.

To establish the convergence of x 6  to the normal solu-

tion x we note that

iIx6,-xII < Ilx6,-x (,I + Hxo,-xa H.

But it is well known that in the absense of error in the right

hand side the simplified Tikhonov method convercles to the normal

solution. Since a' 0 as 6 -+ 0 we therefore have

l xL.-xII P 0 as 6 .0. Therefore, we need only estimate the

quantity lix I,-x0, 1J To this end, we give the following
iC
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1 emma.

Lemma 4.1. IIx'-xl_ I !tIw 6 Il/c + /1X

Proof. Note that

6w r 6-

xa
6-x a U (A)(y 6-y) = U (A) 6 + k=l (a -ak)uk

W U (A) (w6+Az6)

where

6 r

2 " 2: (ak-ak)Uk/ k
k=l

But by (4.3),

r r (6,,,i6 ,2 = _ ( (  2. 2 -2 6- 2 1 62.z" kI Ila -a / <- (ak-a k  <_(A6)

k l k ) k - k=
-1

Since l lU (A)II < and I IAUa(A)II < 1 we then have

SI2  <x6-x ,U (A)w6> + <x -x=,AU,(A)z >
I <_ C I I 11 [lw6ll/c + 6/1 1

Finall-y, for the choice ' = & we have seen that there

is a constant, say Cl, such that cYIw6 1/2 <ci for 6

sufficiently small. Substituting this in the lemma and using

(4.3) we have

1 x6 ,-x , I I < v C1 + 6/1 0 as 6 - 0,

which proves:

Proposition 4.2. In the case of simplified Tikhonov regulariza-

lS

-.-. ,- - - - -
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tion in a finite dimensional space the choice of parameter by

the derivative criterion gives a method which converges to the

normal solution.

The choice of the regularization parameter by the deriva-

tive criterion is related to a method for selecting the

regularization parameter investigated by Hilgers [24]. He notes

that the optimal value of the regularization parameter is a

value which minimizes the function

e(a) = x6-T'bI 2

Differentiating this with respect to a we havf4

dx6

e'( )/2 = <x6 T b, 6
T b, >  

.

Therefore, the optimal value of the parameter, a0, should

satisfy

<X6 oT tb, ad , o  . 0 .(4.5)

If we assume that we have a genuinely ill-posed problem then

CO > 0 and this condition is equivalent to

6 ~ dx 6 1~0<X6o-T tba - === > . 0.

Since

dx6  dx6

-a -r- t - dx a- 6- .. -.j -x o

<X Q T I~ < x 'T ' II I1 ° 11
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we may view the derivative criterion as an attemDt to approxi-

mately satisfy (4.5). Hilgers takes a different tack. Since

TTt b - Pb and

dx 6  -2( )d = -U (T)2 T*b6 = -T*U (T)2b6

where T := TT*, he writes (4.5) as

,Pb-Tx60 , U 0(i)2b6> = 0. (4.6)

All of the quantities on the left are computable except for the

projection Pb. But if b c R(T) (or if T is self-adjoint

and one-to-one) then Pb = b and (4.6) becomes

6b-Tx6  6
-c-T CI UCO(T) b> 0.

But of course the vector b is also unavailable and therefore

Hilgers advocates a choice of a which minimizes the expression

cb6-Tx6 ,U (j)2b6, .

Note that this quantity is nonnegative because

b6-Tx6 = (I-TU (T)T*)b
6

- (I-Tu (T))b 6

a QU (i)b6

and therefore

b6 -Tx6,U (j) 2 b 6> a aU (T)b 6 .U (i)
2

b6> * 1Uu(f) 3/ 2b 611 2

- . -- ,-- -if
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We might also notice that this equality also gives the bound

<b -Tx ,U (T)2b > < lb1/)

since Iu () a . The use of this method of choosing the

parameter has been tested on sample problems in [23] and [24].

It should be remarked that the choice of the parameter by Hil-

ger's criterion requires an additional inversion as U (T) is

not obtainable directly from U1(T).

One can also verify the convergence of simplified Tikhonov

regularization in a finite dimensional space with Hilger's

choice of the parameter. The essential point is to find an

upper bound for 11w6 11 in terms of the parameter and use

Lemma (4.1). To this end, we will use the notation established

above in the discussion of the simplified regularization method

for the equation Ax = y.

