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BEAM NONUNIFORMITY EFFECTS ON LASER ABLATIVELY
ACCELERATED TARGETS

Laser pellet fusion involves imploding pellets through reaction to
laser induced ablation of the pellet surface. The complicated problem of
efficiently coupling the laser energy to the pellet and producing the
proper conditions for a fusion burn have led in some cases to opposing
requirements. Experiments and theory indicate that the most efficient
coupling of laser energy to an imploding pellet should occur at the lower
range of practical irradiances (IO13 - IOIQ \:l/cmz).]'2 This low irradiance
requires pellet designs3 where thin pellet walls (thickness AR) are accelerated
over relatively long distances (R) towards an implosion at the center:

(R/aR 210). There are severe requirements on the uniformity of the pellet
walls and on the ablation pressure (AP/P <1%) for such designs if one

is to achieve high pellet gains.3’h

An important question is what is

the relation between nonuniformities in the incident laser beam, Al/1,

and nonuniformities in the ablation pressure, AP/P, for various pertur-

bation wavelengths? As discussed later, lateral energy flow can smooth

the effects of beam nonuniformities and relax the requirements on the laser.
Some of the problems of laser ablative acceleration of pellet walls

are being addressed by a series of experiments at NRL wherein planar thin-~

foil targets are ablatively accelerated by a multi-nanosecond Nd-glass

5,6

laser beam. We will discuss the results of a novel doppler-shift
diagncstic technique which gives time resolved velocity profiles of the
accelerating target. This diagnostic has proven useful in exploring the
laser beam requirements for uniform ablative acceleration.

Figure 1 shows the experimental arrangement. The 3-nsec FWHM

main lascr beam (1.05 ym) is focused onto a planar foil target. The r-ar

Manus.ript submitted June 12, 1980



target surface is illuminated at normal incidence by a 400-psec duraticn
0.527 um optical probing beam and the reflected probe light is focused
onto the entrance slit of a stigmatic spectrograph. By measuring

the doppler shift (AX = 2vA/c) of the probe light as a function of
position across the accelerated target, one obtains the target velocity
profile v(x). Details on techniques for conducting these measurements

7

are given elsewhere.
Figure 2(a) gives the velocity profile obtained from the doppler
shift measurements at a time near the peak of the main laser pulse for the
case of a 9 um thick carbon target and a peak laser irradiance of about
5 x 10]2 W/cmz. The measured incident laser profile across the target
is given for comparison. Under these conditions, the doppler shifts indicate
that a relatively uniform laser beam results in a target being relatively
uniformly accelerated. Lateral energy flow apparently causes the accelerated
target region to be somewhat larger than the incident laser profile.
Before considering other results, we shall briefly discuss whether
the doppler shift technique accurately measures the motion of the target mass.
There are a number of possibilities. The probe light may be reflected from

the solid accelerated target surface or, if a plasma is present, it can

be reflected at the critical layer for the probing wavelength (ne =L x 102] cm-3)
which corresponds to about 1% of solid density. For the former case, the

doppler results clearly represent the target motion. The relatively thin

targets employed should preclude significant shock phenomena because the

transit time of a sound wave through the targets is shorter than the laser

pulse rise time. For the second case, where a plasma is present, there are

potential complications which will be addressed. For example the probe

may be reflected from the critical layer of a plasma expanding outward at
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a higher velocity than the denser target material. In addition, plasma
expanding through the reflecting layer can yield an additional blue shift
due to a chanying plasma density profile. For these effects to be signi-

ficant, the rear surface of the target must be hot. Measurements of

emission from the rear of the targe:s employed indicate peak temperatures of

less than 10 eV which occur weil after (a few nanoseconds) the measurements

presented here.8 At these low temperatures, the probe would be nearly

totally absorbed after passing through only a few wavelengths of near critical

density plasma.9 The presence of significant reflection for the times and
targets employed places an upper bound of approximately ! um on the plasma

density scalelength. This scalelength is small compared to the target

motion (>10 um) during its acceleration. Therefore if the probe is reflecting

from a critical layer, the plasma density scalelength is short enough for the

measurements to reflect the actual target motion.
For our experimental conditions the doppler shift measurements should
accurately give the velocity structure of the acc:lerated target and thus

provide an indication of the corresponding ablation pressure profile.

