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CHAPTER I

INTRODUCTION

1. Summary

N Consider a system which is composed of some number of subunits

or components. The structure of the system is the relationship between

the functioning of various components and that of the whole system.

Structure can be specified completely in terms of the minimum cut sets

of a system1 These are sets of components for which:

the system can't work if they are removed or failed,

(/ if any component in the min cut set is restored, then the

system will work. /

Example 1.1 (parallel system of 2 components): The system

works * at least one component is working; min cut set = (1, 2).

Example 1.2 (series system of 3 components): The system works

all components work; min cut sets - (1), (2}, {3). {2, 31 is not a

min cut set because even though the system is failed when 2 and 3 are

failed, restoring component 2 or 3 does not restore the system.

Intuitively speaking, a system is coherent if:

(i) Suppose it is down when a certain subset of components

is failed; it will not start working if even more

components fail.

See Ref. [2], Chapter 1, for precise mathematical definition.
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(ii) If it is working when a certain subset of components

is working, it will not fail if even more components

are restored to working order.

A Coherent SystemuRepair Model models the maintenance over an

infinite continuous time horizon of a stochastically deteriorating

finite set of components which form a coherent system. There are

costs for repair and system failure and the lifetime of each component

is a random variable with known expected value. The objective is to,

assuming decisions can be made at the instant of a component failure,

minimize the long run expected cost per unit time or the total

expected cost, whichever is desired. Decisions can be made to do

nothing or to repair some subset of the failed components; when the

system is down, the do-nothing option is eliminated except in cases

of noninstantaneous repair. A more detailed discussion of the

parameters which can be varied in these models will appear later in

the chapter.

The purpose of this thesis is to formulate and describe

different types of coherent system repair models and then gather as

much and as general information as possible on the nature and form

of optimal policies involved. In the case where system components

have exponential (not necessarily identical) lifetime distributions,

the model can be formulated as a continuous time, infinite horizon

Markov decision chain with no discounting and a finite state and

decision space. States, which are nontime-dependent, depend on the

states of the individual components: working, failed, or under
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repair. The bulk of information will come for models with

exponential components, as Markov chain theory is a very powerful

tool. If the components are nonexponential (and non-Erlang) the

process as defined above will be non-Harkov. In that case, it is

no longer sufficient to have nontime-dependent states. The problem

is much more difficult and will be beyond the scope of this thesis.

After initial general discussion, three types of models will

be looked at in detail, all requiring exponential or Erlang

components. The Basic Model (Chapters II & III) allows exponential

components to be working or failed (on/off). Repair time is assumed

instantaneous with unlimited service facilities. The Degradation

Model (Chapter IV) has the same component lifetime and repair

assumptions as the Basic Model except that here each component can

be in any one of a finite number of observable degradation states,

with the first state being "new" and the last state being "failed".

Following, the Noninstantaneous Repair Model (Chapter V) takes the

Basic Model and allows for exponential repair times (noninstantaneous).

Results obtainable for each of the three models, using

Veinott's solution technique for Markov decision chains

[see Section 1.4] (i.e., finding the long run expected cost/time for

each policy and then among those policies for which this is minimized,

find the total expected cost, etc.) are included in the model

Chapters II through V. In each case, the specific structure of the

underlying 14arkov chain allows us to get conditions which eliminate

certain types of policies from being optimal. For some cases, notably

' 0
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those for which components are identical, a complete general optimal

solution is obtained.

Chapter VI looks at the theory and algorithms available for

getting computational results, and implements a linear programming

method. This provides a look at optimal solutions in cases where

policy enumeration by hand is too messy or none of the theorems in

Chapters I-V apply. Some test problem results are presented.

In Chapter VII, results from the previous five chapters are

compiled and compared. Basic policy forms and restrictions which

interrelate the models are presented, and conclusions about how

varying model parameters affect the optimal solution are drawn. Then

some of the possible applications of these models or variations on

them are discussed. Extensions and topics for future research

conclude the chapter and thesis.

2. A Survey of Maintenance Model Literature

A maintenance model models the control and surveillance of a

stochastically deteriorating system. For two decades there has been

a large and continuing interest in such models and the number of

relevant papers in the literature reflects it. Figure 1.1 below gives

a classification of maintenance models according to the type of

maintenance problem modeled:

4



FIGURE 1.1 Ref.[29]

Classification of Maintenance Models

Discrete Time Continuous Time

1. Complete Information 1. Control Theory

2. Incomplete Information 2. Age Dependent Replace-
ment Models

3. Maintenance and
Inventory 3. Shock Models

4. Interacting Repair
Activities Models

5. Incomplete Information

Further broken down in Figure 1.2.

Discrete time models select actions at discrete points in

time. These models, as appear in the literature, utilize information

regarding the degree of deterioration of the unit or units in order

to select the best repair or maintenance action at certain discrete

points in time. In some cases, an inspection must be made to

ascertain the state of the system before repair decisions are made,

while in others it is assumed the current state of the system is

always known. For incomplete information models, actions must be

taken under uncertainties about costs, underlying failure laws, or

observations of state. Inventory models involve decisions concerning

periodic restocking of inventories of spare parts. Note that in all

these models, the system is treated as a unit in terms of formulation,

5



the individual components being ignored. Most formulations for

discrete time models are based on Markov decision theory or inventory

theory, thus, linear and dynamic programming are primary solution

techniques. See [21], [26], [331 for details and specific models.

Continuous time models do not restrict maintenance or

inspection activity to a particular set of discrete points in time.

Control theory models permit maintenance activity to occur as

a continuous stream. The decision maker must optimize over functions

m(-) where m(t) is the maintenance expenditure rate at time t.

Age Dependent Replacement Models allow maintenance only at

certain discrete points in time, e.g., replacing an item when it

reaches a certain age. This problem is just the continuous time

analog of the discrete time one with deterioration stages. Different

models vary cost assumptions, types of repairs allowed and numbers

of spares around. Again, the system is treated as a unit.

Shock Models regard the unit as subject to exterior shocks,

each of which damages (causes wear) in such a way that the damage

accumulation up to a particular time defines the unit's probability

of failure of that time. This assumption differs from the standard

assumption that the time-to-failure random variable of a unit is

intrinsic to that unit.

The Coherent System Repair Model falls into the category of

interacting repair activities models, the only ones where maintenance

policies exploit interactions among the units of a system. Figure

1.2 presents ways in which a maintenance policy achieves this:

6
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FIGURE 1.2

Types of Maintenance Policies Which Exploit System Structure

1. Opportunistic - how many? (cheaper
(economies of scale) to repair more at once)

2. Cannibalization units of same - no new items in system

type utilized
at different

3. Multi-stage Repair locations in new items can enter
system system

4. Variable Rate repair capacity limited and under

Repair decision maker's control

5. Which ones? (if system has nonidentical components
with several items failed)

6. Repair or not? (depending on how much of the system
is still operative)

type of decisions allowed in a coherent system repair model.

Research on problems involving cannibalization, multi-stage

repair, variable rate repair, and opportunistic policies has been

going on for some 10-15 years, (see [33], Reference list). "Repair or

not" type policies for deteriorating units were among the first to be

studied, the best example being a "control limit policy" which says

"repair or replace the unit when it reaches a certain level of

deterioration".

However, until Just recently, no work has been done on optimal

repair order, i.e., choosing which item to repair if several components

are down, or on models which can treat the type of system as a variable.

7I



It was a desire to get some results in these areas that motivated

the Coherent System Repair Model formulation. It models a

deteriorating system of components as do other interacting repair

activities models but, unlike the others, the state of the components

explicitly determines the state of the system. Varying the component

configurations for which a "penalty" is incurred for system failure

allows introduction of the system type as a variable.

Two recent works on optimal repair order have been by Derman,

Lieberman, and Ross (1978) [15] and D. R. Smith (1978) [291. Derman,

Lieberman, and Ross consider the same type problem as a coherent

system repair model with exponential components, using an N-server

queuing system to show that the policy which always repairs the failed

component whose failure rate is smallest stochastically maximizes the

number of working components. However:

(a) decisions to not repair even though the server is

free are not allowed

(b) decisions to repair more than one unit at a time are

not allowed, (single repairman)

(c) different objective function - no cost structure

(maximize number of working components)

Smith considers a series system of n independent components

as an irreducible continuous time Markov chain and gets the same

result as Derman, et al. However:

(a) he has no cost structure, his objective is minimizing

the long run fraction of time the system is up

8



(b) he does allow for "do nothing" options but only a

single server

(c) he solves using a different technique

(d) results apply to a series system only.

In a coherent system repair model, time is not a variable -

the level of deterioration of the system is measured by which and

how many of the components are working or are in a certain level

of degradation. In general, with complicated systems having

different components, one would expect some very complicated

optimal policies which would be impossible to guess but well worth

finding. When the components are identical, things simplify

considerably for k-of-n systems, as the number of components up

is now the only determining factor in system deterioration and

failure.

Although, in the most general cases, one cannot hope for

exact solutions, except by computer, one can and does look for

restrictions on the very large initial decision space (can repair

any subset of failed components at the instant of any component

failure). In the course of investigation of various models, two

such restriction types will appear:

(1) never repair more than a certain number of components

at a time in certain states

(2) never repair when more than a certain number of

components are working.

Both these results, besides being useful from a system operator's

91



viewpoint, are useful in lowering the computation time needed

to find an optimal policy in cases where it cannot be done by

hand.

Initially, maintenance/inspection models possessed an elegance

and a simplicity which led to easily implementable results and exact

optimal policies. More recent results have become increasingly

complex, requiring a large computer to implement policies. Coherent

system repair model results are some of each - in general cases it

is necessary to use the computer or state theorems which eliminate

certain policy types but in many specific cases, exact "optimal"

policies can and have been worked out, especially in cases where

components are identical. The formulation is simple and makes for

easy usage of the model under a great variety of hypotheses.

The following section gives a description of coherent system

repair models, their basic features and parameters.

3. Description of Model

The formulation of a coherent system repair model is quite

general. Figure 1.3 summarizes the features of such a model. As is

easily seen, there are a lot of unspecified parameters which have

to be defined before using the model. These include: the objective,

type of system, distribution of component lifetimes, costs, and

several others described in Figure 1.4.

10



FIGURE 1.3

Features of a Coherent System Repair Model

(1) Models the maintenance of a stochastically deteriorating
system of n independent components

(2) System states (and, thus, decisions) are functions of
component states but not functions of time (due mainly
to exponential components)

(3) Cost structure for repair or system failure

(4) Formulation as a continuous time Markov decision chain,
infinite horizon, no discounting (finite state and
action space)

(5) Large decision space: at each state, can decide

a. repair or not (must have some repair action going
if system is down)

b. if so, which subset of failed components to repair

(6) Decision times are limited to times of a component
failure and are made immediately following such

(7) Some resulting policy limitations:

a. don't repair unless a certain number of components
have failed

b. don't repair more than a certain number of components
at one time

(8) Can get exact "optimal" policies in some cases,
especially when components are identical

(9) Objective: minimize V_1 (long run expected cost per

unit time) or V0 (total expected cost)

Start with all components up

(10) Solution techniques: use structure of underlying Markov
chain to get conditions on V_, V0.

I
11



FIGURE 1.4

Model Parameters

parameter possible values

1. Objective: - min V_1 , the long run expected

cost per unit time

- min V09 the total expected cost

2. System Type: - general coherent

- k-of -nk = 1 parallel
k = n series

3. Component Lifetime - identical components

Distributions: - exponential _ nonidentical components

- gamma, integer shape parameter

4. States: - components on/off (which)

- components in degradation states

(which)

- components on/off or in service

(which)

- number of components in various
states (k-of-n system, identical

components only)

5. Repair: - instantaneous

- exponential (s servers)

- Erlang, integer shape parameter

6. Costs: plus - fixed charge L, per repair decision
in all modelsK todels fxut .- no fixed charge L
K - labor cost Z/server/unit time
p per system (noninstantaneous repair only)
breakdown

12



The two objective functions used are among those proposed

by Veinott [30, 31) In his method for solving continuous time Karkov

decision chains with infinite time horizon and no discounting. See

Section 1.4, [311 or [II] for a brief presentation of the theory

behind it.

Changing parameters which affect the number and type of

states in the Markov chain cause such overwhelming changes in the

model that each is studied separately as a "model type". Such

parameters include the component lifetime distributions, types of

component states existing, and the repair option. The following

three model types were selected, a chapter being devoted to each.

(I) Basic Model comp. life - exponential Chapters

states = on/off I I, III
repair - instantaneous -

(II) Degradation comp. life = exponential
Model states - degradation Chapter

levels L IV
repair - instantaneous

(III) Noninstantaneous comp. life = exponential

Repair Model states = on/off, in / ateservice L V
repair = exponential/

Erlang

Changing system type or costs affects only the cost structure and

such variations are studied within each model type.

Obviously, other combinations of parameters could be used to

get other, more complicated, model types. However, these three are

the simplest, give the most results, and give a good feeling for

13i! "



the types of optimal policies being dealt with. Given any other

combination with exponential or Erlang repair and component lifetimes,

an optimal solution can be sought using computer algorithms like

those in Chapter VI if the number of states is not too large.

4. Discussion of Optimality Criteria

In this section, some optimality criteria are defined. Which

ones will be used in this thesis and why, is then discussed.

Suppose we are given a continuous time, infinite horizon

Markov renewal programming model with finite state and action space

and no discounting. It is sufficient to consider only nonrandomized

policies, (see [11]). The case of exponential transition times

simplifies to the Markov decision chain which will be used to

represent a coherent system repair model. In this case the decisions

or the holding time distributions in a state depend only on the

current state, not on the next state as for the general ?arkov renewal

programming model. Also, only stationary policies need be considered

(see [81, Example 4).

The problem being infinite horizon, the objective is to

minimize the expectation of undiscounted cost incurred over all time,

i.e., minimize lim VY(t) over Y where VY(t) is the expectation

of undiscounted cost incurred during interval [0, t] under policy

y if the system starts in state i - {12 ... n) - all components

working.

14



Unfortunately, lim VY(t) in most cases and, thus, is

not a good quantity to compare policies with. To render things

finite if V(t) grows slower than exponentially, a positive

"interest" or "discount" rate "a" can be introduced into the

model.

fe -atVY(t). (taking Laplace-

0- StieltJes transforms)

Definition: 6 is s-optimal if v (s) > vy(s) V y E 6,

A - policy space.

Definition: (Blackwell) 6 is optimal if it is s-optimal

V sufficiently small s. (Aopt = set of optimal policies, possibly

empty).

0+

As the behavior of v(s) as s - 0+ is intimately related to that

of V(t) as t - , we use Blackwell's criterion as the definition

of optimality.

Given a definition of optimality, it is now necessary to show

how to compute on optimal policy given a specific Markov decision

chain (or renewal program). The next theorem will demonstrate an

approach towards doing so.

I ?1
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A Harkov renewal program is defined by the:

(M) states 1, 2, ..., N

(ii) decisions Di M set of possible decisions in state i

(iii) transition probabilities Qk k

Qijx)
Qk Wx = P~sn+ J, tn+ t_ -itkQiJ =~ <~ t + n = ~ n =t ()=

(iv) cost structure Rk(x) - expected cost incurred during

time interval [0, min (x, t)], s0 - i, 6(i) - k.

This is assumed time invariant.

In the case of exponential transition probabilities, i.e., the

Markov decision process,

[1-e -  k x)= r k[-e- ix
Q~j(x) = PiJ~lex ; RiCx " ~[le

Definition: Normalized moments

Qn f tn dQ(t)/nl R - f tndR(t)/n!
0- f -

N x N matrix N x 1 vector

Note: Q0 = transition matrix of embedded Harkov chain.

Note: Well known !arkov chain theory says as n ,

(if only one ergodic class present) QO - P ' the stationary

transition probability matrix which can be computed using the

equations

16



P*(I-Q 0 and P* 1 1
0 O

Theorem: Suppose %+2 is finite and R + is defined

and finite. Then (eliminating 6, i from notation to simplify)

v(s) - s-1 V-1 + V0 + sVI1 + -.. + snV n+ o(sn). Moreover,

Vi- -1, 0, ..., n, the vector Vi  is the unique solution of

equations:

(I-Qo)Vi = b and P Q1Vi 
= P ci

where

c-1 = RO, b-1 - 0, bi = ci_1 - Q1Vi1l

and
i +2

Vi> 0, c, = (-l) Ri+l + I (-1) Q Vi+I- j~J-2

Proof: see [i1].

This suggests that when s is sufficiently small, the decision

maker can go about finding an optimal policy by first selecting policies

6 6so as to minimize V- break ties by minimizing V0. etc., until

a unique policy is arrived at, if one exists. In the exponential case,

it does (see [311). In addition, there it can be shown that AN - A
y 6

where A 2 = A, Ak = 6 e AklIV > V 6 6 Ak 1 , and

A lim A
ke- k

17
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It can also be shown that A . Aop t under most cases

(see (111)in Karkov renewal programming.

Definition: V 1 optimal policies are termed gain optimal

and are those for which the long run average cost per unit time is

minimized.

P R0
V P Q1

Definition: V0 optimal policies are called bias optimal and

are those for which the total expected cost is minimized. In

particular V0  solves (I-Q0 )V0 = Ro-QIV 1 and P Q1 V0 = P (-R1 +Q2V 1).

In solving specific coherent system repair models in

successive chapters, V_ 1 and V0 will be used as optimality criteria.

With other past maintenance models which use a Markov decision chain

structure with costs, the objective was almost always to minimize

V 1 , the average cost per unit time. An example will be given that

demonstrates the need for going to V0  if it is desired to find the

optimal decisions for the transient states.

Example 1.3 (parallel system, n - 2 components, no fixed

charge, states - which components up { (12, 1, 2, 0)):

decisions: A12  {A A 1  (A, R21 A2 
= {A, R1 }

AO {Rig R2' R12}

where "A" denotes doing nothing and Ridenotes

repairing i h unit.

18



cost:

A A A R p
12 rI  r2  0 1

R 2  R I  R 2
r 1 2 r2 K1  r0  -p + K2

R12 K .
r0  = p + K 2 + K2

It turns out that if p is small enough, RI  in 0 is

expected cost
V_ optimal if component 1 has a smaller expected Cift ratio than
-1 expected life

component 2. The V 1, optimal policy does not specify what to

do in states 1 or 2 in this case.

Basically, given a policy 6, an underlying Markov chain

structure is formed which contains some ergodic states and some

transient ones. Finding a V_1  optimal policy locates that

ergodic chain of states which minimizes long run average cost/unit

time over all other policies which have a different ergodic

structure. However, except for a few special cases, there will

be many V_1  optimal policies i.e., when one can change any decision

in the transient states without forming other ergodic states, V 1

will be unchanged. Thus, to find out the optimal thing to do in

transient states before reaching the ergodic chain, from which one

never leaves, it is necessary to look at VO.

The next question is why then, given the above argument, not

keep going with V1, V2, ... etc., until a unique policy is found?

19



Besides being computationally messy, it is unnecessary. Any ties

with V0 can be broken by changing one of the costs or mean

component lifetimes by some c, however small. Any data measured

to use in such a model is only going to be precise to a certain

decimal point so one can always change the insignificant portion

around to break ties or just leave them and call them equivalent

policies.

The fact that in a coherent system repair model, the states

and costs are nontime-dependent with no discounting enables us to

specify an "optimal" decision in every state by only considering

VI VO. The V0 criterion places equal weight on costs at

different times, which suffices to determine an optimal policy

given model assumptions to minimize total expected cost, i.e.,

there is no advantage given to a policy which has the same total

costs as another but less of the cost is likely to be incurred

earlier, thus, allowing for more cash-on-hand for a while, even

though the total spent will end up the same (type of policies V1

distinguishes). For further economic interpretations of

V-1, VO, VI, see Veinott [31].

20



CHAPTER II

THE BASIC MODEL

1. Description of Model

The Basic Model is the simplest of the coherent system repair

models, but by no means uninteresting. In it, assumptions are as

follows regarding fixing model parameters:

States: components are on or off, either

(a) depending on which components up if system

# k-of-n or different components

(b) depending on number of components up if

system = k-of-n and same components.

Repair: instantaneous, unlimited service.

Component Lifetimes: exponential, nonidentical components

order the components so that number 1 has smallest

mean lifetime (or largest parameter), i.e.,

-Ait

Li = lifetime of number i - 1 - e = p{Li < t}

where A > A 2 > .. > Xn"

Variables within the Basic Model structure are the objective

(VI or V 0), the type of system, and the existence or not of a

fixed charge as well as costs to repair a component, penalty cost

for system failure, and the mean lifetimes of the various components.

Section 2 gives results for the case of no fixed charge, V 1 optimal.

In Section 3, what happens for positive fixed charge is looked at.

21



It should be noted that the type of system can be anything

but series. Due to the instantaneous repair, the requirement that

repair be undertaken on some component when the system fails and

the fact that the decision space is to repair some subset of the

failed components, there are no decisions to be made in the series

case. The only possible states are (all components up) or

{i down), some 1 < i < n. In the former, no repair is done since

all components are up and in the latter, component i is repaired

automatically. One could drop the requirement of repair when the

system breaks down, thus, allowing more states and decisions but,

besides unnecessarily complicating the problem, it would be

unrealistic to assume that a decision maker would want to do nothing

if the whole system he is in charge of breaks down, (if the system

is coherent).

The fixed charge is denoted L, and is > 0. It costs

Ki > 0 to repair component i (an instantaneous lump sum since

instantaneous repair) and p > 0 is charged each time the system

fails.

Component lifetimes being exponential, the model can be

formulated as a continuous time Markov decision chain with infinite

time horizon as mentioned in Chapter I. To define the model

completely, we need:

22



(1) State space (states depend on which components up)

(2) Decision space (decisions available in each state)

(3) Transition structure (probabilities of changing states)

(4) Cost structure (cost of decisions in each state)

(5) Objective function

The following notation is now introduced and will be used

throughout.

Figure 2.1

Coherent System Repair Model - Notation

n = number of components

s = a state, s C {I, ..., n} = {all components
working}

= a policy involving decisions in each state s
(to repair or not and, if so, which ones and
how many)

A = decision to do nothing (can be made in any
state in which system is not failed)

R = decision to repair the set Qs of components

s (can be made in any state s where all elements
of Q are failed)

s
6

Q = matrix of transition probabilities betweenvarious states (depends on policy 6 and
lifetime distributions of components)

Fi(t) = lifetime distribution of component i
-it

= I - e- in Basic Model

= expected lifetime of component i I/Ai

23



Q1 = v = vector of expected times to transition
(holding times) given various states s and
policy 6

P = vector of stationary transition probabilities
for policy 6 = (P ) Get by solving-s se5,9 °

* 0

= set of states, s (2n  of them - some may be
inaccessible given starting state and policy)

p = penalty cost incurred when system fails

K. = cost to repair component i

L = fixed cost for repair (same no matter how many

items (> 0) are repaired at once)

&
R = vector of costs given various states and

policy 6

6
V1 = long run expected cost per unit time of policy

6 (scalar)

V_1  = min over 6 of V = optimal long run average
expected cost/time

6
V = expected total cost for policy 6. This is a

vector depending on s

V mn m V . It turns out that the policy which
0 6 0 6

minimizes V for one s does it for all s0,s

(see Veinott [27]).

We are now ready to specify the Markov chain completely for

the Basic Model:

State Space:

States = which components working, i.e., s = i i k

if components iI, 2 2 .. ik C (1, ..., n} are working.
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If system = k-of-n and components are identical,

then states - number of components working, i.e.,

s - i if i components left working.

Decision Space:

Let Q = {1, ... , n1. Then Q - s - set of components

which are failed in s. Then the possible decisions
in state s are: R , where Q C Q - s ( is

some subset of the failed components given state s).

If 2 then R f A (do nothing). If system is

down in s, then Q * (must do something)

Transition Structure:

The transition matrix, : (assume 6 : R in s)
s

0s~ }'u~siXJE s UP 3

0 , otherwise

6 1

Jesu a
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Cost Structure:

L Ki, if system up in s

R = ( Qs
O's

L + p + Ki, if system down in

S

where

B 1l, if A = B

0, otherwise

Objective Function:

p R 0

V = 0 6 if 6 forms a single irreducible ergodic chain.
1 P6 Q 6

6 6 6 66
V solves (i) (I-Q0 ) V0 = R0 - Q1 V 1V0=

(ii) P 6 Q1 0 = P (-R + Q2 V -1

Q2 being the normalized variance of the holding time

distri.butions in various states.

A couple of examples are given below:

Example 2.1 (n = 2, nonidentical components, parallel system,

no fixed charge):
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states (s): 12 1 2 0

decisions (k): A A,R2  A,R1  Ri, R2, R1 2

cost 0 0,K2 ,K K1 + p, K2 + p,

K1+ K 2 + p

transitions (Q0): Q 1 2  12th row of Q

12 1 2 0

[ 0 X 2  
AI

A A R [
%,i. 0o,2. = o9. 1+

Example 2.2 (n = 4, identical components, 2 of 4 system,

fixed charge L.

states (s): 4 3 2 1

dimensions (k): 0 A,R1  A,R1 ,R2  R1R2,R3

cost (R ,): 0 0,K+L 0,K+L,2K+L K+L+p, 2K+L+p,

3K+L+p

where Ri denotes repairing i units simultaneously.
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transitions (Qo):

4 3 2 1

A R1 R2 QR3 0 1
QO,4. QO,3 2.QO* = " 0 1 0 0

A R R

A R1 R2 = o1
Q03. %f Q,. -Q 0, 1 . [o o ]

QO, 2. - QOI. 0 0 1

These two examples will be referred to in succeeding sections

as solution techniques are developed.

2. No Fixed Charge, V 1  Results

Initially, assume we have a general coherent system (identical

or nonidentical components). The following theorem is the basis

for many of the results in this section. It expresses, given

8, V 1 as a convex combination of certain quantities which in the
Yi

case of no fixed charge, turn out to be VI for other possible

Yi
policies, say {yi}. The minimal V-1 must, thus, be V for

Yi
some i, and since min V turns out to be easy to find, the

1 -1

optimal V_l and corresponding V 1, optimal policy can be obtained

for any coherent system.

Theorem 2.1: Suppose we have the Basic Model with no fixed

charge, and a general coherent system. Fix a policy 6 such that:
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(i) RS in state s
s

(ii) The underlying Markov chain defined by 6 is

irreducible.

Then V where = S IsThe V Ps * Q I

and

VK i +K i+p

S SUR S2 Vi iEsUR 1s s

i: (sUP s-i) is i: (sU s -i) is
"up" for system "down" for system

Note: There is a result in Denardo [81 which holds for all

Markov decision chains which says V 1  is a convex combination of
R6
6 for all s. Theorem 2.1 expresses V-, as a convex combination

I-s

different quantities. While it isn't true (or applicable) for a

general Markov decision chain, it is much more useful in obtaining

results for the repair models under discussion.

Note: The assumption (ii) in Theorem 2.1 is not really a

restriction as far as finding a V_l optimal policy is concerned.

If 6 defines a process with several ergodic chains, C, each with

C *
its own V the policy 6 , which is irreducible and has single
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erodic chain V-1  mi mm C is better than 6. Thus, if 6 has

a chance at being V_1 optimal, it must define an irreducible

Markov chain.

Proof: Since 6 is fixed, we drop it in notation for

brevity.

P Q

Thus, it is sufficient to prove that

P R = ~ ~' Vs =RHS.

This will be done by proving that the corresponding

coefficients of Kit 1 < i < n and of p are equal for PR0

and RHS.

Let .9 s Ercmoeti is repaired in state s)

{sp ( e97Isystem is failed in s).

0* E ' E' E 
e. R, i P~s + P( 9 P.s)

RIIS - I P. ~' i AK + X Ai(Ki +P)
5 iESU~ Q ic s U Q

i: s -i i: su S -iI
is up is failed
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where

First, the coefficients of p:

coefficient p P RO P. P.

