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20. may diffet by Pn arbitrarily large factor. All three algorithms are
asymptotically optimal, producing good solutions in 0(N) operations on a
finite element grid with N elements. These asymptotically optimal
complexity bounds for the last two algorithms are the first such bounds
for multi-level methods on locally refined grids. One of these algorithms
achieves this 0(N) complexity bound under weaker than expected conditions
on the dimensions of the finite element spaces used by the algorithm.)

The multi-level convergence results for locally refined grids shown here
are based on a new approximation result given in this thesis. This
approximation result is of interest for several reasons, the main one
being that it is completely local, making no use of global properties
such as the regularity of the problem. In consequence, it provides an
independent demonstration of the asymptotically optimal complexity of
multi-level algorithms on non-convex domains, shown previously by Bank
and Dupont. It also permits one to determine explicit upper bounds on
the rate of convergence of multi-level methods on irregular finite
element grids using only local properties of the finite element spaces
involved.
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I. INTRODUCTION

1.1. Scope of Thesis

Multi-level, or multi-grid, methods have existed for more than

fifteen years, but have only recently become popular. Thus, there

remain many unanswered theoretical questions. Several of these are

addressed in this thesis, the major one being the computational complexity

of multi-level methods for locally refined finite element grids. These are

grids for which the ratio of diameters of the largest and smallest

elements is very large, becoming unbounded on the family of discretizations

of interest. The principal result of this thesis is that multi-level

methods can approximately solve the linear algebraic systems for such

finite element discretizations in O(N) operations for a grid with N

elements. Such asymptotically optimal complexity bounds have been given

previously for multi-level methods on non-locally-refined grids, but not

for locally refined grids. This result provides theoretical justification

for the use of multi-level methods on locally refined grids, which is

becoming increasingly popular. The proof of this result, which occupies

almost half of this thesis, is also of interest for several reasons.

Perhaps the most significant of these is that the rate of convergence

shown for the multi-level iteration used depends only on local properties

of the finite element spaces involved. Global properties, including

elliptic regularity, are never invoked. As a consequence this result

provides an independent verification of the O(N) complexity of multi-level

methods for non-convex domains, established previously by Bank and Dupont

(1978). It also opens the door to easily computable bounds on the

convergence rate of multi-level methods on irregular finite element grids.
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In all, three multi-level algorithms are considered in detail

in this thesis. The first, analyzed in chapter three, is similar to

methods considered by Nicolaides (1977) and by Bank and Dupont (1978),

but is simpler than these others. It is shown to converge in O(N)

operations for N-point quasi-uniform finite element grids on convex

domains, through a convergence proof similar to those given by the above

authors. This proof is given here since it is less complex than an

earlier one based on Fourier analysis of the truncation error. The

algorithm for quasi-uniform grids is treated here partly as background

for the analysis of algorithms for locally refined grids in chapter four.

It is also of independent interest that an O(N) bound can be shown for

this algorithm even though it is simpler than those in the literature.

Two algorithms are considered in chapter four, both applicable

to locally refined grids on arbitrary polygonal domains. The first of

these is quite similar to the method used in the adaptive finite element

code of Bank and Sherman (1978). It is the closest algorithm to theirs

that could be analyzed by the theoretical techniques here. This method

is shown to converge in O(N) operations subject to a condition on the

rate of growth of the dimensions of the finite element spaces used. The

necessary growth condition requires that the finer finite element spaces

used by the multi-level algorithm have far more elements than the

coarser spaces used. Such a condition is also imposed in the Bank and

Sherman code though it is less stringent there due to their technique

of "level compression," Bank and Sherman (1978).

Since these growth conditions can be quite restrictive, a

second algorithm is also considered in chapter four. It is a modification
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of the first, and it will be shown to converge in 0(N) operations under

a considerably weaker growth condition on the dimensions of the finite

element spaces used. Though the theoretical interest in this

modification is apparent, the author is at.present unsure of the

practical utility of this second algorithm. One pays a large penalty

for the weaker growth conditions through an increase in the hidden

constant in the O(N) work bound.

1.2. History of Multi-Level Methods

Multi-level or multi-grid methods are usually thought of as

originating in the work of Fedorenko (1961, 1964), although related ideas

had been put forth earlier. The idea of using several discretizations

in the solution of a PDE (partial differential equation) is actually

quite old. Southwell (1940) suggested using the solution of an elliptic

problem on a coarse finite difference grid to obtain a starting value

for relaxation on a finer grid. He also recommended a technique called

"block relaxation" which is closely related to multi-level methods.

In this technique the person doing the relaxation calculation (in the

era before computers) would find a region of the finite difference grid

where the residuals were all of the same sign. A constant would then

be added to the value of the trial solution throughout this region to

reduce the average residual on this region as much as possible. As a

consequence, after this correction the residuals would oscillate in sign

on this region. Southwell observed that as long as there were no large

areas where the residual did not alternate in sign, relaxation converged

rapidly. Of course, though quite effective, such a heuristic approach

was not of much help in the early days of computers, so simpler methods

like SOR took over.
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The idea of making block corrections essentially died out until

Fedorenko (1961) observed that rather than making corrections in isolated

blocks as suggested by Southwell, one could make a global correction by

solving a so-called coarse grid residual problem. For example, suppose

that in iteratively solving Poisson's equation on a grid with mesh size

h one has at the n-th iteration a trial vector-uh E G and residual
-n h

h
r E G where G is the vector space of mesh functions on the grid.
-n h h

If Ah is the discrete Laplacian being used,

h fh hr = - Ah n

h-h

where f h is the data vector. Now let G2 h be the vector space of mesh

functions on a coextensive coarser grid with mesh size 2h and suppose we

have an interpolation mapping

h :G Gh

2h 2h h

2h
One can ask for a correction vector v E G2h such that the improved

solution

h h h 2hun~ = u +1
-n 2h -

would have smaller residual. This idea has been considered independently

2h
by others, Wachspress (1974). It is attractive since v lies in the

lower dimensional space G2 h and so should be relatively easy to compute.

2h
Fedorenko's fundamental contribution was to note that v could be

chosen as

2h 2h rh
(1.2.1) A2h I h r-

2h h -n

where I2h : G1, + Gh is an interpolation mapping and Ah is a discrete

Poisson operator on G2 h. Since (1.2.1) is just a discretization of

2h h
Poisson's equation with data Ih rnhe realized that (1.2.1) could be
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approximately solved by relaxation and the recursive use of corrections on

a still coarser grid G4h*

Fedorenko's theoretical work showed that for amodel problem

multi-level iteration reduced the convergence error by an amount per

iteration independent of the mesh size. Thus,reducing the convergence

error to a magnitude comparable to the truncation error required

O(N log N) operations on an N point grid, the same as ADI. Shortly

thereafter Bakhvalov (1966) considered beginning the solution process

on a very coarse grid, using the solution there as a starting value for

multi-level iteration on a slightly finer grid, and so on, gradually

descending down to the level of refinement desired. This idea,which

was probably old when Southwell was young, changes the work bound from

O(N log N) to O(N). No other current method, either direct or iterative,

achieves this asymptotically optimal work bound.

Besides improving the asymptotic work bound on multi-level

iteration, Bakhvalov extended the method to a large class of PDEs on

a square finite difference grid. After his work, almost no work seems

to have been done on multi-level methods until this decade. Then several

people became interested in this method including Brandt, Hackbusch and

Nicolaides. Brandt in particular is largely responsible for popularizing

this method and developing it into a practical computational tool. The

other two people mentioned have been working more on the theoretical

questions involved in this method and on generalization to finite element

grids.

In the last few years there has been a rapid growth of interest

in multi-level methods, and there is considerable ongoing research. This

'4 -
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research is directed both at the theoretical problems, Bank and Dupont

(1978), Hackbusch (1978), Nicolaides (1977), and at developing algorithms

for the many applications areas. Representative work of the latter

type may be found in Bank and Sherman (1978), Brandt (1977), Brandt,

Dendy and Ruppel (1978), Nicolaides (1975), and Poling (1977). If

the author is not mistaken, we should see continued research in this

area for many years and may eventually see multi-level methods as

the method of choice for most parabolic and elliptic problems.

1.3. The Finite Element Approach

Design and analysis of multi-level methods can be done from

either a finite difference or finite element point of view. In one

sense these two approaches are almost the same; finite element methods

are a special class of finite difference method. Nevertheless, the way

people think about finite element methods and the kinds of grids they

use for these methods are so different from the usual way people

understand and use finite difference methods that we may think of these

classes as completely separate. This thesis is devoted to analysis

of multi-level methods from the finite element point of view. Several

of the many reasons the author had for adopting this point of view will

be described in this section.

m i i i
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While the multi-level method originated as a means of solving

finite difference equations and was, until recently, solidly wedded to

the finite difference approach, much of the current work on multi-level

methods is being done in the finite element context. Starting with

Hackbusch (1977) and Nicolaides (1977), who seem to have been the first

to consider multi-level methods as a means of solving finite element

equations, there has been increasing interest in this approach. The

reasons for this are not complicated. Finite element theory is in many

respects superior to finite difference theory. A great many problems

in the finite difference approach either do not arise in the finite

element approach or are easily handled there. Questions of stability,

the use of irregular grids, treatment of corner singularities, treatment

of curved boundaries and construction of error estimates are all much

simpler in the finite element context.

Aside from the obvious (to the author) superiority of the

finite element method, there are special reasons unique to multi-level

algorithms for doing their theory in the finite element setting. The

first of these is that the finite element error estimates are based on

approximation results rather than on asymptotic expansions. What this

means for multi-level methods is that, unlike some of the early finite

difference arguments where rapid convergence of the iteration could be

shown only for sufficiently small size, no such proviso is ever

needed in the finite element context. A second, more important reason

is that multi-level algorithms always involve more than one

discretization. Thus one requires mappings from the space of grid

functions or finite element functions of each discretization to those of

'A -- . L-



other discretizations. In the finite difference context such mappings

are done by interpolations which require separate error analyses. In

the finite element context the grids can be designed so that the

finite element space on a coarser grid will be a subspace of the finite

element spaces on finer grids. Then the mapping from a coarser grid to

a finer grid will be just the natural injection. To go the other way,

some kind of projection is needed, but many natural ones are available.

The fact that different finite element discretizations can be related

in this way yields a great simplification of the theory of multi-level

methods. Unfortunately only the theory is simplified, not the

programming. Rather than an interpolation formula one has a similar

formula relating the basis functions of one finite element space to

those of another. It is interesting that in many cases these change

of basis formulas arising in the finite element setting are exactly

the same as the interpolation formulas already in use in the finite

difference setting.

There is another reason why studying multi-level convergence

is important for this thesis. In chapter four we treat multi-level

methods for locally refined grids. While it may be possible to analyze

multi-level methods for locally refined finite difference grids in

special cases, it seems unlikely that an analysis as general as that

given here would be possible outside finite element theory. For

locally refined grids, finite element theory also helps in coding.

One never needs to choose special formulas for points where the mesh

size changes abruptly or worry about truncation error. There are

also beginning to be reliable a posteriori error estimates for finite
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elements enabling one to design robust adaptive algorithms, Babushka

and Rheinboldt (1978). In short, multi-level methods, adaptive

refinement, and finite element theory mesh together quite nicely.

The main limitation of the finite element approach is that it

is far more natural and powerful for self-adjoint problems than for the

general case. Neither finite difference nor finite element methods work

very well for non-self-adjoint problems, but it is frequently easier

to see what to do on regular finite difference grids than on general

finite element grids. While it would have been possible to extend

many of the results of this thesis to the non-self-adjoint case by

adding various restrictions, that was a more ambitious project than the

author was prepared to attempt. If one takes the results here as

indicative of the kind of results that could be proved in the general

non-self-adjoint case, one should not go far wrong.

i

'4'
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2. PRELIMINARIES

In this chapter we collect notations and basic results from

finite element theory. Since this material is completely standard, the

reader familiar with finite elements can probably skip this chapter

entirely, referring back to it later as required. The reader less

familiar with the finite element approach to partial differential

equations may find this chapter helpful.

2.1. Elliptic Equations

Throughout this thesis we will be concerned with solving

self-adjoint second order boundary-value problems. The problem of most

interest will be the Dirichlet problem

(2.1.1a) Lu = f on

(2.1.1b) u = 0 on aQ

where Q is a bounded open domain in the plane 2 with piecewise smooth

boundary M2. L may be any self-adjoint second order operator, for

example the Laplacian, or more generally any operator in divergenice form

Lu=-V • (a V u) + bu

where a, b are C functions on Q. In order for this operator to be

elliptic on Q, we require that there be constants a, a, b such that

a<a< a

O<b<b

hold throughout Q. We will also be considering the Neumann problem

(2.1.2a) Lu = f on Q

(2.1.2b) u - 0 on ail

where un is Lhe derivative of u in the direction normal to the boundary.

i , |, I



In this case ellipticity requires that b be positive on some neighborhood

in S1. Bank and Dupont consider also the singular Neumann problem, b E 0,

but we exclude it here.

The finite element approach to boundary-value problems is based

in part on the functional analytic theory of partial differential

equations, in which the boundedness or invertibility of a differential

operator is expressed in terms of Sobolev norms. These norms are a

natural generalization of the L2 norm, defined for non-negative integers

Z by

= Z II Dau112 )1/20l l (0< I(X I < L 2

where a = (a I a ) is a multi-index with al, a2 > 0 and

= I + a2

D=
a1  a2ax ay

This definition makes sense for all functions on 0 whose distribution

2
derivatives up to order k exist and lie in L . The completion of C (Q)

in ]I'1j is denoted H (Q) and is a Hilbert space relative to the inner

product

(u'v)j = f C E (D u)(D v))

If k is a negative integer 11')1 is defined by duality,

H~ull9. sup

Here and throughout, C. )is the L2inner product whilell-1 with no

subscript denotes the L2 norm. Sobolev spaces can also be defined for

arbitrary real I either through the interpolation theory of Hilbert
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spaces or by Fourier transforms. Details may be found in Oden and Reddy

(1976).

Equations (2.1.1) and (2.1.2) implicitly require the solution

u to be twice differentiable, which is overly restrictive for many purposes.

Consider the problem

(2.1.3a) Lu = f on

(2.1.3b) u = 0 on r1

(2.1.3c) u = 0 on F2n

where a = F1 U F2, which includes both (2.1.1) and (2.1.2) as special

cases. Let HI (Q) be the subspace of H1 (Q) satisfying the (essential)
E

Dirichlet boundary condition (2.1.3b) but otherwise unrestricted. If

(2.1.3) is satisfied then

(Lu,v) = (f,v), v E H ()
E

The notation here means that equality holds for all test functions v in

H 1(0). Defining the bilinear form
E

a(u,v) = (Lu,v)

we can ask for the element u in HE(0) such that

(2.1.4) a(u,v) = (f,v), v e H ()E

It is only necessary that u lie in H since Green's theorem can be used
E

to shift one derivative from u to v. A function u satisfying (2.1.4) is

called a weak solution of (2.1.3), and (2.1.4) is called the weak form

of the equation. The advantage here is that the weak solution exists

quite generally and agrees with the classical solution satisfying

equation (2.1.3) pointwise when the latter exists.
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The condition for existence and uniqueness of the solution of

(2.1.4) is that the problem be elliptic. This means that the energy

norm 1fl IIIdefined by

111ul11 2  = a(u,u)

for u E HI (Q) is equivalent to the first Sobolev norm ll'11. That is,

luIll I 111u111 u H1(2) E

for fixed al. 02 > 0 independent of u.

If the problem (2.1.3) is elliptic, a simple calculation shows

that for £ a non-negative integer

Ilull.+ 2  _> c IlLullk , u E H+2(Q)

for some c > 0. The principal results in elliptic theory go the other
3 2

way. For Z > - - and any f e H (Q) the weak solutions of (2.1.1) or
2

(2.1.2) satisfy the regularity estimate

(2.1.5) II u II+2 < c lf.ff

for some c > 0, assuming that the domain is smooth and the coefficients

of L are C . For the technical definition of smooth domains see

Babushka and Aziz (1972) or Oden and Reddy (1976).

The regularity estimate (2.1.5) implies existence, uniqueness,

and that the solution has two more derivatives in the mean square sense

than its data. In particular, if f is infinitely differentiable, u will

be as well. These results hold only for smooth domains. For domains

that are only plecewise smooth the corners introduce singularities that

limit the regularity of the problem. On a convex polygonal domain the

solution will lie in H2 but not necessarily in H for X > 2. In this

case we have the regularity estimate

INA-- - -- -
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(2.1.6) 1Iu I9+ 2  < c f 119,

3
for - 3 < k < 0. For non-convex polygonal domains (2.1.6) will not hold

2

for Z = 0 because the reentrant corners, that is corners with interior

angles exceeding 7, introduce severe singularities. In the worst case of

3 1
a slit domain, k must be restricted to (- 3, - -). The solution has

less than one and a half derivatives in the mean square sense.

