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ADVANCED TECHNOLOGY COMPONENTS FOR
MODEL GTP305-2 AIRCRAFT AUXILIARY POWER SYSTEM

SECTION I

INTRODUCTION

This document is submitted by AiResearch Manufacturing
Company of Arizona, a Division of the Garrett Corporation, in
compliance with data from A009 of Air Force Systems Command Con-
tract F33615-75-C-2016. The contractual effort entitled
"Advanced Technology Components for Aircraft Auxiliary Power
System" encompassed two primary phases; Phase I-APU Design, and
Phase II-Component Development.

Specific guidelines adhered to during APU design included
maintaining compressor performance as defined from previous con-
tracts, use of cast AF2-1DA alloy for the radial turbine, and
component life requirements of 2500 hours based on a 5 hour duty
cycle. Turbine and combustion system components were tested
separately and then collectively at design operating conditions
of temperature, pressure and speed.

During the course of the contract, an additional task was
negotiated. This effort, AF2-1DA HIP/heat treatment study, was
included to improve the as cast AF2-1DA fatique life through the
use of hot isostatic pressing (HIP) to close casting micro-
shrinkage and eliminate crack initiation sites. The results of
this effort are reported herein and are included as Appendix D.
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SECTION II

SUMMARY

The Advanced Technology Components for the Model GTP305-2
Aircraft Auxiliary Power Unit Program performed under Cont.act
F33615-75-2016, was a four-year contract aimed at developing
turbine-end components culminating in an integrated component
assembly test at design speed, temperature and pressure ratio.
The program was divided into two phases: Phase I - APU Design,
and Phase II - Component Development. This report presents the
results of the effort conducted during this program.
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The Model GTP305-2 Advanced APU is a single shaft, all shaft
power engine incorporating an axial-centrifugal compressor, a
reverse flow annular combustor and a radial-axial turbine. At a
design speed of 76,585 rpm and an average turbine rotor inlet
temperature of 2050°F, the APU was designed to be capable of
186.3 shaft horsepower, 171.0 horsepower/ft3 and 1.86
horsepower/lb at 130°F sea level ambient conditions.

F Cycle analyses indicated a 10-percent high pressure compres-
sor flow increase improved matching characteristics with the low
pressure compressor. This was accomplished by increasing the
impeller inducer blade and impeller exit blade height. The
} deswirl vane configuration was also adjusted to accommodate a 25
degree exit swirl angle as required for the combustion system.

The combustion system for the Model GTP305-2 Advanced APU
consists of a reverse flow annular combustor with an air-assist/
airblast fuel injection system. Two principal features of the
combustion system are:

(o} Improved combustor durability and lower cost through a
ceramic coated sheet metal design

o g
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o Effective utilization of turbine nozzle sidewall cool-
ant air, via introduction of airflow into the com-
bustor, prior to entry into the turbine which increases
cycle efficiency

Primary combustion system goals were to achieve an average
combustor discharge temperature of 2067°F (equivalent to 20S0°F
turbine rotor inlet temperature with cooling flow), a temperature
spread factor of 0.15, and a combustor liner pressure drop of
5.0 percent. At design point conditions, the combustor demon-
strated a temperature spread factor of 0.163 and a combustor
liner pressure drop of 4.1 percent during combustion system rig
testing. Thermal paint test results indicated liner temperatures
of 1700°F at ten discrete locations. Primary zone outer wall
temperatures were 1500°F or 1lower which demonstrates ceramic
thermal barrier coating effectiveness.

The radial-axial turbine stage is characterized by an inte-
grally cast radial turbine nozzle with internally cooled vanes, a
cast AF2-1DA radial turbine rotor and a cast exhaust duct
assembly. Vane internal, chordwise, integrally cast fins enhance
the internal vane cooling effects of the radial nozzle.
External, fore and aft, radially oriented ribs augment cooling of
the nozzle sidewalls. The cast radial turbine rotor is a bore
cooled design, twenty blades (ten full blades and ten splitter
blades), with a tip speed limitation of 1880 ft/sec, and opti-
mized for a radial-to-axial turbine work split of 64.7-35.3 per-
cent. The radial-axial turbine stage is designed for an 87-
percent total-to-diffuser exit static efficiency level.

Cold air turbine testing including cooling flow effects,
indicate design efficiency goals were exceeded. The turbine
achieved a total-to-diffuser exit static efficiency of 0.884 at
design corrected speed and pressure ratio.
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Combustion system and turbine components were installed in
the integrated components assembly (ICA) hot test rig. ICA test-
ing was conducted to establish component performance at design
operating conditions of, temperature, pressure and speed. ICA
testing results confirmed cold air test results at the rated
design point conditions.

ICA test results, cold air testing and combustion system
parameters were input to the cycle model. All other model param-
eters were unchanged. The Model GTP305-2 Advanced APU is capable
of 225.3 shaft horsepower, 206.8 horsepower/ft3 and 2.25
horsepower/lb at 130°F sea level ambient day.

AF2-1DA radial turbine rotor castings were x-ray inspected,
as-cast elevated temperature tensile strength measured, and as-
cast/heat treated room temperature tensile and stress-rupture
properties determined. The rotors were HIPped in four combina-
tions with temperatures varying from 2150 to 2250°F, pressures of
15 or 29 ksi and a constant 3 hour time period. Evaluations were
performed using four HIP conditions in combination with eight
heat treatments. Four HIP/heat treatment combinations were
selected for LCF testing on the basis of acceptable microstruc-
tures and mechanical properties. Room temperature strain-control
LCF tests were performed and results analyzed on a Weibull dis-
tribution. Data analysis indicated that LCF life improvement was
obtained through HIP and heat treatment. Specifically, a 3X LCF
life improvement was achieved for as-cast wheels predicted to
fail in less than 1000 cycles.
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SECTION IIIX

APU DESIGN

The Model GTP305-2 Advanced APU is a single shaft, all shaft
power engine incorporating an axial-centrifugal compressor, a
reverse flow annular combustor and a radial-axial turbine, At a
design speed of 76,685 rpm and an average turbine inlet tempera-
ture of 2050°F, the APU design intent was an engine capable of
186.3 shaft horsepower, 171.0 horsepower/ft3 and 1.86 horsepower/
pound at 130°F sea level ambient day. A 2500 hour life based on a
5 hour duty cycle was established for design considerations along
with production design methodology where applicable.

The following sections describe the cycle matching studies,
combustor design and turbine design including aerodynamic and

stress.

3.1 Cycle Analysis and Matching Studies

3.1.1 Preliminary Design Point Selection

A preliminary design point cycle analysis was conducted to
define an engine cycle that meets the program performance goals.
The analysis was conducted for sea level static, 130°F ambient
conditions. The baseline compressor configuration for this anal-
ysis consisted of components developed under Contract F33615-72-
C-1936 [Reference (1)]. The axial and centrifugal compressor
stage performance data are presented in Figures 1 and 2, respec-
tively. The axial stage data was used without modification,
while the centrifugal stage data was scaled on flow. This scal-
ing is to be accomplished in the engine by means of a minor shroud
recontour. The 100 percent shaft speed shown in the above

(I)Humble, C.E. Swenski, D.F., et al, "Advanced Auxiliary Power
Unit", Technical Report AFAPL~TR-75-22, July 1975.
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figures is 81,822 rpm. The turbine in this cycle analysis was
assumed to have an overall efficiency (inlet total to diffuser
exit static) of 86 percent, and a turbine rotor inlet temperature
of 2100°F. Additional assumptions used in this analysis are
listed in Table 1.

Results of this preliminary cycle analysis are presented in
Figure 3. Specific power, specific fuel consumption and output
shaft horsepower are plotted as a function of percent engine
shaft speed. The preliminary match point was selected at 92.5
percent shaft speed, since Figure 3 shows that this results in:

o A high specific power
o Near minimum specific fuel consumption
o Near maximum output shaft horsepower

Detailed cycle analysis data for this preliminary match
point are presented in Figure 4. It should be noted that an
approximate 9.0 percent flow increase of the centrifugal compres-
sor stage is required to match both compressor stages at maximum
efficiency.

The overall turbine performance requisite for the prelimi-
nary match point was identified in this cycle analysis. An addi-
tional analysis was conducted to optimize the work split between
the radial and axial turbine stages at this match point. In
addition to aerodynamic performance considerations, this work
split optimization analysis also included preliminary stress and
life estimates. In these stress and life analyses, the radial
wheel was considered to be constructed of cast AF2-1DA material,
while two candidate materials, forged Astroloy and cast AF2-1DA,
were considered for use in the axial wheel. IN713LC, the axial
turbine material used in the previous F33615-72-C-1936 program,
has insufficient properties for use in this current program.
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TABLE 1. GTP305-2 PRELIMINARY DESIGN POINT

CYCLE ASSUMPTIONS.

SEA LEVEL, 130°F AMBIENT

Compressor

Inlet plenum total pressure loss, AP/P

First Stage Axial Performance

Interstage Total Pressure Loss, AP/P
Second Stage Centrifugal Performance

Compressor Exit Diffuser Total
Pressure Dump Loss, AP/P

Leakage Flow

Cooling Flow (bypasses turbine and does
no work)

Combustor
Efficiency
Total Pressure Loss, AP/P

Turbine Nozzle Inlet Total Pressure
Loss, AP/P

Turbine

Efficiency (inlet total to diffuser
exit static)

Rotor Inlet Total Temperature
Accessory Horsepower
Gear Efficiency

2.0%
Figure 3-1
2.0%

Derived from
Figure 3-2

1.0%
2.0%
2.5%

99.5%
5.0%
1.0%

B6%*

2100°F
13.5
98%

*Derated by 1l-efficiency point due to rotor

flow pumping work.

backface cooling
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Results of the work split optimization studies indicated f
that: !

o The obtainable overall turbine efficiency is higher !
with forged Astroloy axial wheels than with cast i
AF2-1DA axial wheels. !

o The obtainable overall turbine efficiency increases as
the turbine speed decreases.

o For given stress levels, the turbine exit velocity

level decreases (exit tip radius increases) as turbine
speed decreases.

Using these general trends, one candidate turbine configqura-
tion was selected for each shaft speed considered. Selections
were made at a work split that maximized overall turbine 1life,
while simultaneously attempting to maximize turbine performance.
Forged Astroloy axial rotors were selected for 92.5- and 95-
percent speeds and a cast AF2-1DA rotor for 90-percent speed.
Table 2 summarizes the important parameters associated with each
candidate configuration. These three candidate configurations
are compared on the cycle analysis data in Figure 5. Note that
the 92.5 percent speed candidate has maximum output power, is
close to the minimum specific fuel consumption, and maintains a
high level of specific power.

Based on the above analyses, the GTP305-2 engine preliminary
match point was selected at 92.5-percent engine speed. The tur-
bine configuration selected had a:

o Cast AF2-1DA radial turbine wheel producing 63 percent
of the overall turbine work output.

o Forged Astroloy axial turbine wheel producing 37 per-
cent of the overall turbine work output.

12 !
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GTP305-2 design point analysis
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Figure 6 presents the flowpath for the selected turbine config-
uration. This flowpath contains one minor perturbation that was

accomplished to increase available combustor liner height (i.e.,
the axial wheel exit tip radius was intentionally reduced by
0.050 inch, 2.98 to 2.93 inch. The axial turbine exit critical
velocity ratio was thereby increased from 0.370 to 0.390, and
predicted overall turbine efficiency decreased from 0.874 to
0.8715.

An Air Force/AiResearch Technical Coordination Meeting was
held on September 2, 1975 to review the preliminary engine design
point selection. Since the calculated engine output shaft horse-
power at the preliminary design point was well above the program
goal, the existing contract objectives were assigned priorities
to best achieve overall USAF contract goals. The design point
selection was to be reviewed, to consider an engine performance
trade-off analysis on turbine inlet temperature and turbine effi-
ciency, and to maximize turbine life and minimize turbine cost
while using a cast axial turbine rotor design.

3.1.2 Final Design Point Selection

Cycle analysis studies evaluating the effects of variations
of:

o Turbine rotor inlet temperature
o Turbine efficiency
o Engine rotor speed;

on engine output shaft horsepower, specific fuel consumption, and
specific power were conducted. Results of these studies indi-
cated that at or near 92.5-percent engine speed, any combination
of turbine efficiency and turbine inlet temperature results in:
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o Near maximum output shaft horsepower
o Near minimum specific fuel consumption
o A high specific power

In addition these studies indicated that a turbine rotor inlet
temperature of 2050°F still produces engine output shaft horse-
power levels above the contract goal. A revised engine match
point, of 92,5-percent speed and a turbine rotor inlet temper-
ature of 2050°F, was therefore selected for a turbine work split
analysis.

The turbine considered in the work split analysis was to
have both the radial and axial stages constructed of cast AF2-1DA
material. Figure 7 presents the results of the turbine work

split analysis at the revised engine match point. This figure
shows that for a work split range of approximately 28 to 35 per-
cent, the original 86-percent engine overall turbine efficiency
goal can still be achieved (because of the reduced turbine work
requirement at the revised match point). Examining Figure 7
further, it would appear that the obvious choice of work split,
based on turbine wheel lives, is at approximately 31 percent.
But the axial turbine configuration dictated by this work split
involves additional problems not addressed in this work split
analysis. These problems involve excessively high peak local
blade stresses. For this reason, a preliminary stress analysis
was conducted to investigate the relative change in peak blade
stresses between the axial wheel configurations required to

accomplish:
o 3l-percent axial stage work output
o 35-percent axial stage work output

The blade hub-to-tip radius (H/T) ratios for these axial wheels
are approximately 0.50 and 0.55, respectively. The preliminary
’ three-dimensional stress analysis results for these two axial
wheels showed that the 0.50 H/T ratio blade increased the peak

17
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local blade stress by 15 to 20 percent over that of the 0.55 H/T
ratio blade. This increase is unacceptable.

Based on results of the above cycle analysis, turbine work
split analysis, and preliminary stress analysis, the GTP305-2
final match point was selected at:

(o]

92.5-percent speed
2050°F turbine-rotor inlet temperature,

o

with a turbine configuration having a:

o Cast AF2-1DA radial turbine wheel producing 64.7 per-
cent of the overall turbine work output

o Cast AF2-1DA axial turbine wheel producing 35.3 percent
of the overall turbine work output

For this final design point, the preliminary life estimates indi-
cate that radial, and axial turbine lives are increased by a fac-
tor of 2.5 to 3.0, when compared with preliminary match point
2100°F turbines.

The final design point cycle analysis, showing the engine
output power reduced to 186 horsepower, is presented ip Figure 8.
A full listing of the cycle assumptions used in this cycle anal-
ysis is presented in Table 3. The final turbine design point
conditions are presented in Table 4, and the turbine conceptual
flow path is presented in Figure 9.

Another Air Force/AiResearch Technical Coordination Meeting
was held on October 2, 1975 to review the final engine design
point selection., The Air Force concurred with the final design
point selection.
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TABLE 3. GTP305-2 FINAL DESIGN POINT CYCLE

ASSUMPTIONS.

SEA LEVEL, 130°F AMBIENT

Rotor Physical Speed, rpm

Compressor
Inlet plenum total pressure loss, AP/P
First Stage Axial Performance
Interstage Total Pressure Loss, AP/P
Second Stage Centrifugal Performance

Second Stage Compressor Flow Multiplier

Compressor Exit Diffuser Total
Pressure Dump Loss, AP/P

Leakage Flow

Cooling Flow (bypasses turbine and does
no work

Combustor
Efficiency
Total Pressure Loss, AP/P
Turbine Nozzle Inlet Total Pressure Loss, AP/P
Turbine
Efficiency (inlet total to diffuser exit)
Rotor Inlet Total Temperature
Radial Turbine Stator Vane Cooling Flow
Accessory Horsepower
Gear Efficiency

75,685

2.0%
Figure 3-1
2.0%

Derived from
Figure 3-2

1.10
1.0%

2.0%
2.5%

99.5%
5.0%
1.0%

85%*
2050°F
2.5%
13.5
98%

*Derated to allow for rotor backface cooling flow pumping work




TABLE 4.

POINT CONDITIONS.

GTP305-2 TURBINE FINAL DESIGN

Parameter Radial Axial Overall
Tin’ °R 2509.70* | 1983.811 -
AH, Btu/lb 152.045 82.955 235.00
P/P)T_T 3.2415 2.1597
P/P)T_x 3.2566 2,1597
P/P)T_DE - - 7.529
Wq@/é)in, lbs/sec 0.615 1.735
N, RPM 75685.0 75685.0
N/J6, RPM 34407.8 38700.6
AP/P, Interturbine duct 1.69
percent
Diffuser Recovery, TD - - 0.400
Np_p Stage, Total-to-Total 0.8847** | 0.8909**
Efficiency
Np-DE Predicted Overall Total- - - 0.871**
' to-Diffuser Exit Static
Np-pE’ Predicted With 1.5 Percent 0.866
Radial Rotor Cooling and
0.5 Percent Axial Rotor
Disk Coocling
Nr-pE’ Cycle, With Cooling Flow 0.850

*Based on Rotor Inlet

**predicted Values With No Radial or

Axial Rotor Cooling Flows and

0.015 Inch Rotor Shroud Clearances.

o PO LN R AR I - =
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3.1.3 Off-Design Performance Analysis

Of f-design performance was calculated for the GTP305-2
engine. The basic cycle assumptions used in this analysis are
the same as, or scaled from, those used in the final design point
cycle analysis (Figure 8). The compressor inlet guide vane (IGV)
performance used in the off-design analysis is presented in Fig-
ure 10. The compressor performance is the same as that pre-

sented in Section 3.1, Off-design turbine maps were estimated
using the turbine geometry and the design point parameters.

Estimated performances for unit inlet sea level ambient tem-
peratures of 130, 59, and -65°F were calculated for three gdif-
ferent IGV settings, and are presented in Figures 11 through 13
respectively. These figures present the variation of:

Radial turbine inlet temperature
Unit inlet airflow

Overall compressor pressure ratio L
Fuel flow

Unit exhaust temperature

O O 0 0 ©

as a function of engine output shaft horsepower with IGV settings
as a parameter, These figures show that the engine horsepower
output at any given turbine inlet temperature, is highest with an
IGV setting of one degree.

The thermodynamic state points through the engine for unit
inlet sea level ambient temperatures of 130, 59 and -65°F, and a
turbine inlet temperature of 2050°F, are presented in Fig-
ures 14 through 16, respectively.
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NOTE: '
1. Ambient Conditions : 130°F, 3., Nomenclature: i
14,696 PSIA P/ ~ Total Pressure PSIA !
. . P/P = Pressure Ratio ‘
2. Miscellaneous Data: T - Total Temperature, °F ;
Accessory Horsepower = 13,5 W - Corrected Flow 1
i Shaft Horsepower - 186.3 c Lb/Sec ' !
. Leakage Flow - 2% ’
i1 Cooling Flow - 2.5% Wa - €§;§Zi Throughflow,
g IGV Setting, C3 - 1.0 n - Bfficiency
J =~ Ratio of Station to E
Ambient Pressure ‘
We = 2.35 Wg = 1,55 We = 1.58 W¢ 0.40 We = 0.61 Wo = 0.61 We = 3.89
J =0.98J =1,63J =1.,539J =8,013 =7.53J3 =7.61J3 = 1,00
? =
i 3
(_ Ig
a— i
!
- i
— . i:
|
P = 14.41 P|= 23,91 P = 23.44\P = 117,68 P = 110.73 P = 111.81 P = 14.69
T = 130 T|= 248 T = 248 T = 788 T = 2050 T = 2050 T = 1226
P/P = 1.66 P/P = 5.07 TURBINE : p/i = g.ggo
n = 0.775 n = 0.744 - oue
i
Figure 14. Estimated off-design performance of GTP305-2 APU
h




NOTES :

l. Ambient Conditions: 59°F, 3. Nomenclature:
14.696 PSIA P - Total Pressure, PSIA

2. Miscellaneous Data: P/P - Pressure Ratio

- (-]
Accessory Horsepower - 13,5 $ - ggﬁiicziﬁpgfgsure' F
Shaft Horsepower - 262.6 ¢ Lb/sec ’
Leakage Flow - 2% -

Cooling Flow ~ 2.5% A i§§§2i'Throughflcw'
IGV Setting, C3 - 1.0

n - Efficiency 1
J — Ratio of Station to
Ambient Pressure

WA=252
We = 2.58 We = 1.70 We = 1.75 We = 0.39 W = 0.61 Wg = 0,61 We = 4.49
J =0,98 J =1.63 J =1.59 J =9.33 J =28.79 J = 8.88 J = 1.00

P = 14,35 P ={23,99 P = 23.42|P = 137.08 P = 129,24 P = 130.50 P = 14.70
T = 59 T =[173 T = T = 720 T = 2050 T = 2050 T = 1183
P/P = 1.67 P/P = 5.90 TURBINE : P/P = 8.79
n » 720 n - ,740 B n = 0.845

Figure 15. Estimated off-design performance of GTP305-2 APU
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NOTES :
1. Ambient Conditions: <=65°F, 3. Nomenclature: ;
14.696 PSIA P - Total Pressure, PSIA ;
P/P - Pressure Ratio

2. Miscellaneous Data: T - Total Temperature, °F

Accessory Horsepower = 13.5 -
Shaft Horsepower - 388.5 We gg;g:gted Flow,
ggg?;gg gig: - 3%5% Wap = Actual Throughflow, !
IGV Setting, C - 1.0 Lb/Sec
g. 1 : n - Efficiency
J - Ratio of station to
Ambient Pressure
Wo = 2.73 Wg = 1.87 Wg = 1.92 Weg = 0.37 Weg = 0.6l We = 0.61 Weg = 5.50
J =0.97 J =1.65 J =1.61 J =11.57 J = 10.95 J = 11.05 J = 1.00
, \
| \
'ﬂd@(’*’ |
( 7 ———T PN T
- ; e — K .:::;*_’__._,j |
= . i T8
4 ; l /
L 4 S /

P = 11\29 P =[{24,32 P = 23,63 P\ = 170.03 P = 160.86 P = 162.42 P = 14,70
T = =65 T =145 T = 45 T\= 1064 T = 2050 T = 2050 T = 1134
P/P = 1.70 P/P = 7.26 P/P = 10.94

n = 0,593 n = 0.674 TURBINE : n = 0.830
Figure 16. Estimated off-design performance of GTP305-2 APU
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3.2 Compressor

As previously discussed, cycle analyses indicates that a
l0-percent high pressure (HP) compressor flow increase would
improve matching characteristics with the low pressure (LP) com-
pressor stage. Based on selected design point conditions, the
following procedures were utilized during the rematching calcula-

tion:

o HP blade geometry and hub contour were maintained

o Flow analysis station 1lines were extrapolated to
110 percent flow streamline

o) Interstage duct recontoured to join axial stage second
stator exit shroud line and recontoured HP compressor
inducer shroud 1line

o Interstage duct wall velocity distribution and impel-
ler blade loadings from existing design reviewed and
compared with values calculated from flow analysis pro-
gram for the new contour.

o) Diffuser vane height, 90-degree radius bend, and
deswirl vane height adjusted to be consistent with
recontour

o Deswirl vane stagger and meridional flow path redefined

for exit swirl angle of 25 degrees, based on combustion
input requirement

Figure 17 depicts the contouring change required on the HP
compressor stage for cycle matching. Flow analysis station lines
shown on the fiqure were used to accurately extrapolate to the
110 percent flow streamline. The impeller inducer blade height

32
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was increased by 0.050 inch, and impeller exit blade height
(b-width) by 0.0156 inch.

3.3 Combustion System

The combustion system for the Model GTP305-2 APU consists of
a reverse-flow annular combustor with an air-assist/airblast fuel
injection system. Airflow is delivered to the combustor from the
centrifugal compressor stage. Primary combustion system goals
were an average combustor discharge temperature of 2067°F*, a
temperature spread factor (TSF) of 0.15, and a combustor liner
pressure drop of 5 percent.

Principal features characterizing the GTP305-2 combiustion
system shown in Figure 18 include:

o Reduction in the number of fuel injection points from
12 to 10 (Model GTP305-1 to Model GTP305-2) with no
degradation of TSF, which was accomplished by incor-
porating air blast fuel injectors and increased primary
zone channel height

o Improved combustor durability and lower cost through
upgrading of original Model GTP305-1 ceramic coating
(Rockide~2) to current state-of-the-art thermal bar-
rier ceramic coating {(Zirconia stabilized with
Yttria). This eliminates the need for sintered sheet
metal (Regimesh) to provide a good mechanical bond

*Combustor discharge temperature of 2067°F is equivalent to tur-
bine rotor inlet temperature of 2050°F when vane internal cool-
ing flow mixes with mainstream flow.
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o Effective utilization of turbine side wall coolant air-
flow via introducing flow into combustor where mixing
with the bulk gas flow is accomplished prior to entry
into the turbine, thus increasing cycle efficiency

Design point operating conditions for the GTP305-2 combus-
tion system are listed in Table 5. A comparison of the Models
GTP305-2 and GTP305-1 combustion system design parameters is pro-
vided in Table 6.

3.3.1 Combustor

Previous experience with the Model GTP305-1 APU indicated
that combustion system performance is strongly influenced by con-
trol of the combustor primary zone aerodynamics. To better con-
trol primary zone aerodynamics in the Model GTP305-2 APU and pro-
vide for single-sided recirculation in the primary zone, all pri-
mary and dilution air is introduced through the inner combustor
wall. This manner of air insertion into the combustor also maxi-
mizes the outer plenum annulus air velocity, and provides
increased external convective cooling to the combustor outer
wall. The inside surface of the outer wall is coated with a ther-
mal barrier ceramic coating and requires no internal film cool-
ing. The inner combustor wall is film cooled. Air is introduced
at three locations, one at the edge of the dome, and two others
further downstream on the inner combustor wall.

A flow analysis was conducted on the annular passage sur-
rounding the combustor. Results indicate that the static pres-
sure in the vicinity of the primary jets (see Figure 18) was too
low (velocity head too high) for adequate penetration into the
combustor. While the velocity in general was too high, the swirl
component in particular was excessively high. Two approaches
were investigated to reduce the localized high velocities near
the primary ports:
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TABLE 5. GTP305-2 COMBUSTION SYSTEM DESIGN
POINT OPERATING CONDITIONS.

Combustor Airflow

2.07 lb/sec

Combustor Inlet pressure 117.6 psia
Combustor Inlet Temperature 786°F
Combustor Outlet Temperature 2067°F

Fuel Flow 150.5 1b/hr
Fuel/Air Ratio 0.0202
Temperature Spread Factor 0.15
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TABLE 6. COMPARISON OF GTP305-1 AND GTP305-2
COMBUSTION SYSTEM DESIGN PARAMETERS.
GTP305-1 GTP305-2
Reference Velocity (ft/sec) 25 29
Heat Load (Btu/Hr Ft> ATM) 3.3 x 108 3.01 x 10°
Combustor Pressure Loss (%) 3.6 3.5
Combustor Channel Height (inch) 1.18 1.64
Combustor Length (inch) 4.98 5.0
L/H 3.86 3.05
Combustor Volume (Ft3) 0.075 0.121
Number and Type of Injectors 12 Simplex 10 AA/AB
Injector Spacing Ratio 1.84 1.50




o Increase local flow area
1) Decrease the flow swirl angle

An increased flow area could be accomplished by shortening the
combustor and/or reducing channel height. The required 25- to
30-percent length reduction was considered impractical due to a
significant reduction in available mixing length. The possibil-
ity of reducing channel height was also eliminated because of the
critical influence on mixing and spreading of fuel and air in the

primary zone. |

e e, PRE kA

The principal mechanism available for decreasing swirl velo- |

city near the inner wall primary jets is to reduce the combustion |
system inlet swirl angle. As shown in Figure 19, a reduction
‘ from 35 to 25 degrees inlet swirl angle could effect a 2.7-
i percent increase in the static pressure level along the inner
i annulus, thereby allowing adequate air penetration at the primary
air jets. This inlet swirl angle change was accomplished by res-
’ taggering the centrifugal compressor stage deswirl vanes, as dis-
? cussed in Section 4.0. This vane restaggering was accomplished
‘ with minimum impact on the centrifugal compressor stage and
resulted in significant benefits to the combustion system.

The inadequate penetration problem was further alleviated by
incorporation of the STAGG turbine backface configuration which
allowed the combustor to move axially forward approximately
3/8 inch. Although the inner annulus area was not significantly
increased by this shift, placement of the primary combustor holes
was more favorable.

Detail information related to turbine sidewall cooling flow
introduction into the mainstream flow, method of combustor
attachment to mating engine structure, and ceramic coating on the
combustor outer wall are discussed below.
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Figure 19. GTP305-2 inner annulus P, distribution
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As shown in Figure 20, radial nozzle coolant flow is

directed along the forward and aft nozzle sidewalls. To maintain
a high overall engine cycle efficiency, the nozzle coolant flows
are returned to the mainstream flow in the combustor, rather than
being diverted around the combustor. The forward cooling air
discharge orifices are positioned to allow adequate coolant flow
penetration into the combustor bulk flow, followed by a suffi-
cient mixing length., The orifices are also positioned to prevent
scrubbing of the liner ceramic coating edge. The aft nozzle
sidewall cooling air is introduced into the combustor at two
closely spaced positions near the dilution zone, again providing
an adequate mixing length with the combustor bulk flow.

The combustor is attached to the mating engine structure at
the outer bolt circle. As shown in Figure 20, a floating
machined forging forms a flow path for the forward nozzle side-
wall cooling flow. The floating machined forging effects a butt-
type seal near the combustor ceramic coating. A 100-pound spring
force is transmitted through the combustor outer wall, solid
ring, machined forging and reacted against the forging-nozzle
interface, closing the flow path and maintaining the mechanical
seal.

The Model GTP305-2 combustor outer wall, unlike the Model
GTP305-1, is a sheet metal design, ceramically coated with a
Zirconia base ceramic stabilized with Yttria. The Model GTP305-1
utilized sintered sheet metal (Regimesh), a porous material used
for bonding Rockide-Z. The current state-of-the-art coating is
applied through a series of plasma spray passes with varying
degrees of Zirconia composition. This method of ceramic-to-metal
bonding has been proven [Reference (2)] and is considered to have
better structural integrity than the Model GTP305-1 design. 1In

(Z)Liebert, C.H. and Stepka, F.S., "Ceramic Thermal-Barrier
Coatings For Cooled Turbines:, AIAA Paper No. 76-729, July
1976.
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addition, analytical cost studies indicate a 25-percent reduc-
tion in production cost can be realized using the sheet metal
design.,

3.3.2 Fuel Injection System

The Model GTP305-2 fuel injection system consists of
5-airassist/airblast atomizers and S-pure airblast atomizers.
The 10-fuel injection points were established, based on an atomi-
zer spacing ratio of 1.5 (distance between atomizers/combustor
channel height). Five start air-assist/airblast atomizers are
used to assure a rapid and stable light-around of the combustion
system. Figures 21 and 22 show a prototype air-assist/airblast
atomizer with and without, the shroud, respectively. Figure 23 is
a typical cross section of this atomizer. All 10 Model GTP305-2
atomizers have identical fuel passage sizes to reduce injection
system complexity and cost. Fuel passages were sized at the
ignition condition where fuel flow is a minimum and only the air-
assist/airblast atomizers are utilized. Since assist air is used
to break up the fuel, the only required fuel pressure drop is
that needed to overcome flow variations around the fuel manifold
due to head effects. A 4.5-percent flow variation was selected
as the design criterion, and resulted in fuel passages having a
flow number of 3.0 (Flow No. = WF//ZPF).

An existing Model GTCP85 Series APU flow divider was util-
ized to determine the total fuel system flow characteristics.
Figure 24 illustrates this flow divider. Since this divider
normally operates with a high pressure atomizing fuel system,
orifices will be placed downstream of the primary and secondary
outlets to compensate for the reduced pressure drop of the air-
blast type atomizers used in the Model GTP305-2 APU., Figure 25
shows the resulting system flow characteristics. As indicated in
this fiqure, the flow divider would crack at a fuel flow of
30 pounds per hour. This flow corresponds to an estimated 50
percent engine speed. The air-assist will be shut off at a
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Figure 21. Prototype air-assist/airblast fuel nozzle
with outer shroud installed
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Figure 22. Prototype air-assist/airblast fuel nozzle
with outer shroud removed
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Figure 23. Schematic of typical air-assist/airblast fuel atomizer
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weight flow of 41 pounds per hour. Utilization of this sched-
uling procedure insures that the primary air-assist/airblast
atomizers maintain stable combustion until the secondary airblast
atomizers have initiated burning. An added advantage of this
type of injection system is that an airblast to air-assist/
airbiast fuel flow split of approximate unity can be maintained
throughout the sea level operating envelope. This equal flow
split translates into a uniform fuel distribution at all opera-
ting conditions, which benefits the pattern factor.

3.4 Turbine

3.4.1 Radial Turbine Nozzle

The radial turbine stage meridional view is presented in
Figure 26. Principal features of the radial nozzle include:

o Integrally cast, Inconel 738, material, incorporating
vanes, sidewalls, radial shroud and support cylinder

o Vane internal, chordwise, integrally cast fins to
enhance internal vane cooling flow effectiveness

o) External sidewall radially oriented ribs, 204 constant
passage width, fore and aft

o Vane height (B-width) 0.300-inch with 0.040-inch fil-
let radii

3.4.2 Aerodynamic Design

Radial turbine design is based on a one-dimensional optimi-
zation procedure which maximizes radial turbine efficiency for
tip speed limited designs. Optimization established the basic
turbine flow path dimensions and vector diagram. A detailed
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design of the radial turbine inlet section, stator and rotor were
then analyzed with multi-dimensional flow analysis techniques.
In most cases the design features and geometries of the Model

GTP305-1 turbine were retained although local blade shapes and
thicknesses were modified to reflect the new vector diagram and

maximize turbine mechanical integrity. i

The nozzle inlet section (combustor exit to nozzle inlet) is
a 90 degree radius bend. Design intent was to minimize the span-
wise velocity gradient at the nozzle vane inlet. This was accom-
plished by maintaining a constant bend radius of 0.275 inch for
the inner (shroud) contour and varying the outer (hub) contour

radius until a smooth velocity distribution was achieved. A
velocity gradient of less than 90 ft/sec was achieved across the
nozzle inlet.

The radial nozzle chord, "b"-width, and number of blades
(Figure 27), were established from the vector diagram optimiza-
tion based on a trailing edge thickness of 0.040 inch. The one-
dimension vector diagram is presented in Figure 28. The detailed
vane shape was then optimized with a blade-to-blade flow solution

consistent with the local thickness required for internal cooling 3
flow passages. The aerodynamic design procedure is to first ]
design a vane profile in the axial plane. This profile is then :
transformed to the radial plane by a modified conformal trans-

formation technique that maintains the desired throat dimension.

The vane suction and pressure surface velocity distributions are

then evaluated. This process is repeated with local vane modifi- !
cations until acceptable velocity distributions are acknowl-

edged.

The final stator nozzle ring (2-section) with the final sta-
tor vane profile is presented in Figure 29. Continuous flow
acceleration was achieved on both surfaces except for a small
diffusion region near the suction surface throat region. The
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Figure 28. One-dimensional radial turbine Vector diagram
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design parameters for the radial nozzle are summarized in
Table 7.

3.4.3 Cooling Flow Analysis

A thermal analysis of the Model GTP305-2 radial nozzle was
conducted to define the required cooling flow scheme to maintain
required acceptable metal temperature. Although the basic design
of the cooling scheme is similar with that demonstrated on STAGG,
the Model GTP305-2 APU application is more severe. Refinements
were required because of higher turbine inlet gas temperature and
increased compressor discharge air temperature available for
cooling. A peak metal temperature of 1950°F was considered
acceptable.

