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CHAPTER I

INTRODUCTION

Consider a system which is composed of some number of subunits

or components. The structure of the system is the relationship between

the functioning of various components and that of the whole system.

Structure can be specified completely in terms of the minimum cut sets

of a system, These are sets of components for which:
Ség/fthe system can't work if they are removed or failed,

§¢;J/ if any component in the min cut set is restored, then the

system will work.ﬂ

Example 1.1 (parallel system of 2 components): The system

works * at least one component is working; min cut set = {1, 2}.

Example 1.2 (series system of 3 components): The system works
# all components work; min cut sets = {1}, {2}, {3}. {2, 3} s not a
min cut set because even though the system is failed when 2 and 3 are

failed, restoring component 2 or 3 does not restore the system.

*

Intuitively speaking, a system is coherent 1if:

(1) Suppose it is down when a certain subset of components
is failed; it will not start working if even more

components fail.

*
See Ref. [2], Chapter 1, for precise mathematical definitionm.




(ii) If it is working when a certain subset of components
is working, it will not fail if even more components
are restored to working order.

A Coherent System Repair Model models the maintenance over an

infinite continuous time horizon of a stochastically deteriorating
finite set of components which form a coherent system. There are
costs for repair and system failure and the lifetime of each component
is a random variable with known expected value. The objective is to,
assuming decisions can be made at the instant of a component failure,
minimize the long run expected cost per unit time or the total
expected cost, whichever is desired. Decisions can be made to do
nothing or to repair some subset of the failed components; when the
system is down, the do-nothing option is eliminated except in cases
of noninstantaneous repair. A more detailed discussion of the
parameters which can be varied in these models will appear later in
the chapter.

The purpose of this thesis is to formulate and describe
different types of coherent system repair models and then gather as
much and as general information as possible on the nature and form
of optimal policies involved. In the case where system components
have exponential (not necessarily identical) lifetime distributions,
the model can be formulated as a continuous time, infinite horizon
Markov decision chain with no discounting and a finite state and
decision space. States, which are nontime-dependent, depend on the

states of the individual components: working, failed, or under
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repair. The bulk of information will come for models with

exponential components, as Markov chain theory is a very powerful
tool. If the components are nonexponential (and non-Erlang) the
process as defined above will be non-Markov. In that case, it is
no longer sufficient to have nontime-dependent states. The problem
is much more difficult and will be beyond the scope of this thesis.
After initial general discussion, three types of models will
be looked at in detail, all requiring exponential or Erlang
components. The Basic Model (Chapters II & III) allows exponential
components to be working or failed (on/off). Repair time is assumed
instantaneous with unlimited service facilities. The Degradation
Model (Chapter IV) has the same component lifetime and repair
assumptions as the Basic Model except that here each component can
be in any one of a finite number of observable degradation states,
with the first state being "new" and the last state being "failed".

Following, the Noninstantaneous Repair Model (Chapter V) takes the

Basic Model and allows for exponential repair times (noninstantaneous).
Results obtainable for each of the three models, using

Veinott's solution technique for Markov decision chains

[see Section 1.4] (i.e., finding the long run expected cost/time for

each policy and then among those policies for which this is minimized,

find the total expected cost, etc.) are included in the model

Chapters II through V. In each case, the specific structure of the

underlying Markov chain allows us to get conditions which eliminate

certain types of policies from being optimal. For some cases, notably
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those for which components are identical, a complete general optimal
solution is obtained.

Chapter VI looks at the theory and algorithms available for
getting computational results, and implements a linear programming
method. This provides a look at optimal solutions in cases where
policy enumeration by hand is too messy or none of the theorems in
Chapters II-V apply. Some test problem results are presented.

In Chapter VII, results from the previous five chapters are
compiled and compared. Basic policy forms and restrictions which
interrelate the models are presented, and conclusions about how
varying model parameters affect the optimal solution are drawn. Then
some of the possible applications of these models or variations on
them are discussed. Extensions and topics for future research

conclude the chapter and thesis.

2. A Survey of Maintenance Model Literature

A maintenance model models the control and surveillance of a
stochastically deteriorating system. For two decades there has been
a large and continuing interest in such models and the number of
relevant papers in the literature reflects it. Figure 1.1 below gives

a classification of maintenance models according to the type of

maintenance problem modeled:
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FIGURE 1.1 Ref.[29]

Classification of Maintenance Models

Digscrete Time Continuous Time
1. Complete Information 1. Control Theory
2. Incomplete Information 2. Age Dependent Replace-
ment Models
3. Maintenance and
Inventory 3. Shock Models
*

4. Interacting Repair
Activities Models

5. Incomplete Information

*
Further broken down in Figure 1.2.

Discrete time models select actions at discrete points in
time. These models, as appear in the literature, utilize information
regarding the degree of deterioration of the unit or units in order
to select the best repair or maintenance action at certain discrete
points in time. In some cases, an inspection must be made to
ascertain the state of the system before repair decisions are made,
while in others it is assumed the current state of the system is
always known. For incomplete information models, actions must be
taken under uncertainties about costs, underlying failure laws, or
observations of state. Inventory models involve decisions concerning
periodic restocking of inventories of spare parts. Note that in all

these models, the system is treated as a unit in terms of formulation,




the individual components being ignored. Most formulations for b
discrete time models are based on Markov decision theory or inventory
theory, thus, linear and dynamic programming are primary solution
techniques. See [21]}, [26], [33] for details and specific models.
Continuous time models do not restrict maintenance or
inspection activity to a particular set of discrete points in time.
Control theory models permit maintenance activity to occur as
a continuous stream. The decision maker must optimize over functions
m(*) where m(t) is the maintenance expenditure rate at time t.
Age Dependent Replacement Models allow maintenance only at
certain discrete points in time, e.g., replacing an item when it
reaches a certain age. This problem is just the continuous time
analog of the discrete time one with deterioration stages. Different
models vary cost assumptions, types of repairs allowed and numbers L
of spares around. Again, the system is treated as a umit.
Shock Models regard the unit as subject to exterior shocks,
each of which damages (causes wear) in such a way that the damage .

accumulation up to a particular time defines the unit's probability |

of failure of that time. This assumption differs from the standard
asgsumption that the time-to-failure random variable of a unit is
intrinsic to that unit.

The Coherent System Repair Model falls into the category of
interacting repair activities models, the only ones where maintenance

policles exploit interactions among the units of a system. Figure

1.2 presents ways in which a maintenance policy achieves this:




FIGURE 1.2

Types of Maintenance Policies Which Exploit System Structure

*
1. Opportunistic + how many? (cheaper
(economies of scale) to repair more at once)

2. Cannibalization units of same <« no new items in system :
type utilized |
at different !

3. Multi-stage Repair locations in <+ new items can enter g
system system ;

4., Variable Rate repair capacity limited and under

Repair decision maker's control
*

5. Which ones? (if system has nonidentical components

with several items failed)
*
6. Repair or not? (depending on how much of the system

is still operative)

*
type of decisions allowed in a coherent system repair model.

Research on problems involving cannibalization, multi-stage
repair, variable rate repair, and opportunistic policies has been
going on for some 10-15 years, (see [33], Reference list). ''Repair or
not" type policies for deteriorating units were among the first to be
studied, the best example being a "control limit policy"” which says
"repair or replace the unit when it reaches a certain level of

deterioration".

However, until just recently, no work has been done on optimal )
repair order, i.e., choosing which item to repair if several components

are down, or on models which can treat the type of system as a variable.

i
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It was a desire to get some results in these areas that motivated

the Coherent System Repair Model formulation. It models a
deteriorating system of components as do other interacting repair
activities models but, unlike the others, the state of the components
explicitly determines the state of the system. Varying the component
configurations for which a "penalty" is incurred for system failure
allows introduction of the system type as a variable.

Two recent works on optimal repair order have been by Derman,
Lieberman, and Ross (1978) [15] and D. R. Smith (1978) [29]. Derman,
Lieberman, and Ross consider the same type problem as a coherent
system repair model with exponential components, using an N-server
queuing system to show that the policy which always repairs the failed
component whose failure rate is smallest stochastically maximizes the
number of working components. However:

(a) decisions to not repair even though the server is

free are not allowed

(b) decisions to repair more than one unit at a time are

not allowed, (single repairman)

(c) different objective function - no cost structure

(maximize number of working components)

Smith considers a series system of n independent components
as an irreducible continuous time Markov chain and gets the same
result as Derman, et al. However:

(a) he has no cost structure, his objective is minimizing

the long run fraction of time the system is up




(b) he does allow for "do nothing" options but only a

single server

(c) he solves using a different technique

(d) results apply to a series system only.

In a coherent system repair model, time is not a variable -
the level of deterioration of the system is measured by which and
how many of the components are working or are in a certain level
of degradation. 1In general, with complicated systems having
different components, one would expect some very complicated
optimal policies which would be impossible to guess but well worth
finding. When the components are identical, things simplify
considerably for k-of-n systems, as the number of components up
is now the only determining factor in system deterioration and
failure.

Although, in the most general cases, one cannot hope for
exact solutions, except by computer, one can and does look for
restrictions on the very large initial decision space (can repair
any subset of failed components at the instant of any component
failure). 1In the course of investigation of various models, two
such restriction types will appear:

(1) never repair more than a certain number of components

at a time in certain states

(2) never repair when more than a certain number of

components are working.

Both these results, besides being useful from a system operator's
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viewpoint, are useful in lowering the computation time needed
to find an optimal policy in cases where it cannot be done by
hand.

Initially, maintenance/inspection models possessed an elegance
and a simplicity which led to easily implementable results and exact
optimal policies. More recent results have become increasingly
complex, requiring a large computer to implement policies. Coherent
system repair model results are some of each - in general cases it
is necessary to use the computer or state theorems which eliminate

certain policy types but in many specific cases, exact "

optimal"
policies can and have been worked out, especially in cases where
components are identical. The formulation is simple and makes for
easy usage of the model under a great variety of hypotheses.

The following section gives a description of coherent system

repair models, their basic features and parameters.

3. Description of Model

The formulation of a coherent system repair model is quite
general. Figure 1.3 summarizes the features of such a model. As is
easily seen, there are a lot of unspecified parameters which have
to be defined before using the model. These include: the objective,
type of system, distribution of component lifetimes, costs, and

several others described in Figure 1l.4.

10




FIGURE 1.3

Features of a Coherent System Repair Model

(1) Models the maintenance of a stochastically deteriorating
system of n independent components

(2) System states (and, thus, decisions) are functions of
component states but not functions of time (due mainly
to exponential components)

(3) Cost structure for repair or system failure

(4) Formulation as a continuous time Markov decision chain,
infinite horizon, no discounting (finite state and
action space)

(5) Large decision space: at each state, can decide

a. repair or not (must have some repair action going
if system is down)

b. 1f so, which subset of failed components to repair
(6) Decision times are limited to times of a component
failure and are made immediately following such

(7) Some resulting policy limitations:

a. don't repair unless a certain number of components
have failed

b. don't repair more than a certain number of components
at one time

(8) Can get exact "optimal" policies in some cases,
especially when components are identical

(9) Objective: minimize V_l (long run expected cost per
unit time) or V0 (total expected cost)
Start with all components up

(10) Solution techniques: use structure of underlying Markov
chain to get conditions on V-l’ Vo.




Earameter

Objective:

System Type:

Component Lifetime
Distributions:

States:

Repair:

Costs:
in all models

K1 to fix unit 1

P per system
breakdown
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FIGURE 1.4

Model Parameters

plus

possible values

min V the long run expected

-1°
cost per unit time

min V the total expected cost

0’

general coherent

_ ¢_.xnk =1 parallel
k-of "5k = n series
exponential - identical components

- nonidentical components

gamma, integer shape parameter

components on/off (which)

components in degradation states
(which)

components on/off or in service
(which)

number of components in various

states (k-of-n
components only)

system, identical

instantaneous
exponential (s servers)

Erlang, integer shape parameter

fixed charge L, per repair decision
no fixed charge L

labor cost %/server/unit time
(noninstantaneous repair only)




The two objective functions used are among those proposed
by Veinott [30, 31) in his method for solving continuous time Markov
decision chains with infinite time horizon and no discounting. See
Section 1.4, [31] or [11] for a brief presentation of the theory
behind 1it.

Changing parameters which affect the number and type of
states in the Markov chain cause such overwhelming changes in the
model that each is studied separately as a "model type". Such
parameters include the component lifetime distributions, types of
component states existing, and the repair option. The following

three model types were selected, a chapter being devoted to each.

(I) Basic Model comp. life = exponential Chapters
states = on/off 1. IIL
repair = instantaneous - °’ -

(II) Degradation comp. life = exponential _
Model states = degradation Chapter
levels v ]
repair = instantaneous
(II11) Noninstantaneous comp. life = exponential
Repair Model states = on/off, in Chapter
service v
repair = exponential/
Erlang

Changing system type or costs affects only the cost structure and
such variations are studied within each model type.

Obviously, other combinations of parameters could be used to
get other, more complicated, model types. However, these three are

the simplest, give the most results, and give a good feeling for

13
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the types of optimal policles being dealt with. Given any other
combination with exponential or Erlang repair and component lifetimes,
an optimal solution can be sought using computer algorithms like

those in Chapter VI if the number of states is not too large.

4. Discussion of Optimality Criteria

In this section, some optimality criteria are defined. Which
ones will be used in this thesis and why, is then discussed.

Suppose we are given a continuous time, infinite horizon
Markov renewal programming model with finite state and action space
and no discounting. It is sufficient to consider only nonrandomized
policies, (see [11]). The case of exponential transition times
simplifies to the Markov decision chain which will be used to
represent a coherent system repair model. 1In this case the decisions
or the holding time distributions in a state depend only on the
current state, not on the next state as for the general Markov renewal
programming model. Also, only stationary policies need be considered
(see [8], Example 4).

The problem being infinite horizon, the objective is to
minimize the expectation of undiscounted cost incurred over all time,
i.e., minimize ti: VI(t) over Yy where VI(t) is the expectation
of undiscounted cost incurred during interval [0, t] under policy
y 1if the system starts in state i = {12 »+- n} = all components

working.

14
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Unfortunately, :1: VI(t) = » in most cases and, thus, is
not a good quantity to compare policies with. To render things
finite if V(t) grows slower than exponentially, a positive
"interest” or "discount’ rate ''s"” can be introduced into the

model.

Let vI(s) = f e-SthI(t). (taking Laplace-
0- Stieltjes transforms)

Definition: § is s-optimal if vé(s) 3_vY(s) ¥ vy €A,

4 = policy space.

Definition: (Blackwell) & 1is optimal if it is s-optimal

¥ sufficiently small s. (a = gset of optimal policies, possibly

opt
empty).

As the behavior of v(s) as s ~» 0+ i{s intimately related to that
of V(t) as t » =, we use Blackwell's criterion as the definition t
of optimality.

Given a definition of optimality, it is now necessary to show
how to compute on optimal policy given a specific Markov decision

chain (or renewal program). The next theorem will demonstrate an

approach towards doing so.




A Markov renewal program is defined by the:
(1) states 1, 2, ..., N

(11) decisions D, = set of possible decisions in state 1

i
(i11) transition probabilities Q:j(x),

k

(iv) cost structure R:(x) = expected cost incurred during

(x) = P{sn+1 = j, t <t+ xlsn =i, =, 6(1) = k}

n+l

time interval [0, min (x, t)], 89 = i, 6(1) = k.

This is assumed time invariant.

In the case of exponential transition probabilities, i.e., the

Markov decision process,

k k "‘11"‘ K K "‘:"
Qij(x) = P1j l-e H Ri(x) =r, l-e .

Definition: Normalized moments

* a ® n
Q= (I)- t'dQ(t)/n! R = {)_ t dR(t)/n!
N x N matrix N x 1 vector

Note: Qo = transition matrix of embedded Markov chain.

Note: Well known Markov chain theory says as n -+ o,
*
(1f only one ergodic class present) Qg + P, the stationary
trangsition probability matrix which can be computed using the

equations

16
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P*(I-Qo) = 0 and P -

Theorem: Suppose Qn+2 is finite and Rn+ is defined

1
and finite. Then (eliminating &, i from notation to simplify)
v(s) = s-lv +V_+8V, 4 cee +8°V + o(sn). Moreover,
-1 0 1 n
¥i=-1, 0, ..., n, the vector V1 is the unique solution of
equations:
b Pqv, = B
(I-QO)Vi = b, and Q1 1 ey
where
€1 "R by =0 by = ey~ QY4
and
1+2
= (_1y1t1 _qyJ
¥120, ¢y = CLTTR j_g C17QV44-y -

Proof: see [11].

This suggests that when 8 1is sufficiently small, the decision
maker can go about finding an optimal policy by first selecting policies

§ so as to minimize Vfl, break ties by minimizing Vg. etc., until

a unique policy is arrived at, if one exists. In the exponential case,

it does (see [31]). In addition, there it can be shown that AN-l = A,

vhere 4_, =4, A ={se€s |V >V veea ,}, and

2
A, = 1im A

ks K’

17
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that 4 = A
It can also be shown a - opt under most cases

(see [11]) in Markov renewal programming.

Definition: V optimal policies are termed gain optimal

-1

and are those for which the long run average cost per unit time is

minimized.

P*
)
v, ok
Q

Definition: V0 optimal policies are called bias optimal and

are those for which the total expected cost is minimized. 1In

* *
particular V0 solves (I-QO)V0 = RO-le-l and P leo =P (—R1+Q2V_1).

In solving specific coherent system repair models in

successive chapters, V_1 and V0 will be used as optimality criteria.

With other past maintenance models which use a Markov decision chain
structure with costs, the objective was almost always to minimize

V_l, the average cost per unit time. An example will be given that

demonstrates the need for going to V., 1if it is desired to find the

0
optimal decisions for the transient states.

Example 1.3 (parallel system, n = 2 components, no fixed
charge, states = which components up = {12, 1, 2, O}):

decisions: 4A,, = {A} 4, = {A, Rz} A, = {A, Rl}

12 2

8y = {Rl. R,, Rlz} .
where "A" denotes doing nothing and Ridenotes

repairing 1th unit.

18
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It turns out that if p is small enough, Rl in 0 is

expected cost

v optimal if component 1 has a smaller ratio than

-1

component 2. The V_1 optimal policy does not specify what to

do in states 1 or 2 in this case.

expected life

Basically, given a policy &, an underlying Markov chain
structure is formed which contains some ergodic states and some
transient ones. Finding a V_1 optimal policy locates that
ergodic chain of states which minimizes long run average cost/unit
time over all other policies which have a different ergodic
structure. However, except for a few special cases, there will
be many V_1 optimal policies i.e., when one can change any decision
in the transient states without forming other ergodic states, V_1
will be unchanged. Thus, to find out the optimal thing to do in
transient states before reaching the ergodic chain, from which one
never leaves, it is necessary to look at VO.
The next question is why then, given the above argument, not

keep going with Vl, Vz, ++. etc., until a unique policy is found?

19




Besides being computationally messy, it is unnecessary. Any ties
with VO can be broken by changing one of the costs or mean
component lifetimes by some ¢, however small. Any data measured
to use in such a model is only going to be precise to a certain
decimal point so one can always change the insignificant portion
around to break ties or just leave them and call them equivalept
policies.

The fact that in a coherent system repair model, the states
and costs are nontime-dependent with no discounting, enables us to

specify an "optimal” decision in every state by only considering
V_l, VO. The Vo criterion places equal weight on costs at
different times, which suffices to determine an optimal policy
given model assumptions to minimize total expected cost, i.e.,
there is no advantage given to a policy which has the same total
costs as another but less of the cost is likely to be incurred
earlier, thus, allowing for more cash-on-hand for a while, even
though the total spent will end up the same (type of policies V1

distinguishes). For further economic interpretations of

V_l, VO’ Vl, see Veinott [31}.

20




CHAPTER II

THE BASIC MODEL

1. Description of Model

The Basic Model is the simplest of the coherent system repair
models, but by no means uninteresting. In it, assumptions are as
follows regarding fixing model parameters:

States: components are on or off, either

(a) depending on which components up if system
# k-of-n or different components
(b) depending on number of components up if

system = k-of-n and same components.

Repair: instantaneous, unlimited service.

Component Lifetimes: exponential, nonidentical components

order the components so that number 1 has smallest

mean lifetime (or largest parameter), i.e.,

-\t
L, = lifetime of number i ~1-e 1. p{Li‘i t}

where Al > Az > e > An.

Variables within the Basic Model structure are the objective

(v or Vo), the type of system, and the existence or not of a

-1

fixed charge as well as costs to repair a component, penalty cost

for system failure, and the mean lifetimes of the various components.

Section 2 gives results for the case of no fixed charge, V . optimal.

-1

In Section 3, what happens for positive fixed charge is looked at. ;




It should be noted that the type of system can be anything
but series. Due to the instantaneous repair, the requirement that
repair be undertaken on some component when the system fails and
the fact that the decision space is to repair some subset of the
failed components, there are no decisions to be made in the series
case. The only possible states are {all components upl or
{i down}, some 1 < i < n. In the former, no repair is done since
all components are up and in the latter, component i 1is repaired
automatically. One could drop the requirement of repair when the
system breaks down, thus, allowing more states and decisions but,
besides unnecessarily complicating the problem, it would be
unrealistic to assume that a decision maker would want to do nothing
if the whole system he is in charge of breaks down, (if the system
is coherent):

The fixed charge is denoted L, and is > 0. It costs
Ki > 0 to repair component i (an instantaneous lump sum since
instantaneous repair) and p > 0 1is charged each time the system
fails.

Component lifetimes being exponential, the model can be
formulated as a continuous time Markov decision chain with infinite
time horizon as mentioned in Chapter I. To define the model

completely, we need:
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(1)
(2)
(3)
(4)
(5)

State space (states depend on which components up)
Decision space (decisions available in each state)
Transition structure (probabilities of changing states)
Cost structure (cost of decisions in each state)

Objective function

The following notation is now introduced and will be used

throughcut.

Figure 2.1

Coherent System Repair Model ~ Notation

= number of components

= a state, s € {1, ..., n} = {all components
working}

= a policy involving decisions in each state s
(to repair or not and, if so, which ones and
how many)

= decision to do nothing (can be made in any
state in which system is not failed)

= decision to repair the set Qs of components

(can be made in any state s where all elements
of QS are failed)

= matrix of transition probabilities between
various states (depends on policy ¢§ and
lifetime distributions of components)

= Jlifetime distribution of component i

-Ait
=1-e in Basic Model

= expected lifetime of component 1 = 1/xi




vector of expected times to transition
(holding times) given various states s and
policy §

vector of stationary transition probabilities
for policy & = (P -s) scg® Cet by solving

* 1 8y = 0
PG( -Qo) =0

set of states, s (2n of them - some may be
inaccessible given starting state and policy)
penalty cost incurred when system fails

cost to repair component i

fixed cost for repair (same no matter how many
items (> 0) are repaired at once)

vector of costs given various states and
policy &

long run expected cost per unit time of policy
§ (scalar)

min over & of Vf = optimal long run average

1
expected cost/time

expected total cost for policy 6. This is a
vector devending on s

. §
mén V0 . It turns out that the policy which
minimizes Vg s for one s does it for all s

(see Veinott [27]).

We are now ready to specify the Markov chain completely for

the Basic Model:

State Space:

States = which components working, i.e., s = 1

if components i

112 cee ik
: R iy C {1, ..., n} are working.

1 72
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I1f system = k-of-n and components are identical,
then states = number of components working, i.e.,

s=1 1if i components left working.

Decision Space:

Let 9= {1, ..., n}. Then - s = set of components

which are failed in s. Then the possible decisions

in state s are: RQ , where QS CQ ~s (ﬂs is
3

some subset of the failed components given state s).

If Qs = 4§, then RQ = A (do nothing). If system is
s

down in s, then Qs # ¢ (must do something)

Transition Structure:

The transition matrix, Qo : {assume 6 : RQ in s)
u s
A
) —————— ,  1EsynN
{ (QO)s,sugs~i = 2 A, s
jesve_
: s
{

1 0 , otherwise
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Cost Structure:

L 1-13 + Z Ki’ if system up in s
s i€
RG = s
0,s
L+p + z Ki’ if system down in s
ieq
s
where
‘ 1, if A=B
B =
IA = .
o, otherwise
Objective Function:
*
s _ s Rg
V_l = - if 8§ forms a single irreducible ergodic chain.
Ps
8 8 § _ .8 § ¢
28 solves (1) (I-QO) Yo RO Ql V—l

*x 6 85 _ * § 5 5

Q2 being the normalized variance of the holding time

distributions in various states.

A couple of examples are given below:

Example 2.1 (n = 2, nonidentical components, parallel system,

no fixed charge):
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states (s): 12

decisions (k): A

k
cost (Ro,s). 0

transitions (Qo): QS 12¢
L]

R
A _a _h
%,1. = %,2. = %,o0-
R
2
= Q0.
R, Ry Ry2

Q,1. = %,2. = %)p.

AR

0,k

= 12th row of

12
-
=10
=10

2 0
ARy Ry» Bys Rpy
0,k K, + ) Ky + D,
Kl + K2 +p
Q
1 2 0
) A 0
A, AR,
-
0 0 1
-
Ay A 0
A, A,

Example 2.2 (n = &4, identical components, 2 of 4 system,

fixed charge L.

states (s): 4 3

dimensions (k): O A,R

k
cost (RO,s)' 0 O0,K+L

where R, denotes repairing 1

i

1

A,R},R,

0,K+L, 2K+L

Rl’RZ’R3

K+L+p, 2K+L+p,
IKHLAp

units simultaneously.




Ao

transitions (Qo):

R R R
A 1 2 3
Q,4. = %,3. = %,2. = Y,1. [0 1o °:|

R R

A 1 2

%,3- = ,2- = %,1. © [0 o 1 °:]
R

A 5. = ol [o o o 1:]

These two examples will be referred to in succeeding sections

as solution techniques are developed.

2. No Fixed Charge, V__1 Results

Initially, assume we have a general coherent system (identical
or nonidentical components). The following theorem is the basis
for many of the results in this section. It expresses, given

S, Vfl as a convex combination of certain quantities which in the
Y
case of no fixed charge, turn out to be V_i for other possible

Y
policies, say {Yi}’ The minimal V_1 must, thus, be V_i for

Y

gome 1, and since min V_i turns out to be easy to find, the

1

optimal V_, and corresponding V_1 optimal policy can be obtained

1

for any coherent system.

Theorem 2.1: Suppose we have the Basic Model with no fixed

charge, and a general coherent system. Fix a policy & such that:
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(1) RQ in state s
s

(1i) The underlying Markov chain defined by & 1is

irreducible.
P Q
Then Vfl = z asvs where a = ——%—llg
sey P Q
and
K K, +p
Vs = ___1_+ Z _i__._
jesue, M i€sun My
i:(mJQS~i) is i:(suQs~1) is
"up" for system "down" for system

Note: There is a result in Denardo [8) which holds for all

Markov decision chains which says V_ is a convex combination of

R6 !
—%‘5 for all s. Theorem 2.1 expresses V_l as a convex combination
Q

1,s

different quantities. While it isn't true (or applicable) for a

general Markov decision chain, it is much more useful in obtaining

results for the repair models under discussion.

Note: The assumption (ii) in Theorem 2.1 is not really a

restriction as far as finding a V_1 optimal policy is concerned.

If & defines a process with several ergodic chains, C, each with

0 e 7T TWRTEE AT TR

*
its own Vfl, the policy 6 , which is irreducible and has single
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erodic chain V_ is better than §. Thus, if & has

= min VC
c -

1 1

a chance at being V_l optimal, it must define an irreducible

Markov chain.

Proof: Since § 1is fixed, we drop it in notation for
brevity.
*
P RO
*
P Ql

V_1 =

Thus, it is sufficient to prove that
PR P V_ = RHS
0 o -sQl,s s :

This will be done by proving that the corresponding

*
coefficients of K., 1 <1 <n and of p are equal for P R0

i’
and RHS.

Let é?i = {s €@|component i is repaired in state s}

Py = {s €|system is failed in s}.
* n
PR,= ] P R = ) K 1 P\ +p/ ] P
0 e °° 0,s 11 i <86571 s) SEJ7P .g
RHS = ]} P__Q ) ALK, + T A (K +p)
8 8’1,s msunsii iE':suns 171
1:mJQs~1 1:mJQs~1

is up is failed




First, the coefficients of p:

* A
i
coefficient p P R0 = Z P-s = —_—
P €, (1,0 L Ay
P Peug -1 tug,
t
=8

*
using the sth equation of P (I-Qo) =0

B A 7]
Z h|
:)Etunt
) Z j:tUQt~je,9’p
= P't
t Z Aj
jetuszt
L 4
- D oA, P
t iccug, Dt
i:uJQt~i
e&PP

coefficient p of RHS.
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Now, the coefficients of Ki’ and 1{i:

*
K, coefficient P Ry: ] P _

i 0 )
s€.Yy
A

K fficient RHS ) AP Q ) —1-

coe : = .
1 s:ieEsUQ 1-8’l,s s:leEsUQ ):)‘1 s

s s
jesuQs

since RHS without p-terms

) ;oo
= P Q —
s '8 1,8 iEsUQs &1

=7 7 P, 2.Q K
s sesus s'i°1,s i

=1 kI AP
i=1 is:iEsuﬂs 1 -871,s

so coefficient K, of RHS = Z AP Q
i s::LGEsUQs 1+871,8
)‘1
i -ges Y t'tzUQ Tt
8: jEs : ¢
=g
n A
=1 |sj=t L "3 |E:e0 R
ies 8 =g

where Isl = number of elements in




*
From the appropriate columns of P (I-QO) = 0, we get:

A!.
1t’h column: P-i- Z -x——_'_i‘——- Z P_t
. g1 M1 feitua
1 1 12 ¢
. =12
1
th .
19,1 !'k column:
A
° ] el
eif, veeg k+1 .
1 Tk zkﬂé{i,zl,...,zk} A+ T A £reuR,
i 1 2j -iz 0002
1 k+l
k<n-1
thus,
Dy ] )
P+ P \= ) P
i s:|s|=2 *j<c:cunt t) s:|s]=2 t:tuQ, ¢
ies 8 =g ics =g
and

S PRI S o JL L
ll""”'k*i 1’?'1 ”k s:|s|=k+l >‘j<t:tuﬂ t)
s t
ics =8

s:|8|=k+l t:tth
ics =g

Thus, coefficient K1 of RHS
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IR
= P - P - P
t=1 s:|s[=t e:eun b k=g I U S
ies =5
= ) P+t 1 P\ Py
2=1 s:|s|=2 t:tLJQt=s t:tL)Qt=s 1
i€s iet i€t
. n-z:l z
, _ P .
K=l 2p,.. 0,0 A1 Tyeeoty
*
= z P = coefficient K, in P R_. ]
*s i 0
€y
The following lemma associates a feasible policy with each Vs:
Lemma 2.2: V,,» as defined in Theorem 2.1, is equal to Vzl,
where vy 1is a policy which has {sUQS'vi} as its chain of

iesug
s

ergodic states, i.e., y 1is the policy: Ri in mJQS ~ i [keep the

set of components sL)Qs working].

