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MICROBIAL DETERIORATION OF HYDROCARBON FUELS FROM OIL SHALE, COAL, AND
PETROLEUM. 1II, GROWTH AND INHIBITION OF BACTERIA AND FUNGI.

INTRODUCT ION

As a part of the Energy Conversion Synthetic Fuels Program to
decrease United States dependency on crude petroleum from foreign
sources, the Naval Air Systems Command has the task of evaluating jet
aircraft fuels originating from alternate domestic sources such as
coal and oil shale (8). 1In addition to physical and chemical studies
to assess the suitability of these synthetic fuels as replacements for
conventional fuels, it has also appeared necessary to assess their sus-
ceptibility to contamination by microorganisms because of recurring
problems with conventional fuels,

In an earlier report (7) it was shown that many typical microbial
contaminants, including fungi, yeast and bacteria, were inhibited in
the presence of JP-5 type fuels derived from crudes produced from
western Kentucky coal by the Char Oil Energy Development process
(COED-5) and from oil shale by the Paraho process (Shale I) (1). An
exception was a fungus, Fusarium sp., which grew as well in the syn-
fuels as in petroleum JP-5, Also microbial growth with mixtures of
257 synfuel/75% petroleum fuel was generally as great as with 100%
petroleum fuel.

In 1979 fuels from a second shale oil production run at the Toledo
refinery of Sohio became available (Shale II) (10). Hydrocracking and
acid extraction resulted in a JP-5 fraction with a greatly lowered
nitrogen content compared to the fuel from Shale 1 (9,12). Because the
concentration of nitrogen-containing compounds may influence microbial
growth (see Reference 7), a major objective of the present Investigation
was to compare the susceptibility to microbial contamination of Shale
IT1 JP-5 with petroleum JP-5 and the synthetic fuels already examined.
The microbial species employed has been extended to sulfate-reducing
bacteria, a common fuel storage tank contaminant not previously included
in this study (7). An effort has also been made to identify the nature
of the constituents in coal and Shale I JP-5 which are responsible for
fungal inhibition and to assess the reasons for the unfavorable fungal
growth in seawater media noted in the preceding report (7).

MATERIALS AND METHODS
Fuels

Tiie petroleum-base fuel, designated Jet-A, was the same as that
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used in previous work (7). It contained no additives and was received
in January,1976 from Naval Air Propulsion Test Center, Trenton, NJ.

Coal-derived fuel, also used in the earlier study (7) was pro-
duced from Western Kentucky Coal by Sun 0il Co. using high pressure
catalytic hydrogenation (4). The finished fuel met most of the re-
quirements for JP-5.

The oil shale products were from crude produced by the Paraho
process and subsequently refined to military fuels (2). The JP-5
fraction from the first 10,000 barrel operation (Shale I) had a very
high freezing point and a high nitrogen content, 976 ppm, of which 860
ppm was acid extractable (12)., JP-5 from the second 73,000 barrel
operation (Shale II) was hydrogenated and acid extracted and had only
one ppm nitrogea in the finished fuel. Studies of the composition of
these fuels appear elsewhere (9,12,13).

Selected nitrogen-containing compounds typical of those in Shale I

were added to petroleum JP-5 in some of the test systems used here to
determine whether the microbial inhibition of Shale I could be attri-
buted to any of them. These were: pyridine (99%), 5-ethyl-2-methyl
pyridine (99%), 2,6 lutidine (96%), 2~picoline (98%), 2-ethyl pyridine
(98%), 4-tertiary-butyl pyridine (99%), 4-benzyl pyridine (99%) and
quinaldine (97%) from Aldrich Chemical Co. Quinoline was reagent
grade from Fisher Scientific Co.