Figure 30 depicts the radial nozzle cooling flow circuits
for the Model GTP305-2. As shown, principal flow paths are up
the nozzle forward and aft sidewalls. A portion of the forward
sidewall flow branches and provides vane internal cooling flow.
After cooling the vane, the internal cooling flow is returned to
the cycle ahead of the radial turbine rotor. The remaining for-
ward sidewall cooling flow continues radially outward along the
sidewall, passing through the combustor transition liner, and is
returned to the cycle near the combustor exit. Aft sidewall
cooling flow travels along the radial shroud prior to entering
the sidewall cavity. The flow continues up the sidewall and down
through mating fin passages on the combustor ramp before being
returned to the cycle near the combustor dilution 2zone.

As shown in Figure 31, the Model GTP305-2 APU nozzle vane
has 5-integrally cast chordwise cooling fins on the inner cavity
walls. These fins enhance the effectiveness of the cooling flow.

Prior to initiating the cooling flow analysis, the potential
peak temperature "hot-streak" obtainable at the radial nozzle
inlet was determined using the following considerations:
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TABLE 7. RADIAL NOZZLE DESIGN PARAMETERS

Axial Section Parameters

Section radius, inch 3.062
Inlet flow angle, degrees 10.0
Exit flow angle, degrees -71.133
Inlet flow critical Mach no 0.198
Exit flow critical Mach no 0.87746
Exit blade angle, degrees -68.984
Exit blade critical Mach no 0.9012
L.E. thickness, inch 0.260
T.E. thickness, inch 0.040
Downstream turning, degrees 4.0
Suction surface involute angle, degrees 30.0
Axial loading coefficient 0.770
Transformed Radial Section Parameters
Inlet radius, inch 4.100
Exit radius, inch 3.062
Radial chord (AR), inch 1.0380
Inlet flow angle, degrees 0.0
Exit flow angle, degrees -71.133
Inlet blade angle, degrees 0.000
Exit blade angle, degrees ~-68.984
Inlet flow critical Mach no 0.148
Exit flow critical Mach no 0.87746
Leading edge thickness, in. 0.000
Trailing edge thickness, inch 0.040
Vane passage ("b") width 0.300
Aspect ratio b/AR 0.289
Radial loading coefficient 0.468

56




SITNDITO MOT3 BUTTOOD dTzzZou TPIPEI Z-GOEdALD °'0f 2Inbrg

MmoTg burtood
T1TemspTs 33V

- —— = ~ f

1—

— MOTd butToo)
TTeMspTsS paemiog

57

N
/ MmoTg burtoo)

) |f§ Teuxajuy suep

|




UOT3D3S SSOID JueA STZZOU SUTGINy TeIpeI Z-G0€dlD °T¢ 2Inbrg

IRIRINARINI

sutrd butyrood

58

unusaTd [e3IsW 3I88Yys




A v

b ad

o Turbine rotor average inlet temperature is 2050°F.
This is the mixed-out temperature with internal vane
cooling flow included. Nozzle inlet temperature exclu-
ding internal vane cooling flow is 2067°F (see Sec-
tion 5.0)

o Combustion system pattern factor goal is 0.15. To
achieve a margin of safety, a nozzle thermal analysis
was conducted with a pattern factor of 0.215
T - T
Pattern Factor = HS avg

Tavg = Tepr

Where:

THS = vane inlet hot-spot absolute temperature (°F) due
to circumferential and axial symmetry of the combustor
profile

Tavg = average absolute total inlet temperature to the

nozzle vane (°F)
TCDT = compressor discharge temperature (°F)

Assuming a pattern factor of 0.215, a compressor discharge
temperature of 800°F, and an average turbine nozzle inlet temper-
ature of 2067°F, the predicted "hot-streak" total temperature is
2338°F. Using the 2338°F "hot-streak" temperature, a calculated
vane internal cooling flow of 2.14 percent of engine inlet flow
is tequired to maintain metal temperatures below 1950°F, This
equates to a total internal flow of 0.0502 lb/sec for the 17
vanes or 0.00295 lb/sec/vane.

3.4.4 Radial Nozzle Vane

Due to the severity of operating conditions imposed on the
Model GTP305-2 APU, particular emphasis was placed on accurate
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prediction of thermal boundary conditions. A combination of cur-
rent analytical tools was used to calculate the nozzle vane
external film heat transfer coefficients. Specific assumptions
and/or considerations accounted for in the calculation were:

o Flow symmetry across the vane B-width (the developing
boundary layer on the vane was considered two-
dimensional and spanwise constant)

o Laminar flow coefficients were adjusted for free stream
turbulence intensity levels

o Stimulation of occurrence of boundary layer transition
from laminar to turbulent flow as a result of existing
free-stream turbulence level

o] Potential for formation of Taylor-Goertler vortices on
vane pressure surface, and resultant adjustment of film
coefficient

Internal vane cooling flow is supplied from forward sideband
cooling flow. Cooling flow travels up the forward sidewall and
enters the vane inlet plenum (Reference Figure 30). The plenum
is piloted by a flange at the nozzle forward sidewall and brazed
in place. This flange is contoured, thereby forcing the inlet
plenum walls to a specified shape. This results in cooling flow
passages (outside plenum wall, internal vane wall) of desired
height and predetermined width. Flow is then introduced into
these passages through holes in the forward end of the plenum,
opposite the external stagnation point (Point "A", Figure 31). A
pressure side/suction side flow split at "A" is determined by the
metering characteristics of the respective cooling flow passages.
By controlling the passage height (0.017 inch) between Points "O"
and "P" (Figure 31), a sufficient pressure drop is established to
allow 64 percent of the total vane flow to cool the suction side,
with the remainder washing the pressure side.
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The vane internal cooling flow is returned to the mainstream
gas flow through slots in the vane trailing edge. Three machined
slots (0.015 inch by 0.075 inch, nominal) in the vane trailing
edge (Figure 31) meter the total cooling flow for each vane by
virtue of flow choking through these slots. Approximately
90 percent of the total 48 psi pressure drop potential available
for vane cooling results from flow through these slots.

3.4.5 Aft Sidewall, Shroud Combustion Chamber Ramp

The radial nozzle aft and forward sidewalls utilize counter-
flow cooling air passages similar to the STAGG (Figure 32) incor-
porating integral cooling fins to augment the heat transfer.
Specific problems encountered during design of the aft sidewall
cooling flow circuit (turbine shroud, nozzle sidewall and combus-
tion chamber ramp) primarily evolved from the long cooling flow
path, and the wide variation in available flow area as the flow
expands radially outward along the sidewall.

The cooling flow circuit (Figure 30) is characterized by:

o} A cooling flow rate of 0.1373 lb/sec at engine design
point
o Flow metering is effected by orifices in the combustion

chamber ramp. These orifices also serve as return
ports for delivering used cooling flow to the main-
stream gas flow

o 204 integrally machined fins in the cooling flow pas-
sageways, originating on the shroud and terminating at
the foot of this combustion chamber ramp
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o Constant interfin passage width (0.052 inch), with fin
thicknesses varying from 0.032 inch minimum, ¢to
0.080 inch maximum at the combustion chamber ramp apex

o Constant fin height of 0.063 inch throughout the cool-
ing flow passageway

External heat transfer to the combustion chamber ramp
results from convection of the mainstream "hot-streak" gas, and
combustor primary zone luminous radiation and nonluminous radia-
tion to portions having no "view" of the primary zone. Radiation
effects are superimposed on the convection effects, with a radia-
tion reference temperature of 2338°F. The primary zone gas tem-
perature was estimated to be 4978°F. Luminous radiation effects
were accounted for on the inclined portions of the combustion
chamber ramp (Stations 0.0 to 1.8, Figure 33). The apex of the
ramp has no direct view of the primary zone gas, and therefore,
receives only nonluminous radiation from the "hot-streak" gas.

Due to strongly accelerating mainstream flow, a newly devel-
oped boundary layer is assumed to originate at the base of the
combustion chamber ramp and persists up the ramp to Station 2.2,
(Figure 33). External ramp film coefficients were adjusted to
account for the free stream turbulence intensity levels.

The sidewall boundary layer in the region of the vane is a
well-developed turbulent boundary 1layer. Therefore, boundary
conditions applied to the sidewalls were not adjusted to account
for sidewall area due to the presence of the vanes.

Along the shroud (sidewall) at the turbine rotor inlet, it
was assumed that a new boundary layer was initiated. This was
due to the "wiping away" by the rotating rotor inducer of the
existing fully-developed turbulent boundary layer. A nominal
blade-to-shroud clearance of 0.015 inch was assumed as the maxi-
mum thickness boundary layer formed on the turbine shroud. The
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aerodynamic flow solution defines the rotor inlet gas properties
and the calculated shroud line gas properties through the rotor.
Local film coefficients were then determined using existing cor-
relations,

Calculation of the internal film coefficients in the cooling
air passageways employed either a laminar or turbulent tube flow
correlation depending upon the local hydraulic diameter Reynolds
number. Cooling flows in the transition regime were handled
through an interpolation between the appropriate laminar or tur-
bulent correlations as a function of the transition Reynolds num-
ber. No thermal entry length effects were included, because the
hydraulic diameter of each flow passage is sufficiently small to
cause thermal and hydraulic entry effects to dampen in relatively
short flow lengths.

The calculated external adiabatic wall temperature, effec-
tive film coefficients and resultant metal temperatures for the
combustion chamber ramp, aft nozzle sidewall, and turbine shroud
are presented in Figure 33. As can be seen, a 1900 to 1950°F
metal temperature region in the initial length of the combustion
chamber ramp is predicted. Metal temperatures below 1900°F are
shown for the remainder of the cooling flowpath.

3.4.6 Forward Sidewall, Support Cylinder, Combustor Shroud

Similarly, the forward sidewall cooling flow circuit is

characterized by the following features:

o) A gross entering cooling flow rate of 0.186 lb/sec at
engine design point, from which approximately
0.0501 1b/sec branches to provide vane internal cool-

ing flow
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o Metering of the forward sidewall flow (exclusive of
vane internal cooling flow) is effected by orifices in
the combustor transition liner. These orifices also
serve as return ports for deliveriryg used cooling flow

to the mainstream gas flow

o 204 integrally machined fins in the cooling flow pas-
sageways, mirroring those on the aft sidewall. Con-
stant interfin passage width (0.052 inch) and fin
height (0.063 inch)

Figure 34 depicts the forward sidewall cooling flow circuit.

External convection film coefficients for the combustor
outer shroud and nozzle forward sidewall were calculated in the
same manner as those for the combustion chamber ramp and nozzle
aft sidewall. Similar to the combustion chamber ramp, the com-
bustor outer shroud experiences heat transfer due to luminous and
nonluminous radiation, in addition to convection from the main-
stream gas flow. Radiation to the outer shroud is primarily con-
fined to the region between Stations 0.0 and 1.3 in Figure 35.
Nonluminous radiation occurs between Stations 0.0 and 0.6, while
Stations 0.7 through 1.3 sustain a restricted view of the primary
zone (view factor 0.1). The calculated laminar film coefficients
were adjusted to account for the free-stream turbulence intensity

levels, similar to aft sidewall methodology.

The internal film coefficients in the cooling air passage-
ways on the forward sidewall and combustor outer shroud were cal-
culated in the same manner as those for the aft sidewall cooling

air circuit.

Detailed analysis of the nozzle cylinder thermal boundary
condition involved consideration of several factors (Stations 2.6
to 3.8, Figure 35). The outer diameter of the support cylinder
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is partially scrubbed by entering forward sidewall cooling flow.
Influencing the inner diameter of the cylinder are the turbine
backshroud support cylinder and the propagation of effects of the
mainstream gas within the intercylinder gap axially forward of
the radial turbine rotor inducer. The intercylinder gas tangen-
tial velocity was assumed to decay exponentially with axial
length into the gap from the inlet. A finite element hand calcu-
laton of the local gas temperature and film coefficient was per-
formed to establish the gap boundary condition of the inner sur-
face of the nozzle support cylinder.

The calculated external adiabatic wall temperature, effec-
tive film coefficient, and resultant metal temperatures for the
nozzle support cylinder, forward sidewall, and outer combustor
shroud are presented in Figure 35. The resultant metal tempera-
tures and thermal gradients are within satisfactory limits.

3.4.7 Stress Analysis

Utilizing temperature data generated from the cooling flow
analysis, a steady-state two-dimensional finite element stress
model was prepared. The finite element model is shown in Fig-
ure 36. The one-piece Inconel 738 casting is supported axially
and piloted radially at the forward end of the support cylinder.
Analytically, the 17-hollow vanes were simulated using 17-solid
vanes having a tangential vane thickness of equivalent stiffness.
Figure 37 depicts the assumed equivalent tangential vane thick-
ness and the assumed cooling fin thickness. Nodal system model-
ing is shown in Figure 38. Average steady-state pressures and
temperatures subjected to the model are shown in Figures 39 and
40, respectively. Temperature distribution was assumed to be
uniform circumferentially.

Resultant displacement of the nozzle structure due to tem-
perature and pressure loads during steady-state operation is
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shown in Figure 41. The predicted distribution of stresses is

shown in Figures 42 through 47. Axial and radial bending stress ,
are given in Figures 42 and 43, respectively, with hoop stress

predictions shown in Figure 44. The minimum margin of safety* i
occurs at Point A, wherein the hoop stress is 32,100 psi in com-

. pression and equals +0.90. The equivalent stress distribution is ;
shown in Figure 45 with principal stresses given in Figures 46
and 47. Predicted vane minimum margin of safety occurs at Point
B, Figure 45 and is calculated to be +0.42.

All regions of the cast nozzle, with the exception of the
hollow cooled vanes, were analytically determined to be structur-
ally adequate for steady-state operating conditons. Inasmuch as
the hollow cooled vanes were simulated in this analysis as being
solid, predicted solid vane stresses do not account for the cool-
i‘ ing flow. Therefore, additional information was assimilated

K . ocoabab o o bt S Al

and reviewed relative to past experience on the STAGG nozzle,
from which the Model GTP305-2 nozzle design was derived.

A detailed three-dimensional finite element and heat trans-
fer analysis was conducted on the STAGG nozzle vanes, the criti-
cal reaion of the vane was predicted to be the trailing edge. Due
to ere thermal transient conditions after light-off, an esti-
mated LCF life as low as 300 cycles could be expected. As stated ;
in AiResearch Report SA-9359-MR, several methods of LCF estimat-
ing were researched with predictions ranging from 300 to 3000
cycles. 1In reviewing the analysis, it was noted that the effect
of surface temperature gradients on local heat transfer rates was
not considered. This effect reduces the rate of change in metal i

e e ot L

2
’,

PNTEREI.

temperatures in the trailing edge region, thus reducing the ther-
mal stress range and increasing LCF life,

*Minimum margin of safety Y;:tgigtggngtgeé;YP) -1
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Based on the conservatism stated above, and AiResearch gas

turbine experience, it is not unreasonable to expect an LCPF fail-
ure mode for the STAGG or Model GTP305-2 to occur in approxi-
mately 600 to 800 cycles. This mode would certainly not be pre-
sent in 100-percent of the vanes for any one nozzle and it would
definitely not be manifested in 100-percent of the engines.

Detailed three-dimensional finite element modeling such as
described above requires several man months of effort and usually
results in statements presented herein. Therefore, utilizing
STAGG and other related program experience, the cast nozzle
design for the Model GTP305-2 application is judged structurally
adequate over the duty cycle and satisfies program life require-
ments as stated in Section 3.0.

3.4.8 Radial Turbine Rotor

3.4.8.1 Aerodynamic Design

The initial step in analyzing the radial turbine rotor was
to determine the optimum rotor inlet and exit velocity diagram at
the selected rotor-to-axial turbine work split of 64.7 to 35.3
percent.

For a specified work level, the optimum rotor inlet condi-
tion (corresponding to peak efficiency) for radial turbines is
based on the "slip"” factor criteria. The slip factor relates
stator exit tangential velocity (vu) to inducer blade speed (U)
for' a specified rotor blade number (Nb) in the following manner:

N N .1 . 2 [opTiMUM ROTOR
2, 00t T T, Ny |INLET WORK COEFFICIENT

For high work levels and zero exit swirl, it is generally
not possible to satisfy this criteria due to inlet blade speed
limitations imposed by the material properties. Figure 48 shows
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with turbine stage work




the variation of optimum tip speed as a function of radial stage
work for a 20-inducer blade rotor. As shown in Figure 48, the
Model GTP305-2 radial stage, with a tip speed limitation of 1880
ft/sec, has a 205 ft/sec tip speed deficiency, compared to 125
ft/sec deficiency for the Model GTCP305-1 radial stage. For non-
optimum inlet conditions, a performance penalty is therefore
imposed due to an increase in inducer loading. A recent analyti-
cal study at AiResearch indicates that this performance penalty
can be minimized by redistributing the total work between the
rotor inlet and exit. This analysis shows that total losses with
exit swirl (assuming the rotor exit tangential component is not
recoverable) are less than inducer losses with no exit swirl and
that an optimum rotor exit swirl exists for maximum efficiency.
The Model GTP305-2 radial turbine, when applying this analysis,
showed that maximum stage efficiency occurs at an inlet work
coefficient (Vu/U) of 1.0507 and a meanline exit work coefficient
of -0.1507 (which corresponds to -14.5 degrees meanline exit
swirl).

Having established the optimum vector diagram, an internal
aerodynamic analysis of the radial rotor was conducted. The
analysis was based on a computer program that solves the radial
equilibrium equation along an arbitrary line in the rotor meri-
dional plane between hub and shroud contours. Flow conditions
are established at specified rotor upstream and downstream sta-
tions and on a mean flow basis between blades in the rotor.
Entropy and enthalpy gradients in the meridional plane are recog-
nized. Blade-to-blade velocities are then calculated based on
the conditions of zero absolute circulation and a linear varia-
tion of suction to pressure surface velocity. The analysis
objective was to obtain smooth accelerating flows and avoid
severe local diffusions with the following constraints:

o Rotor inducer tip speed was limited to 1880 ft/sec for
cast AF2-1DA
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The 10-full blade and 10-splitter blade configuration
of the Model GTP305-1 radial rotor was retained. How-
ever, to minimize exit blade root low cycle fatigue,
the splitter and exducer axial length were reduced by
0.200 inch, and a curved trailing edge configuration
was incorporated at both the splitter and full blade
trailing edges

Achieve maximum possible scallop depth without
severely deteriorating aerodynamic performance. Pre-
vious AiResearch test results indicate that rotor scal-
lop effects can be minimized by limiting scallop depth
to the exducer tip radius and by minimizing hub meri-
dional turning from the inducer inlet to the scallop
location, If turning is too great, the hub flow will
impact on the bottom of the scallop, resulting in main-
stream flow distortions. More specifically, Hiett and
Johnston [Reference (3)] test results show that reduc-
ing the scallop depth significantly below the exducer
tip radius could result in efficiency decrements of 2.0
to 4.0 points

A blade thickness distribution that would minimize
uncooled rotor blade stress was selected. This thick-
ness distribution is similar to that used for the STAGG
uncooled rotor

The Model GTP305-1 rotor exducer hub and shroud radii
were maintained

(3)Hiett, G.F., Johnston, I.H. "Experiments Concerning The Aero-
dynamic Performance of Inward Flow Radial Turbines.,"

Inst. Mechanical Engineers, Thermodynamics and Fluid Mechanics
Convention, April 1964, Paper No. 13
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o Rotor radial loss distribution and exit blade deviation

data were based on correlations from previous
AiResearch radial turbine tests

For a rotor inlet work coefficient of 1.0507, and rotor con-
straints listed above, a number of internal rotor flow solutions
were examined by varying hub and shroud contours and rotor blade
angle distribution. Since scallop depth was reduced to the
exducer shroud radius, a major change in the rotor hub line was
necessary to minimize scallop effects. A comparison of the Model
GTP305-2 flow path with the Model GTCP305-1 is shown in Fig-
ure 49. The inducer region for all three streamlines shows the
expected high loading as a result of the non-optimum tip speed
inherent in the reduced-radius cast design. These analyses
showed that rotor blading could be improved slightly by extending
the splitter blades. However, due to the increased blade thick-
ness required to maximize the uncooled rotor life, extending the
splitter blades downstream resulted in significant mainstream
diffusion beyond the splitter blade ends. Higher mainstream dif-
fusion also resulted from the higher splitter turning required at
the extended length., Conversely, reducing the splitter length
would be mechanically favorable but analysis showed that reducing
the splitter blade length by a significant amount would result in
large local diffusion on the full blade pressure surface down-
stream of the splitter blades.

3.4.8.2 Radial Rotor Stress Analysis

In concert with the aerodynamic design of the radial turbine
rotor, a steady-state thermal/stress analysis was conducted. As
stated in Paragraph 3.4.8.1, a blade thickness distribution simi-
lar to that of the uncooled STAGG rotor was utilized, and the
Model GTP305-1 exducer hub and shroud radii were maintained.
Axial blade lengths for the full and splitter blades was reduced
by 0.200 inch to incorporate a trajiling edge configuration that
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will reduce low cycle fatigue (LCF) effects at the exit blade
roots. The rotor meridional flow path is shown in Figure 49.
The Model GTP305-1 configuration is also shown for comparison.

Preliminary finite element stress analyses indicated a large
region of creep in the rotor bore. Discussion of the analysis is

included in Paragraph 3.4.8.4.

3.4.8.3 Bore Cooling Flow Analysis

As shown in Figure 50, preliminary stress analysis indicated
a large region of the bore would exceed l-percent creep. The
introduction of bore cooling air was investigated to reduce this
area within acceptable limits. 1Introduction of air from the com-
pressor backface via the compressor/seal curvic to cool the tur-
bine bore and buffer the interstage seal between the radial and
axial turbines provided a desirable flow path while minimizing
cycle losses and complex flow metering hardware.

Figure 51 depicts the selected flow path. The static pres-
sure of the main flow gas exiting the radial turbine is
31.5 psia. For this reason the buffer pressure of the cooling
air being supplied between the knives of the interstage turbine
seal should exceed 31.5 psia. A redesign of the intercompressor/
turbine seal was accomplished for the purpose of reducing seal
leakage. Bore cooling air is supplied from the relatively low
(50 psia) compressor backface. It was desirable that primary
metering of the total flow occur as a result of the interturbine
seal knives. The nominal interturbine seal leakage rate is
approximately 1 percent of engine mainflow, 0.023 1lb/sec.
Achieving this flow rate at a pressure level sufficient to buffer
the interturbine seal was complicated by pressure losses char-
acteristic of the chosen bore cooling flow path. Primary pres-
sure loss mechanisms included:
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Figure 50. Area of wheel which exceeds one percent creep
for an uncooled bore :
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Swirl-down of radial inward flow to the curvics

-w-y.—,v-—-.v..-.f‘w.
o]

_ o Flow choking, due to heating, in the turbine bore

?

E o Swirl-up of radial outward flow to the interturbine
E- seal

f

Addressing each loss inducing item above, the bore cooling
flow path includes such features as a radial inflow deswirl vane,
contoured corners at each duct entry point along the flow path, a
conical diffuser cone on the aft portion of the radial turbine,
and a radial outflow swirl-up vane to pump cooling air out to the

interturbine seal. Of particular importance were the tiebolt and
radial turbine bore machine tolerances, since these clearance
areas directly effect the choked flow rate for cooling.

Figure 51 also shows the intercompressor/turbine seal
design. System pressures shown are for design point operation
and nominal seal clearance dimensions. At the intercompressor/
turbine seal, a 0.009 inch radial clearance was assumed. The
compressor backshroud extending to the curvic outer radius inhi-
bits the tangential acceleration of the cooling flow moving radi-
ally inward on the compressor backface. Drag caused by this
shroud brings the gas tangential velocity down to a level very
near wheel speed at the curvic inlet and provides a reduced
static pressure drop as required for pumping the cooling flow to
the turbine bore. The total power loss due to drag induced by the
cooling flow on the static shroud and the adjacent rotating
structure is 6.2 horsepower.

A detailed calculation of the available flow area through
the compressor seal curvics was performed. The difference
between the gas tangential velocity and the wheel speed at the
inlet to the curvics reduces the effective discharge coefficient
through the rotating orifices formed by the curvics. Extension




Y

of the compressor backshroud to the radius of the curvic inlet
causes this velocity differential to be approximately 130 ft/sec.
Reference (4) indicates that no tangential velocity component is
recovered as pressure, By using inlet static pressure and a
detailed calculation of the required pressure drop across the
orifice, Reference (5), the static pressure leaving the curvics
was conservatively predicted.

For gas flows induced radially inward against the natural
outward pumping action of rotating disks, conservation of angular
momentum tends to increase the gas tangential velocity. High
shearing forces between the rotating gas and both the neighboring
static structure and/or the more slowly rotating disc cause
losses that are manifested by a lack of pressure recovery in the
gas. Rotational energy is traded for irreversible heat genera-
tion on the shroud and disc surfaces. A deswirl vane extending
radially from near the tie-bolt to the ID of the curvic has the
effect of reducing the tangential shear losses of the inlet cool-
ing flow by forcing the gas tangential velocity to conform to
that of the wheel at each radial location. A disc with sixteen
radial holes of 0.090 inch diameter was designed. The outside
diameter of the disc has a circumferential "trough" acting as a
plenum in which to collect gas emanating from the curvics. A
calculated Mach No. of 0.18 at the ID represents a fairly large
dynamic pressure head which is not recovered in the 90 degree
bend required for the gas to pass beneath the seal hub,

To facilitate a reduced cooling flow restriction, the inner
radius of the seal hub has been increased to 0.24 inch. A con-
toured radius on the cooling flow inlet and exit at the bore of
the seal hub effectively reduces sharp-edged flow losses.

(4)Amman, C.A., Nordenson, G.E. and Raxinsky, E.H. "The Turline
Interstage Duct" SAE Paper No. 710553, June 1971.




Flow pressure losses through the turbine bore were reduced

by:
o Contouring the inlet
o Increasing the radius of the bore to 0.21 inch (from
0.19 inch)
o) Introducing a diffuser cone on the aft end of the tur-

bine bore

o By maintenance of minimum tolerance variation on the
machined tiebolt and turbine bore surfaces

As the cooling flow is heated passing through the turbine
bore, it approaches a choked condition. Flow choking occurs at
Mach 1 where a high velocity head exists. If this cooling flow is
exhausted at M = 1 into the cavity aft of the radial turbine,
practically no pressure recovery results, However, a diffuser
with a gradial one-to-four area increase extending over the last
l1-inch of the radial turbine bore theoretically produces an
approximately 78-percent dynamic pressure recovery. This dif-
fuser feature was included in the radial turbine design with no
significant amplification of bore stresses. Figure 52 is a plot
of the bore cooling flow versus resultant seal buffering pres-
sure. The horizontal portion of the operating line shows choked
bore flow due to Rayleigh heating there. The three data points
shown in Figure 52 correspond with the following choked flows for
clearance areas that correspond to; a minimum area produced by
the maximum tiebolt and minimum turbine bore dimensions, a nom-
inal area produced by nominal dimensions, and a maximum area pro-
duced by minimum tiebolt and maximum turbine bore tolerances.

(5)"Radia1 - Inflow Turbine Performance with Exit Diffusers
Designed for Linear Static Pressure Variation," NASA TMX-2357,
August 1971.
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Flow Area Tiebolt Radius Turbine Radius
Minimum 0.5460 inch2 0.1625 inch 0.20925 inch
Nominal 0.5635 inch2 0.16175 inch 0.2100 inch

2

Maximum 0.05810 inch 0.1610 inch 0.21075 inch

As in the case of the previously discussed deswirl vane
which is used for reducing rotational shearing losses for radi-
ally inward flowing gas, the swirl vane is used to pump the low
radius cooling gas from the turbine bore out to the buffered
seal. Shearing losses, characteristic of disc pumping, were
reduced with the swirl disc containing twenty 0.10-inch diameter
radially drilled holes.

Figure 53 illustrates the region of the bore exceeding one
percent creep. As compared to Figure 50, this region has been

greatly reduced due to the incorporation of bore cooling flow.

3.4.8.4 Thermal/Stress Analysis

Figure 54 shows the radial turbine rotor temperature distri-
bution with bore cooling and forward face cooling. While the
uncooled bore temperatures average approximately 1400°F, the
cooled-bore reaches a steady-stage average temperature near
1275°F.

Heat transfer film coefficients were calculated during the
radial rotor thermal/stress analysis. During this analysis, sev-
eral methods of calculation were investigated. Current test data
from other programs indicated the method of calculation employed
was overly conservative. Thus, the thermal/stress analysis was

repeated based on updated analytical tools.

>
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Figure 53. Area of wheel which exceeds one percent
creep for a cooled bore
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Figura 55 shows the thermal profile of the radial rotor
utilizing the updated analytical tools. As can be seen, the hub-
line temperatures drop by approximately 30°F when compared to
Figure 54. However, the hubline-to-bore gradient does not change
appreciably. Figures 56 through 59 show the displacements, tan-
gential, equivalent, and radial stress, respectively.

Bore cooling reduces the steady-state bore temperature level
by 200°F while allowing sufficient flow to buffer the intertur-
bine seal. In spite of the attendant rise in steady-state ther-
mal stress, bore cooling improves the creep life of the radial
turbine (see Figures 50 and 53). With the high potential stress
range in the bore, in excess of 200 ksi, LCF is the significant
failure mode. Sufficient test data has not been compiled on the
AF2-1DA material to accurately access LCF characteristics. How-
ever, part of the Model GTP305-2 program is to obtain room temp-
erature strain-controlled LCF property data. Final evaluation of
the radial rotor will be assessed upon completion of the LCF
property data file (see Appendix D).

3.4.8.5 Interturbine Duct

The interturbine duct provides a smooth aerodynamic transi-
tion from the radial turbine exit, to the power turbine inlet.
Exit velocity should be as low as possible to maximize the reac-
tion across the power turbine stator. An annular diffuser design
for the interstage duct, is required to achieve a relatively high
radial turbine exit velocity. Optimization of the radial and
axial turbines, result in an area ratio, between stages, of 1.47.
The optimum length for a given area ratio is correlated along the
Cp** line, as reflected in Figure 60. Test results from Sovran
and Klomp (Reference 1, Paragraph 3.4.12), shows that the Cp**
line results in minimum pressure loss for a given diffuser area
ratio. Figure 60 shows that the nondimensional duct 1length
(L/Z4R) is short of optimum duct length, when compared with the
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Figure 55. GTP305-2 temperature distribution program to hub line
film coefficient bore cooling flow 0.023 1lb/sec
front face flow 0.06 l1lb/sec
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Tigure 56. GTP305-2 radial turbine displacements
program 700 film coefficients
bore cooling flow 0.023 1lb/sec
front face flow 0.060 lb/sec

101




sIN )

203
A sl ™

Figure 57. GTP305-2 radial turbine tangential
stress distribution program 700
hub line film coefficients
bore cooling flow 0.023 1lb/sec
front face flow 0.060 lb/sec
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Figure 58. GTP305-2 equivalent stress distribution
program 700 film coefficients
bore cooling flow 0.023 1lb/sec
front face flow 0.060 1lb/sec
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Figure 59. GTP305-2 radial turbine radial
stress distribution program 700
hub line film coefficients
bore cooling flow 0.023 lb/sec
front face flow 0.060 lb/sec
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original Model GTP305-2 bearing span. However Amann's test
results (Reference 6) indicate increased duct loss under these
conditions is not significant. Predicted pressure loss (AP/P)
for the Model GTP305-2 interturbine duct is based on a pressure
loss coefficient (w) of 0.25. This is based on a previously
tested AiResearch interturbine duct of similar geometry. Thus,
the calculated pressure loss for the Model GTP305-2 interturbine
duct is 0.169.

Design objective of the interturbine duct was to achieve a
hub and shroud contour which would attain non-separated flow and
minimize radial velocity gradients at the stator inlet. Fig-
ure 61 reflects predicted streamline distribution from the hub to
the shroud, for final duct contour. Radial velocity gradients
are unavoidable due to endwall curvatures. The hub stator inlet
angle of 30 degrees, results from upstream radial turbine exit
swirl and will require a high turning blade section at the axial
stator hub.

Structurally, the interturbine duct is part of the inte-
grally cast axial stator assembly. The material is INCO-713LC.
A detailed discussion of the interturbine duct stress and deflec-
tion analysis is contained in Section 3.4.10.

3.4.9 Axial Turbine Aero/Mech Optimization

Preliminary geometry and work requirements for the power
turbine were established during the optiminization study pre-
sented in Section 3.1. Free vortex design methods resulted in a
constant radial work distribution. However, test results indi-
cate significant performance improvement relative to free vortex

(G)Amman, C. A., Nordenson, G. E. and Raxinsky, E. H. "The Tur-
bine Interstage Duct," SAE Paper No. 710553, June 1971.
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design, can be achieved with non-free (forced) vortex design
techniques. Physically, non-free vortex methods relieve the
requirements for constant radial work distribution which permits
work reduction in the high loss end wall region. Uniform blade
row exit flow conditions and a reduction in losses, result.

The non-free vortex optimization studies began with the free
vortex flow path established from the overall turbine optimiza-
tion study. This also established rotor exit dimensions that
satisfied maximum allowable average stress levels for cast
AF2-1DA. Since the non-free vortex solution allowed arbitrary
distributions of stator and rotor exit angles, a number of linear
and non-linear distributions were investigated, based on the two-
dimensional loss distributions obtained from the efficiency pre-
diction program. The objective for the Model GTP305-2 axial tur-
bine was to minimize rotor radial twist, hub relative tempera-
ture, exit axial velocity gradients and exit swirl while simul-
taneously maximizing rotor hub reaction. After extensive analy-
sis, it was apparent that a parabolic stator exit angle, and near
linear rotor exit angle, distribution would best achieve these
objectives. At this point, previous AiResearch non-free vortex
designs were reviewed to determine the final loss distribution.

Table 8 compares design point data for three previous
AiResearch non-free vortex designs with the Model GTP305-2
design. Test data for two tip clearance values were available
from the TFE731 Model Turbofan Engine high pressure (HP) turbine
and were used to extrapolate to zero clearance. Rotor exit sur-
vey data for the designs shown in Table 8 are plotted in Fig-
ure 62 in terms of exit radius ratio and total-to-total effi-
ciency. Figure 62 shows the final radial efficiency distribution
predicted for the Model GTP305-2 axial turbine for zero clear-
ance. The loss level and radial loss distribution were adjusted
in the non-free vortex vector diagram to achieve this efficiency
distribution and satisfy the required pressure ratio. The 1loss
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TABLE 8.

DESIGN DATA FOR NON-FREE VORTEX TURBINES

305-2 TFE731 XJ=401-GA-400 JFS190

Parameters PT HP Harpoon GGT
Design Point 2.1597 1.889 2.179 2.072
Preasure Ratio
P/P)T_T
Inlet Corrected 1.735 4.424 4.503 1.273

WV e
Flow, =5
RH)Exit Inches 1.567 4.242 3.26 1.92
' 4
RT)Exit Inches 2.845 5.573 4.8 2.775
4

RH/RT 0.550 0.761 0.679 0.692
Blade Height 1.278 1.331 1.54 0.855
(h) » Inches
Aspect Ratio 2.04 1.85 2.18 1.426
h/c

X

m
Measured 0,0235
Clearance, Inches 0.015 0.0066 0.017 0.013

i RT)Exit 1
Cx
m l
/RH)Exit
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Figure 62. GTP305-2 axial turbine radial
efficiency distribution
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split between the stator and rotor was based on results of the

efficiency prediction program. Figure 63 shows the final flow
path for the non-free vortex solution. The final non-free vortex
solution resulted in an acceptable rotor hub reaction (21 per-
cent) without excessive rotor exit swirl (8 degrees at the hub
compared with zero for the preliminary free vortex design), and a
reduction in rotor twist,

3.4.10 Axial Turbine Stator

3.4.10.1 Axial Stator Aerodynamic Design

The integrally-cast axial stator utilizes a 25-vane config-
uration with no cooling flow. Several combinations of trailing
edge thickness and wedge angles were evaluated. As shown in Fig-
ure 64, a 0.015 inch trailing edge and relatively large wedge
angle were selected. The larger wedge angle provides vane trail-
ing edge thermal cracking resistance.