We will denote by an a value of a which minimizes the

function

F(a) a<U a(A)y6,U (A)2y6>

- 1612/+a r 6)2 3I I I A + 01 1: (a k /CL+x k)3
k=l

Using F'(ah) - 0, we find that

211wll 2/ah k=lr (ak)2 A 3

Therefore for 6 sufficiently sall. we have ah Cl211wl11 3

for some positive constant C2. As in the proof of Proposition
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4.2 we may now conclude that

x6 - x as 6 0.(1h

V. IVANOV'S CONSTRAINED PSEUDO-SOLUTIONS

Ivanov and his colleagues ([25],[8]) have studied genera-

lized solutions of the linear operator equation

Tx - b (5.1)

which are required to satisfy a certain norm constraint (see also

Miller's [41] "method 4"). In studying the parameter choice

problem for a regularized approximation to such a generalized

solution we shall employ terminology and notation which is more

consistent with that which we have used in the previous sections

rather than adhering to that used by Ivanov.

We suppose that T is a bounded linear operator from a

Hilbert space X into a Hilbert space Y and that R is a

fixed positive number. The closed ball in X of radius R

will be denoted by BR9 i.e. BR - (xcX: llxll < R} . By an

R-pseudo-solution of (5.1) we mean a vector x e BR satisfying

IITx-bll - inf (IITz-bll : z c BR}

We note that an R-pseudo-solution always exists since BR is

weakly compact and the functional f(z) - l ITz-bl is weakly

lower semicontinuous. It is useful to characterize the set of

R-pseudo-solutions in a more geometrical way. First note that

I
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the set TBR is weakly closed and convex and therefore strongly

closed. If we denote by Q the metric projection of Y onto

TBR , that is if Qy is the unique element of FBR which is

nearest to y c Y, then Q is continuous. It follows directly

from the definition that x is an R-pseudo-solut-ion of (5.1)

if and only if

Tx - Qb.

If we denote the set of all R-pseudo-solutions by XRD i.e.

XR - {x e BR: Tx = Qb)

then XR is closed, convex and nonempty. The set XR therefore

has a unique element of smallest norm which we will denote by

XR and call the R-pseudo-normal solution of (5.1). The term

normal is used since

XR n N(T)L = (xR } .

Indeed, if u c XR and u = u1 + u2 c N(T) 0 N(T)', then since

Hlull -2 lulll 2 + llu2112 we see that u2 c BR  and moreover

Tu2 * Tu = Qb. Furthermore llull 2  is minimal iF and only if

u1  0 0, i.e. u c N(T).

Note that if equation (5.1) has a pseudo-solution, that is

if b e O(Tt), then xR - Ttb if and only if lTtbhl <_ R

Lemma 5.1. If llTtbll > R, then IIXRII = R

Proof. First note that b 0 Qb. For if Qb b then b Tx

- ~ ~~. - - - . - --- ,i
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for some x e BR and hence

b - Pb = Tx

Therefore x is a pseudo-solution and hence

R < lITtbIl _ IjxHl I R

Suppose that Jlb-Qbll - y , 0 and

Sy (y Y • Iy-bll !-y)

Then

S n TBR Qb,

each of S and TBR is convex, and S has an interior.

Therefore by the Hahn-Banach separation theorem there is a

linear functional o such that 4(y) < I for y e TBR and

0(y) II for ycSy . If <lcXR I c R then toere is a B > 1

such that BxR £ BR. We then have

1 < B B(Qb) = B*(TxR) # *(TBxR) _I.#

Lema 5.2. The functional g(z) = JITtzJ is lower semi-

continuous on & (Tt).

Proof. Suppose {yn) c 49)(Tt)9 Yn + y and HiT tYnll !.II

Then there is a subsequence {ynk} and a z i X with
k

wTy - Z•
n nk

............ ...
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Since Bm is weakly closed we have Hiz!i <m. Since Tt  is

a closed linear operator, it is also weakly closed. But
w t w
* y and T yn - z then implies that ye uw(T ) and

tk
T y z. Therefore I1T II m.