-S

using the s thequation of P (I-%) 0

je tu P

je- tu a

t iE tU S

i:tUp t- i
E99

coefficient p of RHS.
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Now, the coefficients of K1, and i:

K coefficient P R0: 1

Ki coefficient RHS: s: iE. Q ~ P s USt

since RHS without p-terms

8 
1.

P. x P*XQ 15 K i
s iesu Q s

n

K1 ii Asi P sU15

i s iEsU 2 81,
S

s: iE S jE

whr a ubr feeet na
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Ir

From the appropriate columns of P (I-QO) - 0, we get:

ith column: P., . ,I t 1 P.

it, ... Ik th column:

P. £k+l !P t);

P = tk+
ti k+lt •

k < - 1.

thus,

Pi + t P = t
s:s1-2 Xj t:tUj\ t s:I1s-2 t:tUQ t

iEs rEB -s

and

l,.... tk0 1 " s:Isl=k+l :tU SIties i -s

I I Pt; 1 < k < n - 1.
s: 1s 1 k+l t: tU t

RES =a

Thus, coefficient Ki  of RHS
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n n-i
= -[=g- t Y ..it .zz s l s ~ z t ~ u tk = j Z 1I . . . . k i " "

irs =S

n

=1 s: =X t:tL =s t:tU at s "i s lEt t i~t

n-iY ' .I t P i l ..Zk-l 4 .. ,ki "i0''1

P-s - coefficient Ki  in P RO .

BE9,i-i iii R

The following lemma associates a feasible policy with each VS:

Lemma 2.2: Vs, as defined in Theorem 2.1, is equal to V-I,

where y is a policy which has {SUPs - iI i  s U 1 as its chain of
s

ergodic states, i.e., y is the policy: Ri in sU~s - ji [keep the

set of components sus working].

Proof: To get V 1 = Vs, some s in Theorem 2.1, need

6: p6 0 unless tU~ t  sUQ . This occurs when 6 - y.tt S

Corollary 2.3: A V_1 optimal policy for the Basic Model with

no fixed charge will never involve repair of more than one unit at a

time in an ergodic state.

Proof: Uses Theorem 2.1 and Lemma 2.2 directly. Any policy

6, which repairs more than one unit at a time in an ergodic state has
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VI convex combination of V, s E p9. Thus, V6 > Vs where-1 soaEy hs -1- s

- V .. some y for which repair is never done on more than

one unit simultaneously. 0

The following theorem which follows directly from Theorem

2.1, Lemma 2.2, and Corollary 2.3, gives an exact procedure for

finding the V_1  optimal policies for the Basic Model.

Theorem 2.4: Given the Basic Model with no fixed charge, a

V 1  optimal policy 6 is one for which

6^6 = minV1 s

system up in s

where

AK i  Ki+p

iE-s i iEs i
i~s-' O' i:s-ic.97

p p

Proof: From Theorem 2.1, Lemma 2.2, and Corollary 2.3.

Thus, given any coherent system with state space .9

under the Basic Model, to find a V 1I optimal policy, compute

V V sE.Y and find the one(s) which are minimum, say Vs. By
~*

Lemma 2.2, V defines a V- optimal policy y which keeps the
s -

set of s components working by repairing any component of s

as soon as it fails.
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Notice that there will be many V_ optimal policies

since the above procedure only defines what happens in the

ergodic states, i.e., those for which the process once having

entered, will stay in forever. If keeping the components of

state "s" working is V_1  optimal, then all other states

besides {s i}iE s must be transient or unable to be reached

from the initial state of all components working (or would have

multiple ergodic chains, in which case the policy wasn't V_1

optimal). To determine the optimal policy for those states, we

need V0 results, looked at in the next chapter.

The no fixed charge L assumption is essential. Although

if L > 0, a version of Theorem 2.1 holds, not every V correspondss

to a feasible optimal policy in that case, limiting its usefulness.

Some examples of specific systems conclude the section.

Example 2.3 (parallel system, different components (n))

p
K i  K i+P

vs --+ Is ics Pi ies Ki

s-io{O} s-i-{O}

If Isl > 1, then s - 1 0 [0} V i E s

IsI = 1 (s = {i}, some i), then s -i {0}.
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Possible min V s (optimal Vl) are:8

s ergodic chain policy

Ki + p Ri  in 0
sU i  (keep unit i working)

1 KR in J
Ki K R. in i

j1 11RJ i

(keep i & j working)

If s : IsI > 2, , some i & j. A V1  optimal's - 11i  Vj

policy is one which has

K.+ K. 1
V-1 = min min i -I m + +

S i,j "i 1jJ

keep j keep i & j
working working

If n = 2, then we have Example 2.1. Below are some examples

of policy behavior:
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Suppose n = 3

states

s : IsI > 1 1 2 3 0

Let 6 A R2  RI  A R2

62 A R2  RI  RI  (R2 )

6 : 12 13 23 R2  RI  R 1
R R A 2

6 1 is not V_, optimal, since it has two ergodic chains {12}

and {W} both accessible from the initial state.

+ 62 is possibly V_1  optimal, as even though it has {12} and

{0) as absorbing chains, {12} is the unique one accessible from

the starting state.

6 is also possibly VI optimal, and has the same V_1  as

62. V0  is needed to distinguish between 62 and 63

Example 2.4 (k-of-n system (system works -* at least k < n

units functioning)):

k = I is parallel

k = n is series

= s I sI < k - 1}.

Note that s : Isi < k - I are inaccessible due to the instantaneous

repair and requirement of repair in a failed state.
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Ki

V =s I, if Isi > k

K1+p if Isl - k

i sU s  ij

not defined for Isl < k (system down).

's
Possible optimal V_1 :

kKiK+pV_ = I I some {il ... k} C U1 , n}

j=l i.

has ergodic chain: {il, ..., i} i, i E fill ... I i k

policy: keep {il, ..., ik } working

or

k+l K

V-1= I , some {ill ... i k$4 } C {1, ... , n}
-1 1 i i

j=l i ' ""- ""

has ergodic chain: {il, ..., ik+ I } i, i E {ill ...,I ik4l

policy: keep {ii, ..., ik+ I } working.

True for 1 < k < n - 1 (k # n (series) by assumptions on Basic Model).

Thus, 6 optimal is either

(a) keep the cheapest set of k components working if p,

the penalty cost is low enough, or
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(b) keep the cheapest set of k + 1 components working

if p, the penalty cost is high enough.

Example 2.5 (system up * component i is up):

9; = {sli € s}

defined for s : i e s
s

K.+p K.
-- 1 + J. -jEs-i j

K.+p
min V =- at s fii.s s 11i

So, a VI optimal policy has absorbing state W0} and keeps

component i only working.

Example 2.6 (n = 3 system defined by the min cut sets {U),

{131):

p = {23, 2, 3, 1, 01

V defined for s C {123, 12, 131

K1 +p K2 +P

12 P 1 P2

S K I+P + K3+P
13 P 1 3
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K2 K3K 1+p K2 K3
V - -I + - + - , any of which could be min.
123 P P2 P3

So, 6 optimal is to keep {121, {13}, or {123} working, depending

on parameters.

3. Fixed Charge Results

In this, the final section of Chapter II, a brief look will

be taken at Basic Model results for cases when there is a fixed

charge L > 0 per repair decision. A larger fixed charge is going

to induce more multiple repair decisions and theorems in Sections 1-2

involving conditions under which one never repairs more than a single

unit at a time will be no longer true in many cases. However, a

number of the other results from Section 2 either apply directly

or can be modified for use here. The case of a k-of-n system with

idendical components is looked at in detail as it yields a precise

optimal solution using VI only which can be compared to the L = 0

case.

The basic result from Section 2 upon which all the V_

results for the L = 0 case were based is Theorem 2.1, which

expressed V 6 for any policy 6 as a convex combination of V ,
exrssdV 1  -1

where yi were policies which never repaired more than a single

component at once in ergodic states. An extension of Theorem 2.1 to

tne L > 0 case is direct. Unfortunately, the quantities which

6IV 1 is a convex combination of, are not all V_l 's of certain other

policies, rendering the result less useful but still worthwhile stating.
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Theorem 2.5: (extension of Theorem 2.1) Suppose we have the

Basic Model with fixed charge L, and a general coherent system.

Fix a policy 6 such that:

(i) R in states where Q C {1, ..., n) - s

(ii) the underlying Markov chain defined by 6 is irreducible.

Then

V 1 a V where a- *

sEy P Q1

and

K +L+ Ki+p+L

+ if Qs i :sU fls  i . fis Q is

i:sUfls-i iCsU s-I

is up is down

K, K1+p
-- + - if Q

iEs i ies i

i:sUs -i- i:sUQ -i

is up is down

Proof: As in the proof of Theorem 2.1, it suffices to show

PRO F.8 Ql1 s V. (RHS) by proving the corresponding coefficients

of Ki, 1< i < n, of p, and of L are equal. Those of Ki  and p,

unchanged from L - 0 case are still equal so only need to check the

coefficients of L.
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PR- Os Ki I P + P P
i- E~j S G. E /

(y~ 9p V y defined on page 30) + L I P

where Y Y2 U ... U.92 set of states in which some
n

repair is performed.

Coefficient L in (RHS) = P Qls " ' il

sE 9,U iEsuBQs

• s .1 1i
sE U i iEsu Q
EY UsU s

s

P. s

=coefficient L in P R.

In the L =0 case, one then has Lemma 2.2 which states that Vs,

as defined in Theorem 2.1 is equal to V where y is a policy

which keeps the set of components {sU s } working. (Whenever one

fails, repair it and, thus, never repair more than one unit at a

time.) This then eliminates from being optimal, all policies which

allow repair of > one unit at a time in an ergodic state. If

L > 0, this is no longer true; as the following example illustrates:
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Example 2.7 [refer to Example 2.3] (n 3 parallel system):

Fix 6

If s - {1), R2  in s

or s = 0), R1 2 in sI. Vs = A1 (K1+L) + A2 (K2+L)

But, if s = {12}, A in s, then V. = AlK + 2 K 2 Then policy

y, of keeping components 1 and 2 working, has VYI = X1(KI+L)

+ A2 (K2+L). So, if we pick 6 so that "A" in state 12, then

V cannot be expressed as VYI,_ where y keeps components number

1 and number 2 working.

Given the failures of Lemma 2.2 and Theorem 2.1 in

limiting possible V 1, optimal policies in the fixed charge case,

it is now clear that the finding of a general optimal policy would

be extremely time consuming, if not impossible without the aid of a

computer (see Chapter VI for suggestions). Thus, in the interests

of getting a feel for how a fixed charge affects things, we close

out the section by looking at two special cases where results are

obtainable. These are:

(1) identical components, k-of-n system

(2) no penalty cost (p = 0).

In case (1), we can get a general optimal policy.

Definition: Let fk(i) = (i+k)[l/k + ..- + l/i+k-lJ - i,

1 < k < n, I < i < n - k + 1, fk(0) 4 0, fk(n - k + 1) .
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Notice that

(a) fk(i) + i, + k

(b) fk(i) - fk(i-1) t i, 4 k.

Theorem 2.6: (optimal policy for L > 0, k-of-n identical

components).

Suppose we have the Basic Model with

(1) a k-of-n system

(2) identical components (Xi = X, Ki = K), and

(3) a fixed charge L > 0 per repairman visit.

Then the following are true:

(i) Never optimal to repair until k left working.

(ii) Among policies which repair when there are k left

(label R, = repair Z units at once), R9 _1  is

optimal ' f k+l(-l) < L/K < f k+l(9.), where

1< Z < n - k and f k+l(n-k)= .

(iii) Among policies which repair only when the system fails

(k - 1 left), R is optimal 0 fk(Z-1 ) < LKR < fk( M9 K k

i< I < n- k +1.

(iv) The optimal policy is the better of that in (ii), (iii).

Proof:

(i) is direct from Theorem 3.3 in the next chapter. As we

have a k-of-n system with identical components, the
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state and decision spaces are greatly simplified with

states = n, n - 1, ..., k, k - 1, the number of components

working, and decisions limited to the number of components

desired to repair in a state. By (i), the optimal decision

is "A" in states n, n - 1, ..., k + 1. In state k,

possible decisions are: A, Rip R 2' ., Rn-k, in state

k - 1, they are: R1, R2, ... , Rn-k, Rn-k+l. No state

i < k - 1 can be reached by the necessity of repair upon

system failure assumption. The possible policies then

reduce to the following 2(n-k) + I possibilities:

1
policy 2

Sk  6 k I 40= {ergodic statesi 6k 6 k-1 46= {ergodic states}

A R {k-l} R never -k}
reach

A R2  (k-i, k} R2  k-i (k, k+l}
2 so

A R {k-1, k, k+l} R i {k, k+l, k+2}
3 3 r

r
• e

A Rk+l (k-l, k, ... , n-l} Rn~k {k, k+l, ... , n-l}

Those policies in column I are those referred to in (iii)

and those in column 2 are treated in (ii). It remains now
's

to compute V i for various policies and compare them.

Below is a table of such values. Comparisons of column 1

values lead to result (iii) and of column 2 values lead to

result (ii); (iv) is obvious. 0
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Figure 2. 2

Table of V 6 for 6 in Theorem 2.6 Model

Column 1 (111) Column 2 (11)

6V- 1 V-

ARk +L + p R K K+L
A1  ij/k 1 ~

AR2K +L +p R -2K +L
2 PUNl/ + l/k+l) 2 pi(l/k+l + 1/k+2)

AR 3K +L +p R- 3K+ L
3 ii(l/k + 1/k+l + 1/k+2 3 u(l/K+l + 1/k+2 + 1/k+3)

AR (n-k+l)K + L +p R -(n-k)K +L
A -k4 1 iP(l/k + --- + 1/n) n-k ij(1/k+1 4-- + 1/n)

It is worth noting that V_ alone here gives us our

desired "optimal" policy - no V 0needed.

Example 2.8 (consider Example 2.2 from Section 2.1):

n =4, k = 2 costs: with fixed charge L > 0
component repair K/component

states: 4, 3, 2, 1 6 opt - A, 6 opt =A
4 3

mean lifetimes
of components: p.

policies: AR R2 R39R1 -9
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AR 1  AR 2  AR 3(___)_|__ - (i. + p)/K t2,U) =

policies
0 f2 (1) f2 (2)

f 2(0)

(ii) - 2 L/K f 3(2) =

policies
0 f ( )

I.

f 3(0)f3(O

Compare optimal among (ii) and (iii) to get optimal.

In general,

zi L Z2 L 23 L Z4 L k5

1 3 4 5 Lp fk ( n - k + l )

0 f k(1) f k(2) f k(3) f k(4)

R R 2 R 3- I L/K fk+l (n-k)

0 fk+l(1) fk+1(2) fk+(3) f k+ (4)

The L/K ratio = fixed charge is the key here. A large
component repair charge

L/K favors repair of several components simultaneously while a small

ratio favors single repairs. Obviously, a large p favors an "R i -

policy while a small p favors t"AR i  types.
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Now, fix all parameters except the type "k-of-n" system

to see how k and n affect the optimal policy. (L+p)/K and L/K

are now fixed. Increasing k lowers f k(i) for any fixed i.

This fact enables us to state:

Lemma 2.7: Given the Basic Model with identical components

and a k-of-n system with a fixed number of components, n. Let

1 < kI < k2 < n. Then the number of comoonents repaired in the

optimal policy for the k -of-n system is less than or equal to

the number repaired in that for the K2-of-n system.

Increasing n, the number of components while leaving k

fixed leaves the previously existing fk(i) unchanged but does

add more possible values of i and thus further subdivides the

interval between the previously last f k(i) and -. This leads to:

Lemma 2.8: Given the Basic Model with identical components

and a k-of-n system with fixed k, let k < nI < n2. Then:

(i) If the number of components repaired in the optimal

policy for the k-of-n1  system is less than all

possible, then the same policy holds for k-of-n 2.

(ii) If the number repaired in the optimal policy for the

k-of-n I  system is all possible (i.e., n l-k in state

k or n -k+l in state k-l), then the number

repaired optimally for k-of-n2  is greater than or

equal to that for n1 .
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Another interesting question that is easily answered is:

What happens to the optimal policy asymptotically as k, n +

with n - k held constant?

Lemma 2.9: Given the Basic Model with identical components

and a k-of-n system, let n, k - with n - k held fixed.

Then the optimal policy is either ARn-k+ 1 or Rk -

Proof: Notice that lim fk(i) = 0 for fixed i. Since
k-).

K > O K > fk+l(n-k-1) and L+p > fK(n -k ) , the

optimal policy will be either to allow system failure or to get

down to k left and repair all failed components.

Notice that if L = 0 (no fixed charge), the optimal policy

is either AR or R - since in that case, one never repairs more

than one at a time.

Now consider the p = 0 case briefly (components no longer

need be identical) using a k-of-n system. Using arguments from

Theorem 3.3 (next chapter), it is clear that repair need never be

done until system failure (k-1 left) since there is no penalty.

Since 6 = A if Isi > k, only 6s, I s l = k - 1 need be determined,s

which is possible using only V_1 - optimality. For the case of

identical components, the optimal policy in (iii), Theorem 2.6 gives

the overall optimal policy since those in (ii) will never be optimal

given p = 0.

See Chapter VII (Conclusions) for a summary of results

presented in this and other model-result chapters.
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CHAPTER III

THE BASIC MODEL, V0 - RESULTS

1. No Fixed Charge, General Results

In this chapter we will try to pinpoint optimal decisions

in transient states. The problem is much too complicated to solve

for a general coherent system except by computer, so let's restrict

ourselves to a k-of-n system. In this case, it will be shown

that one never repairs when more than k units are working and

that, with no fixed charge, one never repairs up to more than

k + 1 units working from any state if p is small enough. As

Vl determines what to do when in s : Isl = k - 1 and one does

nothing until k - left, the only unknowns are what to do in

transient states where k - units are working. If k = 1 (parallel

system), the problem can be solved exactly in many cases and a

general V0  optimal solution obtained. This requires considerable

work and is done in the next section (2). The other case for which

an exact optimal policy is obtainable is that of identical

components. Here, the state space of the model simplifies, causing

every possible optimal policy to have a unique V_l , in which case

V_ is sufficient in computing an optimal policy.

To prove the aforementioned results, we need the following

lemmas:
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Lemma 3.1: Suppose we have a k-of-n system and the

Basic Model. If it is never optimal to repair more than one unit

at a time in states s : Isl = k' > k, then it is optimal to do

nothing in states s : Isl = k'.

Proof: First, from Chapter II, allstates s, Isl > k + I

are transient in a V 1  optimal policy so any realization of the

process starting in s : Isl k' using an optimal policy must

eventually reach a state s : Isl = k' - 1. This will happen at

the first instant decision "A" is chosen.

The basic argument is: suppose you start in state s and

follow policy 6, under which R in s, until a state

t : Itl = k' - 1 is hit. Then the policy y, which first lets a

component fail from s and then does everything 6 does will be

better than 6 (with respect to V0 ). Since y never repairs

until k' - 1 units are left, the result is true. To be precise:

let the starting state s = {il, ..., ik,}. It is desired to compare

policies with respect to V0 , where V0  is a vector whose length

is the total number of states and which satisfies:

(1) (I - Q0)V0 = R- QlV

*- Q

(2) P Q1V = P - I + Q2V l) 1

s
t

Let V, 6 = total expected cost given start in s' and follow policy
S

t  
S

6. It suffices to compare V0 and V' for any one s' for if a
0,6 Oy
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policy minimizes V0 for one s', it does so for all s' (see

Veinott [31]). Let s' = s where s Isl = k' is our starting state.

In comparing V0 , it is assumed that an optimal V 1i policy and

a corresponding set of ergodic states have been found. We are

concerned now with transient states only, as ergodic states and

decisions there have been determined by V 1 . By equation (1), if

R. in state t, t = fill ... , iq}

(3) v V +K V

OR tEtUi 0 "pEtuj p  pEtuj J p

t
or, combining V terms

0

(4) V = It_ t~u + • K.

pet pet pet

where Vt = total expected cost given start in t, use 6(t)0,6(t)

in t and follow any policy thereafter.

If "A" in state t,

(5) V t  t-
0,A =  IA 

petp pEtp

Now, pick any policy 6, which has R in the initial state

s and specifies what to do each possible time another state

s', Is'! = k' is entered.
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As previously mentioned, there are a finite number of such

possibilities. 6 can be represented by the following sample path

diagram:

6: s2(s I  = {s 1 UJ(s) i, some i}

SsJs(.l A

s= {sUj -i, some i} R(2) ---- SN(Sl, . . s
R s2(s I1 )

R (s s 2 (S)Ai 2S s2 (sl) A

s - (2) sN(sl,... sN -1
R. A A. 7i

'N
(1) (N)

Where:

- N = maximum possible number transitions before going to a state with

Isl =k' - 1 (i.e., making the decision "A"). Note N < -.

- "Boxed in" (=---) states (1), ... , (N) represent "termination",

i.e., entry into a state with only k' - 1 units working after

1, 2, ..., or N transitions.

s.(si, ...I s I ) represents the state entered after the jth

transition (if termination has not yet occurred).

Clearly, this is a function of Sl, ..., s j 1 where

E sip .... J I E sR (or would have had termination).
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+j (s£) represents the item specified by 6 to be repaired in

state s*. If J(s) A, then termination occurs at the Ith

transition.

s9(s i p .... , s _I  = S1l(s I , .... St- 2 ) U J(si, _ L-1

by definition of the process involved.

s = {sj6 = A}.

Ssj = {s1js = } = by definition of N.

SR = {s 16 0 Al.
: i s j

It will be shown that the policy y, represented by the sample path

diagram below, has Vs  < VS  Note that the two diagrams have
O,y - 0,6

identical probabilistic structure and termination states (1) . (N).

y: s E s R , 1 < X < N - 1.

s2(s {s I U ) , some i, s E s

------s N(sl,.. •' N-j) (n- )
2 1 j (s) .

3Cs1 )sn1)s3 s ) = s2 sl A ' i 2  R (

(2)

CA s (s.  zz 11 A___.. 9

(1) iN

(N)
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By (4),

(6) Vs suj + PSUI K
0,6 -- 1vU-.+pu -

0 Es 0 0  X • X
pEs p pEs p  ps s

By (5),

(7) V s  = SX Z s-1
pEs 

ps p

If N = 1, i.e., 6 = 6 A V Z, then, using (4) and
s sUj-Z

(5), plug into (6) V ZR and Vs X into (7) V X. (6),

(7) become equal except for the coefficients of K . Thus,

(6)-(7) =V s  s  pEsU 1 K.
0, 6 0,y X X j K

psp

A .K.

P~s p

so, y is better than 6 if N = 1. We now proceed by induction

on N, the object being to prove

s _As )id(s Kd(s
(8) V0 6  O V Pw

w s j!0 p
PESi
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where wis is any sample path starting from s, k(w) length

of sample path w, i.e., w = (s, si t s 2, ..., S(w)), d(s ) i

decision at state s. of sample path w. Since (8) > 0J

obviously, the desired result would then be proved. (8) has

been shown true for N = 1. Suppose true for N - , is given.

Let state t. = s U j - Z, t 0 j. Suppose

6 : Rj(9) in t, R E r

A in tZ, t E a, r U a = s

r, a are defined to satisfy the above.

Let 6 be the policy which starts in t, Z E r with "R "

anA follows 6 thereafter. Let y be the policy which starts

in t, t G r with "A" and follows y thereafter. 62t has a

maximum number of transitions to a state t ItI = k' - 1 = N - I

so the hypothesis holds for 6., Z E r.

By (6) and (5)

s V-1X tE
s VK + V0

0 ,6(1+ jsp Kj I p tr p 0ps p  E

/ Ak ti~k V

+ Vo -

ZEa 

X

pea pEt p 0t
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By (7) and (3)

V t

s k

So, V - V
0 ,6 O'Y

XjK. A k Ft Ak VL-k V-

Aj~ +K I At Ft z I by (5) and definitions

I xA p+~ A 0,6 z O'y of 6
P~s P P~ I LZZ

X.K. A Z (w)-l Ad(s.) d(s .)1- by induction

ZEr I p J~ = hypothesis

ir A A .K. X(w)-l A~ K~

pes p~ P zPp~s

z(w)-1 Ad(s.) d(s )
= w J I , which is what was to be

i 0 P pe proved.

Lemma 3.2: Suppose we have the Basic Model and a k-of-n

system. Let k' > k. Then, if it is optimal to do nothing in all

states s :Isi > k', it is never optimal to repair more than one

unit at a time in states s :Isi k'.

58



Proof: The basic approach will be to use the V0 equations

to show that if one starts in state s, Isi = k' and repairs some

subset Q {jig ... I }, m > 1 of the failed components and then

follows any other policy upon again getting back to a state

t : Itl = k' (we have assumed "do nothing" optimal for ItI > k'),

that this policy is worse than at least one of the following:

(i) R Q ~ in s, I < k < m, then anything

(ii) A in s and R at the next transition.
S

This shows the desired result since

- if in 
ff 2, any policy repairing two at once in state s is

dominated either by a policy which repairs one at a time or does

nothing in s 2* m = 2 never optimal

- (induction argument) suppose R , 10I1= m - I is never optimal
s

in any s. But any R , IQ = Im is dominated either by a policy
s

which does nothing in s or by a policy which repairs m - 1 units

in s ="R, , IQsI = m is never optimal.
s

Now for the specifics:

Let s f (i, i2, ... , ik,); Isl = k' > k (k of n system)

ns =(jig J2' "'"Jm);  IQ i= m >5
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Now

SUQ m
V S, V + I K. (since instantaneous repair)0 R~ s ,A P1 3s

(9)" su i +m Up SUs -jPI9 -p kv +Pm O°,A  P p- xxi + v O ,A
I x 1 + q q.

q=1 q q=l q q

m V_
+-1 K by (5) with t = Us

p=1 p J' Y
q q

Let

Zs(J) A 1

(10) zs(J, A 1 + +

q l q

m 3
z(Ps I z ~Q -p)s S m s s

q=l Jq :Lq

q#p

Note that by (5) and instantaneous repair,

k' i sU 2-i m VI
VOA5 Rj I v V0  P + I K - -

p=1 O ,A pml p xisq q
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where A -+ R denotes doing nothing in s but R at the first

s s

transition after s.

If in (9), one repeatedly applies (5) to those Vt terms
0

left on the RHS for which t D s until there are none such left,

then brings all coefficients of VR over to the left hand

s

side, and multiplies the whole equation by

IAq + XXq

q

the result is: (using (4) to combine terms into V0 s )

sk i PsUQ s i p m

0, R • s) k A 0 + I iq K.

sp=l1Ai 0 / ~ p

X.
V m 3

+ I A O(Qs p

i p=l i + I x V,R Q Z p
q q qp q s p

x Ki
p q p qi #i

q
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(10') v s  v + vO,R Zs( s) 0,A- R s

s Sq qjp q s p

m
X . K.

z -j ~+ p-l i p p
S S p k'

q=l q

Vs  Vs + -V0,R.Q - .. V p

0 ,R 0 - V0A-R s  Y~ " +Zxs( s~ ) - V,, 0 R q
Q o). p q s

m

Y A. K. by the recursive
+ p=l Jp 3p

k' definition

[ i
q=l q (10) of z (.)

> 0.

Thus, at least one of the following must be true:

0. V0R s >00, V0, A-+RS

s S

1. v s -vs > 0
OR s 0,ROs~

m. Vs  -V0R > 0.
0,R0 ORQ

8 s
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If 0., then VOR > V 8 not optimal
0 , R O,A-RQ

S S

j., then Vs > Vs not optimal.
0OR Q8 ORQ -s s J

Note: In the previous Lemma 3.2, the assumption

k' = Is! > k, the type of system, is crucial. If k' = k, then

the policy A - RQ (let a component fail, then repair same set
S

of components at next transition) cannot be used without incurring

the penalty cost for system failure. In this case, Vs

O,A-R
s

will have a "p" term in it, causing the proof of Lemma 3.2 to

break down. We can now state the following theorem:

Theorem 3.3: If we have a k-of-n system and the Basic

Model, then it is never optimal to repair until you get down to

k items left functioning.