2.2. Finite Element Spaces

The finite element discretization of (2.1.3) begins with the

selection of a finite dimensional subspace M of HE (Q). The discrete
E

solution to (2.1.3) is taken as that function Gi M satisfying the finite

element equation

(2.2.1) a(M) = (f,q), e BA

By the Ritz theorem, holding for self-adjoint problems, i is the function

in M nearest to the true solution u in energy norm.

Finite element spaces are ordinarily constructed by dividing

the domain into a finite family of elements, usually triangles or

rectangles. Once the elements are chosen M may be taken as a finite

dimensional space of piecewise polynomial functions that are polynomial

on each element. Though it is not strictly necessary for multi-level

methods, throughout we will require that M be conforming, that is that

it lie in H'(). This translates into the requirement that the functions
E

in M be continuous and satisfy the essential boundary condition (2.1.3b)

exactly. We also require that M be of degree at least one in order to

obtain convergence. For a finite element space of piecewise polynomial

functions the degree is the integer k such that any polynomial of degree
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k can be exactly represented on every element away from the boundary.

Finally it is necessary to bound the highest degree polynomial on any

element and require that M have a local basis. This is in order that the

basis be uniformly linearly independent. The question of the linear

independence of the basis, or conditioning of the Gram matrix will be

taken up in the next section.

Approximation questions are dealt with in finite element

theory in terms of a sequence of finite element spaces of increasing

dimension {M}jI, which eventually become dense in the sense that for
Ijl

any neighborhood N in H1() there exists J such that

N r) M. # 0 for j > J
3

The approximation properties of each of these spaces M. depend on the3

size of the elements {e} of M. and the element geometry, as well as3

the degree of the finite element space. Element geometry matters only

to the extent that it must not degenerate as j increases. For standard

finite elements it suffices that all elements in M. be convex and have

interior angles bounded away from 0 and 1T uniformly in j.

The size of an element e is measured by its diameter, de9

defined as

d = sup lix-yI1 2 9

e x,yee k

where 11-11 2 denotes the Euclidean norm. The family of spaces {M} is

said to be quasi-uniform if there is a corresponding family of parameters

{h i} and a > 1 such that

(2.2.2) -h <d <aha e- e- j

for all elements e of M and all J. If not, that is if the constant a

'4 °°,
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must depend on J, the family of spaces {M } is said to be locally refined.

While strictly speaking these concepts apply only to an infinite family

of finite element spaces, we will talk about an individual finite element

space being quasi-uniform or locally refined. This usage is extremely

convenient though it should be born in mind that this really makes sense

only with respect to membership in an infinite family of space {M}.

This definition of the mesh parameter h. associated with aJ

quasi-uniform finite element space M is not completely standard. OftenJ

h. is taken as the maximum of the element diameters. However, the

extra freedom allowed by (2.2.2) makes no difference in the error

estimates since a is a fixed constant, and is quite convenient. In

particular this freedom makes it easy to have a quasi-uniform family

Nh }I-E(O,l) parameterized by h rather than j. In this case the diameters

of elements in M h are required to satisfy

1h<d <ch.a - e -

The standard finite element error estimates give the rate

of convergence in any Sobolev norm of the finite element approximations

in a quasi-uniform space Mh in terms of the mesh parameter h and the

degree of Mh' For smooth solutions the convergence rate may be made

arbitrarily high by taking finite element spaces {Mh } of sufficiently

high degree. But on a polygonal domain the corner singularities limit

the rate of convergence attainable by any family of piecewise

polynomial finite element spaces.

The most important error estimate in the next chapter will be

the L2 error estimate
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(2.2.3) fu-uh 2 < Ch2 1lfl 2
L L

which holds for quasi-uniform spaces {M h } of degree at least one when

the partial differential equation is 12 regular, that is, when (2.1.6)

holds with 9 = 0. Thus, this bound applies to the Dirichlet problem

(2.1.1) and the Neumann problem (2.1.2) on any convex polygonal domain.

The convergence in energy for these two problems is of first

order on any convex polygonal domain. On non-convex domains it is of

less than first order. For a domain with a slit, the worst case

ordinarily arising, it is of order one-half.

Much of the utility of the finite element method comes from

the fact that these meager convergence rates attained on polygonal

domains are easily improved through the addition of singular functions

or by doing local refinement to cope with the corner singularities. In

chapter four the use of multi-level methods on locally refined finite

element grids will be considered. A simple error estimate showing

the quality of approximation of finite element methods on such grids

will be given there.

2.3. Linear Equations

By selecting a basis for the finite element space Al, the

finite element equation (2.2.1) is translated into a linear system.

Let Xl be a finite element space for problem 
(2.1.3) and let N

ii=l

be a basis for M. Any function u E M can be expressed in this basis as

N
u = Z i

i= 1,

_ , . , b m I .
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where u is the coordinate vector of u relative to this basis. The

convention of using underbars for vectors will be adhered to throughout.

Given the basis { i}, we can define the mass and stiffness

matrices M and K with elements

mrlj = i )

kij = a(4i, cK)

respectively. M is just the Gram matrix of the basis relative to the

L2 inner product while K is the Gram matrix in the energy inner

product. To form the linear system corresponding to the Ritz equation

(2.2.1), let f E L 2(0) and let F be given by

F = (f, ) , 1.... N

Then (2.2.1) is equivalent to the linear system

(2.3.1) K = F

where u is the coordinate vector of the finite element solution.

Numerical solution of the linear system (2.3.1) is aided by

several properties the matrices K and M have. First, M will always be

symmetric positive definite and since L is self-adjoint K will be

symmetric positive definite as well. Second, for the usual finite

element bases M and K will be quite sparse. Finally, both M and K are

usually well conditioned. The common finite element bases are largely

motivated by these last two considerations which are of great importance

for the numerical inversion of (2.3.1) or (2.3.2) whether this is done

directly or iteratively.

To make these considerations precise, consider a family of

finite element spaces {M i I of increasing dimension. We require that

each space Ml. 1 < j < -, have a basis 4 (i) ") that is local in the
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sense that the number of non-zero elements in each row of the corresponding

mass and stiffness matrices is bounded uniformly in j. This will be true

if the number of basis functions in ij)i] whose supports intersect

the supports of any given basis element !J is bounded uniformly in j.
1

Usually, under these conditions the condition number K(M.) of
J

the mass matrix M., I < j < -, will be uniformly bounded. For this toJ

hold the proper scaling must be chosen and the condition numbers of

the element mass matrices must be uniformly bounded. This is true for

the common finite element bases as long as the element geometry does

not degenerate. Then if the basis elements are scaled as

f= 1, 1 < i < N , 1 < j <

which we assume throughout, it is immediate that the eigenvalues of

M. will lie in an interval [1, a] for a > 1 independent of j.
JG

Since the stiffness matrices {K are exactly analogous to
J

the matrices arising in finite difference discretizations, their

condition numbers cannot be uniformly bounded. Just as in the finite

difference case the maximum eigenvalue of K. satisfies

(2.3.2) X (K ) < ch i2

max j - min

under ordinary circumstances, where hmin is the diameter of the

smallest element of M..j The minimum eigenvalue of K can be bounded

below by a simple argument. We have

A (K) = min -j-- > min min
xTx xTMjX xTx

A(M .K (M)

>l(M K )/lj
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The operator M I. K is the linear operator corresponding to the finite
i i

element equation (2.2.1). Since the finite element eigenvalues

approximate the eigenvalues of the PDE from above, X (K ) must be

bounded below uniformly in j. Thus one ordinarily has

(2.3.3) K(K.) < ch 2
J - min

or for a quasi-uniform spaces Mh .

(2.3.4) K(Kh) < ch
- 2

The difficulty in iteratively inverting the linear system (2.3.1) arises

directly from this growth of the condition of the stiffness matrix as

h decreases.

These bounds on the condition of M and K are proved in

Fried (1971) and may be found also in Strang and Fix (1973).

- - -a - i-i i-i---
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3. QUASI-UNIFORM GRIDS

In this chapter a multi-level algorithm simpler than those

considered in previous theoretical work will be given. It will be

shown to be of optimal order, producing a good solution on a

quasi-uniform finite element grid in O(N) operations on an N

point grid.

3.1. Introduction

In this chapter we look at a multi-level algorithm for

self-adjoint elliptic boundary value problems on quasi-uniform finite

element grids. This algorithm is related to algorithms considered by

Nicolaides, Bank and Dupont, Hackbusch and others, but is less complex

than these other algorithms. Like many of those considered by others,

the algorithm here is of optimal order, producing a second order

accurate solution in O(N) operations on an N point grid.

The optimal order convergence of the algorithm in this chapter

was originally shown for finite difference discretizations by a

cumbersome Fourier technique, and then for finite element discretizations

in the same way. Here an easier proof, following the ideas of the above

authors,will be given. The proof is based particularly on the work of

Bank and Dupont but employs several minor simplifications. Throughout

we follow, for the most part, their notation. It is convenient here

since little reference to algebraic quantities such as vectors or

matrices will be made.
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3.2. L2 Convergence

In this section and the next we examine the convergence of a

simple multi-level algorithm. This algorithm can be used to obtain

finite element approximations to the solutions of the elliptic

problems (2.1.1) and (2.1.2) on a convex polygonal domain Q. The

restriction to convex domains is necessary since we need to use the

L2 error estimate (2.2.3) which requires H2 regularity. Using curved

elements as in Bank and Dupont [1978] the convergence results given

here extend immediately to piecewise smooth domains free of reentrant

corners. For details on the treatment of curved elements, the

interested reader is referred to their paper.

The algorithm considered here uses a nested family of

quasi-uniform finite element spaces {M.}Ij_ nested in the sense that

Mj c Mj+ 1 , 1< <

To approximately solve the finite element equations for one of these

spaces Mk, k > 2, this algorithm uses a simple simultaneous displacement

smoothing iteration applied to the equations for Mk plus approximate

solution of related problems in Mk_. If k - 1 > 2 these approximate

solutions are obtained recursively by applying the same algorithm to

the equations for k-l" The recursion continues, finally requiring

approximate solutions to the equations for MI. These can be found

directly or by some convenient iteration.

The multi-level method considered here is related to algorithms

for finite elements by Nicolaides, Hackbusch, and Bank and Dupont and to

methods for finite difference equations considered by Brandt, Hackbusch,

Nicolaides, Bakhvalov, Fedorenko and others. The algorithm here differs
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from algorithms described by others in that the solution to the equations

for Mk requires only two approximate solutions to the equations for Mk I .

In other multi-level algorithms, to solve the equations for Mk

approximate solution of related problems in Mk_ is used in two ways.

First it is used as a means of obtaining a good starting value for

iteration on M k . Subsequently it is used as an acceleration procedure

for itration on lk .

Thu first approximate solution of the equations for Mkl

is used to obtain a starting value for iteration on M and considerable

accurakcv is required. It is necessary to reduce the convergence error

of the problem on ki k_1 so it is comparable to the truncation error on

k-l" In subsequent solutions of related problems in Mk_ used to

accelerate convergence of the iteration in Mk less accuracy is required.

For example, in one of the proofs given by Bank and Dupont and in the

related proof of theorem 4.1 in chapter four of this thesis it suffices

to solve the related problem with a relative accuracy of 33%.

The point of this chapter is that if all of the related

problems in M kl are solved to the same accuracy, namely the error in

the approximate solutions must be comparable to the truncation error

in M , then only two approximate solutions in Mkl are required.

To approximately solve the elliptic problem (2.1.1) or (2.1.2) in

M k 9 k ? 2, the algorithm begins by obtaining a good approximate

solution to the finite element equations for M This approximate
k-l'

solution is used as a starting value for a smoothing iteration on Mk '

Though this iteration could be continued until adequate convergence

was attained this would be inefficient. Instead, after a fixed number

of iterations, m, independent of k, we terminate the iteration.

--- - - _ __ _ _ _ _ _ __ _ _ _ _ _ _ - • m -
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The resulting approximate solution is then corrected by subtracting from
it the projection of the convergence error onto M This corrected

approximate solution in Mk is then taken as the accepted solution.

The reason this is effective goes back to the work of

Southwell. He observed that at least initially relaxation rapidly

reduces the residual, while the error itself may be only slowly reduced.

At the end of our algorithm's smoothing iteration the residual will be

small relative to the convergence error. This means that the

convergence error is quite smooth. In this case the convergence error

can be well approximated in the coarser space Mk_ and the final

correction will remove most of it.

Brandt describes this same phenomenon in terms of the reduction

of Fourier components of the convergence error. Most convergence

proofs, including ours, follow Fedorenko who considered the reduction

of the error components in the direction of eigenfunctions of the

discrete partial differential operator. Fedorenko refers to "good"

meaning smooth eigenfunctions and "bad" meaning oscillatory eigenfunctions.

For practical purposes many possible smoothing iterations

would be acceptable. Jacobi, Gauss-Seidel, and symmetric SOR are most

often used. The author expects that improvement could be made through

the use of Chebyshev acceleration, although in numerical tests so far

changing to more subtle iterative schemes has had little effect for

the well behaved self-adjoint problems considered here (Bank and

Sherman [1979], Brandt [1977]).

In this section the smoothing iteration will be taken as a

simple but computationally unattractive simultaneous displacement

iteration considered also by Bank and Dupont. The advantage of this

44
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iteration is that the resulting convergence is easy to analyze and is

basis independent. In the next section we will show that this smoothing

iteration can be replaced by a more computationally attractive

iteration without altering the convergence result. In this case the

algorithm will be shown to be of optimal order, producing a second

order accurate solution in O(N) operations on a finite element grid

with N elements.

Let {M }j.1 be a nested family of quasi-uniform finite

element spaces, and suppose we have associated mesh parameters {h }

satisfying

(3.2.1) h.=pl-Jh 1  jl(3 .. , hj jh > 1 ,

for p > 1 a fixed constant. Let u ( j ) E M., j > 1, be corresponding

finite element solutions of problem (2.1.1) or (2.1.2). That is,

U *: M. are functions satisfying

(3.2.2) a(u(J),) = (fl) , @ A.

From the error estimate (2.2.3)

(3.2.3) IIu-uj)I1 < c 2 If H

for fixed c > 0 where u is the true solution. In the space M. associated

with the finite element equation (3.2.2) we have eigenfunctions
() N.

{.) 1 where N is the dimension of M., and associated eigenvalues
N.

(JA i 1 with
i i1

0 < ( < X .i) <..< (J)
1 2 - N.

That is

'4 - -- -___ __-- --- .--. ____-. ..-. --
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a( J), = ) , E Mi

for 1 < i < N.. From the eigenvalue bound (2.3.2) and the fact that

the eigenvalues of M., the mass matrix corresponding to Mi, lie in

[a, o] for a > 1 independent of j, we have the bound

C-2

(3.2.4) XN  < c h 2
N. - j
J

To solve the finite element equation in Mk, k > 2, the

algorithm to be considered produces a sequence of iterates uI , u2 ,...,

in Mk beginning with an approximate solution u0 to the finite

element equations in Mkl. For some fixed positive integer m, the

approximate solution unrl will be taken as the final answer. The

iterates u . , 1 < X < m, are produced by a simple smoothing iteration

while the last one, which will be the accepted solution, is the result

of a correction involving the approximate solution of a related

problem in Mkl. For a fixed constant c0 > 0 and data f in L2 (Q) the

algorithm is as follows:

1. Let u0 E Mk_ be an approximate solution to (3.2.2)

satisfying

(3.2.5) IIUo - u (k - l) I< c o (hk-l) 2 jlfl

(k-i1)
where u is the solution of (3.2.2).

2. Let u. , 1 < k < m be the element of Mk satisfying

(326 u- 1(a ¢,i,) - (f.0)) Mk
(3. .6 (u - 11,¢ = (k) (U -k

N k

3. Let v E Mk- be the solution of

a(v,O) - a(umo) - (fo) 1 0 E M k-l
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That is, v is given by

a(vf) = -(r,p) , E M k- 1

where r C k is defined by

(r,o) = (f,q) - a(u,9) , I E Mk

Let v be an approximation to v satisfying

(3.2.7) llv-vl < c0  hk _ iril

and let um+b be given by

(3.2.8) un+1 = um - v

The corrected approximate solution um+ 1 is taken as the final answer.

If we can show that the approximate solution, um+I, produced

is accurate enough uniformly in k > 2, the use of this algorithm

recursively to solve the subproblems in steps one and three will be

immediately justified. This is the content of the following theorem.

Theorem 3.1. For any c0 > 0 there is a positive integer m,

independent of k, such that the approximate solution u m 1 produced by

algorithm (3.2.5)-(3.2.8) satisfies

(3.2.9) llu 1 - u(k)i< co hk 2 .P

Proof. For convenience we drop the superscript k on
eigenfunctions and eigenvalues and the dimensionNkof M From (3.2.3)

and the triangle inequality

(k) - u(k-l)11< c(h2 + h2_ 1 f

Iu~ ~ 11 ~k hkl 1li

< c(l + P 2) hk 2[fl

kI
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From this and (3.2.5)

(3.2.10) Iu0 - u(k)II < (c(1 + P2) + co P2) hk I •f,

Now, for k = 0, 1,..., m+l let e2 be the convergence error

(k)
e = u -u

Expanding e0 in eigenfunctions

N
eo E a. i.

i=l

Then by (3.2.6)

N m
m i=I N

It remains to estimate the result of the correction in step 3.