Lenma 5.3. Suppose b c 6(T ) and IITbII > R. If

IIPb-Pb6I : 6, then for all sufficiently small 6 there is a

unique =(6) such that 11x (6)I1 = R where

l (T+cl)- T*b6

Proof. It is not difficult to see that the function

g(m) := Ix611 is continuous, decreasing and satisfies

g(-) = 0. If b' j 6(Tt) then g(O) = ( Csee the introduc-

tion). While if b6  c (Tt) then g(O) - IITtb6 ( =

IITtPb6I > R for 6 sufficiently small by Lemma 5.2. The

result now follows. #

Proposition 5.4. If b O£ )(Tt). IlTtbl R *nd jPb-Pb 6 Lj6

then

6

: lim x664 =6) • XR"

P roof. Since x C minimizes the functional

= 6

i I [x;b 6,ca) I ITx-bl I + alixil

we have ( [x ;b6 ,0] < [XR;b 6,C3, that is,

2 62 2 2] ll~x .ball 2 + Qllx'1ll < ItTx 01b+ll , Rz .

-- X4- a R".,

.~ - ~ - - ~ - m i -m i- - -- -. i
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For the choice a = a(6) we have jx6(6 )1 R and hence

jITx( 6 -b6 11 2 < ITxR-b 6 II2  i iQbb6I1 2

IIQb-bl12  as 6 .0

Therefore

lrn sup 11Tx 6(6)-b
6IAb<_lir (I - 11 I j Qb-b jj

6-.0

Since (lx 6,( 6 )Il} is bounded, for any sequence {6n) of posi-

tive numbers converging to zero there is a subsequence, again
6n  w

denoted by (6 n } such that x Q , x. We may conclude as in
S 6n w

previous proofs that x £ N(T)' n BR and Tx=(n n Tx .

Now if z e Y and lzil -- 1, we have

6n
k<Tx-b,z>I = lim t<TxC( 6 )-b.z>I L tiQb-bLI

n n

Therefore IITx-bII < jIQb-bII and hence Tx = Qb, i.e.

x C XR n N(T)' (xR)

6 W6

We now have x( 6 ) XR a 0 and Ix(6 ) Ras(6 - x0adR x( ) 1

IIXRII and hence

i6 R as 6,0.
X( 6

The result above gives a parameter choice criterion for

approximating the R-pseudo-normal solution assuming some a

priori information on the pseudo-normal solutiop, namely that its

norm Is greater than R. If the pseudo-normal solution has norm

- ~ ,

I I I i
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less than or equal to R then the R-pseudo-normal solution

coincides with the pseudo-normal solution and any of the para-

meter choice criteria from the previous sections may be used in

computing the regularized approximations.

VII. CONCLUDING REMARKS

The mathematical theory of regularization fQr linear ill-

posed problems has developed very rapidly and in many directions

during the past seventeen years. Our presentation of the para-

meter choice problem was rather narrowly aimed and in this sec-

tion we wish to take our last opportunity to briefly mention

some related topics.

The parameter choice criteria presented above are theoreti-

cal in that they do not indicate how the parameter is chosen in

actual computational practice. One rough and ready way to choose

the parameter in practice is to perform a regularization for

several values of the parameter, say a, a/lO, a/lO2

where a is fixed (and not "too small"). One then takes the

value of the parameter which comes closest to satisfying the

chosen criterion. This has been called the "selection" method.

Gordonova and Morozov [19] (see also [18]) have investigated the

use of Newton's method as a more sophisticated procedure for

solving numerically for the chosen regularization parameter.

The point has been made above that the great analytical

success of Tikhonov's method is due in large measure to its

simple variational interpretation. There are other types of

p. $ .
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regularization methods, for example iterative methods ([34),

[35), [39)) in which the role of the regularization parameter is

played by a discrete parameter (e.g. the iteration number) and

for which there is no natural variational interpretation. There

seems to be no satisfactory parameter choice criterion for such

methods. Ill-posed problems may also be regularized by the use

of expansion methods ([3], [37], [55]) or finite element type

methods ([51], [68], [40]) which also depend on a discrete

parameter (the dimension of a subspace).

We have taken a purely deterministic point of view in this

presentation but there is a substantial literature on regulari-

zation in which statistical properties of an error distribution

are assumed and corresponding stochastic Convergence properties

of the regularized approximations are derived. We refer the

reader to (7], [10], [46] and [59] for details and references.

Finally, we mention that Strahov and his colleagues [56],

[57), [58] have studied a somewhat more general linear ill-

posed problem than the one we considered above. Namely, they

study the problem of constructing the values of a closed un-

bounded operator. Since the generalized inverse is in general

closed and unbounded their results apply in our context.
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