
SECUITY i- wjn O,. Entred), UNCLASSIFIED
REPORT DOCUMENTA.TiON PAGE READ INSTRUC

BEFORE COMPLETING FORM
1. REPORT NUMBER 2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S.Ty OF,4_SPom e 0'A a . ,

DISTRIBUTED .J I TWORK PROTOCOLS, / P echnca "f9 /
REPORTMUMBER

LIDS-P- J14 /
7. AUTHOR(e) B- 4NX' kT-- RANT NUMBER(s)

g1,Ar a ARPA Order No. 3045, 77-75

9. PERFORMING ORGANIZATION NAME AND ADDRESS '_ .

Massachusetts Institute of Technology /
Laboratory for Information and Decision Svstes Program Code No. ST10
Cambridge, Massachusetts 02139 ONR Identifying No. 049-383
11. CONTROLLING OFFICE NAME AND ADDRESS -Defense Advanced Research Projects Agency Ju 8O 1400 Wilson Boulevard L

Arlington, Virginia 22209 52
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlting Office) IS. SECURITY CLASS. (of this report)

S Office of Naval Research Unclassified
Information Systems Program ' V
Code 437 15e. OECLASSIFICATION/ DOWNGRADING

Arlington, Virginia 22217
1

1,. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

10. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

y: 20. ABSTRACT (Continue an reverse side it necessary and identify by block number)A unified approach to the formal description and validation of several distributei

protocols is presented. After introducing two basic protocols, a series of known
and new protocols for connectivity test, shortest path and path updating are des-

LAJ cribed and validated. All protocols are extended to networks with changing.
topology. S80 8 4 246
DD0I iA 1473 EDITION OF INOV 65 IS OBSOLETE 8 0 24

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enerecl)

July 1980 LIDS-P-1014

DISTRIBUTED NETWORK PROTOCOLS

Adrian Segall

Department of Electrical Engineering

Technion, Israel Institute of Technology,

Haifa, Israel.

ABSTRACT

A unified approach to the formal description and validation of

several distributed protocols is presented. After intro-

ducing two basic protocols, a series of known and new protocols

for connectivity test, shortest path and path updating are des-

cribed and validated. All protocols are extended Jr networks

with changing topology.

This research was conducted on a consulting agreement with the

Laboratory for Information and Decision Systems at MIT, Cambridge,

Mass. with partial support provided by the Advanced Research Project

Agency of the US Department of Defense (monitored by ONR) under con-

tract No. N00014-75-C-1183.

This paper has been submitted to the IEEE Transactions

on Information Theory.

0 0

Consider the situation when a number of physically distinct computation

units work on a common problem, while their operation is coordinated via

communication channels connecting some of these units. Each computation

unit has certain processing and memory capability and is preprogrammed to

perform its part of the computation, as well as to receive and send control

messages over the communication channels. The program residing in each

node will be referred to as the node algorithm and the ensemble of all

algorithms providing the solution to the common problem is named a distribu-

ted protocol.

For the purpose of this paper it is convenient to regard the computation

units as nodes in a network whose links are the connecting comnzication

channels. The specific protocols considered here will be collectively

called Distributed Network Protocols (DNP) to indicate the fact that the

common problem that has to be solved is connected with the network topology.

Many of the "classical" graph algorithms have their distributed version,

and, in addition, several new distributed network protocols appear from

practical problems. The main application considered so far for DNP's is

in data or voice communication networks. In such networks, geographically

dispersed devices must transmit information to one another and must somehow

coordinate this transmission. With the advances of mini and micro-computers,

it is certainly feasible that nodes will have their own processing and memory

unit and will serve as communication processors and/or as switches. In

principle, the comon goal of all these units is to efficiently transmit

the required information to achieve certain performance goals, like minimum

delay or muximum throughput. With this application in mind, several examples

of problems for which DNP's have been proposed or are currently under investi-

gation are routing of information, shortest path, minimum weight spanning tree,

comn channel random access coordination and others.

-2-

The main purpose of the present paper is to give a formal description and
rigorous validation to a number of DNP's, some of which have been presented
previously in an intuitive way and some of which are proposed here for the
first time. We mainly consider DNP's for the purpose of connectivity tests,
shortest path in terms of number of links and routing-path updating. In
addition, we give a unifying approach to the validation of the protocols by
presenting several basic simple DNP's that provide building blocks to the
presented protocols.

The presented protocols have one additional important feature. Since nodes
and links may fail and be added asynchronously to the network, the protocols
must be able to work under arbitrarily changing network topology. Although
we first consider DNP's for networks with fixed topology, in Sec. 7 we extend
those protocols to incorporate cases of changing topology.