We have

N i
r= Z i A im

and by the error estimate (2.2.3)

2
iv - e < c hk_1 IlIrli

so by (3.2.7)

Ile Il = Ile_-vii < Ile- Vll + IIV-vIl

_c h lirlI + co hk_ IlrlI

< (c + c0) p
2 h 21 rI

(c + c o) p 
2  h2 A (1 )m

i k  i i i

< _c + c p2 hk Ileoll max (M(i - )m)
0 k ~OA<X NO---IN N

'4,
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where the last step depends on the L2 orthogonality of the eigenfunctions

{k.}. By a simple calculation

max ((i - ) < N •

O< < NN N

Then from the eigenvalue bound (3.2.4)

Ie[leIl < c 2 c + c0

It follows from this and (3.2.10) that

lie < c 2 e+C 0  + CO 2 2 f

m+l (c(1 + + co 0

Choose m large enough that

222

(3.2.11) m+l > C_ _ (c + c ) (c(l + P
2 ) + c0  P

0

and the result follows. D

In this proof we have carried the constants p and c0 explicitly

to show the dependence of m on these quantities. From (3.2.11) m
4

apparently goes as - . This sharp dependence of the number of iterations
C

m on the mesh ratio is typical of multi-level algorithms, but the 4

dependence on c0 is not. For more common multi-level algorithms, such

as that considered by Nicolaides [1977] and that considered in chapter 4

for locally refined grids, m depends on c0 only as [log(c 0 )I. Thus if

one wishes to reduce the convergence error well below the truncation

error, the algorithm here cannot be recommended. However, in the usual

case where It suffices to have convergence error comparable to the

truncation error this algorithm should perform about as well as other

multi-level methods.
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3.3. Computational Cost

While iteration (3.2.6) used in step two of algorithm (3.2.5)-

(3.2.8) was convenient in the last section since it made the analysis

there basis independent, it is impractical. Each of the iterations,

(3.2.6), required the solution of a linear system involving the mass

matrix because of the implicit definition on the left side. To avoid

this, we will show in this section that the smoothing iteration (3.2.6)

can be replaced by a simple simultaneous displacement iteration without

impairing the convergence result. This analysis follows Bank and

Dupont [1978]. With this replacement the overall algorithm is of optimal

order, producing a second order accurate solution in O(N) operations for

a finite element grid with N elements.

Given a basis fo}N for Mk, for each u Ei Mk there corresponds

Na coordinate vector u E IR . As in the last section, we have temporarily

dropped the subscript k on the dimension N of Mk and on eigenvectors and

eigenvalues. Let b(-, -) denote the bilinear form

b(u,v) = uT v

The norm induced by this bilinear form is the same as the Euclidean norm

on corresponding vectors,

Ijul = b(u,u) = ?1 12 2

Now let {ji be the eigenvectors of the stiffness matrix K with

corresponding eigenvalues

0 < A 1 < A2 <. . .  < N

The eigenvectors {ji} are coordinate vectors for eigenfunctions { i}

satisfying
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(3.3.1) a(bi, ¢) = M b(k., ¢ ) , i e M

and the orthogonality relations

a( i, j) = b( i, j = 0 for i # j

We wish to consider algorithm (3.2.5)-(3.2.8) of the last

section but with the smoothing iteration (3.2.6) replaced by the

simultaneous displacement iteration

(3.3.2) b(uz - U'I , ) = -
N (a(u Z )1 - (f, )) Mk

AN £l

The use of AN here is only for convenience. It could be

replaced by a convenient upperbound on the eigenvalues of the stiffness

matrix, such as (2.3.2), without altering the convergence result.

The convergence of this algorithm is shown by

Theorem 3.2. For any c0 > 0 there is a positive integer

m independent of k > 2 such that the approximate solution (k)
Um+l

produced by algorithms (3.2.5(-(3.2.8) with (3.2.6) replaced by (3.2.2)

satisfies

l [ m I  ( k ) l l c 2  f l •
- hl j jf

Proof. The proof is a slight modification of the proof of

Theorem 3.1. Expanding e 0 in the eigenfunctions {4 i instead of in the

elgenfunctions {'.I we have
1

N
e0 = i ii=1

Then, as before,

N 1 m
e . E a (I-
m i

1 k
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Let r E Ak be given by

(r,4) = - a(em, 4) , e

and 1 E Mk by

b(,¢ =-a(e m ,  ), M k •

Then

= Mr

so we have

IIrl = r r Mr = (M T_) M(M-l)

T -1
r~ M -

<j Gl~kj2 2]rl

As in the proof of Theorem 3.1

lie i < (c(l + 2 p 2) hl2 IIr

< (C(I + 0 2 ) + CO P2)1 1/2 h2 lrl b
0 hk

Now

N Ai)m

I = 11 0  1 m Ilbi=l N

< Ile A max (A(I - ,- )m)

NAN

< Ileo{ %  A

where the first inequality uses orthogonality of the eigenfunctions {i }

in the inner product b(-, *). Then since
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11e. 12 T (M1/2 o)T /2

(3.3.3) = IIM1/ 2  124II114,1 2  Ije 1!2
2> a 2 ob

and since the maximum eigenvalue XN satisfies the bound (2.3.2) the rest

of the proof goes through exactly as before. El

This theorem shows that by twice approximately solving the lower

dimensional linear system for Mk-1 and doing a fixed number of simultaneous

displacement iterations on Mk one can obtain a second order accurate

solution in Ik . Since the convergence shown by Theorem 3.2 is independent

of k > 2, the two related problems in Mk 1 can be solved by recursively

applying the same algorithm to their smaller linear systems. Continuing

the recursion one ends up repeatedly having to solve the linear system for

M . This can be done either directly or by any convenient iterative method.

To estimate the computational cost of this algorithm observe

that from (3.2.1) the dimensions of the finite element spaces M } must

satisfy

2j < 2j <  -

for cI , c2 > 0 independent of j. This assumes that h1 , the mesh size of

Mi. is fixed and the degree of the highest degree polynomial on any element

is bounded uniformly in j. Then, if so is the storage required for the

direct or iterative inversion of the linear system for MI, the total

storage must be proportional to

k k
s o + E N < s + c " 2ij.2 j=2

2k<s o  + c 2 P
2-1_-2

0 21-p-

+c2 ( 1)N.
l O 1-0 - 2 k
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for r > 1. Since sO is fixed, assuming the mesh ratio p is greater than

one, the total storage required depends only linearly on the dimension of

the solution space M k.

To bound the computation time, observe that the time required

to do one of the simultaneous displacement iterations (3.3.2) for M. is
J

proportional to N.. Let t0 be the computation time for the approximate3

solution of the linear system for M Then taking into account that we

must recursively apply the algorithm twice to M kl, four times to Mk_2

and so on the computation time T is bounded by

k k
(3.1..4) T < 2 to + cm E 2k-j N.

-- j=2 j

k k k-j 2k
< 2 t 0 + cc2 m E 2 P

j=2

k 2k k
< 2 t + cc2 mp E (2)k -j

j=2 P

We have neglected the computational cost of carrying out the

mappings of functions on one grid to another in steps one and three of

algorithm (3.2.5)-(3.2.8). Despite the fact that the spaces Mi ) are
3

nested, the mappings required in steps one and three are not free since

in general each space M uses a different basis. It is however easy to
I

see that the above bound on the computation time is unaltered by taking

into account this additional cost,

Now from (3.3.4) we have the bounds

O(N ) for p > 2

O(Nk Iog(Nk)) for p -

log 2

0 Nk
2 log P for I < p < 42

i 

i ml | ik
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The natural choice p = 2 gives an optimal order algorithm and is convenient

in programming.
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4. LOCALLY REFINED GRIDS

This chapter, which contains the principal results of this

thesis, presents two multi-level algorithms achieving O(N) complexity

bounds on locally refined grids. One of these attains this optimal

complexity bound under weaker than expected restrictions on the

dimensions of the finite element spaces used by the method. These

optimal order convergence results are a consequence of an approximation

theorem proved in this chapter. Aside from its use in extending multi-

level convergence theory to locally refined grids, this approximation

result is of interest since it relies only on local properties of the

finite element spaces used and is not based on elliptic regularity.

As a consequence it provides an independent verification of the O(N)

convergence of multi-level methods on non-convex domains shown previously

by Bank and Dupont.

4.1. Introduction

There are a variety of reasons why one might wish to use locally

refined grids. They can be used to maintain high order accuracy in the

face of singularities caused by discontinuous coefficients or the corners

of the domain, or to resolve boundary layers. They may simply result

from an adaptive discretization. They rcan also be used to give good

resolution of the part of the solution of greatest interest without

incurring the computational cost of a fine global grid. This situation

occurs, for example, on unbounded domains. As long as the ratio of the

diameter of the largest element to that of the smallest remains uniformly

hounded on the family of finite element spaces of interest, multi-level

convergence results for quasi-uniform grids, such as those in the last
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chapter, remain valid. However, in many cases of interest this ratio of

element diameters becomes unbounded on the family of finite element

spaces being used. In this case, while results for quasi-uniform

spaces, such as those in the last chapter, yield an O(N) work bound for

each finite element space, the constant hidden in the O(N) work bound

will depend on the ratio of element diameters. Such bounds are clearly

unsatisfactory for locally refined finite element spaces.

While nearly all of the convergence results in the literature

apply only to the case of quasi-uniform finite difference or finite

element grids, multi-level methods are being used increasingly for

locally refined grids, Brandt (1977), Bank and Sherman (1978). In fact,

one of their principal advantages is that their rate of convergence

remains very good on locally refined grids. By contrast other iterative

methods, whose rates of convergence depend on the condition number of

the stiffness matrix, do poorly on locally refined grids. For example,

the number of iterations required with conjugate gradient iteration

goes as /k(K),where K(K) is the spectral condition number of the stiffness

matrix, Axelsson (1977). This condition number satisfies

K(Y) > c h- 2
hmin

where h . is proportional to the diameter of the smallest element in the.

grid. Thus, K(K) may grow much faster as a function of the number of

unknowns on a locally refined grid. This presents a very severe

difficulty for nearly all iterative methods. As will be shown in this

chapter, multi-level methods do not suffer from this difficulty.

The algorithms in this chapter differ considerably from that in

the last chapter, aside from their application to locally refined grids.

In the algorithm of the last chapter, to approximately solve the elliptic
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problem on the finest grid, a related problem on the next coarser grid

was solved twice. It was solved once at the beginning to obtain a

starting value for the simultaneous displacement iteration and once at

the end as a final correction. In the algorithms ofthis chapter and

in other algorithms in the literature, solution of a related problem on

the next coarser grid is used more frequently, typically after every

few smoothing iterations on the finest grid. Thus, the basic operation

in such an algorithm is best thought of as a multi-level iteration

consisting of a simple relaxation iteration periodically accelerated

by the solution of a related problem on the next coarser grid.

Algorithms like those considered in this chapter have been

described for quasi-uniform grids by Bank and Dupont, Nicolaides,

Hackbusch, and others. They are also related to methods for locally

refined grids suggested by Brandt and very closely to the method used in

the adaptive finite element code of Bank and Sherman. An algorithm

similar to that of chapter three could have been used, but probably

would not have been as practical as the algorithms here. One could argue

theat in any case it is best to consider different modifications of the

standard approach separately rather than in combination.

To our knowledge there is only one convergence result in the

literature for multi-level methods on locally refined grids. This is

given in Bank and Dupont (197.) where a two-level multi-level iteration

is shown to converge at a rate independent of the mesh size. Since this

result relies only on local properties of the finite element space and

not on global approximation properties, it applies automatically to

locally refined grids. The limitation to this result is that it deals

only with their two-level scheme. With such a scheme, as one decreases

the mesh size the dimensions of both the finer and coarser finite

"4i
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element spaces grow. In their algorithm the linear system for the

coarser finite element space must be approximately solved once per

multi-level iteration. Whether this is done directly or by one of

the common iterative methods, the cost of approximately solving this

linear system grows faster than linearly in the dimension of the

linear system. As a consequence, such a two-level scheme can never be of

optimal order. It may, however, be quite attractive as a practical

algoi ithm since inversion of the lower dimensional linear system for

the coarser space may be much cheaper than the cost of inverting the

linear system for the finer space in which the solution is sought.

The use of direct methods to solve these linear systems for the coarser

space is particularly attractive since after the first multi-level

iteration only back solves are required.

One might expect that a simple generalization of their

convergence proof for the two-level case could be used to show optimal

order convergence of a multi-level method using many levels on locally

refined grids. In some cases it can, for example, for Poisson's equation

on certain finite element grids. In general, however, the error

reduction per iteration, y E (0, 1), of their two-level scheme, while

independent of the mesh size, depends strongly on the PDE and on certain

properties of the discretization. The inductive argument used to show

the optimal order convergence of multi-level methods using many levels

requires that we be able to choose a sufficiently small value of y.

For example, for the first algorithm in this chapter, y must be chosen

1
in (0, -1-). Since there is no easy way of controlling y in their two-level

scheme, it seems to be quite hard to get general optimal order convergence

• •
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results from a direct generalization of their two-level result. This is

unfortunate, since the argument showing the convergence of their

two-level algorithm is far simpler than that given here.

The results here and the technique of their proof are actually

much more closely related to the second kind of algorithm considered in

their paper. This second algorithm is a recursive algorithm using many

grid levels just as the algorithm in the last chapter did. Their

algorithm is shown to converge in O(N) operations on quasi-uniform

finite element spaces. Unlike the results in chapter three, their

results apply also to non-convex domains, on which the elliptic problem

is less than H2 regular. The analysis of algorithms for locally refined

grids here, which also applies to non-convex domains, is largely

modeled on their analysis of the second algorithm in their paper. The

notations here have also been kept almost the same as theirs.

Analysis of multi-level methods is harder than that of most

iterative methods since it involves both algebraic and approximation

questions. The algebraic and complexity questions for locally refined

grids are slightly harder, since the dimensions of the finite element

spaces used in the multi-level algorithm must be taken into account more

carefully. By contrast, the approximation questions for locally refined

grids seem to be a great deal harder. In the first half of this chapter

we consider the algebraic and complexity questions involved in treating

multi-level methods on locally refined grids. The analysis here

largely follows that in the paper by Bank and Dupont, while the algorithms

themselves are motivated by the adaptive finite element code of Bank

and Sherman. Two algorithms are considered; the first is similar to

that in the Bank and Sherman code. The second is a modification yielding

an improved complexity bound. This modification, which appears to be
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new, allows greater freedom in the choice of finite element spaces

used and may have significant practical applications.

The second half of this chapter deals with the approximation

questions involved in treating locally refined grids. The approximation

result proved there is the main result of this thesis. In previous work

on multi-level methods, the approximation questions were answered by

using the elliptic regularity of the problem to show smoothness of the

Junctions being approximated. Then the approximation error could be

estimated using standard finite element techniques including duality

arguments and the Bramble-Hilbert lemma. The approximation result here

uses a completely different kind of argument making no use of the

regularity of the problem. This is why it applies to non-convex

domains where the regularity is weaker than H2 . Perhaps of greater

interest from a computational point of view is the fact that this approx-

imation result relies only on local properties of the finite element

spaces and the PDE operator. In consequence, it would be quite easy to

compute rigorous upper bounds on the rate of convergence of the algorithms

in this chapter. Up until now there were good heuristic bounds on the

rate of convergence of multi-level methods on finite difference grids,

Brandt (1977), and in a few cases rigorous bounds. No previous bounds

for the rate of convergence of multi-level methods on irregular finite

element grids appear to be available.

4.2. Notation

To develop the algorithms considered in this chapter, it is

necessary to go into greater detail concerning the finite element spaces
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used than was required in the last chapter. Additional notation must

also be developed. These are the tasks of this section. To keep the

mathematical issues in this chapter clear, our analysis will be

restricted to C0 triangular and rectangular. elements. Though the

analysis in this chapter seems to be extendable to all or nearly all

families of finite elements, the details of the proofs here can be

considerably harder for some families of elements. Using the C square

and triangular elements considered here permits considerable simplifi-

cation of the analysis and may also cover the cases of greatest interest,

since the majority of finite element computation seems to be done with

these elements. Linear CO triangular eleme>kts, called Turner triangles,

are used in the Bank and Sherman adaptive mult\-level code, so at least

for polygonal domains, the solution space used by their code is covered

by the theory here. However, as will be seen, their algorithm violates

the assumptions of the theory developed here in a number of other ways.

There are really two reasons why more detailed specification

of the finite element spaces used in the multi-level algorithm is needed

here than was required in the last chapter. The first is that locelly

refined spaces are intrinsically more complex than quasi-uniform spaces

since they are not characterized by a single mesh parameter. The

second is that, unlike the analysis in the last chapter, which was

based on standard finite element error estimates, the analysis here is

based on an approximation result developed here. The proof of this

result depends on detailed analysis of the finite element spaces used.