Proof: To get V6 =V , some s in Theorem 2.1, need
—_— -1 s

§ ¢ P?t-O unless tUQt = sUQS . This occurs when § = vy, 0

Corollary 2.3: A V_1 optimal policy for the Basic Model with

no fixed charge will never involve repair of more than one unit at a

time in an ergodic state.

Proof: Uses Theorem 2.1 and Lemma 2.2 directly. Any policy

§, which repairs more than one unit at a time in an ergodic state has
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V‘s = convex combination of Vs, s € #. Thus, Vf > Vs, where

-1 1

Vs = Vzl, some Y for which repair i{s never done on more than

one unit simultaneously. a

The following theorem which follows directly from Theorem
2.1, Lemma 2.2, and Corollary 2.3, gives an exact procedure for

finding the V_, optimal policies for the Basic Model.

1

Theorem 2.4: Given the Basic Model with no fixed charge, a

V_, optimal policy & 1is one for which

1
8 A
V_1 = min Vs
s€.¥
system up in s
where

K K,+p
A
A R D
ies M ies Mt
1:s~1¢% 1:s~1e.9;)

Proof: From Theorem 2.1, Lemma 2.2, and Corollary 2.3.

Thus, given any coherent system with state space #

under the Basic Model, to find a V_1 optimal policy, compute

*
G; v s€.¥ and find the one(s) which are minimum, say Vs' By

*
Lemma 2.2, Vs defines a V optimal policy vy which keeps the

-1

set of s components working by repairing any component of s

as soon as it fails.
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Notice that there will be many V_1 optimal policies

since the above procedure only defines what happens in the
ergodic states, i.e., those for which the process once having
entered, will stay in forever. 1If keeping the components of
state "s" working is V_1 optimal, then all other states
besides {s- i}iEs must be transient or unable to be reached
from the initial state of all components working (or would have
multiple ergodic chains, in which case the policy wasn't V_l
optimal). To determine the optimal policy for those states, we
need Vo results, looked at in the next chapter.

The no fixed charge L assumption is essential. Although
if L > 0, a version of Theorem 2.1 holds, not every VS corresponds

to a feasible optimal policy in that case, limiting its usefulness.

Some examples of specific systems conclude the section.

Example 2.3 (parallel system, different components (n))

= {0
A {0}
K K.+p
vs= Z ...i.y. Z i
1€s M1 ics M
s~1#{0} s~i={0}
1f |s| > 1, then s ~1 % {0} v ics

ls| =1 (s = {i}, some 1), then s ~1i = {0}.




A'g 's
Possible min Vs (optimal V_l) are:

N
Xg ergodic chain policy
Ki +p Ri in 0
s = {i} My {0} (keep unit 1 working)
K K R, in j
. i, 3 i
s = {1,j} — + {i,3} .
R, in i
“i uj 3
{keep i & j working)
A Ki K,
If s : fs[ >2, V. >-—4 ~l, some 1i & j. AV optimal
s — Y, U, -1
1 J
policy is one which has
K.+p Ki K.
V_1 = min {min-ﬂl—— 3 min E- El J
Jd Moo a3t Yy

keep j keep i & jJ
working working

If n =2, then we have Example 2.1. Below are some examples

of policy behavior:
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Suppose n = 3

states
s : |s| > 1 1 2 3 0
4 Let &, A R, Ry A R,
62 A R2 Rl Rl (RZ)
63: ;2 §3 33 R2 Rl R1 -
3 2
> 6§, ismot V_, optimal, since it has two ergodic chains {12}
and {0} both accessible from the initial state.
+ 8, is possibly V_, optimal, as even though it has {12} and
{0} as absorbing chains, {12} is the unique one accessible from
the starting state.
-+ 63 is also possibly V_l optimal, and has the same V_1 as
§,. V is needed to distinguish between § and 6§,.
3 2 0 2 3
Example 2.4 (k-of-n system (system works < at least k < n
units functioning)):
3
k = 1 1is parallel
k = n 1is series
%, = {s'lsl < k - 1}.
Note that s : |s| < k - 1 are inaccessible due to the instantaneous

repair and requirement of repair in a failed state.




’\?s-zu—i, if |s| > k
ics 1
Ko | if |s| =k
1esuf. Vi
s
not defined for |s| < k (system down).
\J
Possible optimal V_i:
ke K P i
V_1 =) —;1—— , some {il, vy ik} c{1, ..., n} i
3=1 iy ’

has ergodic chain: {11, cens ik} ~1i, 1€ {il, ey ik}

policy: keep {il, ceey ik} working

or

<
[
[} M§

S
-:L* =
(S
[

, some {i }c{1, ..., n}

1> "t ik+1

.

has ergodic chain: {il, ey L.} ~di, 1 € {11, R T

k+1 k+1

policy: keep {11, cees ik+1} working.

True for 1 <k <n -1 (k # n (series) by assumptions on Basic Model).

Thus, § optimal is either

(a) keep the cheapest set of k components working if p,

the penalty cost is low enough, or
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[

T P RO

So, a

component

{13}):

(b) keep the cheapest set of k + 1 components working

if p, the penalty cost is high enough.

Example 2.5 (system up * component i is up):

o

v
s

Va1

Example 2.6 (n

= {s|i ¢ s}

defined for

K +p _

+

i jes-i

K.+p

1

i

i only working.

at s =

s :1€s
K.
3
¥

{i}.

optimal policy has absorbing state {0} and keeps

= 3 system defined by the min cut sets {1},

S = {23, 2, 3, 1, 0}

N\

Vs defined for
~ K+ Kybp
Vi =t

1 2
a Kt Kytp
¥, ===
13y M3
40

s € {123, 12, 13}

e o e oL




~ K1+p K2 K
\' ® —— 4+ — + — , any of which could be min.
123 ¥ M2 ¥

So, 8 optimal is to keep {12}, {13}, or {123} working, depending

L on parameters.

] 3. Fixed Charge Results

In this, the final section of Chapter II, a brief look will
be taken at Basic Model results for cases when there is a fixed
charge L > 0 per repair decision. A larger fixed charge is going
to induce more multiple repair decisions and theorems in Sections 1~2
involving conditions under which one never repairs more than a single
unit at a time will be no longer true in many cases. However, a
number of the other results from Section 2 either apply directly
or can be modified for use here. The case of a k-of-n system with
idendical components is looked at in detail as it yields a precise
optimal solution using V_1 only which can be compared to the L =0

case.

' The basic result from Section 2 upon which all the V_1
results for the L = 0 case were based is Theorem 2.1, which
expressed Vfl for any policy 6 as a convex combination of Vti R
where Y; were policies which never repaired more than a single
; component at once in ergodic states. An extension of Theorem 2.1 to
tne L > 0 case is direct. Unfortunately, the quantities which

8

V_; is a convex combination of, are not all V_l's of certain other

policies, rendering the result less useful but still worthwhile stating.




Fix a policy §

Theorem 2.5: (extension of Theorem 2,1)

Basic Model with fixed charge

Suppose we have the

L, and a general coherent system.

such that:

(1) RQ in states where Qs Cc{1, ..., n} ~s
s
(i1) the underlying Markov chain defined by § 1is irreducible.
Then
P Q
Vfl = Z a, V, where a_ = ——;—l*i
scy P Q1
and
K +L K, +p+L
1
v, = I o+ ) 1 if a_#¢
iesua, i iesuQ =1
i:suQs~i i:suas~j
is up is down
K K
- ] L+ I if 2 =¢.
H H 8
ies i ies i
i:80UQ -~i. i:suUQ ~1
s s
is up is down
1 Proof: As in the proof of Theorem 2.1, it suffices to show

*
P R, = X F g Q1 s Vs (RHS) by proving the corresponding coefficients
8 1]

Those of Ki

L =0 case are still equal so only need to check the

of Ki’ l<i<n, of p, and of L are equal. and p,
unchanged from

coefficients of L.




it Atk ey Fe

ERPGT  es tes  L

A
* ) ) ]
PR, = P, R _= K P, \+p P,
0 sEP s 0,8 1=1 i(se.?i s> <s€.9;’ s)
scyV

(JVP, #., & defined on page 30) + L< ) P-s>

U
wvhere & = .91 UFuU - U.g; = get of states in which some

repair is performed.

Coefficient L in (RHS) = J P _Q _ - ] 1/u
U *s “1,s 1€8UQ i
s€ ¥ s
- Lorg s o
scy Y 1€sUn_ i el
= Z P
*S
segV
*
= coefficient L in PRO . a

In the L = 0 case, one then has Lemma 2.2 which states that Vs,
as defined in Theorem 2.1 is equal to Vzl, where vy 1is a policy
which keeps the set of components {sL)Qs} working. (Whenever one
fails, repair it and, thus, never repair more than one unit at a
time.) This then eliminates from being optimal, all policies which
allow repair of > one unit at a time in an ergodic state. 1If

L > 0, this is no longer true; as the following example illustrates:




Example 2.7 [refer to Example 2.3] (n = 3 parallel system):

: VS = AI(K1+L) + XZ(K2+L)

But, if s = {12}, A in s, then vs = AlKl + AZKZ.

Y, of keeping components 1 and 2 working, has Vzl = Al(K1+L)

Then policy

+ AZ(K2+L). So, if we pick § soc that "A" in state 12, then

v cannot be expressed as Vzl, where Yy keeps components number

12

1 and number 2 working.

Given the failures of Lemma 2.2 and Theorem 2.1 in

limiting possible V_, optimal policies in the fixed charge case,

1
it is now clear that the finding of a general optimal policy would
be extremely time consuming, if not impossible without the aid of a
computer (see Chapter VI for suggestions). Thus, in the interests
of getting a feel for how a fixed charge affects things, we close
out the section by looking at two special cases where results are
obtainable. These are:

(1) didentical components, k-of-n system

(2) no penalty cost (p = 0).

In case (1), we can get a general optimal policy.

Definition: Let fk(i) = (44+k)[1/k + +¢+ + 1/i+k-1] - 1,

l<k<n, l<i<n-k+1, fk(O)AO, fk(n—k+1)gw.




Notice that

(a) fk(i) +1i, +t k

(b) fk(i) - fk(i—l) + 1, + k.

Theorem 2.6: (optimal policy for L > 0, k-~of-n identical
components).

Suppose we have the Basic Model with

(1) a k-of-n system

(2) identical components (Ai = X, K, 2 K), and

i
(3) a fixed charge L > 0 per repairman visit.
Then the following are true:

(i) Never optimal to repair until k left working.

(i1) Among policies which repair when there are k left

(label RQ = repair £ units at once), Rl-l is
optimal “’fk+1(£—1) < L/K < fk+l(£), where
1< ¢2<n-%k and f . (o-k) ==,

k+1
(iii) Among policies which repair only when the system fails

- - L+p
(k -1 left), R2 is optimal < fk(l 1) < % < fk(l),
l1<2<n-k+1.

(iv) The optimal policy is the better of that in (ii), (iii).
Proof:

(i) 1s direct from Theorem 3.3 in the next chapter. As we

have a k~of-n system with identical components, the

45




e R

state and decision spaces are greatly simplified with

states = n, n -1, ..., k, k - 1, the number of components
working, and decisions limited to the number of components
desired to repair in a state. By (i), the optimal decision
is "A" in states n, n -1, ..., k + 1. In state Kk,
possible decisions are: A, Rl, RZ’ ceny Rn—k’ in state

k - 1, they are: Rl, RZ’ ...s R No state

n-k’ Rn-k+l®
i <k -1 can be reached by the necessity of repair upon
system failure assumption. The possible policies then

reduce to the following 2(n-k) + 1 possibilities:

1
policy 2
&= {ergod ) &= (ergodi )
Gk Gk-l = {ergodic states Gk Gk-l = {ergodic states
A Ry {k-1} R ever | {k}
1
reach
A R, {k-1, k} R, k-1 {k, k+1}
SO
A R, {k-1, k, k+1} Ry {k, k+1, k+2}
. T .
q
e
. . . Va .
A Rn—k+l {k-1, k, ..., n-1} Rn-k i {k, k+1, ..., n-1}

Those policies in column 1 are those referred to in (iii)

and those in column 2 are treated in (ii). It remains now

's

to compute V_1 for various policies and compare them.
Below is a table of such values. Comparisons of column 1
values lead to result (iii) and of column 2 values lead to

result (i1); (iv) is obvious. O
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Figure 2.2
Table of Vfl for § in Theorem 2.6 Model
Column 1 ({ii) Column 2 (ii)
8 v, 6 v,
AR k+1/..k+2 R, - K+ L
H Y /k+1
AR 2K+ L +p R - 2K + L
2 u(l/k + 1/k+l) 2 p(1/k+1l + 1/k+2)
AR 3JK+L+p R. - 3K + L
3 u(l/k + 1/k+1 + 1/k+2 3 w(l/K+1 + 1/k+2 + 1/k+3)
AR * (n~k+1)K + L + p R * (n-k)X + L
n-k+1 p(l/k + e+« + 1/n) n-k u(l/k+1 + <+« + 1/n)
It is worth noting that V_1 alone here gives us our

desired "optimal" policy - no VO needed.

Example 2.8 (consider Example 2.2 from Section 2.1):

n=4, k=2 costs: with fixed charge L>0
component repair K/component

opt opt

states: 4, 3, 2, 1 64 = A, 63 = A
mean lifetimes
of components: u = 1/)
policies: ARl, ARZ’ AR3, R1 - R2 - .




(1i1) . | 2 §-- 3 (L +p)/K t,(3) = «
policies “
0 f2(1) f2(2)
£,(0)
R, - R, -
(ii) .- L | 2 — L/K f3(2) = >
policies
1
0 f3(‘)
f3(0)

Compare optimal among (ii) and (iii) to get optimal.

In general,

21 L 12 L 13 L QA L QS
A
AR AR, AR, T AR, AR, AR K+ "
! | ! ! - R (nmktl) =«

0 fk(l) fk(2) fk(3) fk(A)
fk(o)

R, - R, - R, - R - R, -

| | | | — L/K fk+1(n k)

0 fk+1(1) fk+l(2) fk+l(3) fk+1(l‘)

The L/K ratio = fixed charge is the key here. A large

component repair charge
L/K favors repair of several components simultaneously while a small

ratio favors single repairs. Obviously, a large p favors an "Ri ="

policy while a small p favors "ARi" types.




Now, fix all parameters except the type "k-of-n" system
to see how k and n affect the optimal policy. (L+p)/K and L/K
are now fixed. Increasing k lowers fk(i) for any fixed 1.

This fact enables us to state:

Lemma 2.7: Given the Basic Model with identical components
and a k-of-n system with a fixed number of components, n. Let

1 < k, < k, < n. Then the number of components repaired in the

1 2
optimal policy for the kl—of-n system is less than or equal to
the number repaired in that for the K,-of-n systenm.

2

Increasing n, the number of components while leaving k
fixed leaves the previously existing fk(i) unchanged but does
add more possible values of 1 and thus further subdivides the

interval between the previously last fk(i) and =. This leads to:

Lemma 2.8: Given the Basic Model with identical components
and a k-of-n system with fixed k, let k < n; < n,. Then:

(i) If the number of components repaired in the optimal
policy for the k-of—n1 system is less than all
possible, then the same policy holds for k—of-nz.

(1i) If the number revaired in the optimal policy for the
k-of-nl system 1is all possible (i.e., nl—k in state

k or nl—k+1 in state k-1), then the number

repaired optimally for k-of—n2 is greater than or

equal to that for n

1




Another interesting question that is easily answered is:
What happens to the optimal policy asymptotically as k, n » =

with n - k held constant?

Lemma 2.9: Given the Basic Model with identical components
and a k-of-n system, let n, k >« with n - k held fixed.

or R - .

Then the optimal policy is either ARn—k+l n—k

Proof: Notice that 1lim fk(i) =0 for fixed i. Since

koo
%R’ % >0, k> £ (k1) and B s £ (a-k), the

optimal policy will be either to allow system failure or to get

down to k left and repair all failed components. O

Notice that if L = 0 (no fixed charge), the optimal policy
is either ARl or Rl ~ since in that case, one never repairs more
than one at a time.

Now consider the p = 0 case briefly (components no longer
need be identical) using a k-of-n system. Using arguments from

Theorem 3.3 (next chapter), it is clear that repair need never be

done until system failure (k-1 left) since there is no penalty.

Since GS = A {if |s|_3 k, only 65, |s| =k - 1 need be determined,
which is possible using only V_1 ~ optimality. For the case of
identical components, the optimal policy in (iii), Theorem 2.6 gives

the overall optimal policy since those in (ii) will never be optimal

given p = 0.
See Chapter VII (Conclusions) for a summary of results

presented in this and other model-result chapters.
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CHAPTER III

THE BASIC MODEL, VO - RESULTS

1. No Fixed Charge, General Results

In this chapter we will try to pinpoint optimal decisions
in transient states. The problem is much too complicated to solve
for a general coherent system except by computer, so let's restrict
ourselves to a k-of-n system. In this case, it will be shown
that one never repairs when more than k wunits are working and
that, with no fixed charge, one never repairs up to more than
k + 1 units working from any state if p 1is small enough. As
V__l determines what to do when in s : !sl =k - 1 and one does
nothing until % - left, the only unknowns are what to do in
transient states where k - units are working. If k =1 (parallel
system), the problem can ge solved exactly in many cases and a

general V optimal solution obtained. This requires considerable

0
work and is done in the next section (2). The other case for which
an exact optimal policy is obtainable is that of identical
components. Here, the state space of the model simplifies, causing
every possible optimal policy to have a unique V—l’ in which case
V_1 is sufficient in computing an optimal policy.

To prove the aforementioned results, we need the following

lemmas:
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Lemma 3.1: Suppose we have a k-of-n system and the

Basic Model. If it is never optimal to repair more than one unit
at a time in states s : !sl = k' > k, then it is optimal to do

nothing in states s : |s] = k'.

Proof: First, from Chapter II, all states s, |s| >k +1

are transient in a V_1 optimal policy so any realization of the
process starting in s : lsl = k' using an optimal policy must
eventually reach a state s : ]sl = k' - 1. This will happen at

the first instant decision "A" 1is chosen.

The basic argument is: suppose you start in state s and
follow policy &, wunder which R2 in s, until a state
t : |t] = k' -1 is hit. Then the policy vy, which first lets a

component fail from s and then does everything 6 does will be

better than & (with respect to Vo). Since Y never repairs

let the starting state s = {il, ceay ik'
policies with respect to VO’ where V0 is a vector whose length

is the total number of states and which satisfies:

) (I -QyVy =Ry - QV

* *
(2) PQVy =P (=R +QV_ ).

Let V: 5 = total expected cost given start in s' and follow policy

L ]
§. It suffices to compare Vg 5 and Vg y for any one s' for if a
’ ’

until k' - 1 units are left, the result is true. To be precise:

}. It is desired to compare




policy minimizes ve for one s8', it does so for all s' (see

0
Veinott [31]). Let s8' = s where s : [sl = k' 1is our starting state.
In comparing V'S, it 1s assumed that an optimal V_1 policy and
a corresponding set of ergodic states have been found. We are
concerned now with transient states only, as ergodic states and

decisions there have been determined by V_ By equation (1), if

1
Rj in state t, t = {11, vees iq}
A v
O I R R L
Ty etUi ) *p p
pPELU PELU j
or, combining V; terms
A . z .Ap v
t _ 2 t~2Uj pEtyj -1
(4) v = ) ——V + - K, -
0L,R, 2 YA O R 31
J ct p ) p
pEL pEt pEt
where Vg 5(t) total expected cost given start in t, use &(t)

in t and follow any policy thereafter.

If "A" din state t,

A
t L t-2 -1
(5) ve o, = ) v -
O,A et z A 0 z )\p
pet P pEt

Now, pick any policy 6, which has Rj in the initial state

8 and specifies what to do each possible time another state

s', |s'| = k' 1is entered.

53




oy TR RTERTAET O T

Gaaas 2o o

As previously mentioned, there are a finite number of such

pcssibilities. & can be represented by the following sample path

diagram:
8: s,(s,) = {s,Uj(s,)~1, some i}
2 e #3(s))
A
s; = {sUj -1, so:g i} Rj(sz)‘—-* ------- SN(Sl’ ’SN-l)
3 s, (sy)
R,(s,) —————
i1 A A_,
51 8y(sy) *8y(89) ~iy
5 —p (2) sN(sl,. "SN-l)
R, A AL
] 1 > s1h ig
W ™
Where:

+ N = maximum possible number transitions before going to a state with

|s|=k' - 1 (i.e., making the decision "A"). Note N < o,

+ "Boxed in" ([___]) states (1), ..., (N) represent "termination",
i.e., entry into a state with only k' - 1 units working after

1, 2, ..., or N transitions,

> sj(sl, ceny Sj-l) represents the state entered after the jth

transition (if termination has not yet occurred).

Clearly, this is a function of Sy tees sj-l where

s, € si, ooy sj-l € s? (or would have had termination).




- j(sz) represents the item specified by § to be repaired in

state sz. If j(sz) = A, then termination occurs at the lth

transition.

> sl(sl, ooy Sl-l) = sl—l(sl’ voos 32_2) U j(sz_l) ~1, 1€ 8.1

by definition of the process involved.

A— =
sy = {sjl‘sSj A}.
> Sjk = {sj|6Sj = Rk}. s:k = ¢ by definition of N.
R
sy = {sJIGSj # A},

It will be shown that the policy Yy, represented by the sample path

. s s
diagram below, has VO,Y E-VO,G .

identical probabilistic structure and termination states (1) e+« (N).

Note that the two diagrams have

/’ A EEREEL I Diad: S}
s(s)) ~3(sp) »

A 1 T
(2)

P~y \-“
S ——p sy j

A T A :
O sz(sl) =8~ 11 sN(sl,...,sN_l)

(1) ~i




R T N R T T T =

i M s . s ? v,
6 vV, . = sUj-4 P&Vl Ly o1
® 0,8 2£s 7 Vo A i)
pEs P pCs P pes P
By (5),
s [} s~4 -1
(7) v =) v -
0,y zeszAPO pr
pEs pESs
If N=1, i.e., 631 = 65Uj~2,= A ¥ 2, then, using (4) and
(5), plug VSUj 2 into (6) ¥ £ and VS~2 into (7) ¥ %. (6),
] O,Rj
(7) become equal except for the coefficients of Kj' Thus,
1
s s i
6)-(7) =V, .-V, = -
pes P
ALK,
I
A
ps P

so, Y 1is better than § if N = 1. We now proceed by induction

on N, the object being to prove

L)-1 2ds.)Xd(s))

8 8 o 3 ]
® Yo,6 Vot Lo L TS
wis i= pEsj P
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where wls is any sample path starting from s, #(w) = length

of sample path w, i.e., w = (s, 8 ), d(s,) =

1? Sp» e sz(w) i
decision at state sj of sample path w. Since (8) > 0
obviously, the desired result would then be proved. (8) has

been shown true for N = 1. Suppose true for N - 1, § 1is given.

Let state tl sUj~2g, 2 #j. Suppose

: Rj(ﬂ,) in tﬂ,' L er

A in tz, f, €a, rua=s

r, a are defined to satisfy the above.

Let 62 be the policy which starts in tys 2 €r with "Rj(l)"

and follows & thereafter. Let Yo be the policy which starts

in tyo 2 €r with "A" and follows vy thereafter. 62 has a

maximum number of transitions to a state t : |t] =k' -1=N-1

so the hypothesis holds for 62, L E€r.

By (6) and (5)




By (7) and (3)

s s
S0, Yo,5 ~ Yo,y
A.K
1% [} p p
pEs pEs pet, pet,
A.K B B
- j AZ tz tg by (5) and definitions
z A * kér Z A vo’éz ) Vo’yl of &
FE p pESp" 2" YQ,'
XK, AQ L(w)-1 Ad(s.)Kd(s.;] by induction
Tt kTl ™k T | s
r w|t j= t i
pEs h} pes p(W|t, h] pesj P J ypothesis
A ALK, vw)-1 *a(s,)Xas,)
L T b
ger L A p Wt i=0 p
pes P | pes L Pes
A K
_ L)1 d(sj) d(sj) , which is what was to be
) w|s Pw =0 Z A
l i p proved. a

PGSj

Lemma 3.2: Suppose we have the Basic Model and a k-of-n
system. Let k' > k. Then, if it is optimal to do nothing in all

states 8 : |s| > k', it is never optimal to repair more than one
P

unit at a time in states s : [s| = k'.




Proof: The basic approach will be to use the Yo equations
to show that if one starts in state s, lsl = k' and repairs some
subset Qs ’(jl, ey jm}, m > 1 of the failed components and then
follows any other policy upon again getting back to a state

t : |t] = k' (we have assumed "do nothing" optimal for |t| > k'),

that this policy is worse than at least one of the following:

1 RQg-jl in s, 1 < 2 < m, then anything

(ii) A in s and RQ at the next transition.
s

This shows the desired result since

- 1if m = 2, any policy repairing two at once in state s is
dominated either by a policy which repairs one at a time or does
nothing in s = m = 2 never optimal

- (induction argument) suppose RQ , IQS[==m - 1 1is never optimal
in any s. But any RQ s |Qs| =m sis dominated either by a policy

which does nothing in s or by a policy which repairs m - 1 units

in s ="RQ , |Qs| = m 1is never optimal.

Now for the specifics:

Let s = (il, 1oy <ees ik,); |s| = k' > k (k of n system)

ng(jl’ jz’ secy jm); IQS|=m>1.
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Now

(9)

Let

(10)

sUQ m
+ Z K, (since instantaneous repair)
0,A 3
’ p=l “p
" A sua -1 A4 sUQ -
L2 vou® "+
L K m 0,A p=1 ZA + Zk V0,4
X )‘i + Z Aj q q
q=1 "q q=1 “q
m V_l
+ ) K, - by (5) with t = syt
p=1 Jp 1IN +{Aj s
q q
zs(j) a1
A A
. 4 )
zs(Jl’ j2) Al+4y—3 I, A, o+ )X,
i, i j i
q 1 q
A,
m Jp
2 (2) A1+ Z — z (2, ~ p)
LAy o+ Iy
q=1 1 q q
q#p

Note that by (5) and instantaneous repair,

A

k' sUQ -1 m v
8 -1
v 2 _._E v S p 4+ Z K - —
o,A+RQs b=l )j ', 0,A p=1 jp {xiq
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where A + R denotes doing nothing in s but R at the first

9] Q

s s
transition after s.

If in (9), one repeatedly applies (5) to those Vg terms

left on the RHS for which t D s until there are none such left,

-]

0.R over to the left hand
b}

then brings all coefficients of V

Q
s

side, and multiplies the whole equation by

IA +ij
—9 "9
’
I
q
the result is: (using (4) to combine terms into Vg R )
QS~Jp
)
A A
k i suQ_ ~i PR m
Vo R .zs(Qs)=zzTRvo s p+1+L2;L—q I K
Y] = i i =1 P
s P q qa /P
AL
\'s m j
-1 ) s
- =— 4 v oz (R~ )
q q q¥p ¢ s P
I Iy kg
P 9 p g
1 #1
_—LL——
I
q




R e

A
m 3
' s . =v3 + Py
W0 Vot 20 = Vo, * L TR Voo
Qg QS p=1 « . "3 Q -3
q q7p 4 s °p
m
VA, K,
.z (Q ~j ) +
s s p k'
q=1 q
=»
A,
s s ’f p s
\' -V z (& ~3 ) [~V -V
<0,RQ 0,AR. > el g+ Ay s s°p 0,k O,Ry |
s q 9#p g s s p
m
Z Aj Kj by the recursive
4+ =1 °pp

k' definition

LAy

q=1 “q (10) of zs(-)

>0 .

Thus, at least one of the following must be true:

s s
0. \' -V 0
O,RQ O,A—>RQ

s S
s s
1 VO,RQ - VO,RQ - >0
. s s .
s s :
m. v -V > 0
O,RQ O,RQ -4
s s °m
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S 8
1f . =
0., then VO’RQ > VO,A*RQ not optimal
s s
j., then V2 > 2 = not optimal. 0
O,R O,R .
Q Q-3
s s 7]

Note: In the previous Lemma 3.2, the assumption
k' = |s| > k, the type of system, is crucial. If k' = k, then

the policy A » R (let a component fail, then repair same set

Q
s

of components at next transition) cannot be used without incurring

the penalty cost for system failure. In this case, ve
0,A—>RQ

s
will have a "p" term in it, causing the proof of Lemma 3.2 to

break down. We can now state the following theorem:

Theorem 3.3: 1If we have a k-of-n system and the Basic
Model, then it is never optimal to repair until you get down to

k items left functioning.

Proof: Consider s : |s| = k', k+ 1 <k' <n. If k'=n-1,
we know it is never optimal to repair > 1 wunit at a time since only

one unit is down.

Then, Lemma 3.1 = "A" optimal for s : |s] =n -1
(also for k' = n since none down)
Lemma 3.2 ® never R>1 for k' =n -2

Lemma 3.1 = "A" optimal for s : |s| =n - 2.




Continue alternating applications of Lemmas 3.1 and 3.2 until
k' = k + 1 1is reached and then we are done, i.e., have shown "A"

optimal for s : |s| = k' > k or do nothing until k - left. O

Using the results of Chapter II and Theorem 3.3, we now have a
pretty good idea of the optimal policy for a k-of-n system. Since
one does nothing in states s : |s| > k and will never reach any
states s : [s| < k - 1, only states s: |s[ =k - 1, k need be
considered. From Example 2.5, possible ergodic chains are
CS ={s~i; i€s}; s: |s| =k+1 or k. For states in Cs’ the
optimal decisions have been previously described, Ri in s ~ 1.

In other states, decisions are restricted so as to form no other
ergodic chains. Note that for non-ergodic states of sizes k - 1, Kk,
decisions have not been restricted to one unit of repair at a time.

It would be nice to be able to also say that in the remaining
transient states, it is optimal to never repair more than one unit
at a time. For k = 1 (the parallel case), this is almost true by

the next Theorem 3.4.

Theorem 3.4: Given the Basic Model and a parallel system of
components, (a) it is never optimal to repair more than one unit at
a time in a state s : lsl =1, (b) it is also never optimal to

repair more than two at a time in the failed state O.

.




Proof: We do (b) first.

Let {components repaired in state 0} = QO, IQOI = m,

= {jl’ jz’ MRS jm} .

Want to show m > 3 1is never optimal. Take m > 3.

0 m &
1) vop = ) Ry + P+ Vo,
0 p=l “p

m m kj .~ v
=p+ZK,+Z—~——P——v0 . 2

- ] b m 0,A m
p=1 p p=1 z N z A

h| Iq
q9=1 “q q=1

(since Q. ~ 3| > 2, "A" is optimal there by Theorem 3.3)

m Q.~j
(12) v0 =V Kk, +p+v0P
0,R, _. £003 0,A
QO~JP q=1 q
qfp
Q. .~ m
0-p _ .0
or VO,A = VO,R I 2 Kj
90~3p =1 ~q
q#p
Substituting (12) into (11) gives
m As
VO _ 2 JE 0
= v
0,R, -1 D 0,R, -4
o P y 0 Jp




m
V_; Smin ALK, + X Ko< Z A, K,

Sl= gk 33 =1 Jq g
=
0 0] .
v >V , at least one p. Setting m = 3 here
O,RQ - O,Rq s
0 0o

proves m = 3 1is never optimal. Given m - 1 is never optimal,
m is never optimal by the above argument so (b) is true by
induction,

Now to prove (a). Suppose we are in state {i} = s.