Due to the non-linear stator inlet angle and parabolic
stator exit angle distribution, vane geometry at five-radial sta-
tion was required for definition. The five sections were
required to ensure that a proper throat area and a smooth three-
dimensional fairing were achieved. Table 9 summarizes stator
vane design parameters for these radii. Two methods were used to
evaluate the stator suction and pressure surface velocity distri-
bution. The velocity gradient method is incorporated in the
blade design program and is based on satisfying continuity and
momentum along suction-to-pressure lines emanating from the suc-
tion surface involute spiral. The stream function solution is
based on the Katsanis method [Reference (7)]. Predicted charac-
teristics are similar, however, the velocity gradient method over

(7)Katsanis, Theodore; and McNally, William D.:

Revised Fortran Program for calculating velocities and stream-
lines on a blade-to-blade surface of a turbomachine. NASA TM X
1764, 1969.
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Figure 64. Radial trailing edge thickness and
wedge angle distributions

113




TABLE 9. STATOR VANE DESIGN PARAMETERS.

% of total flow streamline at stator exit 10 30 S0 70 90
Radius (in.) 1.791 2.035 2.281 2.506 2.70
Chord, C (in.) 0.72 0.839 0.94 1.011 1.048
Axial chord, Cx (in.) 0.5375 0.580 0.630 ¢.680 0.725 %
Pitch, S (in.) 0.45013; 0.5120 0.5733 0.6298 0.6786 !
Solidity, cx/s 1.194 l.1328 1.099 1.0797 1.068 1
Inlet flow angle (deq) -29.95 -25.6 -10.75 -3.25 -0.025 !
Exit flow angle (deg) 66.753 69.175AJ 69.991 68.358 65.174 j
Inlet freestream critical !Mach No. 0.2632 : 0.2555 0.2400 5 0.2253 ;0.2164 .
Exit Ireestream critical Mach No. 0.9289 0.8274 0.7552 l 0.6885 | 0.6353 |
Zweifel coefficient of loading 0.7578 0.6936 0.6254 T45.6493 0.7138
L.E. thickness (in.) 7.04 Al 3.048 0.336 Tio 06535 ! 0.937

-1

T.E. thickness (in.) 0.0155 ! 0.0166 0.0177 | 0.0187 2.0196

Max.thickness 0.086 J2.101 T 0.112 ! 0.114 1 0.119 ;
Max.thickness/chord 0.1194 l 0.1200 ! 0.1192 {45.1130 1 0.1139 ?

! Angle of downstream turning (degq) 4.0 i 4.5 ng.a ng 5 6.0 i

{ Trailing edge wedge angle (deg) 8 j 9 10 b1l 12 AﬁT

; Inlet blade angle (deg) -29.95 -25.6 -10.75 -3.25 ‘ -0.025 j

! Exit blade angle !(deg) 64.555 67.171 | 68.108 66.565 - 63.459 i

; L.E. blockage 0.1026 0.1039 0.0994 | 0.1010 J 0.1032 | 1
T.E. blockage 0.0872 0.0912 0.0902 0.0805 2.0688
Inlet total pressure P', (psia) 33.544 33.544 33.544 33.544 | 33.544
Inlet total temperature T', (°R) 1968.04 1968.04! 1968.904 l968.04i 1968.04

No of vanes = 25

Aspect ratio = 1,95

Mid passage hub/tip ratio = 0.60




predicts the velocity peak near the stator suction surface throat

region. Figure 65 presents a 3-dimensional vane profile gener-
ated by stacking the fice cylindrical sections on a radial line
passing through the throat center of each section. Figure 66
shows the meridional view of the stacked stator vane.

3.4.10.2 Axial Stator Stress Analysis

As stated in Paragraph 3.4.9, the interturbine duct and
axial stator is an integrally cast structure. Stress analysis of
the structure was conducted to substantiate the structural inte-
grity during steady-state operating conditions and rapid start
transients.

Steady-state temperature distributions through the Model
GTP305-2 interturbine duct structure were estimated from cur-
rently available gas path and combustor data and are presented on
Figure 67, The data, including static pressure distributions,
were introduced into the finite element model shown on Figure 68
to determine stresses throughout the structure., Except for the
Inconel 713LC cast duct walls and vanes, the structural members
are fabricated entirely from Hastelloy-X as indicated in Fig-
ure 68,

Table 10 shows a tabulation of calculated stresses at
selected locations throughout the structure for the steady-state
condition. The steady-state deflections are shown in Figure 69.
Locations of the tabulated stresses are illustrated on Figure 70.
The highest stresses calculated at steady-state conditions occur
at Locations E, G, and T, the corners of the vanes, and the mini-
mum margins of safety on yield (Table 10) are shown to be 1.41,
1.30, and 1.30 respectively.

Figure 71 shows the estimated temperature distribution
for the rapid-start transient condition where maximum thermal
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TABLE 10. MAXIMUM STRESSES DURING STEADY STATE
OPERATING CONDITIONS.

| Temp Stress Type Of MS
Location Material (°F) f{ksi) Stress vield
a Hastelloy X 1060 - 7.1 hoop 4.85
B " 1300 29.0 bending .36 i
C 713 C 1410 - 0.7 hoop high !
D v 1370 13.4 equivalent high i
E N 1460 44.1 equivalent 1.41
F " 1350 -18.7 bending 4.96
G " 1470 46.1 equivalent 1.30
H " 1230 13.6 equivalent high
I Hastelloy X 1230 32.6 hoop 0.23
J " 1200 -20.4 hoop 0.96
K " 1100 -13.4 hoop 2.06
L " 870 -11.4 bending 2.82
M " 830 6.8 hoop high
N ! 830 6.4 hoop high
o) " 830 5.0 bending high
P 713 C 1460 16.0 bending high
0 Hastelloy X 1460 -25.2 hoop 0.40
R 713 C 1470 1.5 bending high
S " 1470 ~28.6 hoop 2.71
T " 1470 46.1 eguivalent 1.30
U " 1440 -24.1 hoop 3.46
\Y/ " 1460 22.1 equivalent 3.82
13 Hastelloy X 1320 - 1.0 bending high
X " 1010 27.0 equivalent 0.56
Y 713 C 960 7.2 equivalent high
z " 980 - 7.9 hoop high
MS . = Yield Strength -1
yield Calculated Stress

Margins of Safety greater than 5.00 have been designated "high"
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gradients exist throughout the structure. Pressure loads for the
start transient were unchanged; that is, pressures were retained
at steady-state values for the start condition stress calcula-

tions.

Calculated stresses for the start transient are presented on 1
; Table 11. As before, the calculated stresses at the corners of
the vanes were much higher than at other locations. However, the
yield strength is slightly higher since the vane has not yet
reached maximum temperature. The maximum stress developed at the

vane root occurs at Location E, and is 80.3 ksi, which results in

-k incte G i )

a minimum margin of safety on yield of 0.40.

A maximum stress of -29.4 ksi is developed in the 0.025 inch
Hastelloy-X shell (see Location Q) while the Inconel 713 vane
(see Location E) developed a stress of 81.3 ksi. Since the mini-
mum margins of safety on yield are 1.30 for the steady-state

R LT

' operating condition and a 0.40 during the transient condition,
] this structure is considered adequate for the design life of the
part.

3.4.11 Axial Turbine Rotor

3.4.11.1 Axial Turbine Rotor Aerodynamic Design

Detail rotor design objective was to achieve satisfactory
blade surface velocity distributions while maintaining and/or
improving preliminary blade section area taper ratio. Rotor
blade life and stress level predictions were based on a "nominal"

area taper ratio utilized in previous AiResearch axial rotor

designs.

A minimum 0.025 inch trailing edge thickness for an as-cast
AF2-1DA rotor, was selected. Additionally, rotor hub exit block-
age of ten (10) percent, established a rotor blade number of 24.
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TABLE ll. MAXIMUM STRESSES DURING THE RAPID
START TRANSIENT CONDITION.
Temp Stress Type Of Ms
Location Material (°F) (ksi) Stress Yield
A Hastelloy X 610 5.8 hoop high
B " 610 20.2 bending 1.28
Cc 713 C 860 - 0.4 hoop high
D " 860 21.9 equivalent 3.91
E " 1080 80.3 equivalent 0.40
F " 810 -19.7 bending 4.44
G " 1160 56.3 equivalent 1.02
H " 740 11.5 eqguivalent high
I Hastelloy X 730 -28.6 hoop 0.57
J " 720 -18.7 bending 1.41
K " 650 -13.1 hoop 2.55
L . 480 - 8.3 bending 4.73
M “ 450 9.1 hoop 4.27
N " 450 9.4 hoop 4.11
0] " 450 4.1 bending high
P 713 C 880 16.2 bending 1.67
Q Hastelloy X 880 -29.4 hoop 0.47
R 713 C 880 0.4 bending high
S " 880 43.9 equivalent 1.43
T " 1120 77.8 equivalent 0.45
U " 800 24.3 hoop 3.41
\Y " 1050 44.3 eqguivalent 1.52
i Hastelloy X 700 - 1.5 bending high
X " 220 19.2 equivalent 1.63
Y 713 C 960 7.2 equivalent high
z " 200 0.2 equivalent high

MS,ield

Yield Strength

Calculated Stress
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Optimum rotor blade section designs were then achieved by varying
axial chord and local blade shapes.

Radial design sections were selected at 1.667, 2.005,
2.2876, 2.5697, and 2.9954 inches radii, respectively. These
radii correspond to rotor inlet streamline locations from the
Non-free vortex vector diagram. Final rotor blade design param-
eters are presented in Table 12. Figure 72, shows the final
rotor three-dimensional stack of interpolated sections used for
tooling layout. Axial turbine meridional flow path with final
stator and rotor design sections, is presented in Figure 73.
Mechanical analysis indicates that rotor radial blade twist has
improved relative to free vortex design. However, Figure 74
shows that significant blade unwrap will still occur at engine
rotational speed. To maintain the design rotor throat dimensions
under these conditions, the rotor sections were rotated "closed®,
by the angle indicated in Figure 74. The indicated radii cor-
responds to the selected tooling layout section used for manufac-
ture. Rotor untwist will also occur with the cold air test rotor
as reflected in Figure 74, although rotational speed is only
approximately 50 percent of design speed. For this reason, a
separate set of tooling layouts were defined for the cold air
axial rotor. Distribution of pre-twist and resultant rotor
throat dimensions for the engine and cold rig rotor tooling sec-
tions are presented in Table 13.

3.4.11.2 Axial Rotor Stress Analysis

A steady-state thermal analysis was calculated for the non-
free vortex axial turbine rotor for a 130°F day, 2050°F turbine
rotor inlet temperature operating point. Figure 75 presents
resultant isotherms. This thermal analysis was included in the
axial rotor stress analysis.
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TABLE 12.

e

N = 75,682 RPM.

GTP305-2 AXIAL ROTOR DESIGN PARAMETERS

§ection Design Radius,
in,

Axial chord, C, (in.)
Pitch, S (in.)
Solidity i Cx/s

Inlet Flow Angle (deg)
Exit Flow Angle (deg)

Inlet Freestream Critical
Mach No.

Exit Freestream Critical
Mach No.

Zweifel Loading
Coffficient

L.E. Thickness (in.)
T.E. Thickness (in.}

Downstream Turning
Angle (deg)

Trailing Edge Wedge
Angle (deg)

Inlet Blade Angle (deg)
Exit Blade Angle (deg)
T.E. Blockage

Inlet Relative Total
Pressure (psia)

Inlet Relative Total
Temperature (°R)

Throat Dimension, (in.)

1.667

0.8101
0.4364
1.8560
40.427
-58.758
0.5626

0.7523

0.8028

0.050
0.025
6.0

12.0

40.427
~55.271
0.1005
21.286

1780.95

0.2236

2.005

0.6625
0.5251
1.2617
20.920
-62.750
0.3404

0.8475

0.7730

0.039
0.0250

5.0

10.0

20.920
-59.783
0.0946
22.532

1805.15

0.2392

2.2876

0.5618
0.5989
0.9380
-13.135
-65.241
0.2833

0.9190

0.766

0.032
0.025
4.0

8.0

-13.135
-62.593
0.0907
24.188

1835.78

0.2507

2.569

0.4483
0.6728
0.6663
-42.543
-67.136
0.3668

0.9849

0.6590

0.032
0.025
3.0

6.0

-42.543
-64.723
0.0870
26.764

1818.39

0.2623

2.795

0.3604
0.7318
0.4924
-55.656
-68.472
0.4642

1.025

0.5860

0.303
0.025
2.0

4.0

-55.656
-66.242
0.0848
29.597

1925.81

0.2692

Number of Blades = 24
Aspect Ratio = 3.853
Hub/Tip Exit Radius Ratio = 0.550
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TABLE 13. GTP305-2 AXIAL TURBINE ROTOR
TOOLING LAYOUT PRETWIST.

r
E, Engine Rotqr Colq Rig Rogor
- Tooling Sections Tooling Sections
: Throat Throat
Radius Pretwist Dimension Pretwist Dimension
( Inches) (Degrees) (Inches) (Degree) (Inches)
1.520 0.000 0.2164 0.000 0.2164
1.625 0.000 0.2216 0.000 0.2216
1.750 0.100 0.2270 0.025 0.2275
1.950 0.585 0.2326 0.155 0.2356
2.150 1.270 0.2345 0.360 0.2420
2.350 2.140 0.2338 0.600 0.2479
2.570 3.125 0.2301 0.860 0.2534
2.750 3.875 0.2245 1.080 0.2558
2.900 4.500 0.2178 1.250 0.2567 ;
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Steady-state stresses were calculated for the axial turbine
rotor for a 130°F day, 2050°F turbine rotor inlet temperature
operating point. Figures 76 through 78 present the resultant
stress isopleths and identify locations of peak steady-state
stresses.

3.4.12 Turbine Exhaust Diffuser

The turbine exhaust diffuser function is to convert rela-
tively high rotor exit kinetic energy to an increase in static
pressure. Since residual rotor exit kinetic energy is charged to
the turbine system, ultimate efficiency potential will be a func-
tion of exhaust diffuser performance. Figure 79 shows that
total change in overall turbine efficiency, from zero to 100-per-
cent diffuser recovery, is over 3 points.

sovran and Klomp [Reference (8)] have extensively investi-
gated performance potential for annular diffusers. Results of
this study are presented in Figure 80, in terms of area ratio
(AR-1) and diffuser 1length divided by diffuser inlet height
(L/oR) . Maximum pressure recovery is represented by the Cp* line
for a prescribed length and is the desired characteristic for the
exhaust diffuser. This correlation shows that for a fixed non-
dimensional length (L/AR), both area ratio and potential diffuser
recovery (Cp), are specified. The Model GTP305-2 envelope length
and rotor exit dimensions result in a diffuser area ratio of
1.794 and an indicated recovery of 0.550 based on a 2.0-percent
diffuser inlet blockage. However, test results have shown that
75 percent of the indicated recovery from Figure 80, is
achieved when non-uniform rotor discharge conditions are imposed
on the diffuser inlet. Therefore predicted diffuser recovery for

(8)Sovran, G., and Klomp, E.D., "Experimentally Determined Opti-
mum Geometries for Rectangular, Conical or Annular Cross
Sections, " General Motors Research Publication GMR-511, November
1965.
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TOTAL~TO-DIFFUSER EXIT STATIC EFFICIENCY PENALTY, AW

= 0.4064
a'l ROTOR

EXIT

/ NDESIGN POINT

-0.01 _///

0 0.2 0.4 0.6

DIFFUSER RECOVERY, RD

0.8

1.0

Figure 79. Performance effect due to diffuser recovery
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the Model GTP305-2 is 0.40. Diffuser configurations presented in
Figure 81 for the Models GTCP305-1 and GTCP305-2 illustrate
that with the same envelope, area ratios and non-dimensional dif-
fuser lengths are essentially identical. However, detailed mech-
anical and aerodynamic analyses indicate refinements could be
achieved within this envelope, which would enhance, integrity of
the aft bearing support and allow diffuser recovery to increase
from 0.34 (Model GTCP305-1) to 0.40.

Bearing support stiffness was significantly increased by
mechanically relocating the diffuser struts over the rear bearing
housing and increasing the number of struts to five. Analysis of
strut losses with a NACA 16-021 profile, indicates that strut
relocation is aerodynamically accepable, though located in a
higher velocity region compared with the Model GTCP305-1. Uni-
form surface velocity acceleration is maintained by the 16-021
profile up to 70 percent of strut cord and will minimize trailing
edge wake. Table 14 illustrates strut cross section and lists
coordinates for strut construction.

Analysis also indicates that aerodynamic contouring of the
rear bearing oil 1lines would improve the diffuser design.
Tables 15 and 16 illustrate selected o0il 1line profiles and
lists profile coordinates. Profiles are based on scaling maximum
thickness of the NACA 16-021 profile to the required oil tube
diameters. Strut and oil lire circumferential location is pre-
sented in Fiqure 82. The objective was to minimize influence
of the upstream strut wakes on the downstream oil line profiles.

The aerodynamic design approach was to modify the diffuser
area distribution from linear to parabolic. Based on NASA test
results, predicted diffuser performance is significantly
increased by use of a parabolic area distribution resulting in a
linear static pressure distribution. Physically, a linear static
pressure distribution results in a small area change for the
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TABLE 14. GTP305-2 TURBINE EXHAUST DIFFUSER
BASIC STRUT COORDINATES FOR
CONSTANT CROSS SECTION
S5 STRUTS TOTAL.

0.2 . —
LEADING EDGE NACA 16-021 AIRFOIL
Y 0.1 4
[
O 1 ) 1§ I
1 .2 .3 4 .7
-y  -0.1-
LEADING EDGE TRAILING EDGE
THICKNESS 0.040 THICKNESS 0.035
INCH INCH
-0.2 —am X
, X (CHOED) - INCH Y (THICKNESS) - INCH
0.000p 0.0000
o.oosh 0.0158
0.017F 6.0221
0.035) 0.0307
0.052% 0.0371
0.070 0.0423
0.105 0.0506
0.140 0.0571 ; ;
0.210 0.0663 i
0.280 0.0717
0.350 0.0735
0.420] 0.0714
0.490 0.0645 \
0.560 0.0514 ! ;
0.630p 0.0308 :
0.665p 0.0173 '
0.700p 0.0000 {
|
' 3




PN o SRl

TABLE 15.

LEADING EDGE

RN

e = SPEINE

STRUT PROFILE

X ( CHORD)

—

—— Y —
1 .2 .3 .4 .5 .6 .7 .8 .9

(SECTION A-3A)

0.0000

0.01285
0.02570

0.0514
0.0771
0.1028
0.1542
0.2056
0.3084
0.4112
0.5140
0.6168
0.7196
0.8224
0.9252
0.9766
1.0000
1.0400

o
1.

- INCH

GTP305-2 EXHAUST DIFFUSER OIL
IN AIRFOIL DEFINITION.

Y (THICKNESS) - INCH

0.0000

0.0553
0.0773
0.1074
0.1298
0.1480
0.1771
0.1997
0.2320
0.2507
0.2570
0.2499
0.2256
0.1798
0.1078
0.0606
0.0230
0.0000




S

lasmmary| AIRESEARCH MANUFACTURING COMPANY OF ARIZONA
a . A DIVIgION OF Tee BABRETY COMPONAT, ON
— PHOENIX. ARIZONA

TABLE 16. GTP305-2 EXHAUST DIFFUSER OIL
OUT AIRFOIL DEFINITION.

= LEADING EDGE =g s 12°

,J 8 .91.01.11.21.37 1.5

A
A
LRI
STRUT PROFILE (SECTION A-A)
X (CHORD) - INCH tY (THICKNESS) - INCH

0.0000 0.0000
0.0176 0.0758
0.0352 0.1059
0.0704 0.1472
0.1056 0.1778
0.1408 0.2028
0.2112 0.2425
0.2816 0.2736
0.4224 0.3178
0.5632 0.3434
0.7040 0.3520
0.8448 0.3423
0.9856 0.3091
0.1264 0.2463
0.2672 0.1476
1.3376 0.0830
1.3650 0.0400
1.3725 0

.0000 f

143




TDC

DIFFUSER EXIT OIL INLET LINE
SHROUD DOWNSTREAM

DIFFUSER
CENTERBODY

]
\_FIVE UPSTREAM STRUTS
EQUALLY SPACED

OIL OUT LINE, UPSTREAM

LOOKING UPSTREAM

Figure 82. Circumferential location of exhaust diffuser
struts and oil lines
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first 25 to 30 percent of diffuser length, (which allows rotor
exit gradients to mix and stabilize). Resultant static pressure
rises during the mixing process and provides a stable flow for
rapid downstream diffusion. Final diffuser shroud contour, based
on this concept, is presented in Figure 83 and is compared with
the straight conical shroud contour normally utilized. Variation
of local area, static pressure, and velocity as a function of
diffuser axial length is presented in Figures 84, through 86
respectively. Figure 85 indicates that ideal 1linear static
pressure distribution was not achieved. However, significant
improvement relative to the Model GTCP305-1 APU configuration has
occurred.

Major design changes relative to the Model GTCP30S5-1 APU,
are listed below:

o A diffuser recovery goal of 0.40 compared with cold air
test results of 0.34 for the Model GTCP305-1

fo) Five struts in a relative upstream location compared
with four-downstream struts

o O0il line airfoil profiles compared with cylindrical oil
lines
o Linear static pressure distribution compared with

linear area distribution

3.5 Rotor Dynamics

An analytical model was developed to assess rotating group
dynamic response and identify «critical speeds encountered
throughout the operating range.
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Figure 87 1illustrates the Model GTP305-2 APU rotating
group as modeled in this analysis. The wheel properties used to
model the bladed rotating components, as well as total rotating
group properties, are also given in the tables on Figure 87.

The engine rotating group is supported at both ends by
hydrodynamically mounted rolling element bearings. Support for
these bearings largely consists of strut-mounted static struc-
tures, and was not considered to be rigid in this analysis.
Engine output is delivered through a quill shaft attached to the

engine using an internal/external spline arrangement.

< . @i

The mass model shown in Figure 88 indicates representation
of the four-bladed components by equiv .lent lumped masses. The

stiffness model primarily pertains to incorporation of components
which would directly contribute to rotor stiffening. While
blades do stiffen the rotor, it is difficult to assess the
exactly extent. Therefore, the blades were not included in this

analysis and, the stiffness model is conservative in this res-
pect. All values of elastic modulus were input as a function of
temperature calculated in the rotating group thermal analysis;
thus the model more accurately predicts the critical speed loca-
tions at steady state-operating conditions. (but the model will
underpredict the critical speeds for a cold rotor, such as in

Lt A GRS - i AR s

ki cold starts).

Utilizing these mass and stiffness representations, a param-
etric study of the critical speeds as a function of bearing
stiffneés is given in Figure 89. Analytical critical speeds
generated in Figure 89 represents a range of bearing stiffness
from 50,000 to 250,000 1bf/inch, with the stiffness of the front
and rear bearings equal. The affect of the ball thrust bearing
has been neglected, as it is designed to carry little, if any,
radial load and does not support a diametral bending moment. The
engine incorporates a radial load bearing system composed of a
roller bearing supported by a squeeze-film mount.
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Figure 89.
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GTP305-2 final design rotating group

critical speeds versus bearing
stiffness
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Figure 89 1illustrates the first three criticals. Modes
above the third were not considered as the 100-percent operating
speed of the engine roughly falls between the second and third
criticals. As noted, this figure, as well as the following three
figures, apply to synchronous whirl conditions only (whirl ratio
equal to one).

Figures 90 through 92 illustrate the first «critical
speed mode shapes. Bearing locations are indicated by perpendi-
cular arrow-headed lines extending from the axial distance axis.
As shown on these figures, a nominal bearing stiffness of
150,000 1bf/inch. was used to calculate these modes. This value
was chosen as a reasonable estimate of the stiffness due to the
combined three component series representation of the bearing
system. The first critical, shown in Figure 90, occurs at
16,000 rpm and is a cylindrical mode involving a large excursion
near the rotor midspan. From Figure 89 it is noted that this
mode occurs at approximately 16,000 rpm to 18,000 rpm for a range
of bearing stiffness from 125,000 to 250,000 lbf/inch, which
leads to the conclusion that this mode is largely a function of
bearing geometry rather than bearing stiffness. Figure 91
illustrates the second critical, a conical mode occurring at
46,000 rpm. This mode depicts a relatively large amount of bear-
ing activity, and from Figure 89 it is shown to be strongly
influenced by bearing stiffness. With proper application of the
squeeze~-film mount, this mode should be effectively damped. The
third mode is shown in Figure 92, which is a bending critical
occurring at 96,000 rpm. This mode again shows a fair amount of
bearing activity, and is influenced the most by bearing stiffness
changes, which implies that a properly designed squeeze-film
bearing should enable engine operation extremely close to this
critical. This mode has a 26.6-percent margin over 100-percent
operating speed using nominal values of bearing stiffness which
is less than the accepted standard of 40 percent. However, it is
felt that the demonstrated operation of the Model GTP305-1 and
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the influence on rotor response from the squeeze-film mounts will
ensure acceptable operation at such a margin.

To pass cooling air under the radial turbine, certain
devices and geometrical changes were incorporated to the rotating
group, as compared with the case without any modifications (i.e.,
Model GTP305-1), it was found that virtually no affect on the
critical speeds would result from these changes. For instance,
moving a tiebolt pilot from underneath the compressor-turbine
interstage seal to underneath the aft end of the radial compres-
sor increased the third mode critical by 0.13 rpm.
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SECTION IV
COMPONENT DEVELOPMENT TESTING

The turbine stage and combustion system were tested sepa-
rately using test rigs designed and fabricated to facilitate
developmental testing. The following sections describe the
development testing of the combustion system, radial turbine
stage and radial/axial turbine stage. This effort was previously
reported in AiResearch Document 31-2918, and is summarized
herein.

4.1 Combustion System Development Testing

4.1.1 Test Rig

Combustion system rig testing was conducted to evaluate and
define combustor performance (i.e., temperature spread factor,
wall temperature, stability, pressure loss, ignition capability,
and combustion efficiency) at design, and off-design, conditions.
Salient design features of the combustion system were discussed
in Section 3.3. Table 17 summarizes specific combustion system
performance goals, and lists performance levels.

The combustion system test rig (Figure 93) was designed to
duplicate the geometries of engine components adjacent to the
combustor. Since combustion system performance is affected by
the airflow pattern into the combustor, this duplication was
required to ensure that the engine and rig airflow patterns were
the same.

A toroidal plenum, incorporating preswirl vanes at the ple-
num exit, was designed for the combustion system rig. These
vanes turn the flow, thereby duplicating the 25 degree combustion
system inlet swirl angle. The plenum was also used on the Inte-
grated Components Assembly (ICA) Test Rig. The rig radial nozzle
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TABLE 17. COMBUSTION SYSTEM PERFORMANCE GOALS.

Parameter Goal Allowable
Temperature Spread Factor (TSF) = 0.15 0.216
Tvax = Tavg
Tave = TIn
vill Temperature (Maximum) 1500°F 1700°F
Lean Blowout Fuel-Air Ratio
(Combustor Stability)
Design Point 0.005 0.008
Idle 0.005 0.008
Combustor Pressure LOSS 4% 4%
Sea Level Ignition Fuel-Air Ratio 0.02 0.03
Combustor Efficiency (nb) 99.8% 99%
at Design Poirt
Carbon Deposits No Soft
Deposits Degosits

5,
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was a vaneless design to allow installation of the rotating com-

bustor exit total temperature/pressure probe. However, the fore
and aft nozzle sidewall cooling flow passage configurations
accurately simulated the dilution zone airflow, introduced into

the combustor from these areas.

4.1.2 Instrumentation

Combustion system inlet airflow was measured by test

i an o4 Rk
i
o)

facility orifice measuring equipment and fuel flow was
determined by a rotameter

FRAEN. R

o Pressure, temperature, and emission probes were
g located at various stations in the rig to evaluate com-
3 bustor performance (see Figure 93)

o] Inlet total and static pressures were measured at four-

circumferential locations at the preswirl vane exit.
Inlet total temperature was measured in the same axial
¥ plane at two-circumferential locations at 180-degrees

apart

o] Combustion discharge gas total temperature was mea-
;{ sured by ten thermocouples at five-axial positions in

two-circumferential groups at the axial station simu-
3 lating the turbine nozzle inlet

o Discharge total pressures were measured at two-circum-
ferential positions at the axial station simulating the

P 4

turbine nozzle midstream

; o Total temperature and total pressure probes rotated
§ through 360 degrees and automatically recorded data at
] 15-degree intervals
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o Gaseous emission samples were obtained from a manifold
of four-stationary, three-element probes located 90
degrees apart in the exhaust duct

o Metal temperatures were determined by using Thermindex
temperature-sensitive paint. This paint test indi-
cates full load temperature levels, including grad-
ients and hot spots

4.1.3 Test Procedure

During the test phase, atomizer and combustor tests were
con ducted. Atomizers were individually tested in a flow fixture
to assure that adequate atomization characteristics were obtained
over the GTP305-2 operating range (see Table 18). 1Iaitial com-
bustor tests concentrated on design point airflow conditions
(Table 18) with gradual increments in fuel flow so the maximum
peak temperature could be monitored as the design point turbine
inlet temperature was approached. This technique of 1limiting
maximum peak temperature prevented serious damage to instrumenta-
tion and test hardware. During each test series, overall combus-
tor performance was evaluated. If results were not within design
specifications, combustor modifications were made and the test
sequence repeated. Once a satisfactory temperature spread factor
(TSF) was attained, performance mapping was conducted on the com-
bustion system. Mapping involved a check of TSF, liner skin tem-
perature, lean stability, ignition, and gaseous emissions at

off-design conditions.

4.1.4 Test Results

Eleven tests were conducted during the development program.
Each succeeding test utilized information from the preceding test
in an effort to correct associated problems and improve demon-
strated test results, where applicable. Table 19 contains a

S e
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TABLE 18., COMBUSTION SYSTEM OPERATING CONDITIONS

Atomizer Fuel Flow Idle 80 1lb/hr
Full power 151 1b/br
Ignition 20 1b/hr
Combustor Airflow Idle 2.08 1b/sec
Full power 2.01 1lb/sec
Ignition 0.16 1lb/sec
Combustor Inlet Idle 770°F
Temperature Full power 788°F
Combustor Inlet Idle 109.6 psia
Pressure Full power 118.8 psia
Average Combustor Idle 1480°F
Discharge Temperature Full power 2085°F
NOTES:

l. Operating parameters are for a 130°F sea level
day.

2. For test purposes, these parameters will be helgd
within *1 percent of stated values.
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summary of test results and the combustor configuration details
for the eleven tests conducted.

Testing was initiated on August 17, 1977 with P/N 3605621-2,
S/N 1 Combustor and an atomizer back angle setting of 30 degrees
as illustrated in Figure 94. After ignition, a 1200°F combustor
discharge temperature was maintained and a rig mechanical check-
out was performed. Post test inspection of the Thermindex paint
on the combustion liner indicated a uniform temperature distribu-
tion of approximately 1100°F. No hot spots were noted.

Following modifications to the rig rotating instrumentation
shaft, Test 2 was completed. The fuel nozzles were again set at a
30 degree back angle. A 1900°F maximum average discharge temper-
ature limit was imposed at design inlet conditions, to assure
that excessive metal temperatures were not encountered.

Temperature discharge measurements, recorded at 1900°F,
indicated a 0.282 pattern factor. Inspection of the Thermindex
temperature sensitive paint identified ten 10-hot spots on the
combustor dome as shown in Figure 95, and a maximum temperature
of 1650°F. Analysis indicates that these hot spots were caused
by unburned fuel from the nozzle spray cone impinging on the
dome. The uncooled outer wall showed an average metal tempera-
ture of 1500°F between fuel nozzles.

To eliminate fuel impingement, Test 3 utilized the same com-
bustor configuration and reduced the back angle setting of the
atomizers from 30 to 25 degrees. A pattern factor of 0.180 was
obtained at the design inlet condition and an average discharge
temperature of 2000°F. Post test inspection of the thermindex
paint showed three 1700°F areas located on the combustor dome.
Outer wall temperatures near the primary zone increased from
1500°F, witnessed after Test 2, to 1650°F. This increase was
largely due to the increased discharge temperature of Test 3. An
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Figure 94. Sketch of top view of combustor
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internal inspection of the combustor showed no visible ceramic
coating cracking or flaking on the inside of the outer liner.
Light carbon build-up was noted in three areas near the fuel
injector ports and inline with the fuel nozzle spray cone. This
type of buildup is indicative of fuel being sprayed too close to
the outer wall.

Prior to rotating the atomizers to the next shallower back
angle, Test 4 was run to determine the aerodynamic flow patterns
around the annulus. The liner was coated with a composition of
titanium dioxide blended in a silicon 0il binder. Design point
inlet conditions were setup. Airflow patterns were produced by
high velocity air scrubbing the titanium dioxide away, exposing
bare metal. As indicated in Figure 96, the airflow distribution
was uniform. A 25 degree inlet air swirl angle was measured.

Test 5 was initiated as a repeatable test but was not com-
pleted due to fuel flow distribution problems.

The atomizers were rotated to a 20-degree back angle to fur-
tuer reduce dome fuel impingement for Test 6. The maximum aver-
age discharge temperature attained during testing was 2041°F. At
this condition, the measured pattern factor was 0.158. A lean
blowout was recorded at 8.7-pounds per hour at design inlet con-
ditions. This value yields a 0.0012 lean blowout fuel-air ratio.
Figure 97 shows the Thermindex paint test results. The pre-
viously observed 1600°F areas on the linear outer diameter were
still present. These areas appear to be due to a combination of
close proximity of the fuel spras to the outer wall, and exces-
sive penetration of the primary jets. This tends to force the
combustion process towards the outer wall. On the combustor
dome, ten discrete hot spots were noted. On the inner diameter,
the area aft of the primary holes showed elevated temperature
levels. Results indicate that the shallower 20-degree angle
facilitated recirculation of fuel back into the primary zone
where it can burn in a quiescent zone near the dome.
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Figure 97.

Thermindex paint - test 6
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Based on Test 6 results, modifications to incorporate an
additional cooling skirt into the dome centerline were made on
the S/N 2 combustor. This cooling flow was minimized to reduce
the possibility of quenching the reactions occurring in the
primary zone. With the addition of the cooling skirt, a slight
reduction in pressure loss across the liner was anticipated,
thereby potentially reducing the penetration of the primary jets.

Test 7 utilized S/N 2 combustor with the fuel nozzles set at
a 20-degree back angle. At design inlet conditions, the maximum
average discharge temperature recorded was 2005°F, with a mea-
sured pattern factor of 0.188. The lean blowout fuel-air ratio
utilizing ten nozzles was 0.0014 at design inlet conditions.
Combustor inspection at the conclusion of the test revealed ten
discrete hot spots of approximately 1900°F on the dome inner
diameter. In addition, skin temperatures of approximately 1600°F
were in evidence on the outer liner. Analysis indicates that
these same hot spots are probably caused by primary jet entrain-
ment of fuel and recirculation of thic composition back into the
primary zone as portrayed in Figure 98. The combination of
additional airflow from the dome centerline -ooling skirt and the
20-degree fuel nozzle back angle setting appeared to reinforce,
rather than attenuate the primary zone recirculation pockets.
The ceramic coating showed two areas of internal cracking and
flaking near the fuel nozzles. Cracks in the coating appear to
initiate on the short radius ridge in the sheet metal. Since
Thermindex paint on the sheet metal showed no severe temperature
gradients, it is considered that the coating separation is due to
a weakness in initial bonding. This conclusion was confirmed
when S/N 1 combustor failed to crack after six severe temperature
gradient tests were completed.