While this result could have been proven more abstractly, the approach

here is certainly more straightforward. The reader with a background
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in finite element theory should have little trouble in seeing the

generalizations to elements with higher order continuity.

The two elements considered here are the standard C triangular

and square elements. The C triangular elements of degree k, k > 1,

use as element trial space the space Pk of polynomials in x and y

of degree at most k. The C square elements of degree k, k > 1, are

tensor product elements based on the trial space C) consisting of poly-

nomials whose terms are of degree k or less in x and y separately. Both

types of elements may be taken as nodal finite elements with node

placement as in figures 1 and 2.

AA A
K =2 K=3 K=4

Figure 1. C Lagrangian Triangular Elements

K=I K= K=3

Figure 2. C Tensor Product Elements
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The nodal parameters used are just the function values at these points,

providing a substantial simplification of the analysis in this chapter

over that which would be required for the more complex Hermite elements.

Equally important from our point of view, for any k > 1, either type

of element constitutes an affine family, Ciarlet (1979). What this means

is that we may fix a reference element in the plane, on which we have

a reference trial space L, which will be either Pk or Qk for triangular

or square elements, respectively. For any other element of the same

type anywhere in the plane we can find an affine transformation from

the reference element to the given element. This affine transformation

carries the region occupied by the given element, the nodes, and the

element trial space from the reference element to any other element

of the same type anywhere in the plane.

Affine transformations are mappings of the form

x' = Ax + b

where b is a fixed coordinate vector and A is a nonsingular 2 x 2

matrix. For triangular elements all affine transformations may be

used, carrying the reference element into the entire six parameter

family of triangles in the plane. For square elements, A may be taken

as a multiple of the identity. That is, there is no need for rotation

and distortion in this case.

The point of all this is that affine transformations and the

use of reference elements provide an elegant simplification of the theory.

The reference element and its element trial space basically contain all

properties intrinsic to this type of finite element. On the other

hand, the affine transformations contain all information about the

geometry, mesh size, and distortion of any particular element in the
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finite element grid. Thus, analysis of a finite element space is

conveniently factored into two parts, a property we will use to

advantage in section 4.5.

Aside from the choice of element, two types of grids need to

be considered. These may be conveniently labeled "aligned" and

"unaligned" grids. Aligned grids are those which are standard in finite

element theory, where each edge of an element is the edge of another,

or part of the boundary. Unaligned grids are those where the edge of an

element may be only part of the edge of another. See figures 3, 4, and 5

for examples of these two types of grids. In general, triangular grids

may always be chosen to be aligned, without sacrificing efficiency, but

it is often necessary to choose grids of square or rectangular elements

to be unaligned, or much of the benefit of local refinement will be lost.

To be admissible, the finite element spaces must be C and

satisfy the essential, that is Dirichlet, boundary conditions. On

aligned grids there is no problem obtaining C0 continuity. One simply

requires agreement of the nodal parameter on the edge between adjacent

elements. This does not work for unaligned grids. To simplify this

problem we restrict the unaligned grids as follows. Assume that every

edge of an element is either part of the boundary, the edge of another

element, or the union of the edges of two other elements. This last

situation is shown in figure 6.

In this last situation we consider the single element to

dominate the two elements it adjoins across this edge. For convenience

call the single element the "larger" since it almost always is larger

than the other two. Then we may say that the "larger" dominates the
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Figure 3. Aligned Triangular Grid

Figure 4. Unaligned Triangular Grid

IH i ."H

Figure 5. Unaligned Grid with Square Elements

P .

Figure 6. Adjacent, Unaligned Elements
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other two in the sense that its nodes on this edge are the real nodes

of the finite element space there. The nodes of the "smaller" elements

may be called parasitic since their values will be taken from the larger

element. Parasitic nodes of the "smaller" elements in figure 6 not

coinciding with nodes of the "larger" element are labeled with a "P."

It is easy to see that this system preserves the required C continuity

and is fairly straightforward to code.

One more item needs to be discussed before we consider

construction of the locally refined spaces needed in this chapter. This

is the angle condition. It was mentioned in section 2.3 that the mass

matrix will usually be well conditioned uniformly in the level of

refinement of the grid as long as the element geometry does not

degenerate. While this is not always true for locally refined grids,

it is still important that the element geometry not degenerate. One

way of stating the required condition is to say that the minimum interior

angle of any triangle in the grid must be boun led below uniformly in

the level of refinement. More formally, if fT j is the family of

triangulations being considered, we want

(4.2.1) inf { min T } > 0

j>l TT. T

where T is the smallest interior angle of the triangle T. There are

several alternate formulations of this condition in the finite element

literature, Oden and Reddy (1976), but this one is adequate for our

purposes. Obviously, no such condition is needed on square grids.

We next turn to consideration of the class of finite element

grids on which the multi-level algorithms of this chapter can be shown

to converge rapidly. This class, which includes both locally refined and
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quasi-uniform spaces, is quite large and may be thought of as an indexed

family M }E A of spaces. It consists of all spaces which can be

generated by the refinement process described below and which satisfy

an additional condition given in section 4.4. An 0(N) complexity bound

holds uniformly on the class of spaces in {M I}cA satisfying this

condition uniformly. In general, this class of spaces with a uniform

0(N) complexity bound is large enough to show the improved convergence

to singular solutions obtainable by discretization with locally refined

grids. A partial exception to this is the case of point singularities,

since the best discretizations for these problems do not satisfy the

conditions of section 4.4 uniformly. For these problems 0(N) bounds

can be shown by the theory here only for suboptimal, but still very good

locally refined grids.

Fixing a coarse space Al, the refinement process described

below will generate sequences {M I B of finite element spaces,
,j j=l'

where the index a ranges over the uncountable family of choices allowed

in this refinement process. The family of spaces {M a}E A is just the

union of all spaces which can be produced by this refinement process,

{M} = U {M

accEA EB 6,j j=l

The condition mentioned above, which is described more fully in section 4.4,

is that for each fixed B E , the dimensions of the spaces I=1

in this sequence of refinements grow geometrically. The 0(N) complexity

bound given here depends only on the problem, the coarsest finite

element space MI, and this geometric growth rate.
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The multi-level algorithms here actually use only the finite

family of spaces { k}=, for fixed E B and fixed k > 2,in their

computation. Since B is fixed, it is convenient to drop it, although we

retain j, and in fact consider the entire sequence of refinements {M ij j=l

since that simplifies the statements of some of the theorems here. One

word of warning is needed, however. Though the spaces in the sequence

{i)j=l become infinite dimensional, they do not usually become dense in

i ' and thus convergence to the true solution will not ordinarily be

obtained in {Aj= 1  In order to get a sequence of solutions converging
j j=l*

to the true solution, one must go back to consideration of the family

Description of the families {MjI } of locally refined grids
j j=l

is essentially the same for grids based on square and triangular elements.

We consider first the triangular case since it is the case of greatest

interest in this chapter. In this case, the family {M.}. l of finite
j j=

element spaces will be based on a nested family of triangulations {T ij= I .

By nested we mean that each triangle T of T., j > 2, is contained in a
J 0

triangle of Tj_ I . Once we have chosen the triangulations {T .m andj j=l'

the particular element to be used, the family of finite element spaces

is completely determined.

The construction of the nested family of triangulations {T }w
j j=l

may be done by a process Bank and Sherman call regular subdivision. In

regular subdivision of a triangle T, it is divided into four smaller triangles

by pairwise connecting the midpoints of the edges together as shown in

figure 7. Let '1 be a fixed, aligned triangulation of Q. Now inductively

suppose T. has been chosen for some j > 1. Select a subset T of T . WeI j j

,i i |
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may take Tj+1 as the (unaligned) triangulation of Q formed by regular

subdivision of the triangles in T. while leaving the remaining triangles
3

of T. unaltered. Proceeding is this way, the entire family of
J

triangulations T 10 may be constructed.
j j=l

Figure 7. Regular Subdivision of a Triangular Element

In our approach the subsets T. C T, j > 1, of trianglesJ J -

to be refined cannot be chosen arbitrarily, but most satisfy certain

conditions necessary for the operation and analysis of the algorithms

here. Let Qj+l C Q be the subdomain convered by triangles in T1 , for

j > 1. For simplicity of notation it is convenient to set S1 =

The first condition required is

(4.2.2) Q j+l C j , j > 1.

This condition means that for j > 1, only triangles of T which were

formed by regular subdivision of triangles in TJ 1 may be subdivided

in creating Tj+ I . Equivalently, for J > 1, each triangle of Tj+l is

contained in a triangle of T .

Now assume that the diameters dT of the triangles T In the

coarsest triangulation T1 satisfy

(4.2.3) !h < d < a hI

I 1- T - 1

for some fixed a > 1 and mesh parameter h . As before set

14
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(4.2.4) h. = pl - j hI , j > 1

where p is a mesh ratio, which for the regular subdivision process here

is two. Conditions (4.2.2)-(4.2.4) imply that the diameters of

triangles in T., j > 1, must satisfy3 -

(4.2.5a) -h < d < Y h for T C(4 5a j- T- j j
1

(4.2.5b) - h i < dT < w hi for T C 2 \ i+

with 1 < i < j - 1 .

The overbar here denotes closure, necessary since triangles are closed,

and our domains MQ }j are not.j j=l

Intuitively, the triangles in T are all of about the same

size. By (4.2.3) or (4.2.5a) their diameters are all comparable to hI.

The triangles in T 2 come in two sizes: fine ones in Q2 with diameter

comparable to h2, produced by regular subdivisions, and coarse ones

outside Q2 with diameters about h . In general, T. may be thought of

as having j sizes of triangles, the finest lying in 12.. Of course,
3

this intuitive point of view should not be pushed too far. Because of

the constant l in (4.2.5) these sizes may overlap a great deal.

Only one other condition is really essential for triangular

grids. That is, that the number of elements adjoining a given element

along one edge he at most two. The "two" here is arbitrary, and any

other finite bound could be chosen, but in practice two is probably all

one wants. The coding is difficult enough as it is. This restriction,

that at most two "smaller" elements adjoin one "larger" element across

an edge, together with the angle condition (4.2.1) limits the rate of

change of the mesh size as one can easily show.
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Locally refined grids of square elements may be constructed along

the same lines as the triangular grids just considered. One begins with

an aligned square grid G on Q and then generates a family of finer

(unaligned) grids IG jl' using an analogous regular subdivision process.

This process is shown in figure 8. The subdomains {Q ). can be defined
j j=l

analogously, and the analogs of (4.2.3)-(4.2.5) will hold, now with the

notation "d e" instead of "dT1, using "e" for "element." Since suche

square grids are only being considered in this section and will thereafter

be dropped for simplicity, there is no need to go into these details

more deeply.

Figure 8. Regular Subdivision of a Square Element

A problem arises on locally refined grids not present on

quasi-uniform grids. Unless special care is taken, the condition numbers

of the mass matrices for a family of locally refined finite element spaces

may not be uniformly bounded. For aligned quasi-uniform grids and the

usual types of elements, including those considered here, the uniform

boundedness of the condition number of the mass matrices is equivalent

to the angle condition (4.2.1). Unaligned quasi-uniform grids are rarely

considered, for obvious reasons, but the same thing can be shown for

such grids.
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The problem with locally refined grids is that the number of

basis functions which overlap with a given basis function may be very

large, becoming unbounded as the grid is refined. This violates the

hypotheses of the result of Fried described in section 2.3, and in fact

mass matrices with condition numbers becoming unbounded do occur. A

simple finite element grid where this problem occurs is shown in

figure 9. Here bilinear elements are used with the standard "hat function"

or "pagoda" basis functions. Notice that the conditioning problem in

this example occurs despite the fact that the mesh size changes slowly

in the sense that the diameters of adjacent elements differ at most by

a factor of two. Proper scaling of the basis functions mitigates the

problem but does not eliminate it.

Figure 9. Finite Element Space with Poorly Conditioned Mass Matrix

The only real solution is to arrange things so that each basis

function overlaps only a bounded number of elements, with the bound

independent of the level of refinement. This can be done either by

modifying the basis elements to prevent excessive overlap, or by selecting

'4--.-- - - -- -- . - - - - -. - - -i.. . . - i.li i e



54

only grids where such overlap does not occur. The second approach is

probably preferable in most cases since it tends to be simpler. Consider

the approach of modifying the basis functions for the simple bilinear

elements. The situation is similar for the other square and triangular

elements here. Ordinarily, the nodal parameter at the intersection of the

four elements shown in figure 10 would be associated with the "hat

function" whose support is the union of the four elements. When one or

more of these four elements is refined, the basis function associated with

its center node can be modified to have support on a smaller region.

Up to rotation, there are four cases to consider, as shown in Figure 11.

Clearly the case where all four elements are refined need not be dealt

with since then the same considerations apply on the resulting smaller

elements. The dark lines in figure 11 show the boundaries of the

supports of the modified basis functions. The squares marked with

asterisks may be subject to further refinement without violating the

requirement that the mesh size change slowly. The point is that all

squares so marked lie outside the support of these basis functions, so

the number of elements these basis functions overlap, and hence the

number of other basis functions they overlap, will be bounded by a fixed

constant independent of the level of refinement. The only difficulty with

this approach is that computations of the element integrals is somewhat

more complicated since these basis functions are more complex. This

approach was suggested to the author by D. Gannon, who has done considerable

work with rectangular tensor product elements on locally refined grids,

Cannon (1980).
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Figure 10. Support of a Basis Function

Figure 11. Modified Basis Functions
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In the second approach, one retains the simple Lagrangian basis

functions, "hat functions," and their higher order analogues, but

restricts or modifies the grids so that the problem of one basis function

overlapping an increasingly large number of others never arises. With

triangular grids modification is not difficult. This is the approach

used in the Bank and Sherman code. Beginning with an unaligned

triangulation T., 1 < j < -, belonging to a nested family of triangulations

{T }m satisfying the conditions given so far, their algorithm constructs
j j=l

an aligned triangulation i., refining T., on which this condition number
] J

problem does not arise. This is done in two steps. In the first step

each triangle with the property that there are vertices of other

triangles in the middle of more than one of its edges is regularly

refined, as in figure 12. Once all such triangles are refined, including

those produced in carrying out this process, the only triangles in the

grid are those with either one vertex in the middle of an edge or no

vertices in the middle of its edges. The former are refined by a

different subdivision process, called "green" refinement, shown in

figure 13. The resulting aligned triangulation Ti is then used to generate

the finite element space M. used by the multi-level algorithm.J

Notice that green refinement may decrease the smallest interior

angle present on the grid. This would be a problem if successive green

refinements were applied. In Bank and Sherman's approach this is avoided

by first generating the unaligned triangulations {T } j= and then

forming the corresponding aligned triangulation l rather than

taking T,+I, J > 1, as a refinement of T . This ensures that the angle

condition (4.2.1) is satisfied. Even so, the triangulations R }J.I used

by their code are not generally admissible in the theory here, even when
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A -+ A
Figure 12. Regular Refinement of Triangles with Edges Containing Vertices

A A\
Figure 13. Green Refinement of a Triangle

the underlying unaligned triangulations {T.1 satisfy all of our
3 j=l

assumptions. The problem is that in producing an aligned triangulation

T., j > 1, a triangle may be green refined while in a finer unaligned3

triangulation Ti, i > j, this same triangle may be regularly refined.

If so, the triangulations {TjIlwill not be nested, nor will the resulting
j J=l

finite element spaces {Mj}=,. While this does not seem to be a problem

for their code, it is certainly a problem for the theory here. The cure

for this seems to be to require the unaligned triangulations fT } I

c j=l

to contain only triangles with a vertex of another triangle in at most
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one of their edges. If so, in going from {T.}J= I to the corresponding

aligned triangulations fT}(=I only green refinement will be done. Since

the triangles of Tip j > 1, green refined in producing i. must lie

outside Q . (the portion of T. lying in 0 . is aligned), there is no

danger of subsequently regularly refining them. Further, it is easy

to see that those triangles of i. produced by green refinement must beJ

green refined in producing Tip i > j, so the finite element spaces based

on the family of triangulations M}j= will be nested and the theory of

this chapter will go through for them.

The advantage of this approach is that the condition number

of the mass matrix for a finite element space based on an aligned

triangulation will be uniformly bounded, as long as the angle condition

is satisfied. This is so for linear elements since each pyramid basis

function overlaps only those elements meeting at the vertex with which

its nodal parameter is associated. The support is thus a polygon formed

from these elements, as in figure 14. The other kinds of basis functions

required for higher order elements, those associated with nodes on the

edges or interiors of triangles, are not a problem either, since their

supports are smaller than those associated with the vertices.