Let Q

i set of components repaired in i

= {3, 3 -een 30

The object is to show that an r > ! decision is never optimal. The

method will be to show V& to be > a certain convex combination
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i
of V q=1, ..., m. This is sufficient to prove

O,R
3
i q‘
v > V. , some 1 < q <m which proves the desired result
O,R, = o,R.j - 9=
i q
that repair of more than one unit at a time in a state {i} is never
optimal. It now remains to show Vé R > convex combination of
’
Vi . Qi
O,Rj )
q
m
A+ ) A,
i 2,3
Let n, =—2= P . plaui »j |no repairs}
Iq Ay s q

Probability that if one starts with components
qui. working and does no repairs, that
component jq is the last one left.
ju _ m
Notice that 2 nj = zi(Qi) as defined in (10). Define n = z nj .
=1 -gq q=1 “q

Our desired convex combination is

m .
(13) ) v
=1 7 2R
q
n, A,
m i v sin
23 _h<vj)q+_3_q.x, -%) ssing
=1 7 A Tq M ()
=] v+ 7 g q -1
- 0 - —QK - —
q=1 n n q=1 Ai jq Ai
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m

. A+ ) A

m p ] m i =

D e A ij>—P—-—B
= n p=1 P

3

n'Ai

] V_l where y is
] - [y(Qiui )]

Some notation is now needed:

Ai Xj kk
Let ysk) A1+ 55—+ v Y
k ik i
A,
m J
y@)AL+ ) —B—y@ ~j)
3 i’ = & m i p
=l ¥y,
a=1 Jq
q#p
}
l be a recursive definition for
;
1 Let
_ 1
b (Qi, Qi) ?
by
k=1 Ik
setting jm+1 =1,
68
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P

T T T R b Lo S L
19p7q B TATEG T L ARy b A
P “q | 3 P "q “ry 4 Ay Ry ¥ ) A
#P,q #p,q,r3 p “q t=3 r,
1l
) 1 cee mfl 1 )
r=1 2 =1 m
5 )‘j .+ z Aj 1-m.- A, +), + z A,
#P,q’r?’, P Jq t=3 rt *P,q_,r3,-.-, Jp Jq t=3 th
r, ro1

1t AiS @y, order Jy» ++es 3, so that {jl’ ’ jk} =Ank<m
Define
bi(Ai’ Qi) = (set jm-|-l = i)
n
7 X,
- r=k+1 Jr ( mtl 1 mgl 1
K I K 2
Ry Tl Y o okl LA+ Dy
r=1 Jr r=1 jr Jrk+1 # r=1 Ir t=k+1 rt
L T+l
m+1
1 m+l
- Z 1
Py el k k3 . eba K m
Tict1 ka2 Z1Ajr+t £+1 Ir " L+ 1y
r t *rk+1,...,rm_1 r=1 “r t=k+l r,




Note y(@ ui) = zi(Qi) + Ay ) b, (s, 2,)
sCll
=4
|s]>2
=n+
N+ ) by (s, 2,)
s
=4
|s|>2
so,
I m
n, A+ ) A,
i m 3 Jp m i 2,3
k (14) Vor = L VP +( ] k J—E=-E
4 p=l n p=l “p neAy
v
- b (s, 2)) .
i n Sgﬂi

want to show (14)-(13) > O.

1 m m
(18)-(13) = ——| § K, (A, + I A, -n, (A + A
AN | Pl Jp( e g Jp( ! jp))

-1 i
sgpi
4 Is[>2
A lot of algebraic manipulation leads to:
m !
(15) K <A + A, - n (x + A )) i
i i
jp q=1 jq jp jp |
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Thus (14)-(13)

— —
m
=)
= AK,(A +A) I b.(s, @) -V, - T b.(s,9)
PER P M T S o, i i L i
j es |s|>2
L |sﬁ)12
> 0 by definition
m
1 2 I 1
= - 2 Aj Kj z bi(s’ Qi)
)\in r=1 P P smi:
J'pEs
[s]>2
L3 ) ]
+ — A, K b,(s, Q) - V_ b, (s, 2,)
7 lpm1 3, 3 s, i i 1 s, i i
j_Es |s|>2
IstZ
L [m |
> — ZAK z b,(s, Q,) - V_ z b.(s, Q,)
= o1 3p 3p o, 1 1 L g, & i
jﬁ’es |s|>2
ls]>2
| L = i
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>0 since z
kes
|s]>2

MK 2V

It would be false to say that one never repairs more than

one at a time in state zero.

parallel model

Example: n=3
Al =3

Kl =1

V , = min min A (K
-1 i=1,2,3 17

MK, + XK,
11 3]

AZ =2 X3 = .5
K2 =2 K3 = 20
p=2
+ p), min
(1,3
=12,13,23

= min{9, 8, 11, 7, 13, 14} = 7

So, é = {1, 2}

Theorem 3.3 = §

Theorem 3.4 “'Ggpt E{Rl’ R

+
need single
ergodic chain

opt
12

opt
60 €(r

opt
and 61 R2
opt
5, Ry
_ WOPt _ 0Pt _
13 =833 =4
g» A

12° Ryyr Ryst

ki e




2 =t 4T S kA el T oW s o v

From state 3, you can (1)

(11)

\Y 5
o, A‘*Rlz - 7'6-

(i), (i1i) are not optimal, giving an example of a problem for which
it is optimal to repair two items in state zero. Notice the negative

v Although a V_ optimal policy minimizes the total expected

1]
o8- 0

cost, the Vo's themselves are not the total expected cost given

a starting state for that would have to be > 0 since there are only

costs in this model, no benefits.

The remaining question is: Does Theorem 3.4 hold for k-of-n
systems when k > 1? In general, the problem is still open. There

Ljdgeeiy

0.R 's which is
>3

is no "nice” convex combination of V

ilizn . .ik
smaller than VO given m > 2 for k > 1 as in

,RQ -
s

Theorem 3.4, We can say, that if p 1is small enough, part (a) of

Theorem 3.4 holds for k > 1 using the method of proof of Lemma 3.2.

Lemma 3.5: Suppose we have the Basic Model and a k-of-n

system. Then, if p, the penalty cost, is less than




D A

it is never optimal to repair more than one unit at a time in a

state s : |s| = k.

Proof: Pick s = (il, 12, cees ik), Qs = (Jl, Jos ey jm)

m>1

The proof of Lemma 3.2 holds exactly up to Equation (10') where a

"- p" term must be added to the RHS due to system failure when

following the policy A ~+ Qs' The RHS is now only

m
Y A, K,
o1 3,3
>0 < p(p._k_'_LR’
1A
i
=1 "q
which is true given the assumption on p. 0

In the next section, we look at the parallel case in detail;
coming up with an exact optimal policy in some cases, by defining
optimal decisions in states O, 1, ..., n vhich are transient.

One final note with respect to fixed charges. Recall
Theorem 3.3 which states that for a k-of-n system, it is never
optimal to do anything until there are k or less components
working. The proof of this theorem (and thus, those of Lemmas
3.1 and 3.2) does not require L = 0 and, in fact, goes through
with only slight modifications to include an "L". Theorem 3.3
is restated below now including specific reference to the fixed

charge case:




e— o

Theorem 3.3 (restated): 1f we have a k-of-n system and
the Basic Model with some fixed charge L > 0 for repair, then it
is never optimal to repair until you get down to k items left

functioning.

Proof: Same as for Lemmas 3.1, 3.2, Theorem 3.3, only with

an "L" added.

2. The Parallel Case

In Chapter II, a V_ optimal policy was found for the

1
Basic Model and any general coherent system. Unfortunately, a
V_1 optimal policy is only unique up to what goes on in the ergodic
states which, at least for the Basic Model, comprise very few of
the total possible number of states. Thus, to break ties among
V_l optimal policies, and find the optimal decision in transient
states, V0 was looked at in the previous section for k-of-n
systems. Using it, the possible decision space was restricted
significantly, but the exact optimal policy given any possible
values for p, Ki's, and Ai's was too complicated computationally
to be found. Given specific parameter values, optimal policies
can be found using linear programming or policy improvement
algorithms on the computer as in Chapter VI.

There is one case, that of the parallel system (k = 1)},

where a general optimal policy form can be found for certain

parameter values. Such results being the most desirable, this
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whole section will be devoted to the further restrictions obtainable
on optimal policies in the parallel case using the Basic Model.
General optimal policies will be obtained where possible.

Consider a parallel system with n independent components:
1, 2, ..., n, with exponential parameters Al > AZ > ees > An, i.e.,

order them by increasing mean lifetime. Let il’ iz, ey in and

jl’ jz, ey jn represent orderings of the components by increasing

repair costs Ki < Ki < see < Ki and by XA, K, < A, K, «<eee< ), K,
1 2 n 313 J2 2 Ja In

for repair cost/mean lifetime ratios respectively.

By the results of Chapter II, we know that

V ., = min min X (K, + p), min (A.K, + A.K,)
1 i=l,...,n > 1 i.ppe I
l1,...,n
i+j
= min min MK, +p); A K, + i, K,
t=1,...,n0 1+ 1 i Y

There are two types of optimal policy structures:

(1) V_1 = Ai(Ki + p), some i. Then &= {ergodic states}
t .
= {0} dgpt = R,. One then has to determine dgp for i =1,...,n.
We know that 6;pt = Rp(i) (where RO = A) since it is never optimal

to repair more than one unit at a time in i (Theorem 3.4). Thus, if

start in 1 and R the next new state entered will be p(i).

p(i)’




Define a policy &(1) by:

s(p(1)) = R,
. p (1)
£

§(p"(i)) = R .
i pl+1(i)

where pk+l(i) = 0(6(pk(i) = A), some k < n and pq(i) # pr(i)

if r #q since &= {0} must be the single irreducible ergodic

chain.
(I1) V_1 = A, K, + A, K, . Then
Ji Jl 32 32
(s . opt _ opt _
€ = (i 3,} ¥ Rj 6. R, -
1 2 2 1

opt

opt .
Must determine éi , 1 # i j2 and 60

opt = =

61 Rp(i) as before where RO A and 0 < p(i) < n.

68pt = Rp P since repair of a single unit would produce two
172

erodic chains and repair of three or more units is impossible by
Theorem 3.4 (b).
First, let's examine policies of type (I). Suppose

V_1 = AQ(KQ + p). A policy &8 can be characterized by partitioning




the set {1, ..., n} of components into m subsetls where
m = number of i such that Ri in any state . Call these

components a;, a am, ordered by a, < a, < -*+ - 4 . Let

1 < m

g7t

1

i, some k}. Within each set C,, we

i

¢y = {1 <3 j.n[pk(ai)

can find an ordering a, p(ai), pz(ai), ey pk(ai) some Kk,

k+1 , .

p (ai) = (., Order the elements of ¢, 1im such a fashion v,
clU vee U Cn = {1, ..., n} but ci 2 cj # ¢ necessarily if i # j.
Now, let ¢ = Cy€y and suppose we are in state 1i (the

first state hit for which one component is left after doing nothing

since all components were up). Let p be defined as in (1).

8
\Y solves

0
8y o8 _ o8 _ 8
(2) (I - Q) V5 = Ry Q Vv,
d s v = (K, +p) A
an PV g TPy
x § 8 § 6
(3) PoQ Vg =P, Q, V

Using (2) for s € & with the single equation (3) gives the

solution (unique) for VS, s € & . This is the same for all possible
§'s since the §8's being considered are already V_1 optimal

Thus, equations (2) for s & & (transient states) are sufficient to

differentiate between & and some other V_1 optimal policy. By

s
0

s = {i}. As the s & {j}th equation of (2) will never depend on

Veinott [31], minimizing V for one s does it for all s. Choose




t : |e] > 1, only the rows 1, 2, ..., n of I - Qg are needed
for computing Vé, any 1.
I_QS: Columns
3| s : 0 .
row decision ISI 1 t ] _ Eg 91 !
i A 0 1 0 -1 0 1/>\i
i R 0 __Ai Ay 0 K, /()
J X FA, A A, J J
i3 i ]
. 0
Equation (3) ="'VO = Kl + p.
Let
z, =4§1 - Qé_ Tows s =1, 2
(S _ 0 + ’ ’ ]
columns s =1, 2, ,

z is invertible (elements given previously).

8

Equation (2) == for i =1, ..., n,

§
(4) VO
-1 _ h -1
Let zé,i- =i row of 26 then
i _ -1 )
(41) Vo,s = Z6,1-®Ro,1
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If 6(i) = A, then
i v
-1 _ . § 48 § _ -1
zd,i (o olo °>’RO,1 Ql,i V__1 )‘i
or
, v
Vl = __.,—‘1
0 Ay
If iecj, some j with
8(1) = Rp(i)
§(p(i)) =R 9
. p (1)
s 1)) = 3
6(pk(i) =j)=A as in (1) ,
-1
then zé,i-
1 p(i) pz(i) ........ pk-l(i) pk(i)=j
A +A A +A A +
A . i 2., . X k-1
= (0+410 My P P26y b (i) (i) R €Y ] 1 0:+-0)
A, X, A
i p(i) pZ(i) pk_l(i)
8 § 8.t
Ry = Q V)
i ) D) rereerneeaen.. ol pM)=i
- <K - _V_—l_ K ~-1 K V—l -v-l >
i X A » - s hd , X
p(i) oy p2a) Ap(i)+xp2(i) 3 Apk_l(i)+xj J
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D 1o i st e v b b s

so,
A +X
i 5w et _ Vg
5) v ) A K
0.8 psi\* a1, *n ") p"(W) *a ot
pr @) ptw) /P (1)
or
i k K n(i)
\"S = Z u _ -+ u . _L_ -V T - A
0,8 o=l pn 1(i) n(i) Mo, -1 n(i) i-1
P p (1) P
where My o= ﬁL- = mean lifetime of component i.
1

We can now compare various policies, starting from state 1i:

Definition: Let 1 + p(i) -+ pz(i) > oeee & pk(i) =j-0

denote the policy which has &(p* 1(1)) = R .-

p (1)

Lemma 3.6: TFor the Basic Model, parallel case with no fixed

charge, if Ai > Aj and Ki > Kj for some 1, j, then unit i

will never be repaired in an optimal policy.

L ¢ Proof: First, we will show that one never repairs number i

in the ergodic states and then in the transient states. To use in

an ergodic state, we need




= XiKi + XkKk))

Note A, > A,, K, > K, ® 1, K, > A,K,. But X ,K, > X.K., and
i 3 i i ii ij ii i3

Ai > Xj (so Aip > Aj «p for p > 0)

= =
Ai(Ki +p) > Aj(Kj +p) so & {O}Riin g loses

to &= {O}Rjin o and is never V_, optimal.

Similarly, since AiKi > AjKj’ AiKi + AkKk > ijj + AkKk

= € = {jk} beats &= {ik}

= never repair component i in an ergodic state.

For the transient states {2}, let

F § : Ri in ¢, then follow same policy
Y ¢ Rj in ¢, then a1 -> a, > see > ay > 0.
then
Using (5), we get if a; = 0 §=2>1i~ 0)
y=4£-+>3~+0
K K
i i
Lo d + — * - [
§ <y (u2 ) b Vg otHy < (“9, + uj) by Va1 uj]
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B -

K K

which never occurs since Ei- > —1 and ui < uj and K

Y 175
so, L > i+ 0 never optimal.
Now suppose a; # 0, a, = 0. Again using (5), 6§ < y Vg <V
Ki T Kal
e» —_— - . + —_— .
(g +u)) ” Vo ooy (uy +u,) ” Voot
i 1 a, 1
- - . -
~ - —
f&i Kal 7
< (“z + uj) ol v, My + (ui +u )-;—— -V,
3 1 a 1
1
0K “ay
L4 —_— - - - -
(6) My 0 “j + K, Kj + (uj ui) V_l “q < 0.
! 1 1 I | 1
>0 >0 > 0
Ka
1 .
Notice that, if V_l _>__u—, then this is impossible and 6§ is
a

never optimal.

Consider policy o: 2 + 0 (A in ) § <o ® Vg < V0

K
I(1 a1
<« — - —_— - .
(u2 + “1) 5 V-l”i + (ui +u ) 0 V_1 u
i 1 a
1
=
X Kal
<> —— : —
(u2 + “1) y + (L1 +ouy ) " V_1 <0
i 1 a
1 -
83
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¢, if V , <

and é is never optimal.

-1 - Ya, (1+1+a,+0)

Now, suppose we have 6 = & » i » a; > et *a > 0, k>2, 0 as

before, and y = 2 ~ j +» a; > oo +a > 0, § <y * (6) holds so,

as with k =§ > v.

h
—
<
v

§ <a “’Vg < Vg, (using (5)),

e iad

But, from Lemma 3.7 which immediately follows, for § to be a

possible optimal solution, we need

84

K
Ki al
< _ - . —_— - .
PR v S P CPRL S AR Vot M
i 1 a 1
1
k Ka.
) (ua +ua)—‘]-‘J -Vt | <
j=2 j-1 3j aj j
K. K
{ K k —=a a
i - 1
(g +up)) 4 I ou -;—1+(ui+u ) TV
i j=2 j-1 aj 1 ay
k Ka.
+ Z ua -—lu -V_l <0,
j=2 j a,
h|
K
a
6, if V_liu—i;lijj_k.
- aj




.__.]—'<-—2< see <.‘]_£.
H U
U "
K K
a a
Thus,vl_<_u—1='v_1_<_-l-]-l,l_<_jik"6>o
al aj
Conclusion: K
a
1
V_IZT=5>Y
!
Ka
v < ——l-='6 > a
-1 = My
1
so, 6§ 1is never optimal. So, never repair i 1in any state. O

Henceforth, in addition to Al > eee > An’ I will also assume
K1 < KZ < ese < Kn’ which avoids inclusion of "irrelevant' components,
i.e., those which are known to never be worth repairing from the
start.

The next two lemmas are useful in further reducing the

possible optimal policies:

Lemma 3.7: Suppose we have the Basic Model, parallel case
with no fixed charge and Al > A2 > see > xn. Suppose we start in

gstate 1. Then i > a beats i > b~+>a (1 »a means Ra in 1)
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K
ifeither—li>-—a-or b>1i and b # j,.
U 1
b a
Proof: lLet &8 : i+ a y:1-+b~+a.

v vd el +u) EE—- v, - + Qo+ u) % _ v
0 Yo [ s L -1 % Mp T ¥, T Ya

b
K
< (u,tu)2-v. o
i a’ u -1 a
a
< (u, + )§+( - )l'(g< v
S T L LTI N |
a
v u K
) ¢='(1+—1)—K3+(1-;i)-;,ﬁ<v~l.
» ¥ b ‘a
Ka
Suppose — > — . (7) is true
Yb ua
K u K
My Mg By | My My
K K >0
h| h
>Il—-+r_2_
3 3
K K
j1 j2 Kb Ka
¢, since V < + — 80, — > —™®§ <y.
-1 =y My My Mg
1 2
K
Suppose-——<—§. (7) is true
"b Ha
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K > 0, 1if >0
b h | )
> 1., ;_g’ b>1
I X
if b#jl
¢, 1f b>1 or b4 3, gso, b>1=§ <y ]
§b 43 O

Note: Lemma 3.7 works for

§:¢c, > +»¢c >1i>a>ra, > eee+a3 >0

1 q 1
Yie > ses > cq +1i-+>b->a-~> a, +> ser >3 >0
,Y' 6'
since y < § “‘Vo < V0 where y' : i > b - a, §' : i +a.

Lemma 3.8: Suppose we have the Basic Model, parallel case

with no fixed charge. Suppose we gtart in state i. Components
are ordered ¥y < Hy < see < By oo
(Al > XZ > ses > Xn)
3
‘ Then:
k (1) 1 >0 beats i+ p()+0 if p(1) <1 and p() #j,.
{Recall: j1 = arﬁmin AjKj) }
and 1

(11) 1 >0 beats 1+ p(d) + +++ »pS(1) >0, k > 2 1if

pk(i) < 1,




Proof:

(1) Let & :1+0, vy :i-+a-=0, vg <y

u K
v, <(1 +;1)u—a , always true if a < i and a # 3
a/ a

(11) Let 6 : 4 +0, vy :di-p(i)+ e »pc) +0, K> 2

V8<Vg
$ P
¢0<z “jl +uj EP—_uj V-l
j=1 p” (1) LA CD) R P p~ (1)
K
k k j
”V_l z TR < u 1 +uj —L(Q, where po(i)=i
L@ s T 0 ) Mg,
K K
k-1 k-1 3 j+1 ., K_,.
. V-l( TR DI I i) s 163)
L@ pw) gm o\ My, Mg Yp i)
Ky
+ . p @)
Uk u
p (1) pk(i)

POk k1 ¥ 3 £ 1 K j41
“v_fr+ p @) . ) iziiil___ p ) p” ")
- = y

u

u
] Ry Py pitlw)
371 pd (1) =1 pd 1)
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e N P g " W

K

u
K k
P S Y¢ SIS ¢ S W €Y
k-1 up(i) k-1 Mo
Z v 3 Z u j p (1)
=1 p" (1) j=1 p (1)
True, if
7] K
K k k
VL o< L), p ), p ()
Yok B L u |
i i ]
p (1) p(i) pk(i) _
1
since '
K K
V , < convex combination of —1-+ d 's
-1 = My My
J
So, true if
K
u K k
v, <o i, up(i) + up (1)
i k
Py P® @
k
which is so as 1 > p (1) and
K
K k
v, < u1>(i) + u19 1) O
p(1) pk(i)

Using the results of the previous two lemmas, we can now
state the basic theorem describing optimal policies in the parallel
case. Although it does not specify the optimal policy in general,

it brings the number of possibilities down to only a few, which




could be differentiated by hand using (5). In some special
cases, more can be said and optimal policies described exactly.

Such is the case when (i) the cost/lifetime ratios are ordered

K K
the same as the mean lifetimes, (—l < eee < —2) or (ii) the
M1 Mo
K£+p
value "t" in V | = is small.
-1 ugl

Theorem 3.9: Given the Basic Model, a parallel system

and no fixed charge, let § = €1y **° Cn be an optimal policy
as described on page 77. The elements of Cj ={i, p(i),
pz(i), ooy pk(i) = aj ) have the following three restrictions:

W ) <pfU) v 0<j<k-1

k-1

(2) i>p() > >p (1)
K K
K ,. 2, k..
3) p(i) < B i) < eee < B (1) .
H_ /. H U
PO P P (o)
Proof: Directly from Lemmas 3.7 and 3.8. O

Note: Conditions (1) and (2) state that, given state i
is the first one reached with |s| = 1, the lart element repaired
before doing nothing must have longer expected life than i and
all the ones in between must have successively shorter ones up

to the last one.
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Theorem 3.9 simplifies considerably in the case that the
component cost/mean lifetime ratios are ordered in the same way

K K
€ eee < u—“ condition (3)

K
as the mean lifetimes (i.e., ;l <
n

1

=
NN

becomes p(i) < pz(i) < ree < pk(i)-

Corollary 3.10: Given the hypotheses of Theorem 3.9 plus

—l>< —3 < ese < —E-, z et ¢, will have no more than 3 elements,
u u u 3

1 2 n

i.e., k<2

Proof: Suppose k > 2. Conditions (2) and (3) in Theorem 3.9

lead immediately to a contradiction. O

Thus, in this case, given initial |s| = 1 state i, three
things can happen before doing nothing and entering the ergodic state

zexo:

(i) 1 + 0 (do nothing)

(i1) 1 - p(i) - 0, p(i) > 1 (repair a component > i, then

do nothing)

(111) 1+ p(1) » p2(1) » 0, p(d) < i < p>(1)

Which of these three and what exact p(i), pz(i) give
optimality can be easily determined by comparing Vé 6‘s using

equation (5).
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Another type of optimal policy restriction occurs when the

K, +p
value "2 in V _ = L is small.
-1 UR

ey

Lemma 3.11: Suppose we have the hypotheses of Theorem 2.13
Kl+p
with V . = —— ., Then

(1) If i> ¢4 jl’ i~>0 beats i+ j >0

(ii) 1f 2 =1, 1 >0 beats i+ j - 0 unless j1 =1

in which case 1 + 1 > 0 might beat i - O.

Proof:
By K
i—+3j~>0 Dbeats i+0 < V__l >{1 + ——-) ;l
3 ]
Suppose this is true. Then
K.+p ui K.
sy _ sf1+ 2} by definition of V . .
M. -1 ue | ou, -1
, i 3773
K, K, K,
= p > u, RIS H, * 1 if i>2 or £ > -,
i My~ L My = 17} My

But, also




s R——T— - PUTIET Lo i
K, K
A j
v < 1 + —~g
1 2
K K
b b K
<> _R_ < l+___2_-_9'
U M. U U
L 3 3, L
Thus,
K K
K, J ] K
i> 0= Ul < By T2 R
- . U H M. u
] 2 J ] L
{ ( 1 2
K. L——-*——TJ
31 < 0, if
z U, £¢Jl
]
So, i > ¢ # j1 =  CONTRADICTION Q.E.D. (i).
If £ =1, then i > £ automatically.
If jl # 1, then CONTRADICTION, as before.
If jl =1=2 and j # 1, get CONTRADICTION. Q0.E.D. (ii). O

Using Lemmas 3.7, 3.8 and 3.11, some special "“small 2" cases have

particularly "nice" optimal policy forms.

Kl+p

"1

Case I: v_l =

A. jl # 1. Then Lemma 3.11 = { ~ 0 beats
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= 4+ p(i) +» oo » pk(i) +0

i.e., do nothing in all states i is optimal.

B. jl =1, Lemma 3.11 =1+ 0 beats 1 >3 +0 if j ¢ 1.
So,
k
1 +>p() + eee +p (1) + 0

>i+p(1)+o-o+pq(j_)-y1->o.
Lemma 3.7 = i > 1 beats 1 =+ p(i) - 1, since

¥
—Pﬁ (3, =1, so

1 p(i)

Thus, given state i, the optimal action is to either do.
nothing or to repair component number 1. If i = 1, then do

nothing is optimal.

1+0<i+1+0 = v_1<(1+—1)uﬁ -,
1
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RPN .

If

u 1] K
(1 +_1)_l< V-l <(1+£—1-)-—]=, then policy

A R Rl-'- R A eee A is optimal where Mt = ¢

+1

Case II: V_, =

_1 (2 = 2)

Hy
(<)

A. j  #2. Lemma 3.11=1 >0 beats 1+ >0v¥i>2, 3.

so,

i > p(i) > ese > pk(i) >0
>4+ p) > >pl@) 140 (1f 14 1)

>1i-+0 by Theorem 2.13 (1f i ¥ 1).

If 1 = 1, then true just by Lemma 3.11.

So, do nothing in all states 1 is ogcimal.

B. jy=2. 10 beats 1+j>0 4f j#3 =2, 122
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So,

>1i»>p(l) > e +1-+0 or 1+p(1) » eec+2>0
>1+0 by Theorem 3.13 >4 +2+0 by Theorem 3.9
since jl = 2
>4 +0 if 1> 2.,
So, the optimal policy is:

If in i > 2, do nothing

If in 1 =1, do nothing or repair item two, depending on how

large V_1 is.
As L gets larger, Lemma 3.11 eliminates fewer policies, improving
little from Theorem 3.9. Even in the case 2 = 3, it is no longer
true that jl ¢ ¢ means do nothing in all states 1 is optimal.

Also, notice that Lemma 3.11 and its applications do not require

K
any particular ordering on the ;1'3, only knowledge of the minimum

i

K£+p

- This concludes investigation into Vo optimal policies when

i
Kl+p

vV, = s Some £,

-1 u,
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Now suppose

h 3
V, - ;—1 + u__2_ , where
i 9
K K
J, = argmin A i 3, = argmin i :
3H 3, M :

Suppose you start in state 1. A policy is then of the form

(1) 1 p() » s > 5 or 4,

or

@  1rp@ >t a0 pThgy) » e s PR 55 or g,

or
q+l vee k
Py (1) » - pl(i) - jl or 12

(3 1+p@) > e+ 0
\\‘b§+1(1) > eee 4 pp(1) >3, or 3, .

One can define Vs = [I - Qg] rows {0, 1, ..., n} ~_11, i,

cols. {0. 1’ ceey n} ~J1’ jz

K,""p
‘ similar to what was done in the V_l -

case. Then
L

i -1 6§ _ 46 ]
VO,G - y&,i' (RO,i Ql,i V_l), where § 1s a policy of type (1),

PN

A T a e mae

xRt e
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eyt

2) or (3). The computational procedure is the same as before

M T C e S TR —

¢ only the types of policies are more varied. To get similar
restrictions on optimal policies here would take up twice as much
t space, adding little of importance. Thus, we leave this case as

R in j., R in j_ 3 R
jl 2 j2 1

i
p,P, n 0O (some plpz) and Rp(i)

in 1 (p(1) could be zero), where Pys Pys p(i) v i are to be 3
determined by comparing Vé's for various policies.
We conclude the section with a couple of other special cases

of interest. Lemma 3.12 gives conditions under which

K, +p K K
3 J A
3 V_1 = ul or m 1 + m 2 .
iy PR 2

Lemma 3.12: Given the hypotheses of Theorem 3.9, if

A +A, K, -2 K ALK, =A ;
3,59,7,5,7 5 17,5, |
T X cmr ST, f
1#31 i >3, 3
then
K, +p K K
3 3, 9
vV, = 1 or 1 + 2
Ty M, M
1 1 2

no matter what p 1is.
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AK -2, K

Proof: P < min ii jl J1 -
1>§ A, -A
1 _11 i
Ajl(l(j1 +p) < )«1(1(:l +p)vi¢ 3 -

A, K, ¥\, K, -\,K
3,73 73,3, 1t
p > max N -
144, i

Alejl + Ajzsz SRR R SRV B T

Thus, if

A, K, A, K, -A,K A K,-A, K
314 3,4, 11 1144

e A AT = Vi

i85, 1 3, MM

Ai(x1 +p), 1 ¥ 51 > Ajl(le +p) or Ajlle + Ajzsz

= V_, 1is never Ai(Ki +p), 1 ¢ jl. 0

Lemma 3.12 gives a condition under which the V_, optimal

1
policy is to keep either the j 1“ component (one with min 2 1‘(1)

working or the }§ st and } nd (two min ) ,K,'s) no matter
1 2 i1

what the penalty cost is. Some examples for which this is true

are:




A  (identical component lifetime distributions)

‘1‘1’*jile
main FOES) = o
3, T34
L leleﬂjzsz'xixi
max X = 1(,j +»1<_-1 -xl < ®
ifjl i 1l 2
1
(11) Suppose
!
}
(8) A K, - lele 20 - Ai)sz vidj .
Then
Ajlle - MK 2y - Ay sz vi¢i,
:
so |

A, K.+, K, -2 K A4, =AK
333, 3,3, 11 173, 1))
171 272 < max ( 2 ) 2

193, A 18, N




17, ,
=K, °* max (1 - <K as A, > A, § 1
32 14, ot 32 1
AK,-A, K
175,
<=1 % j by assumption (8).
- Xl-A 1
i
So,
A K -A, K AK,-A, K
t13,9 tth 4
smin ——g——cmin eSS since ) 21, A <Ay,
143, 1™ 145, 3,1 1

the hypothesis of Lemma 3.12, The key to having (8) true is to have a

i1

In summary, if the differences in expected cost/lifetimes of

sufficiently large spread of the A_,K,'s compared to that of the Ai's.

the components is large enough compared to the differences in expected
lifetimes, the V_1 optimal policies are simpler and more "intuitive".
If, in addition, the cost/expected lifetimes are ordered in the same

K +p

way as the mean lifetimes, or V_.= —%—— has £ small, the V

1 ; optimal

0

policies simplify.