JI

-3-

2. The General Model

In this section we give the general model and assumptions used in all

presented DNP's. Consider a network (VE) where V is a set of nodes

and E C V x V is a set of links. For the first part of this paper, we

assume that the network has fixed topology. We shall use the following

assumptions:

a) Each link is bidirectional; the link connecting the node i with

node J considered in the direction from i to I is denoted (ij).

b) All messages referred to in this paper are control messages.

c) On each link in each direction there is a link protocol that insures

that each message sent by node i say on link (ij) will ative

correctly within finite nonzero undetermined time and all messages

are received at node j in the same order as they were sent by i

(observe that we do not preclude channel errors, provided that there

exists a proper detection/retransmission or correction algorithm on

each link).

d) All messages received at a node i are stamped with the identification

of the link from which they came and then are transferred into a

common queue; each node uses one processor for the purpose of the

algorithm; the processor extracts the control message at the head

of the queue, proceeds to process it and discards the message when

processing is completed; no other operation related to the protocol

is performed by the processor while a message is being processed;

con.equently we may assume that the processing of each message takes

zero time.

e) Each node has an identification; before the protocol starts, each

node knows the identity of all nodes that are potentially in the net-

work; it knows nothing about the topology of the network and in parti-

cular about what nodes actually belong to the network. Pe denote by

-4-

1,,..., IVl the nodes that are potentially in the network and, when
needed, by 1,2,...,IVI the nodes actually belonging to the netowrk.

f) Each node knows its adjacent links, but not necessarily the identity

of its neighbors, i.e. the nodes at the other end of the links-, how-
ever, in our algorithms it will be convenient to use expmusions like:

"send messages to all neighbors", meaning "send messages over all
adjacent links". The collection of all neighbors of node i will be

denoted by Gi

g) Unless otherwise stated, the protocol can be started by any node or
by several nodes asynchronously; a node starts the algorithm by
receiving a special message "START" from the outside world; a standing
assumption is that, once a node has entered the algorithm, it cannot.

receive "START".

/"

3. Basic Protocols

The two basic DNP's presented in this section provide a way for broad-

casting information in the network.

3.1 Propagation of Information (P)

Suppose that node j receives from the outside world a piece of information

that has to be transmitted to all nodes in the network. The simplest

procedure to accomplish this is for node i to transmit a message containing
this information to all its neighbors and for each other node k in the net-
work, when it receives the first such message,to send a similar message to

its own neighbors. All other messages received at k are disregarded. We

shall now formally present the algorithm for eabh node and validate the

protocol.

PROTOCOL Pl

Variables of the algorithm at node i

mi shows if node i has already entered the algorithm (values 0,I).

Messages sent and received by the algorithm at node i

MSG - message sent by node i ;

MSG(1) - message received from neighbor L
START - message received from the outside world

It is assumed that each message carries the piece of information that has

to be propagated.

Algorithm tor node i

Assumption: just before entering algorithm, node i has mi a 0.

1. For START I or M4SG(L)

2. ifmi , then: mi 1; send messages to all neighbors.

-6-

Properties of the protocol

Theorem PI-I

Suppose a node j receives START. Then:

a) All nodes i connected to j (i.e. that are in the connected network

containing j) will set m i 1 in finite time.

b) During the execution of the protocol, exactly one MSG is being sent

on each link in each direction.

c) The propagation of information is the fastest possible in the follow-

ing sense: for a node i, let pi be the node from which node i receives
1 2

the first MSG (see line 421 of the Algorithm2). For a link (i,t) let

the weight wit of that link be the time it took for MSG to travel from i

to 1, i.e. from the time i sends MSG on (il) until the time the pro-

cessor at I starts operating on the 4SG (this includes propagation and

queueing time). Then the collection of links ((pi,i), for all i in

the network) forms the tree of shortest distances from J to all nodes.

Proof

The proof of all properties is straightforward and we give here only

an outline. Property a) follows by induction on the distance (in

terms of numbers of links) from node ,. Suppose all nodes i that are

at distance r from j perform di . 1. Then a node k at distance (r . 1)

is a neighbor of a node at distance r and when receiving MSG from it,

either this is the first message at kin which case dk becomes 1 or it

is not, in which case dk is 1 already. Property b) follows from the

fact that for all nodes i, the parameter di becomes 1 exactly once, at

which time node i sends MSG on all adjacent links. Property c) holds

because if there was a shorter route from i to J, node i Would have

received MSG on that route before receiving MSG from pi.