Proof: Consider s : Isl = k', k + 1 < k' < n. If k' = n -1,

we know it is never optimal to repair > 1 unit at a time since only

one unit is down.

Then, Lemma 3.1 "A" optimal for s : Isl = n - 1

(also for k' = n since none down)

Lemma 3.2 never R > 1 for k' = n -2

Lemma 3.1l "A" optimal for s : Isl n - 2.
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Continue alternating applications of Lemmas 3.1 and 3.2 until

k' = k + I is reached and then we are done, i.e., have shown "A"

optimal for s : Isl = k' > k or do nothing until k - left. 0

Using the results of Chapter II and Theorem 3.3, we now have a

pretty good idea of the optimal policy for a k-of-n system. Since

one does nothing in states s : Isl > k and will never reach any

states s : Isl < k - 1, only states s: Is! = k - 1, k need be

considered. From Example 2.5, possible ergodic chains are

Cs = {s - i; i E s}; s : Is = k + I or k. For states in Cs  the

optimal decisions have been previously described, R. in s - i.

In other states, decisions are restricted so as to form no other

ergodic chains. Note that for non-ergodic states of sizes k - 1, k,

decisions have not been restricted to one unit of repair at a time.

It would be nice to be able to also say that in the remaining

transient states, it is optimal to never repair more than one unit

at a time. For k = 1 (the parallel case), this is almost true by

the next Theorem 3.4.

Theorem 3.4: Given the Basic Model and a parallel system of

components, (a) it is never optimal to repair more than one unit at

a time in a state s : Isj = 1, (b) it is also never optimal to

repair more than two at a time in the failed state 0.

64



Proof: We do (b) first.

Let (components repaired in state 0} = Q0, IQ0J =

= fji' j~ .. '

Want to show mn > 3 is never optimal. Take m > 3.

(11) V OR Y K. + P+ V OA

.+ In m 0,A in

q=1 Jq q=1 q

(since !Q02 > 2, "A" is optimal there by Theorem 3.3)

0 m Q- p
(12) V =, I K. + p+ VOA

Q -J q1l jqA

or VO,A VO,R p K.

0 p q~p

Substituting (12) into (11) gives

V0 m
O,R ~ 1 in

q=1 jq
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+ Vp
Y X. [=i q I q _

q=l 3q

> _ J p v0 jm j

p=l I X.

q=l iq

since

m
V_ < min X.K. +kKk< X, K.

jk I q=l Jq Jq

0 > , at least one p. Setting m = 3 here
ORQ0  

p

proves m = 3 is never optimal. Given m - 1 is never optimal,

m is never optimal by the above argument so (b) is true by

induction.

Now to prove (a). Suppose we are in state {i = s.

Let Qi = set of components repaired in i

= {jl' J2' "''. IJ m

The object is to show that an Tr > 1 decision is never optimal. The

method will be to show V0, Ri to be > a certain convex combination
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OR q =1, ... , m. This is sufficient to prove

O, > V R some i < q < m which proves the desired result
O 01 0, q

that repair of more than one unit at a time in a state {ii is never

optimal. It now remains to show V i > convex combination of

O,0,R

0RJq

m

Let 9 = 1 ~ P(SI Ui -* jnorpis
iq - Xi norpis

= Probability that if one starts with components

s U i working and does no repairs, that

component j q is the last one left.

m m
Notice that n~ = zi(Q2i as defined in (10). Define I =

q=1 Jq q=1 iq

Our desired convex combination is

m "
(13) - R

q=1 ni 'q

AiA K---m using

q0q\ Vq i (4)

m j*iq _ 1 m fjq( Xi +Xj V...1
1 0 1 K~q1l n q:=l q i
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m + 01U i

VO,R~ X1 K O,A

rI

V-1.

- V 1  i~ where y is

n defined below

Some notation is now needed:

A. A. k
Let y(ijk) A i+ 1+ +k

mj

Y( dA1 1 m '( p

q#p

be a recursive definition for y.

Let

1 x i
k=l k

setting j =~ i

68



m
/7 A
r-1 J r
r#p, q M-1 1 I

]p iq Lr 3=1 jp iq Jr3 r 4 =1 i+ + I
Opq #p,q,r3  p q t=3 Jr

rn-I- 1 rn+1 1

r1 r m

5= + ml +

r5= ) +A. + [ . rn~ .+,.+ X

#p,q,r 3, 
1p 3q t=3 Jr #p,q,r 3 ,..., Jp Jq t-3 Jr

r4 rM-1

If A C , order .., j so that {j, "'" Jk} = A..k < m.

Define

bi(Ai , i ) (set j = i)

m

r=k+l Jr| i+ MI
k lr y kr k 1 k k+2

I rk+lk+l I +X rk+2 k+l I X. + X x

r=1 J r i= r Jrk+ rrk+ t

L k+1 
kl 

r

m+1

x1 rn+11
rk+3 -I-l k k+3 k m#rk+l'k++2  I A. +=k+1 I I

trk 1 rr rk+l,...,rm_1 r=1 r t=k+l rt
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No te y QU i) z z.(2 + b b(s, 2

n r + b* i b(s. Q2

-(Mi

so,

m

m n. m .+ I A

Q P=I J 1p=1 J)pn

V-1 v -1
b - b(s, 0 )

i n scJ1.

1s 1>2

want to show (14)-(13) > 0.

(14)-(13) 1 K. 4 A n./
n P=1 + 1 m q PX j

-pi

A lot of algebraic manipulation leads to:

(15) K( 1 + A nl (A +x
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j ES

ST.12

Thus (14)-(13)

I- AK.(A + A P) bc21  (s, 1 Q V bA (s

jES Is L2

IsT>2

> 0 by definition
m K jb -(s, Q)

x~ IP-1 ipip n

Sp E
s 1> 2

IA. K. b (s, 02~ -V bCs
1-l J p Jp sd~i: 11 scZ2.

1~ X1 p bs i b s, Q~ V- bp(s , Q

J Es IsI.12

[ b,(s,~~ 0 Xk,% V-11~
Is.1 sI>2-
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> 0 since E klk>l
icEs k>V-

It would be false to say that one never repairs more than

one at a time in state zero.

Example: n =3 parallel model

XA 3 A 2=2 xA =5

K, 1 K 2=2 K = 20

p= 2

V-1 =in min X~~ Ai(K i + p), min X K +XK
=12,3(i~j)J

1 =12,13,23

= min{9, 8, 11, 7, 13, 141 = 7.

So, =(1, 2} and 6 opt =R1 2

6 opt =R

2 1

Theorem 3.3 - 6 opt = 6 opt = 6 opt = A12 13 23

Theorem 3.4 =1- opt ERpR A}
+ 3 { 1  R2 P

need single op
ergodic chain 6o0 ERp'R13 2
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From state 3, you can (i) R

(ii) R2
(iii) A R 12' R13 or R23

V3  =-5 V3  3 3 5

O,R O,R2  VO,AR 2 = -

(i), (ii) are not optimal, giving an example of a problem for which

it is optimal to repair two items in state zero. Notice the negative

Vo's . Although a V0  optimal policy minimizes the total expected

cost, the V0's themselves are not the total expected cost given

a starting state for that would have to be > 0 since there are only

costs in this model, no benefits.

The remaining question is: Does Theorem 3.4 hold for k-of-n

systems when k > I? In general, the problem is still open. There

ili 2 'ik

is no "nice" convex combination of V 's which is
0,R

smaller than V 1 given m > 2 for k > as in
OR gie m> o kl ai

s

Theorem 3.4. We can say, that if p is small enough, part (a) of

Theorem 3.4 holds for k > 1 using the method of proof of Lemma 3.2.

Lemma 3.5: Suppose we have the Basic Model and a k-of-n

system. Then, if p, the penalty cost, is less than

k
pAiXipKip where

A + ..+ k  A i K l < A 1i 2 K 2 < i  K i
n n
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it is never optimal to repair more than one unit at a time in a

state s : Isl = k.

Proof: Pick s = (iI, i2, .... ik), QS = 0Jl J2 " Jm)

m> 1

The proof of Lemma 3.2 holds exactly up to Equation (10') where a

"- p" term must be added to the RHS due to system failure when

following the policy A - 0 . The RHS is now onlys

m
IX K.

>0 4 p< k'

q=l q

which is true given the assumption on p. El

In the next section, we look at the parallel case in detail;

coming up with an exact optimal policy in some cases, by defining

optimal decisions in states 0, 1, ..., n which are transient.

One final note with respect to fixed charges. Recall

Theorem 3.3 which states that for a k-of-n system, it is never

optimal to do anything until there are k or less components

working. The proof of this theorem (and thus, those of Lemmas

3.1 and 3.2) does not require L - 0 and, in fact, goes through

with only slight modifications to include an "L". Theorem 3.3

is restated below now including specific reference to the fixed

charge case:
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Theorem 3.3 (restated): If we have a k-of-n system and

the Basic Model with some fixed charge L > 0 for repair, then it

is never optimal to repair until you get down to k items left

functioning.

Proof: Same as for Lemmas 3.1, 3.2, Theorem 3.3, only with

an "L" added.

2. The Parallel Case

In Chapter II, a VI optimal policy was found for the

Basic Model and any general coherent system. Unfortunately, a

V 1 optimal policy is only unique up to what goes on in the ergodic

states which, at least for the Basic Model, comprise very few of

the total possible number of states. Thus, to break ties among

V_1  optimal policies, and find the optimal decision in transient

states, V0 was looked at in the previous section for k-of-n

systems. Using it, the possible decision space was restricted

significantly, but the exact optimal policy given any possible

values for p, Ki's, and A,'s was too complicated computationally

to be found. Given specific parameter values, optimal policies

can be found using linear programming or policy improvement

algorithms on the computer as in Chapter VI.

There is one case, that of the parallel system (k = I),

where a general optimal policy form can be found for certain

parameter values. Such results being the most desirable, this
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whole section will be devoted to the further restrictions obtainable

on optimal policies in the parallel case using the Basic Model.

General optimal policies will be obtained where possible.

Consider a parallel system with n independent components:

1, 2, ..., n, with exponential parameters A > X > "' A n i.e.,
1 2 n'

order them by increasing mean lifetime. Let il, i2, ..., in and

.. , nrepresent orderings of the components by increasingJlV i2' "" in

repair costs K < K < "" < K. and by Aj K. < X.2K. <.< jnK.i n . . .3 . -1 21 1 23 n n

for repair cost/mean lifetime ratios respectively.

By the results of Chapter II, we know that

V-l i, m rin Xi(Ki + p), min (XiKi + XK.
i=l...,n (i,j)E1

{,...,n

i+j

= mrin mi (Ki + p); X. K. + X K.

i~l,..,n 1 i 2 32

There are two types of optimal policy structures:

(I) V 1 = Ai(K i + p), some i. Then 4'= {ergodic states}

{0} 6 pt =R. One then has to determine opt for i 1,...,n.
0 i0

ot k= Rpi) (where R0 = A) since it is never optimal

to repair more than one unit at a time in i (Theorem 3.4). Thus, if

start in i and Rp(i) , the next new state entered will be p(i).
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Define a policy 6(i) by:

(1) 6(1) =R~i

6(p(i)) R 2

6 (pkCi)) R (1
* p Mi

where p (i) M 0C6Cp kCi) =A), some k < n and p q(,) 0 pCi)

if r #q since 6={0} must be the single irreducible ergodic

chain.

(II) V- A jiK.j + A.j K. .2 Then

6 = opt = R. 6 opt = R.

Must determine 6t, i # 19J and 6 opt

6 opt = Rpi as before where RO = A and 0 <p~i) < n.
i pi

6t ,R since repair of a single unit would produce two
0o lP

erodic chains and repair of three or more units is impossible by

Theorem 3.4 (b).

First, let's examine policies of type (T). Suppose

V- = XA (K t+ p). A policy 6 can be characterized by partitioning
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the set {1, ... , n} of components into m subsets where

m = number of i such that R. in any state C a:ll t'hi-st,1

components al, a2, ... , a., ordered by a1  . Let

k
c.= {i <j n~p (a.) j, some kI. Within each set c;, we

2

can find an ordering ai , p(ai), p (ai), ... , p (a) some k,

k+1
p (a.) 0. Order the elements of c. in such a fashion v.1 1

c1U ... U cm = {i, ... , n} but ci r c. # necessarily if i # j.

Now, let 6 = CC2  c m and suppose we are in state i (the

first state hit for which one component is left after doing nothing

since all components were up). Let p be defined as in (1).

V solves
0

6 6 6 6
(2) (1 - Q) 0 = R0 - Q V1

and ;V I = (KZ + p) x

() 6 * 6 V
(3) P6 Q1 V0  6 Q2 V 1

Using (2) for s E e, with the single equation (3) gives the
s

solution (unique) for V0, s E This is the same for all possible

6's since the 's being considered are already V_1  optimal

Thus, equations (2) for s 6 r (transient states) are sufficient to

differentiate between 6 and some other V optimal policy. By

Veinott [31], minimizing V s for one s does it for all s. Choose

s = {i}. As the s E {j}th equation of (2) will never depend on
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t Itl > 1, only the rows 1, 2,..., n of I -Q 0  are needed
i

for computing V0 , any i.

IQo6 : Columns
row decision Is1>i i j 0 R0  0 *1

i A 0 1 0 -1 0 1/X.

i R. 0 1 1 0 K. l(+X.)A.l+A. A .+A. I

0Equation (3) V 0 Ko0  K + p.

Let

Z= - Q(J rows s = 1, 2, ... ,n

columns s = 1, 2, ... , n

z is invertible (elements given previously).

Equation (2) = for i = 1, ... n,

(4) V 6 (R0 - Q1  -1).

-i .th -i
Let z,,i. = i row of z then

ii = -1- ( 6 V l 6
0,6 6 ,i.(Ri Ql,1  -1)
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If 6(1) A, then

I V-
z =(o..01 o-o),R -Q V

04 O,i 1i,i -1 A.

or

v -1
0 x1

If i Gc, some j with

6(i) R R M

6(p(i)) =R 2
p Mi

6 (p k- i)) =R.

6(p k(i) =j)=A as in (1)

then z-

i pMi p 2 Mi)........... k- i) p k (i=

A +X P()xp~i)+ 2 Mx2 M X3 Mk-1 i) j
A0 .. 0 1 0---0)
P M pp) 2 Mk-i

(R~ - Q 6v

PM pk-i k j

/-I V- -V-
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so,

k(i)+ n V(5) V = nl[( . xP "Ix n K ] -1

pii)in
0 =,6 Xn£i pn~i p ()pn (i pn(i )

or

V = n 1  + K V n - V
0,6 n= LPn-i (i) pn(i) 1 (i) n(i)

1

where ji = I = mean lifetime of component i.

We can now compare various policies, starting from state i:

Definition: Let i - p(i) - 2 (i) - -- - pi = j 0

denote the policy which has 6(p -(i)) = Rp (i)"

Lemma 3.6: For the Basic Model, parallel case with no fixed

charge, if Xi > A and K i > K. for some i, J, then unit ii J i J

will never be repaired in an optimal policy.

Proof: First, we will show that one never repairs number i

in the ergodic states and then in the transient states. To use in

an ergodic state, we need
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6= O}, R. in 0 (V1 = A(K. + p))

or

,9= {ik}, R in k (V-1 = xAiK.i + x kKk))

Rk ~in i

Note A.i > A., K.i > K. ~AK > A.iK..' But A K > X .K.j and

A. >A (so Ap > X. p for p> 0)

A.(K.i + P) > A.i(K.i + p) so 6= R0}in 0 loses

to OP {0} R~n0and is never V-1  optimal.

Similarly, since A K > A.iKip A.iK + A Kk > A. K. +X k

e = {jk} beats R = {ikI

never repair component i in an ergodic state.

For tti" transient states {Z}, let

6 R i in Z, then ~ follow same policy

y R.i in ~ then a1  ~2~ . a k 0.

then
Using (5), we get if a1=0 (6 k 1 0)
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K K
i

which never occurs since -i >J an n K

so, t i - 0 never optimal.
6 6

Now suppose a1 0 0, a2 
= 0. Again using (5), 6 < y V0 < V0

+ i) i -V_ + + a - V_ ]
+_ . ual a a - al

< £ + uj v-i + ui + I) V-1l

(6 ) g- + K i  K . +  G u _ < 0 •
'I [ I L JI uq

>0 >0 >0

K
a1

Notice that, if V_ > -, then this is impossible and 6 is

never optimal.

6 <
Consider policy a: Z + 0 (A in Z) 6 < a * V < V

0 0

+ V_ + [ + a I) V_1 -I P j < 0

(jig + i.) -i+ (i: i +al)[a - v  
< 0
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K

4, if V- < W a and 6 is never optimal.
aI (Zi-a 1 -0)

Now, suppose we have 6 Z 2. - al -+ ..- + a k 0, k > 2, a as

before, and y =2.t j- al a*0, 6 < y 1*(6 ) holds so,

a 1 _

as with k = 1, V_ > - =*-6 > y.

6 <a $ V6 < VC (using (5)),
0 0'

i -1 1

k K a.
+ I (P a + P W VaIa.

aj2 -1 a.a

K.K, kaa
+ P-)y+ +~ G (P+Pa (K 1V

1 j 2  aj-1 Ila. a1 1 ,

k a.
+ Ij=I_2-

K

4,if V- <a_ <j<k
aj

But, from Lemma 3.7 which immediately follows, for 6 to be a

possible optimal solution, we need
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K K K
a1  a2  ak

1aI  Ia2 ak

K K
- a, --I. K k 6>a

Thus, V_ <-  J < 
1 P -Ia1  a

Conclusion: K

a1

K

a1

--
a1

so, 6 is never optimal. So, never repair i in any state. 0

Henceforth, in addition to X > ... > X , I will also assume
1 n

K1 < K2 < ... < K n, which avoids inclusion of "irrelevant" components,

i.e., those which are known to never be worth repairing from the

start.

The next two lemmas are useful in further reducing the

possible optimal policies:

Lemma 3.7: Suppose we have the Basic Model, parallel case

with no fixed charge and X > X2 > -. > X n . Suppose we start in

state i. Then i a beats i - b - a (i a means R in i)
a
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Kb K
if either - > or b > 1. anid b j.

Proof: Let 6 1 - a y : + b -~a.

b aV

K

Kb K
0~ +Ib + (1 -2 a iV

i' b lb b j a b 1

(7) Kb -A K< -1

Kb K
Suppose -> -. (7) is true

Pb 11a

* Ka P! KKa] <V
U b ia Ub L % 11 a J 1

>i Kj 2 > 0

K ilK J

sneV_1  - so, - ,- * 6< y
1 i i 1 1 2 l b a

KK8
Suppose <- -. (7) is true

PbP
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pi\b /K K
b b -)4

Kjl KJ2 > 0 if >0

if b~j I

0if b >i or b 0j1  so, b >1*6< y
& b j1

Note: Lemma 3./ works for

cS : c 1 + c q i- a a 1 *.-a p 0

y : c1  ** c q i b a- a 1 -a + 0

since y <6 0 < V0  where y' :i - b -a, 6' i a

Lemma 3.8: Suppose we have the Basic Model, parallel case

with no fixed charge. Suppose we start in state i. Components

are ordered UlI<P 2 < .. < 1

(X 1 > 2 >*.. > X n)

Then:

(i) i - 0 beats i -~ p~i) -. 0 if p(i) < i and p(i) j.

(Recall: J,= argmin X K)

and

(11) i-)0 beats i-p(i) -. p kCi) +0, k > 2 if

p kCi) < i.
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Proof:

(i) Let 6:i1*0, y i-+a-0, V < V
0 0

SV1 - always true if a < i and a 0 j.

(ii) Let 6 1 i 0, y: i PMi ~ p k () -*0, K > 2

V < V
0 0

0 <k [IpJ~li)+ K Ii) Vij

k k K .
V- < 11-1 +,I~)where p 0i)

j~~~~~l- KJj +~~J~j IJjJ i

+ lk +k ( < Ip KPJ(j) +----4) 1

j1l pJij) p j=l p .J p jM

K

+ jip k(i) p kiM

p Mi

p k k(1i)Pp M [K i)W Kip Jj) 1
1 k-i J-1 k-l +1

\ £1 / U1= i) p21Mi p CM)
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K-k
+ i P(i) + P p kk* M

k-i P P k-ik

j=1 p J(i) j=1 p (i)

True, if

K Pk Kk
k V-I < i k M

p ki) p ki)

since

K K
V 1 < convex combination of Ui +1

So, true if

K

U1 p(i)+ k(i
ipk(i) pk(i)

which is so as i > p k(i) and

K K

< i) + p i)V-I p(i) pk~i

1p k i )

Using the results of the previous two lemmas, we can now

state the basic theorem describing optimal policies in the parallel

case. Although it does not specify the optimal policy in general,

it brings the number of possibilities down to only a few, which
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could be differentiated by hand using (5). In some special

cases, more can be said and optimal policies described exactly.

Such is the case when (i) the cost/lifetime ratios are ordered

the same as the mean lifetimes, ( < < or (ii) the

K +p

value "2" in VI = K-+--is small.

Theorem 3.9: Given the Basic Model, a parallel system

and no fixed charge, let 6 = Cc2 *." Cm be an optimal policy

as described on page 77. The elements of c. = (i, p(i),J
2 pk~

p (i), ... , i) = a. ) have the following three restrictions:

(i p(i) < p k () V 0 < j < k-i

k-I
(2) i > p(i) > k-. 1 (i)

K 2  K
K K 2  k

(3) p( ) < p (i) < ... <

lip~i 2 )1 kp2(i) p Ci)

Proof: Directly from Lemmas 3.7 and 3.8. 0

Note: Conditions (1) and (2) state that, given state i

is the first one reached with Isl = 1, the lart element repaired

before doing nothing must have longer expected life than i and

all the ones in between must have successively shorter ones up

to the last one.
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Theorem 3.9 simplifies considerably in the case that the

component cost/mean lifetime ratios are ordered in the same way

( K, K 2K
as the mean lifetimes i.e., condition (3)

2 k 2 n
becomes p(i) < p 2(i) < *' < p k(i).

Corollary 3.10: Given the hypotheses of Theorem 3.9 plus

K, K2  K
- < - < --. < , i let c. will have no more than 3 elements,

P1 I'2 Un

i.e., k<2.

Proof: Suppose k > 2. Conditions (2) and (3) in Theorem 3.9

lead immediately to a contradiction.

Thus, in this case, given initial Isl = 1 state i, three

things can happen before doing nothing and entering the ergodic state

zero:

i) i - 0 (do nothing)

(ii) i - p(i) - 0, p(i) > i (repair a component > i, then

do nothing)

(iii) i p(i) - p 2i) -0, pi) < i < p 2i) .

Which of these three and what exact pi), p 2(i) give

optimality can be easily determined by comparing V i s using0 , s sn

equation (5).
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Another type of optimal policy restriction occurs when the

K£+p

value "t" in V = p is small.
-1 vi

Lemma 3.11: Suppose we have the hypotheses of Theorem 2.13

Kf+P

with V = -- . Then
-I p

(i) If i > k. #Jl i 0 beats i 0 j 0

(ii) If £ = 1, i - 0 beats i - j + 0 unless Jl = 1

in which case i - I - 0 might beat i - 0.

Proof:

i- j- 0 beats i - 0 IV

Suppose this is true. Then

K V > > 1 + - by definition of V_

K. K. K.

P > P " - - - >  " _ if i > £ or -P- > I
uj - j J- uj

But, also
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Kj + K2
< _l_+ 2

w- -- il P J2

Kj i K.K

2.

Thus,

K. K.
K. I I 2 KZ

K. I I
J-i < 0, if

> -- £ Ji

Jl

So, i > z # j -' CONTRADICTION Q.E.D. (i).1I

If k = 1, then i > k automatically.

If l# 1, then CONTRADICTION, as before.

If jl = = k and j # 1, get CONTRADICTION. Q.E.D. (ii).

Using Lemmas 3.7, 3.8 and 3.11, some special "small " cases have

particularly "nice" optimal policy forms.

K +p
Case I: vl = (z = 1)

A. J 1 1. Then Lemma 3.11 = i - 0 beats i j j 0 i, j.
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i (1) pk 0

i.e., do nothing in all states i is optimal.

B. j 1. Lemma 3. 1 1 0 beats 1 j 0 if j#.I

So,

i. ~ (i) 4*. pq (i) 1 0

Lemma 3.7 -' 1 beats 1 p(i) 41, since

K,1 Kp(i) (Js

> EDor.

Thus, given state i, the optimal action is to either do.

nothing or to repair component numaber 1. If i1 1, then do

nothing is optimal.

i -0 <i1 1 0 01 - (
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If

(1 +.~). < V-< (1 ~+ )K then policy

1 2 3 -i 1i+1 . . n

A R R*.. R 1  A *. A is optimal where n+l "

K2+P

Case II: V - - (1 -2)
U2

(<)

A. J 1 0 2. Lemma 3.11 1 - 0 beats i - J - 0 V i > 2, J.

so,

£ + p(i) ... pk 0

> i - p(i) p ..- pq(1) 4 1 _ 0 (if i I 1)

> i - 0 by Theorem 2.13 (if i 0 1).

If i - 1, then true just by Lemma 3.11.

So, do nothing in all states i is optimal.

B. Jl = 2. 1 - 0 beats i - J 0 if j 0 J = 2, 1> 2.
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So,

i " p(i) + ... k(i ) 0

" i p(1) " + 0 or i p (1) .- 2 0

"i 0 by Theorem 3.13 >i "+ 2 0 by Theorem 3.9
since j 1 2

> i -0 if i > 2

So, the optimal policy is:

If in i > 2, do nothing

If in i = 1, do nothing or repair item two, depending on how

large V_1 is.

As t gets larger, Lemma 3.11 eliminates fewer policies, improving

little from Theorem 3.9. Even in the case L - 3, it is no longer

true that Jl 1 t means do nothing in all states i is optimal.

Also, notice that Lemma 3.11 and its applications do not require

any particular ordering on the !,'s, only knowledge of the minimum
'.j

Ki+p
Pi .This concludes investigation into V0  optimal policies when

Kt+p

K-psome 1.
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Now suppose

Kj 1 KJ 2

-1 l +12 where

ii J2

- argmin ; arguin
1 j Uj 

Suppose you start in state i. A policy is then of the form

(1) 1 - pMi - . p k~i W - or j 2

or

F pq+l k
(2) i - p(i) M .. - 0 p + " " p Wi) I or J2

or +()+k~i

(3) 1 -/ p(i)

4- "' -2
( ) +1 or 1

One can define y -[i- Q8]rows {O, 1, ... ) } j g2

cols. {0, 1, ... , n} -- ji, J 2

similar to what was done in the V- =  
- case. Then

VOs Y-li" (Rj,1 -6 V61)_ where 6 is a policy of type (1),
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1i

1 2) or (3). The computational procedure is the same as before

only the types of policies are more varied. To get similar

restrictions on optimal policies here would take up twice as much

space, adding little of importance. Thus, we leave this case as

R in j 2 ' R in j R in 0 (some plP2 ) and R(i)

in i (p(i) could be zero), where pl' P2' p(i) V i are to be

determined by comparing V is for various policies.
0

We conclude the section with a couple of other special cases

of interest. Lemma 3.12 gives conditions under which

V 1  - or -+- + -.
ii Iil J2

Lemma 3.12: Given the hypotheses of Theorem 3.9, if

A K 1 +A K -XAK iKi-A J K i

max A < -in-i J I  i i>J I  Xil-

then

K +p K + KJ2

V- - or -

ii J2

no matter what p is.