One final interesting case is that in which
c= A1K1 = ses = AnKn. Then Al(l(1 + p) > vee > kn(l(.n +p)wp>0,
i.e., 1f &= {0}, then repair of the unit with longest expected lifetime
is optimal. Also, note that if p = 0, the optimal policy is always to

let the system fail and then repair that component with smallest expected

cost/unit time. For the case above in which these are the same, we can




also say that the Vo optimal policy is to do nothing in all states
1, ..., n before hitting O since V_1 = ¢, (Of course, then it
doesn't matter which component gets repaired.)

For some examples exhibiting V0 behavior for the Basic
Model, see Example 6.2 (Chapter VI) as well as the solution to
Example 2.1 presented in Chapter II, which concludes this section and

chapter.

Example 2.1 (from Chapter II, Sectiom 1):

Basic Model, n = 2, parallel, L = 0.

Case 1 V_l = AlKl + AZKZ:

No transient states accessible from {12} for which decisions

must be made.

optimal poliey R, R €= {1, 2} .

Case II V_l - Al(Kl + p).

If AIKI > A2K2 (j1 = 2), then by Case I.A. (Application of

Lemma 3.11),

> =
>
w
=Y
[ ]
—~—
o
[y

optimal policy

If A1K1 < Azkz (j1 = 1), then by Case I.B. (Lemma 3.11

Applications) the optimal policy is:
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&= {0} .

Case I11 V_l = )\2(1(2 + p):
If )‘lKl < A2K2 (_']i = 1), then by Case II.A. of Lemma 3.11

(Applications),

optimal policy A A R &= {0} .

IE AR > 4Ky (5

applications, the optimal policy is:

= 2), then by Case II.B. of Lemma 3.11

1 2 0 My K2

A A R2 . if V_1 < 1+ ool v

2 2

1 2 0 My K2
R, A R, if v, > 1+—)]—.

2 2 -1 Hy f My
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CHAPTER 1V

THE DEGRADATION MODEL

1. Description of Model

In the Basic Model it was assumed that system components
are either working or failed (on/off) with exponential lifetime
distributions. However, for many systems, the components may
be observed in some finite number of states of increasing
degradation before failure. The more degraded the component at
the time of repair, the greater the repair cost. The Degradation
Model takes this factor into account, having the following

Coherent System Repair Model parameters:

States: each component can be in one of '"&" states of

degradation or new.

oth

new

lth

failed

l, ..., 2 -1 = degraded (not failed)

Repair: instantaneous, unlimited service - brings degraded

component to 'mew" condition

Component Lifetimes: Let Lt = lifetime of ith component
given it is in the kth degradation state, 0 < k < R.

k
-Xit

The L: ~1l-e = p{L: < tl.
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Notice that if 4 =1 (ISt degradation state = failed),

then the Degradation Model reduces to the Basic Model.

Of course, in the process of increasing the number of
states in the model, a price must be paid in the difficulty of
obtaining results. Only the general series case (series systems
are viable now unless £ = 1) and the identical component

parallel cases are treated, and for V_, optimality only. Luckily,

1
in the series case, V_1 optimality is sufficient to give the
general optimal solution and in the parallel case it gives the key
information desired. In utilizing this model, it would certainly
be advantageous to keep the number of degradation states as low

as possible, while still capturing the essence of the system being

modeled, as the total number of states is of the order (& + 1)n

where

=
]

number of degradation states

n = number of components.

Section 2 treats the general series case while Section 3 looks
at the parallel case in identical components with no fixed charge.
Section 4 presents some possible changes in state and/or decision
space in this model to provide extensions of the Basic Model to
Erlang component lifetimes as well as provide insight into other
possible non-constant failure rates for components,

The number of parameters needed to specify the model is in-

increased k-fold from the basic case and are as follows:
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(1) fixed charge, L > 0,
(2) penalty cost for system failure, p > 0,
k k th
3) Hy = 1/)\i = expected length of time i component

spends in the kth degradation state (exponential).

These are defined for k=0, 1,...,i-L and 1 = 1,...,n.

k = 2 1is not defined since component failed there.

th

4) Kk = cost to repair ith component when in the k

i

degradation state.

These are defined for i =1, ..., n and k=1, ..., 2

(k = 0 is new and no need to repair there).

0 < Ki < Ki < vee < Ki is assumed to allow for

increased costs to repair in higher ("more'") degraded states,

A state in this model is denoted by a vector, s, of length n;

8 = (sl, Sps +ess S ) where s, = k 1f component i 1is in the kth

i
state of degradation. A change of state occurs when one of the
components enters a higher state of degradation and at such an
instant, a decision is made to repair some subset of the degraded
components or to do nothing, (some repair need only be done if the
system is down). Repair is always assumed to bring a component back
to a "new" condition. Each state as defined now has exponential

holding time so the Degradation Model is also a continuous time

Markov decision chain with infinite time horizon.
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As before, specifying
(1) state space
(2) decision space
(3) transition structure
(4) cost structure
(5) objective function

defines the model completely.

The Basic Model notation in Figure 2.1 applies here except that
the component related cost and mean lifetime parameters now
depend on degradation state (superscript) as well as the component
(subscript). Also let ¢ = number of degradation states. Obviously,
these could vary by component but for notational simplicity, I
assume they are the same for all components.

The Markov chain specified by the Degradation Model is as

follows:

State space: States = which components in what degradation

th

states s = (sl, ooy sn y . If component 1 is in the si

degradation state, 0 < s, < L. If system is k-of-n and

components are identical, then states are the number of

components in various degradation states, i.e.,

h

8 = <So, Sgr oo Sk> » where s, components are in the it

i

degradation state, S + $; + e + s, = .
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Decision Space: Let @ = {1, ..., n}. Possible decisions

in state g = (sl, ooy sn) are RQs where

Q €~ {i: s, =0} = set of non-new components in g.

s i

- Qs = ¢ ® RQ = A (do nothing)
- s
- if system is down in s, then R ¢ .

Y
s

~

Transition Structure: The transition matrix, QO : (assuming

§ : R in §). Fix g = (sl, Sys eees sn) .

hac.

i
Definition: State t (tl, ooy ti-l’ ci+1,ti+1, cees T

if t = (to, tl’ ooy tn) (gi is t with ith component in a

higher degradation state). gi is only defined for ilti < 2

. 1 1
1 (non-failed components). Also, let state F U Qt = (tl, ceey tn)
where
1
1 0, 1f 1€ Qt Note t U Q_  is the condition
t= ~ Nt
1 of the system after instantaneous
t,, if 1@ .
i t repairs Qt in state t.
108
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( Aqﬁiys)i )
i
ToGugy, ey, e
z A st
§ h) >
Q) g~ (37
s, (sW2.) ’
\ 0 » otherwise ) %
QG 1
1,s n (sUQ), °
~ z A 8’j
3=

( ¢ 1 \
L(l - IQ ) + z Ki s if system up in s
s

L+p+ z Kii , 1f system down in s
\ i€eq )

Objective Function:

*
s Png (any possible optimal & will form a
V_1 "% s Markov chain with a single irreducible
PoQ; set of ergodic states).

_ e =




Below are examples of the series and parallel cases:

Example 4.1: n = 2, £ = 2, series system, L = 0

Then, possible component states are:

0 = new
1= 1st degraded state

2 = an degraded state (failed).

system up system down

States: ' 00 Ol 10 1 " o2 20 12 21'

Decigions: -- A,R A,R A,R_,R R R R R

i,

1

2 1 1°%20 %y Ry Ry Ry j

R 1

12 1

1 1 1.1 .2 .2 .2 .2 ‘

Cost: 0 0,, 0K 0K,k K, K K K 1
1.1 A}

K1+K2 j

Note: Since series model, there is no need for p because

system failure * component failure = can include p in Ki's.

in 10, R

Sample of QO: let 6§ : A in 01, R in 11,

1 1

.: then,

110




21

12

20

02

11

10

01

00

o o o o o o [« -
o o (=] (=] (=] (=] ~ (=]
o~
-~ <
o o o (=] o Lol ~< <+ o
(]
~<
-~ ~ o -~y
-~ ) < -l < - | <
(=] ~ + o < + - o o ~< +
IO~ 1 O - 1O~
~< ~< ~<
-~ -~ o~ — o
o o\Al ﬂ o 1\A2 nﬂ o o O\Az \.ﬂ O\A.l. MTA
I O - O - (] t o~
~< ~< < ~<
o~ o~ o~ [l o]
O mi| < O N| < Ol < © -l <«
< | ¥ =} ~< + (=) ~< + ~< | + o ©
I o= [ ] 1 O w4 1O
~ ~< -~ ~<
o™ o~ o«nN o~
O\AZ nﬂ - O\AZ H o O\AZ \.ﬂ OAZ ﬂ °o o
1 o~ 1 Jo~ [ [= 2 1 O
< ~< ~ ~<
4 (=] o (=] (=] [=] o o
L
[=] -t o - o~ =) ~ —-
o (=] () i (=] ~ -{ o~
[ |
0O
[=4
. a e o, aiaditatuiiintiba ettt

n=2, ¢=2 L=0, parallel system with

Example 4.2:

identical components.

,‘:;1qtallljll-tll

it b

EWES Y

NP -

Y
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system

system up down
States: '200 110 101 020 o1 '' o002 !
Decisions: - A,R{l) A,R{z) Arkl(.l).Rél) AQR{I)’R](.Z)’ R{Z)’R2(2)
g(1)+(2)
1
Cost: o ok o,k oxkt2t  o,khK%, K2 Kep,
2%+

where Rij) denotes repair of 1 identical units which are in the

jth degradation state.

Note the p 1is now necessary to distinguish between component and

system failures.

2. The Series Case

Consider now the case of a series system, i.e., one which
fails as soon as any one of its components does. As long as no
component has reached the lth degradation state (has failed),
decisions can be made to repair any subset of the degraded

components. If the system fails due to a failure of component 1,

then the required decision is to immediately repair component 1
(no matter what condition the others are in). 4

The following theorem gives the optimal policy:
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Theorem 4.1: We have the Degradation Model with a series

system:
5
Let ji = argmin 3 .
<9<t 7 op
I vy
p=1

Then the optimal policy is one which does nothing to component 1

until it reaches the jith state of degradation and then repairs {t.
Proof: Directly from Lemmas 4.2, 4.3 which follow:

Lemma 4.2: Suppose we have the series Degradation Model.

Fix a policy 6. Then

J
s n A Ki
v- = z 2 ui . j-l .
i=1 j=1 Z up
i
p=0

¥ 1
where z a; = 1, wv#1i=1, ..., n and oy >0.
i=1

Proof: Fix 6.
*
Let P = stationary transition probability vector given §
= (P_s) for possible states s.
N Z
Then P (I - Qo) =0,

(Since 6§ 1is fixed, we drop it to simplify notation).
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§ 3 3 AN i - - T 2 i
s L s [ U Y

*
PR ] n ;
V.= L. ) Ki ) P, (8=(s;, ... 8)) i
P Q1 P Q1 =1 i=1 s'Ri in s recall s, = degradation §
and s,=j state of 1 in s . '
L n j Ki
= X Z a, ° 31 , where
i=1 i=} z P
g1
p=0
j-1
T N S
p=0 s:Ri ins -~
Gj - si-j
S i P*
Q1

-
It remains to show z uj = 1. Without loss of generality, set 1 = 1.

=1 !
:
To show 2 oy = 1, it is sufficient to show
r
j-1
*
PQ - 2 ) uy ) P,
j=1 \p=0 g:R1 in s
f 51"
i.e.,
L /3-1
*
(1) P, - [ (I ) I e _=0.
j=1\ p=0 AP Js:R. in's
1/-°11 -
sl-j
Some notation is now introduced for use in this proof: 1
1
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P S PN

Definition: Fix 8. Let 9> = 7§ P, be the sum
t|tunt-s

of stationary probabilities of all atates t which are sent to s
instantaneously under §.
- Notice that @Vg is only defined for s such that system is working

since if the system 18 failed in s, # tlt V] nt = 8 by model definition.

Definition: Let si+(si*) be the state for which all

components are in the same degradation state as in s except for the

1th, which is in one lower (higher) state of degradation. If

= (O, then si‘r is not defined.

1
From the definition of %,

s,-1
n Aii
@ Pem L S %M
I YL SO
a0 1 LY
J#d
Thus,
t, -1
n At
i
@ = ] r.= 1 I <t ¥
t'tUQt=s t:tuUQ =g i=1 A i + z A j t
ile #0 "1 y=1 9
j#i
Let W = (@Ws),slaystem up.
Let R = ((Rst))s,t ,» Where




Eeaabindh L ach i d

( ;\ti
i iv
el if tT U 14 s
7 a3 L .th
Rst = < j=1 h | i.e., 1f i component of ¢t
degrades, go to s immediatel
under §
\ © ’ otherwise

Restating (2) in matrix form gives:
(1 - g)eyf= o .

If R = sth row of R and

th
ls = vector of zeros except 1 in the s spot, then

(4) (}s - Bs.)<gf= 0, v states s) system is up.

This is just a restatement of (3) in vector form.

1]
To prove (1), one must get everything in terms of @Vss,
rearrange terms and using certain sums of equations (4), show it

to be zero.

Now,

* 1
PQl'EP-tql,tSZWL—' n ot

Thus

)




A o R AOE I henagon i

) = 2 - § (jil L> I P,

- = P/.
j=1 \p=0 Al t.Rl in t
#1 in j
2-2 A3 -2
1 1
1 E ek N A S

q=0 Ag g xsj (q,g) k=q+1 glRlin (k)

31 (k,s)

where s 1is a configuration of components 2, ceey n = (sz, ceey sn)

and state (q, s) = {q, Sys +ees S ) by (2),

s,-1
Ai_l n Xii
P-(k s) - n s q”?k-l,s) + Z s,-1 n s » it
ok Y o2 a0l eyl st
1 3 i|s.;#0 "1 1 3
j=2 i j=2
j#i

Substitution of this into the previous expression for (1) =
1 - R
L Qa0 " R0 gy]

=0 by %) . O

Note: The proof is valid for any decisions in working
states, but assumes that in states where an item is failed, repair

of only the failed item will take place, not an unreasonable assumption.
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Lemma 4.3 now identifies the policies which correspond to

3

*
extreme points (ui =1, a; = 0, j#3 ) 1in the convex set of

]
v i for possible policies in the Degradation Series Model.

Lemma 4.3: Suppose we have the Series Degradation Model

and let aj be defined as in Lemma 4.2. Then a policy § has

i
ji .
%y
i C oy
@y =0, i # iy

“ § repairs the ith component whenever 1t reaches the jith state

of degradation.

Proof:
. th
Suppose 6 repairs the 1 component whenever it reaches

the jith state of degradation, leaves it alone otherwise.

L-1 p
2 n j Ki i Z M1
V= jZl 121 o 3§ vhere o = o em Zin . Pg *
R L |
p=0 8;=J

Since iSIR1 in s 1if 1 1s not in ji and P-s =0

N
vslsi > ji, ay 0 for j # ji and since
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I3

by lemma 4.2, a " = 1. O
<:> Pick i. Suppose aji =1 aj =0, §#13 aj =0
s pp i b i ’ i’ i
= P_S =0 ¥ s)R1 in s and 1 in j # ji and s 1is in the

ergodic chain entered by starting in the state with all components

working.

= No such s, i.e., § leaves component 1i alone unless

in state of degradation iy O
These two lemmas immediately prove Theorem 4.1:

Proof: (Theorem 4.1)

et VP%=minv® . Pix 5.
6

) n
Lemma 4.2 a’Vfl = z z al . E:Ii—_'z Z c, »

p=0
&
Ci = min 1 by convexity.
1:_"19, z P
My
p=0

n
i But ) C, =V where o 1is the hypothesized optimal policy. O




Note: No assumptions on orderings of the Aj's wich respect

i
to components i or 3§ are needed. Also, the Ki < see < Ki v i
is not needed but is added since if Ki > Ki+m, some m > 1, then ?

servicing i in degradation state j 1is never optimal. l

Note: Theorem 2.7 holds trivially here, i.e., series = n of n
system and never repair until n - 1 items are left working.
To clarify some of the procedures and proofs in this section,

consider Example 4.1 of Section 4.1.

Example 4.1 (continued):

series system

n = 2 (2 components) 2 =2 (0, 1, 2 = degradation states)
_system up down
states: 100 01 10 11 | 02 20 12 211

automatic decisions

Let § - A R R R
(as before)

Using the notation of the proof of Lemma 4.2,




}[P-zoﬂ’.za

11\A2
£ sk
1 1 +
- - + 1_0.A1
+ -l F o - L
— - < e ol F +
~< ~< WO,Al
_1-
+ -
o« o~ .
< < OO\AZ o
+ o ou| + = *
— - < |t e [ B +
~ ~< | = .
+ N -
7] (]
l\AZ l\AZ OO\AZ — p
ol _+
(=] (=l ] O -
Sy <ot e "<
< ~<

’ ’

0.... m. !
o~ O N % -9 ‘
~< < o
+ ol + (= )

(<N ~< o
= = ) Jm =y
L~ 1
— -
o w
)
—
|
~ c
1~
R A
S

2
)
3=1




e

so,

P Ql -

2 (j-1

1
(1%
3=1\p=0 11

)

1 *2 xg *2
"0 [39,,0 oo * 1,0 %10 + 01 P01
1 [ 1My 12
1 1

b A
TR0 T0 Mo T LT M
1 MMM 12

P _ = % + + P,
, s " Moy T, ot T ot T3
s.R1 in 8 A1+Az A1+A2 A1+A2
s,
= @00y oo )% + Q1) ~Ro1. )%
= 0.
122




Set of policies which could possibly be optimal:

Correspond.
N Component Decigions ’ &=
v1 #1 #2 01 10 11 {ergodic states}
1 1
K K repair in
—%- + —% degradation repair in R2 R1 -— {10,01}
H U state 1 state
1 2
1 2
K repair in
Lo, 2 repair in state 2 A R R {10,01,11,02}
0 0.1 state 1 1 1
n uatu (failed)
1 2 72
Ki K; repair in . ir in
1t %5 state 2 :E:t: 1 R, A R, {10,01,11,20}
. +u u (failed)
171 2
K2 K2 repair in r ir in
1 2 P epa {02,10,01,11,
01 + 01 state 2 state 2 A A A 20.12.21}
w.+u u,+u (failed) (failed) T
11 272
K] K
Suppose Cl =3 C2 =9 1-° Then the optimal policy would be
Y1 Hatuy
01 10 11
A R R by Theorem 4.1,
1 1
Note:

(1) Given the general form of an optimal policy in this case,

it is clear that one never repairs more than one item at a time in




R R A

any state since only one item at a time can change degradation state
and repair is done immediately and instantaneously upon entry into
the "key" state for repair.

(2) 1f the components are identical, then the optimal policy
is to repair whenever any component reaches a certain degradation

level

1
NL-l.
L 4
[N

xJ
d = argmin -1 H
1<j<p z up
p=0

=
o Cade e Lo

(3) Theorem 4.1 is so intuitive, there ought to be an easier
way to prove it, i.e., without having to use the stationary
probability equations p*(I - QO) = 0, using only independence,
exponentiality, and series structure. If such a proof could be
developed, one should then easily be able to show Theorem 4.1
is true for the case of different numbers of degradation states per
component. I conjecture that the result also holds for "blocks" of

components in series, [reference Chapter VI for Basic Model case].

3. The Parallel Case, Identical Components

This section treats the Degradation Model for the case of a
parallel system. Identical components are assumed to simplify the
system to the point where general results could be obtained for

V_1 using theorems similar to those encountered in solving the
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Basic Model. These state that, since we have a parallel system and
instantaneous repair,
(i) one will never repair more than a single unit at a
time in an ergodic state in a V_l optimal policy
(ii) one will never repair until the system gets down to

a single unit working.

Showing these two results would limit the number of possible

V_1 optimal policies to a manageable size. Precise Vi
results will be presented in some examples for £ =2 and 2 = 3,
(2 = number of degradation states) and compared to Basic Model results.

In the Basic Model we were able to state Theorem 2.1 which
Yi
-1°

where Y1'S are policies which involve repair of at most one unit at

expressed Vfl for any possible § as a convex combination of V

a time in any state. For the parallel case with different components

Y
these V_i were such that

Y K,+p K
V_ie{;'—,somei; Z—j—,some szzilslin},
1 jés M

or, for identical components,

Yi _ Jkp 2k 3K nkK
R LN NS L

-1




Given no fixed charge, the V_. optimal policy was

1

extremely simple: do nothing until one component is left working
and then, 1f the penalty cost is large enough, repair one unit
(61) (continuing this policy on forever) or if p 1is small enough,

let the system fail and then repair (§ one unit ad infinitum.

o’

Under § &= get of ergodic states = {1} ,

1’
under 6, € = get of ergodic states = {0} ,

where state 1 1indicates the number of working components.
In the series case of the Degradation Model, we were able to

eliminate most policies § from being V_, optimal by again

1

n
expressing Vfl for any § as Z Cg » where the C6 are convex

1=1 1
K
combinations of E:Iis . An optimal policy was found by computing
u
p-0 *
i
C°pt = min i for 1 < i < n, the optimal policy being to
i i-1 - -
1<j<2 P
2J= Z uy
p=0

‘ «th Ki
repair component 1 whenever it reaches the ji = argmin J=1
1<j<s z up
i
p=0

state of degradation. In the identical component case, this
th
*

corresponds to repairing any component that reaches the j

* J
degradation state, j = argmin 3%1——- .
1<j<s Z up
p=0
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Unfortunately, in the parallel case as is exhibited in the
example below, there are no such "nice" convex combinations of

can be written as for any 6. The series

simpler policies that Vf

1
result depended heavily on the fact that when the system (and, thus,
any component) failed, repair of the failed component had to be done
immediately, a fact obviously not true for a parallel system. In

8

this case, even if p = 0, V_1~‘6 is not a convex combination of

xJ

3-1 » or a sum of such combinations. However, the relationship
P

p=0

between them still appears to be the principal factor in determining

at what degradation state to repair a component.

Since the model is parallel, repair is instantaneous and there
is no fixed charge, one intuitively expects that as with the Basic
Model that repair will never be undertaken on more than one unit at
a time and repair will never be done until there is only one unit
left working. These results, though true for the Basic Model identical
component case are much more difficult to prove given failure of the
Basic Model theorems or likenesses thereof and the increased complexity
of model structure in the Degradation case. 1 conjecture these two

results are true even if the components are different but leave it

as a topic for future research (see Chapter VII).
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Example 4.2: n =2, 2 = 2, L = 0, parallel system with

identical components.

system
system up __down
States: 200 110 020 101 011 002

Decisions: - A,Ril) A,Ril{ A,Riz) A,R{ll R{zh R{zl Rgz).
(1) (1)&(2)
R2 R1

The optimal policy will be found by enumeration of all the
17 possible different V_l's. Table 4.1 1lists the possibilities, the

set of ergodic states induced, and the V_l's.

Let

l(i = cost to repair a component in iCh degradation state

= expected length of time spent in the 1th degradation

My

state by a component,
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TJABLE 4.1 - ENUMERATION OF POLICIFS FOR EXAMPLE 4.2

s
Policy . 110 o020 ;1 _on 022! ¢= lergodic states) vy
1
" 1 - - - [l(l) - {o11) L.
Yo
2
. 2 . - - A n{” {011,002) Kip
uowl
2
.3 - A A x - 1020,101,011) 3
o
v
ot z(u l)
1, .2
u, K '+ K
a e - ) R - 1020,101,011} ‘( 0 S
oMoty
(2) 2(ug+p ) )K *v(uow )
(23) s A A A A & {130,020,101,011,002} % 5
YotV M
W ) 2u K gk
a6 PO A uf - {110,020, 101,011} ;
uo(uo*i l)
2
@& 7 A PO S - {110,020,101,011} XK
1 “oﬂ‘l
2, .1
u K+ K
(I 8 A n{” niz) - - {110,020,101} i I
2.
ualz+u )
(ugtu, ) (K7 +K°)
an 9 A A A @ {110,020,101,011} S
2,3 ¥y
Pot2vo"t 7
2.,
vk +2u. X
ST A R;l) nfz) - - {110,020,101} A
b (D3
Yol T "a
1, .2
123y 1 A Y, A (2) {110,020,101,011,002} 2—&" . M°p
) ,020,101,011,
(wo 7 ”1)
)
@ 12z )P - - - {110) %!
Yo
(2) (1)(2) ull\l*(uo*u )K
13) 13 A A Rl R - (110.020,101,011) 2 —2—'
“o,3, .1
2t oMt 7
1, 2
Coptu, )X 44 K
(1 1 aooy D@ {110,020,101,011} LlT“ 2
“vo*)
(2u, 4. )l( +u
a1 T Y W {110, 020, 101, O11) A i°-—3—°—
uplavg*3vy)
1, o2
K 2y K 40 p
a2 16 LR N A P 110,020,101, 011,002) -} -0 0
"0(21'0‘2"1)
() ) (520 ) 40
23 1 A A LN A LN £110,020,101,011,002) Foo o ==
“
0,3 32
Tt et
* = possible optinma) policy.
(1) = loses to policy 1.
(1)k) » loses to 1, ., or k.
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i 1)

(2)
3)

(4)
(5)

(6)

The following facts/patterns appear from Table 4.1:

The optimal policies are either:

a. Do nothing until one left working in first
degradation state, then repair it.

b. Do nothing until one left working in first
degradation state and then repair the failed unit.

¢. Do nothing until system fails, then repair a
component.

Never repair until one component left working and never

repair more than one unit at a time.

divides denominator of Vf = do not need policy 3

%o 1

to dominate §.

No '"p" = do not need 2 to dominate §.

No “Kl" i.e., never repair in first degradation state
= do not need policy 1.

Although the optimal policies are simple and intuitive,
the Vfl's for other § are not convex combinations

of these policies. They are, however, > some convex

combinations of these policies.

Given the results of Example 4.2 and others tested, three

facts appear to be true in the identical component case and probably

in general for a parallel system. These are:

(1)

“ e —

Never repair more than one unit at a time in an ergodic

state.
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Never repair until there is one unit or less working.

The V._l optimal policy for a parallel degradation model

with n identical components and 2 states of degradation
is the same as that for a 2-component model with £
states of degradation.

Proofs of these facts using Degradation Model stationary

probability equations to eliminate certain policies as convex
combinations of others as in the Basic Model case are nearly impossible,
due to the greatly increased complexity of their structure. They are

left as a topic for future research (Chapter VII).

4. Extension of Basic Model to Include Erlang Component Lifetimes

The purpose of this section is to describe how the Degradation
Model can be used to extend the Basic Model to the case where
component lifetimes are no longer exponential, but Erlang. An example
will be solved of such a model where components are non-exponential.
Its solution will demonstrate that changing component lifetime
distributions does change results given for exponential - in particular
it is no longer true that, for no fixed charge, one never repairs

more than one unit simultaneously.

Suppose now that we have the Basic Model with L = 0 except
that Li’ the random variable representing the lifetime of the ith

component, has an Erlang distribution, i.e.,
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AT -

Az Az
p{Li <th= é (n-1)! dz = Gk,n(t)
n-1 i
= 1 ) i%%l~ e_xt, n > 1, an integer, A > 0 .
i=0

Definition: Gk,n(t) is a gamma distribution with parameters

A, n, where A, n > 0. If n is an integer > 1, then GA n(t) is

called an Erlang distribution. If =n =1, then G (t) is

A,1

exponential.

If n<1, 6 (t) 1is a DFR (decreasing failure rate)

A,n

distribution and if n > 1, it is IFR (increasing fajlure rate) where:

Definition: Suppose F(t) 1is a probability distribution
function with density £f(t). Then the failure rate at time t at a

unit whose lifetime distribution is F(t) is r(t) = f(t)/1-F(t).

1 Intuitively, this is the rate of change of probability of unit
failure at time t. (DFR)/IFR indicates a (lesser)/greater chance
of failure with age. Exponential distributions have a constant
failure rate, i.e., the chance of failure is independent of how long
the component has been working.

Up to now, the Basic Model has assumed components with
constant failure rate. Components having G)"n distribution allow
modeling of systems where components might have IFR(for n > 1)

distributions. Figure 4.2 indicates the failure rate curves for

GA,l; G)\’2 and GA,A for X = 1.




1
1.5
r(t)
1.0 n=1
=4
0.05 /////’J’/”—Fdrr—f )
0 > time

FIGURE 4.2 - FAILURE RATE CURVES FOR GAMMA
DISTRIBUTION FOR A = 1.

Notice that as n increases, the probability density for

GA n(t) becomes more peaked, i.e., the variance of the lifetime
s

from its expected value gets smaller as n gets larger. Since

Gx n(t) has a mean (expected) value of 1/n), the distributions

_ . -t
GA/n,n(t) and GA,l(t) =1 e will have the same mean, 1/)

but G (t) will have a much lower variance (more confident of

A/n,n

expected value).
Recall from elementary probability distribution theory that
if a random variable X ~ GA n(t) [p(X < t) = GA n(t)], then X can be
1] s

written as a sum of n exponential random variables, each with

mean 1/A. Thus, X = X, where X ~1 - e ™. It is this idea

i

[ yuar =]

1
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which allows the use of the Degradation Model in extending the Basic
Model to the Erlang case by allowing components to pass through n
"fictitious" states of degradation before failure. Of course, unlike
the Degradation Model in which these intermediate states can be
observed and actions taken in them, decisions here are still limited
to the instant of component failures since the intermediate states

do not really exist. Thus, if we want to extend the Basic Model to
the case where the n independent components have lifetimes

Gk (t) = p{Li < t}, then a Degradation Model for n components
i’i

can be used with the following modifications:

(1) Allow ki degradation states for component i,

(kith = failure) each with mean holding time 1/xi.

(2) Restrict repair decisions to times when a component fails

(enters state ki), otherwise do nothing (use same
decision in states with same configuration of failed
components).

(3) Component i has mean life l/ki)\i here. To get
desired mean life, can adjust )i_(ki = ,\/ki gives

mean 1/1).

Given the limitations on decisions, the theorems for
Degradation Model solutions will not apply here but the model as
stated is a Markov decision chain and can be solved as such either
by hand or on the computer.

To illustrate, consider the following simple example:




Example 4.3. Basic Model, n = 2, L = 0, parallel system.

Let

L1 ~'G(u1/2, 2) mean = 1/u1

L, ~ G(uz, 1) =1-¢ mean = 1/u2

2

be Ml, the extended Basic Model.

Let

-ult
L1 ~1-~e mean = 1/ul
-uzt

L2 ~1-~-e mean = llu2

be Mz, the standard Basic Model.

M, has states: 12 1 2 0 (Basic Model

2 Notation)
decisions: - A,R2 A,R1 Rl’RZ’R12
both up (12) #1 up (1) #2 up (2) failed (0)
M, has states: foo 10 o1 11 fo2 121 20 211 Fo22 1
decisions: - A, R2 A, Rl Rl’ RZ’
same decn. same decn. R12
applied to applied to
both both
02, 12 20, 21

The set of possible policies is the same for both M1 and Mz.