Base and Acid Extractions

Base extractions were made by shaking 850 ml portions of fuel and
10 ml of aqueous 0.1 N NaOH in a one-liter separatory funnel for three
one-minute intervals separated by one-minute rests. The aqueous layer
was drained off and the extraction process repeated an additional two
times. The fuel was then washed three times with 100 ml portions of
distilled water using the same shaking schedule. Titration of the
combined aqueous layers with standard acid showed titratable acidities
of 0.44 meq/l for Shale I, 0.18 meq/l for Shale II and 0.068 meq/1 for
COED #5.

Acid extractions of Shale II and COED JP-5, were made by shaking
850 ml portions of fuel with 10 ml portions of 0.1 N HCl followed by
three washes with 100 ml portions of distilled water using the same
procedure as for the base extraction. In order to remove all the acid
extractables from the Shale I fuel it was necessary to increase the
concentration of HCl to 10.0 N; subsequent washing was with seven 100
ml portions of water., Titratable basicities of 56.2 meq/l for Shale I,
0.19 meq/1 for Shale II and 0.174 meq/l for coal were obtained. Basic
compounds from Shale I were isolated by acid extraction followed by
neutralization of the HC1l adducts (9).

Anaerobic Bacterial Test Units

The anaerobic inocula, consisting of mixed microbial populations
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of sulfate-reducing bacteria and associated bacteria, came originally
from three sources:

(1) Laboratory continuous culture - infected Avgas storage tanks of
the aircraft carrier, USS YORKTOWN, was the source of the bacteria
subsequently maintained as a semi-continuous culture in the labora-
tory for 10 years (5).

(2) USS MERRILL (DD-976) - diesel fuel tank.
(3) Potomac River sediment - near the Blue Plains Sewage Plant.

Small amounts of material from the above three sources were cul-
tured in Sisler and Zobell triple strength medium (Sisler's 3X) (6)
and allowed to develop dense populations. A 1:10 dilution was made
under n-heptane in filtered seawater (0.45 um Millipore) that had been
previously deaerated with N9. To remove any H2S present, an addi-
tional deaeration of 10 minutes with No was made. The dilution was
allowed to rest for 3 to 4 hours before removing aliquots for inocu-
lation of the test units.

The test units consisted of sterile 50 ml screw-top test tubes
to which 40 ml of the appropriate fuel was added. Ten ml of an
aqueous medium consisting of a supplemented trypticase soy broth (BBL)
(5) was pipetted under the fuel. One ml of the bacterial inoculum
was then added. ~The tubes were tightly capped and incubated in the
dark at 259C. All tests were done in duplicate.

The growth of sulfate-reducing bacteria in the anaerobic test
units was estimated from the degree of blackening developed from re-
action of microbially generated HyS with ferrous iron in the growth
medium to form FeS. The rating system developed by Klemme and Leonard
(5) was used where 0 = no blackening, 1 = slightly grey, to 4 which
was intense opaque black.

Fungal Test Units

Sources of fungi were as follows:

(1) Cladosporium resinae DK was isolated from JP-5 storage tank at
Naval Air Station, Lemoore, CA.

(2) Cladosporium resinae DK/adapted is the above C. resinae after
being adapted to growth in seawater,

(3) Cladosporium resinae P-1 was isolated from sludge from a centri-
fugal purifier on the USS PETERSON.

(4) Cladosporium resinae APPC-11S was isolated from newly creosoted
railroad ties near the Alexandria Potomac Power Co., Alexandria, VA,
and found to use Shale I JP-5 as a carbon source.

(5) Candida sp. was isolated from water with a skim of oil on the
surface which had collected in an exposed boiler room of a naval ship
in the process of being scrapped at Curtis Bay, MD.
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The fungi and yeast were grown on potato-dextrose agar (Difco)
slants with the addition of 0.5% yeast extract (Difco). For inocu-
lation, stock suspensions of the organisms were prepared by dispersing
surface growth on a slant in 10 ml of a solution of 0.05% Tween 80 in
distillgd water, The viable count in these suspensions ranged from
11 x 10” to 56 x 10” colony forming units per ml.