Figure 14. Support of a Basis Function on an Aligned Triangulation

q..
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Though the above approach is quite attractive for triangular

grids, since aligned triangulations are convenient in programming, it

does not generalize directly to square elements, since there is no

analog of green refinement for these elements. Instead, we must either

use the modified basis functions described above, or restrict the rate

of change of the mesh size so that the conditioning problem does not

occur when using the standard basis functions. The simplest way to

describe the required restriction on the rate of change of the mesh

size is in terms of the process for constructing the grids {G }j= 1 of
j j=l

square elements we wish to consider. Say that two elements, el, e2 E Gj,

I < j < -, touch if they have any point in common; that is, if they

share a vertex or part of an edge as in figure 15. Let G', j > 1, be

the set {e E G.: e C Q.}. That is, G' is the set consisting of theJ J J

most refined elements of G.. Define the interior of G', denotedJ J

int(G') as the set of elements of G! not touching any elements inj J

G \ G'. Then a sufficient condition for the mass matrices for the locallyJ J

refined spaces {M}j=I, based on the grids {G }i ,to be uniformlyj ~'Jj=l' ob nfrl

well conditioned is

G. C int(G') , J > 1

This condition suffices for the mass matrices to be uniformly bounded

since no basis functions centered at nodes outside of G' have supports
j

extending into int(G'). It follows that they only overlap elements outside

Q j, and so they only overlap a bounded number of elements.

=4 i
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Figure 15. Touching Elements

With the two types of elements considered here and the

variety of ways of ensuring the uniform boundedness of the condition

numbers of the mass matrices, a number of options are available.

However, it would be unwieldy to treat the theory in the rest of this

chapter in the same generality, particularly the work in section 4.5,

which relies on detailed analysis of the finite element spaces used.

For this reason, we restrict the analysis that follows to C spaces

on aligned triangular grids. This choice is motivated partly by

convenience, and partly by the use of such spaces in the Bank and

Sherman code. There would be no difficulty in treating the other

types of finite element spac('; considered here, however, the interpo-

lation mappings of section 4.5 are slightly more complicated to

analyze on unaligned grids.

a m l i . . . . .
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4.3. Algorithms

In this section we describe the multi-level algorithms to be

considered in this chapter and begin the analysis of their convergence.

The first of these algorithms is identical to one of those described by

Bank and Dupont for quasi-uniform grids and is similar to algorithms

described by Nicolaides, Hackbusch, Brandt, Bokhvalov, and others. It

is also similar to the algorithm used in the adaptive finite element

code of Bank and Sherman though there is a significant difference here

which will be discussed. The second algorithm to be considered here

appears to be new. It can be used to show the O(N) complexity bound

given in the next section under weaker assumptions than otherwise necessary.

Both of the algorithms described here differ substantially

from that described in the last chapter. There, to approximately solve

the finite element equations on a member Mi., j > 2, of a family {M.}=
-3 -- j=l

of finite element spaces, approximate solution of a related problem in

Mj_ 1 was required twi(e; once at the beginning to obtain a starting

value for smoothing iteration on M., once at the end of the iteration as

a final correction. The algorithms in this chapter and other multi-level

algorithms in the literature use approximate solution of the equations

for M,I more often. After obtaining a starting value from Nij-l' the

accepted solution is obtained through a sequence of multi-level (outer)

iterations. Each of these outer iterations consists of a number of

smoothing (inner) iterations on Mi, followed by approximate solution of

a related problem in MJI. Thus, approximate solution of the related

problem in M1_I is required an indeterminate number of times depending

on how far the outer iteration on Mi is carried.
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This kind of algorithm is somewhat more complicated than that

of chapter three. However it made sense to analyze the application of

this kind of algorithm to locally refined grids rather than the

application of algorithms like those in the last chapter for several

reasons. The main one was the desire to establish the optimal order

convergence of an algorithm as close as possible to those being used

in practice. This was more fully accomplished than it would have been

if we had examined algorithms more like those in chapter three. It

might also be pointed out that relatively little of the complexity

of this chapter is caused by the choice of algorithm.

Description of the algorithms here and analysis of their

convergence properties will involve the eigenfunctions and eigenvalues.

Following the notation in chapter three let N. be the dimensions of M.,3 3

I I < . Then for the problem (2.1.3) we have eigenfunctions

S}i in A. and eigenvalues j  satisfying

( t) J0)(wiJ) 4) d E M.
I i i 3

Since more than one finite element space may be involved in our

considerations, we will retain the superscript j. As in chapter three

we may replace the L2 inner product by the bilinear form b.(, ") defined
3

there, where we now use the subscript j to keep track of the finite

element space in {MI giving rise to this bilinear form. With this

replacement we have as before eigenfunctions { J)}i and eigenvalues
i 1=

(Ji)}i I satisfying

a( j ) ,  A ( ( 0 ) , ) M

As usual we assume the eigenvalues are numbered in order of increasing

magnitude;
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0< ) < X J) < .< X()
0< - - - NJ

o< < < .<
1 - -• - N.J

For both of the algorithms considered in this chapter the basic

multi-level iteration is the same. In both cases each outer iteration

consists of a sequence of smoothing inner iterations followed by

approximate solution of a related problem in a coarser finite element

space. The difference between the two algorithms will lie in the manner

of solving these related problems. In order to obtain a solution in a

member M k > 2, of a family [M } of locally refined spaces,
k9 ' j= jl

multi-level iteration will need to be applied to all of the spaces

k j=2; thus, the iteration will be described for any space M. ini 2

j j=l •

Beginning with a trial solution u lj ) in M. the outer iteration
O,n J

produces a sequence of iterates {u(J)}' converging to the true
on n=1

discrete solution u in M . Each of these outer iterations is

similar to the algorithm of the last chapter. Beginning with a trial

solution u(j) E M. an outer iteration produces an improved solutionsolut oo,n  3

u (j )  given by
O,n+l

u(J) u(J)
0,n+l =m+l,n

where fu(j)I m + l is a sequence of inner iterates. All but the last of
Z,n Z=l

these inner iterates are generated by a simultaneous displacement

smoothing iteration on I . The last uses a correction based on the
*1

approximate solution of a related problem in the coarser finite element

Space M . More precisely, beginning with a trial solution u (j ) G Mjsa O,n '

an outer iteration consists of the steps:

" 6g . . .. . . . . . . . . . .. . . . . . . . .. .. . . . . .
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1. For Z =1,.., m define u£, n E M by

(4.3.1) bj(uZ n -uZln' 0 =

I (a(uln, ) - (f, G)) , ( E M

N.
J

2. Letting v E be given by

(4.3.2) a(v, () - a(um, ) - (f, ) , pEMj 1

let v be an approximaticn to v and set

(4.3.3) Um+l,n =Um,n -V

The quality required in the approximation of v by v will be specified

in theorems 4.1 and 4.3.

The intuitive meaning of these two steps is that in the first

the more oscillatory components of the convergence error are rapidly

reduced by the smoothing iteration. In the second step the smoother

components of the error, for which the simultaneous disp'acement

iteration is ineffective, are reduced through approximate solution of the

related problem (4.3.2). Consequently convergence will be rapid for all

components of the error.

To make these considerations precise, let e E (0, 1) be an

arbitrary parameter. Let J(6 ) be the integer such that

J) < e AM for i < J(O)

J) > 6j X( j ) for i > J(6 )' N1

Similarly let J(O) be the integer such that

.1t
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Q) ej N for i < J(8

(J) > e.j) for i > 3(0)

Then we can define the subspace S. 0. . 1. of M. byJ J J J J

S. = span {MJ) i < J(e.)}J I - j

0. = span {J) i > J(e.)}

= span {(J) i < j(e.)}

0. = span {i i > J(0.)}

The spaces S. and S. consist of relatively smooth functions while 0.J J J

and 0 contain more oscillatory functions. For any 0 E (0, 1) one has:

Ji j s(D0 j JD J

i, fact, 0. is the orthogonal complement of S in M in both the energy

and L' inner products, while 5. is the orthogonal complement of S. inJ J

energy and the inner product b °, ).

For the time being only the subspaces S and D.j will be important

in analyzing the convergence of the multi-level iteration (4.3.1)-(4.3.5),

since the approximation question involved will be deferred until sections

4.5-4.7. There S. and 0. will play an important role. To establish theJ J

rapid convergence of iteration (4.3.1)-(4.3.3) we will show that error

components in the oscillatory space 0 are rapidly red,"ed in step 1,

while components in the smooth space S are reduced in step 2.

The multi-level iteration (4.3.1)-(4.3.3) differs from that

in the Bank and Sherman adaptive finite element code primarily in the

smoothing inner iteration used. Their code uses a symmetric Gauss-Seidel

-4 - im
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smoothing iteration rather than the simultaneous displacement iteration

used here. While comparisons for quasi-uniform grids have shown that

the choice of smoothing iteration is not very important, Brandt (1977),

Bank and Sherman (1979), for locally refined grids the choice is significant.

In Fourier terms, the iteration (4.3.1) rapidly annihilates Fourier error

components whose wave length is comparable to h., the finest mesh spacing
J

of M.. Away from 2V the most refined region, this iteration has little
J

effect. The reason for this is that the residual on the right hand

1
side of 4.3.1 is multiplied by the constant factor - 1 . By contrast

Nj

in Jacobi or Gauss-Seidel iteration each component of the residual is

multiplied by the inverse of the corresponding diagonal entry of the

stiffness matrix. In other words, in these latter cases the scaling

2 2
factor looks like -Chloca rather than -ch., where h loca is a function

which takes on a different value for each component of the residual

vector, depending on the size of the corresponding elements. As a

result of this difference, the smoothing iteration used in the Bank and

Sherman code is effective everywhere on the grid, rather than just on the

most refined parts. This is important in their code since they a'low

any element of M,_I, J > 2, to be refined in creating a finer space Mj.

We do not, and the simultaneous displacement iteration considered here

is perfectly adequate in this simpler case.

The choice of smoothing iteration is intimately connected with

the decomposition of M. into smooth and oscillatory components. TheI

decomposition here, M = S 0 , is natural only for simultaneous

displacement iteration. The hard part of the analysis here is the

approximation question involved in demonstrating the effectiveness of
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step 2 of the multi-level iteration (4.3.1)-(4.3.3). For the decomposition

Ali = Sj ( D ' and the case considered here where only the finest elements

of Mj_ I are refined in creating M., this approximation qu stion can be

answered. The author was unable to handle the more general case where

any element of Mj_ 1 may be refined.

Though this approximation result will not be shown until

section 4.6, we now state it since it is needed for the analysis in

this section. Let {M.}- be a family of locally refined spaces

satisfying the assumptions of section 4.2.

Let j > 2 and 0. E (0, 1) be arbitrary, and for any- 3

S i let r E Mj I be given by

a (j-0Ml-a(fl - rq, ) 0 0, E AlM.1 ,

that is, 7 is the elliptic projection of ri onto Mj_ I . Then

(4.3.4) II1 - 111 < c 14 IIInI

where c0 > 0 is independent of j, e., and q. This inequality, which

is the main result of this thesis, shows that eigenfunctions (J) in

M whose eigenvalues are relatively small can be well approximated in the

coarser finite element space Mj_ I .

With these preliminaries behind we are ready to consider the

first convergence theorem for the multi-level iteration (4.3.1)-(4.3.3).

This theorem is the same as one found in Bank and Dupont for the case

of quasi-uniform grids and is similar to theorems proved by Nicolaides,

Hackbusch, and others. Our notation largely follows Bank and Dupont

although there are some differences.



68

Theorem 4.1. There exists y E (0, 1) and a positive integer m, both

independent of j > 2, such that if the approximate solution v of

(4.3.2) satisfies

(4.3.-)) I;!v  - VIII < y2 .11, ~ ,

then

(4.3.6) IIIum+l,n - u(J)III _< Y llun - u(J)III

Except for our use of (4.3.4) rather than a similar inequality for

quasi-uniform grids, the proof of this theorem is identical to the

proof of the analogous theorem for quasi-uniform grids given by Bank

and Dupont.

Proof. Let 6j E (0, 1) be free to be chosen later and consider the

decomposition of Mj:

M= s G

Let e. , 0 < k < m + 1, be the convergence error,

e. u, n

since the second subscript on u plays no role in the theorem. Then

e9 = l + 2.

for some n E S and 9 E 0. Expanding e0 in eigenfunctions,

Neo a i pi )'

i=l

we have for k. 0, 1,..., m,

N X J)
e 1 1J)

N"
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by (4.3.1). Thus,

Ill 11 2 N 2(1  - 2m 111 2

N N

2m N 2 (j)
S i=J(0)+l

so

IIIEmllJ _ (1 8 j)m  IffR oIII -(I - j o )m illeoilll

1I1TImlll _< II11 < II1%111I

Let and rT be the elliptic projections on M_ of m and n., respectively,

a(E - m' ) = 0 , c EM

a - m, ) = 0 , C E M

Since is the projection relative to the energy inner product

[ll[ - mll[  < I[] mll[ < I - Oj leo[[[

and by (4.3.4)

11I-1- nm III C c0 1/4 T IIr l < c08 1/4 Illeo~ll(

Since v = + and e = rm + Cm

em - Vll < 1/4 I1le I1l + (1 - 0 )m illeoiii -II1 - 011 1<C~

Then since em+I = em -v,

III e, l II < Ie_ - -ill + II1v - Viii

< C 1 4 iileolll + 1 ) Illeo0l1 + Y2 IliIll

by the hypothesis of the theorem. Since v is the projection of em on MJ I

i -l
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IIIV11 <l Ille m I < II1e% 111

Thus,

(4.3.7) Ije,+l[I[ < (c01/4 + (1 - .)tm + Y2) II[e0I[[

To complete the proof, let y E (0, 1) be such that

2 I
3

Then choose 0. E (0, 1) such that
3

0 j 3

and finally m such that

(1 - <j 3
J 3

Since these choices of Y. 0e and m are independent of J, the proof

is complete. 0

Inequality (4.3.5) in this theorem is essentially an induction

hypothesis. Suppose that for fixed J0 > 2 using iteration (4.3.1)-(4.3.3)

with j = J0 causes the energy norm of the convergence error to be reduced

by the factor y E (0, 1) according to this theorem. Also suppose we

have an arbitrary iteration on Mo which reduces the energy norm of the

convergence error on M J0I by the same factor y E (0, 1) at each iteration.

Then this iteration on M can be used to approximately solve the

related problem (4.3.2) on MjO_I arising in using the multi-level

iteration (4.3.1)-(4.3.3) on MJ0. Beginning with the trial solution

v0 = 0

in M the iteration on MJ produces a sequence of iterates {v 0

MO 1. 2O z9-0

satisfying

IIIvz - V11I tII 1 1 •I I
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Thus, two of these iterations on MjoI would be enough to satisfy the

hypothesis (4.3.4) of theorem 4.1.

According to this theorem the constant y G (0, 1) by which the

energy norm of the convergence error is reduced per iteration of

(4.3.1)-(4.3.3) is independent of j > 2. It follows that if j0 - > 2

the iteration on M can be taken as the multi-level iteration

(4.3.1)-(4.3.3) with j = j0-1. In this case we must solve in turn

related problems on M. j Again this can be done recursively with

iteration (4.3.1)-(4.3.3) if j0 -2 _ 2.

To make these ideas clear, we may consider the following

informal procedure. Calling this recursive procedure with j = Jo

causes n of the multi-level iterations (4.3.1)-(4.3.3) to be carried

out on M.

JO

Procedure Outer 1 on M. (n)
_______ _ -- -J

If (j = 1) {solve the equations on M. directly; then returni

else {repeat n times{

1. do m smoothing inner iterations on M. according to (4.3.1).
J

2. approximately solve the related problem (4.3.2) on M I

by calling Outer I on J 1 (2); then make the correction (4.3.3).

return

The computational cost of this multi-level iteration, which

will be analyzed in the next section, depends on the dimensions of the
k

spaces M Ik.  In order to have a cost per iteration proportional to

the number of unknowns, the cost of the smoothing inner iteration on

'I
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M. must dominate the cost of recursively solving the related problems onJo

the coarser spaces. This will only be true if the dimensions of the

spaces [M}= 1 grow fast enough. Since these dimensions will grow quite

slowly for many families {M.I of locally refined grids th. presentsj J=l

a problem.

To ameliorate this difficulty, we consider now a second

approach to solving the related problem (4.3.2) in the multi-level

iteration (4.3.1)-(4.3.3). This second approach is based on a slightly

sharper version of theorem 4.1. First we require a simple algebraic lemma.

Lemma 4.2. Let x,y be constants in (0, 1). If m is given by

then

(1 - x)m < y

Proof. We have

(i - x)m+l - X

> (m + l)(l - X) m

so

m+l m( - x) -i < -x(m + )(- x)

Then

- M4-l m m
1> (i x) + x(m + l)( - x) = (I + mx)(l- x)

so

(i-x)m < (1 + mx) - I < (I + -- ) - =y •
y
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Using this lemma, we can show the following theorem, which for

our purposes improves on theorem 4.1. All notation is as before.

Theorem 4.3. Let r E (0, 1) be fixed and let y E (0, 1) and j > 2 be

arbitrary. Then there exists a positive integer m independent of j

such that if the approximate solution v of (4.3.2) satisfies

(4.3.8) iiv - vi1H < r y I'Iv-i ,

then

(4.3.9) I1Ilum 1  - u )II 11.0 - u j I

Moreover, m can be chosen to satisfy

(4.3.10) m < m0 Y-5

where m0 > 0 is a constant independent of j and y.