98



A K-A Kj
Proof: p <min _______

i-j 1  A l-A

A Jl(K j + p) < A J(K i + P) V i J,

A J K Jl+A JK -A K,

P >max X

juil KjI+ 2 K2 <A 1i(K 1+ P) V i0j 1

Thus, if

A ilKj +A J2K 2-A Xj tX K - lK

max <mi AN -A 1
A~ji i>j1  j1

X Ki+ p), i 0 j1 > X i (Kj + p) or A ilKj + A J2Kj

V V 1  is never A i(K i + p). 1 0 j1. 03

Lemma 3.12 gives a condition under which the V-1  optimal

policy is to keep either the J1'at component (one with min X K1
working or the j 1 atadJ d (two mmn A iK i'a) no matter

what the penalty cost is. Some examples for which this is true

are:

A9



(M A, A (identical component lifetime distributions)

as

A i -A i i j

RIXA iiKj +X J K J2-A K Kj+ K<

(ii) Suppose

(8 AK -A Kj >( A A)Kj 1 j1

Then

so

a&Z A JlJ1X2KJ IKy ( +J2-Aj )Kj2

i~ i~
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Kj 2max (< 2 K as A' > A j 1" ~ J2"ma

A i Ij 1K i 2 1

F 1 0i J by assumption (8).

So,

A K-A JKJ A K-A Kj
iKI I j I i i l ~ I

<min < min since j > 1, <Al
S X1- X i #j1  X Ix i

the hypothesis of Lemma 3.12. The key to having (8) true is to have a

sufficiently large spread of the Ai K i's compared to that of the Xi's.

In summary, if the differences in expected cost/lifetimes of

the components is large enough compared to the differences in expected

lifetimes, the V_1 optimal policies are simpler and more "intuitive".

If, in addition, the cost/expected lifetimes are ordered in the same

K +p
way as the mean lifetimes, or V-,= lit has t small, the V0  optimal

policies simplify.

One final interesting case is that in which
c = XIKI.... Mnn . Then AI(K 1 + p) > ... > X (K + p) Y p > O,

i.e., if 6- {O}, then repair of the unit with longest expected lifetime

is optimal. Also, note that if p 0 0, the optimal policy is always to

let the system fail and then repair that component with smallest expected

cost/unit time. For the case above in which these are the same, we can
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also say that the V0  optimal policy is to do nothing in all states

1, ..., n before hitting 0 since V 1 - c. (Of course, then it

doesn't matter which component gets repaired.)

For some examples exhibiting V0  behavior for the Basic

Model, see Example 6.2 (Chapter VI) as well as the solution to

Example 2.1 presented in Chapter II, which concludes this section and

chapter.

Example 2.1 (from Chapter II, Section 1):

Basic Model, n - 2, parallel, L - 0.

Case I V_1 = IXIK + X2K2

No transient states accessible from {12) for which decisions

must be made.

1 2 0
optimal policy R2  RI - {1, 2)

Case II V-1  A 1 (K1 + p).

if A1 1 > 2K2 (j, - 2), then by Case I.A.(Application of

Lea 3.11),

1 2 0
optimal policy A A R1 6 {0•

f 1 1 2K2 ( 1  1 1), then by Case I.B. (Lenma 3.11

Applications) the optimal policy is:
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1 20 < 2 K 1
A A Rif V

gui {01)
1 2 0 +'2K
A R1  R1, if V

Case III V X ( + p):
-1 22

if X1 1 < X K2 di = 1), then by Case II.A. of Lemma 3.11

(Applications),

1 2 0

optimal policy A A R . {0}

1f 1 > X 2K 2 0j1 = 2), then by Case II.B. of Lemma 3.11

applications, the optimal policy is:

1 20 P( u1 K2

R2 A R2 if V-1> 1+P I2~ ~ 2'2
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CHAPTER IV

THE DEGRADATION MODEL

1. Description of Model

In the Basic Model it was assumed that system components

are either working or failed (on/off) with exponential lifetime

distributions. However, for many systems, the components may

be observed in some finite number of states of increasing

degradation before failure. The more degraded the component at

the time of repair, the greater the repair cost. The Degradation

Model takes this factor into account, having the following

Coherent System Repair Model parameters:

States: each component can be in one of "" states of

degradation or new.

th
0 = new

th
I . failed

, ... , . - 1 = degraded (not failed)

Repair: instantaneous, unlimited service - brings degraded

component to "new" condition

k = ieieo thcopnt
Component Lifetimes: Let L k lifetime of i component

i

given it is in the kth degradation state, 0 < k < E.

k t

The Li - e P(Lk < t).
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Notice that if 2 = 1 (1s t degradation state - failed),

then the Degradation Model reduces to the Basic Model.

Of course, in the process of increasing the number of

states in the model, a price must be paid in the difficulty of

obtaining results. Only the general series case (series systems

are viable now unless X = 1) and the identical component

parallel cases are treated, and for V 1  optimality only. Luckily,

in the series case, V 1 optimality is sufficient to give the

general optimal solution and in the parallel case it gives the key

information desired. In utilizing this model, it would certainly

be advantageous to keep the number of degradation states as low

as possible, while still capturing the essence of the system being

modeled, as the total number of states is of the order (2 + 1)n

where

k = number of degradation states

n = number of components.

Section 2 treats the general series case while Section 3 looks

at the parallel case in identical components with no fixed charge.

Section 4 presents some possible changes in state and/or decision

space in this model to provide extensions of the Basic Model to

Erlang component lifetimes as well as provide insight into other

possible non-constant failure rates for components.

The number of parameters needed to specify the model is in-

increased k-fold from the basic case and are as follows:
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(1) fixed charge, L > 0,

(2) penalty cost for system failure, p > 0,

(3) k= 1/X = expected length of time ith component

spends in the kth  degradation state (exponential).

These are defined for k = 0, 1,...,2-i and i = 1,...,n.

k = 2 is not defined since component failed there.

k t

(4) K i  cost to repair ith  component when in the kth

degradation state.

These are defined for i = 1, ..., n and k = 1, ... ,

(k = 0 is new and no need to repair there).

1 2 2.
0 < Ki < Ki < ... <K. is assumed to allow for

i 1

increased costs to repair in higher ("more") degraded states,

Vi = 1, ... , n.

A state in this model is denoted by a vector, s, of length n;

f (Si, s2, - sn ) where si = k if component i is in the kth

state of degradation. A change of state occurs when one of the

components enters a higher state of degradation and at such an

instant, a decision is made to repair some subset of the degraded

components or to do nothing, (some repair need only be done if the

system is down). Repair is always assumed to bring a component back

to a "new" condition. Each state as defined now has exponential

holding time so the Degradation Model is also a continuous time

Markov decision chain with infinite time horizon.
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As before, specifying

(1) state space

(2) decision space

(3) transition structure

(4) cost structure

(5) objective function

defines the model completely.

The Basic Model notation in Figure 2.1 applies here except that

the component related cost and mean lifetime parameters now

depend on degradation state (superscript) as well as the component

(subscript). Also let Z = number of degradation states. Obviously,

these could vary by component but for notational simplicity, I

assume they are the same for all components.

The Markov chain specified by the Degradation Model is as

follows:

State space: States = which components in what degradation

th
states s =  (Sl, n ). If component i is in the s

degradation state, 0 < s < L. If system is k-of-n and

components are identical, then states are the number of

components in various degradation states, i.e.,

( (o si , ... , ) , where si components are in the ith

degradation state, s0 + s 1 + + sZ n.
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Decision Space: Let Q - {l ...- , n). Possible decisions

in state s (s1 , ..., Sn ) are R where

s C Q - i : si = 01 - set of non-new components in 6.

as M R 0 - A (do nothing)

S

- if system is down in s, then R .

Transition Structure: The transition matrix, Q0 : (assuming

6 : R Q in S). Fix S = (Si, s2' ... , Sn>

Definition: State = (tit ..- , ti-*l ti +l,ti+l, -.- tn>

if t = (t0 ti' .-.. tn> (t is t with ith  component in a

higher degradation state). ti is only defined for ilti < k

(non-failed components). Also let state t U a a (tI

where

5, if iEa
01if t Note tU Q is the condition

ti i if of the system after instantaneous
if repairs 9 t in state t.
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i(l ( s

n ( BUQ ) j
00) S i

0 otherwise

6 1
ls n(su 5 )

j3l

Cost Structure:

L - ) + K , if system up in sns) iE Q

R = 
~

O's

L +p+ K + if system down in s

where I 1, if s

s 0, otherwise )

Objective Function:

V P R0  (any possible optimal 6 will form a
V 1  .- Markov chain with a single irreducible

P QI set of ergodic states).
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Below are examples of the series and parallel cases:

Example 4.1: n - 2, 1 - 2, series system, L - 0

Then, possible component states are:

0 - new

1 M Is t degraded state

2 - 2n d degraded state (failed).

system up system down

States: '00 01 10 11 11 02 20 12 21

Decisions: -- A,R2  A,RR1 A,RIR 2 v R2  R1  R1

R12

1 1 1 1 2 2 22
Cost: 0 OK2  0,K1  0,K1 ,K2  K2  K1  K2  K1

1 1Kj+K 
2

Note: Since series model, there is no need for p because

2,
i.system failure component failure " can include p in Ki s.

Sample of Q0: Let 6 : A in 01, R1  in 10, R1  in 11,

then,
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00 01 10 11 02 20 12 21
0 0

1 -A1
Q 00 1 +A )+x 0 0 0 0 0

-A 0

01 0 1 0 0 1 0 1 0 0 0
1 +2 1+ 2

0 0

10 0 2 2 0 0 0 0 00 0 0 A01I+2 1l+2
121

1 1

11 0 0 0 x2 -0 1 0 1

0 
-x0 

12 
12

02 0 -X2 1 0 2 0 0 0

0 +A0 A0 +A00 0

1 2 1

20 0 0 0  00 0 0 0 0 0

0 0
-+A2 A20 0 A

12 0 0 0 2 0 1 0 0

1 0 1 0
12 12

0 - -AI
21 0 0 0 _ 0 0

1 1 0

Example 4.2: n - 2, - 2, L 0 0, parallel system with

identical components.
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system
system up down

States: 1200 110 101 020 011 002

Decisions:- A.( 1 ) A,1 2) AI 1  )  -'1) A ') (2) (2) (2)

Cost: 0 OK 1  OK 2  0,K1,2K1 O,K1,K2 ,K1+K2  K2+p,

2K2+p

'where RMJ) denotes repair of i identical units which are in the

thj degradation state.

Note the p is now necessary to distinguish between component and

system failures.

2. The Series Case

Consider now the case of a series system, i.e., one which

fails as soon as any one of its components does. As long as no

th
component has reached the Z degradation state (has failed),

decisions can be made to repair any subset of the degraded

components. If the system fails due to a failure of component i,

then the required decision is to immediately repair component i

(no matter what condition the others are in).

The following theorem gives the optimal policy:
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Theorem 4.1: We have the Degradation Model with a series

system:

Let j argmin

pil

Then the optimal policy is one which does nothing to component i
th

until it reaches the j i state of degradation and then repairs it.

Proof: Directly from Lemmas 4.2, 4.3 which follow:

Lemma 4.2: Suppose we have the series Degradation Model.

Fix a policy 6. Then

6 n I K

i J-1
piO

where a a. = 1, ,i - 1, ... , n and a > 0

Proof: Fix 6.

Let P - stationary transition probability vector given 6

= (P.s) for possible states s.

Then P (I - QO) - 0 .

(Since 6 is fixed, we drop it to simplify notation).
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P nn
-l P Q Jl i= s:RI in s -

i recall si = degradation
and i state of i in s

I n I 1K
- J i where

i-i i- i ip

p=0

Ir s:Ri in ~

si=s

P QI

It remains to show J - 1. Without loss of generality, set i - 1.

To show 1 1M . 1, it is sufficient to showJ.l

r Q1 z J- p P.* i-l(P s:R 1 in s

S -J

I J-1
i.e.,

(1) PQ1 - p r - o
j 0p-o as:R i n s

Some notation is now introduced for use in this proof:
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Definition: Fix 6. Let 6 t P. be the sum
a t tuf -sa

of stationary probabilities of all states t which are sent to s

instantaneously under 6.

- Notice that W6 is only defined for s such that system is working
s

since if the system is failed in s, * tit U at = s by model definition.

Definition: Let a i(s i ) be the state for which all

components are in the same degradation state as in s except for the

th
it , which is in one lower (higher) state of degradation. If

s, =0, then s is not defined.

From the definition of *,

Ssi-
n ai( 2 ) P - - s ' ' I .

i: 0Xs i + Xi~s~#0j=l

Thus,

t i-l
n i

(3) W PS I P't ttt t +-1 n t t.
t:tUt=s t:tU C! it i j t

Let W)t Ows),s~system up.

Let R - ((R st))s t  , where
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t
A if t i U 9 s

n t_ t i+

R t jiL 'i.e., if ith component of t
st il degrades, go to a immediatel

(under 6 

0 , otherwise

Restating (2) in matrix form gives:

th

If R - s row of R and

th
i = vector of zeros except 1 in the s spot, then

(4) (1 - R s.) W= 0, Y states s* system is up.

This is just a restatement of (3) in vector form.

To prove (1), one must get everything in terms of W s
s

rearrange terms and using certain sums of equations (4), show it

to be zero.

Now,

P Q, P.tQl,t Wt" n t

t I i

Thus
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J( 1)pO 1 )t:R 1 in t P ' t

#1 in j

L-2 X -2

1 1 1- + ~I RI1
q=1-X n s (q,s9)- k s R Pi (ks)

q j0 J -(k,s)

where s is a configuration of components 2, ... , n = (s2 9 ... , sn)

and state (q, s) = (q s2 , ... , sn) by (2),

Xk-i n si-i

P1 + I - i us W1P(k,s) =  k-i n sj i=2-~) sii k In s , s i+ "

X 1 +  I X I +J +l I .
J=2 =I si#O i -2 J

j#i

Substitution of this into the previous expression for (1) =

9,-2r1
(1) = 1 I ( - )q= q  R s)~qs (q,s)-)

,0 by (4). 0

Note: The proof is valid for any decisions in working

states, but assumes that in states where an item is failed, repair

of only the failed item will take place, not an unreasonable assumption.
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Lemma 4.3 now identifies the policies which correspond to*
extreme points (aj , a = 0, j ) in the convex set of

VI for possible policies in the Degradation Series Model.

Lemma 4.3: Suppose we have the Series Degradation Model

and let ai be defined as in Lemma 4.2. Then a policy 6 has

aa

(ci = i, j~ j

6 repairs the i th component whenever it reaches the jith state

of degradation.

Proof:

S Suppose 6 repairs the ith  component whenever it reaches

the ji state of degradation, leaves it alone otherwise.

z. n K 2l1
V1 a j - where a = p O .

j=l i=l l P Q1  s:Ri in s

p=O si=j

Since *SIR 1  in s if i is not in ji and PS =0

VS[S > Ji' aj= 0 for j # and since
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1a,

ill

Ji
by lemma 4.2, ai =i. 1.

Pick i. Suppose a = 1, =0, j = 0

P's = 0 1 R, in s and i in j # and s is in the

ergodic chain entered by starting in the state with all components

working.

No such s, i.e., 6 leaves component i alone unless

in state of degradation Ji f

These two lemmas immediately prove Theorem 4.1:

Proof: (Theorem 4.1)

Let V Opt ,minV 6  Fix

n
Lemma 4.2 V-1 = a i " -1 1 Ci

i=1 j=1 I p i=l

p=
0

C, = min by convexity.

n

But C = V0  where a is the hypothesized optimal policy. 0
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Note: No assumptions on orderings of the Ai's wi h respect
i

to components i or j are needed. Also, the K1 <" < Ki 4'i

iis not needed but is added since if Ki > K J+m sm ,te

servicing i in degradation state j is never optimal.

Note: Theorem 2.7 holds trivially here, i.e., series = n of n

system and never repair until n - 1 items are left working.

To clarify some of the procedures and proofs in this section,

consider Example 4.1 of Section 4.1.

Example 4.1 (continued):

series system

n = 2 (2 components) Z = 2 (0, 1, 2 - degradation states)

system up down
states: I 00 01 10 11 1 1 02 20 12 21 1

automatic decisions

Let 6 - A R1 R1 R2  R1 R2  RI
(as before)

Using the notation of the proof of Lemma 4.2,
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0 1 1
6 1 2 10

x0X0 0 1 10x 0
1A 1  2  A

x0 x0 01
2 12_ _

0 0 0 1 1 0 1 1
1 2 12 1 2 1 2

0 A

1  0 0 1

0 0

I +2 1A2

1 21 2 1 '+

p 1 01 10-1

1212



0 01i 12 1

"Y i oo 0 1--6 1o + 0-- 1"o0

o 1 +X2 0 1+X2 Io 2

1 1
[Xl X] [X+X2 1 + 1+X 2

0 1° 1

so,

2 -1+A 1+A 2

Sl=i

PQ - ( ~-N o 10 oo - o--{ " + (o - -

-"0.
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AT

Set of policies which could possibly be optimal:

Correspond.

Component Decisions,
6V1  #1 #2 01 10 11 {ergodic states)

1 1

K1 K'
1 2 repair in+ - degradation rpi in R R -- (10,011
P +  '1 0- state 1 state1 2 1

1 2

2 i repair in
1 2 repair in0 + 0 state 2 A R R2  {10,01,11,021

1 P2 (failed) ate

2 2
K K repair in repair in

0tate 2te 1 A R 2 (10,01,11,20)P 0 u21 (failed)ste1 22

K1 2 repair in repair in 010111
- + 20 state 2 state 2 A A A 20,1,11

U 0+U 1 2 +2 (failed) (failed)

1 2
K K2

Suppose C1  - 2 0 1 Then the optimal policy would be
111 112+112

01 10 11
A R1 R1  by Theorem 4.1.

Note:

(1) Given the general form of an optimal policy in this case,

it is clear that one never repairs more than one item at a time in
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any state since only one item at a time can change degradation state

and repair is done immediately and instantaneously upon entry into

the "key" state for repair.

(2) If the components are identical, then the optimal policy

is to repair whenever any component reaches a certain degradation

level

d = argmin K ;
J-1 i

I O

(3) Theorem 4.1 is so intuitive, there ought to be an easier

way to prove it, i.e., without having to use the stationary

probability equations p (I - Q) 0, using only independence,

exponentiality, and series structure. If such a proof could be

developed, one should then easily be able to show Theorem 4.1

is true for the case of different numbers of degradation states per

component. I conjecture that the result also holds for "blocks" of

components in series, [reference Chapter VI for Basic Model case].

3. The Parallel Case, Identical Components

This section treats the Degradation Model for the case of a

parallel system. Identical components are assumed to simplify the

system to the point where general results could be obtained for

V_1  using theorems similar to those encountered in solving the
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Basic Model. These state that, since we have a parallel system and

instantaneous repair,

(i) one will never repair more than a single unit at a

time in an ergodic state in a V optimal policy

(ii) one will never repair until the system gets down to

a single unit working.

Showing these two results would limit the number of possible

Vl optimal policies to a manageable size. Precise V-,

results will be presented in some examples for X = 2 and Z - 3,

(Z = number of degradation states) and compared to Basic Model results.

In the Basic Model we were able to state Theorem 2.1 which

expressed V 1 for any possible 6 as a convex combination of V l,

where y's are policies which involve repair of at most one unit at

a time in any state. For the parallel case with different components

these V_ were such that

V- {i+P asomei; , some s:2 < Isl<n,
jes'

or, for identical components,

EJK+p 2K 3Y, nK
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Given no fixed charge, the V-1 optimal policy was

extremely simple: do nothing until one component is left working

and then, if the penalty cost is large enough, repair one unit

(61) (continuing this policy on forever) or if p is small enough,

let the system fail and then repair (60) one unit ad infinitum.

Under 619 4% set of ergodic states = {1 ,

under 60, 9 set of ergodic states {10} ,

where state i indicates the number of working components.

In the series case of the Degradation Model, we were able to

eliminate most policies 6 from being V_1  optimal by again

expressing V 1  for any 6 as C , where the C are convex

S i=l

combinations of J-1 p . An optimal policy was found by computing
p-O p

C op t .l min j for 1 < i < n, the optimal policy being to

p=O

,th I

repair component i whenever it reaches the J = argmin i

i~
p=O

state of degradation. In the identical component case, this

,th
corresponds to repairing any component that reaches the J

degradation state, j argmin j
J1

po
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Unfortunately, in the parallel case as is exhibited in the

example below, there are no such "nice" convex combinations of

simpler policies that V can be written as for any 6. The series

result depended heavily on the fact that when the system (and, thus,

any component) failed, repair of the failed component had to be done

immediately, a fact obviously not true for a parallel system. In

this case, even if p = 0, V 1 v 6 is not a convex combination of

S, or a sum of such combinations. However, the relationship

p=O

between them still appears to be the principal factor in determining

at what degradation state to repair a component.

Since the model is parallel, repair is instantaneous and there

is no fixed charge, one intuitively expects that as with the Basic

Model that repair will never be undertaken on more than one unit at

a time and repair will never be done until there is only one unit

left working. These results, though true for the Basic Model identical

component case are much more difficult to prove given failure of the

Basic Model theorems or likenesses thereof and the increased complexity

of model structure in the Degradation case. I conjecture these two

results are true even if the components are different but leave it

as a topic for future research (see Chapter VII).
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Example 4.2: n 2, 1 - 2, L 0 0, parallel system with

identical components.

system
system up down

States: 200 110 020 101 011 002

Decisions: - A,R 1 ) A A,R 1 ) , R 2 , R 2 ) , R 2 .

R ( )  R (1) &( 2 )

2 1

The optimal policy will be found by enumeration of all the

17 possible different V_ 's. Table 4.1 lists the possibilities, the

set of ergodic states induced, and the V_,'S.

Let

Ki  cost to repair a component in ith  degradation state

Ii "expected length of time spent in the ith degradation

state by a component.
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TADLE 4.1 - ENIUMERATIO
N 

OF POLICIFS FOR £XAl PLE 4.2

a
Policy No._ 110 020 101 Oil ___2 . j __, c stat_ V- 1

1 R (1) - (01i) KI
I it

2 A R(2) (011.002)
1ot

K2

3 - A A R(2) - (020.101,011) K1 2

1 2

(1) 4 - R 1) A R(2) - ( o0 ,IoUo01) o 2

1 1 ( 020.101.011)

32+ 0 3 2w~

(23) 5 A A 
1  

A AIR
2

(2 ( 110,020 101,01100) 2u oP K+uo i
2O+uO+ 

31 2
1 

2w+1

() 6 A ,) (
2

22) - (110,020,101,011) 1 0

UO(+ + u1 )
2K1)

(3) 7 A A (2) R 
(2 )  

(10,020,101.011) +1 1 6u

22

(1) a A R() R(
2
) - -110.020,101) 20 +2vI I

1 10

Io( -,I

(13) 9 A A A -2) (110.0201010H,11) +( I+2

3 2. 3,

41, 2 . 1) ll2 K 1

(1) 10 A 3( R (2) 
)  

-(110.020,101) u0K 221K
2 1 1pp0 1 3

0 2 r

(123) It A RM1 A A (~2) 2(u2011.1,o? I K + p

3

,0 (i" O+U 1
)

(13) 13 A A I(2) R (1)(2) - O110.020.101,011) (1 +0 )K
1 2 2

I, 0+3 L

3

o'0O
' 

l
)

(1) is A 
I) (1)(2) -

(2l004 .O0 1 ) .. .....

( 23 O+2. ) l )3

212) 1) )2 1 10 . 020, 101 . 0 11 ) 1 0 0
20+-3 3

9 1

(12) 16 A nl) A A () w K *
2
V K +,

12 11.2,0 .1,0 ) 1 - -O

3 2w

(23) 17 A A a (2) A (2) (u 2&, 1)K 2 +LP
A t2 '1lO.020.10l.0ll.002) 2 - --

4 +3 3 2

**possibie optimal policy.
()*losem to Policy 1.

( b)*loses to 1, '. or k.
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The following facts/patterns appear from Table 4.1:

(1) The optimal policies are either:

a. Do nothing until one left working in first

degradation state, then repair it.

b. Do nothing until one left working in first

degradation state and then repair the failed unit.

c. Do nothing until system fails, then repair a

component.

(2) Never repair until one component left working and never

repair more than one unit at a time.

(3) p divides denominator of V 6* do not need policy 3

to dominate 6.

(4) No "p" = do not need 2 to dominate 6.

(5) No "Kill i.e., never repair in first degradation state

- do not need policy 1.

(6) Although the optimal policies are simple and intuitive,

the V 6's for other 6 are not convex combinations

of these policies. They are, however, > some convex

combinations of these policies.

Given the results of Example 4.2 and others tested, three

facts appear to be true in the identical component case and probably

in general for a parallel system. These are:

(1) Never repair more than one unit at a time in an ergodic

state.
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(2) Never repair until there is one unit or less working.

(3) The V_1  optimal policy for a parallel degradation model

with n identical components and Z states of degradation

is the same as that for a 2-component model with X

states of degradation.

Proofs of these facts using Degradation Model stationary

probability equations to eliminate certain policies as convex

combinations of others as in the Basic Model case are nearly impossible,

due to the greatly increased complexity of their structure. They are

left as a topic for future research (Chapter VII).

4. Extension of Basic Model to Include Erlang Component Lifetimes

The purpose of this section is to describe how the Degradation

Model can be used to extend the Basic Model to the case where

component lifetimes are no longer exponential, but Erlang. An example

will be solved of such a model where components are non-exponential.

Its solution will demonstrate that changing component lifetime

distributions does change results given for exponential - in particular

it is no longer true that, for no fixed charge, one never repairs

more than one unit simultaneously.

Suppose now that we have the Basic Model with L - 0 except

that Li, the random variable representing the lifetime of the ith

component, has an Erlang distribution, i.e.,
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it n n- 1 l

p{L. < t = nZ eAz dz = Gn (t)

n-I i
i- ~ -( n 1 1, an integer, A > 0

i=O i

Definition: G,n(t) is a gamma distribution with parameters

X, n, where X, n > 0. If n is an integer > 1, then G ,n t) is

called an Erlan distribution. If n = 1, then G t) is

exponential.

If n < 1, GX,n tW is a DFR (decreasing failure rate)

distribution and if n > 1, it is IFR (increasing failure rate) where:

Definition: Suppose F(t) is a probability distribution

function with density f(t). Then the failure rate at time t at a

unit whose lifetime distribution is F(t) is r(t) = f(t)/l-F(t).

Intuitively, this is the rate of change of probability of unit

failure at time t. (DFR)/IFR indicates a (lesser)/greater chance

of failure with age. Exponential distributions have a constant

failure rate, i.e., the chance of failure is independent of how long

the component has been working.

Up to now, the Basic Model has assumed components with

constant failure rate. Components having G distribution allow

modeling of systems where components might have IFR(for n > 1)

distributions. Figure 4.2 indicates the failure rate curves for

GXl; G, 2  and GX, 4  for X 1.
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1.5

r(t)

1.0 n= i
n 2

n=4

0.05

0 t ime
2 4 6 8

FIGURE 4.2 - FAILURE RATE CURVES FOR GAMMA

DISTRIBUTION FOR A = 1.

Notice that as n increases, the probability density for

G ,n(t) becomes more peaked, i.e., the variance of the lifetime

from its expected value gets smaller as n gets larger. Since

G ,n(t) has a mean (expected) value of 1/nA, the distributions
-At

G /n,n(t) and G Xl(t) = 1 - e will have the same mean, 1/X

but G /n,n(t) will have a much lower variance (more confident of

expected value).

Recall from elementary probability distribution theory that

if a random variable X - GX,n(t) [p(X < t) = GX,n(t)], then X can be

written as a sum of n exponential random variables, each with

n -t
mean 1/A. Thus, X = i xi where Xi 1 - e- t  It is this idea

i=1
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which allows the use of the Degradation Model in extending the Basic

Model to the Erlang case by allowing components to pass through n

"fictitious" states of degradation before failure. Of course, unlike

the Degradation Model in which these intermediate states can be

observed and actions taken in them, decisions here are still limited

to the instant of component failures since the intermediate states

do not really exist. Thus, if we want to extend the Basic Model to

the case where the n independent components have lifetimes

G. (t) = p{L. < t}, then a Degradation Model for n components
i 1

can be used with the following modifications:

(1) Allow k. degradation states for component i,
1

th(ki  = failure) each with mean holding time i/A..