Fungal test units with fresh-water mineral salts media were of
two types: One followed the formulation of Bushnell and Haas (3) with
a pH of approximately 6.5 after sterilization (referred to as FW B-H)
while the other was that of Klausmeier as modified by Park (1l) with a
pH of approximately 5.0 after sterilization (referred to as FW K-P).

Fungal test units were also set up with seawater obtained from
the Mediterranean Sea (salinity = 37.1/o0) during a cruise and aged
for over a year in the dark at 4°C before use. In all cases the sea-
water had 0,05% peptone (Difco) and 0.05% yeast (Difco) added. The pH
of the seawater peptone-yeast after autoclaving was 8.00 £ 0,02 [SW+
PY(8)]. 1In some cases the seawater medium was adjusted with 1IN HC1
to 6 [SWHPY(6)].

All test units consisted of 250-ml Erlenmeyer flasks with cotton
plugs. Fifty ml of the water phase were dispensed into each flask and
autoclaved for 20 minutes at 120°C. Fifty ml of fuel were then added
and the unit was allowed to rest overnight, The pH of each flask was
read justed if needed before the addition of 0.5 ml of the inoculum of
€. resinae or yeast. The flask plugs were loosely covered with alumi-
num foil and the test units were incubated in the dark at room tempera-
ture (22°9-25°9C). All experiments were done in duplicate,

.

The test units inoculated with fungi and yeast were visually in-
spected for growth at appropriate time intervals. The rating system
ranged from 0 for no growth, 1 for spore germination to 6 for a mat
thicker than 0.5 cm over the entire interface (Figure 1l). A study of
the dry weight of microbial material corresponding to these visual
rarings showed that an increase of one unit in the visual rating cor-
regsponded approximately to a doubling of the amount of growth (see
Appendix A). At the conclusion of each experiment, viability studies
were made on those units showing growth ratings of 0 or 1 by spreading
approwimately 0.5 ml of the water/fuel interface on potato dextrose
agar + 0.5% yeast extract. The agar surface of these plates had previ-
ously been allowed to dry so that this large amount of inoculum could
be spread without having too wet a surface during incubation. Also at
the end of these experiments, pH measurements were made on the water
phase in all test units using a glass electrode,

RESULTS AND DISCUSSION

Anaerobic studies on the sulfate-reducing bacteria in synthetic
fuels. The results of the tests on the sulfate-reducing bacteria

after 68 hours incubation are given in Table 1. The sulfate reducers
from the USS MERRILL showed the most vigorous growth probably because




they came from a fuel/water system similar to that in the test units and
had adapted to it. Inocula from the Potomac River sediment showed the
slowest growth, but eventually those units also became intensely black.
The sulfate reducers grew very well under all of the fuels,

Fungal growth in synthetic fuels, Tables 2 through 5 show the
growth, survival and final aqueous pH for three different strains of
C. resinae (DK, DK/adapted, and P-1) and for the yeast, Candida sp.

As was found in the preliminary experiments (7), JP-5 made from coal
inhibits C. resinae and there is a gradual loss of spore viability,
Shale I is also inhibitory but to a lesser extent, and viability was
retained almost as well as with petroleum JP-5. Under Shale II there
was a slight delay in growth in some C. resinae strains, but generally
the growth paralleled that under petroleum JP-5 except for strain P-1
which grew less in the fresh water media under Shale II JP-5.

Candida sp. (Table 5) behaved about the same as in the preliminary
experiments (7). It did not grow with Shale I or coal JP-5 except in
one case where the seawater pH was lowered to 6 (coal JP-5/SW+PY(6));
and here the growth was atypical consisting only of balls of hyphae at
the bottom of the flasks. Candida grew with Shale II JP-5 almost as
well as with petroleum JP-5,

Identification of fungal inhibitors in JP-5 from coal and oil
shale. It is apparent from the data that growth of the fungal organ-
isms employed here depended not only on the fuel but also on the com-
position and pH of the aqueous phase. In general, it was noted that
the different strains of C. resinae grew better in the fresh water
than in the seawater systems while the Candida grew more luxuriously
in the seawater media than in either of the two fresh water media.
Additional consideration of aqueous effects is postponed until after
the main effects produced by the different fuels have been discussed.