Proof. The proof is the same as that of theorem 4.1, except for the

choice of the parameters m, 0., y at the end of the proof. Instead of

inequality (4.3.7) we have

(4.3.11) IlIeT/4+ (1 - )m + ry) lleoII
m~l 11 < (~e1

2
because the factor ry in (4.3.8) replaces the factor y in (4.3.5).

Since we wish to show

,.,1/4 )mc0O + (1-e)j +ry < y,
0j j

it is enough to choose e0 and m such that

c001/4 + (1-.) < (I- r)y
0o J -

For convenience assume c0 > i, without loss of generality, and define

y by

(i- r)y
y = 2c0
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Then we may choose e as

81/4
j =

and m as

Using lemma 4.2,

c1/4 )m (l - r)y (1- r)yCo. j  + (1-8.) < + <( ~
0 j) - 2 2c0

establishing the first part of the theorem. For the second part we have

m_ = Y5 = 0(Or)5 y-5

S 2c0  5 -5

2c0 5 -5

completing the proof. 0

Using this theorem, we can now analyze a modified version of the

multi-level iteration given. This modified iteration will be the same

as (4.3.1)-(4.3.3) except that m, the number of smoothing inner iterations,

will now be made to depend on the level, j. In applying this modified

iteration to M, J > 3, the related problem in M will be solved by

doing only one of the modified outer iterations on M JO_. However, to

adequately solve this related problem on MJoI using only one outer

iteration, rather than two as before, the number of smoothing inner

iterations must be increased.

-m
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An informal statement of this modified outer iteration

follows. Calling this procedure with j = j causes n multi-level

iterations to be performed on M. . Here m(', ") is an integer valued
JO

function to be given following the description of this procedure.

Procedure Outer_2_on M. (n, j0)

If (j = 1) {solve the equations on M, directly; then return}

else {repeat n times{

1. do m(j, j0 ) smoothing inner iterations on M. accordingJ

to (4.3.1).

2. approximately solve the related problem (4.3.2) on Mj-1

by calling Outer 2 on Mj_1 (1, j0 ), then make the

correction (4.3.3).

return

It remains only to choose the function m(-, -) required by

this procedure. Let r E (0, 1) be arbitrary and let m0 > 0 be the

corresponding constant from inequality (4.3.10) of theorem 4.3. Also, let

YO E (0, 1) be arbitrary. Then we may set

(4.3.12) m(j, j0 ) = Imo y-5 r Ol

Since the argument needed to show that the multi-level iteration in

Outer_2 converges rapidly is somewhat more complex than that for

Outer 1, we state this as a theorem. Let fu I W be successive
t t pOn n=1

iterates produced by the multi-level iteration in Outer_2. Then we have
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Theorem 4.4. Let j0 > 2 be arbitrary. Then with m(,, .) given by

(4.3.12) the iterates {u n} satisfy
0,n n=1

IIlUo,n1 I - u )111 YO NIU0,n - u

for all n > 1.

Proof. In order for each outer iteration on MJ0, >0 > 2, to reduce the

energy norm of the convergence error by the factor yo, according to

theorem 4.3, it suffices to do m of the inner iterations (4.3.1) on

M. for some
Jo

-5
m <m0 YO

and then approximately solve the related problem (4.3.2) with relative

accuracy r'0. Examination of (4.3.11) shows that doing extra inner

iterations never hurts so the choice

m = m(j0 , jO) Im 0 YO5

is fine. Thus, for the case where j0 = 2 and the related problem on

M is solved directly the proof is done. Otherwise, we solve the

related problem on M with one outer iteration. Choosing y = rY0

in theorem 4.3 it suffices to do m inner iterations on M for some

m < m0 (ry 0 )-5

and then solve the related problem on MJo_2 with relative accuracy

2
r y0 . Doing

m -(J 0 -1, Jo) = 0  5 r- 5 ]

inner iterations is certainly sufficient, so the proof is done for

jo= 3. Continuing the induction in the obvious way completes the proof. D

.4i
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The computational cost of the multi-level iterations described

in this section and construction of an attractive overall algorithm

for obtaining solutions to the elliptic problem (2.1.3) will be

considered in the following section.

4.4. Complexity

In this section an estimate of the computational cost of the

multi-level iterations described in the last section is given, and these

iterations are then used as building blocks for computationally attractive

algorithms for solving finite element equations on locally refined grids.

Under certain restrictions these algorithms will be shown to be of

optimal order, producing a good solution to the finite element equations

for M k > 1, in O(N k ) operations, where Nk is the dimension of the

finite element space Mk. This complexity analysis is somewhat harder

than the corresponding analysis in chapter three, since the complexity

of the multi-level iterations in the last section depends on the

dimensions of the finite element spaces Mk= used. This complication

was absent from the last chapter, since for the family {M}.= of

qriasi-uni.form spaces there, the dimensions of the spaces were essentially

dterrined by the dimension of the coarsest space MI and the mesh ratio p.

A second minor difficulty also arises in proving the optimal

r', ! onvtrgence of the algorithms here. A multi-level algorithm is

r,.d to he of optimal order if, when applied to any finite element

..'I " it produces a good solution (k) in O(Nk) operations.

, ", cood solution" means, an error bound applicable to

i, i- noeded. We na)w proceed to derive such a bound.

t.itt t li error bound derived not be overly



78

pessimistic. If it were, the results here would be correspondingly

weakened. To have shown a multi-level method produces a solution

containing a convergence error smaller than the expected truncation

error means very little if one expects far more truncation error than

actually results.

Only a simple error estimate is required here. Such an

estimate can be derived directly from the Bramble-Hilbert lemma. First

we need the notion of a Sobolev seminorm. Fork a non-negative integer,

the seminorm 1.1' is the same as the Sobolev norm 111 j except that it

contains only derivatives of order 2, not those of lower order. That

is, for u E H (Q),

lul z = I au 12 )i 2

I=H (L)

Just a for the Sobolev norm, these seminorms can be defined for

non-integral 2 in a more complicated way.

Now let M be a finite element space of C Lagrangian elements,

based on a triangulation T of Q and satisfying conditions (4.2.1)-(4.2.5).

Suppose the element trial functions are polynomials of degree k - 1.

Then M is said to be a finite element space of degree k. For

u H(p), 1 < k < k, the nodal interpolant u1 E M of u is well defined
E _

and we have

Lemma 4.5. For any triangle T E T and for s = 0, 1

iu - u11 s - d ks Iul z
HS(T) s T H(T)

where dT is the diameter of T.

. . .. . • I II I
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The variable Z here need not be an integer. This lemma is a special

case of the Bramble-Hilbert lemma, which may be found in, for example,

Strong and Fix or Oden and Reddy.

Applying this lemma to the spaces in a family {M } of
j j=l

locally refined finite element spaces satisfying the assumptions of

section 4.2 yields the required error bound. Assume that the

differential equation (2.1.3) is H regular for a E (0, 1), that

is, that its solutions lie in Hl . Then the following error estimate

holds on M., j > 1.

(j

Theorem 4.6. Let u ( j ) be the finite element solution of (2.1.3) in

M. . ThenJ

(4.4.1) LIu u(j) II < cO( 2c' 1.12 )1/2

- T. 
d  I+ (T)J

where c0 > 0 is independent of u, j, and the family of locally refined

spaces {M.= I

Proof. Let u be the interpolant of u in H.. Then
I j

fllu- u(J)IIll= min lllu- vlll < fllu-u (JIlll
vGM. - I

Since the energy and H norms are equivalent,

(4.4.2) 1u -u J) III < , lu - u(J)IHI H .

Applying the above lemma oni each triangle in T,

a- (J)2 2  E d 2(1+1) l 2

II]-U~ 1 I 2 0 T l+ct1 () - 0 TE. H (T)

JS

'4l -
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- E . d2a 2
-H I T H CT)

Thus,
<j)c2 *2" 2

flu- u Q )fi <C E dr  lul+a
I H 1 (Q) 1ET T H 1(T)J

2 2 2for c max{a a 1, assuming dT < I for all triangles T E T. Now

combining this with (4.4.2) the result follows. 0

Since this bound contains dT, in effect the local mesh parameter,

it is much tighter for locally refined grids than bounds in terms of the

maximum element diameter. Moreover, the exponent of dT here is optimal.

For sufficiently smooth u the reverse inequality, bounding the error

from below, may be expected to hold although this is difficult to show.

Establishing that the multi-level methods of this section produce

solutions whose convergence error is comparable to the truncation error

expected from this error bound may be regarded as more than adequate for

most purposes. In particular, for problems with singular solutions

the improved convergence of finite element spaces using the proper

locally refined grids may be readily shown using this bound. The

multi-level algorithms here will inherit this improved convergence to

singular solutions on properly refined grids.

With this error bound established we are ready to turn to the

design of multi-level algorithms for solving the elliptic problem (2.1.3)

on locally refined grids. Let {M'}co be a family of locally refined
j J=l

finite element spaces satisfying the assumptions of section 4.2. The

(k)
algorithms we wish to consider will produce a good solution u in any

number Mk of this family, k > 1. The first step in these algorithms is

A

. __ .- .. .. ... , .. . . . . . ... . . . .. . . . . .
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to solve the finite element equations for M directly to obtain an

approximate solution uil) to the problem (2.1.3). After this, solutions

J) E M ., 2 < j < k, will be produced, each a good approximate solution

of (2.1.3). Each solution u(, 2 < j < k, is obtained by beginning

with the previous soiution u(j-) E 6
j-l' considering it instead as a

function in M., and then carrying out a sequence of multi-level iterations
J

to obtain the improved solution ) M.. This multi-level iteration

may be taken as either of the algorithms of the last section.

Two questions arise immediately: what conditions must the

-(k)above process satisfy in order to obtain an accurate solution u

and what determines the computational complexity of this process? With

the error bound (4.4.1) already proven, the first question is easier.

We wish to obtain a solution i(k) which contains only convergence error

comparable to the expected truncation error. That is, we want the

convergence error to satisfy

Ilu ( k) - u(k)l, < d"( Z lu2 )1/2
- 0Ek T  

HIc (T)

In order to have an algorithm whose solution u(k) satisfies this

inequality, it is convenient to ask that the intermediate solutions

u(J , 1 j _ k - 1, also satisfy this type of inequaltiy. That is,

for < j k,
MZ d2, u2 )1/2

(4.4.3) coi ) - uT)IH H CoC ( 2 CT) )l/2

A simple condition insuring this is given in the following theorem.

I,
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Theorem 4.7. Suppose that a (1) satisfies (4.4.3), and for 2 < j < k

(4.4.4) Ili ( j )  - u(J) III < (1 + 2 1+ ) - I  
1 c-l )  - uM

Then (4.4.3) holds for 1 < j < k.

Proof. By assumption

111 ) - u(1)IIJ < C(~ d u2 1+ 1/2

H l+(T)

Now inductively suppose

ilia ( j )  - u(J) III < co( E d T 2c [u, 2 , )1/

- T. H (T)

for some j, 1 < j < k. Then

Illia (0 )  - ulll < Ilia Q )  - u(j)l I + IIlu (1)  -ulll

so

iliauMJ- ulli < 2 c( E d 2 o uI2I()I/2
0TETiT H IC T)

using the error bound (4.4.1). Then, since

2aT T 1~~)/2
Illu ( j+l ) - ulll < co E d2  H ul2 )/TETj+l

we have

(J E d20L I2 )1/2

(4.4.5) iliau ) -u(J+l) IIi < co dT  HauH T)

+ 2co( E d 20I u2 1/2

H (T)

Now let T E T and let ST be the set of subtriangles of T in T1 +I.

That is S consists either of T or of the two or four triangles formed
T

by refining T. Then we have the following relations.
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d T < 2 dT, T' G- ST

u 2 =~ Iul 2 1
H (T) T'ES T H1+ (T')

Applying these to (4.4.5) yields

_ 2a 2 1/2llK (  
- u(J+l) l < 0( Z dr  u

0 TETTj+I HI+a (T)

+ 2c 0( E E (2dwT)2a 11u12 )+C 1/2
c ETj T'ES H (T ' )

2a /1/2

Sc 0(1 + 2(2)- ) ( E d T  ua
T j+ HIuH (T')

Finally, making use of the hypothesis (4.4.4) the induction is complete. 01

The dependence of this result on the regularity of the problem

will affect the complexity of the multi-level algorithm here in an

interesting way. Consider the construction of such algorithms based on

-(1)
this theorem. As described above, after obtaining uI by solving the

equations for M1 directly, approximate solutions u(
j ) e Al., 2 < j < k,] -_ _

are obtained by iteratively improving the previous solution u E- ) E MjI.

The amount of iterative improvement required is given by (4.4.5). If the

problem is HI+  regular, we must reduce the convergence error by the

factor ( + 2I+  - in going from t(j-l)o The interesting point

here is that more error reduction is required for smoother problems.

Sine, the regularity did not enter the convergence theorems of the last

section, obtaining a given amount of reduction of the convergence error

is apparently no easier for problems with smooth solutions than for

problems with weak regularity. Thus, the computational cost per element

of the algorithms here will be greater for problems with smooth solutions.

q 8 . . . .. . .•. - _ _ L-
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Of course, there is no real dilemma here. The algorithms

here produce a solution satisfying (4.4.5). Since the finite element

solution u (k ) satisfies (4.4.1), the approximate solution produced by

the multi-level algorithm must satisfy

I~i<(k) - EI d 2a ju2 )i/2

0 TE Tk T H 1a(T)

a much stronger inequality for large Ct. Thus, even though one must work

harder per element for smooth problems, it will still be cheaper to

produce a good answer.

Now we are ready to consider the design of multi-level

algorithms based on theorem 4.7 and the multi-level iterations of

section 4.3. The multi-level iteration used may be that described in

either procedure Outer_1 or Outer_2. In either case the dimensions of

the finite element space {M I}C l will be of central importance. If N.
j j=lj

is the dimension of M., j > 1, optimal complexity bounds can be shown
J

under the assumption that the dimensions {Nj}. 1 grow at least

geometrically. That is,

(4.4.6) N > 6N. , j 1 1
j+l -

for fixed 6 > 1. Actually, this can be weakened slightly. It is enough

that we have a sequence of numbers {x }j growing at least geometrically,

j j=l

x j+ 1 > >

for 6 > ], and that N and x are comparable,
j j

1
- x < N < c x
c -i- j

for fixed c > 0. For simplicity, assume that (4.4.6) holds. Using either

of the multi-level iterations of section 4.3, the storage required to

S.
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approximately solve the finite element equations for Mk9 k > 1, can be

estimated as follows. Let cI be the storage required for direct

solutions of the equations for M . Then the total storage required

is proportional to

k k
E N. + c I < Nk  E j-k + c

j=2 - j=2

<N 1

<-- k 1-- 1

Since c1 is fixed, for any 6 > I the storage required is proportional

to Nk '

Next consider the use of the multi-level iteration described

by procedure Outer_1. According to theorem 4.1, when this multi-level

iteration is applied to M., j > 1, the convergence error is reduced by
J

a factor Y at every iteration, where y < 1 is independent of j.

Actuall. the proof of theorem 4.1 shows Y can be chosen arbitrarily,

though this is unimportant, since for any y < 1 we can find v > I

such that

v 1+y < (I +2

Let y < I and an integer v satisfying this inequality be fixed. Then

according to theorem 4.7, a solution (k)n k satisfying (4.4.5) can

be produced by carrying out v of the multi-level iterations described

by Outer_] on each space M., 2 < j < k. For each Mi. 2 < j < k, the

approximate solution produced in the next coarser space MJ I is used

as a starting value for this iteration. To estimate the complexity of

this procedure, note that in applying Outer_1 to M., j > 2, O(N )

operations are required plus the cost of recursively solving the related

.4I
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problem in M,_, . This related problem is solved in Outer_1 applied to

MV by recursively applying Outer I twice to the equations for M. if

j - 1 > 1. Continuing the recu-slon one sees that the total cost in

doing ,) multi-level iterations of this tvpe on the equations for M. isJ

proportional to

J
S j - i N. + 2 j-1 2 j-i ()j-l c2 )

i=2 i-" J i=2

where c2 is the cost of solving the linear system for M 1. Since c2 is

a fixed constant, the computation time T(M.) to do V of these multi-
J

level iterations on M. must satisfy
J

O(N.) 6 > 2
3

T(M.) < O(Nj log (N,) , 6 = 2

log 2

(N. log 6) 1 < 6 < 2.

Then following the procedure described above where the approximate solution

I (k)
(k in Mk is obtained by successively obtaining good solutions in

Mi, I < < k, the total computation time T to obtain a(k) must satisfy

k(N k) , 6 > 24
k62

T = E T(Aj) < (Nk log (Nk)) , 6 = 2
- k

log 6

(Nk ) 1 < 6 < 2

For many problems a bound like this is quite adequate. For

example, in doing local refinement along a plane singularity or boundery

in a three dimensional problem, the dimensions (N )I would at least 4
jj=

quadruple at each level. Since the two dimensional results here

readily extend to three dimensional problems, this example is important.