Modifications to effect a shift irn the combustion zone away
from the outer wall were made by replacing the plunged primary
holes with flush holes of the same equivalent flow area. This
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Figure 98. Primary air jet fuel entrainment test 7
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approach evaluated in Test 8, was intended to reduce primary jet
penetration. The atomizer back angle was readjusted to 25-
degrees, prior to the test. This setting was selected to mini-
mize the amount of fuel being recirculated next to the dome inner
wall.

RPN T TN e T T <~

The maximum average discharge temperature for Test 8, was
recorded at 2015°F at design inlet conditions, with a 0.167 mea-
sured pattern factor. The lean blowout fuel-air ratio, utilizing

ten fuel nozzles, was 0.004 at design inlet conditions. Results
of the combustor Thermindex Paint Test are shown in Figure 99.
Four distinct areas of 1700°F are noted on the inner diameter of
the dome. Examination of the combustor internal surfaces indi-

e o oD

cated that the inner diameter cooling skirt leading edge had
pulled away from the liner in areas at high metal temperatures

s

! and then formed an aerodynamic pocket for circulation and combus-

; tion.

Although combustion results at this point were considered
acceptable for integrated components rig testing, additional
modifications were initiated to further reduce 1liner metal
temperatures, These modifications included:

o Dome cooling skirt relocation from the dome centerline
to a point nearer the dome inner diameter.

o Utilizing the Test 8 combustor and increasing the
ceramic coating to a thickness of 0.020 - 0.030 inch, !
(from 0.012 inch). In addition, a layer of ceramic ;
coating was applied to the dome in the area illustrated :
in Figure 100.

S/N 1 combustor was modified to evaluate any effects from
relocating the dome cooling skirt toward the inner diameter. S/N 2
combustor was disassembled to permit application of the
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increased thickness ceramic coating on the dome and outer liner.
The disassembly permitted close examination of the inner diameter
cooling skirt (Figure 101), which was noted to be a problem area
during Test 8. The skirt leading edge was determined to be
excessively long, extending over the dome radius. The weld bead
was located approximately 0.200 inch behind the leading edge.
This allows the unsupported leading edge to pull away from the
dome during operation, producing the problems evidenced in Test
8. The skirt leading edge was shortened, during final assembly.

Test 9 was conducted to evaluate relocation of the dome
cooling skirt nearer the dome inner diameter and Figure 102
illustrates this relocation, as compared with the Test 8 config-
uration. This modification was intended to reduce the dome hot
spots, resulting from fuel recirculation. At combustor design
inlet conditions, the average discharge temperature recorded was
1950°F, with a measured pattern factor of 0,297. The sharp
increase noted in pattern factor is attributable to excessive
fuel quenching and entrainment by the dome cooling air film.
Fuel is apparently carried out of the primary combustion zone, by
the cooling flow, and burns in the wake of the primary jets. 1In
addition, close proximity of the relocated cooling skirt to the
inner wall appears to hamper fuel recirculation back into the
combustion zone. Combustor Thermindex paint test results indi-
cated maximum temperature level on the dome was 1400°F, which is
an approximate 300°F reduction, when compared with Test 8.

Test 10 was conducted to evaluate the ceramic coating
increased thickness, Prior to the test, combustor inspection
revealed considerable sheet metal distortion on the outer liner,
produced during the welding operation joining the outer liner to
the remainder of the combustor. Based on these findings, the
major test emphasis was focused on evaluating the effects of
manufacturing tolerances. The measured pattern factor was 0.223
at design inlet conditions, with an attendent average discharge
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Figure 101. Dome cooling skirt attachment
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Figure 102. Locations of dome cooling skirt

179




temperature of 2043°F. Thermindex paint results indicated skin
temperatures were approximately 100°F hotter on the outer liner
in the vicinity of the outer diameter weld, than with the Test 8
combustor. Hot spots located on the dome did not change appreci-
ably from the Test 8 confiquration. During rig disassembly it
was noted that bolts had worked loose allowing the combustor to
sag., In addition to causing an improper airflow distribution,
the loose bolts resulted in a probable leak path for combustor
air., Considering the discrepancies involved in testing, no con-
clusive results were drawn relative to the thicker ceramic coat-
ing.

S/N 1 combustor was modified, to the acceptable Test 8 con-
figuration, for future testing. This rework involved dome cool-
ing skirt relocation back to the dome centerline. Combustor
inspection after rework disclosed that the dome contour had been
drawn flat by repeated modifications (Figure 103). Internally,
the inner diameter cooling skirt was shortened only in the areas
where previous burning had occurred. Since earlier testing
indicated that manufacturing tolerances can affect performance,
the ~ombustor was installed in the combustion rig to verify that
performance had not changed. Previous rig problems were cor-
rected. At design inlet conditions and an average discharge tem-
perature of 2015°F, the pattern factor was 0.162. Metal tempera-
tures on the inner and outer liner (Figure 104) were similar to
the Test 8 configuration.

The predicted combustor life exceeds the 2500 hr program
goal, as shown in Figure 105. This prediction is based on pre-
vious AiResearch experience with a wide range of combustors.

Based on Tests 8 and 11 results, combustion system develop-
ment testing was concluded and, as noted on Table 19, required
combustion system performance levels were demonstrated. Further,
the demonstrated pattern factor of 0.162 was a significant
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Figure 104. Test no. 11 Thermindex paint
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improvement over the allowable 0.216. Although further develop-
3 ment could be conducted in an effort to achieve program goals,
the Test 8 configuration is hereby recommended for use in the ICA

E Test Rig.

4.2 Turbine Cold Air Testing

Turbine cold air testing was conducted for the GTP305-2
two-stage turbine. A complete final turbine design description
was presented in Section 3.4. The turbine test program consisted
of a radial nozzle flow calibration and the turbine tests
described in Table 20. Table 21 contains the results of those

tests.

Cold air test hardware aerodynamically duplicated engine
geometry from the radial nozzle inlet to exhaust diffuser exit.
Two specific aerodynamic design changes were incorporated, during
rig testing, to compensate for cold operation. First, the rig
radial nozzle B-width was increased to duplicate engine design

corrected flow through the turbine rotors. This change was

required because engine radial nozzle vane trailing edge cooling
flow discharge holes were not incorporated for rig testing. The
second change pertains to the axial turbine rotor. Although the
cold rigs »operated at the same corrected speed as the engine,
cold rig physical speeds were considerably less. Since axial
rotor blades tend to untwist with centrifugal force, cold rig
axial rotor blades were subjected to less untwist due to a lower
operating speed. Therefore, the cold rig axial rotor was fabri-
cated with less blade twist, so that the throat areas at cor-

| rected design speed (i.e., engine and rig) were equal.

Two turbine test rigs (radial and radial/axial) were util-
ized during cold air turbine testing. Each rig is separately
| discussed below. In addition to testing, the radial turbine rig
| was used to statically flow the rig radial nozzle to obtain a
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flow coefficient. This was accomplished without the rotor or
bearing system in position, which allowed the nozzle to choke.

4.2,1 Radial Turbine Test Rig

Radial turbine performance was evaluated by utilizing a mod-
ified cold air component test rig, as shown in Figure 106. The
radial turbine rotor was overhung on a double spring-loaded,
hydrodynamically mounted, ball bearing assembly.

The lower half of Figure 106 shows the radial turbine rig
configuration used for radial turbine performance evaluation,
Test 1, Table 21. This configuration incorporated air supply
and flow control providing backface cooling air introduction
(Flow Number 1, Figure 107), Test 2, Table 21. The upper half
of Figure 106 shows this rig with the addition of the axial
nozzle required for evaluation of interstage duct losses. This
configuration also incorporated provisions for simulating inter-
turbine seal buffering air (Flow Number 2, Figure 107).

4.2.2 Radial/Axial Turbine Test Rig

The radial/axial turbine test rig, Figure 108 utilized the
same inlet plenum, support housing, rig radial nozzle, rig radial
rotor, and backshroud as the radial turbine rig configuration.
The rotating assembly was a straddle mounted ball/roller bearing
configuration. In addition to the radial turbine rig secondary
flow provisions, the radial/axial turbine rig incorporated a flow
supply and control for simulating axial turbine rotor front face
cooling flow (Flow Number 3, Figure 107).

4.2.3 Instrumentation

The turbine drive air flowed through a sonic measuring noz-
zle prior to entering the inlet plenum where it was straightened,
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thus ensuring uniform delivery to the turbine inlet. Turbine
inlet temperature and pressure were measured at the straightening
section exit where relatively low velocity and uniform flow mini-
mized error. Static pressure probes were located throughout the
stage for comparison with design values. Capacitance probes were
located at the radial turbine rotor inlet, exit, and backshroud
planes and in the axial turbine rotor tip shroud. Running clear-
ances were monitored throughout testing. Total, and static,
pressure probes were located in the interturbine duct at the
radial stage exit. Total pressure rakes were used to measure
axial stator core flow conditions, which allowed evaluation of
interturbine duct losses. Total and static pressure probes were
utilized downstream of the axial stage, to determine overall two
stage performance. Separate flowmeters were used for simulated
backface cooling flow evaluation, Test 2, Table 21 and inter-
turbine seal buffering air. In addition to fixed instrumenta-
tion, radial temperature, pressure, and flow angle surveys were
obtained at two circumferential positions behind each rotor. An
axial nozzle inlet survey was also obtained during Test 2A,
Table 21 . Exhaust temperature was measured in an‘adiabatic
mixing duct downstream of the axial turbine stage.

To minimize temperature measurement errors due to heat loss
to the environment, the test rigs were fully insulated. Turbine
inlet temperatures were controlled to obtain an ambient turbine
discharge temperature during test,

4.2.4 Test Procedure

Prior to test rig assembly the rig radial nozzle, radial
rotor (Figure 109), axial nozzle (Figure 110), and axial rotor
(Figure 111) were inspected to determine any deviation from
design intent. Deviations from design intent, based on throat

area calculation were as follows:




Figure 109.

Rig radial turbine rotor
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Figure 110. Rig axial nozzle




Figure 11ll. Rig axial rotor




o Rig radial nozzle 1.08 percent closed
o] Rig radial rotor 1.25 percent closed
o} Rig axial nozzle 1.40 percent closed
(o} Rig axial rotor 0.19 percent closed

Although the above noted hardware was not "nominal" all were con-
sidereda within acceptable blueprint tolerances.

The turbine rig was mounted on the turbine component test
rig dynamometer test stand. The test stand incorporated an inlet
air system capable of blending air at desired test inlet tempera-
ture and pressure levels, 18.48:1 ratio reduction gearbox to
reduce turbine speed consistent with the absorption dynamometers
and hold test turbine speed within one-half of one percent of the
set test point, and an adiabatic exhaust duct system to obtain an
accurate discharge temperature. Airflow was measured by a flat
plate orifice and a redundant choked nozzle in accordance with
ASME power test codes. Steady state conditions were assured by
visually monitoring a continuous recording device to ensure con-
trol of inlet and discharge temperatures, Vibration, rotor-
shroud clearances, oil temperatures, quill shaft excursion, bear-
ing temperatures and other parameters were continuously monitored
during the test from a remote control console. All performance
parameters were sampled using a high speed digital data acquisi-
tion system. This system, shown schematically in Figure 112, is
capable of supplying corrected test data to the control console
within thirty seconds after each sample scan.

4.2.5 Test Results

Prior to dynamic rig testing, the machined radial nozzle was
flow tested to evaluate maximum flow capacity. The nozzle flow
calibration was run in the turbine rig with the rotor and bearing
housing removed. A range of imposed inlet total-to-stator exit
static pressure ratios was imposed across the nozzle until maxi-
mum flow was achieved. At choke conditions the measured stator
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Figure 112.

Digital data acquisition schematic




corrected flow was 0.6338 1lbs/sec, which results in a nozzle flow
coefficient of 0.990. This value is consistent with previous
radial turbine nozzle characteristics.

As previously shown in Table 21, five tests were conducted
in the following order:

Test No, 2
Test No. 1
Test No. 2A
Test No.
Test No.

0O 0O 0 0 o

4.2.5.1 Test No. 2 Radial Only - Rotor Backface

Test No. 2 was conducted to establish the performance
effects of rotor backface clearance and cooling flow on radial
turbine performance. The matrix of test conditions evaluated are
presented in Tables 22 and 23.

4.2.5.1.1 Effects of Rotor Backface Clearance

The characteristics are presented in Figure 113 for the
range of backface clearances tested. Figure 113 shows no appre-
ciable change in clearance effects with inducer 1loading, but
rather, the clearance effects appear to be a constant loss for
each value of clearance tested. Note that as the clearance value
increases, the efficiency characteristic tends to flatten out
over the range of pressure ratios, indicating a higher constant
loss with increasing clearance. Figure 114 shows turbine effi-
ciency characteristics as a function of backface clearance at
design corrected speed and pressure ratio. Figure 114 also
shows that a minimum clearance of 0.030 inch is required to
achieve the predicted efficiency of 88.5 percent (nT_T), Mechan-
ical analysis indicate that this clearance level is feasible and
a 0.030 inch backface clearance was defined as the design value. f
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TABLE 22. GTP305-2 COLD AIR TEST NO. 2 ROTOR BACKFACE
CLEARANCE TEST PARAMETER MATRIX (WITHOUT
BACKFACE COOLING FLOW)

POV TSN

Percent Corrected Speed y

L=?0 100 11024
3.6

3.505 3.505 3.505

(:) Identifies radial turbine overall total pressure ratio

NOTES:

1. Each test condition run with backface clearance of
0.010, 0.028, 0,039 and 0.082 inches.

2. “"Cold Air" radial turbine test rig equivalent design
overall total pressure ratio = 3.505.




TABLE 23. GTP305-2 COLD AIR TEST NO. 2 BACKFACE
COOLING FLOW TEST PARAMETER MATRIX

Percent Corrected Speed

90 l 100 110
3.505 3.504:> 3.505

3.505 3.505 3.505

3.505 3.505 3.505

(:) Identifies radial turbine overall total pressure ratio

NOTES:

1. Each test condition run with backface clearance of
0.010, 0.028, 0.039 and 0.082 inch

2. "Cold Air" radial turbine test rig equivalent design
overall total pressure ratio = 3.505

3. Each test condition run with backface cooling flow
rate of 1.5, 3.0 and 6.0 percent

199




e3ep Z-S0€dLD Aousroryze Yead
Uo 82URIESTO JDBIYOBRG JOIOX JO S3IDLIIT €11 =2anbta

L 1(4/4 ‘OILVH IHNSSIHI
oy 0

_
i | B
, o
+& m =
p ——— z 2
<
‘ 3
‘ 680 4 i
| 2800 7 h
| e00 O .
, 8zo0 (O
HONI 0100 O ﬁ
o \ 060
2 ~
| ~ )
S3ONVHV3ITO IOV4NOVE 2 ~< 7/
. ——
MOT4 ONIT002 ON 'L E— zw__wwm_ ~—
/9N %00L 1V _

i




UYjdep doTTeds 3jue3SUOD B Y3TM 9DURIRITD
9o'I}deq YItM AdUSTOTIFe SUTQIN] TeTPeI JO UOTIBTIBA *pT oInbTd

S3HONI "3IONVHVITID 30vAOve Holod - P

00L°0 0600 0800 0L0'0 0900 0500 ov0'0 0£0'0 0200 0100 0
98°0

-f

(o]

0>

8o >

-f

——6. -

ﬂ 88°0 m o
/ V o

>

INiOd / m

NOIS3A 1V AINIIDNFIT\ S~ .

JINVYNAGOUY3Y Q3121a3Ud / 680 o

m

/ N

3

goge =lligyq 8...1

‘OllvY 3UNSS3IYd NOIS3a =
a334dS Q3193HYO0I NDISAA LNIDJYId 00t
«SL0'0 = 3JONVHVITI AGNOUHS viavy
€100 = 3IDINVHVITD GNOYHS IVIXV

ONIT000 Y0104 ON
SNOILIGNOD




L m— 4;23532335555!

4.2.5.1.2 Effects of Rotor Backface Cooling Flow (Design Back-

3

3 face Clearance)

ﬁ A range of cooling flows was run at design backface clear-
ance to determine the penalty associated with pumping the cooling

flow through the rotor. Backface cooling is required to prevent
high temperature turbine inlet flow from recirculating on the
rotor disk. Magnitude of the cooling flow required to prevent

recirculation is based on compressor discharge conditions, back-
face clearance, and gas properties at the rotor scallop region.
The predicted backface cooling flow rate is 1.5 percent. Prior
to available data, the cooling flow penalty was based on the
assumption that cooling flow entered the rotor scallop region and
was entrained in the rotor inducer blade-to-blade secondary flow,
exiting the rotor at the exducer tip. On this basis, the pumping
penalty consisted of the work:;equired to pump the cooling flow
Ut3%we

to the exducer tip radius (——T;Tﬁ.

Powder traces obtained by introducing Fuller's earth in the
cooling flow passages (from a separate program) shows that the
cooling flow does migrate to the exducer tip region. However,
test data indicates that the cooling flow mixes with the main-
stream flow and is not confined to the rotor blade boundary
layer. Work done by the cooling flow, due to acceleration
through the rotor plus the higher velocity of the mainstream flow
in the throat region (due to the increased rotor flow), offsets
the required pumping along the rotor backface. This conclusion
is based on two methods of calculating turbine efficiency. The
first method derives the turbine work based on the thermodynamic
mixing of cooling and mainstream flows. The resultant expression
is:
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Reference (1)

Neooled = (Tin - T3, mix)+ %% AﬁTc - T3, mix)

Y-1
Tin [l{%ﬁ» Y ]
The second method is based on calculating turbine work from the
momentum equation by inteqrating rotor exit survey data and cal-

culating the rotor inlet tangential velocity from on a constant
stator loss coefficient obtained with no cooling. The resultant

expression is:

Reference (2)

U, Vu, , (Wp + Wc) [UQVU3]
= 93cp wp gjcp

Tin [1—<§%) %;L]

Ncooled

(See Figure 115 for Nomenclature)

Note that both cooled turbine efficiency definitions only con-
sider the isentropic available energy of the primary flow (wp).
For this reason the efficiency is not an aerodynamic efficiency
but is for cycle purposes only.

Figure 116 shows the result of applying References (1) and
(2) equations to a range of cooling flows at design speed and
pressure ratio, 0.028 inch backface clearance, 0.013 inch axial
face clearance, and 0.015 inch radial clearance.

(1) Dovzhik, S.A., V.M. Kartavenko, "Measurement of the Effect
of Flow Swirl on the Efficiency of Annular Ducts and Exhaust
Nozzles of Axial Turbomachines," Fluid Mechanics, Soviet
Research, Vol. 4, No. 4, July-August 1975.

(2) Horlock, J.N., "Axial Flow Turbines," Butterworths London
1966, Pigure 3.25, Page 108.
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GTP 305-2 TURBINE, TEST NO. 2
DESIGN SPEED AND PRESSURE RATIO
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1 TEST RESULTS
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" COOLED / " UNCOOLED

0.96
0 1.0 20 30 4.0 5.0

ROTOR BACKFACE COOLING FLOW - Wc/wp PERCENT

O BASED ON EXDUCER TIP
PUMPING

O BASED ON MIXING EQUATION
Q BASED ON ROTOR EXIT SURVEY

Figure 116. Effects of rotor backface cooling
on turbine performance
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Results show that as the cooling flow rate is increased,
there is a corresponding rise in turbine efficiency, compared
with the uncooled value, and a corresponding decrease in turbine
inlet flow, from back- pressuring the radial nozzle due to thr
higher flow through the rotor throat. On a first order basis it
can be concluded that the increase in turbine efficiency is off-
set by the decrease in turbine flow. Thus, net turbine horsepower
is unchanged.

However, from Figqure 116 the significant trend is that no
additional performance penalty to pump the cooling flow to the
exducer tip speed is required, due to interaction of the cooling
flow and mainstream flow in the rotor.

Examination of turbine characteristics at the design cooling
flow rate of 1.5 percent indicates:

o No decrement in turbine efficiency due to rotor back-
face cooling flow pumping

o That turbine inlet corrected flow is reduced by 0.09
percent

o That total-to-total efficiency increased from 0.885 to
0.08894

The conclusion from Figure 116 is that the turbine aero-
dynamic performance map, obtained with no rotor backface cooling
flow, 1is applicable with no additional performance decrement.
However, since cooling flow bypasses the turbine inlet, the
bypass cooling flow must still be accounted for in the cycle.
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4.2.5.2 Test No. 1 - Radial Only - Baseline Performance

Test No. 1 established the radial stage baseline aerodynamic
performance over a range of speeds and pressure ratios with the
following clearances:

o Rotor axial shroud clearance of 0.013 inch
o Rotor radial shroud clearance of 0.015 inch
o Rotor backface clearance of 0.028 inch

o No rotor backface cooling flow

The matrix of conditions used to establish baseline performance
are presented in Table 24.

Measured turbine efficiencies, as a function of imposed
pressure ratios, for 80, 90, 100, 110 and 120 percent of turbine
design corrected speed, are presented in Figures 117 through
121, respectively. Measured corrected turbine inlet flow, as a
function of imposed total-to-total pressure ratio and percent of
turbine design corrected speed, is presented in Figure 122.
Figure 119 shows measured total-to-total turbine efficiency of
88.5 percent, compared with the predicted efficiency of 88.47
percent, at equivalent design speed and pressure ratio. Fig-
ure 122 shows measured corrected turbine inlet flow at 0.625
lb/sec, compared with the design value of 0.615 lb/sec, at equiv-
alent design speed and pressure ratio. Figure 123 compares the
measured and predicted exit swirl angle distributions at design
equivalent conditions. The comparison shows that the predicted
swirl distribution was achieved. Variance near the shroud is
attributable to rotor clearance effects.
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TABLE 24.

GTP305-2 COLD AIR TEST NO.

1 MAP MATRIX

(NO ROTOR BACKFACE COOLING FLOW) .

Percent Corrected Speed

80 90 100 110 120
2.0 2.0 2.0
-0 2.5 2.5 2.5 2.5
© -~
o & 3.0 3.0 3.0 3.0 3.0
Erm
S¢ 3.505 3.505 3.505 3.505 3.505
|1 3
o 4.0 4.0 4.0 4.0 4.0
o u
B0y 4.5 4.5 4.5 4.5
5.0 5.0 5.0

o

e e —_——
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AN \\

SO%N/JE

\ e} TOTALI- TOTAL
O TOTAL - STATIC
\\

0.80

EFFICIENCY

0.79

AN

1=}

1. NO ROTOR BACKFACE COOLING FLOW \
0.74 —2. BACKFACE CLEARANCE = 0.028 INCH

)4

3. CLEARANCE - AXIAL = 0.013 INCH \
- RADIAL = 0.015 INCH \
0.72 J l I
2.0 25 3.0 35 4.0 45 5.0

PRESSURE RATIO

Figure 117 GTP305~-2 radial turbine
test no. 1
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Figure 121. GTP305-1 radial turbine
test no. 1
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R OTOR EXIT RADIUS, INCHES

2.2

20

1.4

1.2

\
-
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~
L . -~ \
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| VEPOINT CONDITIONS > " VECTOR DIAGRAM
\
CONDITIONS \
NO ROTOR COOLING \ PREDICTED
AXIAL SHROUD CLEARANCE = 0.013 IN. \
RADIAL SHROUD CLEARANCE = 0.015 IN. \
BACKFACE CLEARANCE = 0.028 IN. L
100 PERCENT SPEED \\
DESIGN PRESSURE RATIO = 3.505
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, _
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ROTOR EXIT SWIRL ANGLE, a, DEGREES

Figure 123.

GTP305~2 radial turbine
exit flow conditicns
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4,2.5.3 Test No. 2A - Radial Only Plus Interstage Duct

Test 2A determined the interturbine duct loss at design
radial turbine corrected speed over a range of presssure ratios
with and with out cooling flows (rotor backface cooling flow and
simulated bore cooling flow). Test 2A was run with the following

clearances:
o Rotor axial shroud clearance of 0.013 inch
o Rotor radial shroud clearance 0.015 inch
o Rotor backface clearance of 0.028 inch

The matrix of conditions used to establish interturbine duct loss

is presented in Table 25.

Instrumentation remained the same as that used during Tests
1 and 2, except for addition of the following:

o Interturbine duct hub and shroud static pressure sen-
sors

o Interturbine duct (axial stator inlet) survey probe

o) Two - 6-element total pressure rakes located at the

axial stator exit

Methodology used for determining interturbine duct loss was
based on a comparison of the radial rotor exit total pressure and
the axial stator exit total pressure rakes, Stator exit core
total pressure was recorded by positioning the axial stator rakes
at mid-passage between the stator vanes, which is equivalent to
stator inlet total pressure. A redundant measuring sytem (i.e.,
stator inlet survey probe), provided verification of rake posi-

tioning and data validity.
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TABLE 25. GTP305-2 RADIAL TURBINE RIG TEST 2A
INTERTURBINE DUCT TEST MATRIX.

Percent
Corrected Total-to~Total
Test Condition Speed Pressure Ratio

No Cooling Flow 100.0 2.5 3.0 3.45
1.0 Percent Rotor 100.0 2.5 3.0 3.45
Backface Cooling
Flow
1.0 Percent Rotor 100.0 2.5 3.0 3.37
Backface Cooling Flow
Plus 1.5 Percent
Interstage Buffer
Air Cooling Flow

217

PR




Figure 124 presents the total pressure distribution mea-
sured from the stator exit rakes, superimposed with the stator
inlet survey trace, for no cooling flow. At maximum attainable
radial turbine pressure ratio, agreement between these data was
less than desired. This lack of agreement was attributable to
stator over expansion, which induces stator exit shoek waves
originating in the hub region that propagate to the shroud, as
stator exit pressure is further reduced. In an effort to elim-
inate this problem, the rakes were reshimmed closer to the trail-
ing edge, and expansion across the stator was controlled to the
design exit Mach number. Although these adjustments resulted in
a significant improvement, interference with the stator trailing
edge region was still observed. For this reason, interturbine
duct losses were determined, using the stator inlet survey sys-
tem, by integrating the measured radial pressure distribution,

Using the survey data, duct loss data for Test 2A is pre-
sented, as a function of radial turbine total-to-total pressure
ratio, in Figure 125. At radial stage design equivalent total
pressure ratio of 3.505, test results indicate the following:

o Uncooled interturbine duct loss (AP/P) is 1.45 percent

(o) With l-percent backface cooling flow, duct loss is 1.5
percent

o With l-percent backface cooling flow plus 1.5 percent

simu-lated bore cooling flow, duct pressure loss is
1.70 percent

Note that closing the axial stator throat area 1.4 percent
reduces the pressure ratio across the radial stage from 3.508 to
approximately 3.45, with no cooling flow, and to 3.37 with both
cooling flows. Figure 125 further illustrates that duct losses
are relatively insensitive to the introduction of cooling flows.
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TEST NO. 2A
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Figure 124. GTP305-2, comparison of duct exit
total pressures
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In Figure 125, note that minimum duct losses occur at a
pressure ratio of 3. The increase in duct loss from 3 to higher
pressure ratios, is due to higher radial rotor exit velocities,
and larger gradients in radial total pressure, which result in
higher mixing losses. The increase in duct losses from a pres-
sure ratio of 3 to lower pressure ratios is attributable to
another phenomena (i.e., the level of duct inlet, rotor exit
swirl). At pressure ratios of 3 and 2.5, duct inlet swirl is
approximately 9 and 30 degrees, respectively. Reference (1)
shows that the duct loss coefficient is minimum at approximately
ll-degrees inlet swirl and increases rapidly above 25 degrees.
This is in general agreement with the behavior shown in Fig-
ure 125,

Axial stator inlet flow angle radial distribution, at design
pressure ratio, is presented in Figure 126. Although good
agreement was achieved in mid-channel, the hub and shroud regions
depict an approximate 10 degrees negative incidence. However, a
condition lower than design swirl (negative incidence) effec-
tively reduces the required stator turning and generally results
in slightly reduced stator losses [Reference (2)].

4.2.5.4 Analysis of Reynolds Number Effects of the Radial Turbine

Per formance

Magnitude of stator and rotor frictional losses is directly
related to the Reynolds number of the working fluid passing
through the turbine. Since a ¢old air test implies a drastic
change in turbine inlet temperature, the turbine inlet pressure
level must be adjusted to achieve similarity between engine and
rig turbine Reynolds numbers. For a given turbine pressure
ratio, this usually requires an exit pressure adjustment to sub-
atmospheric levels. This is accomplished in the rig with a
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Figure 126. Axial stator inlet angle distribution




vacuum system connected to the turbine exhaust. NASA [Reference
(3)] examined the effect of Reynolds number on radial turbine
per formance, The experimental results are presented in Fig-
ure 127. The Reynolds number shown in Figure 127 is defined
as:

i

Where:

Wg Turbine physical flow, lbs/sec

R, = Rotor inducer tip radius, ft

M Absolute viscosity, lbs/sec-ft

The calculated Reynolds number for Test 1 at design point condi-
tion and no cooling flow is 3.22 times 105 compared with the
engine Reynolds number of 2.625 times 105. From Figure 127 the
change in turbine efficiency from rig to engine is minus 0.0007
points. The average rig efficiency, based on averaging all data
scans at the design point, is 0.8860. Therefore, engine radial
turbine efficiency is maintained at the quoted value of 0.885.

4.2.5.5 Test 3 - Aerodynamic Performance Without Cooling Flow

Test 3 established the overall two-stage baseline aero-
dynamic performance over a range of speeds and pressure ratios.
The matrix of conditions used to establish the baseline perfor-

mance is presented in Table 26.

(3) Nusbaum, W.J., C.A. Wasserbauer, "Experimental Performance
Evaluation of a 4.59-Inch Radial-Inflow Turbine Over a Range
of Reynolds Number," NASA TN D-3835,
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TABLE 26. RADIAL-AXIAL TURBINE BASELINE

PERFORMANCE MAP MATRIX
{NO COOLING FLOW).

TEST NO. 3

Total-To-Total Qverall

Percent Corrected Speed

Pressure Ratio

L




y

- A

A X

Measured uncooled turbine performance, as a function of
imposed pressure ratio, for 80, 90, 100, 110 and 120 percent tur-
bine corrected speeds is presented in Figures 128 through 132,
respectively. At design equivalent speed and pressure ratio, the
measured total-to~diffuser exit static efficiency is 0.876, com-
pared with the design goal of 0.871 (Figure 130). Correcting
the measured performance to design clearance and Reynolds number
results in a design point efficiency (nT_DE) of 0.876. The mea-
sured clearances are compared to the design values in Table 27.
The variation of performance with Reynolds number is presented in
Figure 133 for the axial turbine. The axial turbine correlation
shown in Figure 133 is based on a curve match of test data from
NASA TMX-9 and shows the tested and design values.

4.2.5.6 Test 4 - Radial Axial With Cooling Flows

At the conclusion of Test 3, the effects of engine secondary
cooling flows on turbine performance were investigated. Cooling
flow circuits duplicate the engine confiquration, and consist of
radial rotor backface cooling flow (1.5 percent) and interstage
buffer seal cooling flow (1.5 percent). The interaction of these
cooling flows with the mainstream flow is shown in Figure 134,

The test matrix for Test 4 is presented in Table 28.

Overall two-stage turbine performance, with cooling flow,
was determined from a thermodynamic heat balance between the
mainstream and secondary cooling flows. The cooled turbine
"efficiency" is based on a value consistent with current cycle
methods of bypassing cooling flow and calculating turbine horse-
power based on radial rotor inlet flow only (an exception is the
radial nozzle vane internal cooling flow, which is not bypassed
in cycle calculations). On this basis, any additional mass flow
from the rotor backface cooling and interstage buffer air seal,
which is available to do work in the downstream axial stage, need
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NO COOLING FLOW
NO cTEARANCE CORRECTION
| 0.90 ( C =7 O
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w 084 1
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w 0.82 O "-pE
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RUNNING CLEARANCES
RADIAL ROTOR BACKFACE = 0.036 INCH
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RADIAL ROTOR FRONT FACE RADIAL (EXDUCER) = 0.015 INCH
AXIAL ROTOR RADIAL = 0.011 INCH
078 | ]
4 5 6 7 8 9 10 11 12 13

PRESSURE RATIO

Figure 131. @GTP305-2, two-stage test
test no. 3
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Figure 132. GTP305-2, two~stage test
test no. 3
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f TABLE 27. GTP305-2 RADIAL-AXIAL TURBINE
o STAGE CLEARANCE COMPARISON
! 100 PERCENT CORRECTED SPEED.
‘%
}
: Measured, Tes
Design Goal Values
! Location (Inch) (Inch)
; Radial Rotor
! Backface 0.030 0.036
i Clearance,
i Inch
¥
3 Radial Rotor
: Axial 0.015 0.025
L Clearance, :
! Inch
Radial Rotor
Radial
Clearance, 0.015 0.015
Inch
Axial Rotor
Radial
Clearance, 0.015 0.011
Inch
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TABLE 28.

RADIAL-AXIAL TURBINE PERFORMANCE
MAP MATRIX (WITH COOLING FLOW*).

Total-To-Total

Overall-
Pressure’ Ratio

Percent Corrected Speed

90 100 110
7.0 7.0 7.0
8.0 8.0 8.0
9.0 9.0 9.0

*Cooling Flow:

1.5-Percent Radial

Rotor Backface

Cooling Flow plus
1.0-Percent
Interstage Buffer

Air Cooling Flow
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not be considered in turbine cycle calculation. It has already
been accounted for in turbine "efficiency."

The procedure used to calculate cooled turbine efficiency is
presented below:

o For an imposed speed and overall two-speed pressure
ratio, the measured radial stage pressure ratio,
together with the radial turbine characteristics
established in Tests 1, 2, and 2A, were used to define
the radial turbine exit mixed temperature, TMIX, 2
{Figure 134)

o From the measured buffer seal cooling flow temperature,
and predicted flow split, the axial turbine inlet mixed

temperature (T

MIX, 3) and total flow were calculated

o The axial turbine inlet total pressure was calculated
from the measured radial turbine pressure ratio and the
corresponding duct loss established in Test 2A

o The cooled axial turbine efficierncy level was then cal-
culated based on derived inlet conditions and measured

exit conditions

o Cooled radial and axial turbine efficiencies were then
combined into an overall cooled "efficiency"

Expressions for individual cooled efficiencies for radial
and axial stages are presented below:

"r-1 cooled = Yin (Tin ™ Tmix,2) * "sr (Tor Tnix,2)
radial win ’I‘in (1_<%? ) 7—1}
L T=-T) 7Y
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W. + W + W T
M- cooled = ( in BF = Di)w mix, 3
radial ( in BF
*Wp T D2 ;ﬁ a (Win * ¥ap * ¥y +45)
i -
5 * wD m1x,3 (%— ) %_l
Rp_p

See Figure 134 for nomenclature of terms.

Overall stage efficiencies are then defined as the sum of
the work of individual stages compared with available energy at
the radial turbine inlet. Resultant expressions are:

"p-T cooled = i A >
overall in“in [1- == y

PRy

-

nT-DE cooled = A+ B

overall winTin 1- %— | ;rI
Rr-pE]
where:
A= [ in Tmix,z) + WBF(TBF -Tmix,zq
and B = [ * Wr)Thmix,3 * "p2Tpa

- mix,4 (win + WBF + le + wDZ)]

See Figure 134 for nomenclature of terms,

237

v S )
L U < :




Figure 135 compares the measured aerodynamic efficiency
from Test 3 with the calculated cooled "efficiency"” from Test 4
for 100 percent corrected speed over a range of pressure ratios.

The increase in performance with cooling flow is primarily due to
the 2.5 percent cooling flow, which is available to do work in
the power turbine. A comparison of inlet corrected flows and
diffuser recoveries are also presented in Figure 135,

4.2.5.6.1 Survey Results

Tests 3 and 4 utilized four survey probe systems to examine
the flow properties as a function of the radial direction. One
survey probe was located at the radial rotor exit one at the
interstage duct exit, and two at the axial rotor exit. Results
of the survey probe systems are discussed in the following sec-
tions.