Below, in Table 4.3 is a 1list of possible policies and corresponding

1]
V_1 8 under Ml and MZ'




M

1

= revised model

M =

2
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standard model

TABLE 4.3 - TABLE OF V_,'s FOR M, AND M, OF EXAMPLE 4.3.
Policy é“M é”M VMl VMZ
1 2 0 1 2 -1 -1
K1+p Kl+p
f - - R {0} {22,12}
M1 M1
L K2+p K2+p
- - R, {0} {22,21} =<
Mo Ha
K, K K K,
R, Ry - {1,2} {10,01,11,02 —4—= —= 4 =
20,12, 21} M M2 b
(u,+u,) (K, +K, +p) (uy+u,) (K +K, +p)
A A R, {0,1,2} {22,10,01,11, 1 2 1.2 B :
02,12,20,21} 2( M1 e SRR oY
9 ) 2111 U2+-2— 1 7172 "2
PO T T o P e
17172 "2 ul+u2
A R, R, {0,1,2} {22,10,01,11,
02,12,20,21}
etc., (different for Ml’ MZ)
R2 A R12 {o,1,2} {22,10,01,11,
02,12,20,21}
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The important thing to notice from Table 4.3 is that, for policies
where repair is only done on one component at a time in a given
state, V_1 is the same for M1 and M2. However, for policy
AARlz, which lets the system fail and repairs both components,

v under M is lower than that under MZ‘ The lower

1
variance on the component lifetime of number 1, now with an
increasing failure rate, makes the multiple repair policies more
attractive relative to single repair ones which are always optimal

for exponential cases. Thus, one would expect that it is no longer

true that single repair policies are always optimal and indeed it

is so:
Let K1 = KZ =HyTH S 10 p =2 in Example 4.3.
K,tp Ky+p
Table 4.3 = — =1.2 = ——
K K
1214142
1M
AAR
12 _ (20)(22) _ 440
V1 300+150 _ 450 1 so, a policy with R,
in 0 must
be optimal.

This concludes the results for the Degradation Model. A
sumnmary along with further conclusions and comparisons to other models

is found in Chapter VII (Conclusions).

137




CHAPTER V

THE NON-INSTANTANEOUS REPAIR MODEL

1. Description of Model

Up to now, in both the Basic Model and the Degradation Mondel,
attention has been focused on the components. Such factors as what
states they can be observed in, what type of system they make up,
their lifetime distributions and mean lifetimes have been looked at.
The repair assumption throughout has been that it is done instan-
taneously and can be done as often as desired (unlimited service).
The purpose of the Non-instantaneous Repair Model is to treat cases
where repair is non-~instantaneous (exponential service in most cases)
and the number of servers may be finite. Comparisons to the Basic
Model (instantaneous case) can then be made.

Given the purpose of investigating repair assumption effects,
component assumptions were chosen to be as simple as possible, i.e.,
Basic Model assumptions. The Degradation Model could be modified
to incorporate non-instantaneous repair in a similar fashion but the
number of states would be large, results would be hard to come by
except on the computer, and attention would be diverted from the
repair aspects.

The Non-instantaneous Repair Model has the following Coherent

System Repair Model parameters:

States: each component can be in one of three states:
working, failed and under repair, or failed

and not under repair.
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Repair: non-instantaneous (exponential or Erlang), when
completed it brings a component to "new" condition.

The number of servers is 1 < 8 < » and each has

-(1
identical service distributions, R_~1 - e ( /o)t’
i mean 0.
-Ait
L Component Lifetimes: exponential, Li ~1-~e .

Note that [; : é] gives the instantaneous repair (Basic
Model) case.

Again, given the increased complexity of the model, results
are much more difficult to obtain. As with the Degradation Model,
V_1 results only are looked at. Section 2 considers the case of
] identical components (k-of-n system), no fixed charge, exponential

repair and a single server. 1In Section 3, results of Section 2 are

compared to multiple server results. The final section demonstrates

other possible formulations of the model to include Erlang service,
non-identical servers, or component degradation states.

Unlike the Degradation Model's k-~fold increase in the
number of parameters over the Basic Model's, the Non-instantaneous
Repair Model requires only the addition of three new parameters to
completely specify the model (in the exponential repair case).
These are:

(1) mean repair time g > 0

(2) 1labor cost 1|server|unit time

(3) number of servers, s > 1
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in addition to the Basic Model carryovers:
(4) fixed charge L > 0
(5) penalty cost for system failure p > 0

(6) mean lifetime of component i, uy = fL- i=1, ..., n

(7) number of components, n

(8) cost to repair ith component, K i=1], ..., n

i!
(9) type of system (specification of states for which
penalty is incurred) - series case impossible as with

Basic Model.

The objective is to minimize V-l’ the long run expected
cost per unit time. It is interesting to note that if Ki =0=2
and p = o, the objective becomes minimizing the fraction of time

the system is failed as is used by Smith [29] in his Optimal Repair

f a Series System model.

A state in this model can be denoted by a vector s of 2
parts; s = (sl, 52) where

s, = vector of which components are working

1
s, = vector of which are in service.

|s2| < s = number of servers. s, Us, C {1, ..., n}. Changes of
state occur when either one of the working components fails or repair
on one of the components in service is completed. At such an instant,

decisions can be made to repair some subset of the components which
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are failed but not in service if the servers are not all busy.

Once repair is started on a component, it must be completed. In
the special case of a k-of-n system with identical components,
discussed in Sections 2 and 3, the vector s has only two
components, § = (1, j) where 1 = number of working components;
j = number of components in service, 1 + j < n, J < s.

The total number of states in an n-component Non-instan-
taneous Repair Model is at most 3" in the case of s >n. In
cases of small s, the number can often be considerably lower than
that, although still greater than the number of states in the
corresponding Basic Model. Thus, although results here are just

as difficult (if not more so) to come by as for the Degradation

Model, on the computer they will be easier due to the lesser state

space enlargement.

Repair times being exponential, each state as defined
previously has exponential holding time so this model qualifies as
a continuous time Markov decision chain with infinite planning
(time) horizon. Notation from the Basic Model in Figure 2.1 all
applies here with the addition of repair parameters s, %, ©
defined previously. The Markov chain specified by the Non-
instantaneous Repair Model with given parameters and exponential

repair is as follows:
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State Space:

states = which components are working, failed, or in service

s = (gl, 8,) where s8,, Us, c{1, ..., n}
8 = which components are working
8, = which components are in service (l§2| < 8)

If system = k-of-n and components are identical, then

s =(1i, i) , i = number of working components
j = number in service j<s
i+j<n.

Decision Space:

Let Q@ ={1, ..., n}. Possible decisions in state

1]

=(§1, §2) are RQs

-~

where

1) @ cQ~s8, Us (repair failed components
s — <1 ~2
~ not in service already)

and

(i) |Qs v gzl < 8 (number in service
= < number of servers) .

Restrictions:
- ﬂs # ¢ 1if system down in s and no components under

repair.

- Qs = ¢ (RQ = A = "do nothing") if s, = 8,
= s

~




v

Transition Structure:

The transition matrix, QO: (assuming & : Rﬂ in 8).
8
Fix s = (§1. §2)

A
8 1

- , 1
A R WV  PRYC N €sy

@)

1l/o

ua-iy " R GIDIEET A
2 8
s j‘5§1j 2778

6
(Qo)é’( 5.8 »1eg Ua,

* 5
(Qo)~ =0, if c#ls;~1,58,V Qg)’ some 1 € s,

or # (gl, §2 U Qg ~ 1y,

some 1 € §2 ] Q§

1
8 T Y A +(1/0) 8,08 ]
1€s, I e

~

Cost Structure:

5
(L - Igs) + én Rg+lsyuagl-e-q o,
~ s

-~

=<‘ if system up in s $

|

§
ket lspuaf-eeq ' /

O O
-
(1]

\L +p+ z
ieq

“~

if system down in s and s is
v a min cut set of the system
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Objective Function:

*
5 PGRS any possible optimal 6 will form
V_l gy a Markov chain with a single
PGQI irreducible set of ergodic states

The following examples are in the cases of identical components

with '"s" servers:

Example 5.1: n =2, s = 2, parallel, L = 0

states: 2,0 1,0 1,1 0,0 0,1

decisions: A A,R1 A Rl'R2 Rl,A

cost: 0 O,K+e- 1_ 0 K+2Lo+p, K+Lo+p,
Ao 2K+2o+p Lo+p

R1 = initiate repair of i components.

Notes:

- sgtate 0,2 1is not listed because, although it is
theoretically feasible, it will never be reached given
a starting state with all components up and the given

decision possibilities.
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4, 1)

- 1in state 0,1, even though the system is failed, the
decision to "do nothing" is allowed since repair has
already been initiated on some other component and there
is no way to get the system operative instantaneously
under this model. In state 0,0, however, some form of

repair 1is required.

- The penalty cost is incurred once each time the system
fails. This is due to the fact that, once the parallel
system fails, all components are failed so the next state
change must be due to a service completion, sending the

system to a working state.

Example 5.2: n =3, s =1, k = 2(2 of 3 system), L =0

system up system down
states: 3,0 2,0 (2,1) 1,0 1,1 0,1
since
decisions: A A,R1 A Rl system A
failed
cost: 0 0,K+lv——l—:I = Képtle——3 pHee g o
2 4o Ao A+0

denotes a state which will never be entered.

Notes:

~ unlike the Basic Model for a k-of-n system with k > 1,

states for which there are less than k - 1 components
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working can be reached due to the non-instantaneous repair.

- The penalty cost is now incurred each time the system
enters a state in which k - 1 units are working. This
occurs either at a system failure or at the instant of a

service completion still leaving the system down.

- There are actually only two possible policies here:
a) do nothing when 2 components are left, or

b) repair when 2 components are left.

under a): &= {2,0 1,0 0,1}

2,0 1,0 0,1
2,0 0 1 0
1/o A

1,0 A+l/co 0 Al/c
0,1 0 1 0

These examples will appear later in the chapter.

In the parallel case, the instances of penalty cost
assessment are clear - whenever the system fails. For the k-of-n

model, the fact that states with less than k - 1 components

working can be reached means that this penalty could be assessed
several times while the system is still down, how often depending
upon the decision the modeler makes on which states to apply p
in. TIf it is desired to actually have p assessed only once per

system failure, this can be accomplished by dividing the states
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with k - 1 wunits into two categories: those due to system
failure and those not. I assume that the p gets incurred in
such states no matter what the cause of entry to stick to the

model framework introduced previously.

2. Exponential Service, Single Server Results

In this section, we look at the Non-Instantaneous Repair Model

in which the components are identical, L = 0, and service times

are exponential for the case of a single server (s = 1). A policy

is found which is V_l optimal for first the parallel case and
then the k-of-n case for k < n. Changing behavior of this policy
for variable k and/or n is looked at.

Some notation is now needed:

(3)

Definitjon: Let the policy (for the aforementioned
single server model) denote the policy which repairs whenever the

number of working components is < j and the server is idle.

Let
2o Ay +dowl T 45 - D) TRl i
}
et 3G = 1) eee TR 4 el Hem, 1 =1, 2, L.
|
z, A1
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Let fk be defined so that: fl =1,

k-1
-1)!
£ = (k-1)!o D k> 2.

w52 (44 (k-1)0)

The theorem giving the general V_1 optimal solution can now be

stated:

Lemma 5.1: Suppose we have the Non-instantaneous Repair

Model with a single server. Assume

(i) identical components, k-of-n system
(ii) L = 0 (no fixed charge)

(iii) exponential service times.

Then:

(A) the V_1 optimal policy is among R(J)

e

s k=-1<j<n-1,
policy being defined previously,

(B) R(J) < R(j_l) o

. . z, HZ .
L G- j-1 P
P ] no > fk(K + o) 3 3+
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Proof: Consider the k-of-n model.

states: (n,0), (n - 1,0), ..., (k,0)(k - 1,0), ..., (1,0)

f decisions: A A, Rl’ cees A, R1
t
and
(n - 2,1), (n -3, 1), ..., (0,1)
l do nothing l
i
States where decisions have to be made are (n-1,0), (n-2,0), ..., (k,0),
options being to repair or to do nothing. This gives 2n'.k possible
policies. However, these yield only n - k + 1 different ergodic
1 chain structures in the underlying Markov chain, thus, only n - k + 1
policies as far as V_1 optimality is concerned. These are precisely

the ones mentioned in part A. of the theorem:

State
Policy (n-1,0) (n-2,0) « « « « (k+2,0) (k+1,0) (k,0)

gD -— A
(k) ,

R A Rl
(k+1) N

R . — A Rl R1
(n-2)

R A R1 Rl R1 Rl
(n-l) . . L) L] L] L .

R R1 R1 R1 R1 R1

To compare the R(j), the V_l's must be computed for each.

Table 5.1 gives such quantities for varying j and k.
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If k 1is fixed and j > k, then R(j) < R(j‘l) P

3, 3-1,
z, (kKHa)+(GN=L 2z, (k+Lo)+(3-1)1T—R
J fk i-1 fk
<
ot ]
j+l j

2
. -1 .
* K+ lo)liij— - zj'lzjﬂ-’ < poi 41y ,:zj.+1 ) jctz.’ .
b j+1 | fk 31 _J.J

But, since

P Wt
TSNS j o

the above is true <

: i-1,. i+l
3% ] pra” (j=1)!-p
(K + 20)u L. 341 zj_l_ < fk'(j"'l)

z.
s 5. G- 3-1 o D A
p [rs] o > fk(K + 20) 3 J+1 zj_l ,
our desired result B, a

Collecting all the non-j-dependent terms on the left hand

side gives R(j) < R(j'l) P
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Two useful properties of u(j) are now proved.

Lemma 5.2: Let

S b2 S T
u(j) cj-l(j-l)! I:J. 741 zj_lil

where =z has been previously defined both recursively and in

3

general form. Then

(1) u(@ >0wj>1

(2) u(d -u@G-1) >0+ 3j>1.
Proof: wu(j) > O

z
hed Tﬁ-_ Lz >0, z,=1, z, =uto,

thus,

%1
T - %% z0 =u+0- %%-= —+0>0

so, u(l) > 0 . Now, suppose u(j-1) > O.




Notice that for any 1,

€« @ — o
ud) 2 0 17T %120
ui u
T T POy T T 2 20

thus,

It i8 now sufficient to show

b
2] ]
3’+2y1(°'iﬁ)1°

to prove (1).

3 i i-1 3-1
L SR N R N T B L
3 + zj_1 (o j+1) 3 3+ ( 31 + ozj_z) +0 ( 31 + ozj_z)

j-1
= X _ 1 u_- T
H [j <j+1><j-1>:| * "[ 71t %42 (° 3+1”

‘g if1 1 Wil Y
| z {T' GG *° [1-1 252 ("‘ T)] 20
‘\--\/-..—7 ~ ————
> 0 > 0 by induction 0




Now, let

8(3) = u(j) - u(i - 1); defined for j > 2.

4(3) = u(d) - uwd - 1)
... S b~ R BN 31w,
Gonyr |3 FT AL T3 T L TS 3-2|
= 1 i+l z, - uz -a(j - 1)(3)‘3_1 u, )
G-nred™t 3 - 3171 "2

1 P. uj :
= '(j—_l)!—cj_‘I G+1 -j—+ zj-l(" -u)+o(3 ~-1) “zj—ZJ

1

(-p1ed7t 3

o

+ cuj_l + gz(j - 1) zj_Z:I > 0 O

Lemma 5.1 along with Lemma 5.2 allow us to state the

following optimal policy form:
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Theorem 5.3: Suppose we have the Non-instantaneous Repair

Model with a single server and the other hypotheses of Lemma 5.1.

S .o S b R -]
u(j) oj—l(j_l)! [j j+1 zj"l_, ’

for 1 <j<n-1 and u(0) = 0, u(n) = ». Suppose the system is

k -of-n. Then the V_1 optimal policy is:

g R if u(d) < ?‘T%%II;T <u(j +1), j>2k
k
(k—l), Y
R if 0 < ?%—:E_OT < u(k) .

Proof: Know from Lemma 4.1 that R(j) < R(j_l) -

pu > J+1 fj--—}i-z -)-u(j).
AR CET I B D [j I

Lemma 5.2 = 0 < u(l) < u(2) < «++ < u(n - 1) which

implies the given optimal solution. O
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Schematically, given a k-of-n system, s = 1, identical

components

u(l) *+- u(k) u(k+l) u(k+2) -+ u(n-2) u(n-1)

b

0

fk(K+20)

e ta2

—————

(n-2)

eeemen

R(k_l) (n-1) optimal

(k) R(k+l) policy

R

Thus, given a fixed k, factors which favor more/(less) repair are:

(a) (low)/high penalty cost, p for system failure

(b) (high)/low component repair cost, K, and/or
; (high)/low expected labor cost per server per repair

: job completed, 0 .

This is because the '"u" values are only functions of u and o,
not of system and repair cost parameters. As o + 0O (close to
instantaneous repair), the wu-values all approach infinity except
u(l) = u. This means that for small enough o, one will never

repair until there are only k 1left in a k-of-n system, a familiar

Basic Model result.

: u(l) = u
3 - — Pl
0 : (f1=1)(K+£c)
k = 1l(parallel) R(O)«——%—-¢R(l) u(2)=u(3)>»>=
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In the parallel model, the o = 0 result simplifies precisely
to the Basic Model result since the optimal policy there needed

only a single server. For

which must be incorporated into the u's. This done, lim fk s u(j) =

o0
for j #k and is < o for j = k; therefore, the limiting o = 0

I
8

policy is the same as for parallel. The next example illustrates:

Example 5.2: n=3,s=1, K=2,L=0

(1)

Possible policies are R(z) and R » 1.e., 1f in a state with two

components working and an idle server, either repair or don't repair.

R(l) optimal R(Z) optimal
x - DU
0 (o/o+p) (K+20)
1|2 2
u(2) = |5+ 2uo+30
R(l) optimal R(z) optimal as o+ 0
»* ., _pu (close to
0 K+Lo instantaneous
Lim £, + u(2) =% repair)
o0
R(l) optimal as 0 *+ o«
— P (large repair
0 (o/o+u) (K+20) times)
" u(2) = + unlikely case
takes so long to repair that £ a1 in practice.

might as well let system fail first" 'k

it et .
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In the remainder of this section, the problem of how the

aforementioned V_; optimal policy is affected by the type '"k"
of a k-of-n system is treated. Theorem 5.3 states that, in a

k-of-n system, the V_ optimal policy is:

1
@ &Y, if u(j) < ;;fﬁizgy < u(j+l), 12k
and

(k-1) pu
3 R , 1f 0 < fk(K+2°) < u(k) .

The only k-dependent quantity is fk’ except for the value of
j at which {2) is cut off and (3) holds. A study of fk behavior

will yield any system-related policy changes.

Lemma 5.4: Let f1 =1 and

1

£ = (k-1) 165"
kR 2 1) o)

Let V/———u?
1+ l+4—2'

Then

*
£ > for k < k

k> fr )
and

*
f. < f for k > k .

k< fer D)
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Proof: fl =1 > U;L = f2, (k > 1 always). Suppose k > 2.
1 k-1 k-1 k k-2 3
fk < fk+1 ® (kg - D!lo u (W + ko) < klou (v + (k-1)o) ]

“* u(u + ko) < ko(u + (k - 1)o)

had u2 < k(k - 1) 02

e _ k- & 2,0

2

E 1+/ 1+4£7
*

®k>k =——" by quadratic formula. ]

Notes:

¢N k* > 1 (f1 > f2)

*
(2) As %— increases, k increases.

Consider a partition of [0, ») by u(j), 1 <j <n - 1:

0 u(l) u(2) ¢ ¢ *u(n-1)

These u's do not vary with k although as k increases, only
u(k), ..., u(n - 1) are meaningful in determining optimal policy.

Optimal behavior will be determined by the position of —BH__
fk(K+20)
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on this line. A smaller f raises and, thus, will

—_p¥
k £, (K+20)
k
cause earlier repair (when fewer components are failed) if it is

changed enough. Similarly, a larger fk means a wait until more

! components have failed before commencing repair. Lemma 5.5 states

this precisely.

Lemma 5.5: Suppose we have a Non-instantaneous Repair Model
with a single server and identical components and the other assumptions

of Lemma 5.1. Let p, o, pu, K, and 2 be given. Let Mk represent

*
the model for a k-of-n system, 1 < k <n. k 1is

/2
14/ 1444

2
)

2

(1)

Suppose policy R was optimal for Mk’ i > k. Then,

v
e

*
if k <k, R(j) is optimal for Mk+1’ some j >

et e

A
e
.

* .
if k> k , R(J) is optimal for Mk+1’ some j <

Proof: Obvious from Lemma 4.4 and previous remarks. A final

example illustrates:

o

L Example 5.3: n =4, p, K, ¢, u, ¢ fixed. L = 0, k-of-n

system where k = 1, 2, or 3.




= = = H =
u(l) 20 + u 5 fl 1 ?ITEIEET 4
P | =1 __pu_
u(2) = 13; =4 £, (K+20) 16
297 _,,1 -2 __pu___
u(3) = - = 24 3= 15 £, ®+i0) 30
RO way &Y w2 r® 3 kP )
e —
0 10 20 30 RO oprimal
2 (1) w2’ yay k@ )
. | ot ! . k=2
0 10 20 30 R oprimal
R(2) u(3) R(3) )
%’ + ¥ * _— k=3
0 10 20 30 R(B) optimal .

In this example of a system for which the mean repair time
‘ is small compared to the mean component lifetimes, as k increases,

the number of failed components at which repair is started is

increased. Note that, if fk had been increasing in k, as would

have been true for a small u/o ratio, then increasing k weuld

have meant waiting longer before initiating repair up to the point

where the system fails in which case further increase of k forces




a lesser wait due to the necessity of repair upon system failure.

So, generally,

u/o large = short repair times = repair sooner as kt
compared to components'’
lifetimes

pfo small = long repair times = repair less as kt .
compared to component's
lifetimes ,

Example 5.4: up=1 o=1 p=6.1 K=1 ¢ =1/2

= = __L -
u(l) = 3 £,=1 F(kr o) 4.2
u(2) = 5 £,=L B _gy4
2 2 2 fz(K+zo) '
= gl =2 P |
u(3) = &g £3=3 £, (K+20) 6-3 !
[
09 (2) (3)
1 RO yy 2wy B ou@e R |
] O S A S k=1
} I L *® | I [ T 1 T " 1)
i 0 5 10 R optimal
1) (2) (3
® w2 B u@e R e
A M T T  E " k =2
1T I T Ll T 1 LRI 1 (3)
0 5 10 R optimal




3. Exponential Service, Multiple Servers

In Section 5.2, a single server version of the Non-instan-
taneous repair Model for an identical component, no fixed charge,
k~of-n system was treated. The V_l optimal policy was found to

3 _ . (G) e .
be among R , k 1<j<n-1 where R signifies a decision
to repair whenever the server is free and the number of working
components is j or less. The purpose of this section is to

investigate what happens for the same model but with multiple

servers. For the instantaneous repair (Basic Model) case, it was
never optimal to repair more than a single unit at a time in an
ergodic state so at least if one was only interested in V-l’ the
optimal policy for multiple servers would be the same as if there
was only one. The bulk of this section is spent trying to see
whether that is still the case for non-instantaneous repair either

in general or in some cases.

First, consider Example 5.1.

Example 5.1: n =2, s = 2, parallel, L =0

states: 2,0 1,0 1,1 0,0 0,1

j decisions: A A,Rl A Rl,R2 Rl,A

Possible policies, §, giving different ergodic structures are:
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(2) (3)
R )+ R
[ ISR AN (N (PO R PR M| N k=3
1 i ) Bl |l 1 1 1 1 d (2)
5 10 R optimal
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4 Z
o= n e
oo e h v W oy T “
dor(03+3) (o+M) 0 TI‘T O0°‘T 0°C {1°0 T°‘T O0°‘T 0°C} AN
2.2, 42
- n= =
A AT v %94 v VvV v .
d(oz+M)+(03+1) (o+1) Z 10 00 TI°‘T 0°‘T o0°‘C {10 0°0 T‘T 0°‘T 0°C} veuv
.42, 42
= 4 nez
2 %% e W %« \4 v v Iz
d(o+M) +(03+4) (0+17) 10 0°0 TI‘T 0°‘t o0°C {10 0‘0 TI‘T O°‘T 0°C} yYuv
~3
O
—
Z
A:+Dvb+lﬂ 1
Z v d v N
do+(o3+0) (o+1) 10 0°‘T 0°Z {T0 0‘T 0°C} 1) i
Ty v .
0‘0 0°‘T {00 0°‘T} 0)
SUOTSTOa(q {s?@3e3s§ o1po8ai} = & 9
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The only policies which require only a single server are

(1)

(0 and R . The relationship between the five policies is

R

summarized below:

Figure 5.2 Policies in Example 5.1

A (0)
R
lower R(l)
v, 1
(better)
higher
(worse) i AR2Rl

AR, A

A vertical arrow indicates total domination by the policy located
higher in the diagram. Two upward '"v' arrows indicate that the
policy below is dominated by one of the policies at the ends of
the "v".

In this case, it 1s indeed true that a policy which requires
a single server only is always optimal.

Now, suppose we have the same model with two servers but

now with 3 components:
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Example 5.5: n = 3, s = 2, parallel, L =0

* * * * *
states: 3,0 2,0 2,1 1,0 1,1 0,0 0,1 0,2

decisions: A A,Rl A A,Rl,R2 A,Rl Rl,R2 A,Rl A

* = decision to be made.

There are now quite a number of possible policies, but only

three which give ergodic structures which utilize only a single

(0) (1) (2)

server: R » R and R as defined in Section 5.2.

Consider the feasible policy ¢ = R1 - R1 — which gives
& =1{3,0 2,0 2,1 1,1 0,2}. Clearly this requires two

servers. Computations give

5 _ (u+c)2(K+lo)+02p

A
-1 3 3
By onZeolit 8
3 +ou +o u+2
Also,
VR(Z) - (u2+20u+202)(K+£o)+202p
-1 u3 2 2 3
T+ ou 420 u+20
AP _ (o) (kes0)+op
-1 u2 2
T+ uo+o
0)
VR - K+2o+p .
u+o




Suppose K+ %0 =1; p =30, 0 =1, u = 1. Then,

(0) (1)
R 31 _ R 3
=3 =18 R BTN
(2)
w28 1219 vio=3% gy,
-1 SL 1775
3 6

Notice that policy & 1is better than any of the possible
single server options. Thus, for this case, some policy (may or
may not be &) 1is optimal which does require the services of both
servers. Under instantaneous repair, policy & would not have
been optimal since it involves repair before getting down to one
component left. Thus, under non-instantaneous repair, it is no
longer true that no fixed charge = never repair more than one
unit at a time.

The section is concluded with an obvious result but worth

nothing:

Lemma 5.6: Suppose policy & 1is V_1 optimal for a
Non-instantaneous Repair Model with s-servers (Ns) but it
involves the use of at most only s' < s servers. Then policy §

is optimal for the Non-instantaneous Repair Model with only s’

servers (Ns.).
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Proof: If & 1is optimal for Ns’ then

6§ = argmin Vzl ,
YEA(N)

A(Ns) being the policy space for model Ns. But A(Ns) 2 A(NS,)
so given ¢ € A (Ns,),

Vo > min VY > min Y = VG .

Toae ) tTyew) Yot

But
S€A(N_,) so  min vzlivfl
YEA(NS.)
§ _ Y
80 V_l- min V_1 O
YEA(N_,)

4. Extensions of Model to Erlang Service Times, etc.

In Sections 1, 2, and 3, exponential service times were
assumed. As in Section IV.4, with component lifetimes in the Basic
Model, service times also can be extended to Erlang distributions
in the Non-instantaneous Repair Model, while still retaining the
Markov decision chain structure. For many applications, an Erlang
repair time is more realistic. Using it, one assumes the longer
time the repair of a unit has been going on, the greater the

probability of its completion. (IFR property).
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Suppose now that service times are distributed G1
.._’m
mo

an Erlang distribution with shape parameter m and mean o, all

servers being identical. Then if R 1is the service time,

R = Rl+--°'+-Rm where Rm ~ exp (1/0). As is standard procedure

in queuing theory, think of the service as done in m consecutive

parts with completion after the mth stage is finished. For the

general Non-instantaneous Repair Model with non-identical components,
th

sn) where s is the state of the 1

a state s = (s i

1° v
component is generalized so that a component can be in one of

m+ 2 states:

1. working
2. failed

3. failed, in ISt service stage

mt+2, failed, in mth service stage.

Decisions only need be made concerning a component if it is failed,

not in service and there is a free server. The usual state
simplifications occur if components are identical. If, in addition,

we assume that a component can also be in £ states of degradation,

a Degradation/Non-instantaneous Repai; Model is obtained. The

total possible number of states, (2 + 1 + m)n, is uow rather large and

unworkable, even computationallv, for all but vervy small values of m,%,n.
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Example 5.6 Degradation/Non-instantaneous Repair Model
with Erlang Repairs

0 0 0 0
n =2 components L1 ~ exp (Al) L2 ~ exp (Az)

L =2 degradation states Li ~ exp (Ai) L; ~ exp (A;)

s =1 single server, repair times R ~ G (t)
36"
(so, 3 repair stages) o

states s, € {~-3, -2, -1, 0, 1, 2}

tn
n

(sl, s2) where Sys

2
-3 = first stage repair
-2 = second stage repair
-1 = third stage repair (last)
0 = new (repair completed)
1 = first degradation state

2 = second degradation state (failed) .

Note a new twist to this combined model - repair could be
undertaken on a working component in a lower state of degradation
and the component could become further degraded or fail before
service is completed. All kinds of decisions on what to do in

such cases can be treated under this formulation.




CHAPTER VI

COMPUTATIONAL METHODS OF PRODUCING OPTIMAL POLICIES

1. Introduction

The past four chapters have treated four distinct types of

coherent system repair models, coming up with theorems which either

produce a general optimal policy given cost, system and lifetime
parameters in simpler cases, or limit the number of possible optimal
policies. Such general optimal policies, where possible to obtain,
are clearly the most desirable results. However, for many cases

the theorems developed in Chapters II - V do not apply. A partial

listing of such cases would include:

(1) Non k-of-n systems with or without identical components.
For this case, in the Basic Model, the V_l optimal
policy can be obtained using Theorem 2.4 if there is no
fixed charge. Otherwise, nothing applies.

(2) The case of a fixed charge L > 0.

If components are identical or system is k-of-n, then
results can be obtained for the Basic Model.

(3) Multi-server cases of non-instantaneous repair.

(4) Cases where there are many degradation states, or one

has Erlang service, component lifetimes.

Indeed, while Chapters IT - V cover many cases of interest,

there are many more possible cases not solved for which a user of
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a coherent system repair model would want the optimal solution.
In fact, given some possible application, chances are it would
not be covered by any of the theorems. The aim of this chapter
is to discuss methods of solving on the computer a given coherent
system repair model which can be formulated as a Markov ’ecision
chain.

The next section discusses two general types of algorithms
which could be used in optimizing such processes by computational
methods: policy improvement and linear programming.