In other problems, for example, refining along a line sigularity in two

'Z4 -
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or three dimensions, the dimensions typically only double at each level,

yielding the N log (N) bound. Stil' other problems arise for which the

growth of these dimensions is even slower. In refining around point

singularities, these dimensions will usually not grow geometrically,

and the results of this section are of little use. This does not

necessarily mean that multi-level methods should be avoided in these

cases, only that theoretical results showing their effectiveness have

not yet been given.

When the dimensions of the spaces M. grow geometrically

according to (4.4.7), but the rate of growth, 6, is not greater than

2, the complexity results above can be improved by replacing the

multi-level iteration given by Outer_1 with that given by Outer_2.

In equation (4.3.12), governing the number of inner iterations used on

each level in Outer_2, we are free to choose both y0 and r. For

convenience, y0 may be chosen as

Y0 = (I + 21+ -

With this choice in applying Outer_2 to the equation for Mj,
0 (o

2 0 k, only one iteration of Outer_2 is needed to get (j 0)

satisfying (4.4.4) from u . The other free parameter, r, in

(4.3.12) will be chosen as

r6r = 6

Then for any 6 > 1, r E (0, 1), so theorem 4.4 shows that applying the

multi-level iteration described by Outer_2 to Mj0, 2 < Jo < k, reduces

the convergence error by Y0 per iteration as required. From equation

(4.3.12), governing the number of inner iterations on each level, we can

-m I
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(J 0 ) ~(J0-)
estimate the computation time to produce u from u 0 Jo > 2.

This time, T(Mj ) is proportional to

Jo -5(J0-j) J0  r-5 jo-i
E r N, + c2 < N. + (c)

j=2 3 2 J0 j=2 2

jo 1
< N. Y. (6 6)J0-J +c

C1

< N. (1 - 6 )- + c

Thus, the amount of computation required to produce 0 from u

j0 > 2, is 0(N. ). Then, since
0-0

k ( 1-
E N. <N (1 )

j0= 2 J 0 --

for any 6 > 1, the total computation time is 0(N k).

This is an optimal bound, showing 0(N) complexity under the
00

weaker assumption that the dimensions {N },=, grow geometrically, with

any growth rate 6 > 1. Unfortunately, the dependence of this 0(N) bound

on ' is quite severe, though this could be improved by choosing the

varfous constants differently, and by using a more effective inner

iteration. The hidden constant in the 0(N) bound just given contains

not only the factors (1 - 6- ) and (I - 6) seen above, but

also the constant m of (4.3.12), which depends indirectly on 6. By
0

the proof of theorem 4.3 it can be seen that m0 goes as

S
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_1
(il-r) - = (i- 6)-5

Thus, including the dependence on 6, the complexity bound is

1

O((l - 6 6)-6 (1 - 6-1) - 1 N).

While the factor (I - 6-1/6) -6 (1 - 6-1) - 1 already exceeds 106 for

6 = 2, in practice one would expect the dependence on 6 to be far

less severe than this, although the appropriate numerical experiments

have not yet been carried out.

This completes the analysis of the algebraic aspects of the

multi-level algorithms of this chapter. It remains to prove the

approximation result (4.3.4), on which the complexity results just

given Pre based.

4.5. Interpolation

This section begins the analysis of the approximation properties

of locally refined finite element spaces needed to justify the convergence

and complexity results of the last two sections. For convenience this

analysis is split into two parts. The first of these, given in this

section, deals with properties of the interpolation mapping from M . to

j-l' j > 2, for Mi, Mj_ I members of the family {M} I of locally
_-1 j - j.1

refined spaces. The second part of this analysis, given in the

following section will use the results of this section to obtain the

required approximation theorem.

While the analy:is in the next section is completely general,

the analysis here is specific to the C triangular elements and grids

based on aligned triangulations helng considered. However, there is no

reason to believe that similar results could not be shown for more general
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grids and for most common elements including triangular elements with

higher continuity, square or quadrilateral elements, and elements with

curved edges. The results h~re were not proven in greater generality

primarily because it did not seem to aid understanding of the multi-level

algorithms here and because the notations and arguments required would

have been burdensome to both author and reader. Proof of results

analogous to those in this section for most reasonable finite element

spaces is not difficult.

The work in this section is closely related to the work Bank

and DUpont did in analyzing their two-level scheme discussed briefly in

section 4.1. Much of the notation here and one of the lemmas, lemma 4.10,

are taken directly from their paper. The difference here is mainly in

emphasis. While lemma 4.10 plays a fairly small role here, it is

central to the convergence proof for the two-level scheme in their

XaPOer. Lemma 4.11, which is not from their paper, is really much more

,n L ra1 here.

The reason for considering first the interpolation mapping is

the u] one: while projection with respect to the energy inner product

>i g'obal, interpolation gives a local projection more easily analyzed.

"t t te, two mappings are su~f ic ient ly alike that propert ies ,f on can be

derived from the other. This is a common point oF view, but the way in

which properties of the elliptic projection are derived her from the

interpolation projection is unusual. Instead of bounding the approxf-

mati(,n error in the interpolate and using this as a bound on the

approximation error in the elliptic projection, w, ho in bv est .ibiishing

prp,.rti , of the null space of the interpolation mapping. From tit, so
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properties, in the next section we will derive properties of the null

space of the energy projection. Finally these lead to the required

approximation result.

This proof may seem circuitous, but the author was unable to

establish an approximation result such as (4.3.4) in any other way.

The problem encountered with the usual finite element approach is not

hard to see. Since elliptic projection is global, an error estimate,

such as theorem 4.6, for a locally refined space M, must involve the

maximum element diameter h max . However, the eigenvalue bounds involve

hmin. Thus, one will be able to prove inequalities such as (4.3.4) but
hmax

the constant c occuring will contain some power of the factor hm

min
This factor becomes unbounded for the locally refined grids being

considered, so such a result would be too weak to prove 0(N)

complexity bounds like those in the last section.

Since the finite element spaces considered in this chapter

are based on C Lagrangian elements, the interpolation mapping from M.

to MjI, j > 2, with M., Mj_ members of {Mj.=I, is automatically well

defined. For any u E M., u is evaluated at the points corresponding toJ

the nodal parameters of Mi I . Then there is a unique uI E Mj-1 attaining

the same values at these points. One of the problems encountered when

using elements with higher continuity is that this interpolation may not

be well defined. There are, for example, C0 elements using first

derivatives as nodal parameters and almost all C1 elements use second

derivatives. In these cases care must be taken that the nodes of Mi_ 1

lie at points where the corresponding values of functions in M are

well defined. In those rare cases where nodal interpolation is not well

'I
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defined, more complex interpolation projections based on various local

averaging techniques must be used.

Now let M., j > 2, denote the null space of the interpolationJ

from M. to M_. M. is the subspace of M consisting of functions
J j-l- j j

vanishing at the nodes of Mj I . Much of this section and part of the

next are devoted to establishing properties of these null spaces. For

now we note that l. yields a direct sum decomposition of M.:

j. = M j.

This is easy to show, for example, by dimensionality arguments.

Besides the direct method of defining the interpolate

L I C Mj_ 1 of a function u E Mi. there is also a more abstract way which

we now consider.

The interpolation mapping from M to MJ_ 1 considered here

is completely local in the sense that the value of the interpolate

uI E Mi- 1 on a triangle T E Tj_ 1 depends only on the value of u E M.

on T. For this reason the interpolation mapping from M to Mj_ 1

decomposes into separate mappings from MAIT to Mj l'T for each

T E T,_I . Rather than considering separately each of the function

spaces M 'IT and Mj l'T as T ranges over M we can consider only a
i T -11Tj-l

few canonical function spaces on TR and the interpolation mappings

between these canonical spaces. These canonical spaces on TR can then

be transformed into the spaces M and M through the affine

transformation FT.

As in section 4.2 let L be the element trial space on the

reference triangle TR. We must consider three different refinements

of TR: regular refinement, green refinement, and the null refinement,
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in which TR is not altered. There are three possible green refinements

but we need only one, say the one with the new edge leading to the top

vertex.

Regular Green Null

Figure 16. Refinements of TR

Since each of these refinements of TR is a triangulation,

finite element spaces on each of them can be generated in the usual way

from the reference element trial space L.

Let KR be the finite element space on TR generated in this

way from the regular refinement of TR and let KG be the finite element

space generated by this green refinement. Null refinement just

reproduces L. All three of these spaces generated by refinement, KR,

K., and L contain L as a subspace. Moreover, there are interpolation

mappings IR9 I., and I from KR, KG, and L, respectively to L. The

last is of course just the identity on L. Just as for the interpolation

mapping from M. to MJI, we denote the kernels of IR and IG by KR and

KG, respectively. The kernel of I is the trivial function space {0}.

Now let TIE Tj_ 1 be arbitrary. In going from T,_I to T, the

triangle T is regular, green, or null refined. Consider the same type

of refinement of TR. Then there is an affine transformation

F TR - T carrying the subtriangles of TR generated by this refinement

to the subtriangles created in refining T. When T is regular or null

refined, any of the six offine transformations have this property. When

T is green refined two of the six affine transformations carry the green
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subtriangles of TR to those of T. The other four affine transformations

correspond to the other possible green refinements of T.

To see the importance of all this, let IT be the interpolation

mapping from MiIT to MjI'T and let F' be the dual of FT, carrying

functions on T to functions on TR

FT . (T) H (TR)

by

FT'(u) = u FT
TT

For each of the three types of refinement of T we get a commutative

diagram. For regular refinement we have

F'FT
L M j l 1T

I R ITT

F'
KR T MJIT

For green refinement we have

F1
L T M _11T

IG I IT

F1
KG T M J T

And finally for null refinement we have
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F
L T M jI1T

FL T M.T
t t'T

That these diagrams are in fact commutative is a consequence

of the fact that FT carries not only TR and its subtriangles into T and

its subtriangles, but carries nodes of T and its subtriangles into
R

corresponding nodes of T and its subtriangles. We omit the straight-

forward but messy verification.

The lemmas which follow just elucidate the properties of

these three commutative diagrams and the various function spaces involved.

The first result here shows that functions in L cannot well approximate

nonzero functions in KR or K G, the kernels of IR and I G . The kernel,

{0}, of I contains no nonzero functions so the question does not arise

there. The functions in KR and KG vanish at the nodes of TR while

nonzero functions in L cannot vanish at all nodes of TR. The results

follow from this and the finite dimensionality of all spaces involved.

For convenience define the interpolation

TrL: CO(TR) - L

The mappings I V IG and IL described above are just restrictions of

7L to the subspaces KR, KG  and L of C0 (TR), respectively.

Lemma 4.8. If w E KR or w E K , for any v E L
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(4.5.la) 11w - v2 > c IIwlI 2

(4.5.1b) Jw - vjHI(T) > c WHI (TR)

for c > 0 independent of v and w.

Proof. Let K = KR + KC. Then K is contained in the null space of n C

Since 'a is the identity mapping on

(4.5.2) R L = L

Now consider the functional

f(w, v) = 11w - vi2

defined on K x L. Let C be the compact subset

{(w, v): lIwli 2 Tvii 2 )

of K x L. Since f is continuous it attains its intimum of some (w0 , v0) E C,

but by (4.5.2) we have

Iiwo - v0ii 2 (TR) c >0

or

llwo v0l lL2 (TR) cwolL2(TTR )

Since f(w, v) is minimal at (wo, v0), (4.5.1a) holds on all of C, and

then on k x L by linearity.

For (4.5.1b) note that since the functions in K are continuous

and piecewise C , the only functions u E K for which lul I = 0 are the
H

constant functions. The only constant function in k is the function

identically zero, since R is contained in the null space of fL and the

function values at the vertices of TR are nodal parameters for L. Thus,

Noi-__,
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the seminorm '' is norm on K. Because of this, the verification of

(4.5.1b) goes through exactly the same as for (4.5.1a). fl

2For any triangle T C R , each affine transformation

FT: TR - T induces a dual mapping FT carrying functions on T back to

functions on TR:

F': H1 (T) - H1 (T )

by

F'(u) = u o F

T T

One can then ask for the norm of this dual mapping F' either as a

mapping from H (T) to H (TR) or from L 2(T) to L 2TR
) . For the H1

seminorm the answer is that jUlHITand ju 0 FTI are essentiallysemnom heanweristht lH 1(T ) TT1(T )TTR )

the same since the change in area over which .1H1 is computed and

change in the size of the derivatives are opposite effects and cancel

perfectly (in two dimensions). Only triangles T E Tj I are considered

in the following lemma both because they are the only ones of interest

here and because the requirements of section 4.2 force all triangles
in Ti-i to have diameter comparable to hiJl, simplifying the statement

of the lemma.

Lemma 4.9. Let T E TJ1I, j > 2 and let F be an affine transformation

from TR onto T. If u E H (T), then u* = u o F E H I(TR) and

(4.5.3a) lul < lu*l < c lul
c H (T) H (TR) H (T)

4 .. ..

'4 - - __ _ __ _ __ _ __ _ __ _ __ _ __ _ __ _
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(4.5.3b) I{lull 2 <h fiu*L 2 < c IluL 2

for fixed c > 1 independent of u, J, and T.

2Proof. F = Ax + b for some 2 x 2 matrix A and b E . Then as shown

in Oden and Reddy (1976, eqs. (6.167) and (6.168)), for any s > 0

(4.5.4a) IU*S <fJAfr Idet Al - /2 Jul s

< JJA-iJ Idet Al 112 lu*j

(4.5.4b) uls s (T)

where I AI{ is the spectral norm. Now let d and d be the diameters of

T and TR, respectively and let P_ and p be the diameters of the

inscribed circles of T and TR. Then as given in Oden and Reddy,

lemma 6.2, the following simple bounds on the norms of A and A- ' apply

dT

- TR

PT R

IIA-1[I < dT R

PT

We also have

area (T)
det A = area (TR)

The triangle T satisfies the angle condition (4.2.1) uniformly for

T E TJ-i and j > 2. Using this condition it can be shown by simple

geometric arguments that

q4 ... .... ... .
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d< Pc T - T

I d <pcTT
c R R

1 d2 < area(T) < c d2
c T-T

d2 < area(T R) < c d
2

c TR - R -TR

for c > 1 independent of T E T j- and j > 2. Then since d = 1 by

assumption it follows that

IIAII c dT

IIA-111 < c dT I

Idet Al112 < c dr

Idet Al- 112 < c dTI

Combining these relations with (4.5.4) yields (4.5.3a) and

1 'lull < dT Ilu*11 2 <c lull 2L( ) L(T)- L2(T)

Since

Sh3-<d < c h
c j-- T- j-1

by (4.2. ), and p = 2, inequality (4.5.3b) follows and the proof is

complete. 0

Lemma 4.9 above shows how the norm of a function u on a triangle

T is affected by transforming it to a function u* - u o FT on TR .

Lemma 4.8 showed that functions in KR or KC were not well approximated

by those in L. Combining these two lemmas we should be able to show

-- , | i i -- " '
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that for any triangle T, functions in k R0 F 1 or K 0 F are not
-T1.

well approximated by those in L o F This is equivalent to the
T

statement that for any T E Tj-i functions in AjI T cannot be well

approximated by those in M. _IT' since M IT is either {0}, KR 0 -1

or KG o FT for one of the affine transformations FT: TR -* T. Applying

this observation to all triangles T E Tj_ 1 yields the following lemma,

which shows that functions in M 1 cannot well approximate those in .

This lemma was shown previously by Bank and Dupont.

Lemma 4.10. If v E Mj_ 1 and w G M. the strengthened Cauchy inequaltiy

(4.5.5) a(v, w) < y Ilv!II IlIwI[l

holds for fixed y E (0, 1) independent of v, w and j > 2.

Proof. The proof will be done locally over the triangles of Tj VI

Let T E T.-i be arbitrary. Then there exists an affine transformation

F: TR - T. Letting w E be arbitrary we can define w* w O FT. Then

w*E KR or w* E K6 even when T I TJ_ 1 and w* = 0. Also we have

tv* = v a FT for v E M J_} c L where the inclusion may be strict

because of boundary conditions or interelement continuity conditions.