4.2.5.6.2 Radial Rotor Exit

Radial rotor exit characteristics are presented in Fig-
ures 136 through 139. The rotor exit absolute swirl angle,
total-to-total efficiency, total-to-total pressure ratio, and
absolute Mach number as a function of radius are presented with
and without cooling flow. Figure 136 shows that the desired
rotor exit swirl, from the optimized one-dimensional vector dia-
gram was achieved., However, significant deviation from the pre-
dicted distribution exists below and above the meanline region.
Below the meanline (5-50 percent of the passage height), the
deviation is attributed to either higher than predicted blade
deviation or to flow disturbance in the rotor scallop region
(although powder traces didn't indicate any significant accumula-
tion in this area). Above the meanline, the deviation is attrib-
uted to both the blade clearance effects and tc the influx of
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secondary flow, which propagates to this region from the high
inducer loading. This is evident in Figure 137 where the local
efficiency distribution shows a decrease from approximately 50-80
percent where the local efficiency distribution shows a decrease
from approximately 50-80 percent of the passage height. From
Figure 137, it appears that the influx of secondary flow is con-
centrated at about 70 percent of the blade height., The pressure
ratio in Fiqure 138 shows the same trend and, in addition, shows
the effect of cooling flows on the radial turbine attainable
pressure ratio. For a fixed radial turbine nozzle area, the
radial turbine pressure ratio is primarily a function of the
down stream axial turbine stator area. Increasing flow through
the axial turbine with cooling flow has the effect of reducing
the effective axial power turbine stator area and consequently
the radial turbine pressure ratio. Finally, Figure 139 shows
the expected decrease in radial turbine exit absolute Mach number

with cooling flow due to the reduction in pressure ratio.

4.2.5.6.3 Interstage Duct Exit

Interstage duct exit (power turbine inlet) characteristics
are similar with predicted (Figure 140) except that the inlet
swirl magnitude has shifted. At the meanline the swirl is lower
than the design, indicating a slightly higher than design
through-flow velocity. Deviations above and below the meanline
are consistent with the radial turbine exit conditions described
earlier. The interstage duct exit pressure ratio (Figure 141)
and absolute Mach number (Figure 142) are also consistent with
the radial turbine with and without cooling flow.

4.2.5.6.4 Axial Turbine Exit

The axial turbine exit radial flow characteristics are pre-
sented in Figure 143 through 148. Figure 143 compares the
local total pressure distribustion obtained from the survey probe
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to that measured from the fixed total pressure Kiel probes and
shows excellent agreement. Rotor exit swirl distribution is com-
pared with the predicted distribution in Figure 144 and shows
good agreement over most of the passage. However, deviations
were observed at 26 and 88 percent of the passage height. These
deviations are attributed to secondary flow from the stator end
wall, which propagates through the rotor. Note that the pressure
ratio and total-to-total efficiency distributions shown in Fig-

ures 147 and 148 are for overall two-stage conditions,

4.2.5.6.5 Exhaust Diffuser Performance

Since the residual exit kinetic energy is charged to the
turbine, maximizing the exhaust diffuser recovery was an integral
part of the GTP305-2 turbine system design. The diffuser design
was based on a linear static pressure distribution, which from
NASA test results indicated significant increases in diffuser
recovery, when compared with conventional linear area distribu-
tion designs. The predicted diffuser recover was 0.40, based on
previous AiResearch diffuser test data with struts. The rig dif-
fuser, which duplicates the engine configuration, is presented in
Figure 149, together with the hub and shroud static pressure
locations. The turbine system is rated from radial turbine inlet
(combustor discharge), to exhaust diffuser exit flange plane.

Additional instrumentation (shroud pressures) were added
approximately l-inch downstream from the diffuser exit, to eval-
uate the effects of increased area ratio and hub centerbody dump.
At the overall design equivalent speed and pressure ratio, the
measured diffuser recovery was 0.447, without cooling flow, and
0.467 with cooling flow. The diffuser hub and shroud static
pressure distributions for these conditions are presented in Fig-
ure 150, together with the predicted distribution.
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Although the overall predicted diffuser recovery was
exceeded, significant deviations from design intent exists
throughout the diffuser 1length. At the diffuser inlet, Fig-
ure 150 shows that the rotor exit hub and shroud Mach numbers
are higher than design and account for the deviation at the dif-
fuser inlet. At the strut location, Figure 150 shows that
locally high incidence at the strut leading edge resulted in
increased blockage due to local separation. The diffuser static
pressure distribution was then investigated at a lower pressure
ratio (reduced inlet velocity and swirl). This result is shown
in Figure 151 for an overall pressure ratio of 7.47 and 100 per-
cent speed. Under these conditions, excellent agreement between
predicted and measured diffuser static pressure distributions is

achieved.

Increasing the diffuser length and area ratio (diffuser
down stream plane) increases the diffuser recovery from 0.467 to
0.60 as design speed and pressure ratio (Figure 150). This is
equivalent to an increase in efficiency of approximately 0.5

points.
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SECTION V

INTEGRATED COMPONENTS ASSEMBLY

The engine combustion system and turbine section components
were integrated into a hot turbine test rig to allow for the
determination of aerodynamic and mechanical performance under
actual operating conditions. The rig utilized the same simulated
compressor inlet discharge plenum as the combustion system test
rig. Engine rotor dynamics were simulated using dummy compressor
masses. Testing consisted of cold (unfired) mechanical checkout,
to verify mechanical integrity and critical speeds, and fired
mechanical checkout including controls familiarization, perfor-
mance testing, and Thermindex paint testing to define component
operating temperatures.

5.1 Test Rig Description

The test rig, shown in Figure 152, consisted of engine tur-
bine section components (i.e., all components aft of the
compressor/diffuser). These components were assembled into the
rig to mate with forward structural members, thereby, simulating
overall engine length and bearing span.

Dynamically the test rig simulated the engine by substitut-
ing dummy rotating masses for the compressors. Rig structure
incorporated a toroidal plenum, with inlet pipes at two circum-
ferential locations, for distribution of facility air to the tur-
bine plenum. The inlet plenum was the same as that used during
combustion system testing. Preswirl vanes, located at the inlet
plenum exit, induce a 25-degree swirl to simulate combustion
inlet flow conditions.

As stated above, dummy compressor rotor hardware duplicating

rotor mass distribution and stiffness were designed to replicate
engine rotor dynamic characteristics in the rigqg. Figures 153
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through 155 depict engine rotor dynamic mode shapes. Figures 156

through 157 illustrate predicted rig modal patterns. Note the 4
similarity of shape, approximate speed, and general deflection v
characteristics at the three predicted critical speeds.

Rotor dynamic modeling was extended to include the gearbox
and test facility water brake. PFigures 159 through 161 depict
the predicted critical speed modes for the gearbox, bull gear,
and water brake. An operating speed of 13,000 rpm at the water
brake input was determined, based on a gearbox input to output

reduction of 5.6. This results from previous analyses and no
critical speed problems are anticipated with the test setup.

Provisions were made in the rig to facilitate thrust balance
air, as required, in either a forward or rearward thrust mode.

e AT R L EABL R ks et Al ke i chelie

Radial turbine bore cooling air was supplied from the main
ICA inlet plenum. Figure 162 illustrates the bore cooling air
flow path.

To mate with the test facility water brake the ICA test rig
required a reduction gearbox. The gearbox was an industrial
quality type designed and fabricated by General Electric, Lynn,
Massachusetts. The gearbox employed a single reduction, double
helical, speed reduction design. Input speed was 75,685 rpm with
an output speed of 13,435 rpm, rated at 1125 hp. As shown in
Figure 163, the pinion gear is connected to the turbine by a
flexible coupling. The coupling shaft has a shear notch designed
to protect the gears from overload. The gear was connected to
the water brake by another flexible coupling.

A self contained packaged 1lubrication o0il system was
designed and supplied by General Electric. This system also pro-
vided ICA bearing lubrication.
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5.2 Hardware Fabrication

ICA hardware fabrication required deviation from APU design
intent in several areas, including the axial turbine rotor, axial
turbine stator, exhaust duct, and oil transfer housing. In all
cases, these items were initially designed as cast hardware for
the APU, however, due to program scope, the items were fabricated
using machined forgings or bar stock.

The following paragraphs describe the major aerodynamic
hardware fabrication task for the ICA.

5.2.1 Radial Turbine Rotor

The radial turbine rotor was fabricated in the as-designed
state. The rotor was investment cast using AF2-1DA material.
The cast version of AF2-1DA alloy, developed under AFML Contract
No. F33615-71-C-1573 (Report AFML-TR-74-227), was selected for
use in the radial turbine rotor. Selection was based upon wheel
design, ultimate strength, stress rupture and LCF requirements.
These criteria eliminated candidate alloys IN100, MM002 and
Cc-101.

5.2.1.1 Casting Process

An investment casting process, producing acceptable inter-
nal grain structure and mechanical properties in a 15 pound
radial turbine rotor, was developed under the AF2-1DA program.
This process required modification for the smaller 9-pound rotor,
depicted by Figure 164, used in the GTP305-2 turbine engine.
These modifications included mold insulation, superheat tempera-
ture modification and six iterations to produce the internal and
external grain structure depicted by Figure 165. Three tool
modifications were also required to produce correct blade pro-
files and thicknesses and were incorporated in the six casting
iterations.

.
i
i
i
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AIRESEARCH MANUFACTURING Dy wouhy
PHOENIX, ARIZQNA

Figure 164. Cast AF2-1DA alloy GTP305-2 radial
turbine wheel

274




I030x1 PuTqIN} Terpex AoJTe VAT-ZJY 3ISed
utr padonpoxd aanjonays urexb ordoosoxoel *G9T @anb1g

Colu-ToH :HOLE CoCu-1oH :HOLA
TINIONYIS NIVED TYNNIINT IOVIENS TYNYILXE

G YRR Y




5.2.1.2 Heat Treatment Process

Heat treatment developed for cast AF2-1DA alloy, in the AFML
Program, produced tensile properties at minimum values shown
below and could be achieved with confidence.

0.2 Percent Ultimate
Yield Tensile Elongation
Strength Strength Percent
Room Temperature 115 ksi 130 ksi 5.0
1400°F 105 ksi 130 ksi 5.0

This process required a solution treatment at 2175°F and two
intermediate ages; one at 1950°F and the other at 1400°F. Rapid
argon gas quenching was performed after the solution treatment
and the first age. Gamma prime size was controlled, resulting in
tensile properties above minimum levels. However, saddle cracks
occurred between the blades when the developed heat treatment was
used on the GTP305-2 radial turbine rotor (see Figure 166).
Approximately 50 percent of the wheels heat treated using this
method revealed at least one cracked saddle and a number exhib-
ited more than one cracked region.

A study to modify the heat treatment argon quench rate was
performed with the objective of maintaining tensile properties
above minimum 1levels. Vacuum f£urnace coocling modificaitons,
resultant cooling rates measured in the rotor hub center, and the
average tensile properties are shown in Table 29. Results indi-
cate argon gas backfill (without the circulating fan) produced

acceptable tensile properties without exhibiting saddle cracks.




LOCATION OF CRACKS (ARROWS) MAG: 1/2X

DETAIL OF CRACKS (ARROWS) MAG: 6X

Figure 166. Small cracks produced by rapid gas quenching
during heat treatment
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The heat treatment process is shown below:

o Solution: 2175+25°F (2 hours) argon gas
cool at a rate of approximately
50°F min *

o Intermediate Age: 1950+25°F (2 hours) argon gas
cool at a rate of approximately
SO°F min *

o Age: 1400:25°F (16 hours) air cool
*Rate measured in wheel center; average to 1400°F.

Tables 30, 31, and 32 show tensile, stress rupture, and low
cycle fatique (LCF) properties produced by the developed casting
and heat treatment procedure. These baseline wheel properties
were produced as part of the hot isostatic pressure (HIP) study
disclosed in Section 7.0. Average tensile properties exceed
AiResearch specification minimum values. Stress-rupture proper-
ties, although tested at stresses different from AiResearch spec-
ifications, exceed minimum values, when analyzed on a Larson-
Miller plot.

Following successful casting trials, the rotor was final
machined as shown in Figure 167 and delivered to the ICA rig
assembly area.

5.2.2 Radial Turbine Nozzle

The radial turbine nozzle was fabricated as designed.
Inconel 738 material was used consistent with design analysis.
As shown in Figure 168, wax patterns were gated using a five-
gate arrangement to fill both forward and aft walls. Inspection
of initial castings revealed microporosity and shrinkage in the
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TABLE 30. ROOM AND ELEVATED TEMPERATURE TENSILE
PROPERTIES OF HEAT-TREATED*
CAST AF2-1DA ALLOY TURBINE WHEELS
Specimen Temperature 0.2% YS UTS EL RA
Number (°F) (ksi) (ksi) (%) (%)
72-3 RT 122.4 133.6 3.6 13.7
75-3 RT 120.1 125.7 4.3 10.5
83-5 RT 129.0 144.7 4.8 8.0
72-5 1400 111.7 134.5 5.7 14.8
81-3 1400 112.1 142.5 5.9 13.5
87-3 1400 114.0 134.3 6.3 16.4
Property RT 115.0 130.0 5.0
Specifica- 1400 105.0 130.0 5.0
tion
Minimums

*2175°F for 2 hours with Argon gas quench;
2 hours with Argon gas gquench; plus 1400°F

cooling.
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TABLE 31l.

PROPERTIES OF HEAT-TREATED*

CAST AF2-1DA ALLOY TURBINE WHEELS

ELEVATED TEMPERATURE STRESS RUPTURE

Rupture Reduction

Specimen Temperature |Stress Time Elongation| of Area

Number (°F) (ksi) | (Hours) (%) (%)
72-6 1400 90 152.4 4.0 10.6
81-4 1400 90 102.7 4.3 8.0
75-4 1600 55 158.8 7.9 11.2
83-6 1600 55 161.4 6.2 8.9
81-6 1800 27 89.0 7.8 16.2
87-4 1800 27 97.1 8.3 16.7

Property 1400 95 23.0 3.0

Specifi- 1800 30 23.0 4.0

cation

Minimums

*2175°F for 2 hours with Argon gas quench; plus 1950°F for
2 hours with Argon gas quench; plus 1400°F for 16 hours with air

cooling.




TABLE 32, ROOM TEMPERATURE LOW-CYCLE FATIGUE
(LCF) PROPERTIES OF HEAT-~TREATED*

CAST AF2-1DA ALLOY TURBINE WHEELS

Total Strain Measured nf i
Specimen Range Elastic Modulus (Cycles to f =
Number (%) (E X 106 psI1) Failure)
72-1 0.77 26.1 3,957
87-2 0.69 29.0 14,894
75-1 0.66 30.9 7,974 A
75-2 0.65 31.3 17,722 : |
83-1 0.62 32.9 13,182 :
83-2 0.60 33.3 8,932
81-1 0.60 33.1 10,111 3
87-1 0.60 33.8 13,221 EV
Eo
Test Parameters: Axial strain control, A Ratio = = ,;i
(As defined in the E

statement of work) 20 CPM frequency and 200 ksi pseudo-stress

*2175°F for 2 hours with Argon gas quench; plus
1950°F for 2 hours with Argon gas quench; plus
1400°F for 16 hours with air cooling.
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Figure 167.

Cast radial turbine rotor (looking forward)
P/N 3605248

283




s na——— oz 2l

T R —————— e - . | ———————. e

3
N
b
3
:
4
o

VIEW A VIEW B

it

",

4
i
)

Figure 168. p/N 3605601 wax patterns
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nozzle shroud region. Adjustment was made to the gating arrange-
ment (i.e., an internal spider gate arrangement, rather than
external finger gating). In addition, two casting parameters
were adjusted to achieve a better material flow condition. These
were the material pour temperature, which was lowered 100°F and
the mold preheat temperature, which was raised 100°F. These
changes resulted in an aerodynamically and metallurgically
acceptable part. Figures 169 and 170 show the cast nozzle wax pat-
tern with ceramic cores inserted and the slurry dipped mold ready
for preheat. Figures 171 and 172 show an early nozzle that is
partially machined to inspect the internal chordwise cooling
fins.

Following final machining the nozzle was instrumented as
shown in Figures 173 and 174 and delivered to the ICA rig

assembly area.

5.2.3 Axial Turbine Stator

The APU design incorporates a cast axial stator assembly.
ICA fabrication was accomplished by machining the individual
stator vanes and brazing the vanes to the hub and shroud, which
were sheet metal formed. The stator was then instrumented and
delivered to the ICA rig assembly area. Figure 175 shows a view
of the stator assembly after instrumentation.

5.2.4 Axial Turbine Rotor

Detail design of the GTP305-2 APU axial rotor required a cast
design using AF2-1DA material. Due to program scope, fabrication
of the ICA rotor required machining an AF2-1DA forging. However
a material substitution was required because forged AF2-1DA could
not be obtained on a timely basis. Astroloy was substituted with
no significant impact on integrated components testing. The
machined axial rotor is shown in Figure 176.
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Figure 169. cCast radial nozzle wax pattern with ceramic
cores in place

286 i




old

cast radial nozzle m

Figure 170.




Figure 171,

GTP305-2 partially machined nozzle




P S S

- 5 R

Figure 172.

GTP305-2 partially machined nozzle
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P/N 3605601

Figure 173.
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Figure 174.

Cast radial nozzle (looking forward)
P/N 3605601




Figure 175.
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Axial turbine stator (looking aft)
P/N 3606194
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Figure 176. Machined axial turbine rotor
(looking aft) P/N 3605601
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5.2.5 Exhaust Duct Assembly

Fabrication of the turbine exhaust duct assembly deviated
from APU design intent in that the radial struts were machined
from bar stock rather than cast. Again this method of fabrica-
tion was a result of overall program scope. Figure 177 depicts
the instrumented exhaust duct prior to ICA assembly.

5.2.6 Combustor Liner

The as designed combustor was fabricated using Hastelloy-X
sheet metal coramically coated on the internal wall., Figure 178
depicts the liner ready for ICA assembly.

5.3 Instrumentation

Combustion system inlet flow parameters were measured up-
stream of the inlet plenum., As inlet flow entered the plenum
bore, cooling air was extracted. Static pressure sensors located
in the bore cooling supply cavity were used to assure that supply
pressure, as designed, was maintained. Flow path instrumenta-
tion, which was used to define aerodynamic and mechanical perfor-
mance, was as shown in Figures 179 and 180. 1In addition to the
instrumentation mentioned above, the following instrumentation
was incorporated in the facility portion of the test setup:

o Turbine exit temperature thermocouples were located
downstream of the turbine exhaust diffuser in the

insulated facility exhaust duct

o Emission probes were located in the facility exhaust
duct
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Figure 177. Exhaust duct (looking aft)
P/N 3606195




Figure 178.

GTP305-2 combustor
(P/N 3605621~2)

liner
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o A monopole speed pickup was incorporated in the adapter ‘
gearbox to determine gearbox input/ICA output shaft ;
speed :

(o} Existing facility instrumentation was used to deter- %

mine water brake torque and speed

o 0il flow and pressure sensors were located in the
facility oil supply lines to the ICA

5.4 Build and Installation Procedure

<o art il S i

Following instrumentation the ICA was assembled in accord-
ance with build instruction and calculation procedures contained
in Appendix A. Sshim calculations were performed to; adjust
radial rotor backface and frontface clearances, set proper spring
loads, adjust axial turbine radial tip clearance, and set proper
structural gaps as defined. Figures 181 through 187 depict the
rotating group and various ICA intermediate assembly stages.

e e

D R R O N e

ICA installation in the test facility was accomplished with
General Electric personnel present to assure proper gearbox/
waterbrake/ICA alignment. Once satisfactory alignments were
obtained the ICA was connected and the unit was made ready for
testing. Figures 188 through 190 show the ICA, gearbox, water-
brake and exhaust ducting fully instrumented and ready for test.

5.5 Test Procedure

After ICA installation in the test facility, the development
test procedure, included in Appendix A, was utilized for all
testing. Major test procedure elements are:
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Figure 18l. GTP305-2, ICA rotating group
assembly P/N 3606189

300




Figure 182.
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ICA partial assembly P/N 3606180
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Figure 183.

ICA partial assembly
P/N 3606180
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Figure 184.

ICA partial assembly
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ICA test rig (looking forward)

Figure 187.
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gearbox,

ICA installation showing waterbrake,

ICA and exhaust ducting

Figure 190.




o Motoring test to 100-percent design speed to verify
mechanical integrity

o Fired mechanical checkout to 100-percent speed
o Per formance demonstration with thermindex paint

Initially, the rig was motored at approximately 5000 rpm
using inlet air pressure to drive the turbine. During motoring,
proper oil flow to the bearings was verified and proper operation
of all instrumentation, used to monitor the mechanical condition,
was substantiated. The rig was accelerated slowly to l100-percent
speed by increasing inlet pressure and temperature. During this
acceleration, vibration data was recorded by a direct readout
recorder to define rig dynamic characteristics over the full
operating range. Bearing temperatures and speed were also
recorded. At 60-, 80-, l100-percent speed, the output of instal-
led instrumentation was recorded by the digital data acquisition
system to verify proper instrumentation and data acquisition sys-
tem operation. 1In addition, this motoring provided initial fam-
iliarization with the airflow and dynamometer controls for the
ICA.

When mechanical integrity and proper instrumentation opera-
tion were demonstrated, the fired mechanical checkout and con-
trols familiarization was performed. The inlet airflow and dyna-
mometer load were set to provide airflow conditions and turbine
speed equivalent to the engine ignition point, Lightoff fuel
flow was then introduced and ignition achieved. Proper operation
of all condition monitoring equipment was verified, at 40-percent
speed. The rig was then accelerated to approximately 50,000 rpm
for controls familiarization. This was done at low speed to pro-
vide a margin of safety until rig responses to control inputs
were defined. Control familiarization was accomplished by oper-
ating the rig at a specific condition and then changing to a new
condition to determine the proper control operations required to
change to the new condition.
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During this testing, the digital data acquisition system was
used to record data at each operating point to allow verification

of proper rig and instrumentation operation. Once controls oper-
ation was defined and mechanical integrity under fired conditions
demonstrated, the rig was accelerated to 70-, 80-, 90-, 100-
percent speed and design point (100-percent power) conditions
were established to assure mechanical integrity over the full
operating range.

Upon completion of the initial fired run, the performance
demonstration and the thermindex paint tests were accomplished.
Thermindex paint was applied to the combustor, combustor baffle
assembly, radial turbine backshroud, and interstage duct/axial
turbine stator.

Table 33 shows the seven data points selected for perform
testing. However due to problems associated with mechanical
vibration, a substitute data matrix was utilized. Data for this
matrix, shown in Table 34, was obtained. Each performance point
was determined by utilizing the data acquisition system "Quik-
Look" program. This program performs a series of calculations
based on raw data obtained during each 30 second data scan. Tur-
bine speed, inlet air pressure and temperature, turbine discharge
temperature, rotor inlet temperature, and flow were adjusted
based on "Quik-Look"™ to determine the data point conditions. The
"Quik-Look" printouts and design point "Bos Log" (all parameters
sampled) are included in Appendix C.

The ICA was disassembled subsequent to testing and those
items thermidex painted were isothermed and photographed.
Details of the thermidex paint results are discussed in
Section 4.

Table 35 includes ICA build and test history. As will be
noted, Items 4 and 5 of this table make specific reference to
Table 36 and Figure 191,
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TABLE 34. TEST MATRIX

P/p)T'DE ¥ NAO ok PO
9Q* 100 100
5.50 1 5 9
6.50 2 6 10
7.529 T3 7 11
8.5 4 8 12

*Run at 'I‘in = 2050°F, speed =~ 68116.5 rpm

**Run at reduced temperature and speed, Tin = 1690°F,
N = 70,000 rpm

***Run at full temperature and speed (design point)

Design Point Condition

N = 75,684
. = 2050°F
P/P)ppg = 7-529
T.
in
No. 11 2050°F
No. 10 1900°F

No. 9 1800°F
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Figure 191 Model GTP305-2 forward roller bearing
information
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SECTION VI

INTEGRATED COMPONENTS ASSEMBLY TEST RESULTS

Data obtained during ICA testing was evaluated to determine
aerodynamic and mechanical performance of the Model GTP305-2
! turbine-end components. The following sections discuss ICA test-
ing results.

6.1 Turbine Aerodynamic Performance

Aerodynamic performance of the turbine stage was determined

using ICA data along with comparisons and correlationship deter-
mined earlier in cold-air testing of the turbine stage and com-
bustion system testing. The data reduction model was based on
cold-air data reduction methodology in which correlations and
compar ison were valid.

Fundamental hardware differences (see Sections 4 and 5)
exist between cold-air hardware and ICA hardware due to tempera-
ture and speed effects. However, aerodynamically the two rigs
are identical.

6.1.1 Performance Analysis

Prior to test, all aerodynamic hardware was inspected for
compliance with design intent. The cast AF2-1DA radial turbine
rotor was inspected at four discrete rotor exducer throat areas
as a function of rotor exit blade radius (see Table 37). The
cast rotor is 1.28 percent closed compared to design intent,
Similar inspections for the cast radial nozzle, axial turbine
stator and axial turbine rotor are shown in Tables 38 through 40,
respectively. The four major aerodynamic items are discussed
below:

o] Radial turbine nozzle 5.33 percent closed .{
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TABLE 38. RIG RADIAL NOZZLE DIMENSIONAL INSPECTION

17 VANES

\—REF =

0.3658
TRAILING EDGE Tmcxmess—/\
EXT J
VANE THROAT DIAM | B WIDTH
1 0.350 0.307
2 0.350 0.306
3 0.349 0.304
4 0.351 0.304
5 0.250 0.303
6 0.350 0.305
7 0.349 0.306
8 0.350 0.305
9 0.351 0.304
10 0.351 0.302
1 0.350 0.303
12 0.351 0.305
13 0.350 0.306
14 0.349 0.305
15 0.350 0.306
16 0.349 0.305
17 0.350 0.306
AVE 0.3504 0.3049
DESIGN 0.3658 0.305
ADESIGN = 1.8938 IN.2
AMEASURED =  1.7930 IN?

1A - -5.32 PERCENT CLOSED
Ao

ESTIMATE FILLET RADII 0.040 IN.
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TABLE 39. RIG AXIAL NOZZLE DIMENSIONAL INSPECTION
I ]
L— Ra
: D
25 VANES —}—R, SHROUD
R4
) THROAT DIMENSION
— 1 g
DHus
ADESIGN = 5831 IN2 Dyup = 3.3195
AMEASURED = 5695 IN.2 DsHROUD = 5.5732
4A =  -2.33 PERCENT CLOSED
Ap
VAN E lloll AT lloll AT lloll AT lloll AT
NO. [Rq=1.75 |R,=2.10 [R3=245 |R,=2.66
1 0.166 0.177 0.216 0.270
2 0.163 0.169 0.208 0.256
3 0.167 0.177 0.213 0.269
4 0.170 0.184 0.219 0.269
5 0.169 0.182 0.219 0.271
6 0.166 0.180 0.220 0.268
7 0.172 0.182 0.221 0.270
8 0.162 0.172 0.215 0.265
9 0.170 0.174 0.214 0.263
10 0.171 0.177 0.216 0.268
1 0.168 0.175 0.216 0.271
12 0.170 0.183 0.222 0.275
13 0,168 0.174 0.210 0.270
AVE | 0.1678 0.17738 | 0.2160 0.26807
DESIGN 0.1679 0.1774 0.2161 0.2680




-

TABLE 40.

RIG AXIAL ROTOR DIMENSIONAL INSPECTION

_r’_ Rg = 2.74 IN.
DTN Ry = 2.40 IN. DTOUT
24
JLADES Ry = 2.05 IN.
Ry = 1.70 IN.
7 THR OAT DIMENSION
1 Q , "0“
OHyy PHout
BLADE | "“0” AT “g" AT | “0” AT |0 AT Dy = 3.310
NO. Rq=1.700 | R,=2.05 | R3=2.40 | R,=2.74 IN AVE
1 0.218 0.231 0.220 0.219 DT\ = 5.620
2 0.215 0.231 0.223 0.220
3 0.214 0.227 0.226 0.222
4 0.217 0.233 0.226 0.226 OHouT = 3.120
5 0.218 0.236 0.232 0.222
6 0.224 0.228 0.226 0.221
7 0.217 0.230 0.231 0.224 DTOUT = 5.650
8 0.219 0.231 0.230 0.226
9 0.222 0.231 0.228 0.226
10 0.224 0.230 0.231 0.223 2
1 0.218 0.230 0.226 0.222 ApESIGN = 7.0704 IN.
12 0.221 0.228 0.227 0.226 2
13 0.221 0.229 0.227 0.224 AMEASURED = 69778 IN.
14 0.218 0.231 0.229 0.224
15 0.221 0.230 0.225 0.222 AA = -131P
16 0.217 0228 | 0227 | 0228 vy Cloten (CENT
17 0.222 0.228 0.224 0.224 D
18 0.218 0.229 0.227 0.227
19 0.218 0.231 0.230 0.226
20 0.223 0.229 0.227 0.222
21 0.225 0.230 0.228 0.226
22 0.222 0.237 0.230 0.223
23 0.217 0.231 0.225 0.226
24 0.221 0.231 0.227 0.227
DESIGN| 0.3232 0.2390 0.2480 0.2555




o Radial turbine rotor 1.28 percent closed
o Axial turbine stator 2.33 percent closed

o Axial turbine rotor 1.31 percent closed

Although nominal design intent was not achieved on any single
piece of hardware, all items were considered with blueprint tol-
erances and consistency within normal production tolerances.

Instrumentation commonality for the ICA, cold-air and com-
bus tion test rigs was maintained where feasible, primarily at
the combustor inlet and turbine exit. Total combustor pressure
drop was correlated using dome discharge static pressure measure-
ments. Twelve total pressure probes located at the axial turbine
rotor exit plane were used to establish overall two-stage total-
to-total pressure ratio at the axial turbine exit. Radial tur-
bine stage total-to-total pressure ratio was established from a
correlation between rotor exit total pressure and interstage duct
exit static pressure. This correlation, determined during cold
air test No. 2A, is presented in Figure 192. Two-stage overall
total-to-static pressure ratio was established with diffuser exit
hub and shroud static pressure taps. Average cold rig turbine
exit temperature was measured in an adiabatic mixing duct. Since
this method was not feasible for ICA testing, an array of fifteen
thermocouples at five immersion depths and three circumferential
locations were utilized to measure the average turbine exit tem-
perature. The ICA radial turbine nozzle was instrumented with
static pressure taps at the throat and trailing edge. A nozzle
flow calibration test was conducted prior to ICA testing. This
calibration relates nozzle inlet corrected flow to nozzle total-
to-static pressure ratio. Results are shown in Figure 193. Max-
imum attainable nozzle inlet corrected flow (Wv@?&) was 0.608
lbs/sec. Results of the measured nozzle throat area shown in
Table 38 indicate a nozzle flow coefficient of 0.987, which is
consistent with the cold rig nozzle coefficient of 0.99.
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Total flow entering the ICA was measured with a three inch
orifice section. Bore cooling was then measured independently
down stream of the main orifice with a 0.3125 inch orifice sec-
tion. Radial nozzle internal cooling flow was based on a cor-
relation of nozzle internal to trailing edge discharge static
pressures. Measured static pressure was then related to cold
flow calibrations for internal cooling flow magnitude.

An iterative aero-thermodynamic analysis of the ICA test
data was conducted at design point temperature, pressure ratio
and speed. The analysis objective was to compare overall
turbine-end performance with cycle goals, and to compare turbine
component performance with cold rig data. Design point analysis
was based on a model defining thermodynamic conditions at sel-
ected stations throughout the turbine flow path. ICA test data
cold-air test results and correlations were used to determine
thermodynamic conditions. A best match model was defined as one
in which calculated turbine discharge temperature equalled mea-
sured turbine discharge temperature, and calculated fuel-air
ratio equalled the fuel-air ratio determined from emissions data.
The raw data used in analyzing design point performance is pre-
sented in Appendix C. The measured parameters, in addition to
those determined from correlations, are summarized in Table 41.
Station designations identifying flow path location are presented
in Fiqure 194. The assumptions used during data reduction are
listed below:

o Measured total inlet flow - valid

o Measured fuel flow - valid

o] Measured discharge temperature - valid

° Fuel-air ratio determined from emission analysis -
valid

327




TABLE 41.

DESIGN POINT PARAMETERS MEASURED OR DERIVED FROM
RIG CORRELATIONS (DATA SCAN 12:12:22.55).

Station Parameter Value Units
1 Rig inlet total flow Mass flow 2.1411 1lbm/sec
1A Bore cooling flow Mass flow 0.03202 lbm/sec
2 Combustor inlet
Total pressure Pressure 111.106 psia
Total temperature Temp 765.81 °F
2A Fuel flow meter Fuel flow 0.04074 lbm/sec
Rig combustor pressure loss APT/PT 0.041 --
3 -4 Maximum radial
turbine nozzle
corrected flow wWJ8/5 0.608 lbm/sec
3 -5 Radial turbine
total-to-interturbine
exit static pressure
ratio P/P)T_S 3.4628 -
Total-to-total
pressure ratio P/P)T_T 3.253 -
Total-to~total
efficiency Nep_rp 0.865 -—
5 -6 Interturbine duct loss| Ap/P 0.017 -
Axial turbine total-to-total
pressure ratio P/P)T_T 2.1949 -
2 Axial turbine total-to-
total efficiency Nep 0.885 -
3 -7 Overall total-to-
total pressure ratio P/P 7.2634 -
T=T)oa
8 Turbine discharge
total temperature Temp 1635.34 °F
Radial turbine clearance: Cb = 0.053 inch, CA = 0.054 inch,
C, = 0.013 inch
R
2 Axial turbine rotor clearance: Cr = 0.013 inch
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(o} Average discharge total pressure - valid

o Radial and axial turbine stage total-to-total effi-
ciency is based on measured cold rig values corrected

by measured build clearances

Several data matching iterations were required to satisfy
the best match model criteria stated above.

The first iteration assumed the mainstream orifice flow
(minus cooling flows) was valid and was available at the radial
nozzle inlet (Station No., 3). However results indicated nozzle
inlet corrected flow (WJ@/B) was 3.9 percent higher than the max-
imum allowable flow from the nozzle flow calibration and the cal-
culated discharge temperature was approximately 7.0 degrees lower
than measured. The second iteration assumed that the difference
between maximum possible flow and measured flow, was lost over-
board. Results of this attempt indicated the calculated fuel air
ratio was excessively high. Therefore, measured inlet flow must
be considered valid in order to match measured fuel-air ratio.
Since this flow is higher than the measured choking nozzle flow,
a certain percentage of mainstream orifice flow must be bypassing
the radial nozzle. Post-test inspection of the piston ring seal
(Station No. 9) indicated a measured gap which could allow main-
stream orifice flow to bypass the radial nozzle and re-enter the
turbine flow path at the radial turbine rotor exit (Station
No. 5). An iteration on the allowable nozzle inlet flow function
was required to model this possibility. Specifically, as combus-
tor inlet flow is reduced, combustor temperature increases.
Results indicated a leakage flow of 0.1011 lbs/sec was required
to satisfy the required radial nozzle flow function. When this
leakage flow was mixed in the interstage duct, calculated dis-
charge temperature was approximately equal to measured discharge
temperature, and an acceptable correlation between calculated and




measured fuel-air ratio was obtained. Table 42 presents the cal-

culated results for this model. Calculated overall cooled two-
stage efficiency at design point, based on this match model, is
0.893 for total-to-total (7 and 0.875 for total-to-diffuser
exit static (Mp_pg)-

T-T)

ICA performance 1is compared with cold air data in
Figure 195. Quoted ICA cooled turbine efficiencies are based on
the same calculation method employed in analyzing the cold rig
test data. The procedure and equations were presented in
Section 4. Therefore, calculated efficiencies for the present
case are defined as cycle efficiencies and account for the addi-
tional flow available for work in the axial turbine.