Section 3 describes a method of computing optimal policies
for the Markov coherent system repair models (or any other Markov
decision chain with suitable state or decision space) using MINOS,
a non-linear programming code developed at Stanford.

Some test results using the MINOS solution technique will

be presented in Section 4.

2., Possible Algorithms

There are two possible algorithms which csn be used in

computing a gain (V_l

Markov decision chain (or Markov renewal program) with infinite

) optimal policy for a continuous time

horizon and no discounting. These are policy iteration and linear

programming.

Suppose we are given a general Markov decision chain with
(1) states: 1, 2, ..., N (indexed 1)

(i1) decisions: D, = set of possible decisions in state 1
(indexed k), finite
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(iii) transition probabilities:

pij = ng(m) = probability i + j given decision k
in state 1
k _ k
v, = Ql,i = expected holding time in state i[decision k

(iv) cost structure: r? = cost of decision k in state i

(v) objective: minimize V—l’ the long run expected cost

per unit time.

The preceding problem can be reexpressed as a linear program
in terms of variables xt, where x? = probability {state = i and

decision is k}. The optimal xk values then give the optimal 4

i

randomized policy for the given Markov decision problem, i.e., values

of ¥ = p{decision k|state i}

i
k
X,
=1._
.
k€D,
i
The LP 1is as follows:
k
minimize: z Z xiri
ix
subject to: Z xt - Z Z x? p? =0, i=1, 2, ..., N
Kk ik J1
k k
and z z x, v, =1
ik i1
xi >0wi, k
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S

The objective function is just the expression for V_l of

a given policy § expressed in terms of x? variables while the

hChe il S b

! equality constraints are a rewrite of the stationary probability

equations for a policy 6: 1

i
§6(I -Pgd =0 d
2xi =1

Wagner [34] observed (by complementary slackness) that a

nonrandomized policy is optimal over the class of stationary

randomized policies in the case where each optimal policy has a

single ergodic chain, (as is true for coherent system repair models).

Thus, in an optimal solution to (P), x? > 0 for only one

kw1i=1, ..., N. This indicates an optimal decision of k given

state i(8(i) = k).

Not all states i need have x? > 0 for some k. Those
that do not are transient states in a V_l optimal policy and those
for which it is, are ergodic. Thus, & = {set of ergodic states in
optimal policy} = {i : ) x? > 0}.

The second metho: for finding a V_l optimal policy is policy
iteration. This algorithm has the advantage that it can handle a
countable state space (N = ») while N < ©» is needed for the LP

to be defined. Also, it will often find the optimal solution in

fewer iterations than the LP will.

!
2
!
3
?
!
i
:
i
|




Policy iteration involves repeating two steps, value

determination and policy improvement until a policy & with

minimum Vfl is arrived at. Given the general Markov decision

chain and the fact that every optimal policy defines a single
ergodic chain, (in a coherent system repair model), the two steps
are executed as follows. Suppose one starts with policy 6 .
u

Let u ={(u y) and g be a scalar.

17 o

(1) value determination - solve the system (given §)

. N i
r§(1) + ) PGFi) u, =u, + v§(1) g i=1, ..., N
i j=1 1

ij j i

and u, =0 for some i< i <N fer g, u. Since
i - 0 = b
*
s s P R
g =V, =% and (I -Q)V_, =0,
P Ql

this g = gG, the gain value for policy S§.

(2) policy improvement - using the cutrent values of

gd, gd, find another policy vy such that Yy < what vy does in 1

k

oo Y o«
minimizes S + X z pij u, - ui v»1=1, ..., N.
ken) |v;  vp \i=t J




If y & 5, then terminate; § is optimal. Otherwise, go back to

step (1) and replace § by Y. Continue the procedure until

x, & are found satisfying the termination conditions:

N
(1) §(1) §(1)
+ . . = + =
(¢ ry Loy g Tug vy g i=1, ..., N
ji=1
N
k k k . )
(tz) r; + jzl Pyij uj 2 u, # v, 8 ¥ (i, k) pairs .

Condition (tl) implies g = Vfl while (t2) implies & 1is

*

\Y optimal (V(S =g ), i.e., there are no possible "improvements".

-1 -1
Given a finite number of states, termination will occur in a finite
number of iterations. In effect, the policy iteration method is
computing Vfl for various §, but is choosing the successive §'s
in an efficient manner so as to go through as few of them as possible
before reaching an optimal one.

It should be noted that the linear program (P) is not using
the same algorithm for solution as the policy improvement method
mentioned. However, the two problems are intimately related in that
if the policy iImprovement termination conditions and a desire to
maximize g are put in linear program form, the LP so formed is
the dual problem to LP (P). Although problem (P) is the more

intuitive formulation, its dual (D) turns out to be more efficient

computationally, especially in cases where information about higher
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levels of optimality than V_1 is desired. The dual problem (D)

is shown below in LP form with g, u = (ul, ceey uN) as variables:

(D) minimize: (- g)

subject to: uy -

where g, ui's are unrestricted in sign.
Two well known results from duality theory will help relate
the problems (P) and (D) as well as assist in developing a

computational method in Section 3. These are:

Theorem 6.1: (Duality Theorem) [7 ] or [34]
{a) If both the primal (P) and dual (D) problems

possess feasible solutions, the primal problem has an optimal

FS

solution x?, j=1,2, ..., N, k € A(j), the dual problem has an

optimal solution g, u,, i =1, ..., N and ) J rk §F = - g.
. ik 7%

(b) If either has a feasible solution with finite optimal
objective value, then the other one has a feasible solution with
the same optimal objective function value. [So the optimal objective is
(P) or (D) is V_l in a coherent system repair model by (b)
since clearly (P) has a feasible solution with finite objective].

Proof: See [7], [34].

A corollary to this which is useful in relating optimal values

of primal and dual variables is:

i i




———

Corollary 6.2: (Complementary Slackness). Let (P), (D)

be expressed in the matrix form:

(P) maximize: cx (D) minimize: by
subject to: Ax < b subject to: ytA >c
x>0 y>0
where |cl = n, Iyl =m IA] =mXxXn
x| =n  [b] =m

* *
Let x , y be corresponding feasible solutions to (P) and (D).

* *
Then both are optimal <y . {Ax - b} = 0, (dot product of two vectors)
* xt
and x - <¥ A - c> =0 .
Proof: See [30] or [31].
Corollary 6.2 implies that whenever a constraint in one of the
problems holds with strict inequality, so that there is slack in

the constraint, the corresponding variable in the other problem is

zero. This result will allow us, in the next section, to know

which of the xk

1 variables from (P) are positive from the

solution of the dual problem.

Once a V_ optimal policy has been determined for a given

1
Markov decision chain using either policy iteration or linear
programming, a bias optimal policy can be obtained by solving an

altered Markov decision problem again by either policy improvement

or linear programming. Given the original Markov decision problem




—

and its associated LP (D), the altered problem is defined as

follows:

(i) states: the same (1, ..., N)

(11) decisions: restricted to A', where A' = set of policies

(i,68(i)) snch that

N
¥ s 81, _ 8, _
E j—élpij up vy BT E vl S

1, ..., N

where Upy cees U and g are the optimal values found

N
solving the original problem. Clearly the optimal policy,

*
§ from the V_. step is in A'.

1
(iii) transition probabilities: pij, the same
(iv) cost structure: r§ is replaced by ﬁi, where
=k k k * k
R = (-RD;+((Q)g, * D & - Q). = v,
u = (ul, ceay uN)

being the solution to

% * *
$

*
(1-0))u=R-0q &

*
found for §

and

in V_1 problem .

(v) objective: minimum V_l = g (which gives minimum V0

in original problem).
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See Denardo {10} for verification of the fact that if u is

chosen as shown, that the V_l optimal solution to the altered

Markov decision problem indeed gives a VO optimal policy for the

original problem in the case where every V_. optimal policy defines

1
an irreducible Markov chain. (All coherent system repair models have
this property - see Section IT.2).

For a general problem (arbitrary Markov decision chain) in
which some V_l optimal policies might generate multiple ergodic
chains of states, the aforementioned altered problem may not yield a
V0 optimal solution (a case never encountered in a coherent system
repair model). In such cases, a V0 optimal solution can still be
gotten by adding a third step which takes into account states which
are transient under every possible policy.

The above 2 or 3 steps can be continually reapplied, modifying

k,

r;'s and restricting decisions appropriately, to get V ... etc., 5

1) Vz’
optimal policies until a unique policy, "optimal', is reached. For

reasons stated in Section I.4, V_ optimality is considered "optimal"

0
in coherent system repair models so two is the maximum number of
V__1 problems needed to be solved to determine an optimal decision
for every state. 1In many cases, solving one problem will suffice
in getting V0 optimality as will be seen in the following two

sections.
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3. Computing Optimal Policies Using MINOS - A Linear Programming
Method.

In this section, a linear programming method for solving a
coherent system repair model on the computer using MINOS is described.
Although policy improvement algorithms may on the whole be more
efficient and require fewer iterations to reach optimality, there
has been little development of computer codes which might efficiently
carry the method out. On the other hand, there has been a lot of
work done by the Systems Optimization Laboratory (SOL) at Stanford
on linear and nonlinear programming codes. See [23] and references
listed there. It is for this reason that an LP algorithm is used.

MINOS is actually a code developed by Michael Saunders and
Bruce Murtagh (23] for solving large scale nonlinear programming
systems which have linear constraints. Of course, it works on
linear programs as well. There are other codes which are designed
for linear programs and can handle larger sized problems (e.g.,

MPS III [referenced in [23]]) but for the size problems tested here,

MINOS is sufficient. Given an LP:

minimize: c¢x
(P) subject to: Ax = b

x>0,

MINOS is most efficient if A 1is sparse (has lots of zeros) and

the number of rows isn't too large (< 1500). Coherent system

ek M i St - s
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repair models fit these conditions for small numbers of components
(under 10) or states of degradation. In general, they define LP's
which have many more columns than rows, which means MINOS can handle
larger problems than might otherwise be expected in solving (P). Of
course, in a general nonidentical component model, even the number

of rows (states) get large very quickly, e.g., if there are 2

n
degradation states and n-components, the number of states ~ (g + 1) .

. n . :
The number of columns is even larger by a factor of 2 since in
each state s, one can in general decide to repair any subset of

-|s|

the failed components (2n possibilities), and there is one
variable per possible decision per state. For larger problems,

the LP code MPS III could be used but clearly for any moderately
large number of components (even > 15), model simplifications to
restrict the number of states and/or decisions must be undertaken
before the problem can become of reasonable size. Such theorems

as presented in Chapters II - V could provide such assistance in
cases of identical components, k-of-n systems, or certain specific
model cases.

Certain of the models can be solved with less difficulty than
others (due to smaller number of states). The Basic Model is
easiest with the Noninstantaneous Repair Model requiring only a
small increase in state space. In contrast, a Degradation Model

requires a dramatic increase in states and for even small numbers

of degradation states, would be too large to do even on the computer.
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One good way of simplifying the problem computationally
would be to break the system down into independent subsystems of
components, the subsystems being in series, i.e., s = {1, ..., n} =
B1 U see UBr’ r < n where Bi N Bj =¢, 1 # j and the system
works if and only if the subsystem corresponding to Bi is working
for every 1i. The idea is then to run the model on the smaller
subsystems and then add the costs from each one to get the overall

result. For the Basic Model and V this can be done as a

-1

consequence of Theorem 2,1. For other models or VO, the truth or

falsehood of this resuit is an open question, although for V_1 at

least, I think it will be true. i

Before stating and proving the aforementioned theorem, a

clarification is needed on what is meant by independent subsystems.

In the Basic Model, the states of the system depend on the status of

each component as well as the status of the system.

Definition: An independent coherent subsystem Bi is a

subset of components {1, ..., r}, r < n which form a coherent system
such that the status of Bi is unaffected by components r + 1, ..., n.
Theorem 6.3: Suppose we have a coherent system . of n
components which can be broken down into p independent coherent
subsystems, Bi’ which are in series. Then, given the Basic Model,

the optimal long run expected cost for the system is the sum of
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optimal long run expected costs for the subsystems, i.e.,

P
Vo, J.Zl V—I,Bj The policy is the same.

Proof: To follow example and discussion.

The advantage of independent series subsystems is clear.
Suppose n = 20, i.e., there are twenty components. The total
number of states in the Basic Model could be up to 220 = 1,048,576
or over a million - clearly impossible by any reasonable computational
standards. Just being able to break things down into two independent
10-component subsystems would reduce the total states needed to
2 x 210 or 2,024 - a feasible number. Further reduction to four

5-component subsystems lowers the total states to 4 x 2S or 128.

An example where this proves useful is now given.

Example 6.1: Suppose a system consists of n independent
different types of components which are in series, i.e., the system
works if and only if each component is functioning. One possible
way to improve the reliability or performance of the system is to
add duplicates for each component type. The system is now composed
of n parallel independent subsystems in series. If the level of
redundancy of component i 1is denoted by ros then the total possible
number of system states would be ;; (ri + 1), r, > 1. However, by

i=1

modeling each subsystem separately, and adding V_.'s, one gets

1

indeddaini.




away with running n subsystems with Tys Toy ceey T states
respectively, almost a trivial problem. This type of subsystem

is done in Markov reliability modeling of fault tolerant systems
in [24]. The system reliabilities computed for each subsystem are
then multiplied together to get the total system reliability.
Fault tolerant systems are discussed further in Section 7.4

(Applications).

Proof: (Theorem 6.3) Let the independent subsystems of

components 1, ..., n be reordered so that B, = {1, ..., il},
B, = {il +1, ..., i + 12}, cees Bp = {11 + eoe 4 1p-l + 1, ooe,
i1 + ee- + ip} . Theorem 2.1 tells how to find the V_l optimal

policy in the Basic Model case for a coherent system by testing

all subsets of components for which the system operates. The

V_1 optimal policy is the one which keeps such a set of components
operating by fixing one as soon as it fails at minimum cost. Let

s be any such set and define V—l,s as the V_l for the policy
as mentioned above which keeps only the set s of components
working. Let s also represent the policy just mentioned.

Suppose g is optimal for the whole system, .. It is desired to

show
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By Theorem 2.1,

K +p K
\Y = Z i + Z i
—l,s0 U, T
i€s . : 1 i€s N
0 0
s.~1 is s.~i is
down in % up in .%¥°

If staie So ~ i is up for &, then (so ~1i) N Bj is up for

subsystem Bj’ j =1, ..., p since the subsystems are in series.

If state S ~ i is down for #, then (so

for Bj for at least one j since the Bj's are in series. So

~ 1) ﬂBJ. is down

has to be up in ¥ for the policy 'keep oh working" to be

defined. Thus, s .’\Bj is up in Bj ¥ j 1, ..., p. Thus,

0

S

0

(s0 ~ 1) N Bj is down for exactly one B1., the one which i is in.

Thus

P K.+p P K
i i
Vi = 1L —+ ] ) =
’70 j=1 iEsoﬂBj i j=1 1€sonB i
(sOﬁBj)~i Bj(\s0 ~1i is
is down in Bj up in Bj
p
= X v by Theorem 2.1.
j=1 l,soﬁBj




A simple example is now solved by hand using the LP method,
following which the procedure for solving a general problem using

MINOS is presented.

Example 6.2: n = 2, parallel system, different components, §

]
ﬁ L = 0, Basic Model. :

k4

Markov decision problem:

States: 12 1 2 0
Decisions: A A,R2 A,R1 Rl’RZ’ R12
! A i YoM 1 Ry R R,
Transitions: P = 0 0 =P =P =P
b oo enliederhuinintid R . .
12 i A1+A2 xl+A2 1 0
- R R
A _ T A 1 2
Py, = —o 0 0 1 | = Pp. = PgL T B
12 _ A Ry Ry 1 A 1_1 . A 2 1
v = =V =V = ; Vv =V = = =V = —
12 1 A1+A2 1 0 xl 2 0 Az
Costs:
A _ A _ A _ 0
12 =5 ST F
R R
2 _ 1_ . 1. . 2,
T = K2 N K1 ; L Kl + p; T, K2 +p
12 .
= K
r 1 + K2 +p

)
Objective: minimize V—l’ then V0 . ]




Linear Programming Formulation for (p), primal problem.

8 variables x? = probability {state = i and decision is k}

0 0 2 0 1 1 2 12
(X195 X» Xps %95 Xp» X Xgs Xg ) -

. k . X . ,
5 constraints plus Xg >0 ¥i, k plus objective function.
column
12,0 1,0 1,2 2,0 2,1 0,1 0,2 0,12 RHS
T oW
] 0oBJ 0 0 K2 0 Kl K141> Kz+p K1+K2*p -
512 1 0 0 0 ] 0 0 0 - 0
Y 1 Y -3
2 2 2 2
s1 — 11— 0 - 0 0 - . 0
Alﬂz l1ﬂ2 ‘1“2 ‘1“2
- =) A =X
1 1 1 1
S2 —_— 0 —_—— 1 1= = ] 0 - 1]
A, IR 4, A,
4
i S0 0 -1 4] -1 0 o) 0 1 - 0
1 1 1 1 1 1 1 1
NORM e - — =
AIHZ ll Al-HZ A XX‘”Z Xl 12 Xl+X2
Suppose L=20 K, = Y, =
1 1
p=1 K, = Hy =
Then (P) can be written as
minimize: ¢X
‘ subject to: Ax =
X >
where
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A= 1 0 0 0 0 0 0 0 ]
1 2 1 1
-3 1 3 0 3 0 0 3
2 2 1 2
) 0 -3 1 3 0 0 -3
0 ~1 0 -1 0 0 0 1
2 2 2 2
ol d 9 < £
3 ! 3 - 3 1 2 3 ]
b = {.O_ The dual problem (D)
0
0 can be written as follows:
0
L 1 maximize: §

subject to: utA <c

(objective row)

row

S1

NORM

where u = <u12’ U, u u.) and g are unrestricted in sign.

2270

*
We know max g = min cx = V_1 (duality theorem) and x - (utA—c) =90

k*

*
(complementary slackness) so, utA <c= Xy = 0 (i é & under § ),

+(1,k)

(A_(i K) is the i,kth column of A).

Example 6.2 will be solved as part of Section 4.
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The fundamental principle behind MINOS is an efficient and
reliable implementation of the revised simplex method for linear
programming (see [7]). This combines established sparse-matrix
technology with stable numerical methods for computing and
modifying a triangular factorization of the usual square basis
matrix B [see references in [23], p. 8].

For usage in solving purely linear problems, the following

two items must be supplied as input:

(1) the SPECS file - to specify certain run time
parameters
(2) the MPS file - to specify the objective, constraints,

and bounds on variables in standard MPS format.

MPS format is defined under the title "CONVERT DATA" in IBM
document number SH20-0968-1, "Mathematical Programming System-
Extended (MPSX), and Generalized Upper Bounding (GUB)", pp. 199-209.

The following SPECS are used in all test problems in Section 4:

SPECS FILE

BEGIN SPECS

MINIMIZE

OBJECTIVE 0BJ :l objective

RHS RHS defines RHS vector

BOUNDS BND defines bounds vector

ROWS 100 max number of rows

COLUMNS 500 max number of columns

ELEMENTS 1500 max number of nonzero
matrix elements

INPUT FILE 31 defines input MPS file

ITERATIONS 500 maximum number of iterations

SOLUTION yes go to a solution.

END SPECS
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The input MPS file (labeled 31 in SPECS) will vary from
problem to problem. It is uniquely specified given any Markov
coherent system repair model. This is dome by choosing values

for each of the following parameters:

States: n = number of components
2 = number of degradation states/component
I, . = indicator function indicating whether one

id has an identical component, k-of-n system
or not
Repair: s = number of servers
0 > 0 = mean repair time
Components: u: = mean holding time of component 1 in

degradation state d

d

Ay

- 1<i<n,0<dst-1
My
System Type: - list mincut sets
Penalty Cost: p > 0 for system failure
Fixed Charge: L > 0 per repair decision
Repair Costs: Kd to repair component 1 when in degradation
state d, 1 <d <8

l<iz<n

Objective: V_1 or Vo (minimize)

For large problems which might need to be tested many times,
it would be worth writing a Fortran program to produce the MPS
input file given the above model parameters. However, for the
relatively small problems to be tested, it is easier to create a

new MPS file directly for each separate example.
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Qutput from MINOS includes:

(1) a listing of iterations to solution

(2) Rows section: indicates the numerical value taken on by
various rows at optimality, including whether or not
the row is at its upper limit (in the case of <
constraints in problem (D)). Also the optimal value
of the ith dual problem variable corresponding to
the 1th row is listed.

(3) Columns section: gives optimal values of variables
and the reduced costs for each, i.e., the coefficient
of variable x, 1in the objective row of the optimal

3

simplex tableau.

Given information on the input, output and working efficiency
of MINOS, the question remains as whether to use the LP (P) or (D)
to solve the problem. One immediate point favoring (D) 1is that

the u, variables are given as output as well as the x

: while only

i

the x,'s appear in the output for (P). However, the efficiency of

i
MINOS depends the most on the number of rows and less so on the
columns. This favors use of (P), which has many fewer rows than

columns, in cases where only V_, optimality is desired or the

1
problem (D) would have too many rows to be efficiently run under
MINOS. The advantage of problem (D) 1s in cases where a Vo

optimal solution is sought. To determine the restricted decision

space A' for the altered Markov decision problem, one must know
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which of the rows (i, k) in (D) are at their upper bound at
optimality. This information appears directly in the rows section
output of problem (D), while for (P), these comparisons would
have to be made separately in addition to the fact that values
of u would have to be solved for on the side using a system
of N 1linear equations using dual activity values given in "rows"
section. In summary, a rule of thumb might be

- 1if small problem and want

v only > use (P)

-1

V_1 and VO > use (D)

- 1f 1large problem and want to use

MINOS -+ use (P) 1if (D) has too many
rows for MINOS

or

if want (D) to be used, then
recommend using some other code.

This rule will be followed in the small test problems presented in
Section 4. It should be noted that for coherent systeu repair
model type Markov decision chains where Vo optimality specifies
a unique policy subject to an infinitesimal change in one of the
cost or lifetime model parameters and the optimal ergodic chain

is always irreducible, it will frequently happen that the only
policy in A' 1is the 6* determined by solving the initial LP.

In such cases, only one LP need be solved to get a complete

optimal solution. This occurs in Examples 6.2 and 6.3 of the next

section.
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In solving certain problems by LP, it may happen that

N
k k k k
ti = u, - jzl pij uj + vig - ri < 0wk, some 1 .

If so, then slight modifications in the state and decision spaces
of the altered Markov decision problem must be made. Let

B, = {k € Ai : t: = 0}. If Bi # ¢ v i, then there are no problems,
define A' as before. Suppose Bi = ¢ for some states i. Let
a={i: B1 # ¢}. Notice that 1§ ¢ 1 can occur only if i is
transient under all gain optimal policies, a condition which is
usually satisfied by all transient states in a coherent system
repair model, unless there are ties among some of the V: values.

Modify Q and B, wusing the following algorithm:

i

Algorithm 1:

(1) Look for some 1€ Q and kEB k

1 ° Py
j € Q. If such a pair exists, go to step (2), otherwise stop.

>0 for some

(2) Delete k from Bi' If doing so renders Bi empty,

delete 1 from Q. Go to step (1). a

Now, let the state space in the altered program be restricted
to R (using its terminal definition from the above algorithm) and
let decisions be restricted to the terminal definitions of Bi' The
altered Markov decision problem will now find a VO optimal policy

which is independent of states 1 é . Examples of states { ¢ Y]
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in coherent system repair models would be ones which are inaccessible
from the starting state 10 = all components working under a certain
policy. The algorithm will never remove decisions corresponding to
ergodic states.

There is one other difficulty which can arise. The terminal
definition of Q wusing Algorithm 1 may delete some states that
are accessible from the initial state, an unacceptable situation
since in a coherent system repair model it is desired to specify an
optimal decision in every state that is accessible from the state
with all components working. Such a situation may be corrected
by:

(1) Run the LP (D) once and note which primal variables

are > 0 to get the optimal decisions in the ergodic

states. If B, = ¢ for any i or the terminal

i
definition of Q in Algorithm 1 includes all states
accessible from the initial state, then proceed as
described previously. If not, then

(2) Rerun (D) but first delete rows corresponding to
nonoptimal decisions in ergodic states. This should
now produce a § which includes all 1 accessible

from {1, ..., n}. Now proceed as before, (see

Example 6.3; k = 1 p = 3, for example).

If policy improvement is used instead of linear programming,

such difficulties never occur for t: = 0 for some k for each 1.




4. Some Test Results

In this section some test results for some small coherent
system repair models will be presented. First, Example 6.2 was
looked at to make sure the program was working, as its optimal
policy can be computed using theory from Chapter II. Only the
relevant output is presented. See Figures 6.1 and 6.2, 6.3 at

the end of the chapter for sample input and output from MINOS.

Example 6.2: Basic Model, n = 2, parallel system.

Kl-2 1(2-6 p=1
ul'l u2-2 L=20
From theory
V_l-min{xtﬂ,, fﬁ—*’i,l:li-;z- }
1 2 1 2

= min {3, 3.5, 5} = 3

*
80, € = {0} 60 - Rl

2\ 5
V_1< 14+—)—=¢ 80 §, =A &, =A 1is optimal.

VA 1 2

optimal policy:
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Results: (using (P) or (D) - both were tested).

A A R,
primal variables: X, = 0 x, 0 x, = 0
at optimality xA =0 le =0 lez = (
1 2 0
R R
2 1
Xy 0 x, 1
dual variables: Uy, -7 u, = -6 g=3
at optimality u = -3 u, = 0
rows at upper 12, A 2, A
bound in (D):
* 1, A o, R1
conclusions:

*
(1) & = {0} 60 - Rl

(2) a' = {12,A; 1,A; 2,A, O, Rl} = gingle policy
so AAR1 is V0 optimal (no need to do second LP)

(3) Optimal gain is 3.0

(4) These results agree with the theory. a

Now, consider the following problem using the Basic Model

which is not so trivial:




et o~ s e €3

Example 6.3: Basic Model, n=3, L=20

Kl =] KZ = 1.55 K3 = 3.2
Al = ? Az = 2 Al =1
p varies k = type of system = 1 or 2 of n.

Theoretical results for V_lz

=
]
o
o
L]
<
]

mm{xi(xi +p), 1=1, 2, 3; ).11(1 + AZKZ}

%*
A3(K3 +p) = 4.2 & = {0} 60 = R3

*
k=1, p=2 V =A3(K3+p)=5.2 ¢5°={0}60=R3

k=1,p=3 V_,=)NK+1LK =6.1

k=1,p=10 V_ = AK +3,K =6.1 s

=
L}
N
o
L]
N
<
[ ]

min {AlK + ALK, + A

1 272 KR i

J\i(Ki +p) + (1<j +9p),,..} 1,5 €{1,2,3})

3 14§

A1K1 + A2K2 + A3K3 =3+ 3.1+3.2=29.3
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80, &= {12 13

k=2, p=.9 V_; = 2Ky +p) +3,(Ky +p) = 9.1

k=2,p=.5 vV, = AZ(K2 +p) + x3(K3 +p)=17.8

-1

i
|
|

so, &= {2, 3} 6*-R §. =R

N
w
w
N

Computational results:

k=1 =1
Ry K
primal variables: X, = 1.0 X = 0, otherwise
dual rows at
upper limit: 123,A 23,A 3,A
12,A 1,A O,R3
13,A 2,A
conclusions:
*
(1) €= {0}, 60 = R3 (agrees with theory)
(2) optimal to do nothing in other states - no 1
need for second LP, i.e., "A" in states 1,2,3.
Notes:
(1) In all of the variations in Example 6.2, to save time,
decision variables for states s : |s| > k were fixed to "A"
since known to be so by Chapter II results.

JUPSPR
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(2) The dual LP was used in all cases here to obtain

solutions.
|
=2, k=1 !
Ry K |
primal variables: x0 = 1.0 xi = 0, otherwise :
dual rows at

upper limit: 123,A 23,A 3,A i
r 12,A 1,R3 O,R3 ;

13,A 2,R3

conclusions:

*
1) €= {0}, 60 = R3 (agrees with theory)

(2) optimal policy in states 1, 2, 3:

p=3, k=1
) k
primal variables: X" = 2.0 X, = 0, otherwise
R
x,b = 3.0
st ]
17" run of (D) run (D) with 1,58,8 # R, :
dual rows at  123,A 1,R, 123, 1,8, 288 #R |
» i
upper limit: 12,A 1,R3 12,A 2,R1 rows eliminated. :
B = ¢ 13,A  2,R 13,A 3,A
23,A 3,A 23,A O,R12
Q= {12,1,2} after use ALG 1, Okay.
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conclusions:

* *
(1) 8'{12}61=R2,62'R1

(2) optimal decisions in states 3, O:
3 : A 0 : R12

no second LP necessary.

p=10, k=1

R
primal variables: xl2 = 2.0 xt = 0, otherwise
R
le = 3.0

dual rows at
upper limit: 123,A 13,A 3,A BO = ¢

12,A 1,R2

23,A 2,Rl Q = {all states but 0}

after Algorithm 1.

okay, since 0 1inaccessible from 123.

*
conclusions: 1 & =1{12} 61 = R, 62 = R,

(2) optimal decisions in tranient states:

3: R1 will never enter state 0O
80 can ignore.

p=.5 k=2
Ry K
primal variables: Xy" = 1.0 X = 0, otherwise
R
x> = 2.0

dual rows at
upper limit: 123,A 13,A l,R3 3,R2

12,A 23,A 2,R
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conclusions: (1) &= {2 3} §. =R §. =R

(2) optimal decisions in transient states:

* —6* —5* *
§12 = %13 = 923 © 1™ R

Note: In the input of data, one must be very careful to be accurate
and carry at least 4-5 decimal points in determining the correct

v0 optimal solution. The set of dual rows which are at their upper
limit can be very sensitive to small changes in the parameters.
Realistically, if two policies are that close, using either would

be optimal and the easier one to implement, practically speaking, could
be chosen. If only interested in V-l’ the such accuracy is not as

important.

p=.9, k=2

R
primal variables: xz3 = 1.0 x? = 0, otherwise
R
x32 = 2.0
dual rows at
upper limit: 123,A 23,A 3,R2
12,R3 1,R23
13,R2 2,R3
1 &= 12,3} &, = 5% =
conclusion: r= {2, 3 62 = R3 3= R2
1 5y, = 65 =R, 6 . =A & =R
transient states: 12 R3 13- % 23 1 23
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p=2, k=2
Ry k
primal variables: X0 " 1.0 x, = 0, otherwise
R
2
X3 2.0
R
1
X9y 3.0
dual rows at
upper limit: 123,A 23,A 2,R3 33 = ¢
12,R3 23,R1 Q = {123,12,13,23}
after ALG 1, okay.
13’RZ 1’R23 states 1,2,3 inaccessible.
conclusions:
1) &= {12, 13, 23}
R3 R2 R1
* x %
(2) 61, 62, 63 never needed since inaccessible given set

of ergodic states. These values actually could be
obtained by dropping rows corresponding to nonoptimal

decisions in ergodic states and rerunning the problem.

Now, consider a noninstantaneous repair example, for which

only the v_ solution is sought. In this case, problem (P) 1is

1

used for determining the solution.