(2) Restrict repair decisions to times when a component fails

(enters state k.), otherwise do nothing (use same1

decision in states with same configuration of failed

components).

(3) Component i has mean life I/kiX i here. To get

desired mean life, can adjust Ai.(Ai = A/ki gives

mean 1/A).

Given the limitations on decisions, the theorems for

Degradation Model solutions will not apply here but the model as

stated is a Markov decision chain and can be solved as such either

by hand or on the computer.

To illustrate, consider the following simple example:
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Example 4.3. Basic Model, n = 2, L 0, parallel system.

LeC

L G( 1/2, 2) mean - 1/P1

L 2  G 2, 1) = 1 - e 12t mean = / 2

be M., the extended Basic Model.

Let

L- 1 1 - e mean = li I

L2  - 1 - e mean = /i/2

be M2 , the standard Basic Model.

M2 has states: 12 1 2 0 (Basic Model
2 hNotation)

decisions: -- A,R 2  A,R1  RIR2,R12

both up (12) #1 up (1) #2 up (2 ) failed (0)

MI has states: 00 10 01 11 102 i2 i 120 21 1 22 1

decisions: -- I A, R2  A, R 1 Rip R29

same decn. same decn. R 12applied to applied to
both both)
02, 12 20, 21

The set of possible policies is the same for both MI and M2.

Below, in Table 4.3 is a list of possible policies and corresponding

V 1 s under MI and M2 .
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TABLE 4.3 - TABLE OF V1 's FOR MI AND M2  OF EXAMPLE 4.3.

Policy M M2 MI M2
2__ _-I V-

- R{} {22,12} K+p K1+p

K 2+P K2 +P

- R2  {0} 22,211 2  2

K K K K
R2  R 1 {1,2} {10,01,11,02 +1 2 1 +2

20,12, 21) 1i '2  i 12

A A RI 0,1,2} 22,10,01,11, + 2 )(KI+K 2+p) G 1+p 2)(KI+K 2+p)
02,12,20,21}2 (p +( l \ p2 Ui+2

2 2 2p 1 2 _ 21 1 2 221 1.2 2 i 2

A R1  R12 {0,1,2} (22,10,01,11,
02,12,20,211

etc., (different for MI, M2)

R2 A R12 {0,1,2} {22,10,01,11,
02,12,20,211

M = revised model M 2 = standard model
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The important thing to notice from Table 4.3 is that, for policies

where repair is only done on one component at a time in a given
state, V_, is the same for M1 and M However, for policy

AAR12, which lets the system fail and repairs both components,

AAR1 2
V_1  under M is lower than that under M2. The lower

variance on the component lifetime of number 1, now with an

increasing failure rate, makes the multiple repair policies more

attractive relative to single repair ones which are always optimal

for exponential cases. Thus, one would expect that it is no longer

true that single repair policies are always optimal and indeed it

is so:

Let K, = K2 
= i = P2 10 p = 2  in Example 4.3.

KI+p K2+p
Table 4.3 = 1.2 = 2

K' K2  1+1 2
P1 U
-+-=i+i=2

V-i 12 = (20)(22) = 440 < I so, a policy with R2300150 450in 0 must

be optimal.

This concludes the results for the Degradation Model. A

sumnary along with further conclusions and comparisons to other models

is found in Chapter VII (Conclusions).
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CHAPTER V

THE NON-INSTANTANEOUS REPAIR MODEL

1. Description of Model

Up to now, in both the Basic Model and the Degradation Model,

attention has been focused on the components. Such factors as what

states they can be observed in, what type of system they make up,

their lifetime distributions and mean lifetimes have been looked at.

The repair assumption throughout has been that it is done instan-

taneously and can be done as often as desired (unlimited service).

The purpose of the Non-instantaneous Repair Model is to treat cases

where repair is non-instantaneous (exponential service in most cases)

and the number of servers may be finite. Comparisons to the Basic

Model (instantaneous case) can then be made.

Given the purpose of investigating repair assumption effects,

component assumptions were chosen to be as simple as possible, i.e.,

Basic Model assumptions. The Degradation Model could be modified

to incorporate non-instantaneous repair in a similar fashion but the

number of states would be large, results would be hard to come by

except on the computer, and attention would be diverted from the

repair aspects.

The Non-instantaneous Repair Model has the following Coherent

System Repair Model parameters:

States: each component can be in one of three states:

working, failed and under repair, or failed

and not under repair.
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Repair: non-instantaneous (exponential or Erlang), when

completed it brings a component to "new" condition.

The number of servers is 1 < s < - and each has
-(l/o)t

identical service distributions, R 1 - e
s

mean a.

-A t
-it

Component Lifetimes: exponential, Li - 1 - e

Note that gives the instantaneous repair (Basic

Model) case.

Again, given the increased complexity of the model, results

are much more difficult to obtain. As with the Degradation Model,

V_I results only are looked at. Section 2 considers the case of

identical components (k-of-n system), no fixed charge, exponential

repair and a single server. In Section 3, results of Section 2 are

compared to multiple server results. The final section demonstrates

other possible formulations of the model to include Erlang service,

non-identical servers, or component degradation states.

Unlike the Degradation Model's k-fold increase in the

number of parameters over the Basic Model's, the Non-instantaneous

Repair Model requires only the addition of three new parameters to

completely specify the model (in the exponential repair case).

These are:

(1) mean repair time a > 0

(2) labor cost tiserverlunit time

(3) number of servers, s > 1
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in addition to the Basic Model carryovers:

(4) fixed charge L > 0

(5) penalty cost for system failure p > 0
1

(6) mean lifetime of component i, f  i = 1, ... , n

(7) number of components, n

(8) cost to repair ith component, Ki, i f 1, ... , n

(9) type of system (specification of states for which

penalty is incurred) - series case impossible as with

Basic Model.

The objective is to minimize V_l, the long run expected

cost per unit time. It is interesting to note that if Ki = 0 =

and p = a, the objective becomes minimizing the fraction of time

the system is failed as is used by Smith [29] in his Optimal Repair

of a Series System model.

A state in this model can be denoted by a vector s of 2

parts; s = l, s2) where

s = vector of which components are working

s2 = vector of which are in service.

Is21 < s number of servers. s 1 U {l, ... , n). Changes of

state occur when either one of the working components fails or repair

on one of the components in service is completed. At such an instant,

decisions can be made to repair some subset of the components which
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are failed but not in service if the servers are not all busy.

Once repair is started on a component, it must be completed. In

the special case of a k-of-n system with identical components,

discussed in Sections 2 and 3, the vector s has only two

components, s - (i, J) where i = number of working components;

j = number of components in service, i + j < n, j < s.

The total number of states in an n-component Non-instan-

taneous Repair Model is at most 3n  in the case of s > n. In

cases of small s, the number can often be considerably lower than

that, although still greater than the number of states in the

corresponding Basic Model. Thus, although results here are just

as difficult (if not more so) to come by as for the Degradation

Model, on the computer they will be easier due to the lesser state

space enlargement.

Repair times being exponential, each state as defined

previously has exponential holding time so this model qualifies as

a continuous time Markov decision chain with infinite planning

(time) horizon. Notation from the Basic Model in Figure 2.1 all

applies here with the addition of repair parameters s, 1, a

defined previously. The Markov chain specified by the Non-

instantaneous Repair Model with given parameters and exponential

repair is as follows:
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State Space:

states - which components are working, failed, or in service

Sl(a' 2 where 81' U C {l, ... , n}

1= which components are working

= which components are in service (1§2< s)

If system = k-of-n and components are identical, then

s= (i, j) i- number of working components

j = number in service j < s

i + j < n

Decision Space:

Let 2 = {, ..., n1. Possible decisions in state

s = (si are R
= -l' !2 ar

where

(i) a 8C a - i U s2 (repair failed components
~ not in service already)

and

(ii) IQ U 2 1< S (number in service
- < number of servers)

Restrictions:

- Q 0 * if system down in s and no components under
s

repair.

- -A- "do nothing") if s2 (RS.
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Transition Structure:

The transition matrix, %: (assuming 6 in .

01 Q

<Q)6 E-~
0 =,(s i,s2UQ) ( ) X 1

(Qo) 1/a0 ,<sls~si S' [O -1(/)12us , 2  as"

6 O, if t (s- i, s2 U Q), some i E s
(Qo) , t-

or - ' 92 U "s

some i Es 2 L Q

Cost Structure:

L(1- I ) + Y, + Is2  U Q6,
s iG(as

if system up in sR6S

L+ p + K + Is2 Uasj S s
iE Q s 1 '

S

if system down in sand s is
143 a min cut set of the system

~143



where I 1, s

s 10, o.w.

Objective Function:

6 P R any possible optimal 6 will form
V-1 - * a Markov chain with a single

P6 Q Iirreducible set of ergodic states

The following examples are in the cases of identical components

with "s" servers:

Example 5.1: n = 2, s - 2, parallel, L = 0

states: 2,0 1,0 1,1 0,0 0,1

decisions: A A,R A RI,R 2  R1 ,A
'1

cost: 0 O,K+. 11 0 K+Zo+p, K+ta+p,
2K+Zo+p £+p

Ri = initiate repair of i components.

Notes:

- state 0,2 is not listed because, although it is

theoretically feasible, it will never be reached given

a starting state with all components up and the given

decision possibilities.
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- in state 0,1, even though the system is failed, the

decision to "do nothing" is allowed since repair has

already been initiated on some other component and there

is no way to get the system operative instantaneously

under this model. In state 0,0, however, some form of

repair is required.

- The penalty cost is incurred once each time the system

fails. This is due to the fact that, once the parallel

system fails, all components are failed so the next state

change must be due to a service completion, sending the

system to a working state.

Example 5.2: n = 3, s 1 1, k = 2(2 of 3 system), L = 0

system up system down

states: 3,0 2,0 (2,1) 1,0 1,1 0,1

/since

decisions: A A,R1  A R1 (system) A A
\failed/

cost: 0 0,K+9. -i K+p+1- 1 p+1 to

2X+o X+0 X+C -

(i, j) denotes a state which will never be entered.

Notes:

- unlike the Basic Model for a k-of-n system with k > 1,

states for which there are less than k - 1 components
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working can be reached due to the non-instantaneous repair.

- The penalty cost is now incurred each time the system

enters a state in which k - 1 units are working. This

occurs either at a system failure or at the instant of a

service completion still leaving the system down.

- There are actually only two possible policies here:

a) do nothing when 2 components are left, or

b) repair when 2 components are left.

under a): e,= {2,0 1,0 0,1}

2,0 1,0 0,1

2,0 [ 0 1 0

1,0 1~/0 0 X~/

A+0/0 X+l/G

1,i 0 1 0

These examples will appear later in the chapter.

In the parallel case, the instances of penalty cost

assessment are clear - whenever the system fails. For the k-of-n

model, the fact that states with less than k - 1 components

working can be reached means that this penalty could be assessed

several times while the system is still down, how often depending

upon the decision the modeler makes on which states to apply p

in. If it is desired to actually have p assessed only once per

system failure, this can be accomplished by dividing the states
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with k - 1 units into two categories: those due to system

failure and those not. I assume that the p gets incurred in

such states no matter what the cause of entry to stick to the

model framework introduced previously.

2. Exponential Service, Single Server Results

In this section, we look at the Non-Instantaneous Repair Model

in which the components are identical, L = 0, and service times

are exponential for the case of a single server (s = 1). A policy

is found which is V_1  optimal for first the parallel case and

then the k-of-n case for k < n. Changing behavior of this policy

for variable k and/or n is looked at.

Some notation is now needed:

Definition: Let the policy R(j )  (for the aforementioned

single server model) denote the policy which repairs whenever the

number of working components is < j and the server is idle.

Let

z P + jaw - I + j( a -) 2 j-2 +

J J

*..+ 1(J - 1) .. (3)o j-2 12 + ()aJ-l(a+1), j = 1, 2, ...

oAl•
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Let fk be defined so that: fl = 1,

(k-l)!ak-l
k : k-2 ;,k > 2 .

The theorem giving the general V_ optimal solution can now be

stated:

Lemma 5.1: Suppose we have the Non-instantaneous Repair

Model with a single server. Assume

(i) identical components, k-of-n system

(ii) L = 0 (no fixed charge)

(iii) exponential service times.

Then:

(A) the V_1  optimal policy is among R , k - 1 < j < n - 1,

policy R 0 ) being defined previously,

(B) RO ) < R 0 - l )

P " J+l - f 1
(K + o)
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Proof: Consider the k-of-n model.

states: (n,O), (n - 1,0), ..., (k,0)(k - 1,0), ... (1,0)

decisions: A A, R, .... A, R

and

(n - 2,1), (n - 3, 1), ..., (0,1)

do nothing

States where decisions have to be made are (n-l,0), (n-2,0), ... , (k,0),

options being to repair or to do nothing. This gives 2n -k  possible

policies. However, these yield only n - k + 1 different ergodic

chain structures in the underlying Markov chain, thus, only n - k + 1

policies as far as V_1  optimality is concerned. These are precisely

the ones mentioned in part A. of the theorem:

State

Policy (n-l,0) (n-2,0) . . .. (k+2,0) (k+l,0) (k,0)

R(k-l) __,__

R(k) A R1

R(k+l) A R R1

RA R-2). R ....... R1 R R

R ~nl) R1  R1 ........ R1  R R

To compare the R the V_'s must be computed for each.To1

Table 5.1 gives such quantities for varying j and k.
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If k is fixed and j > k, then R (j ) < R (J- 1)

Zj (XL,)+(j z (i+o)+(J-l) ifk

fk J1fk
<

z j+l z

j+l j

(K + to) -o j~ UJ fk+1

Lii f k j1

But, since

_ j+l j++ z

j+l j+ j

the above is true

(K + -) - 1j - < -1)j+l <-L fk"(J+l)

.J-) pa J-1 > fk(K + to) - - z
P°j+l k i J+l J-1'

our desired result B. 0

Collecting all the non-j-dependent terms on the left hand

side gives R(J ) < R
(J- l)
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El j~ j zl UMlf k.(K+ta) 0'a--I(j.. 1)i L -,

Two useful properties of u(j) are now proved.

Lema 5.2: Let

uO) a 0j1 (j-l)! [i +l zj-J

where z has been previously defined both recursively and in

general form. Then

(1) UMi >O0%Vj > 1

(2) u(j) - u(j-l) > O-yj > 1

Proof: u~i) > 0

.* - >0. zo 1,Z, +aj j+l j-l-

thus,

2 2

so, u(l) > 0 .Now, suppose u(J-l) > 0.
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Notice that for any i,

z

UM1 > 0 -, -_ P > 0
i i+1 i-I

i= -- + azi_ z > 0i i i+l zi-1-

i
i zi-1 i-

thus,

j-+z _ 0

J-1 J-2 C T-

It is now sufficient to show

to prove (1).

+-- +z (RL 
+ az j_ 2  + a + 2z_2

S1 -(+)(i-1] + l + zJ-2 ( -J-

- + a [li- + zj-2 (oa- _ 0

> 0 > 0 by induction
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Now, let A(J) = u(j) - udi - 1); defined for j > 2.

M= u(j) - u(J - 1)

J-i(j_l J+l j-2(2 - -

0j-1) a j - L zi 1J-1i -j J-2

_- _ij + i) lz J- -z - . j z + G(j-l)pz
(j-l)!oj  L-"-i i-2]

z. 3
since + (Z 1

j j j

(= icJ~ j + 1) + Zjl(O - 1j) + C0 - 1) 1zj_

- + G j - I + a02 (j - 1) zj2] > 0[
(J -1) ! j u-

Lemma 5.1 along with Lemma 5.2 allow us to state the

following optimal policy form:
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Theorem 5.3: Suppose we have the Non-instantaneous Repair

Model with a single server and the other hypotheses of Lemma 5.1.

Let

J+ (jzl!J J1 JL

for 1 < j < n - 1 and uCO) -0, u(n) - -. Suppose the system is

k -of-n. Then the V-1  optimal policy is:

Rif u(j) < f k. (---- < uOj + 1), j > k

R1 k ) if 0< pi <uk
f k(K+jta)

Proof: Know from Lemma 4.1 that R (i) < R(-1

Pl > J+l 1 O
f k* K+Xa) a - (j l)! [i-J+1 ZJ-1j 1 u

Lemma 5.2 1* 0 < u(l) < u(2) < *.* < u(n -1) which

implies the given optimal solution. 0
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Schematically, given a k-of-n system, s 1, identical

components

u(l) ".. u(k) u(k+l) u(k+2) ... u(n-2) u(n-l)

0 f k (K+ ta)

R(k-l) R(k) R(k+l). ..... (n-2) (n-) optimal

Thus, given a fixed k, factors which favor more/(less) repair are:

(a) (low)/high penalty cost, p for system failure

(b) (high)/low component repair cost, K, and/or

(high)/low expected labor cost per server per repair

job completed, to

This is because the "u" values are only functions of P and a,

not of system and repair cost parameters. As a - 0 (close to

instantaneous repair), the u-values all approach infinity except

u(1) = v. This means that for small enough a, one will never

repair until there are only k left in a k-of-n system, a familiar

Basic Model result.

u(l) =

-P .0 I (fl~l) (K+Zo)

k = l(parallel) R (0 ) !-- R (I )  u(2)iu(3)-o
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In the parallel model, the a = 0 result simplifies precisely

to the Basic Model result since the optimal policy there needed

only a single server. For

> 1 --(k-l)! *ck-10 k k----i--

which must be incorporated into the u's. This done, lim fk " u(j) =

for j # k and is < - for j = k; therefore, the limiting a = 0

policy is the same as for parallel. The next example illustrates:

Example 5.2: n = 3, s = 1, K = 2, L = 0

Possible policies are R(2 ) and R(1) , i.e., if in a state with two

components working and an idle server, either repair or don't repair.

R (  optimal R (2 ) optimal

0 (o/o+lj) (K+to)

u(2) = I i-+ 2IO+3 a

u(2) =(2)

R (  optimal R (2 ) optimal as a - 0
_ _ _ _ pp (close to

0 K+tc instantaneous
lim f " u(2) - repair)

o+-0 12

R (I ) optimal as a - c
p__ (large repair

0 ( c(o+w)(K+Eo) times)
"takes so long to repair that u(2)- unlikely case

might as well let system fail first" fk I  in practice.
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In the remainder of this section, the problem of how the

aforementioned V-1  optimal policy is affected by the type "k"

of a k-of-n system is treated. Theorem 5.3 states that, in a

k-of-n system, the V-1  optimal policy is:

(2) R (j )  if u(J) < PU < u(j+l), j > k
f k(K+Xto)

and

(3) R(kl) if 0 < fk - < u(k)fk(K+io)

The only k-dependent quantity is fk' except for the value of

j at which N2) is cut off and (3) holds. A study of fk behavior

will yield any system-related policy changes.

Lemma 5.4: Let f i 1 and

(k-l)! k-1
k k-2 k>2.

Let 2

2

Then

fk > fk+l (4) for k < k

and

f < f ( for k > k
k 1k+ 5
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Proof: f 1 >+ f2, (k > 1 always). Suppose k > 2.

fk < f k+l (k - k-l k-l + ko) < k!ok k-2 + (k-1)a)

'~ ~ + ko) < koa( + (k - 1)o)

2 < k(k -1) ao2

k 2 _ k 2 > >22

0

k > k 2 by quadratic formula. C

Notes:

(1) k > 1 (f1 > f2 )

(2) As k increases, k increases.

Consider a partition of [0, ') by u(j), I < j < n - 1:

0 u(1) u(2) -u(n-1)

These u's do not vary with k although as k increases, only

u(k), ..., u(n - I) are meaningful in determining optimal policy.

Optimal behavior will be determined by the position of P1
f k(K+to)
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on this line. A smaller f raises -_pp and, thus, willk f k(K+ta)

cause earlier repair (when fewer components are failed) if it is

changed enough. Similarly, a larger fk means a wait until more

components have failed before commencing repair. Lemma 5.5 states

this precisely.

Lemma 5.5: Suppose we have a Non-instantaneous Repair Model

with a single server and identical components and the other assumptions

of Lemma 5.1. Let p, a, p, K, and £ be given. Let Mk represent

the model for a k-of-n system, 1 < k < n. k is

2
1+2

2
a

2

Suppose policy R i) was optimal for Mk, i > k. Then,

if k < k , is optimal for Mk+l, some j > i

if k > k , R is optimal for Mk+I, some J < i.

Proof: Obvious from Lemma 4.4 and previous remarks. A final

example illustrates:

Example 5.3: n = 4, p, K, X, p, a fixed. L 0, k-of-n

system where k 1 1, 2, or 3.

160



Let p = 2, K = 1, a = 1, p = 3, Z = 1/2,

ui() = 2o + j = 5 f 1P = 4
1 1 l(K+Zc)

u()=1i P11 = 16
= 2 4 f2(K+£o)

97 1 f 2 =3
u(3) =  = 24 f3 =  = 30

3 15 f 3 (K+ZcF)

R(0) u(1) R ( u) u(2) R (2 )  u(3) R (3 )

- * XXi A I (

0 10 20 30 R (0 ) optimal

R (  u(2) R (2) u(3) R (3 ) 2
" Y * × I " k

0 i0 20 30 R(2) optimal

R (2 )  u(3) R (3 )

i -' k ='- -- k 3

0 10 20 30 R (3 ) optimal.

In this example of a system for which the mean repair time

is small compared to the mean component lifetimes, as k increases,

the number of failed components at which repair is started is

increased. Note that, if fk had been increasing in k, as would

have been true for a small u/C ratio, then increasing k would

have meant waiting longer before initiating repair up to the point

where the system fails in which case further increase of k forces
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a lesser wait due to the necessity of repair upon system failure.

So, generally,

P/a large short repair times repair sooner as kt
compared to components'

lifetimes

a small long repair times repair less as kt
compared to component's

lifetimes

Example 5-4: P =1 c= 1 p=6.1 K l 1 Zl/2

u(l) = 3 f, = 1 -P.
f 1 (K+Zcy)

u (2) = 5 1 f = ---p 8.42 2 2 f2 KZy

u (3) =8-= 2 .
6 3 3 f 3 (K+Za)

R(O) R 2 3
uM1 u(2) ()

0 5 10 R optimal

R u(2) R (2) -

0 5 10 R optimal
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R (2 )  R(3)
-u (3)

.__ ___ __ ___ _ __ k= 3
0 5 10 R ( optimal

3. Exponential Service, Multiple Servers

In Section 5.2, a single server version of the Non-instan-

taneous repair Model for an identical component, no fixed charge,

k-of-n system was treated. The V_ optimal policy was found to

be among R (j ) , k - 1 < j < n - I where R signifies a decision

to repair whenever the server is free and the number of working

components is j or less. The purpose of this section is to

investigate what happens for the same model but with multiple

servers. For the instantaneous repair (Basic Model) case, it was

never optimal to repair more than a single unit at a time in an

ergodic state so at least if one was only interested in V_l, the

optimal policy for multiple servers would be the same as if there

was only one. The bulk of this section is spent trying to see

whether that is still the case for non-instantaneous repair either

in general or in some cases.

First, consider Example 5.1.

Example 5.1: n = 2, s = 2, parallel, L = 0

states: 2,0 1,0 i,1 0,0 0,I

decisions: A A,R A R19R R1,A
1 RR 2  R,

Possible policies, 6, giving different ergodic structures are:
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The only policies which require only a single server are

(0) (l)R and R. The relationship between the five policies is

summarized below:

Figure 5.2 Policies in Example 5.1

(0)
R

lower R
V_

(better)

higher R[]R1
V

I1

(worse) A 2RI

AR 
A
2

A vertical arrow indicates total domination by the policy located

higher in the diagram. Two upward "v" arrows indicate that the

policy below is dominated by one of the policies at the ends of

the "v".

In this case, it is indeed true that a policy which requires

a single server only is always optimal.

Now, suppose we have the same model with two servers but

now with 3 components:
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Example 5.5: n -3, s =2, parallel, L =0

states: 3,0 2,0 2,1 1,0 1,1 0,0 0,1 0,2

deiios A AR1 A A,RR 2  A,R 1  R1,R 2  A,R 1  A

*=decision to be made.

There are now quite a number of possible policies, but only

three which give ergodic structures which utilize only a single

(0) (1) (2)
server: R , R and R as defined in Section 5.2.

Consider the feasible policy 6~ = R 1- R 1- which gives

1 3,0 2,0 2,1 1,1 0,2}. Clearly this requires two

servers. Computations give

1 13 2 2

Also,

VR~2 (2) 612 +2ap~+2 2 )(K+ta)+2a 2R

V p2+2a 2 j+2a
3

VM (iz+o) (K+2,o)±gp

V () K+ta+p

)J+a
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Suppose K + to = 1; p 30, 0 = 1, p = 1. Then,

R (0 )  31 15.5 R ( )  32
v-1 VT 1 -1 2.5 12.8

VR (2 )  65 V6 34

-1 vi -;3= 12 .

Notice that policy 6 is better than any of the possible

single server options. Thus, for this case, some policy (may or

may not be 6) is optimal which does require the services of both

servers. Under instantaneous repair, policy 6 would not have

been optimal since it involves repair before getting down to one

component left. Thus, under non-instantaneous repair, it is no

longer true that no fixed charge * never repair more than one

unit at a time.

The section is concluded with an obvious result but worth

nothing:

Lemma 5.6: Suppose policy 6 is V_1  optimal for a

Non-instantaneous Repair Model with s-servers (N ) but its

involves the use of at most only s' < s servers. Then policy 6

is optimal for the Non-instantaneous Repair Model with only s'

servers (Ns,).
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Proof: If 6 is optimal for Ns, then

6 = argmin VY

yE(N s )

A(N ) being the policy space for model N s . But A(N ) D A(N s,)

so given a G A (Ns,),

Smin VYI > min Y = V
V yI-- (Ns,) I (N s) V_l1 -1

But

6EA(N ,) so min Vl < V6

yEA(NS,)

soV = min VY .

yEA(Ns,)

4. Extensions of Model to Erlang Service Times, etc.

In Sections 1, 2, and 3, exponential service times were

assumed. As in Section IV.4, with component lifetimes in the Basic

Model, service times also can be extended to Erlang distributions

in the Non-instantaneous Repair Model, while still retaining the

Markov decision chain structure. For many applications, an Erlang

repair time is more realistic. Using it, one assumes the longer

time the repair of a unit has been going on, the greater the

probability of its completion. (IFR property).
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Suppose now that service times are distributed G (t)
m

mi

an Erlang distribution with shape parameter m and mean a, all

servers being identical. Then if R is the service time,

R - R +'" +Rm where Rm - exp (i/a). As is standard procedure

in queuing theory, think of the service as done in m consecutive

th
parts with completion after the m stage is finished. For the

general Non-instantaneous Repair Model with non-identical components,

a state s=(s, ... ,sn where si is the state of the ith

component is generalized so that a component can be in one of

m + 2 states:

1. working

2. failed

3. failed, in 1s t service stage

th
m+2. failed, in m service stage.

Decisions only need be made concerning a component if it is failed,

not in service and there is a free server. The usual state

simplifications occur if components are identical. If, in addition,

we assume that a component can also be in X states of degradation,

a Degradation/Non-instantaneous Repair Model is obtained. The

total possible number of states, (9 + 1 + m)n
, is t.ow rather large and

unworkable, even comoutationally, for all but very small values of m,t,n.
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Example 5.6 Degradation/Non-instantaneous Repair Model
with Erlang Repairs

0 0 00
n = 2 components L exp (X) L2  exp (X)

1 1 1 1

X = 2 degradation states L 1  exp (X ) L2 - exp (A2)

s = 1 single server, repair times R - (t)

(so, 3 repair stages)

states s = (Sl, s2) where sl, s2 C {-3, -2, -1, 0, 1, 2}

-3 = first stage repair

-2 = second stage repair

-i = third stage repair (last)

0 = new (repair completed)

1 = first degradation state

2 = second degradation state (failed)

Note a new twist to this combined model - repair could be

undertaken on a working component in a lower state of degradation

and the component could become further degraded or fail before

service is completed. All kinds of decisions on what to do in

such cases can be treated under this formulation.
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CHAPTER VI

COMPUTATIONAL METHODS OF PRODUCING OPTIMAL POLICIES

1. Introduction

The past four chapters have treated four distinLt types of

coherent system repair models, coming up with theorems which either

produce a general optimal policy given cost, system and lifetime

parameters in simpler cases, or limit the number of possible optimal

policies. Such general optimal policies, where possible to obtain,

are clearly the most desirable results. However, for many cases

the theorems developed in Chapters II - V do not apply. A partial

listing of such cases would include:

(1) Non k-of-n systems with or without identical components.