A comparison between the cold rig total pressure survey
trace and measured ICA total pressure probes can be accomplished
since the axial rotor exit total pressure probes were located at
the same relative position as the cold rig. Figure 196, shows
this comparison and is further evidence that ICA hot turbine-end
performance is similar to cold air performance. ICA measured
discharge temperature distribution can also be related to mea-
sured axial rotor exit cold rig temperature distribution. How-
ever, since measurements for the two cases were obtained at dif-
ferent axial locations, the intent is not to show radial gradient
correlation but to indicate that significant mixing of the tem-
perature profile has occurred from the rotor exit to the 1lab
tailpipe. Figure 197 shows that significant axial rotor exit
radial temperature gradients exist from the cold air rig. These
gradients are a result of tip clearance, loss regions, and non-
uniform radial work extraction. Figure 197 also shows that these
temperature gradients can be reduced to provide a more uniform
temperature distribution due to downstream mixing in the exhaust
diffuser and lab tailpipe. Since an adiabatic mixing duct simi-
lar to that utilized in the cold air test program was not feas-
ible for the ICA test rig, the mixing which occurred in the ICA
exhaust diffuser and lab tailpipe resulted in a fairly uniform
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TABLE 42.

COMPUTER MATCH OF DESIGN POINT

ICA DATA SCAN.

Station Parameter Value Units
1 Rig inlet total flow Mass flow 2.1411 lbm/sec
! 1A Bore cooling flow Mass flow 0.03202 lbm/sec
2 Combustor inlet
Total pressure Pressure 111.106 psia
Total temperature Temp 765.81 °F
Inlet airflow Mass flow 1.9500 lbm/sec
*Stator cooling flow Mass flow 0.0580 1bm/sec
Leakage airflow Mass flow 0.1011 lbm/sec
2A Fuel flow meter Fuel flow 0.04074 lbm/sec
3 Radial turbine stator
inlet
*Combustor pressure loss APT/PT 0.041 -
Total pressure Pressure 106.525 psia
Total temperature Temp 2065.81 °F
Airflow plus fuel flow Gas flow 1.99074 lbm/sec
4 Rotor inlet mixed
conditions
Total temperature Temp 2044.92 °F
Mass flow Gas flow 2.0487 lbm/sec
5 Radial turbine exit
unmixed
*Total-to-total pressure Pressure 3.253 --
ratio ratio
Total pressure Pressure 32.746 psia
Total temperature Temp 1518.09 °F
Mass flow Gas flow 2.0487 lbm/sec
6 Axial turbine inlet mixed
conditions
*Interturbine duct loss AP/P 0.017 -—
Total pressure Pressure 32.189 psia
Total temperature Temp 1479.89 °F
Mass flow Gas flow 2.1597 lbm/sec

*Derived from rig correlations




TABLE 42. (Contd) COMPUTER MATCH OF

DESIGN POINT ICA DATA SCAN.

Station Parameter Value Units
7 Axial turbine exit
unmixed conditions
Total-to-total pressure Pressure 2.195 -
ratio Ratio
Total pressure Pressure 14.665 psia
Total temperature Temp 1179.75 °F
Mass flow Gas flow 2.1597 lbm/sec
8 Axial rotor exit mixed
conditions (lab tailpipe)
Total temperature
calculated) Temp 1635.1 °F
Total temperature
(measured) Temp 1635.34 °F
Total mass flow used in model Gas flow 2.1818 1lbm/sec
Total mass flow measured Gas flow 2.1818 lbm/sec
Fuel/air ratio measured £/a 0.190 -
Fuel/air ratio from emissions f/a 0.189 -
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100 PERCENT CORRECTED SPEED DATA

COLD AIR TEST NO. 4 FLOW FUNCTION
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COOLED CYCLE EFFICIENCY

—o—

MEASURED ICA DESIGN
POINT CORRECTED FLOW

)

.

MEASURED ICA DESIGN POINT

TOTAL-TO-TOTAL
/ COOLED CYCLE EFFICIENCY
] MEASURED ICA DESIGN POINT

05—

TEST DATA ROTOR CLEARANCES

TOTAL-TO-DIFFUSER EXIT
STATIC COOLED CYCLE
EFFICIENCY

STAGE | cOLD RIG | ICA RIG /A

RADIAL < MEASURED ICA DESIGN POINT
C, |0.036 INCH [0.053 INCH TOTAL—TO-DIFFUSER EXIT STATIC

COOLED CYCLE EFFICIENCY

ca |0.025 INCH |0.054 INCH
Cr |0.015 INCH |0.013 INCH

AXIAL NOTE: COOLED CYCLE EFFICIENCY
¢, |0.011 INCH [0.013 INCH| ACCOUNTS FOR COOLING FLOW AVAILABLE

TO DO WORK IN THE AXIAL TURBINE
| 1
7.0 8.0 9.0 10.0

COLD RIG OVERALL TWO STAGE PRESSURE RATIO, P/P)ga

Figure 195.

GTP305-2 turbine comparison of cold rig

and ICA rig performance
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Figure 196. Comparison of hot rig and cold rig axial
rotor exit total pressure distributions
at design point conditions
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Figure 197. Comparison of hot rig and cold rig turbine exit
temperature distributions at design point
conditions




exit temperature and increases the confidence in the averaged

exit temperature.

The ICA design point performance can also be evaluated from
the measured torque obtained from a load cell attached to the
water brake dynamometer. The water brake is a Kahn 3000 horse-
power unit and consists of a series of perforated rotating flat
plates immersed in a water chamber. The power absorbed is a
function of drilled plate number and water level. The number of
plates remained the same throughout the ICA testing. The water
level was varied according to power output. The outer case of
the water brake floats and the stationary plates attached to it
react to the churning action of the rotating plates. The outer
case is connected to a Balium SR4 load cell by a 12-inch lever
arm. A load cell calibration curve of torque versus RC signal is
then input to the data acquisition system. Measured torgque was
determined in this manner and is 228 ft-lbs for the design point.
However, this value results from a myriad of losses between the
ICA rig and the water brake. Known losses which can be estimated
are listed below.

Gearbox
ICA bearing
Water brake bearing

O 0O O O

Disk friction from dummy compression mass

In addition, component heat transfer to surrounding areas could
result in an appreciable calculated loss error.

Initial calculations for parasitic losses resulted in a cor~-
rected torque value which is 7.6 percent lower than that obtained
from T measurements. The load cell was therefore recalibrated
using a dead weight method. Figqure 198 shows this calibration
and indicates the measured torque value should be increased by
2.6 percent (from 228 to 234 ft-1b). This reduces the difference
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between methods to 5.0 percent which is still considered unaccep-
table. Measured water brake load cell torque is therefore not
considered a reliable ICA rig true torque indicator due to magni-
tude and parasitic loss uncertainties,

In summary, the ICA design point best match model indicates:

o Turbine rotor inlet temperature, rotational speed and

pressure ratio design goals were achieved (Table 42)

o Radial and axial turbine performance essentially dup-
licated cold air test performance, after differences in
running clearance were accounted for

o) Approximately 4.7 percent piston ring seal leakage
flow existed during ICA rig testing. This leakage re-
entered the turbine interstage duct flow path and was
available for work in the axial turbine

o Design point torque determined from measured tempera-
ture, flow and pressure data is 5.0 percent higher than
water brake load cell torque. The discrepancy is
attributed to the magnitude and uncertainties assoc~-
iated with the parasitic losses between the ICA rig and
the water brake load cell

6.1.2 GTP305~2 Engine Performance Potential

ICA, cold turbine rig and combustor rig test results were
used to re-evaluate the Model GTP305-2 engine performance capa-
bility. The updated engine cycle design point match was based on
the following assumptions:

o Design radial and axial turbine clearance (C, = 0.030,

B
Cp = 0.015, ¢, = 0.015, = 0,015 inch)

Cr)axial

A

e R AR A e
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o Turbine component throat geometry is equivalent to the
ICA hardware (i.e., radial turbine rotor inlet flow

function is 0.621 lbs/sec)

o) Design cooling flows (WBF = 1.5 percent, Wbore =
1.0 percent)

o) Cold air turbine test rig cooled overall efficiency
(nT—DE = (0.884)

o) Combustor rig pressure drop (AP/P = 0.041)

All other conditions used in the original design point cycle were
retained. The new designh point cycle is presented in Table 43

for a sea level, 130 degree day.

Table 44 presents a comparison of original cycle match con-
ditions and the new cycle match conditions. Turbine inlet tem-
perature is based on 2050°F at the radial rotor inlet after
stator cooling and mainstream flow mixing. Cycle efficiency is
an overall inlet total-to-~diffuser exit static value and accounts
for the additional flow available for work in the power turbine,
from the radial turbine rotor backface and interstage duct cool-

ing flows.

/
6.2 Combustion System Pet@ormance
r 4

/’

Combustor wall temperatures, pressure loss, combustion
efficiency and exhaust emissions were evaluated at design point
conditions during ICA testing. Table 45 summarizes specific
combustion system performance goals and lists ICA performance
levels., The combustor total pressure loss of 4,10 percent was
determined from inlet total pressures and dome discharge static
pressure. Dome static pressure is in close approximation of com-
bustor discharge total pressure, due to relatively low velocities
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TABLE 44. COMPARISON BETWEEN ORIGINAL GTP305-2
ENGINE CYCLE AND NEW CYCLE BASED
ON ICA TEST RESULTS.

Sea Level, 130°F Ambient

Original Design New Design Point
Point Engine Engine Cycle from
Parameter Cycle ICA Test Results
Tin' °F 2050.00 2050.00
Specific work, AH, Btu/lbm 235.0" 246.14
Rotor inlet corrected
flow, WVB/6, lbs/sec 0.6150 0.621
Total-to-diffuser exit
static pressure ratio,
P/P)T_DE 7.529 7.671
Total-to-diffuser exit
static efficiency, "2/ * 0.850 0.884
T-DE
N, rpm 75685.0 75685.0
shp, net 186.0 225.3
SFC, 1lbs/hr/shp 0.813 0.690
Specific power, hp/lb/sec 86.10 101.33
Combustor total pressure
loss, AP/P 0.050 0.041
Leakage flow, percent 0.020 0.020
Cooling flow, percent
(bypasses radial turbine,
but available to axial
turbine which is accounted
for in cycle efficiency) 0.025 0.025

*Accounts for cooling flow available to due work in power

turbine.
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TABLE 45.

GTP305-2 ICA TEST RESULTS
AT DESIGN POINT CONDITIONS.

Parameter Design Goal ICA Test
Combustor Total Pressure 5.0 4.10
Drop, Percent
Combustor Efficiency, >99.8 99.91
Percent
Maximum Liner Skin 1500 1700
Temperature, °F
Carbon Deposits None None
Emissions, 1b/1000 hp-hr

HCH No Requirement 0.49
co No Requirement 1.16
NO No Reguirement 11.35
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in the combustor dome area. Combustion efficiency and fuel-air
ratio determined from emissions were 99.91 percent and 0.019
respectively, Gaseous emission samples were obtained from a
manifold of three stationary, three-element, equal area probes
located in the exhaust duct, and turbine cooling air which
bypasses the combustor. HCH, CO and Nox emissions were 0.45,
1.16 and 11.35 1b/1000 hp-hr respectively. Post test inspection
of combustor liner Thermindex Paint (Figure 199) shows outer wall
temperatures near the primary zone were a maximum of 1500°F. One
165C°F area located on the combustor dome and ten distinct areas
of 1700°F located on the combustor inner liner downstream of the
primary orifices, are not shown. These results compare favorably
to Tests 8 and 11 results presented in Section 4., The ceramic
coating was in good condition (Figure 200), except for minor
internal flaking and cracking near the fuel nozzles. There were

no carbon deposits.

6.3 Mechanical Test Results

Post-test inspection of the ICA hardware indicated no sig-
nificant problems and correlations made from the Thermindex paint
indicated design integrity was achieved. The following sections
describe mechanical inspection and Thermindex paint results.

6.3.1 Radial Turbine Rotor

Post test inspection of the radial turbine rotor indicated
two areas of distress as shown in Figures 201 through 203. Both
types of distress (burned blade tips and saddle cracks) are not
uncommon in first run developmental programs and are generally
associated with engine transient operating during acceleration
and deceleration modes. As indicated in Section 5.5 ICA Test
Rig, flcw, temperature and speed relationships were deliberately
set at specified conditions, unlike a smooth acceleration mode
for a production type APU, Since blade tip burning usually
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Model GTP305-2 Auxiliary Power Unit advanced
technology components ICA radial turbine
after test

po |

Figure 201.
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occurs as a result of high lightoff temperatures during start and
not in steady-state operations, the potential for rotor distress
is more prevalent in a first run developmental start than during
a well defined and controlled production mode start. Although
smooth lightoffs were eventually achieved during ICA testing,
initial high temperature spikes were incurred during early test
rig operation. Experience has shown that utilization of production
oriented fuel control monitoring systems to achieve longer but
cooler start transient, normally remedies this situation and is,
therefore, not considered a design problem.

Similarly, saddle cracks are normally the result of exces-
sive temeprature during start/lightoff or by quenching of the
rotor. The later being a result of rapid temperature reduction
while maintaining a higher air mass flow rate. As was indicated
in Table 34, Section 5.5, overspeed conditions were encountered
due to loss of torque control at design speed. When this hap-
pens, fuel 1is automatically shut off and airflow is manually
decreased. Although this is a short period of time, it is anal-
ogous to quenching during fabricaiton heat-treatment. As stated
in Section 5.2, rapid quench rates during the rotor initial heat
treat cycle produced saddle cracks. Subsequent heat treat train
were conducted using slower quench rates. Saddle cracks were not
observed following these modifications. As stated above, produc-
tion oriented control methodology corrects these first run develop-
mental problems and, thus, rotor saddle cracking problems are
resolved during the normal course or engine development.

Blade tip burning usually occurs as a result of high light-
off temperatures during start and not in steady state operation.
Although smooth lightoffs were achieved during ICA operation,
high temperature spikes were experienced. Fuel control schedul-
ing adjustments using current full authority digital monitoring
systems would be utilized in a production mode to achieve a
longer but cooler engine start. Experience has shown that this

is the normal remedy.




Saddle cracks are normally the result of excessive tempera-
tures during engine start or by gquenching of the rotor. The
latter is a result of rapid temperature reduction while maintain-
ing a higher flow rate. Both conditions were experienced during
test, In addition, as stated in Section 5, saddle cracking was
evident during fabrication of the rotor due to guenching in the
heat treat cycle. As stated above control modes correct these
prcblems which seem to impede most new engine development pro-
grams.

6.3.2 Radial Nozzle

Thermocouples and Thermindex paint were used to determine
radial nozzle operating temperatures. Those located on the aft
nozzle sidewall near the vane leading edge, provided the most
significant comparison data. An average metal temperature of
1550°F was recorded by thermocouples located at this position,
with the ICA operating at an average nozzle inlet of 2065°F and a
flow rate of 2.02 lbm/sec. Using the nozzle overall design cool-
ing effectiveness of 0.300 (see Section 3), the estimated temper-
ature would be 1540°F.

As shown 1in Fiqu'es 204 and 205 the <combustor ramp
Thermindex paint results indicate temperatures ranging from 1750
to 1825°F. Predicted values of peak metal temperatures of 1950°F
were analytically determined. Thus, from a limited thermal model
picture the effectiveness of the nozzle cooling appears to be
functioning and lends credance and validity to the life estimates
previously stated.

6.3.3 Axial Turbine Nozzle

Figure 206, shows Thermindex paint results which indicate
temperature levels of 1400 to 1500°F in the hub region of with
axial turbine nozzle vane temperatures between 1450 to 1500°F.
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Ficure 206. Axial turbine nozzle Thermindex paint results
Model GTP305-2 Auxiliary Power Unit advanced
technology components
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These recorded metal temperatures approximate the ranges analyti-
cally predicted during design. No evidence of distress was noted
during disassembly.

6.3.4 Axial Turbine Rotor

The axial turbine rotor, shown in Figures 207 and 208, does
not show any evidence of distress in the hub region or the blad-

ing.
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Figure 207. Ax1al turbine (forward side) Model GTP305-2
Auxiliary Power Unit advanced technology
components
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SECTION VII

CONCLUSIONS

The components designed and tested under the Advanced Tech-
nology Components for the Model GTP305~2 Aircraft Auxiliary Power
Unit included the combustion system, radial turbine stage, inter-
turbine duct, axial turbine stage, and exhaust diffuser. These
components were individually rig tested and then collectively rig
tested in the Integrated Components Assembly (ICA) test rig at
design operating conditions of temperature pressure and speed.

The combustion system for the Model GTP305-2 consisted of a
reverse flow annular combustor with an AIR-ASSIST/AIR BLAST fuel
injection system. Primary combustion system goals were to
achieve an average combustor discharge temperature of 2067°F tur-~
bine rotor inlet temperature with cooling flow), a temperature
spread factor of 0.15 and a combustor liner pressure drop of 5.0

percent.

At design point conditions, the combustor demonstrated a
temperature spread factor of 0.163 and a combustor liner pressure
drop of 4.1 percent. Thermal paint test results indicated liner
temperatures of 1700°F at 10 discrete locations. Primary zone
outer wall temperatures were 1500°F or lower. Based on
AiResearch experience with a wide range of combustors, the tem-
perature results obtained for the GTP305-2 combustor correlated
with other combustors indicate a component life exceeding the
contract goal of 2500 hours. Although the combustor did not
demonqtrate the 0.15 pattern factor goal, significant improvement
was shown compared to the cycle requirement of 0.216.

The cast AF2-IDA radial turbine rotor and integrally cast
radial turbine nozzle designs, together with the interturbine
duct, axial stage and exhaust diffuser, were fabricated and rig

tested to verify aerodynamic design. The cold-air rig test pro-
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L gram included single-stage radial turbine and overall two-stage
: tests with and without cooling flows. The radial stage test
results showed the design point efficiency and interturbine duct
total pressure loss were achieved. However, the significant
result established from the cooled radial stage test is that no
cooling flow pumping penalty is incurred with rotor backface
cooling flow. Therefore, the radial turbine aerodynamic perform-
ance determined without cooling flow is applicable for cycle
matching by assuming the backface cooling flow bypasses the
radial stage and is mixed at the rotor exit. For the two-stage
turbine test, the measured overall aerodynamic inlet total-to-

exhaust diffuser exit static efficiency was .876 compared to the
predicted value of .871 at design clearances and Reynolds number.
The measured diffuser recovery at design point conditions was
0.447 compared to the design goal of 0.40.

Overall two-stage turbine efficiency with design cooling
flows was determined from a thermodynamic heat balance between
the mainstream and secondary cooling flows. Since the majority
of the cooling flow was available to the axial turbine, a cooled
cycle turbine "efficiency" accounted for this additional work and

was then consistent with current cycle methods of bypassing cool- {
ing flows and calculating overall turbine system horsepower based
on radial rotor inlet mixed flow (the radial stator cooling flow
is mixed at the rotor inlet). On this basis, the design point
overall total-to-diffuser exit static cooled "efficiency" 1is 1

0.884 at design speed and pressure ratio compared to the pre-
dicted value of 0.866.

AF2-IDA radial.turbine rotor castings were X-ray inspected, i
as-cast elevated temperature tensile strength measured, and as- !
cast/heat-treated room temperature tensile and stress-rupture 1
properties determined. The rotors were HIPped in four combina-
tions with temperatures varying from 2150 to 2250°F, pressures of f
15 to 29 ksi and a constant 3-hour time period. Evaluations were i




per formed using four HIP conditions in combination with eight
heat-treatments. Four HIP/heat-treatment combinations were
selected for LCF testing on the basis of acceptable microstruc-
tures and mechanical properties. Room temperature strain-control
LCF tests were performed and results analyzed on a Weibull dis-
tribution. Data analysis indicated that LCF life improvement was
obtained through HIP and heat-treatment. Specifically, a 3X LCF
life improvement was achieved for as-~cast wheels predicted to
fail in less than 1000 cycles.

The combustion system, cast radial rotor, cast radial noz-
zle, machined axial rotor, and axial stator, and the fabricated
exhaust duct assembly were built into the integrated components
assembly test rig. Testing was cnducted at design operating con-
ditions of temperature pressure and speed. ICA test results,
combustion system test results and turbine cold air test results

were 1input to the cycle model. All other cycle parameters
remained unchanyed. The Model GTP305-2 Advanced APU is capable
3

and 2.25
horsepower/Lb. at 130°F sea level ambient day. This compares to

of 225.3 shaft horsepower, 206.8 horsepower/FT

the design goals of 186.3 shaft horsepower, 171.0 horsepower/Ft3
and 1.86 horsepower/Lb at 130°F sea level ambient day. All com-
ponents lives were judged, based on analytical predictions and
test data, to be adequate for a minimum of 2500 hours based on a
5-hour duty cycle.
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APPENDIX A

BUILD PROCEDURE

The following sequence of build was utilized during ICA
assembly. Shim calculation sheets are attached and provide a
record for establishment of clearances and structural interfaces.
This information is provided as reference material only. Refer
to Drawing 3606180, Sheet 1 of 2 for part and find numbers
reflected in this build procedure.
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DEVELOPMENT TEST PROCEDURE
TEST AND LOG SHEETS

The following pages are included as reference material.

These pages include the Development Test Procedure adhered to
during test of the ICA and copies of the day-to-day test log that
provide a chronology of events throughout the ICA test program.
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| " AIRCSLARGH MANUFACTURING GOMPANY OF AMIONA FOR INTERNAL USE BY
‘ e m— AIRESEARCH PERSONNEL ONLY

DEVELOPMENT TEST PROCEDURE
DT— 6127

TEST ITEM & P/ GTP305-2 DATE
3606180 December 11, 1978
TEST TITLE

GTP305-2 Integrated Components Assembly Testing (ICA)

TACILITIES & SPECIAL TEST EQUIPMENT

1. Cll6 test cell
2. Sanborn recorders (two 8-channel)
3. Real time analyzer

TIST 0BIECTIVE

The integrated components assembly test
objective is to determine the aerodynamic
and mechanical performance of the GTP305-2
turbine section components under actual
operating conditions (temperature and
pressure).

PREPARED OV Z::m TASK CAOINEER PROJECT |
J. W. “eets J. W. Teets &7 J. Kidwel
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- AIRESEARCH MANUFACTURING COMPANY OF ARIZONA
+r cassnnatien
Tl PuOENIN, ARIZONA

DEVELOPMENT TEST PROCEDURE YSTEmS
D T- 6127

1. Test Set-Up

The test rig consists of actual GTP305-2 turbine section
components (i.e., all engine components aft of the compressor/
diffuser) mated to a forward section that simulates the com-
pressor dynamically. This rig also provides a plenum for
supplying conditioned air to the turbine. The forward struc-
ture, including bearings, is basically a GTP305-1 engine
structure. Connecting this forward structure to the turbine
section is a rig structure specifically designed for the
GTP305-2 integrated components test rig. The length of this
structure is such that the GTP305-2 engine bearing span is
duplicated. The rig structure incorporates a toroidal plenum
with inlet pipes at two circumferential locations for distri-
bution of facility air to the turbine plenum. The supply
plenum exit incorporates vanes to induce a 25-degree swirl to
simulate combustion system inlet flow conditions. Dummy
compressor rotor hardware, which duplicates engine compressor
rotor mass distribution and stiffness, will be utilized to
reproduce the engine rotor dynamic characteristics in the rig.
A GTP305-2 engine tie-bolt is used to hold the rotating group
together.

Provisions have been made in the rig to incorporate a forward
thrust balance piston if calculations indicate that the thrust
of the turbine components is greater than the thrust bearing
capability.

Oil supply and scavenging for the forward and aft bearings will
be provided by motor driven pumps which are part of the test
facility.

2. Instrumentation

Instrumentation for the integrated components assembly testing
is shown in Figures B-1l and B-2 (Drawing 3606180). Also, Tables
B-1l, B-2 and B-3 will be used to identify instrumentation.
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In addition to the instrumentation shown in Tables B-1, B-2
and B-3, the following instrumentation will be incorporated
in the facility portion of the test setup.

(a)

(b)

(d)

(e)

(f)

(h)

Turbine exit temperature thermocouples will be incorpor-
ated downstream of the turbine diffuser in the insulated
facility exhaust duct.

Emission probes will be incorporated in the facility
exhaust duct. Four probes with three holes facing the
gas flow will be used.

A monopole speed pickup will be incorporated in the
adapter gearbox to determine gearbox input/integrated
components assembly output shaft speed (in the unit).

Existing facility instrumentation will be used to deter-
mine water brake torque and speed.

0il flow and pressure instrumentation will be incorpor-
ated in the facility o0il supply lines to the integrated
components assembly.

Vibration probe for the engine (2).

Vibration probe for the gearbox (1).

Vibration probe for the water brake (1).

401
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SANBORN RECORDER INFORMATION

Parameter Qty Range
Speed 1 0-100K
Tail Pipe Temperature 1 0-2000°F
Vibration Probes (Engine Front 2
and Rear)
Thrust Bearing Temperature #321 1l 0~300°F
0il Pressure 1 0-100 psig
Combustion Inlet Pressure #102 1 0-200 psig
Rotor Backface Pressure #16, #17 2 0-100 psig
Water Brake Torque 1 0-300 ft-1lbf
Fuel Flow 1 0-200 l1lb/hr
i;ibine Exit Pressure (Axial) 1 0-20 psig

2.1 Lab Interface

The high temperature component test facility (Cl1l6) is
designed to allow hot testing of engine turbine sections.
The facility is provided with various energies and control
systems that permit testing under a wide range of airflows,
temperatures, pressures, shaft loads, and speeds.

The existing facility air supply system supplies inlet air

to the hot turbine rig at temperatures from 40° to 800°F with
airflows up to 1300 pounds per minute and pressures to 275 psia.
However, the rig air supply system can be modified to route
inlet air through an existing additional heater, which will
allow inlet temperatures up to 1000°F. Airflow will then be
limited to 180 ppm. The rig inlet ducting is provided with a

402
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rupture disc for emergency shutdown in the event of an over-
speed condition. The inlet system also incorporates mixing
valves to mix hot and cold air for temperature control, a
pressure regulating valve, airflow measuring section, and
inline air filter.

The facility load absorption system consists of a gearbox and
a water brake. The load applied to the test turbine is con-
trolled by coarse and fine water flow regulating valves.
Torque is measured by a load cell incorporated in the water
brake support structure. This system is capable of absorbing
up to 3000 hp at input speeds up to 35,000 rpm. Since the
design speed of the GTP305-2 turbine is 75,684 rpm, an addi-
tional gearbox (General Electric) will be used in place of the
existing facility gearbox. Gearbox installation and run-in
will be in accordance with methods agreed upon by General
Electric and AiResearch.

The facility is equipped with monitoring devices for critical
parameters such as speed, vibration, bearing temperatures,
oil pressure, water pressure, and turbine discharge tempera-
ture. These devices provide a visual readout at the control
console and can provide an audio warning or unit shutdown if
preset limits are exceeded.

Fuel control equipment will be used to contrcl the fuel flow

to the test turbine atomizers either as a function of speed

or as a function of turbine discharge temperature. Therefore,

a constant turbine speed or discharge temperature can be main-
tained under conditions of varying load and/or inlet conditions.

A high speed digital data acquisition system will be used to |
record turbine aerodynamic and mechanical performance para- E
meters. This system is capable of recording data at a rate
of 200 samples per second and can display corrected data at
the test cell console within 2 minutes after a data scan is
taken.
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A quick-look scan will be used to check the preliminary turbine
performance at the test cell.

The following is a list of requirements to be accomplished
during the test set up and monitored during testing.

(a) Cooling Air - Bore cooling flow will be supplied from the
inlet plenum at .023 lb/sec (design point).

(b) Buffer Air (air supply or vent)
1) At the bore cooling inlet station zone C6, buffer air
will be greater or equal to the bore cooling. Shop
air will be used. (#9 for bias pressure)

2) Thrust balance. (140 psig maximum, Figure B-3)

3) Thrust balance buffer air zone E6 2 thrust balance
#2. (this is a vent)

4) Vent 0.B. of buffer air #3 zone E6 (vent).

NOTE: Refer to Figure B-3 for the pressure values on
the thrust palance.

(c) Overtemperature Protection and Monitoring
| 1) Tail pipe temperature set point 1350°F.

2) Oil Temperature
o Gearbox¥ inlet 110°F

o Engine bearing oil out (monitor)

3) Thrust bearing temperature 300°F maximum. API meter
[ used to monitor.

4) Aft bearing temperature 300°F maximum. API meter
used to monitor.

l 404
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(d) Oil Pressure
1) Engine, 60 psig minimum (monitor)
2) Gearbox, 15 psig minimum (monitor)
{e) Vibration Probe
1) Engine (2)
2) Gearbox (1)
3) Water brake (1)

3. Mechanical Build

Office Memo JRK-0072-022478 defines the integrated components
assembly test rig.

4. Test Procedure

The instrumented integrated components assembly will be
installed in the test facility. The following tests will be

performed:

(a) Motoring test (unfired) to 100 percent design speed to
verify mechanical integrity. During this procedure, cold
air performance data will be at specified condition.

{(b) Fired mechanical checkout to 100 percent speed, including
controls familiarization. During this hot run up, perfor-
mance data will be taken at specified conditions.

(¢) Performance demonstration.

(d) Thermindex paint test.
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Verify Mechanical Integrity

Initially, the rig will be motored at approximately 5000 rpm
using inlet air pressure to drive the turbine. While motor-
ing, proper oil flow to the bearings will be verified and
;roper operation of all instrumentation used to monitor
mechanical condition will be substantiated. The rig will

then be accelerated slowly to 100 percent speed by increasing
inlet pressure and temperature. During this acceleration,
vibration data will be recorded by a direct readout recorder
to define rig dynamic characteristics over the full operating
range. Also, cold air performance data will be recorded at
specified points. Bearing temperatures and speed will also

be recorded by this recorder. While at 100 percent speed, the
output of all installed instrumentation will be recorded by
the digital data acquisition system to verify proper operation
of the instrumentation and the data acquisition system. 1In
addition, this motoring run will provide initial familiariza-
tion with the airflow and dynamometer controls for this rig.

Fired Mechanical Checkout

When mechanical integrity and proper instrumentation operation
have been demonstrated, the fired mechanical checkout and con-
trols familiarization will be performed. The inlet airflow
and dynamometer load will be set to provide airflow conditions
and turbine speed equivalent to the engine ignition point.
Lightoff fuel flow will then be introduced and ignition
achieved. Proper operation of all condition monitoring equip-
ment will be verified. The rig will then be accelerated to
approximately 50,000 rpm for controls familiarization. This
will be done at low speed to provide a margin of safety until
riag response to control inputs is defined. Control familiar-
ization will be accomplished by operating the rig at a speci-
fic condition and then changing to a new condition to determine
the proper controls operation required to change to a new con-
dition. During this testing, the digital data acquisition
system will be used to record data at each operating point to

407
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allow verification of proper rig and instrumentation operation,
as well as acquire low speed aerodynamic data. Once controls
operation has been defined and mechanical integrity under fired
conditions demonstrated, the rig will be accelerated to 100
percent speed and the design point (100 percent power) condi-
tions established to ensure mechanical integrity over the full
operating range. Combustor discharge (turbine inlet) tempera-
ture will be calculated by two methods: 1) fuel/air ratio and
2) power balance.

A. Light-Off Procedure

NOTES: 1) Set up fuel system such that both low and high

flow rates can be read at the appropriate
times.

2) Start with discharge valve wide open.

3) Rig start will be made with the initiation of
fuel flow and ignition simultaneously.

4) Start cooling flow into the rig after light-
off stabilization.

Set rig airflow to 0.4 lb/sec at an inlet temperature
of 238°F; refer to Table B-%.

Preset fuel flow at 24 lb/hr per Table B-5, Figure B-4,.
Continue to flow air through the rig to clear any
fuel accumulated while setting the flow.

Adjust water flow through water brake to obtain torgue
values as shown in Figure B-5 (torque/rpm).

Light off the rig with the fuel flow and ignition ini-
tiated simultaneously. Use fuel flow Table B-5 and
Figure B-4. Pressure to air assist should be 5 psi
above the combustor inlet pressure. Discontinue air
assist after 60 percent N.

408
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TABLE B-5. COMBUSTION SYSTEM OPERATING CONDITIONS

Atomizer Fuel Flow .Idle 80 lb/hr
Full Power 151 1lb/hr
Ignition 20 1lb/hr
Combustor Airflow Idle 2.08 1b/sec
Full Power 2.01 1b/sec
Ignition 0.16 1lb/sec
Combustor Inlet Temperature Idle 770°F
Full Power 788°F &
. i
Combustor Inlet Pressure Idle 109.6 psia |
Full Power 118.8 psia |
l
!
Average Combustor Discharge Idle 1480°F j
Temperature Full Power 2085°F |
J
NOTES : N -

1. Operating parameters are for a 130°F sea level day.

2. For test purposes, these parameters will be held
within *1 percent of stated values.

410
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5. If light-off is not achieved after approximately 10
seconds, turn off fuel flow and ignition and repeat
the above procedure with 5 lb/hr more fuel flow.
NOTE: Maintain an appropriate pressure on the thrust

piston (minimum thrust, 100 lbf; maximum
thrust, 400 1lbf). Use Figure B-3 to obtain
the pressure needed on the balance piston.

Stabilize

After light-off is achieved, increase the combustor inlet

temperature to 385°F keeping the turbine inlet temperature

at 1360°F to 1390°F, 46,000 rpm, and 40-50 ft-1b torque.

NOTE: These data points could be varied per Table B-4 and
Figure B-5.

Design Point

Gradually work up to the following conditions:
1. Calculated turbine inlet temperature 2050°F.
2. Combustor inlet pressure 117.6 psia.

3. Combustor inlet temperature 787.5°F.

4. Air flow 2.06 1lb/sec.

5. Torque on water brake approximately 268 ft-1b (Table B-6
and Figure B-5).

Shutdown

1. Shut down by gradually decreasing air flow, pressure
and fuel flow to the following conditions:

.
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a) Turbine inlet temperature 1425°F.

b) Combustor inlet pressure 22 psia.
¢) Air flow 0.4 1lb/sec.
d) Reduce water brake torque per Figure B-6.
2. Decrease the combustor inlet temperature to 240°F
then continue to decrease turbine exit temperature

(tail pipe) to 1290°F.

3. Shut down by first cutting off fuel flow, then 10
seconds later air flow.

E. Repeat the startup/shutdown procedure if necessary to
familiarize the test procedure.

4.3 Performance Demonstration

Upon completion of the initial fired run, the performance demon+
stration will be accomplished (100 percent speed). The seven
performance points listed in Table B-7, which encompass 130°F,
sea level day operating conditions from idle to 100 percent
power in increments of 100°F turbine rotor inlet temperature,
will be run. As also shown in Table B-7, each performance

point will be derived by a specific turbine rotor speed,

inlet air pressure and temperature, and turbine discharge
temperature. After stabilization at each point, two data

scans will be taken.

4.4 Thermindex Paint Test

Upon completion of the performance demonstration, the rig will
be disassembled and inspected. Hardware condition will be
noted and photographs taken. Thermindex paint will than be
applied to the combustor, combustor baffle assembly, radial
turbine nozzle assembly, radial turbine backshroud, and inter-
stage duct/axial turbine stator. The rig will be reassembled

4.5
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and installed in the test cell. The rig will then be started
and accelerated to 100 percent speed. The 100 percent power
condition (Point 7, Table B-7)will be set up and the rig run

at that condition for 10 minutes. The rig will then be shut
down, removed from the test cell, and disassembled. Thermindex
paint results will be analyzed and the hardware marked with
isotherms and photographed.
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APPENDIX C

"QUIK~LOOK" TABULATIONS DESIGN POINT DATA BOS LOG

The following pages are the "Quik-Look" tabulations corres-

ponding to the data matrix listed below. In addition the BOS Log
of the design point data (Data Point 11) used in establishing

turbine performance.