-7-

Before proceeding to the second algorithm, we may note that the protocol

will work correctly even if "START" is delivered to several nodes at

arbitrary times, provided that each of these nodes has not entered the

algorithm before receiving "START". Properties a) and b) still hold and

the propagation is still the fastest possible.

3.2 Propagation of Information with Feedback (PIF)

Sometimes a node s that receives START and propagates information may want

to be positively informed when the information has indeed reached all con-

nected nodes. Here of course the assumption is that only one node can receive

START. The following protocol can be used for this purpose. When receiving
s ~ 3

START, node s sends MSGs to all neighbors . When receiving any MSGs, an arbi-

trary node i marks the link from which it was received. When receiving the

first MSGs from neighbor L say, a node i denotes this neighbor with a special

mark pi, and sends MSGs to all neighbors except to p!. When it observes that

it has received MSG from all neighbors, a node i other than s sends MSGs to

sp! It is shown below that receipt of MSGs from all neighbors at node s can

be interpreted as the signal that the information has indeed reached all

connected nodes. In this way, the propagation of MSG's occurs in two waves:

(i) from node s into the network for purposes of propagating information, and

(ii) from the network back to node s for the purpose of acknowledgment.

The formal description of the protocol follows.

PROTOCOL PIF

The algorithm for node s that receives START is different from the algorithm

for all other nodes. We shall first give the algorithm for an arbitrary

node i other than s and then for node s.

Variables of the algorithm at node i 0 s

m shows if node i is currently participating in the protocol (values 0,1);

Ni(f) marks receipt of MSGs from neighbor L (values 0,1), L¢ G';

Ps - neighbor from which MSG was received first.

Messages sent and received by the algorithm at node i p

MSG s and MSGS (I) with the same meaning as MSG in PI.

Algorithm for node i p5 5

Assumption: just before entering algorithm, node i has a~ s 0,
s S
p nil, N!(L a 0 for all L c G.

1. For MSG s(1)

2. N! (1) -1;

3. if m! - 0, then: m. s 1; p. s 4-; send M4SG 3to all
-1 1 1
neighbors except p i.

4. if It' *- holds N (LI) - 1, then: send MSG 5 to !
S s 0; 9,' C Gi. set N!CA') 4. 0.
i

Algorithm for node s

For node s, the variables are m*3, N s (I) for all L' c Gs, the messages

are MSG 3 (L) and START and the algorithm is:

3. For START

3a. m: 4- 1; send MSG5 to all neighbors.

For MSG s(P)

N5 (A) - 1;

4. if V e G, holds l4:(A') a 1, then: ms 40;

VLIc Gset N:CA') 4- 0.

Note The lines in the algorithm for s have been numbered to denote

similar operations as in the algorithm for an arbitrary node i.

-9-

In order to analyse the protocol, we shall need the following

notations:

<->. - the event of node i performing line <.> of its algorithm;1

whenever the corresponding line contains an if operation,

the notation refers only to the cases when the condition

indeed holds.

t(*) - time when event happens.

Theorem PIF-l

Suppose node s receives START. Then

a) all connected nodes i will perform the event <3> i in finite time

and exactly once; after this happens,. the links

((i, pi) for all connected i)

will form a directed tree rooted at j; in addition, for all i

t(<3>i) > t(<3> s (3.1)

Pi

b) node j and all connected nodes i will perform <4> in finite time

and exactly once; moreoever

t(<3> i) (<4> i) < t(<4> S) ; (3.2)

Pi

also, when node s performs <4>, all connected nodes will have

completed the algorithm, i.e. performed <4>.

c) exactly one MSG travels on each link in each direction.

Proof

a) and c) follow from Theorem PI-I. To prove b) let k be a leaf of

the tree referred to in a), i.e. I such that p: a k. Th'en all

- 10 -

neighbors m of k will send MSG to k whenever they perform <3>,.
Node k will receive all these messages and will be able to perform
<4> k ' At that time it will send MSG to pk. The same will be true
for all leaves. Now nodes that are on the last-but-one level in
the tree will be able to perform <4> and the procedure will continue
downtree all the way to node s. This argument clearly proves (3.2)

and completes the proof of the Theorem.

- 11 -

4. Connectivity Test Protocols

The purpose of this class of DNP's is to allow each node to learn what

nodes are connected to it.

Protocol CTl

The idea here is to use protocol PI, first to inform all nodes that the

protocol is in progress and then for each node to propagate its own
identity. Every node (or several nodes) can start the protocol by receiving

START. A node enters the protocol whenever it receives either START or the

first control message from any of its neighbors. The first action taken by

a node when entering the protocol is to send a control message containing

its own identity to all its neighbors, thereby starting propagation of this

identity. In addition, whenever a node i receives the first control message

with the identity of some other node j, it marks j as connected and sends a

message MSG j with the identity of j to all neighbors. All further messages

with the identity of j are discarded with no action taken.