For this case, in the Basic Model, the V_1  optimal

policy can be obtained using Theorem 2.4 if there is no

fixed charge. Otherwise, nothing applies.

(2) The case of a fixed charge L > 0.

If components are identical or system is k-of-n, then

results can be obtained for the Basic Model.

(3) Multi-server cases of non-instantaneous repair.

(4) Cases where there are many degradation states, or one

has Erlang service, component lifetimes.

Indeed, while Chapters II - V cover many cases of interest,

there are many more possible cases not solved for which a user of
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a coherent system repair model would want the optimal solution.

In fact, given some possible application, chances are it would

not be covered by any of the theorems. The aim of this chapter

is to discuss methods of solving on the computer a given coherent

system repair model which can be formulated as a Markov 'ecision

chain.

The next section discusses two general types of algorithms

which could be used in optimizing such processes by computational

methods: policy improvement and linear programming.

Section 3 describes a method of computing optimal policies

for the Markov coherent system repair models (or any other Markov

decision chain with suitable state or decision space) using MINOS,

a non-linear programming code developed at Stanford.

Some test results using the MINOS solution technique will

be presented in Section 4.

2. Possible Algorithms

There are two possible algorithms which cr-n be used in

computing a gain (V 1 ) optimal policy for a continuous time

Markov decision chain (or Markov renewal program) with infinite

horizon and no discounting. These are policy iteration and linear

programming.

Suppose we are given a general Markov decision chain with

(i) states: 1, 2, ..., N (indexed i)

(ii) decisions: D = set of possible decisions in state
(indexed k), finite
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(iii) transition probabilities:

Pij Qk(o) probability i j given decision k

in state i

Vk Qk = expected holding time in state ifdecision kVi = ' I,

(iv) cost structure: rk = cost of decision k in state I

(v) objective: minimize V_l, the long run expected cost

per unit time.

The preceding problem can be reexpressed as a linear program

k k
in terms of variables xi, where xi = probability {state = i and

k

decision is k. The optimal xi values then give the optimal

randomized policy for the given Markov decision problem, i.e., values

of Di = p{decision kistate i}

k
x.1

kED

The LP is as follows:

minimize: x x rk
ik

k jk k ' i

ik

k
ad k V.i k

x i

i17
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The objective function is just the expression for V 1  of

k
a given policy 6 expressed in terms of x. variables while the1

equality constraints are a rewrite of the stationary probability

equations for a policy 6:

[x(1 - P fl
Wagner (341 observed (by complementary slackness) that a

nonrandomized policy is optimal over the class of stationary

randomized policies in the case where each optimal policy has a

single ergodic chain, (as is true for coherent system repair models).

kThus, in an optimal solution to (P), x. > 0 for only one1

k v i = l, ..., N. This indicates an optimal decision of k given

state i(6(i) = k).

kNot all states i need have x. > 0 for some k. Those
1

that do not are transient states in a V- optimal policy and those

for which it is, are ergodic. Thus, & = {set of ergodic states in

optimal policy} = (i j xi > 0k .

k
The second method for finding a VI optimal policy is pilicy

iteration. This algorithm has the advantage that it can handle a

countable state space (N =o) while N < - is needed for the LP

to be defined. Also, it will often find the optimal solution in

fewer iterations than the LP will.
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Policy iteration involves repeating two steps, value

determination and policy improvement until a policy 6 with

minimum V6  is arrived at. Given the general Markov decision

chain and the fact that every optimal policy defines a single

ergodic chain, (in a coherent system repair model), the two steps

are executed as follows. Suppose one starts with policy 6

Let u = u , ... UN) and g be a scalar.

(1) value determination - solve the system (given 6)

6(i) N 6(i) 6(i)r.1 + I~l Pij u. = u.i + v i " g '  i i . .,N

j=l

and u. =0 for some i < i 0 < N for g, u. Since
3. 

00

6 6 P R
g V - 0 Q and (I - Q0 )V 1 = 0,

6this g = g , the gain value for policy 6.

(2) policy improvement - using the current values of

6 6 find another policy y such that yi = what y does in i

minimizes +1pkU v1 1
k kj N

kEA(i) v i  P j u - uii = 1 . , N .
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If y 3, then terminate; 6 is optimal. Otherwise, go back to

step (1) and replace 6 by y. Continue the procedure until

x, g are found satisfying the termination conditions:

N
1 (r. (i) u.+v )

(t 6(i) + N P6j u= u + v . " i = 1, ..., N
j=l

k N k k(t 2 r i +  Pij uj > u i + vi • g V(i, k) pairs

Condition (t) implies g = V 6  while (t ) implies 6 is
1 *

VI optimal 6 = g ), i.e., there are no possible "improvements".

Given a finite number of states, termination will occur in a finite

number of iterations. In effect, the policy iteration method is

computing V 1I for various 6, but is choosing the successive 's

in an efficient manner so as to go through as few of them as possible

before reaching an optimal one.

It should be noted that the linear program (P) is not using

the same algorithm for solution as the policy improvement method

mentioned. However, the two problems are intimately related in that

if the policy improvement termination conditions and a desire to

maximize g are put in linear program form, the LP so formed is

the dual problem to LP (P). Although problem (P) is the more

intuitive formulation, its dual (D) turns out to be more efficient

computationally, especially in cases where information about higher
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levels of optimality than V_ is desired. The dual problem (D)

is shown below in LP form with g, u = (u1 , ... , UN) as variables:

(D) minimize: (- g)
N k k k

subject to: ui - p ij u. + v. • g < r. (i,k)
j=l J 1 1

where g, u.'s are unrestricted in sign.1

Two well known results from duality theory will help relate

the problems (P) and (D) as well as assist in developing a

computational method in Section 3. These are:

Theorem 6.1: (Duality Theorem) [ 7 ] or [34]

(a) If both the primal (P) and dual (D) problems

possess feasible solutions, the primal problem has an optimal

k
solution x j = 1, 2, ... , N, k G A(j), the dual problem has anj i k A^k

optimal solution g, ui, i = 1, ... , N and r. x. -g.

ik I 1

(b) If either has a feasible solution with finite optimal

objective value, then the other one has a feasible solution with

the same optimal objective function value. [So the optimal objective is

(P) or (D) is V_1  in a coherent system repair model by (b)

since clearly (P) has a feasible solution with finite objective].

Proof: See [7], [34].

A corollary to this which is useful in relating optimal values

of primal and dual variables is:
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Corollary 6.2: (Complementary Slackness). Let (P), (D)

be expressed in the matrix form:

(P) maximize: cx (D) minimize: by

subject to: Ax < b subject to: y tA > c

x> 0 y>0

where Icl = n, 'ij = m IAI = m x n

Ixf = n IbI = m

Let x , y be corresponding feasible solutions to (P) and (D).

Then both are optimal 4 y* (Ax* - b) = 0, (dot product of two vectors)

and x * A- c) = 0

Proof: See [30] or [31].

Corollary 6.2 implies that whenever a constraint in one of the

problems holds with strict inequality, so that there is slack in

the constraint, the corresponding variable in the other problem is

zero. This result will allow us, in the next section, to know

which of the xk variables from (P) are positive from the
i

solution of the dual problem.

Once a V_1  optimal policy has been determined for a given

Markov decision chain using either policy iteration or linear

programming, a bias optimal policy can be obtained by solving an

altered Markov decision problem again by either policy improvement

or linear programming. Given the original Markov decision problem
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and its associated LP (D), the altered problem is defined as

follows:

(i) states: the same (1, ..., N)

(ii) decisions: restricted to 6', where A' = set of policies

(i,6(i)) such that

N
N 6(i) u+V6Mi g rs(i) v1 1, N

where Ul, ... , uN and g are the optimal values found

solving the original problem. Clearly the optimal policy,

6 from the V 1l step is in A'.

k
(iii) transition probabilities: pij, the same

k .- k
(iv) cost structure: ri  is replaced by Ri, where

*1
-kk k *k

-R= ) .-.R1) - l u,

being the solution to

( 6 6 6 *6I - 0 u= R0 -QI g *
found for 6

and

uN = 0 in V-1  problem.

(v) objective: minimum V_ = g (which gives minimum V0

in original problem).
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See Denardo [101for verification of the fact that if u is

chosen as shown, that the V_1  optimal solution to the altered

Markov decision problem indeed gives a V0 optimal policy for the

original problem in the case where every VI optimal policy defines

an irreducible Markov chain. (All coherent system repair models have

this property - see Section 11.2).

For a general problem (arbitrary Markov decision chain) in

which some V 1  optimal policies might generate multiple ergodic

chains of states, the aforementioned altered problem may not yield a

V0 optimal solution (a case never encountered in a coherent system

repair model). In such cases, a V0 optimal solution can still be

gotten by adding a third step which takes into account states which

are transient under every possible policy.

The above 2 or 3 steps can be continually reapplied, modifying

ri s and restricting decisions appropriately, to get V1 V2, ... etc.,1 1 2

optimal policies until a unique policy, "optimal", is reached. For

reasons stated in Section 1.4, V0 optimality is considered "optimal"

in coherent system repair models so two is the maximum number of

V 1 problems needed to be solved to determine an optimal decision

for every state. In many cases, solving one problem will suffice

in getting V0 optimality as will be seen in the following two

sections.
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3. Computing Optimal Policies Using MINOS - A Linear Programming
Method.

In this section, a linear programming method for solving a

coherent system repair model on the computer using MINOS is described.

Although policy improvement algorithms may on the whole be more

efficient and require fewer iterations to reach optimality, there

has been little development of computer codes which might efficiently

carry the method out. On the other hand, there has been a lot of

work done by the Systems Optimization Laboratory (SOL) at Stanford

on linear and nonlinear programming codes. See [23] and references

listed there. It is for this reason that an LP algorithm is used.

MINOS is actually a code developed by Michael Saunders and

Bruce Murtagh [23] for solving large scale nonlinear programming

systems which have linear constraints. Of course, it works on

linear programs as well. There are other codes which are designed

for linear programs and can handle larger sized problems (e.g.,

MPS III [referenced in [23]]) but for the size problems tested here,

MINOS is sufficient. Given an LP:

minimize: cx

(P) subject to: Ax = b

x>0,

MINOS is most efficient if A is sparse (has lots of zeros) and

the number of rows isn't too large (< 1500). Coherent system
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repair models fit these conditions for small numbers of components

(under 10) or states of degradation. In general, they define LP's

which have many more columns than rows, which means MINOS can handle

larger problems than might otherwise be expected in solving (P). Of

course, in a general nonidentical component model, even the number

of rows (states) get large very quickly, e.g., if there are Z

degradation states and n-components, the number of states ( + )

The number of columns is even larger by a factor of 2n  since in

each state s, one can in general decide to repair any subset of

the failed components (2
n -Is l possibilities), and there is one

variable per possible decision per state. For larger problems,

the LP code MPS III could be used but clearly for any moderately

large number of components (even > 15), model simplifications to

restrict the number of states and/or decisions must be undertaken

before the problem can become of reasonable size. Such theorems

as presented in Chapters II - V could provide such assistance in

cases of identical components, k-of-n systems, or certain specific

model cases.

Certain of the models can be solved with less difficulty than

others (due to smaller number of states). The Basic Model is

easiest with the Noninstantaneous Repair Model requiring only a

small increase in state space. In contrast, a Degradation Model

requires a dramatic increase in states and for even small numbers

of degradation states, would be too large to do even on the computer.
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One good way of simplifying the problem computationally

would be to break the system down into independent subsystems of

components, the subsystems being in series, i.e., s = {1, ..., n}

B U -"- UB, r < n where Bi  B. =B , i #j and the system

works if and only if the subsystem corresponding to B. is working1

for every i. The idea is then to run the model on the smaller

subsystems and then add the costs from each one to get the overall

result. For the Basic Model and V-1 , this can be done as a

consequence of Theorem 2.1. For other models or V0, the truth or

falsehood of this result is an open question, although for V_ at

least, I think it will be true.

Before stating and proving the aforementioned theorem, a

clarification is needed on what is meant by independent subsystems.

In the Basic Model, the states of the system depend on the status of

each component as well as the status of the system.

Definition: An independent coherent subsystem B. is a

subset of components {U, ..., r}, r < n which form a coherent system

such that the status of Bi is unaffected by components r + 1, ..., n.

Theorem 6.3: Suppose we have a coherent system .Y of n

components which can be broken down into p independent coherent

subsystems, Bi, which are in series. Then, given the Basic Model,

the optimal long run expected cost for the system is the sum of
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optimal long run expected costs for the subsystems, i.e.,

P

V1"Y= I VI B The policy is the same.
j=l

Proof: To follow example and discussion.

The advantage of independent series subsystems is clear.

Suppose n = 20, i.e., there are twenty components. The total

20number of states in the Basic Model could be up to 2 = 1,048,576

or over a million - clearly impossible by ja reasonable computational

standards. Just being able to break things down into two independent

10-component subsystems would reduce the total states needed to

2 x 210 or 2,024 - a feasible number. Further reduction to four

5-component subsystems lowers the total states to 4 x 25 or 128.

An example where this proves useful is now given.

Example 6.1: Suppose a system consists of n independent

different types of components which are in series, i.e., the system

works if and only if each component is functioning. One possible

way to improve the reliability or performance of the system is to

add duplicates for each component type. The system is now composed

of n parallel independent subsystems in series. If the level of

redundancy of component i is denoted by ri, then the total possible

n
number of system states would be 17 (ri + 1), ri > 1. However, by

i=l
modeling each subsystem separately, and adding V_1 's, one gets
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away with running n subsystems with r1 , r2, ...I r states
'n

respectively, almost a trivial problem. This type of subsystem

is done in Markov reliability modeling of fault tolerant systems

in [24). The system reliabilities computed for each subsystem are

then multiplied together to get the total system reliability.

Fault tolerant systems are discussed further in Section 7.4

(Applications).

Proof: (Theorem 6.3) Let the independent subsystems of

components 1,..., n be reordered so that BI = {l, ..., iI }

B = {i + 2, ... , B = {i + - + i + 1,
2 11 2p 1 p-1

i + .- + i } Theorem 2.1 tells how to find the V 1  optimal

policy in the Basic Model case for a coherent system by testing

all subsets of components for which the system operates. The

V_ optimal policy is the one which keeps such a set of components

operating by fixing one as soon as it fails at minimum cost. Let

s be any such set and define V l's as the V- for the policy

as mentioned above which keeps only the set s of components

working. Let s also represent the policy just mentioned.

Suppose sO  is optimal for the whole system, ,P. It is desired to

show

p

V=l-s Y V-150 j=l 0-
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By Theorem 2.1,

Ki+p Kv i - + I
I'ss0 0 : iEs 0  W0 0

s0i is s o -i is
down in Y up in .Y

If staLe so -- i is up for Yf, then (s -i) n B. is up for
J

subsystem B., j = 1, ..., p since the subsystems are in series.J

If state s0  i is down for Y, then (so - i) r) B. is down

for B. for at least one j since the B.'s are in series. So s0J J

has to be up in Y for the policy "keep so  working" to be

defined. Thus, sr ' B. is up in B. j = 1, ..., p. Thus,

(so  i) r) Bj is down for exactly one B., the one which i is in.

Thus

P K i+p P K
V- i' 1 +i I U
V-l,so= -+--

0 j=l ics 0flB. i j=l iGs 0 r~j i
(s0fBj )-i Bj is O -i is

is down in B. in B.
J J

p
I VIs0nB. by Theorem 2.1. 0

j=l 0
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A simple example is now solved by hand using the LP method,

following which the procedure for solving a general problem using

MINOS is presented.

Example 6.2: n =2, parallel system, different components,

L 0, Basic Model.

Markov decision problem:

States: 12 1 2 0

Decisions.: A A, R 2AR1 R9 $R1

F A -1 R R R
Transitions. A F 10 2 1 P 2 1 P12

12- L X 1+A 2  X A21 - 0

A A R 1 R2
P 1 0 0 0 1 1 2 . P 0

R 12R R 1 1 A R1 1R2 1
1A =A V 1 2 -R 2=

0 12 1 2 A 1+X 2  1 0 A 1  2 0 XA2

Costs:

A A A
r =2r I=r =0

R 2R IR 1R2
r1 =K 2  r 2 =K 1  r0  K 1+p; r 0 =K 2 + p

01

Objective: minimize V~l then V0
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Linear ProgramminS Formulation for (p), primal problem.

k
8 variables x. = probability {state = i and decision is kI1

0 0 2 0 1 1 2 12
(x1 2 , xI, x1 , x 2 , x2 , x0, x0 , x0 )

k
5 constraints plus x. > 0 V i, k plus objective function.

colum
12,0 1.0 1,2 2.0 2,1 0,1 0,2 0,12 RHS

ORJ 0 0 K2 0 1 KI' K2 +p K1 +K 2 +p ---

S12 1 0 0 0 0 0 0 0 - 0

-12 12 ". -12

S1 -1+ 2  1 1- 1 2  0 X2 0 0 2 0
I1+1x2 1 +A2 1X 2 x11 2

-1 -11 1 l -01

12 2 1 i+X2 1 J-A2 1 2

so 0 -1 0 -1 0 0 0 1 - 0

1 1 1 1 1 1 1 1 1NORM _ ___

1142 x1 1+ 2 A2 A1+12 A x2 xi+ 2

Suppose L = 0 KI = 2 ]i = 1

p = I K 2 = 6 P2 = 2

Then (P) can be written as

minimize: cx

subject to: Ax = b

x > 0

where
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x = (XA~ A R2 A R1 1 2 xR 12
12' x, xi , x 2 , x 2 , x 0 , x 0 , 0

c = (0 , 0 , 6 , 0 , 2 , 3 , 7 , 9) (objective row)

row

A = 1 0 0 0 0 0 0 0 S12

1 1 2 0 -1 0 0 S i
3 3 3

2 2 1 23 0 -2 1 1 0 0 2 S2
3 33

0 -1 0 -1 0 0 0 i SO

2 2 2 1 2- i - - 3 NORM
3 3

b= 0 The dual problem (D)

0 can be written as follows:

0

1 maximize: g

subject to: u tA < c

where u = ( u1 2, U1 , u2 , u0  and g are unrestricted in sign.

We know max g = min cx = V_ (duality theorem) and x (u tA-c) = 0

(complementary slackness) so, u A.(ik) < c = x i = 0 (i f under 6*),

(A.(i,k) is the i,k t h  column of A).

Example 6.2 will be solved as part of Section 4.
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The fundamental principle behind MINOS is an efficient and

reliable implementation of the revised simplex method for linear

programming (see [ 7 ]). This combines established sparse-matrix

technology with stable numerical methods for computing and

modifying a triangular factorization of the usual square basis

matrix B [see references in [23], p. 8].

For usage in solving purely linear problems, the following

two items must be supplied as input:

(1) the SPECS file - to specify certain run time

parameters

(2) the MPS file - to specify the objective, constraints,

and bounds on variables in standard MPS format.

MPS format is defined under the title "CONVERT DATA" in IBM

document number SH20-0968-l, "Mathematical Programming System-

Extended (MPSX), and Generalized Upper Bounding (GUB)", pp. 199-209.

The following SPECS are used in all test problems in Section 4:

SPECS FILE

BEGIN SPECS

MINIMIZE
OBJECTIVE OBJ bective

RHS RHS defines RHS vector
BOUNDS BND defines bounds vector
ROWS 100 max number of rows
COLUMNS 500 max number of columns
ELEMENTS 1500 max number of nonzero

matrix elements
INPUT FILE 31 defines input MPS file
ITERATIONS 500 maximum number of iterations
SOLUTION yes go to a solution.

END SPECS
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The input MPS file (labeled 31 in SPECS) will vary from

problem to problem. It is uniquely specified given any Markov

coherent system repair model. This is done by choosing values

for each of the following parameters:

States: n - number of components

t = number of degradation states/component

Iid= indicator function indicating whether one
has an identical component, k-of-n system
or not

Repair: s - number of servers

a > 0 = mean repair time
d

Components: Ui = mean holding time of component i in
degradation state d

d. I < i<n, 0 < d < 1
i d' in O dc -

U i

System Type: - list mincut sets

Penalty Cost: p > 0 for system failure

Fixed Charge: L > 0 per repair decision
d

Repair Costs: K to repair component i when in degradation
state d, I < d < t

1< i<n

Objective: V_1  or V0  (minimize)

For large problems which might need to be tested many times,

it would be worth writing a Fortran program to produce the MPS

input file given the above model parameters. However, for the

relatively small problems to be tested, it is easier to create a

new MPS file directly for each separate example.
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Output from MINOS includes:

(1) a listing of iterations to solution

(2) Rows section: indicates the numerical value taken on by

various rows at optimality, including whether or not

the row is at its upper limit (in the case of <

constraints in problem (D)). Also the optimal value

of the ith  dual problem variable corresponding to

th
the i row is listed.

(3) Columns section: gives optimal values of variables

and the reduced costs for each, i.e., the coefficient

of variable xj in the objective row of the optimal

simplex tableau.

Given information on the input, output and working efficiency

of MINOS, the question remains as whether to use the LP (P) or (D)

to solve the problem. One immediate point favoring (D) is that

the ui variables are given as output as well as the xi while only

the x 's appear in the output for (P). However, the efficiency of

MINOS depends the most on the number of rows and less so on the

columns. This favors use of (P), which has many fewer rows than

columns, in cases where only V_1  optimality is desired or the

problem (D) would have too many rows to be efficiently run under

MINOS. The advantage of problem (D) is in cases where a V0

optimal solution is sought. To determine the restricted decision

space A' for the altered Markov decision problem, one must know
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which of the rows (i, k) in (D) are at their upper bound at

optimality. This information appears directly in the rows section

output of problem (D), while for (P), these comparisons would

have to be made separately in addition to the fact that values

of u would have to be solved for on the side using a system

of N linear equations using dual activity values given in "rows"

section. In summary, a rule of thumb might be

- if small problem and want

V_I only use (P)

V_, and V 0 use (D)

- if large problem and want to use

MINOS 4 use (P) if (D) has too many
rows for MINOS

or

if want (D) to be used, then
recommend using some other code.

This rule will be followed in the small test problems presented in

Section 4. It should be noted that for coherent systeA repair

model type Markov decision chains where V0 optimality specifies

a unique policy subject to an infinitesimal change in one of the

cost or lifetime model parameters and the optimal ergodic chain

is always irreducible, it will frequently happen that the only
*

policy in A' is the 6 determined by solving the initial LP.

In such cases, only one LP need be solved to get a complete

optimal solution. This occurs in Examples 6.2 and 6.3 of the next

section.
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In solving certain problems by LP, it may happen that

-ll
ti u ui -J1l P i uj + vg - r < 0 v k, some i

If so, then slight modifications in the state and decision spaces

of the altered Markov decision problem must be made. Let

B, {k E A : tk 0}. If Bi Y * ' i, then there are no problems,

define A' as before. Suppose Bi  * for some states i. Let

a B I  . Notice that i a can occur only if i is

transient under all gain optimal policies, a condition which is

usually satisfied by all transient states in a coherent system

repair model, unless there are ties among some of the V6 values.

Modify 0 and Bi using the following algorithm:

Algorithm 1:

(1) Look for some i E 0 and k B : P k > 0 for some

j Q. If such a pair exists, go to step (2), otherwise stop.

(2) Delete k from B If doing so renders Bi empty,

delete i from St. Go to step (1). 0

Now, let the state space in the altered program be restricted

to n (using its terminal definition from the above algorithm) and

let decisions be restricted to the terminal definitions of Bi. The

altered Markov decision problem will now find a V0  optimal policy

which is independent of states i t Q. Examples of states i
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in coherent system repair models would be ones which are inaccessible

from the starting state i0 M all components working under a certain

policy. The algorithm will never remove decisions corresponding to

ergodic states.

There is one other difficulty which can arise. The terminal

definition of Q using Algorithm 1 may delete some states that

are accessible from the initial state, an unacceptable situation

since in a coherent system repair model it is desired to specify an

optimal decision in every state that is accessible from the state

with all components working. Such a situation may be corrected

by:

(1) Run the LP (D) once and note which primal variables

are > 0 to get the optimal decisions in the ergodic

states. If Bi - * for any i or the terminal

definition of 9 in Algorithm I includes all states

accessible from the initial state, then proceed as

described previously. If not, then

(2) Rerun (D) but first delete rows corresponding to

nonoptimal decisions in ergodic states. This should

now produce a 0 which includes all i accessible

from {i, ... , n). Now proceed as before, (see

Example 6.3; k - 1 p - 3, for example).

If policy improvement is used instead of linear programing,

ksuch difficulties never occur for t 0 for some k for each i.
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4. Some Test Results

In this section some test results for some small coherent

system repair models will be presented. First, Example 6.2 was

looked at to make sure the program was working, as its optimal

policy can be computed using theory from Chapter II. Only the

relevant output is presented. See Figures 6.1 and 6.2, 6.3 at

the end of the chapter for sample input and output from MINOS.

Example 6.2: Basic Model, n - 2, parallel system.

K -2 K2 -6 p-i

S12 L 0

From theory

V-i mm K+ p  K2 +p K , K2
1 'I 2 ' jl 'J2

- min {3, 3.5, 51 - 3

so, - {01 6; -

V -1 11 =K 6 so 61 A 6 2  A is optimal.

1 2 0

optimal policy: 1 2 0

A A R1
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Results: (using (P) or (D) - both were tested).

primal variables: x A 0 x2 = 0 x0 2 0
prma 1 2 0

at optimality xA = 0 xR, =R1 2 0
R 2  R 1
x 1 . x0  = 1

dual variables: u12 - -7 u2 = -6 g - 3

at optimality uI  W -3 u0  0

rows at upper 12, A 2, A
bound in (D):

1, A O, R1

conclusions:

(1) - {01 60  R

(2) A' - {12,A; 1,A; 2,A, 0, RI } = single policy

so AAR. is V0  optimal (no need to do second LP)

(3) Optimal gain is 3.0

(4) These results agree with the theory. 0

Now, consider the following problem using the Basic Model

which is not so trivial:
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Example 6.3: Basic Model, ni 3, L -0

K 1K 2 1.55 K 3 3.2

Ax1  3 A 2 2  A, 1l

p varies k =type of system - 1 or 2 of n.

Theoretical results for V-1:

k 1, p1 V1l min{ i=Ki ),11, 2, 3; XAIK 1+x2K2

=A 3 (K 3 + p) - 4.2 g~ . (01 6* w R3

k 1, p2 V 1 = A 3 (K 3 + p) = 5.2 g .= (01 6- R3

k 1, p 3 V-1 =Ax1K 1+Ax2K2 6.

11 2

kin1, p10 Vl -A1K 1+Ax2K 2 6.=
-1 111

kin2, p 2 V_1 .min {X1K 1+Ax2K 2+ x3K3

(Ki+ p) + A(K i + p) ij } i,j C6 (1,2,31

=X1 K1 +x2 K2 + x 3K 3 -3 + 3.1 + 3.2 -9.3
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so, (f-{12 13 23) 612 R R2  623= R

k 2, p .9 V A 2(K2 + p) + A(K + p) = 9.1

k 2, p .5 V_1  A 2 (K2 + p) + A3 (K3 + p) 7.8

so, {2, 31 62 R3  6 3 = R2

Computational results:

k f 1, p = 1
R3 k

primal variables: x 0  1.0 xI = 0, otherwise

dual rows at
upper limit: 123,A 23,A 3,A

12,A 1,A 0,R3

13,A 2,A

conclusions:

(1) = (01, 60 = R3 (agrees with theory)

(2) optimal to do nothing in other states - no

need for second LP, i.e., "A" in states 1,2,3.