Example 6.4: Noninstantaneous repair model, n = 4

L = varies K=1 c=1 parallel system
p = varies u=1 L =0

s = number of servers varies
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Theoretical results:

Unknown, except in s = 1 cases with L = 0.

The following parameter values were tested:

s =4, p=1

L0 1.4 9.5 49.5 72.5 74.5 76.5 78.5 89.5 99.5

s =4, L=0

p |1, 5, 7, 10, 20, 30

s=2, p=20, L=20

s=1, p=20, L=0

Results:
s=4,p=1 (varying L)
optimal ergodic chain
L (optimal policy)
] 0,0 1,0 [R(O)]
Rl A
1.4 r(®
9.5 R
same (0)
49.5 as R
72.5 L=20 r(®
74.5 R0
76.5 (0
4,0 3,0 2,1 2,2 1,0 1,1 1,2 1,3 oO,00,1 0,2 0,3
78.5 A A A A A A A A Ra R3 R2 A,
A policy which says do nothing until the system fails, then
repair all failed items possible subject to server availability.
89.5
(same as L = 78.5
99.5 )
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Clearly, the L = 78.5 policy should be optimal for all L values
large enough. The fact that the mean repair time is large

(= mean component lifetimes) explains why the fixed charge must

get so large to have any effect on optimal policy, (large o favors

repair only when necessary).

s =4, L =0 results

p optimal policy

1,0 0,0
1 A R (R(o))
1
2,0 1,0 0,1
51 a R, A &Ly

3,0 2,0 1,0 1,1 0,1
7l A r R A A @9

4,0 3,0 3,1 2,1 2,2 1,2 0,3] requires use of ]

10 A Rl A Rl A Rl A | more than one server

20 same as p = 10

The p = 10 case is another example of a noninstantaneous
repair model for which it is optimal to use more than one server
at a time (unlike instantaneous repair).

Clearly, if the s = 4 optimal policy never uses more than
8' < 4 servers, then the s = g' optimal policy will be the same
as for s = 4. Thus, the p = 20 case is chosen as the one to

vary 8 1in.
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o g, g ) 2 Y a " o ‘ e A

p=20, L=0, s8=1, 2 3, 4 results

-] V_1 optimal policy
4,0 3,0 3,1 2,1 2,2 1,2 0,3

4 (uses 3 servers)
A R1 A Rl A Rl A

3 (same as s = 4)

4,00 3,0 3,1 2,1 1,1 1,2 0,2

2 A R A R R A A (uses 2 servers)

4,0 3,0 2,0 2,1 1,0 1,1 0,1 (R(”,uses)

A A 1 server

The previous examples are intended only to give a sampling
of the kinds of new results obtainable computationally. Further
experimentation could lead to formulation of new theorems or
counterexamples to certain conjectures about optimal policy forms.
Most importantly of all, these techniques could be implemented to
solve a specific real-world problem which could be formulated as a
coherent system repair model. Sample input and output from

Example 6.2 are shown in Figures 6.1, 6.2, 6.3.
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FIGURE 6.1 - MPS Input Data File for Example 6.2 (Dual LP)

uuinY NHAME EX1U
so2uw KUWS
Uo30u N 0OBJ
Govou L X1Z2A
oS00 L ~»iIR
[IVT-AT]Y ] L KiR2
Bos0o L RaH
130800 L X2RrR1
yoIny L ®OR1
TR EVITT] L HKORZ
UHlgu L ROoR1Z2
01200 COLUKHS
1300 Uz 212A 1.0
IR 1 #“12A - .3333 1A 1.0
31500 Ut #KIR2 BBOS “ekr1 - .3333
PR Ut wWOR12 - J3333
g1,00 Uz A12H - 5O L1R2 - L BBL
YR E-11Y] uz “eH 1.0 a2k 1 « 3333
TR R V]Y] iz wiR1Z - 6067
uz200n Jo “A1H -1.0 HEH -1.0
u2tuu 5 uBJ -1.0 S1EH GEET
g22u0 i3 ®1A 1.0 A1k . BEES
G230y 3 “eH 2.0 K2R1 BBE7
0240y 5 SUkt 1.0 XUKR2 2.0
n2500 3 KORYZ cBbelF
e
CExTU.LHT. 1)
*I2500
U2oin RHS
u2 00 RH3S AIR2 HER 2.0
02800 RHS XKOR1 HORZ Fal
N2y RHS KURTZ
wanpu BOUNDS
U3ty FR BHU e
u3zon FKR BND Ui
1330y FE BHD Uz
U340y FR BHD uo
53500 FE END 1]
u3BNY EHUARTAS
8 decisions = 9 rows (counting objective)
i 4 states = 5 columns
i The primal would have 5 rows and 9 columns.




FIGURE 6.2 - MINOS Row and p = 1 Colus

Output for Example 6.2 (Duai,

[ a1} NUMREP .. .PNU., AT
LJUPPEP | IMIT.  ONAL AFTINITY
13k00
12700 ? NRJ es
NOME ~1.00000
12800 Ni2R ug
r, 00000 0,00000
12900 X1A "
0.00000 n.AONOO
1000 "o oNIR? RS
6.C0800 n.00000
12100 1t %2R u
n.oon0n f.ro008
11200 1> VAP (.13
2.00000 b NANGN
13300 1T ey m
3.00000 ~1.00000
17908 1ty vne> RS
?.r0000 n,on000
13800 15 VAP .4
9.00080 0.00N00
12400 t
11700 SFPTINH 2 - N UNNS
1IN0
13900 HHUMREP .COLIMK, AT
LLUPPEP 1 INIT, .PFAUFEDR FAST,
19800
tegnp r o om? RS
MONF n, 00000
te200 m RS
NONE n.onnoo
teTnn T n2 P
HONF n,ennnn
ICTYY ] [T FP
LUl /3 0,00000
14500 5 6 ]
HANE n.ongne
tegee PHe [
-1.00000 3.00000
&= {0} & =R
= -
0 1
B., = A
12
B = A
1 so, AAR,
B = A
2
B = R
0 1

LACTIUORYY,
.

-X.00000
A 000AN

]

0.r0000
v.ren2p
[ J.1LLT ]
1.00020
T.00000

S

~

6.0000n
5.00m¢

v %

C W RETIHITY, .,
L]

-2, 00020

i
-3.0n000

tt
~A . POOAN

1>
n.0PADY

1Y
2, 00000

1
-1.cc000

1y

is V
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3.r0000
h, 00000
e.cno0e
1.999%¢
e ocn00
r.0999n
$.00000
1.¢00n0

3.99999

.0BJ GPANTENT,

A o000
r.or000
rP.oo000
n.000N0
-1,00000

o.cconn

A3

0 optimal policy.

oLuWER IIT,

NONE
NONE
NONE
NANE
NONE
NONE
NONE
NONE
MONE

.LONFP LIMIT,

NONE
HANE
HANF.
HONE
HANE
~1. 00000

L r;")_.a‘
6T
R
W

'~




: FIGURE 6.3 - MINOS Row and Column Output for
Example 6.2 (Dual) p = 5
13000 SFCTION 1 - PAMS i
12100
13200 NIMREP ... FON.. AT . AFTIUITY,,, SLACY AFTINITY ., LOHEP LINIT,
LJUPPFP LIMIT, .NUAL ACTIOITY o0
131
1480 ? 08y &S -u, 90988 v, 29988 HONE
NONE -1.00000 1
13%00 8 X17A u" 0.00000 n.00000 NONE
f. 00000 o.rn00N 2
11600 9 x4 RS -0, 99958 0,999 NONE
0.00000 £.00000 H]
12700 1 RIR2 uL 6.00000 0.00000 HONE
6.00000 -h, 499912 L]
13808 11 %2R " 0.00000 #.00000 NONE
0.000n00 n.0000N <
12900 t V2Pt " 2.000008 N,00800 NONE
2.000n0 -t.00000 [
1ungn 1T ORI RS ., 99955 2.000%8 NONE
2.00000 £.00000 »
14198 s NOR2 RS Q9,999 1.00890 NONHE
t1.00000 n.o0n00 R
18200 185 vop12 RS R.66390 Y, X410 NONE
1300000 0.c0000 a
1ern o
teung SECTION 2 - FOLUMNS
14800
19600 NUMREP . COLUMN. AT . ACTINITY,., .ORJ RPADNTENT. ., LAWEP LInIT
LJUPPFP LIMIY, L RFDUCED £OST, LER
14700
14800 1 ome2 8s <11, 90010 n.00000 HONE
NONE 0.00000 )
tuann > fas -5, 00018 8.00090 NONE
NONE 0.00000 "
15000 TR BS -9,99919 f. 00000 HONE
NOWF f.00000 t?
15100 . o FP n.co000 00000 HONE
NANE 0.00000 12
18300 S & BS 4, 9998% -1,00000 NONE
9 NONE e.00M00 1%
15100 i PHS €0 -1.00008 0.00000 -1.0000
-1.00000 v, 99088 18
* *
&= 2 §, =R S, =
, 2 1" Ry 2" Ry
B,, = A
12 B = A
B. =R altered 12 is
1 2 = decision Bl = Rz VO optimal
space
B = R A B = R 1lic
2 1’ 2 1 polley
: B, = ¢
§
[ CTICABLE
: tALTITY PRACTICA
gHIS PAGE 1S BEST QUAL o
P T e W
; Frood CUET £ T e Y
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*
FIGURE 6.4 - SOLVER Program (Fortran)

Used to Implement MINOS

Baotd SULVER PLUK, G
srlvu o
wen FERLAS 2oy
LU SV UHIN L ORE, SO000
Ui, .
IR CHLL LU Dl UKE
vu3iv rETURN
[OTEY 1V} " LU UF RN
VRSN ey
[TVEL 1N L
sy L
[FOK3 N [
(%7 L
LYY SUBKUUTENE G, O W HLURE
v iy [N
(LX) THPLLCLT NEHLAS M=M=
e 3 i FERLAS < HLUKE 5
DTTR ¥ L Uk SFILES o LSOy JHPUE o LULUG 5 AHEWB o LIk T o TEHUH S FLUND , LuUHE
\46‘ |1% tgm\uﬂ CEOLEILEE L SULH L UL N SO SO TRITC sl W
w3 AHUN < ESUOMZ B35 00 S TUBY ML JHE 3 H L o OB i HDE:
uoBYY L
vuoi; ("
s L [5URLH = S
o, S KEWLIU ISCRCH
LUBey 1oPECs = 32
vLeEs OFEM I 1252 3k b= pEUS  ORT? UEVICE= LISk
Lucgh WFENLUNIT=351 0l nLue DLV ELE= 10 2
LG Wi SPEL:
s R§§Hi3Hi¥=§-:lLkl’NlHuUf’-UEUIC&"D%L’)
b3 Wi fF5un = 1
Uevuy CALL HIHUS G CliNLUIE o BoPECS s TSLRUH o LFS0OLI
yiviv i FERROR G HIROWS s HOUL S sLivs oLl oL 1 LML oL FFEE HHIFMEE
PRTP-] WRITE - LSCRCHy 00y JERROR, §C
vaues 00 FORMAICC Ty
2U s 1og IF feRROK,BE. U 2TOP
vl iS5 CLULECUNTT=n)
va ity RETUFN
[/ U} L EHD OF 130

< TRbv
“ \'»11 i3
N 3 e
.- o PR
T et

19 Vi PR LS
Ll L e

BT
[ Nk

*
Obtained from Robert Condap, Department of Operations Research,
Stanford University




024y
0241v
"7 L X
[ XAT]
[ 4T
Vi)
V500
Va5t
V2S2y
2P2530 150
ua53v
[Ty 11}
(7471
' R %g V]
03530
udSw
[N
LISty
TR
2o 3l
LS T]
Udedy
[P
uiesu
[0
LW
PR V1T}
2710
vasdy
Va7 30
veThy
0276u
w72y C
Va1
[T}
PR
uisty
V320
04830
0&gYo
uIE5u

ceoe

LeIty
L2y
0a33u
uaINy
[RE 0 1T)

ceor

Vg
vivuu
U301
V020
LKA TR (V]
[ELTL U]
*P3uS0 1wy
v3vs0
Liveu
N3uFY
viven
0309)

Cee

9310y L

03316
03120
0313,
0314y
03270
V3280
U3y
viddu
nsdtey
0352y
KR 317]
0352y
3580

SUBMKUUE [HE FLFIUL  J oW o %ML g Lkl 0Pk,
1

TERROK o HOH'S s HLUL S 3 L10% o L1 o L4 L g LH oL KEE ,NFREE)

ML IC T FERLAZ(L~0,0-C)

FEML s CUHMLURE ) y kPN

LunlcnL CONU L KES TRT

COHHON /BGLOM ~ (OLSWE HBUME JHoP TEE sHSFK

COMMUN /LGLOMN < CUBETA, J TNCG sM:3600 s MUDCG ,KESTRT

oMU SLONUCHZ ETASH o & THR SO CH ) o LULTOL 10 TFNS JNFHIL
LONMUI FLURE  ~ KZ1,h32,023

CUHMOI ZUJCUN « TOLUJ L TULLJC » 1ULUJ 3y TULDY

CUHHUN EPSCUN- EPSEPSY EFS) JEFSZ,EPL3,EFS4 EFSS PLINFY
COMHUN FILES ~ DISUR ENPUT 5 TULDE o IHEWE » LHSRT , LPHCH o LLOAD , 10N
CONHON SPREWS ¢ FUHNSK IR JRSH) kL ULy | IFREGy L ZFREY

LOHMUNH FFACUN 7 Bl 1HF yWTOEJ sP ENEMZ s lWF R yHTHF 0B 1IPROB
CUNHOH ZINICUMS LTH, LTNLTH G HFHS S KHUOLY  KHUDK ]

(MY TETV < ANVCOM. (NURQ s INUT TNy LHUMOD s HBELER s hHL 4. UL sk HU oKDY S hFF
COMMOH AITHLOGS UJU s THETA F 10T o, OHL  HOROPT o JP 5 SO  kHUD 4 K 5UB
COMIFIH AITHLGZ. THEHD s Juil y JUZ y IR E y IR

UMMM CLPRUM o RRHS 9151 3 HHAK, TERR » LOEBUG

COtHUN ~LUFILE.  IMBED  NETHL yHETAK , HETAU KL s kU, LEGN s JLBGH
LMo HFSLOM REJTOL ZESTRUCCSE » oM A JHL ST JMER
i NAMEC2) yMOBJ 2 s pMKHS 4 &3 3 rIHI3 2 ) 4 MBI 2)
LUMHYIN SHLLCOH HHLFCH,LUER LV, LR LNT

Cukiun CPARMCH, UPARMC9 3 5 LFARICY)

CUMMUN SHRCCO: HPARPR yHPRC 3 JPRC (hFRC yHKEJ o (KEJ y JKEJ < 2§
CoHMul < FRCCHU HHULEFM JHEWSE

LUMHUN CRQIOLS. STOLCE) oF TOLL 25 o al Ol 4 20 o THORM s GNORN , TOLRG
LUHRION 2 oLHCH LEOLI RSOUN s MESOLH »HETATE JLUHKGE

LUMMOH SUOLS o TOLNSTOLF IV IRV TRPIUZ , TOLROM ) KHORH
CORrH CWUMUSZ, HWORDR HHURDT 3 HIWURDH

LVERSH = 330273

MHAZ = BHUDKE

IS0FR = PSURCH

IERR = u

HKONS = v

HLOLS =

IF (ISPECS.LE.u, LERR = -}

IF ISPECS.EQ TSCRCH: JERR = -1

IF CHHCORE, LT, 100, TERK = 50

IF CIERR.NE.O) k0 TO 300

CRLL 1M

KERD PRUBLEN SFECIFICATIONS FROM FILE -
HHU QUTPUT {H SPECIAL FORMAT TO  FILE

NSFEC =

TLe

"

SPELS”
" LSURCH®

CALL SPELSC 24 12FELS, I5CKRCH,y JUEREH, HSFELC
IF CHSPEC.LT.U) LERK = =)
1IF (IERR.HE.U GU TO 900

KE~RERD SPECS FROM FILE

"TSERCH

CALL SPECSEC HIFEC o MROWS yMUOLY JHMELS
1 1M o I MM o N o HE s HIP T o 14y M HIHL MRS 3 NS

FERD MFPS ORTA FROM FILE * INPUT"

LALL MFSTHG & MHAL pIROHS , HOOLS s MELMS »

L JUPA g

P ML Sl o A o1 ML g P SR gt 0 g P g HIHG 0y 1y
KHF 3 hHE okHH s His s LEL s h BU L HE s Ry

FHS JkPL kU SRR

[ 1M NTTTRT N CART NI AT Y S I

KGR G RYYN R pkig 3EGH k3B >

1F INPUT k22 KEWIHD THPUT
KEWIND L2 RCH

IF «M.Lk,u)

lehk = 40

IF VIERR.NE. 0/ QU 1O 00

CALL UFRJURR.

(L g P PO

SAWHL

bR g

REWIND 13CRCH

IF CIERF.B1.Y

Wy [EFFOR = JEFW

= MHAS TFSULH,,

b2 Wt o PV o8 G UL S IHF T 187 MR g 8L oMM 9 1S

SAEHR 2 s CURHE ¢ 9 Z EHHD  SVRRAK 2 9 L CREL - s SABU S s SORME 2 9 D kiSH I o
SOrHS ) s SNRFL Dy kU g b

0N V11T TR N S PN Y ROR AN SOUMPIFIURN ¥ 1 SN
[ENMPRTRY N4 RN YUY b L ERTSEN N T P

IEFN = %
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TS} 7 sETIN

(OO [ LHU WF HiNuS
u3oty (A1Y]
u3iZiv SUBROUTIIME CALLEG VUL o1 vis ok 313yt THTE S HFRUEB -
031y RETUKH
U391y ENHD
Fage ¢
wl oy L
TR SUBROUCTHE 9Ll BrbL My H o HE o1F g HN o 1MLy N o F1s
vu 3oy 1 HH yHE s HE oM s M B s BU sl pin s P 1o g WS T 4 L TRTE gD 13
[T TP IMPLICTT FEHLABL~1,0=C)
[ 111Y] L UIHHON CUVULE - RC o RiH , HCSULH T ILGR
VuBLY LUyt LWL - UL TULUJZ f TULLWJS y Tl
uuuu LUMMUN JEFSLUMS EFS,EFSOEPS 1 yEPSE JLPS3 EFSY EFSD,PLIIIFY
ouBUL COMMON ZF LLES, 150F s IHFUT , LOLDE s LHEWE o 1HRY 3 IPNCH . LLUHD » LOUHFP
Y] LOHHON CERLUE o RS LR s WEOBS s HEHTMZ yHE 2, THLNF o 1DBY JHiFUE
vlvwy COHMU SLHICOM:  LTH, L THL IR HIPHS s KHOOLU s KHUDP T
uliuy COMPIIH FLPCUM . EEHS 1S | MNER » TEKK 9 [DEEUG
uisoy L UMMON AAFSCOM. HIJTOL yEBS IRULCE S M EHMHE ML T G HEF
visuu | HAME 20 MUBJE ¢ yHRHS L O 2 MM 2 0y MENDY S 2
U 140U COMMON ZB0LHCH, LSOLH, SULH s SOLH NS TATE JLLHY R
UI5ue CUMMHON STULS 72 DL TOLF IV TRPIV y TRFIUZ, LOLFOW  HORM
»P1510150
uvIGUY INTEGER  HHUHE : s HEHF 1) yH MO JHEWHS 2 o HST L
ul2ud IHEGER C3IRTEL3?
VIET NEHL HuHE S sBLAH s JGUCH
EIT)  FERLAE SHHIG ) s GOl 2 o S 3 g F TSt 9"t
G2uuL IHTEGER
uZilvy LUGICAL
[V T P S et i
uosud b THE FULL SULUTICH WECTUR OETS STORED iH THE ARFAY Y AS FOLLLWS:
L 7] ¢
PR&TIT [ XS I cae  WANRHS=I UHLULS UF EFICH UMMIABLE 1H THE H-MRTRI
0Zoul L YU RRHS) THE RHS, HLWHYWS = -1.u
U ¢ XY N0, 00 I AN T ) UHLUES UF THE LUGICAL '"HMIACLES (SLAHCKY
f' ———————— - = = v Y v - = - _ o
LFK = b
IF COHDIoK, LEP = L50LH
LPLUS = wa 1Pl LHEY
IHEZBL= NINF B0 .0
Ussun IF s MCHLL R 2 Lty 20y
vatuy 1.
035vu L HUD IO QULKKNKITING S5TATE UEL TR
36UV L -
3,00 Ul S0 J=1 a0 )
u3300 S Mafidy = Had) <fgb
uin L P
o DU 1wl u=1,0 5%
InT IF (Hs1<3 6T i) BY 10 160 g
Ohaug Bl = BLiJ) & .3
LY N BE = BULJ - Y
U4y Wads = B &7,
Uho0u F CHSTCS BV b Wids = B2 A7 Ay
04600 (F O BT.ERBES Ha1CDr = 4 Qv
04700 IF COMBSCA L LT ekLUS s 5D 10 106 <
4800 Madt # UL xG‘) >
04901 Hslids = & &
vShuu luy LT THUE
vS10u e *ééﬁg
== 1Y) DO 150 J=1,05
WS3uu b= MBS
uShIY [ = 5d)
w550y DAY
u?éuﬂ 1E ST JLTe Ghebs-TULK, H&Tik) = o
PRV IF T sl BU kol HeYky = 5
(G- )] 150 Cul) THUE
6% U IF -HH.EQG.H» JuK. IHFSEL JUR. kSOLH.EU.U» KRETUMY
uBLOY L
volud L USE  wlt MSTERD OF i N CRSE LAST FUNGRD RESET  »N
0520 L
[ U0 160 K=l 411
LTI foe WNCks
Be5UY Waks o=
#P6S10 150
05600 IF 0T oLl bLers=T0LID HBliks = &
Ve Uu IF 1 Jial. BUCKI*IOLYE, HeTCh, = /7
unYuy 180 LUNT e
BeYoU METUKRN
vy C
67 1uy L —— e e e e e e e m e it e e ae o
vidnw L CHLL & == WUIFUL SOLUTTONH B HPPRIGIMATELY MG FOFHAT
Us 300 [ et ——————— S AP,
U Qv LONT Tl
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[E1T1T]V R
D TVIVRE EXTRACT  FH> MU OUTPUT KUKWS
vszuy L
083vY CHLL UNHPAHLK G MoNE (M | o HF G HE JH o b RHS
(-2 11) OBJ = SINF
0ES00 IF (HIMF EU. L) wbd = MINIMI#F:
(ST REWIND [35CK
[TERO NERDC 130K, tuo0) 1D
vgduY WKITECE s Ul L0, 0B ESTATE JIPHS o L TN
EYY WRITECE s 1udS) MUBJ ,HINHRAN JHRHS KNG, HBND
LY WKITE D, 101§D .
02100 L
U200 U0 &wu I=1,0
uP300 J = KKHs+|
DRELTIT [A 2 HSTW Yo+
UYL TURH LOGICALS INTO RUNS
VISUY IF (AL, 30 TR = 31
U Ul IfF (R.6eT.o) IR = 15-1A
yEuYy KHS & Kl
uPIY L = KM
vy Sk = Yods
v iy KUW = kH» - Glb
lvavy gl = b - U Js
130y bk =& - BLuJ,
vy [ 4§ P
[[<T] KEHUS {50k, 1050) 10
1unuy CHLL SULFRTC Jypl0plM KON bl o BB 51 ) 1 yETLUS UMD ISR
107y v COHTIHUR
10500 C
oy L UUTPUT LOLUKNS
11u0u C
[REDY] oLl = v 1$TOLDJS
tteue WRITE<S, lugl)
1120y [
[RE 7] DU 50U J=1ynkHs
[R=21TH) bl = HeLd ¢t
| RV e = HECJ+1 )
11750 CJd = u.u
11804y uJ = v.u
11900 U0 250 Kk=K1,ke
12000 IR = HHiho
re 1 2100 15y
121wy IR = [ABSTIR)
12200 UJ = UJ = FICIR #AK)
1Z2uu IF CIRGER, JOBJSY Ld = MOk
Ly 20 CUtT THUE
12500 IF < InFsEL. G0 TO 259
1iduy IF cJdoal HHey G0 TO 276
[T Ld = L ¢ LY
t&isvu bJ = MINIME#CD, + UJ
12900 =70 UJd = HIHINZ&DS
12000 <80 IF «HBSBJ2.LE.TOLDY UJ = b,y
131uy IR = H3T(Jo+1
13200 o=
13300 Bl =
12404 Bz =
1230y L
13806 KERDC LR, (SR 1D H
15,700 CHLL SULHET Oy LG TR B B2 yUd oo BFLUS MBS & 1
13300 30U CONT IMUE b
12300 [ t
1u0uy KEWINU 50K - .
14159 KETURNM !
192u0 L :
143500 IyoG FURHHT T E Y7y 0 FOBLEM FIAMES *y Sive Oty 135,
[EL D) PYoOEJULTIVE UHLLL: 'y TFESL, 16,
t950u S STATSE Y, e G4y 98,
(LY} 30 HHHSE: Y, 13, LIERMIEOH: 4 [y
10y 100 FURFAT
[RET] 1? UdeClIVES ?y kg SHMy 2 0y Hsy "%,
14900 27 FHn: Ty bivy AR,
19000 37 NANBES? Ty maly SHY%/, -
totuy Y BUUUL: Yy Bivy SHYD
13200 fuly FORMMIC? *oy v SECTION 1 < WOWL'- oy
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CHAPTER VII

CONCLUSIONS, APPLICATIONS AND EXTENSIONS

1. Summary of Model Results - Chapters II-V

This chapter will present a summary of results from previous
chapters in this section. Following that in Section 2, two basic
theorems which relate to all coherent system repair models are
drawn out from the results. Under what parameter assumptions they
do or do not apply is discussed. Section 3 looks into some
conclusions one might draw from Sections 1 and 2 results about how
changes in various model parameters affect the optimal policy or the
minimum cost per unit time attainable. Possible applications of
these models or the results of such are discussed in Section 4. A
listing of possible model extensions and topics for future research
concludes the chapter and thesis.

The summary of previous results along with references to the
chapter section, and theorem from which each was drawn will be
presented as a series of tables. This allows for a clear and concise
categorization of the numerous items.

Classification will be done according to model type and
particular parameter assumptions made for it. Table 7.1 summarizes

the categories:

At it it s o b




TABLE 7.1 - Categorization of Results for
Coherent System Repair Models

I. Basic Model Found in
A. system type: general coherent, # series]
objective: v__1 Table 7.2
B. system type: k-of-n, k # n (series) 7]
objective: V_1 Table 7.3
C. system type: k-~of-n, k # n (series) ]
objective: V Table 7.4
0 N
II. Degradation Model
A. system type: series or parallel
objective: V_1 Table 7.5
III. Noninstantaneous Repair Model
A. system type: k-of-n, identical
components (nonseries) Table 7.6

objective: V__1

Tables 7.2 + 7.6 will comprise the rest of this section.
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No
fixed

charge

TABLE 7.2 - Basic Model, General Coherent

System, V_1 Results

lChapteriSection'Theorem(s)
X ]

fl can be written II
v

. . s
as a convex combination of certain V 1
where Yo are policies which never re-.

For any policy &, V

|
pair more than one unit simultaneously.|

Never repair more than one unit at a ! I1

time in an ergodic state.

V_l optimal policy: keep a certain 11

subset of components working - repair

any that fail immediately. s determined

argmin Vt where
tcf1,...,n}

by s

K, Ki+p

. 5 &,
i€t My

<
r
i

t

‘1ndependent subsystems in series, the

i:t~-ice® i:
lb

i€t My :

t~ic
%

. If one can break the system down into . VI

(optimal system V_

1 is the sum of the
1

optimal V_i for each subsystem.

§ 2
{
i
|
i
i

2

be -
2.1, 2.2

6.3

L>0
fixed

charge

Still have Vf written as a convex

1
combination of certain quantities but

i of simpler I

policies. ]

]
these are now not all V

2.5
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L>0

TABLE 7.3 ~ Basic Model, k-of-n System,

V_ Results

1

(k # n series)

L—

=0
All results from Table 7.2 for (L 5 0) plus:

nonidentical components

identical components

no matter what p is.

Policy form: too compli-
cated in general for a
nice result.

If p=0; do nothing until
system fails

Ch. IL
Sec. 3

Ch. 1I
Sec. 3

jdentical components

If n1<n2, number of com~

ponents repaired in an
optimal policy forkrof—nj

is > number repaired for
a k-of-n,. If number ]
repaired }or n, is less|

than all possible, then
the number repaired for
n, is the same.

Ch., 11
Sec. 3
Thm 2. §

V_1 optimal policy formjCh. II1}jOptimal form: do nothing {Ch. II
Sec. 2juntil k units left working Sec. 2
Keep cheapest set of k-1
or k components working. Ex.2.4}Repair one unit in k or speciaﬂ
k-1, depending on p. case o
Parallel case: if have |Ch.III Ex. 2.4
sufficiently largespreadSS:é]? Policy form: do nothing |Ch. II
of AiKi's compared to : auntil k items left working]Sec. 3
, Thm 2.6
Xi §, then v—1 optimal -among policies which re-
policy will repair the pair when k left, R£_1
items with cheapest Ain optimal & f (2-1) < L/K

k+1
< Fen

—among policies which re-
pair when k-1 left, Ry

optimal “’fk(l—l) < EEE
< fk(l)

-optimal policy is the
better of the previous two
where

- 1, 1
fk(i)—(i+k)[k+ +i+k_1]
-1
If k1<k2,

kz—of-n policy will re-

pair more components than
a kl-of—n.

then an optimal

If n,k+*>, n-k fixed, an
optimal policy will be to
repair all failed compo-
nents any time repair is
undertaken.

Ch. 1I
Sec. 3
Thm 2.7

Ch. I1
Sec. 3
Thm 2.9
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TABLE 7.4 - Basic Model, V

0

Results, k-of-n System

nonidentical components

identical components

Do nothing until k units
left working.

Parallel system; L = O:
never repair up to more
than two components working
simultaneously.

g A Ky

A 9
AR

never repair up to more than
k + 1 units working
simultaneously.

If p < then

Parallel case; L = 0 Ai> Aj
and Ki > Kj = never repair
unit 1.

Parallel case: restrictions

on possible optimal policies
given V_1 = AE(K2+p), any 24

Parallel case: restrictions
on optimal policies given a
specific £ 1in V_, =

AL(KQ + p).

1

Ch.
Sec.

Thm

Ch.
Sec.
Thm.

Ch.
Sec.
Lem.

Ch.
Sec.
Lem.

Ch.
Sec.

Th.

Ch.
Sec.