Neither acid nor base extractions of Shale II made substantial
differences in fungal growth except for the P-1 strain of C. resinae
waich grew better after both extractions when fresh water media were
used (Table 4),.

Acid and base extractions of coal JP-5 made no difference in the
inhibition which this fuel shows for all C. resinae strains and
Candida; also the loss in viability of the inoculum remained high
(Tables 2-5).

Base extraction of Shale I did not change its inhibitory qualities.

After acid extraction, however, growth was as good with all organisms

as under petroleum JP-5 (Tables 2-5 and Figure 2). Removal of a large
amount of organic bases would appear to be responsible for this dif-
ference, It was surprising, therefore, to find that microbial growth

in the presence of petroleum JP-5 with added acid extracted material
from Snale I was as good as in neat petroleum JP-5 (Tabla 6). Possible
reagons for this are discussed below,
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In additional attempts to identify a particular class of inhibitor
in Shale I, non-basic nitrogen residues from a silica gel column (Table
6) and a number of pyridine and quinoline derivatives (Table 7) were
added back to petroleum JP-5. No inhibition was observed except with
500 ppm of 4-benzyl pyridine (both DK/adapted and APPC-11S strains)
and 500 ppm of 4-tertiary butyl pyridine (APPC-11S strain). It is un-
likely that these compounds were present in Shale I in these concen-
trations although there may be cumulative effects from all nitrogen
compounds present and other unidentified inhibitory compounds could
play a role.

Aqueous media effects on C. resinae growth. If the initial pH of
the seawater media is lowered by the addition of acid (HCl), growth of
all strains of C. resinae can occur except under fuel from Coal and
Shale I. This is illustrated in Tables 2,3,4 and 6 by comparison of
growth in SW + PY (8) and SW + PY (6). The normal high pH of the sea-
water clearly appears to be inhibitory particularly for the DK, P-1
and APPC-11S strains. Supporting evidence that pH is the crucial vari-
able in C. resinae inhibition in seawater comes from the finding that
growth in seawater at an initial pH of 6 (SW + PY (6)) under petroleum,
Shale II and acid-extracted Shale I was comparable to growth in fresh
water systems (FW B-H, FW K-P).

Although it will be noted that C. resinae did not grow under
Shale I fuel in seawater initially adjusted to pH 6, the terminal pH
of the aqueous phase in these test units was at least 7.3. This is
due to the gradual diffusion of basic materials from the fuel into the
water and the poor growth can again be attributed mainly to an unfavor-
ably high pH. If this simple interpretation is valid it follows that
the basic materials removed by acid extraction from Shale I should not
be inhibitory to C. resinae when neutralized and added back to a system
with petroleum JP-5 so long as the pH of the aqueous phase is favorable.
This was generally true (cf. Table 6).

C. resinae DK/adapted was the only strain to show appreciable
growth in normal seawater media (Table 3)., This growth was character-
istically slow to develop, however, and duplicates did not always grow
at the same rate (see Shale II, SW + PW (8)). Growth could start at
one place in the interface, usually along the side of the flask as
shown in Fig. 3 and from this point the growth could continue over the
entire interface. Occasionally the DK strain grew similarily in normal
seawater (see Footnote in Table 6). The problem in initiating growth
may be in lowering the pH enough in a microenviromment at some point in
the interface to allow growth to proceed. Once begun, the considerable
capacity of the fungus to produce acid within a colony is sufficient to
lower pH in a larger volume and allow growth to spread.