TEST MATRIX

% N/A/6
P/P)T_DE 90* 100** 100***
5.50 1 5 9
6.50 2 6 10
7.529 3 7 11
8.5 4 8 12
*Run at T . = 2050°F, speed ~ 68116.5 rpm
*Run at reduced temperature and speed, Tin =~ 1690°F,
N~ 70,000 rpm
***Run at full temperature and speed (design point).
Design Point Condition
N = 75,684
- ]
in 2050°F
P/Plepe = Tin
No. 11 2050°F
No. 10 1900°F
No. 9 1800°F

452




_ 3 Py .

R

i
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Ciloe

OFFsFY
WMOR
WNET
WMCURR
wWiBor
LBHa1
3QThF1
LgH4l3
PBAR
MORCLP
MORT1
PRBF1
PRBFI
PSSSF1
PSSSF¢
PSSsay
P8SSAL
PaPAt
PBPA?
PBPF1
PBPF2
DPBPY
DPBP2

QFFSET
WMOR
WNET
WMCORR
WIBOR
LBH412
SQTHET
LBH413
PBAK
MQRLP
MORT1
PRBF1
PRBF 1
PSSHFL
PSSSF¢
PssSsay
PS5S8SAQ
PEPal
PBPA?
PBPFI
PBPF?
DrRP1)
ppap?

LWTrilySe2 0}

10:2389,02
2 1.74825
= 1.72403
x N,R3%39]
s ¢,
3 133,187
F 4.202R7)
= 0.
H 14,00%0
s l.59u81
H 799,051
H] ¢9,1081
H 26 ,R40])
a2 0,207%43
= 0.,234070
= 26,3027
= 26,4020
=z 50,618y
=z SR ,6421
z l.u29Bo
s 1.122¢71
H 57,5899
= 57.509%«

0:75249,.0¢
1.75264
1.72635
N.635174
0.
131080
2.19389
0‘
14,668
l.0%100
B01,uS1
49.0810
¢85,7871
D,194,.R}
0238070
¢He¢?y
2h,8.%y
59,4393
20,5127
1.ud313
1,127
57 ,45F
97,3900

(LI T LU O L L T O T T O T T T O '

14

LR 20 R R BE B R 2R BE BE BE BE B BE R B 2R BE BE R BE N

LA

LR L A B B 2R B BE BE BE K BE BE BE BE BE R B RR" IR

LR

1B

vd/04
INIFGRATED CutreNIiFn®s aSaY TeSIInG (ICK)

ReCURYU 15:4¥9109.484¢

ErFFTT
MURP
IsCODY
FAL %)
TUROTIL
CrSaty
CpsS4tl
o2 R1e] |
RaTFWY
AYTF
RuTAF
PSNTH}
PSNTH2
PSMTHJ3
PSNTHe
CINPTL
CINPT2
CINPTI
CINPTAY
PTRL1
PTRD2
PIRD]
PTRD4

RECURD
EFFTIT
MQRP
IsCUDP
FM143
TURQIL
CPS410
CrS4ll
DeNUM
RuTFwWL
BaTF
RoTAF
PSNTH1
PSNTH¢
PSITHS
FSNTH4
CINPTL
CINPTY
CINPTS
CINPT4
PRyl
PTSVL2
Prwyd
PTRUS

BHHEULRERN NN HEHN DG NENN

0,485527
¥3,002y
0,
1044,.57
d44v.Y40
1755.3>
1134.8¢0
119,3%¢
3244933
434990
3R ,9429
40,1160
30,235>
42.915
0,1ul43p
77.996>
78,4474
78,4470
0.h05935
0,478724
0.342111
0,357290

15:49139.484

BN RN WHRNYNNEN NN NN

(T 1}

DATA

0,475551

93,051y

ol

103,57

439,73

1731.5¢
0

1138.Fy
119,566
320,115
232,950
38,8yFy
40,0030
30,195/
42,068
N,1v143b
77.817)
TR, 3Ry
78,3015
CoFnSels
0,0/30f«
0,337u%2
0,3547800

POINT 2

LR BE B B B B S BE B JE 2 28 B B BE BE SR BF 2E N 2R A

LR B B B R B B BE BE IR B0 IR BE IR BE R BF BE NFNE N

184 C
FaluLSA
FouHA
I.TeSY
L TeSe
CIMTY
Ci'aTe
ti.GCRE
Tel

Cilu

CurobPU
PLToPY
Tilwle
Tl"wld
T
CI*1Th
CiiwTh
TIPAJ

TiPa2

TiPAl

PirTeDe
FrT=T
TuRule

eSSy €
PoizuSA
PoNUHA
I.TPS1
1.7TP82
CIMNITL
CINTTZ
E..GCRF
Ty
Filn
CURLPY
BLTOPY
Tavall
TiM4l13
LETd 4
Ci. ITA
Cl1eTA
PR3
b1 en2
Taeal
e "T=De
Lrn =T
Tedule

vb/25/179

=0,4e0430

«0,000130
12,4020
12,5250
RIX Y3 )
7184109
168,364 .
3li.v72
87,731y
3113«,8
0.9vse0vy
4057,.37
714.467
1893.9:
114,467
184200
1216,19
1205.60
1234.87
0.3137>
o.,U3yd}
186,091

«0.279004
*0,001403
12,4430
12.5424
114457
T1v.93¢
160,047
3l1¢el90
87.6437
3l¢lvao
0.9v7v74
2036.90
716,095
188l,6V
Tlo.u9d
Te.lbby
l12un,90
1¢5V.14
leenels
©,30505
cev3a9l
ldo.70>

N

e




Clie

{ NFFsFT
, WMOR
: WNET
: WMCURK
| WIiBuY
- | LuH41 2
t’ SQTnEY
LBHald
PBAK
MURDP
MOR 1
PRRAF
PRBF 3
PSSSF1
PSSoF2
PSSsal
PSSSAZ
PBPAY
PBPA2
PHPF1
PBPF?2
DPBPY
DPBP?

OFFSET
WMOR
WNET
WMCORR
WIRUR
LBH4lg
SQTHFT
LBHel13
PBAw
MORDP
MORT1
PRBFY
PRAF 3
PSSSF1
PSSSF ¢
PSSS5A1L
PSSSAZ
PBPA)
PBPA?
PBPK1
PBPF?
DPRPY
OPRYP2

BTriyse? 0}

G:25:i49,0y
216944
2.1%0Ry

Nefh3S5730
a2,
137,59
2.11503
n.
14,0030
2.utold
189,33,
37,824¢
33,9492
0.107753
0.220807
33,4850
33,A30y
57,849
57.77100
1-02980
1.16250
56,8197
96,607y

LU A T T N N NN

10825249,02
2.1Ah874
2.13024

0,634570

0.
137.023
24,1157y

nI
14 ,nop
¢.0148R7
191,060
37,6364
34,0951

N,181017

Ne2¢0en7
33,.6v44
33,7503
57,9557
57,0822
l.vdstl
1,1757%
55,9120
56,8065

LU LI L LI O T O O I T T T T VO T I O TR A LI |

—
>

‘Ili”iiiilliiil’ii’ifii

-
b4

LR R S5 B TR 3R IR AP 3K IR B I N N A '

1R

18

U4/0N4
INLFGRATED CutpNaFuly aSsY TeSTING (1CA)

RLCURD 16:008U%.64

ErFIT
MURP
T3Cunp
Frile3
TURDIL
CPS410
CPS4ll
DeNOM
RATFWD
BaTF
RATAF
PSNTHL
PSNTHZ
PSNTH3
PSNIHG
CINPTI
CINPT2
CINPT3
CINPT4
PTRD1Y
PTRD2
PTRLI
PTIRD4

ReCURD
EFFIT
MURP
IBCoDP
Fm143
TURQIL
cPS4lQ
CrPS41l
DeNU“
RBTFWD
BaTF
RBTAF
PSNTH1
PSNLHZ
PSNTHJ
PSNTH4
CINPTI
CINPTQ
CINPT3
CINPTq
PLIRD1Y
PTRD2
PTRDI
PTRD4

L 2O U B I T I U O DI U I T I T T

hnnunun

O.5ulobbo
115,11y
C.

1041 8¢
43v,16>
1817,97
0.
1448,0¢
118,39
298,398
410,567
48,9367
91,509
39,446y
53,618p
0.,006174
95,5570
96,074¢
96,0075
1.2048y
0,620397
0.410410
0.,349701

6:iNbt39,4%

0,5U04313
115.47v
0.
1041,R0
43y,165
117,31
o,
1451,0
118,2R0
29s.v10
416,240
49.1350
51,735«
39,612v
53,8441
0,101430
~ 95,8062¢
96,2997
96,2732
c1ad143y
0,622927
0,410410
0.35729¢

DATA POINT 3

LR 2R 20 2K JE R BE JE AR B RE R e ey

AR R R K JF I JF JR BE BN N NN AR NN B NP R g e

18y ¢
FaDLSA
PoDUHA
71.TeS1
1.TpS2
CLUyT)
CiilTe
s GCRE
Ts0R

P T
CuRsby
PCTSPL
TiNgl12
TIiNal3
TiNeR
CIMITA
CLNKTA
TiIPA3
TiPu2
T1Pal
PxTeDg
PrTwT
TuRWGUe
TJURKPM

TeST C
PoDuSA
PSDUHA
Tw'tPSy
TaTkS2
CINGTL
CINYT2
HGURF
fuiln

PlIn

CURSPD
PCToPY
TINal2
Tilgly3
T1NPB

CINYTA
CINKPTA
TEPA3
TLIPa2
TIPAL

FRT=Ne
PuTeT
TuRGUE
TURKPM

SR HAAHNNE NN RN NN

ub/23719

“0,427utn
“0,002907
16.8390
16,7000
T2V.454
7204194
1544434
305,461
1Uw,471
32¢b44d
0,938217
1RkolC,64
725,324
1747,.01
7234323
¥5.9064
1U79,5%
1055,67
1049,37
T.06643
7.10412
446409y
684T77.8

«0,335190
0.,glp4l
16.919%
10.8062
T21.549
127,444
1544434
200,307
104,098
32327.1
Q0,92%52¢
1802,30
Te4.497
1717 ,H3
724,497
$6.1459
076,21 .
1055,79
10468,57
Te58399
Te1193y
242,178
$8397.4




r116

GTP10S=2 01

OFFSFT 07152:50.15
NMOR = 1.81744
WNFT 3 1.78328
WMCORR = 0.650198
WIROR » 0.02659%
LBHe12 a  100.141
SOTHFT s 2,08201
LEHAIL & 0.
PBAR =  14.0996
MORDP &  1.81016
MORT! 5  %18.249
PRAF{ &  28.4872
PRRFY = 24.5908
PSSPl = 0.207187 _ . _
PSSSF2 & 0.194499
PSssat = 23.713s
PSSSA2 & 2).7667
PEPA1 =  61.8888
P8PA2 = 61.9a88
PBPFY _m 2,650 .
P8PF? =  2,33380
NPAPY =  §9.0218

DPBPZ s _ 59.5550

NEFSFT 07:52:50.15
WMOR = 1,83470
WNFT = 1,780%8
WHCORR & 0.649584
WIROR s 0.026603
18He12 & 100,2%0
SOTHFT = 2,05389
LBH413 8 0.054473
PBIR = 14.1016
MORDP =. 1,00818
MORTY s  @16.612
PRAFL = 20,4439
PRAFY &  24.%772
psssri = 0.207787
PS8SF2 = 0.194499
Passit = 23.7138
PassA2 = 21,7667
POPAY_m 61,9818
PRBPA2 = £2.0084
PBPFY =  2,8653%
PRPF? = 2,33380 )
pPRPy = 89.136%
0PARr?2 =

59.674¢

04/0
INTEGRATED COMPNONENTS ASSY TESTING (ICA)

__PTRD4A

4

RECORD 10306122.43
EFFTT a 0.41122%4
NORP & 91.5316
TBCONP s 2,85132
FH143 8 1112.67
TURDIL & 410,314
CPS410 &  1298.71
CPS4ll & 0.033877_ _
DENOM = 952,986
RBTFYWD = 102,691
BBTF = 114.9%§
RETAF = 406,398
PSNTH1 = 17,8818

__PSNTH2 & _19.3796 . ___ . __ ..
PSNTH3 = 10,2245
PSNTHG &8 40,0944
CINPTL 5  0.1014086
CINDT2Z 74,0078
CINPTI & 74,3528
CINPTS ® . 74.4057 _ _ .
PTRD1 = 0.402259
PTRO2 & 0.383389
PTRDI = 0,37%7A3
PTRD4 = 0.702815
RECORD 10308152.43
EFFTT w 0.433097
MORP =  91.8316
1BCODP ®  2,85802
FNIA3 & 1113.46

_ _TuROIL = __ 409,230 R

CPS410 = 1300.68
CPR41L & 0.067154
DENOM =  9%§,398
RATFWD s 102,092
BETF = 320,037

_R8TAT s 205,122
PSNTHL & 37,8280
PSNTHI = 19,3663
PSNTH = 10,2245
PSNTH4 & 40,8811
CINPTY & 0,088199

___CINPT2 =___ 14,0603 _ i

CINPTI » 74,3924
CINPTG & 74.3688

_PTRDI & 0,4822%9
PTRD? = 0,.383289
PTROY ® 0,)80¥5¢

8 _0.707806

DATA POINT 5

455

TEST v
PSODSA
PSDOHA
INTPSIH
INTPS2
CINTTY
CINTT2

BMGCRE.

TBOR
PTIN
CORSPO
PCTSPOD
TINAL12

TINGL12.

TINPB
CINTTA
CINPTA
TTPA}
TTPA2
TTIPAL
PRT=DE
PRTeT
TORGUE
TURRPM

TEST L
P3DOSA
PSDDHA
INTPSY
INTPS2
CINTTY
CINTT2
BNGCRYF
TBOR
PTTIN
CORSPD
PCTSPD
TING12
TINGL)
TINPA
CINTTA
CINPTA
TTPA)
TTPA2
TTPAL
PRT=DE
PRTeT
TORQUE

 TURRPN

|

07703779

=0.261801

=0.188916
10.9707
10.8644
718,083
124,219
198,161 .
208,318
83.9370
34094.9
0.990902
1724.42
.720.634
1530.43
720.636
74,2951
1000,.49
987,809
99%.72)
6.04985
5.7%476
155,494
69963,.1

«0.201168
«0,188916
10.9574
10,0644
719,045
724,471
156,299
289.497
83.95%7
34093,0
_0,990845
1727.79
122,364
1535%.70
721.7%8
74.2728
1002.3¢
989,478
997.434
6.05019
5.79420
196,269
70013,1




Clte GTPILS=2 01 04/04 07/03/79
INTEGRATED CUMPONFNTS ASSY TESTING (ICA)

OFFSFT 073192150,.15% RECORD 103185:52.43 TEST L
3 .WNOR ] 1,95444 EFFTIT » Q.4427 PSDDSA » =0.322010
WNFT = 1.89714 MORP L] 98.41 1 PSDDHA = =0,.13021)
WMCORR ®  0.648393 18CONP s 3,00086 INTPSY = 12.230
?’ WIROR = 0,02798% Fui4ey = 1119,.81 INTPS2? = 12,1268
. LBH412 = 103,074 TUROTIL = 412.80) CINTTI = 132,814
; SQTHFT = 2,04398 CPS410 = 1334.79 CINTITZ2 = 137.9713
e LBH4l1d & 0.054412 CPS411 & 0.033577 BNGCRY = 153,981
. PBAR = 14.09%e DENUM = 1056.70 TBOR a 294.747
MORDP = 1.9338% RBTFWD » 105,399 PTIN s 89,1798
MORT{ = 825,458 88Tr L] 326,984 CORSPD = 34198,¢
PRAFY =  30.9%53 RETAF = 203,83 PCTSPD & 0.99390)
PRAFY s  26.8361 PSNTH1 a 40,9210 TING1Z = 1707.37
_PASSr1 = 0.221074 PSNTHZ &  42.6749 TiNell = 73%.957
PsS8sr2 = 0.207187 PSNTH3 = 32.9484 TINPR = 1522.47
PSSsAl = 26,012} PSNTHA & 44,2429 CINTTA = 735.393
PSsSsaz = 26,06%4 CINPT, a 0,088199 CINPTA = 19.7739
PAPAy = 64,1741 CINPTZ = 79.%347 TTPA = 962.3%¢
PAPA2 B  64.1344 CINPTI = 79,9068 TIPA? =  y58.0089
PaPF1 = 2,.172%9 CINPT4 & 719.8802 TIPAL = 965,467
PBPF2 = 2,29394 PTRDY = 0,.393389 PRT«DL = 6.4299)
DPRPt = 61.4070 PTRD? = 0.30733 PRT=T 3 6.16134
NPRP2 = __ 61,8405 PTRD3 = 0,29719¢ TORQUE = 172.%70
) PTRD4 ® 0.51014% TURRPH = 59900,6
NFFSFT 073152150,.15 RECORD 10216:22.43 TEST D
WNOR = 1.95%50A8 EFFTT & 0.442288% PSDLSA = =0,32010Y
WNFT = 1.891%% MORp ] 98.3852 PSDDHA & =0,141383
WMCORR = 0,647197 1BCODP »  3,02177 INTPS) = 12,2198
WIROR = 0.028070 FM143 = 1119.9) INTPSZ = 12.1268
1LBH412 = 102,894 TUROTL = _ 413,204 CINTT! = 733,387
SQTHFT & 2,04430 CPS410 = 1336.94 CINTT2Z = 738,702
1LBH41) = 0.0544n9 CPS41l ® 0.0671% BNGCRF ®» 156,061
PBAR = 14.1006 DENOM = 1062.37 THOR = 294,883
MOROP = 1.92788 RBTFWD » 108,600 PTIN . $9.16084
MORTL = 826,273 BOTF 322,204 CORSPD =  34223.5%
PRRFY = 30,9818 ROTAF = 205,218 . PCTsPL = 0,994639
PHRAFY ®  26,.R361 PSNTHY &  40.921¢ TING12 = 1708,04
PSSSF1 = 0,234362 PSNTH2 & 42.8749 TING1} = 736.009
PSSsF2 = 0.2077R7 PSNTH] = 32.9883 TINFPR = 1%27.41
PSSSAl s 25.94%) PSNTH4 ® 44,3492 CINTTA = 736,048
PSSsAz2 = 26,0389 CINPT! = 0,088199 CINFTA B 76,7600
PEPAY = 64.1477 CINPT2 &  79.4816 TTPAY &  y62,622
PRPA? = 64,1211 CINPT3 3 79.8935% TTPA2 ®  9%8.522
PBPF1 & 2,.75900 CINPTd ®  79,.906¥ TIPA!l &  9&0.3%4
PBPF? = 2,29394 PTRLD!I ® 0.3806%4 PRT=DE &  6.420892
NPRAPY =  61_3887 PTRD?2 = 0.304600 PHTeT =  6.16091
OPBP? = 61.8272 PTRD3 = 0.294660 TURQUE = 173.341
PTRD4 = 0.51014% TURKPM ® ©9963,1

DATA POINT 6

456




-

Clie GTPI0%=2 01 04/04 07/03779
INTEGRATED COMPONENTS ASSY TESTIHG (ICA)

OFFsSrT 07:152:50.15 RLCORD 10339152,52 TEST 0
_MMOR = 2,395W1 EFFTT. = _0.431031 PSDDSA = «0,412008%
! WNET = 2.22829 MORP = 118.16e PSDDHA 5 =0,097018
g WMCORR & 0.6408601 IBCODP 8 3.%3276 INTPSL = 16.219)
WIROR = 0.0329684¢ rri43 = 1128,54 INTPS2 = 16,139
LBHe12 = 117.%83 TUROIL = 415.55) CINTTL = 758.5)32
SQTHFT =& 2,0425%8 CPSe10 =  1%24.%8 CINTT2 ® 764,199
LBM411 = 0. CPS4lt . m Qa__.. . . BNGCRF =  146,02)
PBAR =  14.0986 DENUM =  1362,39 TBOR =& 284.472
MORDP &  2,29049 RUTFND = 106,832 PTIN = 104.5%6 1
MORT! a  838.119 BBTF = 2%8.072 CURSPD =  34270,6
PRRF1 = 38,4229 RBTAF = 205,32} PCTSPL = 0.996004
PRAFY & 31,4932 PSNTHL & 50,0495 TING12 8 1704.40
P8sar1 s 0.234362 . _ PSNTH2 . » _ _52.4014 . _TINAl3 = 764,366
PSSSF2 a  0.194499 PSNTHI = 40.9874 TINPR & 1829.10
PSSSAl = 12,4169 PSNTHA & 54.%939 CINTTA = 761,366 :
PaSSpAZ & 37,4704 CINPTY = 0,101486 CINPTA 8 96,0025
PaPAl 8 $7.4241 CINPT2 & 95.6636 TIPA & 905,242 ;
. PAPA? ® 57,5703 CINPTI & 96.197) TTPA2 = 928,178
! PAPF1 s 2,83073 = _ _ _CINPT4 = 96,1442 TTPAl = 917,744
PBPF? &  2.46668 PTRO! = 0.8929%0 PRT«DE &  7,85%29
1 NPRPT =  54.5d%4 PTRD? = 0.4822%9 PRTeT = 7.14081 3
NPAR? = _ 8%.1036 PTRDY = 0.304800 TORQUE ®  2232.1% .
W o PTPD4 = 0.467048 TURRPM & 70000,.8
o
b OFFsrT 07:1%2:50.15 RECURD 10140122.52 TeST D
i WMOR = 2,29142 EFFTT w 0.487524 PSDDSA = =0,412008 ‘
WNFT s 2,2243% MORP = 118,160 PSDOHA & =0.097014 4
. WMCORR & 0.647778 18€0DP = 3.597%6 INTPSL = 16,2060 3
1 WinaR = 0.032692 rHtey = 1128,.14 INTPS2 & 16.1396
J LeHa12 w _ 1]7,38% _ ___TUROTL ® 418,372 _CINTTL w»  7%9,520
: SOTHPT 3 2.04297 CPS410 = 1%526.40 CINTTZ &=  764.979
: LBH41) = 0. CPS414 = 0.033577 BNGCRF & 145,466 3
* PBAR 3 14,0978 DENOM s  1366,.51 THOR - 284.119 R+
MORDP ®  2,208413 RBTFWD ® 106,690 PTIN = 104.60) 3
MORT{ = 838,998 B83TF & 260,199 CORSPD a  34285,%
PkBF) w 38,4229 _ __ __ _RETAF _m _ _203,37%__ _ __ PCTSPD m 0,.996441 _
PRAFY a 13,4932 PSNTH] = 50,0495 TINAI2 = 1705.22
PSSSF1 s 0.234362 PSNTH2 & $2.4014 TING13 = 162.2%0
PSSsF2 ® 0.194499 . PSNTHY = 7 41.0273 TINPAE = 1932.32
P8SAAl & 132.190)3 PSNTH4 8 54,5306 CINTTA = 762.250
PESAAZ & 37.4568 CINPTL & 0.10148¢ CINPTA 96,0113
PaPA1 = $8.8)326 . ___CINPT2Z m___ 95,8393 _  _ TTPA} = 908,263
PRPAY =  58.5401 CINPTY = 96.1704 TIPA2 = 928.1)7 !
PBPF1 = 2,02%44¢ SINPTA ® 96,2239 TTIPAL = 917,971
PEPF? = 2.46668 PTRD1 = _0.882810 , PRT=DE ®» 7.5%638
OPAPY 8 36.0072 PTRD? ® 0.479724 PRT=T &  7.14%04
oPBRP3 ® 86.0736 PTRD3 s 0,.304800 TORGUE =  222.708
e . . PTRD4 = 0.4869884 . TURRPN 5 70044,¢

DATA POINT 7

457




e T

Ci116

NFFSFT
hMOR
WNFT
WMCORR
WI1BOR
LBH4t12
SATHFT
LAH&LS
PBAR
NOROP
MORT!
PRAFY
PRRF}
Pssart
PSSsr2
PssSsat
PSSsA2
PBPAY
PBPA?

poPrL

PRPF?2
DPRAPY

oPRP2

NFrPsrT
WHOR
WNFT
WNCORR
¥IROR
LBHe12
SOTHFT
LRHe13
PRAR
MORDP
MORTY
PRAF!
PRAFY
PASSF1
Pasara
P388A1L
PaSSA2
PAPA}
PEPA2
PRPFY
PBPF2
neep1

oppr2

GTP305«2 01t
INTEGRATED COMPONENTS ASSY TESTING (ICA)

071%2350.15
2,54809
2,47395

0.647338

0.035923
129,582
2,04449

0.
14.0976
2,.54578
844,531
44.2429
38.6486

0.260938

0.274225
17.4263
37.4928
87.9424
87.74%0

2.825%44
$5.1036

RN N NN NI NENNENNENNENNN]

071%2:50.15
2,54542
2.47124
0.647119
6,03599e
129,4%9
2,0445%58
0,0542%6
14.0966
2.54212
“es, 151
44,2296
38.7019
0.260938
0.274228
37.4396
37.%061
56,0926
57.18%0
2,02544
2.81218
84.0672
$4.3728

RE RN RERNT AR NI N ERW

l
i

- 2.83872

54,9176

04/90

RECORD
EFFTY
MQRP
18CunP
Fu143
TUROTL
cpsS4to

. CP8411L

DENONM
RBTFWL
BaTK
RuTAF
PSNTHIL
PSNTH2
PSNTH3
PSNTH4
CINPTI
CINPTZ
CINPTI
CINPTS
PTRD1
PTRO?2
PTRDY
PTRD¢

RECURD
EFFTT
MORP
T8CODP
Fui14d

_TURDIL

Cps4io
CpsSalt
DENOM
RBTrWD
BBTF
RBTAF
PSNTHL
PENTH2
PSNTH)
PSNTHA
CINPTY
CINPT2
CINPT)
CINPT4
PTRD1
PTRD2
PTRDY
PTRD4

4

10151152.53
s 0.510534
133.2%0
J.u908%
1134.89
416,617
1690.18
0.033877
1606.3%
107,033
2%3,300
204,568
57.1314

47.2060
£2.725%9
0.114774
109,143
108,686

1.39491
0.61408)
0.398000
0.449302

I BN EERENEENELERENENEDRNERNN,I

101%2122.53
s 0,.%511600
L] 133,2%
[ ] 3.907%4
] 1134.69
s 416,817
. 1686.54
s 0.067154
. 1601,9%1
] 106,779
] 255,974
u 204,563
. 57.14%1
. $9.9009
. 47.179¢
- 62.75%2%
s 0.11477¢
= 108,06)
» 108,63>
[ 108,621
] 1.392%7
s 0,8160621
® 0,398600
s 0,449)02

DATA POINT 8

o 59.882e4

108.72¢

TEST ©
PSDDSA
PSDDHA
INTPSH
INTPS2
CINTT1
CINTT2
BNGCRFP
THOR

PTIN

CORSPD
PCT&PD
TING12
TING12
TINPB

CINTTA
CINPTA
TTPAY

TIPA2

TTPAY

PRT~DE
PRTeT
TORQUE
TURKPM

TEST D
PSDOSA
PEDULHA
INTPSY
INTPS2
CINTTY
CINTT2
BNGCRF
TBOR

PTIN

CORSPD
PCTEPD
TiINAI2
TING1)
TINPB
CINTTA
CINPTA
TTPAY
TTPA2
TTPA1

PRTeDk
PRT=T
TORQUE
TURRPR

07702779

a ~0.531793 .
a =0,107159
19.5014
19,4349
770.9%5
775.517
152,460
262,029
116.486
34290.7
0.996590
1708.44
173.36¢
1544.14
773,266
108,519
885.930
912,629
896,805
8.45443
7.86441
261.9568
70:0e,.9

=0,531793
=0.10R426
19.5147
19,4482
771.007
717%.681
152,222
262.0%¢6
116,409
34185,
0.99352)
1708.64
773.717)
1542.48
773,344
108.440
886,187
912,402
$94.414
4.44987
T.459%¢
261.569
§9894,4




Ci1e

GTP10S=-2 01

OFFSFT 07:52:80.15
WHOR L] 1.81683
WNFT -] 1.76314
WNCORH 8 0.h4Rb6HD
WIROR 3 0.026%12
LBMé12 = 102,624
SQTHFET = 2.07904
LaH4e1l ® 0.
PBAR 14.0898
MORDP = 1.77848
MQRTY = 432.792
PRRFY = 239.41134
PRAFY = 24.8164
PSSer1 s 0,221Q7¢
pPsSssr2 = 0,221074
PSSSAY = 24.16%1
DSESAZ ® 24,2317
PaPaAl = SA.NQRE
PUPAY = $7.902%
PRPF1 = $4,31343
eRPFY = e.114%4
DPRPY s 53.6981
neRe2 = 83,7482
AFFSET 07152:50.18%
WROR s 1.82432
WNFT - 1.770A2
WMCORR = 0_.648258
YIROR a 0,02634%
LuHe12 99.7791
K% 1 2,06492
LaMe, . = n.
PBAR a 14,0906
MQORDP = 1.799148
MORTY ] 832,841
PRAF1 = 29,347
PRRFY = 24.7101
PsSesry s« 0,.221074
PS&SF2 = 0.221074
PStsAl ® 24.08%6
P3SSsA2 a 24.1387
PRPAY @ 57,0341
PyPA? ® $7.7%412
RBPry = 4.372694
opnhF? = 4.087%
ApRpt & $3.%091
APy o 531,45%8)

04/04
INTEGRATED CUMPNNFNTS AS3SY TESTING tICA)

RECORD 111:146122.55

CFFIT
MQRP
TBCLOP
Fu141
TUROIL
cP8410
CPS411
DENOM
RETFWDL
BaTK
RuTAF
PSNTHL
PSNTH2
PSNTH]
PSNTH4
CINPTI
CINPT2
CINPT)
CINPTS
PTRD!
PTRO2
PTRDY
PTRD4

RECORD
EFFTT
MORP
1BCODY
rHi43
TURDTL
CPSe10
cpsatl
“JENOM
RETFWD
BBTH
RBTAF
PSNTH1
PENTH2
PSNTH)
PSNTH4
CINPTL
CINPT2
CINKTI
CINPTA
PTRL)
PTRO?
PTRD)
PTRODG

0.470430
92.3112
2,887
1184, 49
410,585
1336.45

0.033877
944,787
108,345
326.078
222.%40
30,8747
40,3782
31.08%4
41.0378

0.088199
74.457%
74,9903
74.897)

0.436626

0.740842

0.7180%0
1.1099¢

11146182.%5

0.442092
91.791%
2.8%983
1107.49

411,127

12998,.%2
0.033577
932,599
108,238
329.683%4
223,538
38.7684
40,3363
31,7987
41.08112
0.101486
74,1933
74.%651
74.5%5917
0,41A340
0.75351¢
0.74%5913
1.13128

DATA POINT 9

TEST D

PSNOSA =

PSDUHA
INTPS)
INTPFS2
CINTT1
CINTT2
BNGCRF
TBOR
PTIN
CURSPD
PCTSPL
TIN412
TINALY
TINPR
CINTTA
CINPTA
TTPAS
TTPA2
TTPAL
PRT=-DL
PRT=T
TORQUE
TURRPR

TEST O
PSDULSA
PSDLHA
INTPS]
INTPSR
CINTTI
CINTT2
BNGCRF
TBOR

PTIN

COR3PD
PCTSPD
TING12
TINAY)
TINPR
CINTTA
CINPTA
TTPA)
TTPA2

TTPAL

PRT=DL
PRT=T
TORQUE
TURRPHM

07/03/79

«0,20%39%
=0,22440%
10,6513
10,70%0
746,409
7%51.408
161.327
267,341
84.3544
36366,0
1.0%691
1782.43
T48.9049
1554.4Y
748.908
74,9151
1023.78
1020.98
1018.63
6.09415
5.6977¢
142,047
7%607.9

«0.20222¢
=0.228211
10.8113
10.8518
746,149
71%50.990
161,301
268.609
84.1135
36448.9
1.0%914
1792.00
748.569
1536.3
743,969
74,4500
1016,69
1013.74
1011.60
6.08208
5.56332
141.4%0
1%264,1




Cl16 (TPAS=2 01 04/04 01703719
INTEGRATED CUMPONFNTS ASSY TESTING (ICA)

OFF&FT 07:52:50.15 RECORD 115512:52.95 TeST »

WHOR = 1.83781 EFFTT = 0.4821%% PSDDSA = =0,264971

, WNFT = 1.78323 MORP = 9%.019% PSDDHA = «0,214268

. WHCORR = 0.646198 TBCODP = 2.92183 INTFS) = 11.7547

P WIROR a 0,027010 FM143} 3 1190.3¢ INTPSZ = 11,6214

~; LBH412 = 114,526 TURUIL = 612,030 CINITL = 749.¥97

L SQTHFT = 2,12489 CPS410 ® 1491.12 CINTTZ = 754,736

i LBH41d = 0. CPS4ll = 0.03)5T7 BNGCRF ® 156,840

» PBAR =& 14,0886 DENOM = 1044.00 ToNk = 265,183

1 MOROP = 1.717316 RBTFWD » 108,813 PTIN = 7.4736

,} MORTY =  B34.706 BBTF = 323.479 CORSPU = 35584,y

. PRBF] =@ 30.5566 RRTAF = 223,379 PCTSPL ® 1.03420

i PHRAF3 & 26.1y83 PSNTHI =  40,%090 TING12 ® 1882.33

; PSSSFL a 0,221074 PSNTHZ = 41.9042 TINGI) = 7%2.310

. PSSSF2 = 0.20778? PSNTH]I = 33,0940 TINPE = 1676,89%

H P8SSA1 = 25.5074 PSNTHG ® 43.5789 CINTTA & 752,316

! PSSS8P2 3 2%.%5734 CINPT] = 0.0u8199 CINPTA = 77.9889

; PBPAY = SA.04R7 CINPT2 & 77.7143 TIPAY = 109,95

PBPA? = 57.95%7 CINPTI =  7R_1129 TIPA2 = 108%.88

PERPFL = 4,34023 CINPT4 = 75.1395 TTPA)] = 1093.3%

PBPF? ®  4.16749 PTRDY = 0.%58312 PRT=DE ®  6.310626

NPRYY = 53.7084 PTRD2 s 0.%17781 PRTT = 9.95721

DPRP2 =  53.1882 PTRLDY = 0,469664 TORUUE = 157.622

. . PTRD4 & 0.814361 TURRPM = 7%614.2

OFFSFT 073%2150.15% RECURD 111%2122.%% TEST D

WMOR = 1.64317 EFFTT = 0.479814 PSDLSA = =0,260534

4 WNFT & 1.78828 MORP = ¥%.169% PSDDHA = =0,213000

‘ WMCORR & 0.64689% IBCUDP = 2,97182 INTPS) = 11.675%0

. WIROR =& 0.027247 rMi43 = 11y0.66 INTFS2 = 11.%421¢

q LAH412 = 114,551 TUROTL = 412,482 CINTT! = 750,108

' SQTHFT = 2,12374 CPS410 = 1492.9% CINIT2 @ 754,840

, LAH413 = n, CpPS411 = 0.0335T7 BNGCRF s 160,586

» PHAR = 14.06R6 DENOM = 1047.98 TBOR & 265,183

MORDP = 1.7R1f74 RBTFWD = 108,683 PTIN - 87.%472

4 MURTY! = 434,964 RBTF = 323.31% CURSPL = 35071.9

b PRRF1 = 30,4902 RETAF =& 226,709 PCTSPD s 1.03673

Y PHRFY = 26,1053 PSNTHI = 40,4160 TINAiI2 = 1879.80

! PSSSF1 = 0,2210%4 PENTHZ m 41,7581 TINGID ® 7%2.472

PSSSF2 = 0.207787 PSENTH) a 32.9404 TINPE = 1676.75

PS%5A1 = 25.560% PSNTHG s 43,3792 CINTTA = 7152.472

1 PS5SSA2 = 25.60N04 CINPTI = 0.088199 CINPTA = 78.108%

2 PBPAY = 58,115t CINPT2 = 77.8339 TTPAY = 1093,66

f] PHPA? = 58.03%4 CINPT3 & 78B.2192 TTPA2 = 108%.63

I PBPFY = €,3%3%2 CINPT4 =  7R.2724 TTPAL = 1090.71

: PBPF? = 4.16749 PTRLU! ® 0,563383 PRT«DL = b.32316

DPAPY = 53.7616 PTRD? = 0.527891 PRT-T = 5.96032

. NPBP? = 53,867y PTRDY ®» 0.502540 TORUWUE w 157.914

1 PTRO4 s 0.832107 TURKPM = 75758.0
4
3

3

DATA POINT 10

460




c116

GTP105-2 01
INTEGRATED COMPONENTS ASSY TESTING (ICA)

OFFSET 07152:50.15

MMOR = . .2,1410%
WNFT s 2,0769%
WMCORR ® 0.64A19%
vIRQR s 0.03202)
LBH412 = 194.591
SQTHFT = 2.20166
LAH41d = 0.0540813
PBAR = 14.087s
MURhP = 2.0217t
MORTL = 819.670
PRAFY = 3a, 9810
PRAFY & 34,0170
PASSP) = 0.234162 ..
PSSsF2 a 0.260938
P3SIAL = 33,3603
PSS3A2 = 3).4400
PEPAY = 57.07%9
PBPA2 = 57.8218
PHPFYI . ®  4.32694__ .
PEPF? = 4.%2625
NPRAKY = 5§3.%5490
NPRP2 _® _ 53,3965

AFFSFT 07152:50.15

WHNR [ 2,1429%8
WNFT a 2,07834%
WNCORR ® N.646609
WIROR = n.032100
1.AHe12 = 154,393
4QTHrT = 2.20042
1BHa1) = n.
PRAR = 14.0886
HORDP = 2,0259%
MORTY = 839,929
PuAFy = 38,9677
PRAFY 8 34,3170
Passrl = 0.234362
PRIgr2 & 0.27422%
PASAAL = 31.227s
PRS8A2 = 31.293%9
PRPAL = 57,9023
PHPA2 W 5T.R2%28
PBPFI ® 4.37694
ouPr? = 4,%39%¢
BPRPY a 83.57%6
DeAp2 =

83,2032

04/04

RECORL
Err1T
MORP
I8caong
FH142
TUROIL
CPS4ly
CPa4LL
DENOM
RETFND
BBTF
RBTAF
PSNTHI
PSNTH2
PSNTH3
PSNTHY
CINPTY
CINPT2
CINPTI
CINPT4
PTROD!
PTRD2
PTRO?
PTRD4

Pe.CORD
EFFIT
MORP
1ACODP
rui1d

cPSety
DENUM
RBTFWD
ABTF
RATAF
PANTHY
PSNTH2
PSNTH3
PSNTHG
CINPT|
cINPT2
CINPT
CINPTA
PTRO1
PTRD?
PTRD)
PTRD4

12312822,.58

a 0.514202 _
116,282
3.47313
119).84
416,004
20418,9]

. DL.03MATY
1512.73%
109,121
254,233
223,578
§0,8999

~ 852.72032 .. .
61.917S
84,9527

N, 1014R¢
96.6157
97.220%

_ 91.20869 _ _

0.9639%4¢

0.%576058

0,3408%¢

0.54%56137

.ll.l.lllllp‘l‘.l'lll.l

12112152.5%%
a 0.%507119
s 116,217
" 3.49078
s 119%.0)
. 414,830
2014.11
0.
1519.06
109,242
2%9,39%
224,564
50,8999
$2.720)
41.917%
$4.9394
0.101486
94,6228
97.1939
97.1939
0.961934
0.%78994
0.3808%4¢
0.540373

ssrnvnasonvnnnenun

DATA POINT 11

461

TEST D
PSDULSA
PSDOHA
INTPSY
INTPS2
CINTTY
CINTTZ
BNGCRY
TBOR
PTIN
CURSPO
PCTSPD
TINGL2
TINAL Y
TINPB
CINTTA
CINPTA
TTPA)
TTPA?
TIPAL
PRT-DE
PRT=T
TURQUE
TURRPN

TeST O
PSHDSA
PSDDHA
INTPSI
INTPS2
CINTTI
CINTT2
BNGCRF
T8OR

PTIN

CORSPD
PCTSPD
TING12
TING1]
TINVB
CINTTA
CINPTA
*TPAY

TTPA2

TTPAL

PRT«NE
PRT-T
TORUUE
TURKPH

v7/03/79

=0.413275 .