Notes:

(1) In all of the variations in Example 6.2, to save time,

decision variables for states s : Is! > k were fixed to "A"

since known to be so by Chapter II results.
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(2) The dual LP was used in all cases here to obtain

solutions.

p = 2, k f 1
R3

k
primal variables: x 0 1.0 x= 0, otherwise

dual rows at
upper limit: 123,A 23,A 3,A

12,A 1I,R3 O,R3
13,A 2,R3

conclusions:

(1) 1= {0}, 60 = R3 (agrees with theory)

(2) optimal policy in states 1, 2, 3:

1 : R

2 :R
3

3 :A

no need for second LP.

p =3, k =
R2 k

primal variables: x = 2.0 xi = 0, otherwise
Ri

x = 3.0

1st run of (D) run (D) with 1,6,6 #R

'22dual rows at 123,A 1,R 2  123,A I,R 2  R,, 1 R

upper limit: rows eliminated.
ue12,A 1,R3  12,A 2,R

3 '1

BO = 13,A 2,R1  13,A 3,A

23,A 3,A 23,A 0,R1 2

- {12,1,2} after use ALG 1. Okay.
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conclusions:

(1) {- 1 2 6 1  R 2 '62 -R,

(2) optimal decisions in states 3, 0:

3 : A0 : R12

no second LP necessary.

p 10, k = 1

primal variables: x = 2.0 xk= 0, otherwise

x .3.0

dual rows at
upper limit: 123,A 13,A 3,A B0

12,A 1,R 2  3,R I

23,A 2,R Q = [all states but 0}

after Algorithm 1.

okay, since 0 inaccessible from 123.

conclusions: (1) {I = 12) 6 1,R 2 6 2= R

(2) optimal decisions in tranient states:

3 : RI will never enter state 0
so can ignore.

p =.5, k = 2

primal variables: xk 2 o. i=0 otherwise

x2= 2.0

dual rows at
upper limit: 123,A 13,A 1'R 3  3,R 2

12,A 23,A 2,R 3
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conclusions: (1) A-= (2 31 62 = R3 63 = R2

(2) optimal decisions in transient states:

612 = 13 = 23 A 61 R 3

Note: In the input of data, one must be very careful to be accurate

and carry at least 4-5 decimal points in determining the correct

V0  optimal solution. The set of dual rows which are at their upper

limit can be very sensitive to small changes in the parameters.

Realistically, if two policies are that close, using either would

be optimal and the easier one to implement,practically speaking, could

be chosen. If only interested in V_l, the such accuracy is not as

important.

p =.9, k =f 2

R 3 k

primal variables: x = 1.0 x= 0, otherwise

x = 2.0

dual rows at
upper limit: 123,A 23,A 3,R2

12,11R3  ,R23

13,R2 2,R 3

* *

conclusion: t= {2, 31 2 R3 6 3 R2

transient states: 6 =R 3  6 =R 6 A 6 R
12 3 13 2 23 1 23
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p=2, k 2

Rk
primal variables: x12 = 1.0 x k 0, otherwise

12

x1-=2.0

130R1
x 23 . 3.0

dual rows at
upper limit: 123,A 23,A 2,R3  B-3

12,R 3  23,R 1  9 = {123,12,13,23}
after ALG 1, okay.

13,R 2  1,R23  states 1,2,3 inaccessible.

conclusions:

(1) 9- {12, 13, 23}
R3 R2 R1

(2) 6l, 62, 63 never needed since inaccessible given set

of ergodic states. These values actually could be

obtained by dropping rows corresponding to nonoptimal

decisions in ergodic states and rerunning the problem.

Now, consider a noninstantaneous repair example, for which

only the V1, solution is sought. In this case, problem (P) is

used for determining the solution.

Example 6.4: Noninstantaneous repair model, n - 4

L = varies K - 1 a = 1 parallel system

p - varies = 1 9 = 0

s - number of servers varies
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Theoretical results:

Unknown, except in s 1 cases with L - 0.

The following parameter values were tested:

s 4, p -I

LI 0 1.4 9.5 49.5 72.5 74.5 76.5 78.5 89.5 99.5

s 4, L = 0

p 1, 5, 7, 10, 20, 30

F=2, p 20, L=0

Is = 1, p = 20, L -0

Results:

s - 4, p = (varying L)

optimal ergodic chain
L (optimal policy)

0 0,0 1,0 [R(0 )]
R 1  A

1.4 R( 0 )

9.5 ame ) R(0)
49.5 as R(0 )

72.5 L 0R(O)

74.5 R

76.5 R( 0 )

4,0 3,0 2,1 2,2 1,0 1,1 1,2 1,3 0,0 0,1 0,2 0,3

78.5 A A A A A A A A R4 R3  R2  A,

A policy which says do nothing until the system fails, then

repair all failed items possible subject to server availability.

89.5
(same as L = 78.5)

99.5
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Clearly, the L - 78.5 policy should be optimal for all L values

large enough. The fact that the mean repair time is large

mean component lifetimes) explains why the fixed charge must

get so large to have any effect on optimal policy, (large a favors

repair only when necessary).

s= 4, L - 0 results

p optimal policy

1,0 0,0
1 A R1  (R(0 )

2,0 1,0 0,1
A RI  A (R(I)

3,0 2,0 1,0 1,1 0,1
A R1  R1  A A (R ( 2 )

4,0 3,0 3,1 2,1 2,2 1,2 0,3 Frequires use of
10 A R A R A R A Lmore than one serverJ

20 same as p - i0

The p 10 case is another example of a noninstantaneous

repair model for which it is optimal to use more than one server

at a time (unlike instantaneous repair).

Clearly, if the s = 4 optimal policy never uses more than

of < 4 servers, then the s = s' optimal policy will be the same

as for s - 4. Thus, the p - 20 case is chosen as the one to

vary s in.
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p 20, L - 0 a - 1, 2, 3, 4 results

S V_I optimal policy

4,0 3,0 3,1 2,1 2,2 1,2 0,3
A R A R A R A (uses 3 servers)

3 (same as a - 4)

4,0' 3,0 3,1 2,1 1,1 1,2 0,2
2 A R A R1  R A A (uses 2 servers)

4,0 3,0 2,0 2,1 1,0 1,1 0,1 (R( 3 ), uses
A R R, A R A A ( 1 server /

The previous examples are intended only to give a sampling

of the kinds of new results obtainable computationally. Further

experimentation could lead to formulation of new theorems or

counterexamples to certain conjectures about optimal policy forms.

Most importantly of all, these techniques could be implemented to

solve a specific real-world problem which could be formulated as a

coherent system repair model. Sample input and output from

Example 6.2 are shown in Figures 6.1, 6.2, 6.3.
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FIGURE 6.1 - RPS Input Data File for Example 6.2 (Dual LP)

u0160 NAME EXIU
00200 ROWS
00300 11 OBJ
00400 L X12A
00500 L XIA
00600 L XIR2
00700 L X28
00800 L X2RI
0900 L XOR1
01000 L XOR2
01OU L XOR12
O 1lO0 COLUMNS
0130u0 U12 X12A 1.0
U1400 01 X12A - .3333 X1A 1.0
01500 U1 XIR2 .6667 <2R1 - .3333
U1600 U1 XOR12 .3333
01?IO U2 X12 - .6667 XIR2 - .6667
0180U U2 X2H 1.0 X2RI .3333
Q190 U2 XOR12 - .6667
uuO00 UO XIH -1.0 X2H -1.0
02100 G OJ -1.0 X12H .6667
02200 13 X1A 1.0 XIR2 .666?
6230U 13 X2A 2.0 X2RI .666-
02400 13 XORI 1.0 XOR2 2.0
02500 G XOR12 .6667$
*8

CEX1U. LHT. IJ
*12500
02600 RHS
627010 RHS XIR2 6.0 X2RI 2.0
02800 RHS XORI 3.0 XOR2 7.0
02900 RHS X0Rl2 9.0
'30uu 8OU1US
0310 0 F'R bilU U12i
0320' FR ED U1
0330U1 FR 811 U2
U3 0s FR 8lI UO
03500 FR El1D G
03600 EI-IfUTA)

8 decisions 1 9 rows (counting objective)

4 states 1 5 columns

The primal would have 5 rows and 9 columns.
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FIGURE 6.2 - MINOS Row and p - 1 Colus
Output for.Example 6.2 (Dual,

* *PPFP I f~T. (011101 Ar~tI11TV .. I

l"07 O0J Its -3.000 1.1'r000 "Oll

NOIE -. 00000 I
1?000 a VIlA 11! 0.00 .e0000 noNE

10.00 ft X1 00 :s 2491O"

110111 it '(A III. 6.00 .0ef00 111011
0.00000 ".0000 3

11?00 90 XI?1 A5 1.00070 "O1'00NE
?.00040 0.00000

13300 17 %noA 111 1.00000 0.00000 NONE
3.00000 -1.101100 11

1 .0000 to000 A: q6000 .OP 41

.000 11.0401100 A
11500 15 -'ftpf' Pq 5.080119 3.99,39 11111E

9.00000 C.Pon000 9

ITYPA qErTfnI 2 - rfll1"PNNq
I 3*00
11900 10IIIPEP -17001111. AT ... .ACTr'JT.... .opi aPAnTEO. . .LOIJFP LMT

.IJPPEP I INIT. .PrnijrEp rnST. N.j
90000

#*o I III AS 1111190.000 FN
"NN 0.00000 to

I202 111 AS -1.e00000 r.o00000 ,1111E
mnflE 0.00000 11

100 11? P 3 -4.OOO0tO P00000 lONEF
"(111 0.00"A00 I'

"nOII 0.0000A 17

100 5 It 4t 1.000-.00 ON
111111 ".00000e 10

10600 6 PlO %Ie -I.00000e #.CC00 -1.00004
-1.00100 3.ei0000f 15

O 12 A

B 2 -A10

B 0-A
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FIGURE 6.3 - INOS Row and Column Output for
Example 6.2 (Dual) p - 5

U00 SFCTION I - PAW'q

l "11 NINEP I"PO. AT ... ArTIITY... '[ACV' AtTI~1TY ..LOWFP Lies!?.

I *l"S0

11400f 7 O9J as 4I5 4.955 "ONE
NONF -I.000@ 11

Mho0 a XCl'A I 0.00400 0.0100 NONE
0.00000 0.00004

1,1600 9 CIA Its -0.9955 ~ 0.9954 NONE

0.00000 0.00000 3
6.00000 a0. 44Qb9 4

13408 11 'C2A 111 00$1P.00000 ogO NONE
0.000118 0.00060 -1

1109? ' Ppt JII 2.00000 8.00000 "ONE
?.0000 -t.01000

I-soon 11 XARI Aq 01.99945 2.00041. NONE
?.00000 A.00000

10014 %OR? A$ 9.9I0 1.00090 NONE

is "API, AS06504.33410 NONE

11.0090 O.08 1

144fl0 4;CTION 7 - rOLAtIS

14400 "IIMPFP .COILUIN. AT ... ACTIIItTY... .OBJ AMAITENT. ..LOnEP LIT
*.tIPPFP 101T?. .AFOUCFO COST. N+.)
4 70 4

140 111? eS -I1. 44111 0.00000 NONE
MNON 0.00000 Ii'gq~i 1 41I4 fS .5 0 #.0090 "ONE
NONE 0000 I

IqPoo 112 es -9. "9i0 0.001161 HONE
NOfNF 0.00004 JA

1 1100 4110 FF 0.0001 L.ooses NONE
"nON 0.00000 13

I!I?0A 5 If es 4.9995-1 -1 toM0 mnflE
NOIJE e joo 14

~- l 2) awR 9 6

B 12 A altered 12 'Ais
B, R2 decision B1  - R2V 0  optimal

B 2  -Rill A space B 2 =R 1plc

B -*
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FIGURE 6.4 -SOLVER Program (Fortran)
Used to implement MINOS

kG. t.I XULW * r I'*.3

0)rltlu 'llI

CuLL UU t2.IuIUKL.

r~c L7Ull

u16Sj;:;, L

... u~tu usUIkXUUIIhL ut). 2.llWLuIE

L~k#4,uIIVL I C IT S:EtlLe$', -H,uj-.

.j4(P liFul I ~ F ILLS , I A3, IliPUl *I'jLUb, LtWL, Ill:.T 1 Ir1101, ILuIttD. IuUIIF'

Vub%4J L

uubtbI I$ LPLH - Au
uut. 5kihWIi I$CKCH

ub~bi L'PEII. jtlsdtILL-'ESUi 4'UC='i~
ul-tElUIITI ,LIHLUaULQILE-l'D!h'l

UL~SJ kLWlliU Ik,

sb~j(I l46-lLL- 'rlIlUUr!UVl -r'

U aiLL Hliw.2IILIILb-CtCCFCLI

ks-"UZU w* I fE - li$CfrH,bu Joj ERIOR ,i:'
t' u t u66 FC*lhFtt A<.14
uzuz-l I~uIF ILRklI. 0
IA CLOAkulT.t,

iRETUO'll
U~~~M %JL tiDOF 60u

Obtained from Robert Condap, Department of Operations Research,
Stanford University

210



6UY u b1N~UU II lit HLIiUr JIW'* I IV-,A N A ,t'I At:'I I
Or.4 1, U ERk.tU,,IUb.:,2 L I IL-W ,Lf RE WRCL)
u442O IMLILI I rA*~C6u2
b.4u I'ENL*1, NWLURE),VP1R3

0-15U LutACnL. GOulUv~kErRi
COMMUM eiCUOM 'ILW MUHIb~. tsl

u25u0 COMMON 'u(,CN1 - ujETR,ATNh6 CuHuDC6,kEb)TpT
0. 51u COlimll .'LOUCt L ISH spItTHkli oC OIIl ,LL t1UL ,lIC:I PH*W NiI L
625 u LIIHOII -LURE -Z kOl 212Z3
.P2530 15u
4OcS3u LUilM01l 'UdI.ull I OLLIJJ I . I IULUJ , I ULUJS, I QU

U5to LOIIMUM LPSGUM., E'S ,EPSO ,EPSIP P3,FSsESSPLIV
04560 LOinMui FIW A V2~-41k, INP Ut o LUL'u MitE, LOSIRI , MPICH, ALUM)U, WULIMP
0.-570 C OrMMcN I APEWS HKkI)k.,LOllRAFE

0 014110.01 FX-:uM ... 1' ,bRI NF 4.w I *bJP MIliI M HIFXN ,I IIF , I O8.J ,I IFO
1,45,9t, 1..OiiM0I IAM I GCMN/ I , I I NL IN .IFH*:;,KIIiJOLU ,KHUII'
1,461,1, L011llUll - IIULOisA UK s WDkQ I ~ri,tilt*IIuD ,IIUELEM ,KIL .UL ,IMIJ,IsU,IFF
6 261 tu cOIMUM I TIlLUG/ uAju, THETA PILVOT ,'O110 ,MufoPTjP ,j ,&nvo ,K.WUb
6 46 COMM~ONl lI1111-6. iNLHQ,JuI ,JVu,JkI ,Skd

u.~6O Gi-mll LLUI - -k1,6,11 HHXk,1EWR,IrJE8UG
u.~6%u Oi*IMI LL'I- A LE- A MBELI ,IE1 AIL ,IILTAP IE TRU ,L KkU, ,L%,,JUGIlI
US~ ~~CMMU Hi~iti I itbZl. iJT1L ,ESIRU( Q, M I NIIX ,ML.1 ,MER,

u 6i'u LOIUli t. LCIl ILl GilLUERIVU,LI-fR AlIT
LiD4lull VHRIICM/ L'AP.II9), LPAIRII90

u.~6u Gii~ui IRCGOII IIPAPR ,IIPRC,.JreC.KPRC ,NMEJilikE.J,JKEJ'("
tj17cL~liMuil .- NGi.-IMULFVMEWSE;
, 70 LOuhl-luil <kblULb . ML)FII
1., -7i' 2 v L ull w ULGl.Ql ISOLII,KSOLIIIl:,OLII ,ll!E AflE C,LGIKUR
u ,7u LUIOil I Xt. I OLX, TOLPAI,llRPIvlI ,lIkP1V2,TOLOW,XIORM
Zy~u coMllul .-Wi-:uS-Z IIWUPOR ,llWiRti .SUWU1RON

1)4,9t) ISCP - ASCKCH
0.-suu IERR = u
U:$lu ll<Ui ; = u
Uca2o IILOL$ -u

lj. 836IF LS6PECS.LL.(u IE&R -1
0.80IF *.SE&EuACt EP- -1

'Ja s IF sltWALRE.L-T.')6 JERP 30
0,8buIF .IEPR.II.mf la() TO ':000

6c37u CALL RIA TLZ
U4860 c.
0 890 C kEAD PRWkL~I'I slEGIFICATIOMS FROM FILE ASPECS"
V2900 C, Mi-U OUTPUT INi 4PECIL FORMAT TO FILE 'LSCRCH"
's.x31Iu L.

t, ,j,-, II',PEC a '.
0c3u ALL PEGb Z ,SPEC:S,I SLCGH, IERSI,iiSFEL
u'v:04u IF (liPEC.Li.4.) AEFCR = -

()cs tu IF (ALRR.IIE.ifl FO TO A0C
U 4 ,ttj 0.

' c' kLR-RENDi SPECS FPROM1 FILE 'ISCRCH'

t0 99u1 CALL $PELCS (IE ,R2 NOL NLS

U3O)I u c
S40 20 C PERU MPS IJATA FROM FILE 'INPUT"

#P36 5) I'0

63vou K clIP , HE Kill st, iX ,L L ,bU ,Hbk ,-'II,

03u120 HEIrHiU l$ LH I, U kl

030902 K, kR,kY,KYI ,RbI lAb
OSIou L

03130 IF I'M.LL.t,) ILFIV[ a 1
03I'% IF kIEIK.Nit.u', biv 10 900
03270 CALL UPIR .- MC LI'OLI
os.2rn - l4.11 III.1. LIPIWMIh 1IN IlZf

i)s.ou * .NN :kNIcL,.I F U,,2)1F, VF

u 3js.u VIA I.Iik ,;::-2KY/l k,..kCI I, k13A'.I,[U,
U.rftsu REWIIID I$CPGHA
0451, IF IENP.61.'s IL"K =
1,4560 -i ERROR IER
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6 O L L1l4U if l-1111IU:>
Ujcl1u LIlt'
V.? c1 UbkiO T I IIL L HLLH UtI'IjuUL Ill.X.F14IOfI IJE IllFkLIB

0.)8 ij ET~kIl
u3,i 0 EIIt'

vjulIuu C
uuzuu 2OUIOU(IWEt ,'JLIV lii ILL 11 0,IIIIEIII 11111,llMI., W-',iI)
uuJluu I HI,Hk*HE,lt,,tHbL bU, 0, ,N,F 1 ,T,H$1 ,. :TATEijllDi ,4
uu~uo IlIPLICII rLb'bU)
IsuiUU LOUlMlUl C.'LE I .,(H hI: ,IfGULII ,IfLUR
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CHAPTER VII

CONCLUSIONS, APPLICATIONS AND EXTENSIONS

1. Summary of Model Results - Chapters II-V

This chapter will present a summary of results from previous

chapters in this section. Following that in Section 2, two basic

theorems which relate to all coherent system repair models are

drawn out from the results. Under what parameter assumptions they

do or do not apply is discussed. Section 3 looks into some

conclusions one might draw from Sections 1 and 2 results about how

changes in various model parameters affect the optimal policy or the

minimum cost per unit time attainable. Possible applications of

these models or the results of such are discussed in Section 4. A

listing of possible model extensions and topics for future research

concludes the chapter and thesis.

The summary of previous results along with references to the

chapter section, and theorem from which each was drawn will be

presented as a series of tables. This allows for a clear and concise

categorization of the numerous items.

Classification will be done according to model type and

particular parameter assumptions made for it. Table 7.1 summarizes

the categories:
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TABLE 7.1 - Categorization of Results for
Coherent System Repair Models

I. Basic Model Found in

A. system type: general coherent, # series

objective: _Table 7.2

B. system type: k-of-n, k 0 n (series)

objective: V_1  j Table 7.3

C. system type: k-of-n, k # n (series)

objective: VJ Table 7.4

II. Degradation Model

A. system type: series or parallel

objective: V_1 j Table 7.5

III. Noninstantaneous Repair Model

A. system type: k-of-n, identical 1
components (nonseries) Table 7.6

objective: VI

Tables 7.2 7.6 will comprise the rest of this section.
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TABLE 7.2 - Basic Model, General Coherent
System, V_ Results

Chapter Section Theorem(s)

For any policy 6, V can be written II 2 2.1,2
Ys

as a convex combination of certain 
V_

where ys are policies which never re-.

pair more than one unit simultaneously.

L = 0 Never repair more than one unit at a II 2 2.3

No time in an ergodic state.

fixed V_I optimal policy: keep a certain II 2 2.4
charge subset of components working - repair

any that fail immediately. s determined

by s = argmin V where
tC{,...

K. K.+pvtP
iet i iEt i

i: t-ic,r i: t ~iEY

p p

If one can break the system down into VI 3 6.3

independent subsystems in series, the

optimal system V-, is the sum of the
-s

optimal V for each subsystem.
-1

Still have V-1 written as a convex
L>0 -

combination of certain quantities but
fixed'sI 32.

these are now not all V_ of simpler

charge policies.
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TABLE 7.3 - Basic Model, k-of-n System,

V_ Results (k 0 n series)

All results from Table 7.2 for L 0) plus:

nonidentical components identical components

V optimal policy form Ch. II Optimal form: do nothing Ch. II
L 0 -e Sec. 2 until k units left working Sec. 2

or k components working. Ex.2.4 Repair one unit in k or special
k-l, depending on p. case -

Parallel case: if have Ch.III Ex. 2.4

sufficiently large spread Sec. 2 Policy form: do nothing Ch. II

of iKi's compared to Lem 3.12 until k items left working Sec. 3

X ii Thm 2.E
Ai's, then V_1 optimal -among policies which re-

policy will repair the pair when k left, R _I
items with cheapest Xi, K V f k+l(-l) < L/K

no matter what p is. < kk 9
________<___ __ fk+l(£

Policy form: too compli- Ch. II -among policies which re-

cated in general for a Sec. 3 pair when k-l left, R£

nice result. optimal * f(Z-1l) <L

If p=O; do nothing until Ch. II < fk
(9)

system fails Sec. 3
-optimal policy is the
better of the previous two

where

identical components -i

L > 0 If nI<n 2, number of com- Ch. 
II

ponents repaired in an Sec. 3 If k1<k 2, then an optimal Ch. IIL ~Sec.3
optimal policy for k-of- Thm 2.E k -of-n policy will re- Thm 2.

is > number repaired for pair more components than
a k-of-n . If number a kl-of-n.
repaired lor nl is less

I lIf n,k- , n-k fixed, an Ch. II

the number repaired for optimal policy will be to Sec. 3

repair all failed compo- Thm 2.9

n 2  is the same. nents any time repair is
undertaken.
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TABLE 7.4 - Basic Model, V0  Results, k-of-n System

nonidentical components identical components

Do nothing until k units Ch. II

left working. Sec. 3
Ch.lII,1
Thm. 3. 3

Parallel system; L = 0: Ch. III
never repair up to more Sec. 1
than two components working Thm.3. 4

simultaneously.

k Vl gives

p K.
If p < then Ch. III

I ++Ak' Sec. iu

never repair up to more than Lem.3.5 unique optimal
k + 1 units working
simultaneously.

decision in

Parallel case; L = 0 Xi > A. Ch. III
S Sec. 2

and K. > K. * never repair 3Sci K Lem.3.6 each accessible

unit i.

Parallel case: restrictions Ch. III state
on possible optimal policies Sec. 2
given Vl = xz(Kz+p), any Z.LS.3.7,3.

Th. 3.9
Cor.3.10

Parallel case: restrictions Ch. III

on optimal policies given a Sec. 2
specific X in V_I = Lem.3.11

X2 I(Kz + p).
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TABLE 7.5 - Degradation Model Results (and Conjectures)

nonidentical components identical components

Optimal policy: Let Ch. IV Optimal policy: When Ch. IV
ith component get down Sec. 2 any component reaches Sec. 2i coponnt et ownTh. 4.1 kthTh4.

to a certain state of k. 4.1 state of degrada- 
Th . 4.1Leem.4.2

series degradation, say X- Le4 tion, repair it.

system then repair, where Z 1

is determined by the

K's and A's [get using
VI only].

Conjectures:
(These results still
need to be verified)

Too complicated to Never optimal to re- Ch. IV
analyze theoretically. pair > 1 unit at a Sec. 3

parallel time in an ergodic
state.

system

Never repair until Ch. IV
one unit or less Sec. 3

working.

Can modify degradation Ch. III VI optimal solution Ch. IV

model slightly to get Sec. 4 Sec. 3
an extension of the (n,Z)

Basic Model allowing that to M( 2, ,. t . l
for Erlang component n > 2, where M is

lifetimes. n ,
a Degradation Model
with n components,
t degradation states.
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TABLE 7.6 - Noninstantaneous Repair Model Results

Chap- ec-
ter :ion Theorem

V-1 optimal policy form: repair wheneverthe V 2 Th. 5.1

server is free and the number of working Lem.5.2

components is below a certain number, say j.

(Call this policy R

s 1 The optimal policy is

RO ) , if u(j) < P1 < u(j + 1)fk(K+ta)

single

R(kl), if < < u(k)f(K+11o)

where

server j+l
= 1; l= + oz.

f, 1, f (k-l)!ok-l k>2
Lf 1, 0k = k-2(v+(k-l)o)

u(j) = j+l [_ z
oj-(j-l) L j+l I

Relationship of optimal policy to k, fk: V 2 Lem.5.4
number of components repaired could Lem.5.5
increase or decrease with k, depending
on v, a.

Not true that no fixed charge means never V 3 Ex. 5.5
s> 1repair more than one unit at a time. VI 4 Ex. 6.3

multiple If a policy which uses s' servers at most V 3 Lem.5.6

is optimal for a model which has s > s',servers then it is optimal for the model with any

s < t < S.
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2. Two Basic Theorems

Section I presented a summary of results obtained in

Chapters II through V for three different categories of coherent

system repair models. Due to significant differences in state

space, decision space, and component lifetime distributions, results

for each model had to be obtained separately and in general, optimal

policy forms are quite different. Even results of similar type had

to be proved in a different fashion for each model. Thus, the

allocation of separate chapters to each model, even though all came

under the heading of a coherent system repair model.

Despite these differences in model structure and, thus,

methods of obtaining results, one would expect similarities between

many of the models since they are all modeling the same type of

activity - the maintenance of a deteriorating system of components.

Two basic policy "types" appear throughout. These are:

(1) If one has a k-of-n system and instantaneous repair,

then never repair until there are k units left

in the system.

(2) If there is no fixed charge for repair (only component

and labor costs), then one never repairs more than one

unit at a time in an optimal policy in an ergodic state.

The applicability of statements (1) and (2) to the various coherent

system repair models discussed up to now appears in Tables 7.7 and

7.8.
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TABLE 7.7 - Application of Statement:

"If have a k-of-n system with instantaneous repair, then never

repair when more than k units in the system are up"

to various coherent system repair models.

Basic Model (k-of-n) Notes

for proof

L = 0 True True see Theorems
2.3, 3.3

L > 0 True True

Degradation Model (L = 0)

series parallel

conjecture
identical True True

components (true n f 2
z 2) series is obvious

nonidentical conjecture to be true
components, (future research)

L >0

Noninstantaneous Repair Model - False see Lemma 4.1 (s - 1)

for counterexample.
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TABLE 7.8 Application of Statement:

"If there is no fixed charge for repair, then one never repairs

more than one unit at a time in an optimal policy in an ergodic

state"

to various coherent system repair models

Basic Model Notes

general Theorem 2.3
coherent True
system also, false if extended

to Erlang case

k-of-n (see Example 4.3)

system/ True
identical

components

Degradation Model
nonidentical identical
components components

Series True True Series-

Lemmas 4.2, 4.3

conjecture conjecture plus Theorem 4.1
true true

parallel (future true

research) n=2, Z=2

Noninstantaneous Repair Model

False see Examples 5.5, 6.4
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Statement (1) is intuitive, although nontrivial to prove in

many cases. It applies to all instantaneous repair models considered

and I suspect it applies to others as well. The second statement is

a much more interesting result. It seeks conditions on model

parameters under which if there is no fixed cost per repair decision,

then no more than one unit ever will I.; repaired at one time once

the set of ergodic states has been reached.