CONCLUSIONS

1. The anaerobic sulfate-reducing bacteria were able to grow as well
with all of the synthetic JP-5 fuels as with the petroleum JP-5. Thus
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future problems from contamination by sulfate-reducing bacteria of
synthetic fuels of the type examined here would be expected to be
similar to those experienced in the past with petroleum JP-5.

2. Shale II JP-5 supported good growth of the normal fuel tank con-
taminating microorganisms. This was in striking contrast to the
severe inhibition to fungi seen with Shale 1. The difference appears
to be due mainly to the additional refining of Shale II fuel that re-
moved basic materials which in Shale I tended to keep the aqueous pH
at too high a level for fungal growth.

3. Coal JP-5 was highly inhibitory to all of the yeast and fungal
test organisms. The inhibition was not due to acidic or basic ex-
tractables or to the lack of a favorable aqueous pH. In view of the
possibility that there are constituents in this fuel which are com-
patible with aircraft use and also inhibitory to fungi at low concen-
trations, it appears worthwhile to attempt to isolate and characterize
these materials.

4., Shale I JP-5 was inhibitory to yeast and fungal test organisms
because of the basic extractables in this fuel. However, except for
two substituted pyridine compounds at high concentration (500 ppm),
the nitrogenous compounds present in Shale I did not cause an in-
hibition. Most of the inhibition of Shale I appears to be due to the
tendency of the nitrogenous constituents to keep the pH of the aqueous
phase at too high a level for fungal growth.

5. Different strains of the fuel fungus, C. resinae, showed different
preferences for fresh or salt water media but all were inhibited by
the normally high pH of seawater. Growth of this organism in seawater
may depend on initiation of reduced pH in local microenvironments.

6. In the present stage of synthetic fuel development it is nci yet
possible to predict with certainty the probable susceptibility of a
product to microbial contamination, especially by fungi, from a
knowledge of the refining processes used or the conventional proper-
ties of the fuel.
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Fig. 1 - Tllustration of the rating system for Cladosporium resinae

growing at the interface of a two-phase fuel/water system; 0 = no
growth to 6 = mat thicker than 0.5 cm.




(a)

R

(b)

Fig. 2 - (a) Cladosporium resinae DK in a two-phase system of seawater +
peptone yeast (pH = 6) under, from the left, Shale I, base extracted and
acid extracted Shale I. (b) C. resinae DK/adapted in a two-phase system
of fresh water (Klausmeier-Park's mineral salts) under, from the left,
Shale I, base and acid extracted Shale I.
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Fig. 3 - Duplicate flasks containing seawater + peptone yeast (pH8)
under JP-5 showing Cladosporium resinae growth starting in the right
flask on the side at the interface. Growth in this flask eventually
covered the interface. The left flask exhibited no growth.
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Table 1, Growth of sulfate-reducing bacteria in assay medium under
conventional and synthetic jet fuels after 68 hours incu-

bation
Fuel Source of sulfate-reducing bacteria
Laboratory Potomac River Diesel
Continuous culture Sediment Fuel Tank
USS MERRILL
Petroleum JP-5 4 1 5
Coal JP-5 4/5 1 5
Shale I JP-5 2 2 4/5
Shale 1II JP-5 4/5 2 5
Mineral 0il 4 2 5
12
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APPENDIX A

Key to the rating system for growth in two-phase fuel/water systems
including approximate dry weights

Rating Dry Weight Description
(mg)

0 0.34 = 0,122 No germination, growth or mat formation
detected.

1 0.34 £ 0.23 Germination and minute amount of
growth detected, no mat formation,

2 1.5 £ 0.52 Slight growth at interface.

3 9.7 £ 3.5 Mat formation over 1/3 of interface.

4 26.0 = 0.3 Mat formation over 2/3 of interface.

5 64.0 =*17.9 Mat formation over entire interface.

6 115.0 =41.0 Mat formation over entire interface

with a thickness of at least 0.5 em.

aMean values £ standard deviation.
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