=0,087511
16.7907
16.7400
762,952
767,941
- 151.29%
255.974
105,591
34361.2
0,998639
2054.61
165.95¢6
1912.77
165,447
97.0610
1150,77
1191.74

1184,40

7.23097
7.18102
278,467
75651,7

=0,4132%6
=0,087511
16,8040
16,7243

768,048
191,507
«56,4186
10%.537
3J4391.9
0.999531
20%1.78
165,034
1918.83
765,654
§7.0035
1153,.28
1195.23
1187.92
7.62054
v.17626
229,148
715670,

783,264
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APPENDIX D

MODEL GTP305-2 AUXILIARY POWER UNIT
AF2-1DA ALLOY FORGING

INTRODUCTION

The original AiResearch Model GTP305-1 Auxiliary Power Unit
(APU) radial turbine rotor design, required a forging of AF2-1DA
alloy. A cast AF2-1DA alloy rotor was designed and tooled as a
means of cost reduction for the AiResearch Model GTP305-2 APU.
Casting and heat treatment processes were developed under the Air
Force Materials Laboratory (AFML) engine demonstration program,

Air Force Model GTP305-2 APU applications require specific
low-cycle~-fatigue (LCF) 1life of the rotating components to
satisfy projected service-life requirements. However, cast AF2-
1DA alloy radial turbine wheels were projected to have marginal
LCF properties in the as-cast and heat treated condition. There-
fore, hot isostatic pressing (HIP) was proposed to improve
fatigue life by closing casting microshrinkage and eliminating
crack initiation sites (Air Force Contract F33615-75-C-2016,
General Electric Company). Demonstration of this phenomenom was
previously accomplished during Air Force and AiResearch programs
on cast INCO 713LC radial turbine wheel, used in a commercial
APU, that is currently in production.

A program was proposed to AFML to investigate HIP and subse-
quent heat treatment, as a means of improving the Model GTP305-2
APU radial turbine wheel LCF life. This effort was funded as an
add-on to an existing Air Force Propulsion Laboratory contract
for unit design and rig testing (Contract Number F33615-75-C-
2016). The AFML program consisted of two tasks:

o Task I - Characterization of Baseline Material

D

o e s e A




e

S A G S 3 S i 10 4 W ok SR AL o

o Task II - Application and Evaluation of HIP and Revised
Heat Treatment

Under Task I, the determination of mechanical properties and
microstructures of the baseline Model GTP305-2 cast AF2-1DA
radial turbine wheel was accomplished. Previously developed
baseline heat treatment was used on these turbine wheel castings.
Room temperature LCF baseline material properties and elevated
temperature tensile and stress-rupture strengths were determined
using test bars removed from cast turbine wheel hub sections.

In Task II, evaluation of HIP/heat treat process combina-
tions was performed to assess AF2-1DA LICF property response.
Four different HIP cycles and four heat treatments were used in
eight combinations. Material property data screening (room
temperature tensile and elevated temperature stress-rupture) was
conducted to select four final candidate HIP/heat treat combi-
nations for room temperature strain controlled ICF evaluation.

The ultimate objective was to establish a manufacturing
process for HIP and subsequent heat treatment utilizing Air Force
manufacturing technology funding.
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SECTION II

SUMMARY

Forty AF2-1DA alloy radial turbine wheels were cast and
X-ray inspected. Thirty-eight wheels were free of obvious
defects and selected for evaluation. As-cast elevated temper-
ature tensile strength was measured and as-cast/heat treated
tensile and stress-rupture properties were determined. Eight
wheels were HIPped in four combinations with temperatures varying
from 2150 to 2250°F, pressures of 15 or 29 ksi, and a constant
three~-hour time period. Four solution heat treatment temper-
atures were selected based on a previous investigation to cast a
modified AF2-1DA alloy composition (AFML Contract Number F33615-
71-C-1573) . Evaluations were performed using four HIP conditions
and eight HIP/heat treatment combinations of four wheels each.
Samples were examined metallographically and tensile and stress-
rupture properties were determined. Four HIP/heat treatment com-
binations were selected for LCF testing on the basis of accept-
able microstructures and mechanical properties. Room temperature
strain-control LCF tests were performed and results analyzed on a
Weibull distribution. Data analysis indicated that ICF life
improvement was obtained through HIP and heat treatment. Specif-
ically, a 3X LCF life improvement was achieved for as-cast wheels
predicted to fail in less than 1000 cycles.




SECTION III

TECHNICAL DISCUSSION

3.1 Task I - Characterization of Baseline Material

The AF2-1DA alloy radial turbine wheel castings evaluated
were procured from AiResearch Casting Company (ACC), Torrance,
CA. A typical Model GTP305-2 radial turbine wheel casting is
shown in Figure 164 (Page 274). Wheel serial numbers, master
heat numbers (from Cannon-Muskegon Corp.) and cast AF2-1DA alloy
chemistry are presented in Table D-1.

Forty cast AF2-1DA turbine wheels were X-ray inspected for
hub defects. Thirty-eight were defect free while two showed pos-
sible inclusions near the center (S/N 62 and S/N 94). These two
castings were not used for evaluation.

One wheel (S/N 40) was sectioned to examine the internal and
surface grain structure Figure 165 (Page 275). Internal and
external grain structures were compared with previous Model
GTP305-2 castings and were comparable. Elevated temperature
tensile tests were performed on the material from wheel S/N 40,
to determine material strengths at typical HIP temperatures.
Results of the four bars (0.179 inch diameter by 1.0 inch gauge),
tested at 2200°F, are presented in Table D-2. Average measured
ultimate strength was 4500 psi and measured elongations varied
from 4.3 to 18.5 percent. No explanation was evident for the
ductility spread based on location of the test specimens or the
grain size of the etched test bar gauge sections. The ductility
spread is considered to be due to a coarse grain that behaved as a
properly oriented single crystal.




TABLE D-1. SERIAL NUMBER, MASTER HEAT NUMBER AND
CAST AF2-1DA ALLOY CHEMISTRY
Wheel Master Wheel Master Wheel Master
S/N Heat No. S/N Heat No. S/N Heat No.
40 VF43 60 VE%47 81 VE955
41 61 82
45 63 83
48 64 88
51 66 89
62 67 90
68 69 91
73 70 92
79 71 93
80 72 94
85 74 95
86 75 96
87 76
77
78 Y Y

Specification Chemistry

Cannon-Muskegon Corp.

Range Master Heat No. Chemistry
Element Weight Percent VF43 VE947 VE955
Carbon 0.12-0.16 0.13 0.13 0.12
Cobalt 9.5-10.5 9.8 9.8 9.8
Chromium 11.0-12.0 11.7 11.7 11.4
Molybdenum 2.7-3.3 3.1 3.0 3.0
Tantalum 1.4-2.0 2.0 2.0 1.92
Titanium 2.5-2.9 2.9 2.8 2.8
Aluminum 4.4-4.8 4.7 4.7 4.7
Tungsten 4.5-5.5 4.8 4.9 4.7
Hafnium 0.9-1.3 1.2 1.1 1.1
Boron 0.010-0.018 0.011 0.014 0.016
Zirconium 0.03-0.07 0.038 0.035 0.037
Iron 0.25 max <0.20 <0.20 <0.20
Silicon 0.25 max <0.20 <0.20 <0.20
Manganese 0.25 max <0.20 <0.20 <0.15
Sulfur 0.015 max <0.01 <0.01 <0.01
Phosphorus 0.015 max <0.01 <0.01 <0.01
Nickel Bal Bal Bal Bal
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TABLE D-2, 2200°F TENSILE PROPERTIES OF AS-CAST
AF2~-1DA ALLOY MEASURED ON TEST BARS
MACHINED FROM A TURBINE WHEEL
Specimen 0.2% YS UTS EL RA
Number (psi) (psi) (®) (%)
40-3 3400 4400 4.3 7.8
40-7 2800 4000 6.9 12.7
40-5 3600 4600 18.0 24.6
40-8 3500 4900 18.5 29.5
YS = Yield Strength
UTS = Ultimate Tensile Strength
EL = Elongation
RA = Reduction of Area




3.1.1 Heat Treated AF2-1DA

Five cast wheels (S/Ns 72, 75, 81, 83, and 87) were selected
to establish the heat-treated (un-HIPped) baseline properties.
Heat treatment cycles, as developed in the basic GTP305-2 APU
program were as follows:

o Solution: 2175 tg°°F/2 hours/gas cool
o Intermediate Age: 1950 *25°F/2 hours/gas cool
o Age: 1400 +25°F/16 hours/air cool

Solution treatments were performed in a vacuum furnace capa-
ble of heat treating up to sixteen wheels and obtaining a des-
ignated cooling rate of 45 to 50°F per minute (observed by gas
cooling) from the solution and intermediate age temperatures,
Cooling rates from the 2175°F solution, and 1950°F intermediate
age temperature, were determined using a thermocouple inserted in
the hub section of a scrap turbine wheel casting. This procedure
provided an accurate measurement of the hub section cooling rate.
After heat treatment, the five castings were fluorescent pene-
trant inspected with no evidence of surface cracks.

Scanning Electron Microscope (SEM) evaluation of the as-cast
and heat-treated baseline material was performed. Figures D-1
and D-2 show SEM micrographs at 100 and 500X magnifications,
respectively. The as-cast microstructure exhibits typical pri-
mary MC carbides, gamma/gamma prime eutectic cooling gamma prime
and the absence of grain boundary precipitates. Microstructural
changes observed after heat treatment, were the appearance of
grain boundry precipitates and a reduction of gamma prime size,
as shown in Figure D-3. Small amounts of undissolved cooling
gamma prime are also evident.
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3.1.2 Mechanical Property Determinations

Location of mechanical property test specimens removed from
the castings is shown in Figure D-4. Tensile and stress~rupture
testing were performed at Joliet Metallurgical Laboratories,
Inc., Joliet, Illinois, and low-cycle-fatigue (LCF) testing at

Mar-Test Inc., Cincinnati, Ohio.

Results of tensile tests performed on 0.250-inch diameter by

1.0-inch gauge test bars at room temperature and 1400°F, are pre-
sented in Table D-3. Room-temperature ultimate strength of spec-
imen number 75-3 and room-temperature elongation measurements on
all specimens were slightly below specification minimums. Ten-
sile properties obtained at 1400°F were above specification mini-
mums. Examination of room-temperature tensile test bar fracture
surfaces was performed using a Scanning Electron Microscope (SEM)
in an attempt to explain elongation measurements of less than 5
percent. SEM examination of fracture surfaces revealed evidence
of microporosity on all room-temperature tensile test bars (Spec-
imens No. 72-3, 75-3, and 83-5). The degree of microporosity
observed appeared to be typical for as-cast superalloy turbine
wheels. SEM micrographs of the microporosity observed on the
test bar fracture surfaces are shown in Figure D-5. No evidence
of any anomaly was found to explain elongation measurements of
less than 5 percent.

Stress-rupture testing was performed using 0.250-inch diam-
eter by l.0~-inch gauge test bars at 1400, 1600, and 1800°F, util-
izing stresses that were selected to give an average rupture life
of 100 hours. Results are presented in Table D-4. As shown,
rupture times and ductilities were above specification minimums
when rupture times versus stresses are plotted on a Larson-Miller
parameter basis (see Figure D-6).




1l and 2,
4 and b6,
3 and 5,
7 and 8,

LOW-CYCLE~FATIGUE
CREEP-RUPTURE

TENSILE

TENSILE (AS-CAST CONDITION)

Figure D-4 Location of test specimens for mechanical
property testing
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SPEC., NO. 72-3

SPEC. NO.

83-5

Figure D-5.

SPEC. NO. 75-3

SEM micrographs (500%)
showing microporosity
(arrows) one fracture
surfaces of room tem-
perature tensile tested
bars from baseline as-
cast and heat-treated
GTP305-2 turbine wheel
castings




TABLE D-4.

ELEVATED TEMPERATURE STRESS RUPTURE

PROPERTIES OF HEAT-TREATED* (UN-HIPped)

CAST AF2-1DA ALLOY TURBINE WHEELS

Specimen Temperature | Stress | Hours to EL RA
Number (°F) (ksi) Rupture (%) (%)
72-6 1400 90 152.4 4.0 10.6
81-4 1400 90 102.7 4.3 8.0
75-4 1600 55 158.8 7.9 11.2
83-6 1600 55 161.4 6.2 8.9
81-6 1800 27 89.0 7.8 16.2
87-4 1800 27 97.1 8.3 16.7
Property 1400 95 23.0 3.0
Specifica- 1800 30 23.0 4.0
tion
Minimums

#2175°F for 2 hours with Argon Quench; plus 1950°F for 2

hours with Argon Quench; plus 1400°F for 16 hours with

air cooling.

m
[
[ ]

Elongation
Reduction of Area
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Axial strain controlled LCF testing was conducted at room
temperature using the specimen configuration shown in Figure D-7.
This data, as shown in Table D-5, was used as the data base with
which the HIPped AF2-1DA material was compared (Task II). Base-
line LCF properties were measured using an A-ratio of infinity
() .

SEM examination of the LCF test bar fracture surfaces
revealed that origins were associated with primary MC carbides
and initiated on the bar external surface. Some microporosity
was observed near the origins.

3.2 Task I1 - Application and Evaluation of HIP and Revised Heat

Treatment

Parameters for HIP of various alloys have been developed by
AFML (GE refined) and various other companies. A large produc-
tion cast radial turbine wheel for superalloy INCO 713LC is now
being HIPped using AiResearch developed parameters.

3.2.1 HIP and Heat Treatment

Thirty two cast AF2-1DA turbine wheels were selected and
prepared (riser portion of wheel removed) for HIP. Four HIP runs
were made using eight turbine wheels per run. Three runs were
made at Industrial Materials Technology (IMT), Woburn, Mass.,
with the parameters shown below. These parameters were selected
to cover the range currently in use for cast superalloys.

o 2200 *25°F for 3 hours at 15,000 psi, argon
o 2225 *25°F for 3 hours at 15,000 psi, argon

o 2250 $25°F for 3 hours at 15,000 psi, argon




. POROSITY

SHRINKAGE

SAMPLE 72-4

SAMPLE 81-5

-1DA showing typical

Figure D-7. Microstructure of as cast AF2

Electrolytic oxalic acid

Etch

400X

shrinkage porosity

Mag
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TABLE D-5. ROOM TEMPERATURE LOW-CYCLE FATIGUE (LCF)
PROPERTIES OF HEAT-TREATED* (UN-HIPped)
CAST AF2-1DA ALLOY TURBINE WHEELS

Total
Strain Measured
Specimen Range Modulus Cycles
Number (%) (E times 106 psi) to Failure
72-1 0.77 26.1 3,957
87-2 0.69 29.0 14,894
75-1 0.66 30.9 7,974
75-2 0.65 31.3 17,722
83-1 0.62 32.9 13,182
83-2 0.60 33.3 8,932
81-1 0.60 33.1 10,111
87-1 0.60 33.8 13, 221

Test Parameters: Axial Strain Control, A Ratio =
20 CPM Frequency and 200 KSI
Pseudo-Stress

*2175°F for 2 hours with Argon Quench; Plus
1950°F for 2 hours with Argon Quench; Plus
1400°F for 16 hours with air cooling.
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The fourth run was made at Battelle Memorial Institute (BMI),
Columbus, Ohio, at conditions of 2150 :25°F for 3 hours at
29,000 psi, argon. These HIPped turbine wheels were heat-treated
using the HIP/heat treatment combinations as shown in Table D-6.

3.2.2 Mechanical Property Determinations

After heat treatment, the turbine wheels were processed to
obtain material for mechanical property (tensile, stress-
rupture, and LCF) testing and metallographic examination. Ten-
sile test results performed on 0.250-inch diameter by 1l-inch
gauge section bars are shown in Tables D-7 and D-8 for room tem-
perature and 1400°F respectively. Tensile test results showed a
trend toward slightly reduced ultimate strength and increased
ductility, when compared with the as-cast baseline. Stress-
rupture test results performed on 0.250-inch diameter by l-inch
gauge section bars are presented in Tables D-9, D-10 and D-11 for
1400, 1600, and 1800°F respectively. Although most test results
exceeded AiResearch specification minimums, the 1400°F stress-
rupture properties were poor on material HIPped at 2150°F and
solution treated at 2175°F.

The general trends of HIP/heat treat processing parameters
on stress-rupture life were:

o Equivalent to higher average rupture life at 1400, 1600
and 1800°F utilizing a higher solution heat treatment
with a given HIP condition

o Equivalent to slightly lower average rupture life at
1400, 1600 and 1800°F (with the exception noted above)
after HIP/heat treat processing compared to the un-
HIPped heat treated baseline
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TABLE D-6. HIP/HEAT TREATMENT COMBINATIONS
Combination No. of Wheels
HIP A + HT1 4

HIP A + HT3 4

HIP B + HT1 4

HIP B + HT3 4

HIP C + HT1 4

HIP C + HT2 4

HIP D + HT1 4

HIP D + HT4 4

HIP Parameters

2150°F/29 KSI/3 hours

2200°F/15 KSI/3 hours |

2250°F/15 KSI/3 hours

o 0 w »
i

2250°F/15 KSI/3 hours 1

Heat Treatment

HT1 = 2175°F (2 hours), plus 1950°F (2 hours), plus i
1400°F (16 hours)

HT2 = 2210°F (2 hours), plus 1950°F (2 hours), plus
1400°F (16 hours)

HT3 = 2250°F (2 hours), plus 1950°F (2 hours), plus
1400°F (16 hours)

HT4 = 2250°F (2 hours), plus 1950°F (2 hours), plus
1400°F (16 hours)
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TABLE D-7. ROOM TEMPERATURE TENSILE PROPERTIES OF HIPped
AND HEAT-TREATED* CAST AF2-1DA TURBINE WHEELS

Specimen HIP Parameter Solution 0.2% YS uTs EL RA

Number {°F/ksi/hrs) Temp (°F) {ksi) (ksi) (%) (%)
51-3 2150/29/3 2175 121.6 135.2 7.3 12.1
77-3 122.0 131.6 6.9 6.9
88-3 125.8 144.9 6.6 10.4
45-3 2225 119.6 128.2 6.3 14.2
64-~3 130.0 133.1 3.4 6.4
91-3 124.4 133.0 3.9 11.5
41-3 2220/15/3 2175 127.6 144.3 4.9 9.4
60-3 119.4 138.0 7.2 9.6
95-3 123.3 130.4 4.4 8.9
69-3 2225 119.7 128.3 5.6 8.5
78-3 126.8 142.9 5.9 8.9
82-3 128.0 143.2 5.7 9.9
48-3 2225/15/3 2175 121.4 123.9 3.9 13.7
63-3 124.6 131.7 4.6 15.0
93-3 124.8 135.0 5.3 10.8
68-3 2210 120.6 131.3 6.6 13.5
76~-3 119.5 132.2 7.5 9.1
80-3 127.8 139.0 5.6 11.9
66-3 2250/15/3 2175 129.3 130.3 6.1 13.0
86-3 119.0 127.5 6.6 16.9
92-3 127.7 135.8 4.8 12.0
61-3 2250 123.9 139.6 3.9 11.9
67-3 121.3 134.4 8.9 13.0
89-3 117.2 122.8 ) 17,4

Property Specification Minimum 115.0 130.0 5.0 -

*At indicated solution temperature for 2 hours with Argon quench; plus 1950°F for 2 hours with

Argon

HIP =
YS =
uTs =
EL =
RA =

quench; plus 1400°F for 16 hours with air cooling.

Kot Isostatic Pressing
Yield Strength

Ultimate Tensile Strength
Elongation

Reducticn Area




TABLE D-8. 1400°F TENSILE PROPERTIES OF HIPped AND
HEAT-TREATED* CAST AF2-1DA TURBINE WHEELS

Specimen HIP Parameter Solution 0.2% YS uTs EL RA
Number (°F/ksi/hrs) Temp (°F) (ksi) (ksi) (%) (%)
51-5 2150/29/3 2175 106.7 133.4 7.0 13.0
77-5 111.4 140.0 7.1 10.5
96-5 \ 114.0 142.0 4.9 11.8
64-5 2225 117.8 128.1 4.9 9.1
73.5 120.3 146.9 5.6 11.1
91.5 Y | 114.9 149.4 7.8 8.3
41-5 2200/15/3 2175 109.0 144.5 8.1 10.9
71-5 111.7 130.3 5.6 11.1
95-5 105.9 126.7 5.6 13.8
78-5 2225 118.8 143.6 5.9 10.8
82-5 110.8 149.1 5.7 10.3
90-5 Y ‘ 104.8 133.6 8.9 13.7
63-5 2225,15/3 2175 112.6 138.8 6.5 15.5
79-5 108.0 139.1 6.0 10.3
93-5 105.4 140.6 9.0 13.3
76-5 2210 105.9 142.7 7.9 11.5
80-5 109.9 136.0 6.4 13.8
355 Y 111.8 137.7 7.3 9.3
70-5 2250/15/3 2175 114.6 146.0 6.9 16.4
86-5 106.1 139.7 7.7 11.6
92-5 105.6 131.2 5.9 11.2
61-35 2250 112.1 145.7 8.9 12.8
74-5 109.7 134.7 6.4 11.8
39-5 l 107.1 111.9 2.7 5.1

Property Specification Minimum 105.0 130.0 5.0 -

*At indicated solution temperature for 2 hours with Argon quench;

Argon quench; plus 1400°F for 16 hours with air cooling,

ifllP = Hot Isostatic Pressing
¥5 =+ Yield Strength
UTS = Ultimate Tensile Strength

K1, = Elongation

RA Reduction Area

plus 1950°F for

2 hours with

NPT




-

TABLE D-9. 1400°F CREEP-RUPTURE PROPERTIES OF HIPped AND
HEAT-TREATED* CAST AF2-1DA TURBINE WHEELS

Specimen | HIP Parameter Solution Temp Stress | Rupture Time EL RA

Number (°F/ksi/hrs) Temp (°F) (°F) (ksi) {Hours) (%) (%)
51-4 2150/29/3 2175 1400 95 9.6 3.6 | 15.9
96-6 2175 20.9 3.4 9.2
45-4 2225 69.1 3.5 10.0
91-6 2225 75.1 4.8 12.7
41-4 2200/15/3 2175 91.5 4.6 12.2
95-6 2175 12.6 4.0 13.8
69-4 2225 76.3 3.6 8.4
82-6 2225 24.3 4.2 13.8
48-4 2225/15/3 2175 44.2 4.2 10.1
93-6 2175 53.5 5.6 9.5
68-4 2210 28.6 3.8 13.0
80-6 2210 133.1 6.3 11.3
66-4 2250/15/3 2175 64.0 5.0 10.1
92-6 2175 23.3 6.1 13.3
61-4 2250 71.9 5.2 6.9
67-4 2250 54.0 5.5 12.3

Specification Minimum 23.0 3.0 -

*At indicated solution temperature for 2 hours with Argon gquench; plus 1950°F
for 2 hours with Argon gquench; plus 1400°F for 16 hours with air cooling.

HIP = Hot Isostatic Pressing
EL = Elongation
RA = Reduction Area
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3.2.3 Metallographic Study

Microstructural studies were performed on each HIP/heat
treatment combination and results compared with the as-cast and
heat treated baseline material. Figure D-7, previously included,
shows the as-cast material with typical shrinkage voids in cast
AF2-1DA. Material HIPped at 2150 and 2200°F is shown in Fig-
ure D-8. No evidence of voids was detected indicating closure by
HIP. Figure D-9 shows material HIPped at 2225 (void free) and
2250°F, (voids due to incipient melting) during HIP. HIP temper-
atures of 2225, 2200 and 2150°F, resulted in closed porosity,
while 2250°F caused voids and partial solutioning of the
gamma/gamma prime eutectic phase in the microstructure.

Thé effects of solution heat treating temperature on void
formation due to incipient melting is shown in Figure D-10. As can
be seen, no voids are evident in the 2175 and 2210°F solution
heat treated microstructures. The 2225 and 2250°F solution heat
treated microstructures exhibit void formation caused by incip-
ient melting. Effects of solution temperature on cooling gamma
prime and gamma/gamma prime eutectic phases after HIP compared
with as~-cast and heat treated baseline material were:

o More undissolved cooling gamma prime and no change in
eutectic gamma prime at 2175°F for 2 hours

o 95-percent solutioning of cooling gamma prime and no
change in gamma/gamma prime eutectic at 2210°F for 2 hours

o Complete solutioning of cooling gamma prime and slight
solutioning of gamma/gamma prime eutectic at 2225°F for

2 hours
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HIP TEMPERATURE: 2200°F

Figure D-8. Microstructure of HIP, 4 AF2-1DA alloy
Mag: 400X Etch: electrolytic oxalic acid
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Figure D-9.

—.” !
———— ——

HIP TEMPERATURE: 2250°F

Microstructure of HIPped AF2~1DA alloy

note void formation from incipient melting

after 2250°F hip
Mag: 400X Etch: electrolytic oxalic acid
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SOLUTION: 2175°F SOLUTION: 2210°F

%VOID FORMATION ’t "‘é’ﬂ%&:

SOLUTION: 2225°F SOLUTION: 2250°F

Figure D-10. Microstructure of HIPped AF2-1DA showing effects

of solution heat treatment temperature on void
formation
Mag: 400X Etch: electrolytic oxalic acid
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o) Complete solutioning of cooling gamma Pprime and
gamma/gamma prime eutectic at 2250°F for 2 hours

3.2.4 LCF Evaluation

Tensile and stress-rupture test results and observed micro-

structure changes (void closure and subsequent formation during
heat treatment), were used to select four of eight HIP/heat
treatment combinations for LCF evaluation. Material processed at
2250°F was eliminated from LCF evaluation due to the incipient
melting voids. Material HIPped at 2150°F and solution treated at
2175°F showed poor 1400°F stress-rupture properties and was also
eliminated. The remaining five HIP/heat treatment combinations

were reduced to four by selecting combinations that would help
establish usable manufacturing process ranges for HIP and solu-
tion heat treatment. The four combinations are shown below:

Combination HI Solution Heat Treatment¥*
1 2200°F/15 ksi/3 hours 2175°F
2 2200°F/15 ksi/3 hours 2225°F ﬂ
3 2225°F/15 ksi/3 hours 2175°F J
4 2225°F/15 ksi/3 hours 2210°F 4
*Total heat treatment is solution temperature for 2 hours/rapid :
argon gas quench plus 1950°F for 2 hours/rapid argon gas quench 1
plus 1400°F for 16 hours/air cool.

' Strain control LCF tests were conducted with eight bars
{Figure D-11) machined from each of the four selected HIP/heat
treatment combinations. Test conditions duplicated baseline, as-
cast and heat treated material; room temperature, A = », 20 cpm
and 200 ksi pseudo-stress (product of strain times Youngs
Modulus). Test results are presented in Tables D-12 and D-13.

Improved LCF life data, compared with the cast plus heat
treated baseline material is indicated for each HIP/heat treat-
ment combination. Figures D-12 through D-15 reflect Weibull
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Figure D-11.
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plots for individual HIP and heat treatment combinations. Fig-
ure D-16 shows inclusive HIP data compared with the cast and heat
treated baseline. The lower cummulative percent failure range
component early failures and is of greatest concern in LCF design
considerations. The cumulative HIP curve (Figure D-16) shows that
at one-percent cumulative failure life, HIP improves life by a
factor of three, when compared with the as-cast baseline.

SEM examination of LCF test bar fracture surfaces revealed
that origins were again associated with MC carbides and initiated
on the external surface. Specimen number 82-2 was the only
exception. The fracture surface of this specimen exhibited an
internal origin associated with an inclusion type defect as shown
in Figure D-17. Energy dispersive X-ray analysis revealed that
the defect contained areas of high hafnium, tantalum and titan-
ium. The defect source was not pursued because it was not con-
sidered part of this program. Two 2225°F solution heat-treatment
specimens, exhibited small voids caused by incipient melting.

3.2.5 Process Selection

Tensile, stress—-rupture and LCF testing of various HIP and
heat treatment combinations that resulted in increased fatigue
life, were used to define the manufacturing process paramete s.
Acceptable HIP parameter limits identified were 2200 to 2225°F
for 3 hours at 15 ksi argon. However, this range must be extended
since HIP vendors typically require a *25°F nominal temperature
variance. The requirement to open the range on the lower end to
2175°F, exists because HIP at 2250°F produced voids. it is
assumed the 2175°F/15 ksi parameters will effect closure since
the HIP cycle at 2150°F for 3 hours at 29 ksi argon resulted in
complete closure. Pressure is well above the 2200°F vyield
strength of 2,800 to 3,600 psi (see Table D-1 previously

included).

-
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Acceptable solution heat treatment temperature range
limits, (after HIP) selected from the mechanical property
results, are 2175 to 2210°F (2225°F produced voids). These
limits need not be extended since this temperature control spread
is sufficient for most vacuum furnace operations. Adherence to
this critical temperature range is paramount to proper heat
treatment.

Recommended HIP/heat treatment manufacturing process para-
meters are listed below:

o HIP 2200 $25°F/3 hours/15 ksi argon
o Heat treatment
. +20,
) Solution 2190 -15 F (2 hours) argon gas

quench 40 to 50°F per minute

o Intermediate Age 1950 +25°F (2 hours) argon gas
quench 40 to 50°F per minute

® Age 1400 +25°F (16 hours) air cool

Tensile and stress-rupture test results from HIP/heat treat-
ment combinations within acceptable processing ranges, were
selected from a large data population and averages analyzed.
Table D-14 shows room temperature and 1400°F tensile test results
compared with as-cast and heat treated baseline and AiResearch
specification minimum values. HIP material properties exceed
minimum values, exhibit improved ductility, and are comparable
with as-cast baseline material.

Stress-rupture results shown in Figure D-18 compare as-cast,
heat treated, HIP and specification minimum limits on a Larson-
Miller plot. Rupture properties after HIP are above minimum
values, and comparable to as-cast.
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TABLE D-14. TENSILE TEST RESULTS OF HIP/HEAT TREATMENT
COMBINATIONS* WITHIN ACCEPTABLE PROCESSING

RANGES (ALL VALUES ARE AVERAGE)
0.2% YS UuTs EL RA
Room Temperature (ksi) {ksi) (%) (%)
ﬁ Cast + Heat Treated 123.4 134.7 4.2 10.7
4 HIP + Heat Treated 123.2 134.0 5.6 11.3
g Specification Minimum 115.0 130.0 | 5.0 --
: 1400°F
Cast + Heat Treated 112.6 137.1 6.0 14.9
: HIP + Heat Treated 109.0 137.4 6.9 12.2
3
! Specification Minimum 105.0 130.0 5.0 --
{
*Hip/Solution Temperature HIP = Hot Isotatic Pressing
2200°F/2175°F YS = Yield Strength
! 2225°F/2175°F UTS = Ultimate Tensile
Strength
2225°F/2210°F
RA = Reduction of Area
EL = Elongation
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SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

o Uniaxial LCF testing indicates life improvement by a
factor of 3, for cast AF2-1DA alloy (Mod 2A) turbine
wheels, using HIP

o Tensile and stress-rupture properties of HIPped cast-
ings exceed AiResearch specification minimum for cast

AF2-1DA alloy and are equivalent to as-cast properties

4.2 Recommendation

o Cast AF2-1DA alloy (Mod 2A) turbine wheels should be
HIPped prior to heat treatment to improve LCF proper-
ties
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APPENDIX E

Layout Drawing No. L3621610
Assembly Drawing No. 3605630
Assembly Drawing No. 3605727
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