We have used the doppler technique to investigate the effects of nonuniformities

in the main laser beam on target acceleration. For the results presented

in Figs. 2(b) and 2(c), the incident laser spatial profile was intentionally

distorted by placing progressively wider strips of opaque material in the
main laser beam at the lens. The measured laser profile at the target

plane and the computed laser profile, assuming no amplitude or phase

modulations in the undisturbed beam, are given for comparison. For the section |

. .. . . Sectios {

focused laser nonuniformities of the amplitude and scalelength shown, the [
nonuniformities are clearly imprinted on the accelerating target velocity

profile. e ————
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Before interpreting these results, we will briefly discuss what to
expect. Figure 3 illustrates the int.:raction of the laser with an ablatively
accelerated target. The distance from the ablation layer (where the pressure
is applied to the target) to the absorption (critical) layer is given by
L. For the case where the scalelength of laser nonuniformities (D) is much
shorter than this separation distance (D<<L), one expects the lateral energy
flow to smooth the effects of laser beam nonuniformity. {n the opposite
extreme (D>>L) one expects the nonuniformities to be transmitted to the target
ablation region. One dimensional theory]0 and experiment511 indicate that

. . . . . . n
the ablation pressure is a power function of laser intensity with P= | where

nx 3/4. Using this, one obtains for the case of long scalelength (D>>L) laser

intensity nonuniformities (Al):

peap (1 +a1 )3
P ~ [

The ablation pressure nonuniformities will b reflected in the target
acceleration and velocity (v) profiles provided the nonuniformity scalelength
is larger than the target thickness. One obtains the relations dv/dt= P and
Av/v = AP/P, provided the ablated target mass is much smaller

than the initial target mass, a condition satisfied for the experiments dis-
cussed here. Note that this simplified analysis does not consider the

possible effects of Rayleigh-Taylor instability which can cause nonuniformities
to grow even with a highly uniform laser and target combination. The
classical Rayleigh-Taylor exponentiation time for the accelerations

{5 x 10'“ em/sec?) and nonuniformity scalelengths (> 1001m) encountered
in the experiments reported here is long enough (>2 nsec) to preclude it

from being a dominating effect.
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For the experimental conditions of Fig. 2, side-on shadowgraphy with
the 527 nm probe indicates that the distance from ablation to critical layer
is less than 150 ym (L< 150, m). Computations predict that the separation

distance for the irradiances employed should be approximately 100 um.]2

n Figs. 2(b) and 2(c), b4-to-1 and 6-to-1 beam nonuniformities over a scalelength

of 100 um yielded 1.6~to-1 and 2-to-1 velocity nonuniformities in the accelerated

targets. In the absence of lateral transport, Eq. (1) predicts significantly
larger velocity nonuniformities of 3-to-1 and L-to-1 respectively. This
indicates there is some, but far from complete smoothing of the effects of
beam nonuniformity due to lateral energy flow. This is a result one would
expect in this middle range DL regime. Similar results have been
reported earlier using interferometry and shadowgraphy.] However the doppler
shift technique has allowed greater sensitivity and more quantitative evalua-
tions of the effects of beam nonuniformities.

Laser fusion implosions of the type discussed earlier require very
symmetric implosions of material in order to obtain the required
densities and temperatures. Our results indicate that, at a wavelength
of 1.65 um,and an irradiance (5 x 1012 W/cmz) near the lower bounds at
which laser fusion implosions appear practical, nonuniformities in the
incident laser beam with scalelengths greater than 100 ym result in
nonuniformities of the ablatively accelerated mass. The implied laser
beam uniformity requirements for illuminating a fusion pellet perhaps several
millimeters in diameter are very severe. It is however likely that the
separation between the absorption and ablation regions will be longer at
higher irradiances due to the higher temperatures and increased ablation
rates of material. This should cause increased smoothing of laser beam

nonuniformities. At irradiances much above lolh N/cmz, it is expected

S R DAL R AR el
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that the benefits of increased smoothing must be balanced against well

known problems, including poor absorption, preheat and plasma instabilities

that can occur at high irradiances.6 Further experiments at NRL will

investigate the parametric dependencies of smoothing in the regime

13 14

between 10 ° and 10 W/cmz.
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