Ch.1II,1

L°.3.7,38

Cor.3.10

Lem. 3.11

I1
3

3.3

III
1
3.4

IT1
1
3.5

III
2
3.6

II1
2

3.9

I11
2

NOT NEEDED

V_1 gives

unique optimal

decision in

each accessible

state




TABLE, 7.5 - Degrudation Model Results (and Conjectures)

nonidentical components identical components
Optimal policy: Let Ch. IV |Optimal policy: When {Ch. IV
ith component get down isc.AZI g%% component reaches i:c.421
to a certain state of Leé 4'2 k™~ state of degrada- Le& 4'2
series |degradation, say &, - ‘o, ltion, repair it. .
i |Lem.4.3 [get using V . only] Lem.4.3
then repair, where ¢ g LA | yl.
system i
is determined by the
K's and A's [get using
V_1 only].
Conjectures:
(These results still
need to be verified)
Too complicated to Never optimal to re- |Ch. IV
analyze theoretically. pair > 1 unit at a Sec. 3
parallel time in an ergodic
state.
system
Never repair until Ch. 1V
one unit or less Sec. 3
working.
Can modify degradation |Ch. III V__1 optimal solution |[Ch. IV
model slightly to get |Sec. 4 Sec. 3
general an extension of the to M(n,l) same as
system Basic Model allowing that to M(Z,z)’ L > 1,
for Erlang component n > 2. where M is
lifetimes. - n,t
a Degradation Model
with n components,
2 degradation states.
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TABLE 7.6 - Noninstantaneous Repair Model Results

Chap- SecH
' ter ftionTheorem
V_1 optimal policy form: repair wheneverthJ 2 |Th. 5.1
server is free and the number of working Lem. 5.2
. Th. 5.3
components is below a certain number, say j.
(Call this policy R(j)).
The optimal policy is
I pu
R™Y/ . if u(j) < E, (K+1o) <u(j +1)
(k-1) PH
R , if 0 < ——-—fk(xﬂo) < u(k)
where
server Y - 1. z.+l ) uJ+1 ‘o
1 * itl i+l j
k-1
- !
L=0 fl‘l’fk'k(gl)o k22
B o T (ut(k-1)0)
- j+1 24 MEa
ul@ = 93 [T

3 o G-1)!

r Relationship of optimal policy to k, f v 2 |Lem.5.4
number of components repaired could Lem.5.5
increase or decrease with k, depending
on u, O.

s> 1 Not true that no fixed charge means never v 3 {Ex. 5.5
repair more than one unit at a time. VI 4 |Ex. 6.3
mUItiplTlf a policy which uses s8' servers at most| V 3 |Lem.5.6
is optimal for a model which has s > s',
SErVers! hen it is optimal for the model with any
s' <t <s.
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2. Two Basic Theorems

Section 1 presented a summary of results obtained in
Chapters II through V for three different categories of coherent
system repair models. Due to significant differences in state
space, decision space, and component lifetime distributions, results
for each model had to be obtained separately and in general, optimal
policy forms are quite different. Even results of similar type had
to be proved in a different fashion for each model. Thus, the
allocation of separate chapters to each model, even though all came
under the heading of a coherent system repair model.

Despite these differences in model structure and, thus,
methods of obtaining results, one would expect similarities between
many of the models since they are all modeling the same type of
activity - the maintenance of a deteriorating system of components.
Two basic policy "types" appear throughout. These are:

(1) If one has a k-of-n system and instantaneous repair,

then never repair until there are k units left
in the system.

(2) 1If there is no fixed charge for repair (only component
and labor costs), then one never repairs more than one
unit at a time in an optimal policy in an ergodic state.

The applicability of statements (1) and (2) to the various coherent
system repair models discussed up to now appears in Tables 7.7 and

7.8.
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"If have a k-of-n

TABLE 7.7 - Application of Statement:

system with instantaneous repair, then never

repair when more than k units in the system are up”

L>0

to various coherent system repair models.

Basic Model (k-of-n)

True True

True True

Degradation Model (L = 0)

identical
components

nonidentical
components,
L >0

series parallel
conjecture
True True
(true n = 2
2 = 2)

conjecture to be true
(future research)

Noninstantaneous Repair Model - False

Notes

for proof
see Theorems
2.3, 3.3

series is obvious

see Lemma 4.1 (8 = 1)
for counterexample.




TABLE 7.8 - Application of Statement:

"If there is no fixed charge for repair, then one never repairs
more than one unit at a time in an optimal policy in an ergodic

state"

to various coherent system repair models

Basic Model Notes
general Theorem 2.3
coherent True
system also, false if extended

to Erlang case
(see Example 4.3)

k-of-n
system/ True
identical
components
# Degradation Model
nonidentical identical
4 components components
]
}
3 Series True True Series - :
f
' Lemmas 4.2, 4.3 j
conjecture |conjecture plus Theorem 4.1
true true f
parallel| (future true |
research) n=2, =2 i

Noninstantaneous Repair Model

False see Examples 5.5, 6.4




Statement (1) is intuitive, although nontrivial to prove in
many cases. Lt applies to all instantaneous repair models considered
and 1 suspect it applies to others as well. The second statement is
a much more interesting result. It seeks conditions on model
parameters under which if there is no fixed cost per repair decision,
then no more than one unit ever will l.e repaired at one time once

the set of ergodic states has been reached.

Given statement (2) concerning the ergodic states, the next
natural question to ask is, what about the transient ones, i.e.,
does a similar result to (2) hold in states not in &? The answer
is definitely no if all transient states are considered. Even in
the simplest parallel case, it can be optimal to repair two units
at once in state 0 if it happens to be transient, (for specific
example see Example 6.3, p = 3, k = 1 case). However, if statement

(2) 1is reworded to say:

(3) "If there is no fixed charge, then it is never optimal
to repair more components than are needed to bring the

number working to level 2",

then it becomes applicable in certain cases.
If the system is parallel and 2 = 2, then (3) holds, (see

Table 7.4). 1In the k~of-n case with 2 = k + 1 and
inpxip
P < _f;—_—_ s (3) also holds (see Table 7.4). Whether or not it
i
P
holds for any k-of-n system is still up in the air. For a
general coherent system, 2 would be the number of units in the

minimum path set which has the largest number of components.
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3. Effects on and Sensitivity of Models to Various Parameters

Section 2 discussed relationships between various coherent
system repair models with respect to the applicability or not of
two basic theorems restricting the policy space. In this section
conclusions concerning parameter-related interrelationships are
drawn and these are compared to the expected reality in a real-world
situation. Effects on the optimal decisions as well as on the minimum

cost per unit time attainable will be noted. Parameters will be

treated in the following order:
(a) system type (k-of-n, varying k or n)
(b) penalty cost for system breakdown, p
(¢c) fixed charge for repair, L
(d) mean repair time, o

(e) component lifetimes (means u or distributions)

i

(f) objective: when V_1 is sufficient to determine
optimality.

Most of these effects will be intuitively expected ones, supporting

the validity of the coherent system repair model.

Consider a coherent system repair model for a k-of-n system
which has instantaneous repair. If k is increased to kl, then
the decision space is reduced (since one will never reach states
s : |s] < kj -1 and & #A if |s| = k; = 1. Meanwhile, the
costs per decision are either left the same or raised (for
s:]sl = k ~ 1, repair cost now includes p, system breakdown cost).

Thus, the minimum V_1 (or VO) attainable is larger for higher

k given fixed n. Similarly, if k 1is fixed and n 1is raised,
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costs on previous decisions remain the same while some new states

and decisions are added. Thus, the minimum V_. (V attainable

1 0)
is lower. These results coincide with what might be expected given
the reliability of a k-of-n system goes down as k increases

and goes up as n increases.

The noninstantaneous repair model is the only one for which

this does not occur. This behavior is due to two facts:

(1) With the noninstantaneous repair model structure,
it is still possible to enter states s where
Is[ <k -1.

(2) The penalty cost is applied upon entering a state

s |s| =k -1 only. No p is incurred in states
s |s| <k -1. If p were incurred in all states
|s| < k - 1, then the previous argument would apply

and minimum V_ would increase with k.

1
Lemmas 5.4 and 5.5 show that, for s = 1, that given

[ 2
1+/14 4

* *
k = ———??—Jl— , that for k < k increasing k raises the

minimum V_1 but for k > k*, increasing k lowers the minimum V—l'
As this second behavior is unrealistic, one concludes that the

model works best for cases where ¢ 1is enough larger than u to
make k* > n. For large k, the assumption of p being incurred
only at entry into states |s| = k - 1 becomes more unrealistic

as the possibility increases of being able to keep moving from

state to state while the system is failed while incurring no

penalty. In such cases, it might be better to assume the penalty
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is incurred in all states |s| <k - 1 even though the system has
only broken down once, or to restrict the decision space to exclude
policies which have only ''system-failed" states in their ergodic
structure.

Behavior of optimal decisions with respect to k are harder

to characterize due to the many other parameter effects other than

to say as k 1increases with fixed n, the number of components
repaired or kept working goes up due to an earlier penalty
incurrence. For the Basic Model with L = 0, the general V_1
optimal policy for a k-of-n system is to keep the cheapest set
of k or k -1 components working. In the L > 0 identical
component Basic Model, Theorem 2.7 states that as k increases,
more components (or the same number) will be repaired in an
optimal policy. Lemma 5.5 gives the same result for k < k* in
the single server noninstantaneous repair model while for k > k*
(unrealistic case) the reverse becomes true.

Now, take the parameter p, the penalty cost for system
breakdown. Clearly, all other variables fixed, increasing any

single cost can only raise the possible minimum V_ As would

1°
be naturally expected, the higher the cost of potential system
failure, the more likelihood of a policy being optimal which avoids
or minimizes the chance of such failure. Example 6.3 illustrates
such policy changes well for varying p 1in the case of a Basic
Model with 3 components and no fixed charge. 1In example 6.4, a

noninstantaneous repair case shows up. For the instantaneous repair

models, a policy can always be chosen so as to avoid the penalty

227




entirely and if p 1is high enough, one of these will be chosen.

If p 1is zero, there is no reason to avoid system failure and,
indeed, it will never be optimal to repair before such happens in
any of the models. The same results hold for noninstantaneous
repair except that there is no policy which can guarantee no system
failures.

The fixed charge L, has a clear effect on policies. The
larger it gets, the greater the pressures to start multiunit repair
simultaneously as opposed to repairing single units on different
occasions. At least in exponential component lifetime cases if
there is little or no fixed charge, the natural incentive is to
keep as few items working or under repair as possible because such
states have the longest holding times, creating a longer time
between repairs (costs incurred), thus the prevalence of L = 0
theorems stating under what conditions one never will repair more
than one unit at a time. The identical component Basic Model
with L > 0 described in Section 2.3 and Example 6.4 best
illustrate policy behavior as L increases. Obviously, as L
increases, minimum V_1 will increase, with Vfl increasing the
fastest for those policies which undertake repair the greatest
number of times.

The mean repair-time effect is harder to judge. Most
distinguishable of all differences are those between ¢ = 0 and
¢ > 0. In the former, the items in service do nothing to affect
system behavior since time in service is always zero. The decision

maker can always instantaneously put the system into any state he




pleases. In contrast, if o > 0, no matter how many units are

sent to repair at once, the system may fail before repair on some
or all is completed. As o 1s increased, repair must be started
"sooner'", i.e., when fewer components have failed to have the same
effect of preventative repair of failed components to prevent
system failure. The fact that in the noninstantaneous repair model
it is no longer true that repair is never done when more than k

units of a k-of-n system are working points out this effect.

If s =1 and the components are identical, the optimal policy
form is R(j), where j 1is the number of components working when
repair is to be initiated. Countering this is the natural system
tendency to want to have as few items under repair or working as
possible to maximize holding times between states. In the single
server case of Theorem 5.3, as o0 gets large, u(k) > ® and the
optimal policy approaches R(k—l), i.e., "it takes so long to repair
why not let the system fail anyway".

Previously described parameters help determine the optimal
number to repair or whether to repair or not. It is the mean
lifetime and repair cost of the separate components which determine
the attractiveness of different components in deciding which to
} repair over others. In the Basic Model, a component's 'repair
attractiveness' depends on its cost/mean life ratio, both with or

K. ,4p Ki

b or ;; , as is shown by Theorem 2.4. If
there are degradation states, then the key indicators of "desirability

without failure,

f of repairing component i when in its jth degradation state" are




. In the series Degradation Model, whatever j produces

§ o
g=0 1

cost to repair at j
expected time spent in

degradation states

0,1, ..., j-1

the minimal is the optimal state in which to

repair component 1i. These same ratios are a large but not the only
determining factor in the parallel case.

The final remark concerns the choice of optimality criterion
up to level V_1 or VO' For most Markov coherent system repair

models tested, V 1 vwas not sufficient to determine an optimal

decision in each state. The few notable exceptions were:

(1) Basic Model, identical components

(2) Degradation Model, series case.

V_1 results were much easier to obtain and over an infinite planning
horizon are the only important ones to know except in cases where

it is expected that a long time might be spent in the transient
states before entering the set of ergodic ones, thus, making the
optimal decisions there more worth knowing.

Some possible applications for these models now follow in

Section 4.

4. Applications

In this section some possible applications of coherent

system repair models or some variations of them are looked at.
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Consider a multiitem inventory model. The inventory manager
is seeking to control inventories of n products over an infinite
continuous time horizon so as to minimize either his long run
expected cost per unit time or his total expected costs. The
demand for product i 1is a random variable with exponential

=i, t
distribution =1 - e 1. probability {product 1 1is demanded

before time t}. The continuous probability distribution implies
that only one unit will ever be demanded at a single time. Suppose

that each time an item is demanded (and sold if available), the

manager (who always knows the stock of various items) can decide
to either do nothing about product i for any 1 below initial

stock level, or to order it up to the initial stock level. If a

demanded item is not available in stock then a penalty cost '"p"

is incurred, the demand is lost, and the item must be ordered up

to the initial stock level. There is a cost Ki/unit to order the
ith product and a fixed charge L > 0 per order placed. If
orders are assumed to arrive immediately, then this inventory model

is just the Degradation Model for a series system (Section 4.2)

with parameters: ;

1) n = number of products keeping track of = number of
components
2) %, = space allotted in warehouse for storing item 1

(in terms of number of items capacity) = number

of degradation states for i
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3) ¥, = mean time between demands for 1 = mean component
lifetimes (independent of degradation state).
4) Ki = . Ki = cost to order { items = cost to repair

i 1in degradation state 1&.
5) p = penalty cost for unsatisfied demand of an item =

system failure cost.

6) L = fixed cost to order = fixed cost to repair.
If L = 0, using the theorems of Section 4.2 for V_1
optimality, the’results are quite interesting. The V_1 optimal

decision on component i is to repair it whenever its degradation

state gets up to

kKl 5.k, K,
ji = argmin 31 = j'ul = o for all j
J L i i
I
2=0 *

Thus, every policy is V optimal and to find the optimal ordering

-1
policy, VO results for the series degradation model for the special
case described above would have to be studied. For the maintenance
model application, the V_1 solution was sufficient because of
flexibility in changing cost or other parameter data at some

insignificant decimal point to break "ties" in
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This procedure is clearly not allowable in the inventory application.
The important point, however, is the fact that certain inventory
problems can be formulated and solved as coherent system repair
models and vice-versa.

Although useful in solving certain specialized inventory
problems, the most useful applications of coherent system repair
models would be in more standard system—maintenance type situations.

These would include:

(1) maintenance and/or surveillance of complex electronic
and/or mechanical systems

(2) maintenance of the human body

(3) inspection and control of pollutants in the environment

(4) maintenance of ecological balance in populations of

of plants and animals.

Given the specific model structure and assumptions of
coherent system repair models, they would be most useful in
modeling maintenance problems where policy decisions are to be
made over a long (= infinite time) horizon, and decisions are not
likely to be made at times other than the instants of a component
failure. To use the model directly, the components should have
approximately an exponential (constant failure rate) or Erlang
distribution. However, there are model extensions which could

approximately handle the case of nonexponential or Erlang components,

(see Section 5).




Some specific examples of possible applications of various

coherent system repair models or extensions of them are now

presented.

Example 7.1 (A Replacement Model): Suppose one has a complex
electronic or mechanical unit which consists of n distinct (some
could be identical) components which form a coherent system and have
approximately a constant failure rate. If failed, a component i
can either be left untouched, as long as the system is still operating
or replaced at a cost Ki' There are an unlimited supply of spares
for each component. If the system fails, there is a penalty p
incurred. This is an example of a Basic Model problem. If the

components can be in degradation states, then one has a Degradation

Model.

Example 7.2: Suppose one has a deteriorating system of
components for which maintenance decisions like in Example 7.1 can
be made at the times of component failures. In this case, however,
the operator/manager is concerned not so much with costs, but with
keeping the expected fraction of time the system will be failed,
at a minimum. Repair of components is no longer instantaneous,
otherwise the system can obviously be kept always operating. The

Noninstantaneous Repair Model can be used to model this situation

if




W _ _

(1) set L = Ki =0
(2) set p = o = mean repair time
(3) assume p 1is incurred in every state where the

system is down.

Example 7.3: Suppose we have to decide, in constructing
a system of n 1identical units in parallel, how large to make n
so as to insure that the system will be operating on the average
at least 95% of the time, if system is to be maintained by a single
server who has a mean service time of a) .2, b) .3, or ¢) 1
unit of time. The mean life of a component is 1 unit of time and
failure rate is constant.

Using the results of Section 5.2, run the model for
c=.2, .3, 1.0 for increasing values of n 1in a parallel system

until minimum V_, is < .05. Use K, = 0O, p=o0, £ =0.

(n-1)

c = .2 (policy R does it)
n J 2 l 3
n =3 does it.
min V_1 ' .06 ] .025

n =4 does it.
min V_1 ‘ .101 ] .062 l .047
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n l 2 ‘ 3 ‘ 4 impossible for any
l I ‘ n, can not use such
1
min V_, 4 .375 .37 a slow server!

This same type analysis could be done for very complicated
systems with components having Erlang lifetimes or degradation

states.

Example 7.4: Suppose an electric power company is trying to
maintain n - load generators, which form an electrical system
network. The system is working if and only if electrical demand
is satisfied for every customer in the region covered. The
generators can be observed in a number of degradation states and
repair is noninstantaneous. A combination of Noninstantaneous Repair
and Degradation Models can be used to model this situation. The
solution would have to be found on the computer. Even had the model
been simple enough to apply some of the results of this thesis, they
would not apply, because the system defined here is noncoherent. The
nature of load generators is such that demand might not be satisfied
given a certain subset working at a certain degradation level, but

it might be satisfied with some subset of those generators working.




i

Example 7.5 Fault Tolerant Systems [24]: Fault tolerant
computing is a rigorous discipline covering the design, analysis
and maintenance of highly reliable computer systems. Having
started in the 1960's due to the space programs, the subject now
embraces a wide spectrum of problems concerning the reliability
of computer systems. A Markov model for evaluating the reliability
of such systems has been established in [24]. It assumes the fault
tolerant computer to be made up of n independent modules which
can each have a given number of spares. This is the parallel
subsystem in series setup mentioned in Example 6.1. Given a level
of spare redundancy, the Markov process is assumed to start with
all components working and it runs until everything fails. The

system is assumed to be nonrepairable or closed, thus, all the

system-failed states can be lumped into a single state. The system
reliability at any time t is then just the sum of the probabilities
of being in the working states at time t given that one started
with everything working.

One new concept utilized by Ng in [24] is the idea of
coverage. See Arnold [1] or Bouricius et al [4] for a discussion
and its effects. The coverage of a component is the probability that
if it fails and there are spares available, that the system will
detect the failure and switch in a spare. Perfect coverage (3 1)
has been assumed throughout in coherent system repair models.
Imperfect coverage, even .98 or .99 has been shown in [4] to

significantly effect system reliability. With minor modifications
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to the state space, imperfect coverage can be introduced and incorporated

into coherent system repair models. The process then becomes a
semi-Markov process because the transition probabilities now depend
on which unit has failed (thus, the next state) as well as on the
current state. Veinott's solution technique still works in this

case (see Denardo [11]).

Examples 7.1 through 7.5 have given some indication of
possible uses and applications of coherent system repair models.
There are many possible real-world maintenance problems which could be
formulated as such a model, but given one, it is unlikely that its
system parameters would be such that one of the theorems would apply
directly to solve the problem. In such cases, optimal solutions

would be found computationally.

5. Extensions and Topics for Future Research

In this, the final section, some possible topics for future
research in the coherent system repair model area are covered. These

fall into three categories:

(1) Additional theoretical results for models falling
within the given coherent system repair model structure.
(2) Extensions of coherent system repair model structure and

possible theoretical results forthcoming.
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(3) Computational techniques for obtaining solutions.

Probably the most important topics to be worked on at this
point are the computational techniques. There were lots of
theoretical results obtainable for the simplest coherent system
repair model, the Basic Model. The Degradation and Noninstantaneous
Repair Models, being more complex, yielded fewer theoretical results.
Clearly, to get many more results for the previously treated models
or extensions of them, computational techniques will be necessary.

The method in Chapter VI using MINOS is okay for small to
moderate sized problems (up to 10-15 components for a general system).
For any large sized Basic, Degradation, or Noninstantaneous Repair
Model or any more complex extension of these, more efficient
algorithms will be needed as well as more theory which would allow
one to restrict the decision or state space initially before going
to the computer. Extensions of Theorem 6.3 on the independent
series subsystem technique to other cases besides V_1 and a
Basic Model would be most desirable.

I would expect that the development of an efficient code
implementing the policy improvement algorithm for finding minimum
V-l’ V0 might do the job better than a linear program would for
the same size problem. This would allow one to solve problems

which have countable state spaces such as the time-dependent

extension of the Basic Model to be introduced later in this section.
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Once an efficient computational technique has been set up

for solving at least moderate sized problems, then not only will
the possibility of finding the ontimal solutions to more complex
real-world problems exist, but also the possibility of observing
solution behaviors which would lead to formulation of more theorems
restricting the policy space. Then, perhaps even larger problems
could be solved.

More immediately, with the assistance of the MINOS LP-
procedure outlined in Chapter VI, the optimal solution structures,
both V_1 and VO need to be more thoroughly studied for the
Degradation and Noninstantaneous Repair Models or combinations of
the two. Open problem gaps in Tables 7.7 and 7.8 need to be
resolved concerning cases when it is never optimal to repair when
more than k-units are up in a k-of-n system or never optimal to
repair more than one unit at a time in an ergodic state. Due to
complexity of calculations, no V results have been yet obtained

0

for either model and very little for V_1 in the case of more than
one server or nonidentical components. Some examples of possible

problems to be studied in these areas are:

(1) 1If repair is instantaneous, then in many models it is
never optimal to repair more than one unit at a time
in an ergodic state, so, one server is all that is needed.

In the noninstantaneous repair case, two examples were

given where this is false. However, in both examples
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even though more than one server was needed, repair was
never initiated on more than one unit at a time. Would
the rewording of statement (2), Section 7.2, make it
true in the noninstantaneous repair case?

(ii) If p 1is small enough in a k-of-n system, then one
never repairs up to more than k + 1 components working
from any transient state. 1Is this true for larger »p
(yes, if parallel, k = 1) or more generally, is it true
that in a general coherent system that one never repairs
up to more than 2 + 1 components working where & 1is

the number of components in the largest minimum path set?

As far as possible model extensions go, there are many possible.
The Markov decision chain formulation is very general and many of the
maintenance models for deteriorating units in categories mentioned in
Chapter I, Section 2, can be extended to include systems of n
independent components as with coherent system repair models. Of
course, some would probably have too many states to be solvable, even
on the computer, not being of much use in that case. Two possible
extensions which, although are quite complicated statewise, would be
very important from the standpoint of applications to be able to
formulate and solve, would be a time-dependent model and an uncertain
information model.

There are many maintenance situations where failure rates of

components are not constant and a time factor needs to be accounted for.
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This can be incorporated into the coherent system repair model
structure if one assumes that all component lifetimes and service
times are integer valued, (although one could take on any
distribution with this structure). This keeps the state space

countable or finite. A simple example:

Example 7.6: Basic Model n = 2, parallel system.

Time Dependent Extension

] Ll = life of component number 1 = 1, probability 1/2 :
A
2, probability 1/2 |

L2 = life of component number 2 = 1, probability 1/2

3, probability 1/2

The problem can be formulated as a Markov decision chain where the
state of the system is the "age" of each component. States are

similar to those in the Degradation Model, but decisions, as in a
Basic Model, can be made to repair any subset of components which

are failed.

In our example, Both Down
Both Components Up No.l Up No.2 Up (system failed)
: 0
tates: 1020 112O 1021 1121 1022 11 2 10 1l 20 21 22
Decisions: do nothing ,R2 A,R1 A, R R2,R
Costs: 0 0,K2 O,K1 0,K +p,
Ky+p, K, +K

where Ni means component N 1is at age 1.
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Transitions still occur at the instants of component failures,

but now depend on the "ages'" of the components as well as just

"which'" components are working and the decision taken. So,

1/4 , t=1,0,2,2

A _ 1’ 1l
P12,t'
070 o , otherwise
i
R, 1/2, t=1,0 ;
P = 1 , etc. i
2.,t :
2 0 , otherwise ,

If desired, the decision space could be expanded to include
repair of a nonfailed but "aged" component. Also, the distributions
of L1 and L2

rate assumption is desired.

can be adjusted to be 1IFR, DFR or whatever failure

In the uncertain information area, the model of Rosenfield [26]
could be applied directly and modified to the case of a coherent system
repair model. Components can either be assumed to have exponential or

discrete lifetimes. The state of the system can be represented as

(s, t) where s = working configuration of components last known with

certainty and t = time units since perfect information.

Decisions available in a state (s, t) are:

A) do nothing
B) repair some subset of known failed components in s at

usual coherent system repair model costs.

PPN PSP
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(C) pay an inspection cost M > 0 to ascertain exact
state of system and then repair or not, based on true

value of s.

A possible application of this extension is the following:
The control rods in a nuclear power generating system form a
k-of-n system. The cost of inspecting is high but the cost of
system failure could be even higher. This model could help
determine the optimal time intervals between inspections as

well as the optimal decision given inspection results.

Other topics for possible future research on coherent system

repair models include:

(1) the introduction of a discount rate, a, in which case
none of the theory presented applies but policy
improvement can be used to find an optimal policy with
little more work than required for the a = 0 case.

(2) changing to a finite time horizon in which case neither
the theory nor the computational methods presented in
this thesis apply. The types of results obtainable here
would have to be computational or theoretical but with
limited prospects of obtaining useful results compared
to the infinite horizon case. The following is a

discrete time example:
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Example 7.7: Consider a single-item inventory model whose
time horizon is finite over n periods. The objective is to
minimize the total expected n-period costs. Observe: stock at
the beginning of each period (xi) and then order a nonnegative
amount up to the storeroom limit N - 1 for instantaneous delivery
to get the starting stock vy at the beginning of period 1. The

demand occurs according to the distribution

¢i(; yi) = initial stock X141 in period 1 + 1 given |
starting stock Yy in period 1 ={1, « = vy - 1j.
0, otherwise
Cost = =2z K

ci(z) of ordering z units

Storage cost, Gi(yi) = G(yi) = |Ps ¥y = 0
0, otherwise

Demand is "backlogged" and if a shortage of an item occurs, ordering
is required. This is the finite horizon discrete time version of a
parallel-system, N-identical component Basic Model so results
obtained by Veinott [32] for the single item inventory model apply
to this case.

Let fi(x) = minimum expected cost in periods 1, ..., n
given x = initial inventory in period i. Under suitable regularity

conditions, f, (x) = min {ci(y-x) + Gi(y) + E[fi+1(xi+1)IY]}'
N-1>y>xv0

=1, ..., n and fn+1(-) = (0 where y = yi(x) > x 1is the starting

stock in period 1 and xvO0 = max{x, 0}.
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Two results are obtained:

A) If ci(-) is convex, then yi(x) + x

B) If Gi(-) is convex, unsatisfied demands are back-
logged, and demands independent, then
X - yi(x) t x, i.e., yi(x) does not increase as

fast as x.

These results, which hold in this case, follow from Veinott's theory
of minimizing subadditive functions on a sublattice. [See [32]].

To prove these results, a lot of work (by Veinott) was
necessary but yields are poor from a practical maintenance standpoint.

*
Result A) states that for any time period i, if Gi(k) = R, = optimal

2

decision in period 1, k units working, R, denoting repair of £ wunits,

L

*
then if k' > k, di(k') =R £' > & = k' [cannot repair more than

i
one less in state k + 1 than was repaired in state k].

Result B) states that, however many you repair in state k,
you cannot get a policy to repair more than that in any state k' > k
in any one time period and still be optimal. This result, which
somewhat limits the possible set of optimal policies, is weak when
one considers that in the stationary infinite horizon case, an exact
optimal policy is easily found. Of course, considering that this
is a time-dependent model, which could prove to be much more difficult

to solve even for infitite horizon problems, it may be significant.

Given a continuous time coherent system repair problem with finite
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planning horizon T, similar techniques - using ft(s) and the
model structure to define a recursion relation and then somehow
proving some results using the relation so obtained -~ should be

employed.

Example 7.8: Parallel system, Basic Model. Finite
horizon, T.
Let fc(s) = minimum expected cost given you are in state s
with "t" amount of time to go.
Let Gt(s) = optimal policy decision in state s with ¢
units of time to go.

Denote R as the decision to repair the subset Qs of failed

Q
s
components in state s. Also R¢ = A
R.QS
ft(s) = min ft (s)
Q
s
where
R Loy
Qs T-t ﬁEmJQS
ft (s) = f z Aift_T(QJQs~i) e dt

+ ] K +LGp, if s=0).

ieq
s

This whole thesis has considered three variations within

the coherent system repair model structure presented in Chapter I.
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Although each gave different optimal policies and involved different
theorems to get them, all were formulated as a continuous time

Markov Decision Model with a finite state and decision space. Results
were always based on minimizing long run expected cost per unit time

or total expected cost in the case of v_ ties, the solution

1
technique being to enumerate the policies and either find an optimal
one or to eliminate certain ones from being optimal given the specific
Markov transition probabilities and costs for the given model.

The key assumption on the system which allowed Markov chain
formulation was that of exponential component lifetimes and repair

times (if non-instantaneous). This is what guaranteed the Markov

property, that for every state of the system (which is a function of

the component states), the probability distribution of the length of
time spent in that state was independent of what states the system
had been in previously. By breaking up component lifetimes or repair
times into stages, we were able to extend the possible distributions
to Erlang, while keeping the Markov property. However, for other
distributions, the Markovian property is lost and the Markov decision
chain approach is no longer applicable, as can be seen in the

following simple example:

Example 7.9: Consider the Basic Model, a parallel system
with n = 2 components and no fixed charge except that now assume
Li’ the lifetime of the ith component, has a general continuous

distribution Fi(t)'
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So,

Ij.~ Fl(t), mean W,

L2 ~ Fz(t), mean W, .
Suppose we define the states as before, being the configuration
of working components. Start with both components new, state 12.
It is easy to compute the holding time distribution in state 12
as well as the probability of going to states 1 or 2 (depending
on which component fails first). However, then problems start.
The holding time in state 1 is just the distribution of L1
given it has lasted through the first transition, a quantity which
depends on how long component 1 has been up for, information which
is not kept track of by the simplest time-free definition of states.
To have time-dependent states would require an uncountably infinite
number of states given continuous component lifetimes, getting into
the realm of diffusion processes. If component lifetimes had a
discrete distribution, then we have the time-dependent model of
Example 7.6.

It would be useful to develop some kind of a model which
allows for general component lifetime distributions while still
retaining the same state and decision spaces defined in the Basic

Model. This would be a very interesting but probably difficult

problem.
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