Thus,

Lnf Iv o FT - w* I 1 > inf Iv* - W*1 > c Iw*jH1
vCHj H (T) v'EL H(T) H(T R)

inf liv 0 FT - w*IL2 > inf IIv* - w* il2 >c Iw*iLT
NEM L (TR) v~EL L (T R)  L (T

where the inequalities on the right are from lemma 4.8. By lemma 4.9

these inequalities can be converted into

____ ____ __ ____ ___
'4-.
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inf Iv - wl I > c jw
vEM_ H (T) H (T)

in finf Iv -wlIi 2  > eiIWIIL2

VE=j-li L (T) - L (T)

where the constants here are independent of dT. Combining these

relations yields

inf liv - W 1  > inf Iv - w2 + inf Uv wl 2
inf j- v H (T) vEMj-1 H (T) VEMj 1 (T)

> T vEM-

> c(1w 2  + lIwIF2  c Il wil 1
HI(T) L(T) H(T)

Then summing over the triangles of Tj-1

inf liv - wIl 21 = inf E v - wIrl
vEM H-1 vE M-1Tj-1 H (T)

#Tlj vEm j- 1  H (T)

> C I vWI - ~i

wET 1 H(T) H

So using the equivalence of the H
I and energy norms

inf Il v  - will > c IIIwIl
VEM J 1

This is equivalent to (4.5.5). To see this, assume IlwIll = 1. Then

inf Iliv -will > inf liv- will > c IlIwIll =c

iiivII=l VEMj_ 1
vEMj_ 1

so if ilIvIll = IIIwlilil = I

1 2
a(v, w) = - Ilv y- will o1- c (1-c) IIvill iI0wli

The general case of (4.5.5) follows by ilnearity. 0]
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One more lemma is needed, which will be, for our purposes, the

most important. It states that functions in Mi. the kernel of the

interpolation mapping from M to MjI, are all quite oscillatory.

Intuitively, the relatively smooth functions in M. agree quite closelyJ

with their interpolate in MJ_1 . Only the most oscillatory functions in

M . can have the zero function as their interpolate. This observation
3

can be made precise quite easily through the use of lemma 4.9. For our

purposes a function is "oscillatory" when its H1 norm or seminorm is

much larger than its L2 norm. That functions in M are oscillatory in

this sense is shown by the following lemma.

Lemma 4.11. If we Ai ., j > 2 then

(4.5.6) 11w11 2 < h H Iw I  c c- w11 2

with c > I independent of w and J.

Proof. It is enough to show this locally on the triangles of Tj I . To

see this, suppose that for all w E and T E j-1
1j

(4.5.7) !IIwI 2l < hj Iwl () < c w 2

L (T) H (T) (T)

with c > I independent of w, T, and J. Then for any w E M

- 1] 2 Z lwHL2 2 < h 2 E IwIH(T) -< c 2 E 1wl122
c l L (T) JET L()J-i

which Is the same as (4.5.6).

To show (4.5.7), let w E and let T be an arbitrary triangle

In Tj_. Then there is an affine transformation F: TR - T such that

A o Aw* w Fis n R o G. Since i'jH is a norm on KR and on Gand

viois iKor. 
1
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uEk or uE

CIluII 2 1 < cIIull 2
! Lt(TR) <UHI(TR) < ILm(TR)

with c > 1 independent of u. Then

jW12 ! Iw*I 1 <cjIw*11 ,
L2 (TR H (TR) L(T(

so using lemma 4.9

' llwl 2 < h Iw 1 < cl1w11 2
L 2(T) - H'(T) L(T)

completing the proof. 0

4.6. Approximation

In this section the approximation inequality (4.3.4) needed

to justify the convergence and complexity results of sections 4.3 and 4.4

will be proven. This inequality generalizes a result of Bank and Dupont

for quasi-uniform grids. Assume the elliptic equation is HI+  regular
00

for a E (0, 1). Then their result is that if {M }J= is a family of

quasi-uniform spaces and S. and 0., j > 2, are defined as before, the

following inequality holds for q E Sit

o e /2 II ll ,
, _ -1 < c eo111

where T1 is the elliptic projection of n on Mj_ I . A domain with a slit,

the worst case ordinarily arising, yields a -1- and their result
2

becomes

'4.- ---- - - -- - - - - - - - -
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IIn - T-111 - c e1/juIIll

the same as the result here.

The result here generalizes theirs in the sense that it applies

to locally refined grids as well as to quasi-uniform grids, although the

exponent of 0 is usually poorer in our inequality. This is of secondary

importance for multi-level convergence since 0(N) complexity can be shown

for any positive exponent of . Only the hidden constant in the 0(N)

bound is affected by the exponent.

Enough has been said about this approximation result that no

further introduction seems necessary. The technique of proof is quite

interesting and begins with a sequence of strengthened Cauchy inequalities

that follow more or less directly from the results of the last section.

Each of these inequalities is, in effect, a lower bound on the dihedral

angle between two subspaces.

Lemma 4.12. Let w E Ai, n e S., s e Sj_ 1 and o E 0j I . Then the

following strengthened Cauchy inequalities hold:

(4.6.1a) a(n, w) < c el/ j 111li II iwlIl ,

(4.6.1b) a(s, w) < c 61_, IIISlll IIIwlll ,
J12-1 2

(4.6.1c) a (n, o) :S c 6 112 0 _1 2 IIInr1lIIIo11011
j J-1

Proof. For (4.6.1a) let q be expanded as

J(e)

n-1
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Then the corresponding finite element data is

J(0.)

f= .

with

(4.6.2) a(n, )) = (f, E) , F M.
J

Then

J(ej)
2 2 ) i

i=1

J(ie)

< (J) 2 jiJ)j (j) 2

xj N. E l i i ]

j i=l

= e x( j ~) I 2 1  )

Nj

Thus

(4.6.3) 1iffl 1 (0 XN ) N. 2

Setting 4 w in (4.6.2)

(4.6.4) a(q, w) = (f, w) < Iff 11 jjwII < (0 X( ))1/2 Ilnifi jwj

so using lemma 4.11,

(4.6.5) a(q, w) < c h (0 X(J))I/ 2 ITinil IIwIll

u t b o 2 IIIThpro IIIw oit

using the eigenvalue bound (2.3.2). The proof of (4.6.1b) is the same
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except 0 and the eigenfunctions and eigenvalues { -l)1N
J-

1 and
j-1 "i=1

(ji) l N occur throughout. Thus, instead of (4.6.5) we get

a(s, w) < c h (0j -1 1()/2ilsill IIwi< p-1 N2

< C - 1o/2 Ils ll IlI wll

-1
< 1/2

<__ -1_ Ill s lll Illw lll

since by assumption p = 2. For (4.6.1c) we have as in (4.6.4)

a(TI, o) < (6 j N )1/2 I Iol

Expanding o in eigenfunctions

NJ--1)

i=J(6j_ 1

Thus,

11,01112 N J-1 2 (J-1) 1112E1011 -i 10i
i-J( J-1 )+l

l=J (2 (_1))

> J-l2) -1 j-1)2

- N_ NJ_ 1  i-J( J- 1 )+l

6 X(J-1) 110,12

j- 1  Nj_1

so
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a (T, o) < (0j X())/2 (ji -l))-i/2 I~1I 101

j N j-1

By the eigenvalue bound (2.3.2)

X(J) < c h-
2

N --

The inequality in the eigenvalue bound (2.3.2) also goes the othpr

way. One way to see this is to expand w in eigenfunctions in lemma 4.11:

N.
J

i 1

Then the left side of (4.5.6) is

N. N. N.

II Ei i < hi I E aP.I <ch.
c i=l i=l H 1=

where the last inequality is from the equivalence of the H and energy

norms. It follows easily from this that

(j-1) > c h_ 2

Nj I -l J-1

so we get

Wl, o) < c p 1/2 a-1/2
j j-1

< c e11 2  -1/2 III IIII
Oj j- 1

since the mesh ratio, p, is fixed. This completes the proof. 0

Each of equations (4.6.1) of this lemma states that the energy

inner product of a relatively smooth function with a relatively oscillatory

function is small compared to the product of their norms. In other words,

the angle between these functions, as measured by the energy inner
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product, is large. In the appropriate limit as e on 0j_ 1 goes to zero

each of equations (4.6.1) expresses an orthogonality relation.

Our aim is to show that the function in S can be well

approximated in the coarser finite element space M when 0 is small.
J-1

Let MJ_ 1 be the orthogonal complement of MJ_ 1 in M with respect to the

energy inner product. We approach the question of approximation of

functions of S i in M_ 1 by the back door. Instead of showing directly

that M -i contains a function near any function in S , we show that

S. and Mj_ 1 are nearly orthogonal. Since S consists of relatively

smooth functions, by analogy with the lemma just proven we should try

to show Mj- consists of oscillatory functions. This is the content

of the following lemma.

Lemma 4.13. If u E MjI, then

u = s + 0+w,

for s E SjI, o E 0j1, and w E M and

J1

(4.6.7b) CIo l 111I~ u111

(4.6.7c) IIwilll < c Ilull
with c > 0 independent of u and J.

Proof. Since M M , we can set
j J-1 5 j

for some v E Mj- l , w E iJ. Then using the elementary inequality

1 (2 y2
(1 < x2 + ) , x , y C ,

and lemma 4.5.3,
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Illulll2 IIIv + w1l1 2  IIvlll 2  + IIIwll2 + 2a(v, w)

> IIIv lll I [Iwlll 2 -+2wyl lll + IIIwlll

> (1 _Y )(lllvlll 2 + IIIwll12)

Thus,

(4.6.8a) IlIvIll _ c Illulll

(4.6.8b) Iliwill < c Illuill

where c > 0 depends only on the constant Y E (0, 1) from lemma 4.10,

giving (4.6.7c). Now since u = v + w C Mj_ 1 ,

a(v + w, 0) = 0 , 0 E M

so v is the elliptic projection of -w on M,_I . Writing

v= s + o

for s E SjI, o E 0j I ,

a(s + w, 4) 0 , Ej

a(o + w, ) 0, j_ l

since Sj_ 1 and 0J_ 1 are energy orthogonal. That is, s and o are the

elliptic projections of -w on S j_ , 
0j I, respectively. Then

Ills 112 -a(s, w) c e I ll II1/21 ,

by lemma 4.12, (4.6.1b). Thus, using (4.6.8b) we have

III l III < c 12 Il 11 < c 112  Illull,

and

coml111 ti Ingll : c Illull

completing the proof. 13
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The lemma just proved shows that M, the orthogonal

complement of M. in Mi, is contained in

sj_1 j 0j_ 1  M.

and for any u E MjI, the component of u in SJ_ 1 is relatively small

when 0j 1 is small. In other words, Mj-1 consists of relatively

oscillatory functions. Since S consists of smooth functions when

0. is small, one might expect that the inner product of functionsJ

in S. with functions in M would be small when 0. was small. This
J j-l

is the content of the next lemma.

Lemma 4.14. If n E S. and u E M_ then
J j-l'

a (T, u) < c e 114 I11r111 111u11l

Proof. Since 6 is the only member of the family to }I= 1 of parameters
j i i=l

occuring either implicitly or explicitly in the statement of this

lemma, we are free to choose the remaining parameters {0 1iO J arbitrarily.

In particular, 0 jl E (0, 1) may be considered a free parameter until

its value is chosen at the end of the proof. Let n and u satisfy the

hypotheses. According to lemma 4.13, u can be decomposed as

u~s+o+w

with s E Sj_I, o E 0J_1 and w E M . Then

a( n , u) - a(n, s) + a(n, o) + a(n, w)

Bounding each of these terms separately

a(n, l) < II431ll By 1ll 4.12, (-- Il lul

by lemma 4.13, (4.6.7a). By lemma 4.12, (4.6.1c),



a(n, 0) < c 0 / -1 2 IIInllI I1io111 < c e 1 Inll lull,
- J-1 j-1

where the last inequality is from lemma 4.13. Similarly by lemma 4.12,

(4,6.1d),

1 /2 1./2
a(n, w) < c e. II1 ll IIJwlll < c e IITnIlI IlluIll

Combining these inequalities

a(q, u) < c(01/2 +01/2 e-1/2 +01/2) IlnIllfulif
a1 c i j j-1 j

Chosing 0j = 1/2 completes the proof. EJChosig j_ 1  j

Our first approximation result is a simple consequence of

this lemma.

Theorem 4.15. Let n E S. and let f E Mj I be the elliptic projection

of rJ on Mj I ,

a(r - n1, 4) = 0 , EMj 1

Then

1II1, - 1111 _ c 6.114 IIITlll

Proof. We have
2 .1/4

IIn - -111z  a(n, n - < c tlj IInll II - 11

by lemma 4.14, since q - q E M j_. Dividing by jI I - the

result follows. 0

An important feature of the result just proven is that the

constant coccurring here depends entirely on local properties of the

0 I II
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finite element spaces MJ_ and M . In fact, c depends only on the

constants in the eigenvalue bounds and on those of the last section

on interpolation. As a consequence, it is readily computable.

Moreover, the approximation property just shown does not depend

significantly on either the domain or the boundary conditions. This

is in contrast to the result of Bank and Dupont where both the

exponent of 0. and the constant occurring depend on the regularityJ

of the PDE and hence on the domain.

The approximation result just proven is almost the result

we needed in section 4.3. Its defect is that it is expressed in
N

terms of the subspace S. and indirectly the eigenfunctions {( nl I 
i N. inl'

rather than in terms of S and indirectly { . = Since it would

be difficult to analyze the simultaneous displacement iteration of
N

section 4.3 in terms of the eigenfunctions {i 1 1 we must proveiiin

the analog (4.3.4) of theorem 4.15 which has S replaced by S . Exactly

the same thing occurred in chapter three. While it may be possible

to get the required analog directly from theorem 4.15, it is easier to

repeat the steps in its proof with slight modifications. Actually,

this could have been done in the first place, but it seemed more

natural this way. First we show the analog of lemma 4.12. Only S

need be replaced by S .. There is no necessity to replace S I  and

0 j-, since these subspaces play only an intermediate role.

Lemma 4.16. Let w E Mi. p E S, .s ES J- and o E -. Then the

following strengthened Cauchy inequalities hold:

if---
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(4.6.9a) a(TI, w) < c 01j lilnill 1lwill ,

(4.6.9b) a(s, w) < c 0j- i '
012 -1/

(4 .6 .9 c ) a ~ , o ) < c el n l 1 2 e / , IT,,, o11 ii1_ J -1~

Proof. Equation (4.6.8b) is the same as (4.6.1b) so is already established.

For (4.6.8a) expand n in the eigenfunctions (j)

J(6.)
T) t i 1 J)

i=l

and let f be given by

J(O.)
f 0) (J)

f = 7 ai -
i=l i

Then

(4.6.10) a(T, 4) = b(f, 4) , M e M.
J

Now instead of (4.6.3) we get by a similar argument

l f < ( j )) I/2 H N [

so with = w in (4.6.10),

(4.6.11) a(n, w) = b(f, w) _< (8 N(J))I/2 llnIll lwl •
j N

Then as in (3.3.3), since the eigenvalues of the mass matrix lie on

an interval 1i, al for a > 1 independent of j,

(4.6.12) ilwlb < a1/2 1/w2 < c h. IIIwIll

where we used lemma 4.11. Combining (4.6.11) and (4.6.12) and using

the fact that a is fixed,

"q 4 . ... .. . . .. L .... •'
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a(n, w) < c h (a X(J)) 1/2

< 1 l/2 111lnll1 lllW lll

by the eigenvalue bound (2.3.2). For (4.6.9c) we have as in (4.6.11)

a(n, ) < (e x(J))l/2 _lrl1l 111b l/2 j N. ilnl oll/2j lln l cIo.j Nlln l i l

Then as in (4.6.6)

Iloll < (ej1 XJ-))-l 1/2

Ni-i

so

a(i, o) < a 1/ 2 (0 X(j)) 1/2 (j) )-1/2 IIInll a I1io111
i N ( j-1 N j_1

< c(ej h- 2 ) 1 / 2 (6j_ h 21)- 1/2 WrM IlIlol

using the eigenvalue bounds as before. Then since the mesh ratio is

fixed,

a~no) <c 61/2 e,-1/2 1I11 101

j J-i

as required. 0

Since we are retaining Sjl and Oj_l and only replacing Si

by S,, there is no need to alter lemma 4.13. Then following the same

proof as for lemma 4.14, but using the strengthened Cauchy inequalities

of lemma 4.16 rather than lemma 4.12, we get the analog of lemma 4.14.
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Lemma 4.17. If n E S and u E M _1 then

a(n, u) < c o 1/4 1I1n11l IllU111
i-i

The required approximation theorem follows easily from this

lemma just as the analogous theorem 4.15 followed from lemma 4.14.

Theorem 4.18. Let n E S. and let n C Mj_1 be the elliptic projection

of n on M.

a( - I, 4) = 0 , M

Then

(4.6.13) In- 11 < c 6/4 Ill
J

With this approximation result, the convergence and complexity

results of sections 4.3 and 4.4 are now completely justified. As for

theorem 4.15, the constant c occurring here depends only on local

properties of the finite element spaces. Fox particular spaces one

could easily compute this constant and determine a rigorous upper bound

on the rate of convergence of the multi-level iterations of section 4.3.

This generalizes the heuristic local Fourier mcde analysis to irregular

finite element grids, and is, moreover, completely rigorous. The hidden

constants in the 0(N) complexity bounds of section 4.4 are not so

easily computed since they depend on the generally unknown constant in

the error estimate (4.4.1). However, for most purposes it is enough

to have a bound on the spectral radius of the multi-level iteration, which

this analysis gives since this is what determines an iteration's

practicality.

'4II II-
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