Given statement (2) concerning the ergodic states, the next

natural question to ask is, what about the transient ones, i.e.,

does a similar result to (2) hold in states not in 4? The answer

is definitely no if all transient states are considered. Even in

the simplest parallel case, it can be optimal to repair two units

at once in state 0 if it happens to be transient, (for specific

example see Example 6.3, p - 3, k = 1 case). However, if statement

(2) is reworded to say:

(3) "If there is no fixed charge, then it is never optimal

to repair more components than are needed to bring the

number working to level ",

then it becomes applicable in certain cases.

If the system is parallel and Z = 2, then (3) holds, (see

Table 7.4). In the k-of-n case with Z - k + 1 and
A i K I

P P

p < i , (3) also holds (see Table 7.4). Whether or not it

p
holds for any k-of-n system is still up in the air. For a

general coherent system, t would be the number of units in the

minimum path set which has the largest number of components.
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3. Effects on and Sensitivity of Models to Various Parameters

Section 2 discussed relationships between various coherent

system repair models with respect to the applicability or not of

two basic theorems restricting the policy space. In this section

conclusions concerning parameter-related interrelationships are

drawn and these are compared to the expected reality in a real-world

situation. Effects on the optimal decisions as well as on the minimum

cost per unit time attainable will be noted. Parameters will be

treated in the following order:

(a) system type (k-of-n, varying k or n)

(b) penalty cost for system breakdown, p

(c) fixed charge for repair, L

(d) mean repair time, o

(e) component lifetimes (means ui or distributions)

(f) objective: when VI is sufficient to determine

optimality.

Most of these effects will be intuitively expected ones, supporting

the validity of the coherent system repair model.

Consider a coherent system repair model for a k-of-n system

which has instantaneous repair. If k is increased to kl, then

the decision space is reduced (since one will never reach states

s : Isi < kI - I and 6 s A if Isl = k - 1. Meanwhile, the

costs per decision are either left the same or raised (for

s:fsI - k - 1, repair cost now includes p, system breakdown cost).

Thus, the minimum V_1 (or VO) attainable is larger for higher

k given fixed n. Similarly, if k is fixed and n is raised,
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costs on previous decisions remain the same while some new states

and decisions are added. Thus, the minimum V_, (V0 ) attainable

is lower. These results coincide with what might be expected given

the reliability of a k-of-n system goes down as k increases

and goes up as n increases.

The noninstantaneous repair model is the only one for which

this does not occur. This behavior is due to two facts:

(I) With the noninstantaneous repair model structure,

it is still possible to enter states s where

Isl < k - 1.

(2) The penalty cost is applied upon entering a state

s : Isl = k - 1 only. No p is incurred in states

s : Isl < k - 1. If p were incurred in all states

Isl < k - 1, then the previous argument would apply

and minimum V would increase with k.

Lemmas 5.4 and 5.5 show that, for s = 1, that given

;2
1+ F+

k 2 , that for k < k increasing k raises the

minimum V-1 but for k > k , increasing k lowers the minimum VI.

As this second behavior is unrealistic, one concludes that the

model works best for cases where a is enough larger than p to

make k > n. For large k, the assumption of p being incurred

only at entry into states Isl - k - I becomes more unrealistic

as the possibility increases of being able to keep moving from

state to state while the system is failed while incurring no

penalty. In such cases, it might be better to assume the penalty
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is incurred in all states Isl < k - 1 even though the system has

only broken down once, or to restrict the decision space to exclude

policies which have only "system-failed" states in their ergodic

structure.

Behavior of optimal decisions with respect to k are harder

to characterize due to the many other parameter effects other than

to say as k increases with fixed n, the number of components

repaired or kept working goes up due to an earlier penalty

incurrence. For the Basic Model with L = 0, the general V_i

optimal policy for a k-of-n system is to keep the cheapest set

of k or k - 1 components working. In the L > 0 identical

component Basic Model, Theorem 2.7 states that as k increases,

more components (or the same number) will be repaired in an

optimal policy. Lemma 5.5 gives the same result for k < k in

the single server noninstantaneous repair model while for k > k

(unrealistic case) the reverse becomes true.

Now, take the parameter p, the penalty cost for system

breakdown. Clearly, all other variables fixed, increasing any

single cost can only raise the possible minimum VI. As would

be naturally expected, the higher the cost of potential system

failure, the more likelihood of a policy being optimal which avoids

or minimizes the chance of such failure. Example 6.3 illustrates

such policy changes well for varying p in the case of a Basic

Model with 3 components and no fixed charge. In example 6.4, a

noninstantaneous repair case shows up. For the instantaneous repair

models, a policy can always be chosen so as to avoid the penalty
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entirely and if p is high enough, one of these will be chosen.

If p is zero, there is no reason to avoid system failure and,

indeed, it will never be optimal to repair before such happens in

any of the models. The same results hold for noninstantaneous

repair except that there is no policy which can guarantee no system

failures.

The fixed charge L, has a clear effect on policies. The

larger it gets, the greater the pressures to start multiunit repair

simultaneously as opposed to repairing single units on different

occasions. At least in exponential component lifetime cases if

there is little or no fixed charge, the natural incentive is to

keep as few items working or under repair as possible because such

states have the longest holding times, creating a longer time

between repairs (costs incurred), thus the prevalence of L = 0

theorems stating under what conditions one never will repair more

than one unit at a time. The identical component Basic Model

with L > 0 described in Section 2.3 and Example 6.4 best

illustrate policy behavior as L increases. Obviously, as L

increases, minimum VI will increase, with V increasing the-l -1

fastest for those policies which undertake repair the greatest

number of times.

The mean repair-time effect is harder to judge. Most

distinguishable of all differences are those between a = 0 and

o > 0. In the former, the items in service do nothing to affect

system behavior since time in service is always zero. The decision

maker can always instantaneously put the system into any state he
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pleases. In contrast, if u > 0, no matter how many units are

sent to repair at once, the system may fail before repair on some

or all is completed. As a is increased, repair must be started

"sooner", i.e., when fewer components have failed to have the same

effect of preventative repair of failed components to prevent

system failure. The fact that in the noninstantaneous repair model

it is no longer true that repair is never done when more than k

units of a k-of-n system are working points out this effect.

If s = 1 and the components are identical, the optimal policy

(j)form is R , where j is the number of components working when

repair is to be initiated. Countering this is the natural system

tendency to want to have as few items under repair or working as

possible to maximize holding times between states. In the single

server case of Theorem 5.3, as a gets large, u(k) ' and the

optimal policy approaches R(kl), i.e., "it takes so long to repair

why not let the system fail anyway".

Previously described parameters help determine the optimal

number to repair or whether to repair or not. It is the mean

lifetime and repair cost of the separate components which determine

the attractiveness of different components in deciding which to

repair over others. In the Basic Model, a component's "repair

attractiveness" depends on its cost/mean life ratio, both with or

Ki+p Ki

without failure, - or - , as is shown by Theorem 2.4. If

there are degradation states, then the key indicators of "desirability

th
of repairing component i when in its j degradation state" are
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1 In the series Degradation Model, whatever j produces

cost to repair at j
the minimal expected time spent in is the optimal state in which to

degradation states
0, 1, ..., j - I

repair component i. These same ratios are a large but not the only

determining factor in the parallel case.

The final remark concerns the choice of optimality criterion

up to level V_ or V For most Markov coherent system repair

models tested, V_ was not sufficient to determine an optimal

decision in each state. The few notable exceptions were:

(1) Basic Model, identical components

(2) Degradation Model, series case.

V_I results were much easier to obtain and over an infinite planning

horizon are the only important ones to know except in cases where

it is expected that a long time might be spent in the transient

states before entering the set of ergodic ones, thus, making the

optimal decisions there more worth knowing.

Some possible applications for these models now follow in

Section 4.

4. Applications

In this section some possible applications of coherent

system repair models or some variations of them are looked at.
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Consider a multiitem inventory model. The inventory manager

is seeking to control inventories of n products over an infinite

continuous time horizon so as to minimize either his long run

expected cost per unit time or his total expected costs. The

demand for product i is a random variable with exponential

-i t
distribution = 1 - e = probability {product i is demanded

before time t}. The continuous probability distribution implies

that only one unit will ever be demanded at a single time. Suppose

that each time an item is demanded (and sold if available), the

manager (who always knows the stock of various items) can decide

to either do nothing about product i for any i below initial

stock level, or to order it ui to the initial stock level. If a

demanded item is not available in stock then a penalty cost "p

is incurred, the demand is lost, and the item must be ordered up

to the initial stock level. There is a cost K i/unit to order the

th
i product and a fixed charge L > 0 per order placed. If

orders are assumed to arrive immediately, then this inventory model

is just the Degradation Model for a series system (Section 4.2)

with parameters:

1) n = number of products keeping track of = number of

components

2) Zi = space allotted in warehouse for storing item i

(in terms of number of items capacity) = number

of degradation states for i
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3) 11= mean time between demands for i = mean component

lifetimes (independent of degradation state).

4) Ki = Z • Ki = cost to order k items = cost to repair4 Ki

i in degradation state Z.

5) p = penalty cost for unsatisfied demand of an item =

system failure cost.

6) L = fixed cost to order = fixed cost to repair.

If L = 0, using the theorems of Section 4.2 for V_1

optimality, the' results are quite interesting. The VI optimal

decision on component i is to repair it whenever its degradation

state gets up to

K j-K K
i = I i 1 IJi argmin j -'=i J'yi for all .

2£=0 1

Thus, every policy is V_1  optimal and to find the optimal ordering

policy, V0  results for the series degradation model for the special

case described above would have to be studied. For the maintenance

model application, the V_1  solution was sufficient because of

flexibility in changing cost or other parameter data at some

insignificant decimal point to break "ties" in

j=l
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This procedure is clearly not allowable in the inventory application.

The important point, however, is the fact that certain inventory

problems can be formulated and solved as coherent system repair

models and vice-versa.

Although useful in solving certain specialized inventory

problems, the most useful applications of coherent system repair

models would be in more standard system-maintenance type situations.

These would include:

(1) maintenance and/or surveillance of complex electronic

and/or mechanical systems

(2) maintenance of the human body

(3) inspection and control of pollutants in the environment

(4) maintenance of ecological balance in populations of

of plants and animals.

Given the specific model structure and assumptions of

coherent system repair models, they would be most useful in

modeling maintenance problems where policy decisions are to be

made over a long ( - infinite time) horizon, and decisions are not

likely to be made at times other than the instants of a component

failure. To use the model directly, the components should have

approximately an exponential (constant failure rate) or Erlang

distribution. However, there are model extensions which could

approximately handle the case of nonexponential or Erlang components,

(see Section 5).
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Some specific examples of possible applications of various

coherent system repair models or extensions of them are now

presented.

Example 7.1 (A Replacement Model): Suppose one has a complex

electronic or mechanical unit which consists of n distinct (some

could be identical) components which form a coherent system and have

approximately a constant failure rate. If failed, a component i

can either be left untouched, as long as the system is still operating

or replaced at a cost Ki. There are an unlimited supply of spares

for each component. If the system fails, there is a penalty p

incurred. This is an example of a Basic Model problem. If the

components can be in degradation states, then one has a Degradation

Model.

Example 7.2: Suppose one has a deteriorating system of

components for which maintenance decisions like in Example 7.1 can

be made at the times of component failures. In this case, however,

the operator/manager is concerned not so much with costs, but with

keeping the expected fraction of time the system will be failed,

at a minimum. Repair of components is no longer instantaneous,

otherwise the system can obviously be kept always operating. The

Noninstantaneous Repair Model can be used to model this situation

if
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(1) set I - Ki = 0

(2) set p - a - mean repair time

(3) assume p is incurred in every state where the

system is down.

Example 7.3: Suppose we have to decide, in constructing

a system of n identical units in parallel, how large to make n

so as to insure that the system will be operating on the average

at least 95% of the time, if system is to be maintained by a single

server who has a mean service time of a) .2, b) .3, or c) 1

unit of time. The mean life of a component is 1 unit of time and

failure rate is constant.

Using the results of Section 5.2, run the model for

o = .2, .3, 1.0 for increasing values of n in a parallel system

until minimum V 1, is < .05. Use Ki M 0, p = , £ = 0.

a - .2 (policy R(n- ) does it)

n 2 3
n = 3 does it.

min V .06 .025

a = .3

n 2 3 4

n - 4 does it.
min V- .101 .062 .047
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o= 1

n 2 3 4 impossible for any

n, can not use such

a slow server!min V-1 .4 .375 .37

This same type analysis could be done for very complicated

systems with components having Erlang lifetimes or degradation

states.

Example 7.4: Suppose an electric power company is trying to

maintain n - load generators, which form an electrical system

network. The system is working if and only if electrical demand

is satisfied for every customer in the region covered. The

generators can be observed in a number of degradation states and

repair is noninstantaneous. A combination of Noninstantaneous Repair

and Degradation Models can be used to model this situation. The

solution would have to be found on the computer. Even had the model

been simple enough to apply some of the results of this thesis, they

would not apply, because the system defined here is noncoherent. The

nature of load generators is such that demand might not be satisfied

given a certain subset working at a certain degradation level, but

it might be satisfied with some subset of those generators working.
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Example 7.5 Fault Tolerant Systems [24]: Fault tolerant

computing is a rigorous discipline covering the design, analysis

and maintenance of highly reliable computer systems. Having

started in the 1960's due to the space programs, the subject now

embraces a wide spectrum of problems concerning the reliability

of computer systems. A Markov model for evaluating the reliability

of such systems has been established in [24]. It assumes the fault

tolerant computer to be made up of n independent modules which

can each have a given number of spares. This is the parallel

subsystem in series setup mentioned in Example 6.1. Given a level

of spare redundancy, the Markov process is assumed to start with

all components working and it runs until everything fails. The

system is assumed to be nonrepairable or closed, thus, all the

system-failed states can be lumped into a single state. The system

reliability at any time t is then just the sum of the probabilities

of being in the working states at time t given that one started

with everything working.

One new concept utilized by Ng in [24] is the idea of

coverage. See Arnold [1] or Bouricius et al [4] for a discussion

and its effects. The coverage of a component is the probability that

if it fails and there are spares available, that the system will

detect the failure and switch in a spare. Perfect coverage (= 1)

has been assumed throughout in coherent system repair models.

Imperfect coverage, even .98 or .99 has been shown in [4] to

significantly effect system reliability. With minor modifications

237



to the state space, imperfect coverage can be introduced and incorporated

into coherent system repair models. The process then becomes a

semi-Markov process because the transition probabilities now depend

on which unit has failed (thus, the next state) as well as on the

current state. Veinott's solution technique still works in this

case (see Denardo [111).

Examples 7.1 through 7.5 have given some indication of

possible uses and applications of coherent system repair models.

There are many possible real-world maintenance problems which could be

formulated as such a model, but given one, it is unlikely that its

system parameters would be such that one of the theorems would apply

directly to solve the problem. In such cases, optimal solutions

would be found computationally.

5. Extensions and Topics for Future Research

In this, the final section, some possible topics for future

research in the coherent system repair model area are covered. These

fall into three categories:

(1) Additional theoretical results for models falling

within the given coherent system repair model structure.

(2) Extensions of coherent system repair model structure and

possible theoretical results forthcoming.
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(3) Computational techniques for obtaining solutions.

Probably the most important topics to be worked on at this

point are the computational techniques. There were lots of

theoretical results obtainable for the simplest coherent system

repair model, the Basic Model. The Degradation and Noninstantaneous

Repair Models, being more complex, yielded fewer theoretical results.

Clearly, to get many more results for the previously treated models

or extensions of them, computational techniques will be necessary.

The method in Chapter VI using MINOS is okay for small to

moderate sized problems (up to 10-15 components for a general system).

For any large sized Basic, Degradation, or Noninstantaneous Repair

Model or any more complex extension of these, more efficient

algorithms will be needed as well as more theory which would allow

one to restrict the decision or state space initially before going

to the computer. Extensions of Theorem 6.3 on the independent

series subsystem technique to other cases besides V and a
-1

Basic Model would be most desirable.

I would expect that the development of an efficient code

implementing the policy improvement algorithm for finding minimum

V_, V0 might do the job better than a linear program would for

the same size problem. This would allow one to solve problems

which have countable state spaces such as the time-dependent

extension of the Basic Model to be introduced later in this section.
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Once an efficient computational technique has been set up

for solving at least moderate sized problems, then not only will

the possibility of finding the ontimal solutions to more complex

real-world problems exist, but also the possibility of observing

solution behaviors which would lead to formulation of more theorems

restricting the policy space. Then, perhaps even larger problems

could be solved.

More immediately, with the assistance of the MINOS LP-

procedure outlined in Chapter VI, the optimal solution structures,

both V_1 and V0 need to be more thoroughly studied for the

Degradation and Noninstantaneous Repair Models or combinations of

the two. Open problem gaps in Tables 7.7 and 7.8 need to be

resolved concerning cases when it is never optimal to repair when

more than k-units are up in a k-of-n system or never optimal to

repair more than one unit at a time in an ergodic state. Due to

complexity of calculations, no V0  results have been yet obtained

for either model and very little for V_ in the case of more than

one server or nonidentical components. Some examples of possible

problems to be studied in these areas are:

(i) If repair is instantaneous, then in many models it is

never optimal to repair more than one unit at a time

in an ergodic state, so, one server is all that is needed.

In the noninstantaneous repair case, two examples were

given where this is false. However, in both examples
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even though more than one server was needed, repair was

never initiated on more than one unit at a time. Would

the rewording of statement (2), Section 7.2, make it

true in the noninstantaneous repair case?

(ii) If p is small enough in a k-of-n system, then one

never repairs up to more than k + 1 components working

from any transient state. Is this true for larger p

(yes, if parallel, k = 1) or more generally, is it true

that in a general coherent system that one never repairs

up to more than Z + 1 components working where k is

the number of components in the largest minimum path set?

As far as possible model extensions go, there are many possible.

The Markov decision chain formulation is very general and many of the

maintenance models for deteriorating units in categories mentioned in

Chapter I, Section 2, can be extended to include systems of n

independent components as with coherent system repair models. Of

course, some would probably have too many states to be solvable, even

on the computer, not being of much use in that case. Two possible

extensions which, although are quite complicated statewise, would be

very important from the standpoint of applications to be able to

formulate and solve, would be a time-dependent model and an uncertain

information model.

There are many maintenance situations where failure rates of

components are not constant and a time factor needs to be accounted for.
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This can be incorporated into the coherent system repair model

structure if one assumes that all component lifetimes and service

times are integer valued, (although one could take on any

distribution with this structure). This keeps the state space

countable or finite. A simple example:

Example 7.6: Basic Model n = 2, parallel system.

Time Dependent Extension

LI = life of component number 1 = 1, probability 1/2

2, probability 1/2

L2 = life of component number 2 = 1, probability 1/2

3, probability 1/2

The problem can be formulated as a Markov decision chain where the

state of the system is the "age" of each component. States are

similar to those in the Degradation Model, but decisions, as in a

Basic Model, can be made to repair any subset of components which

are failed.

In our example, Both Down

Both Components Up No.1 Up No.2 Up (system failed)

States: 102 10 10021 1121 1022 1122 1011 20 21 22 0

Decisions: do nothing A,R2  A,R1  A,R1 R2,R1 2

Costs: 0 O,K2  O,KI  O,Kl+P,

K2+p,K 1+K2+p

where N means component N is at age i.
i
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Transitions still occur at the instants of component failures,

but now depend on the "ages" of the components as well as just

"which" components are working and the decision taken. So,

A G411 0,2
Pl020,t 0 otherwise

R t 1/2, t = 11, 0

p 2 2  = j , etc.2,t 0 , otherwise ,

If desired, the decision space could be expanded to include

repair of a nonfailed but "aged" component. Also, the distributions

of L and L2  can be adjusted to be IFR, DFR or whatever failure

rate assumption is desired.

In the uncertain information area, the model of Rosenfield [26]

could be applied directly and modified to the case of a coherent system

repair model. Components can either be assumed to have exponential or

discrete lifetimes. The state of the system can be represented as

(s, t) where s = working configuration of components last known with

certainty and t = time units since perfect information.

Decisions available in a state (s, t) are:

A) do nothing

B) repair some subset of known failed components in s at

usual coherent system repair model costs.
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(C) pay an inspection cost M > 0 to ascertain exact

state of system and then repair or not, based on true

value of s.

A possible application of this extension is the following:

The control rods in a nuclear power generating system form a

k-of-n system. The cost of inspecting is high but the cost of

system failure could be even higher. This model could help

determine the optimal time intervals between inspections as

well as the optimal decision given inspection results.

Other topics for possible future research on coherent system

repair models include:

(1) the introduction of a discount rate, a, in which case

none of the theory presented applies but policy

improvement can be used to find an optimal policy with

little more work than required for the a = 0 case.

(2) changing to a finite time horizon in which case neither

the theory nor the computational methods presented in

this thesis apply. The types of results obtainable here

would have to be computational or theoretical but with

limited prospects of obtaining useful results compared

to the infinite horizon case. The following is a

discrete time example:

244



Example 7.7: Consider a single-item inventory model whose

time horizon is finite over n periods. The objective is to

minimize the total expected n-period costs. Observe: stock at

the beginning of each period (x i ) and then order a nonnegative

amount up to the storeroom limit N - I for instantaneous delivery

to get the starting stock yi at the beginning of period i. The

demand occurs according to the distribution

(Iyi= initial stock xi+ I  in period i + 1 given

starting stock y in period i = {i, •y 1I.

ii
Cost c ci(z) of ordering z units = z • K

Storage cost, Gi(yi) = G(yi) = tp, Yie 0
) J0, otherwiseI

Demand is "backlogged" and if a shortage of an item occurs, ordering

is required. This is the finite horizon discrete time version of a

parallel-system, N-identical component Basic Model so results

obtained by Veinott [32] for the single item inventory model apply

to this case.

Let f (x) = minimum expected cost in periods 1, ..., n

given x = initial inventory in period i. Under suitable regularity

conditions, fix) = min (ci(y-x) + Gi(y) + E[fi+ 1 (xi+I)IY]}.N-1>y>xv 0

= 1, ... , n and fnl.) = 0 where y = Yi(x) > x is the starting

stock in period i and xvO = max{x, 0).
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Two results are obtained:

A) If c i .) is convex, then yi(x) x

B) If Gi(.) is convex, unsatisfied demands are back-

logged, and demands independent, then

x - yi(x) t x, i.e., yi(X) does not increase as

fast as x.

These results, which hold in this case, follow from Veinott's theory

of minimizing subadditive functions on a sublattice. [See [32]].

To prove these results, a lot of work (by Veinott) was

necessary but yields are poor from a practical maintenance standpoint.

Result A) states that for any time period i, if 6i(k) = R9 = optimal

decision in period i, k units working, RZ denoting repair of £ units,

then if k' > k, 6i(k') = Ri,, £' > £ - k' [cannot repair more than

one less in state k + 1 than was repaired in state k].

Result B) states that, however many you repair in state k,

you cannot get a policy to repair more than that in any state k' > k

in any one time period and still be optimal. This result, which

somewhat limits the possible set of optimal policies, is weak when

one considers that in the stationary infinite horizon case, an exact

optimal policy is easily found. Of course, considering that this

is a time-dependent model, which could prove to be much more difficult

to solve even for infitite horizon problems, it may be significant.

Given a continuous time coherent system repair problem with finite

246



planning horizon T, similar techniques - using f t(s) and the

model structure to define a recursion relation and then somehow

proving some results using the relation so obtained - should be

employed.

Example 7.8: Parallel system, Basic Model. Finite

horizon, T.

Let f (s) = minimum expected cost given you are in state s
t

with "t" amount of time to go.

Let 6 t(s) = optimal policy decision in state s with t

units of time to go.

Denote R as the decision to repair the subset 9s of failed
s

components in state s. Also R = A

Rn

f (s) = min f S(S)

s

where

siEsU Q
fTs (e) f X a fonsi Qhre e s it

t ~ ( ie s

+ I K i+ L(+p, if s 0)

This whole thesis has considered three variations within

the coherent system repair model structure presented in Chapter I.
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Although each gave different optimal policies and involved different

theorems to get them, all were formulated as a continuous time

Markov Decision Model with a finite state and decision space. Results

were always based on minimizing long run expected cost per unit time

or total expected cost in the case of VI ties, the solution

technique being to enumerate the policies and either find an optimal

one or to eliminate certain ones from being optimal given the specific

Markov transition probabilities and costs for the given model.

The key assumption on the system which allowed Markov chain

formulation was that of exponential component lifetimes and repair

times (if non-instantaneous). This is what guaranteed the Markov

property, that for every state of the system (which is a function of

the component states), the probability distribution of the length of

time spent in that state was independent of what states the system

had been in previously. By breaking up component lifetimes or repair

times into stages, we were able to extend the possible distributions

to Erlang, while keeping the Markov property. However, for other

distributions, the Markovian property is lost and the Markov decision

chain approach is no longer applicable, as can be seen in the

following simple example:

Example 7.9: Consider the Basic Model, a parallel system

with n - 2 components and no fixed charge except that now assume

th
Li, the lifetime of the i component, has a general continuous

distribution Fi(t).
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So,

L 1 - FI(t), mean Pl

L-2 F2 (t), mean 2"

Suppose we define the states as before, being the configuration

of working components. Start with both components new, state 12.

It is easy to compute the holding time distribution in state 12

as well as the probability of going to states 1 or 2 (depending

on which component fails first). However, then problems start.

The holding time in state I is just the distribution of LI

given it has lasted through the first transition, a quantity which

depends on how long component I has been up for, information which

is not kept track of by the simplest time-free definition of states.

To have time-dependent states would require an uncountably infinite

number of states given continuous component lifetimes, getting into

the realm of diffusion processes. If component lifetimes had a

discrete distribution, then we have the time-dependent model of

Example 7.6.

It would be useful to develop some kind of a model which

allows for general component lifetime distributions while still

retaining the same state and decision spaces defined in the Basic

Model. This would be a very interesting but probably difficult

problem.
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are made immediately following a component failure. If the system fails, some
repair must be performed. A policy consists of specification of a decision in
every state of the Markov chain accessible from the assumed initial state of
all components new. Structures of and restrictions on optimal policies are
studied.

Three types of coherent system repair models are treated: (I) a Basic
Model in which components are either working or failed, (II) a Degradation
Model in which working components can degrade before failure, and (III) a
Noninstantaneous Repair Model in which repair times are exponential, there
being a finite number of servers. The first two models assume instantaneous
repair and unlimited service.

Two types of results are obtained for these models - ones which obtain

a unique optimal policy for a special case and ones which restrict the number
of possible optimal policies for a more general case. Two new policy types
are encountered in the case of no fixed charge. These are ones which "never
repair until a certain number of components are left working" and ones which
'never repair up to more than a certain number of components at once" or "never
repair more than one component simultaneously in an ergodic state". The first
type of policy appears in- k-of-n systems with Instantaneous Repair Models.
Precise optimal policies are computed for the series degradation model and
numerous other cases in which the components are identical. Optimal policy
restriction theorems and optimal policy computations are based on policy
enumeration with comparisons between long run expected costs, and in the case
of ties, total expected costs.

Computational procedures using linear programming and policy improvement
routines are discussed and an LP routine is implemented on some simple test
cases. Effects on and sensitivity of the minimum cost values and optimal
policies of the models to various component and system parameters is discussed.
The paper concludes with a look at the numerous possible applications and
related topics for future research.
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