Variables of the algorithm at node i

Mi - shows if i has already entered the algorithm (values NORMAL, WORK);

- shows if i knows whether j is connected (values 0,1),

for j = 1,2,...IVI,j 0 i

Messages sent and received by the algorithm at node i

MSGj - ccitrol messages with identity j sent by i

MSGJ(t) - message with identity j received by i from L

START - same meaning as in PI.

Algorithm for node i

Assumption: just before entering protocol, holds dl 0 for all j.ij

- 12 -

1. For START or MSG J ()

2. if Mi a NORMAL, then: M. WORK; send MSGi to all neighbcrs.-1 1
3. if d . 0, then: di 1; send MSGj to all neighbors.

Theorem CTL-1

If node j is connected to i and START is delivered to any node connected

to j (or to j itself), then di will become 1 in finite time and ii i and j
3 i

belong to disconnected networks, then d. will remain 0 forever.

Proof

The event Mk * WORK propagates as in PI and hence will happen in finite

time at all nodes k connected to the node that received START. For a

given i, after Mi becomes WORK, the event dk 4- 1 propagates again as in

PI and hence will happen in finite time at node j. The second part of

the Theorem is obvious.

Theorem CTI-2

With protocol CTl, there is no way for node j to know for sure what nodes

are disconnected from it or in other words, there is no way for j to know

when the algorithm is completed, except for the case when all nodes are

connected.

Proof

Consider first the case of three nodes 1, 2, 3 with links (1,2) and (2,3).

If 1 starts the protocol, it will receive the same sequence of messages

whether (2,3) is working or not, except that if it does, it will later

receive the identity of 3. Now, after receiving the identity of node 2

and before receiving the identity of 3, there is no way for node I to posi-

tively know whether it has already completed the protocol or not, i.e. whether

new identities are supposed to still arrive. It is easy to see that similar

situations may arise for any other topology.

- 13 -

Communication cost

The number of bits transmitted on each link in each direction is

IVI log2 IVi. This is because every identity travels exactly once on
each link in each direction, there are IVI identities and it takes log2 1W!
bits to describe an identity. The total number of bits in the network is

21Ej IV[log 2 IVI, where E is the number of bidirectional links.

The rest of this section is devoted to the presentation of several protocols

that solve the problem raised in Theorem CT1-2, namely allow nodes to posi-

tively know that the protocol has indeed been completed. We shall.say then that

the protocol has- the termination property. Protocol CT2 achieves the pro-

perty by employing the basic protocol PIF, while the others use a different

idea.

Protocol CT2

The protocol is started and entered by nodes in the same way as in CTl.

Whenever a node i receives the first message MSGj with the identity of j,

from neighbor I say, a node i denotes this neighbor (as in PIF) with a

special mark pi, and sends MSG3 to all neighbors, except to p. When it

observes that it has received MSG3 (for j 0 i) from all neighbors, node i

sends MSGj to p?. The termination property holds because it is shown

below that receipt of MSG from all neighbors can be interpreted as the

signal that node i positively knows the nodes that are connected to it and

also the nodes that are disconnected.

Variables of the algorithm at node i

M. - WORK while i is participating in the protocol and * NORMAL after

completing the protocol;

d? shows if i knows whether j is connected (values 0,I) for all j;

N () shows if MSGJ has been received already from neighbor . (values 0,1)

for all j and L Gi ;

p - neighbor from which MSGj has been received first, for all j.

Ok

- 14 -

Messages received and sent by the algorithm at node i

Same as in CT1.

Algorithm for node i

Assumption: just before node i enters the algorithm, it has

d* 10, NJO() u 0 for all j and I c Gi

1. For START or MSG j (J), j i

la. if MSG, then: N (L) 1.

2. if di - O, then: M41 ' WORK; d * 1; send MSG1 to all neighbors.

3. if MSG and d! - 0, then: d * 1; pi L; send MSGJ to all
neighbors, except p1 .

4. if fl, C Gi holds "O(L) - 1. then: send MSG J to pJ;

z£ Gi, set NI(L') 0 a.

S. For MSG1 (1)

Sa. N i(t) - 1;

6. if /' c Gi, holds N 1(1) a 1, then: M NORMAL; * c Gi£

set N (1') - 0.

In order to analyse the protocol, we shall need the following notation

(see also notations just before Theorem PIF-l):

- the event of node i performing line <-,j of its algorithm

regarding node j (i.e. reacting to receipt of S(Gj).

The properties of the algorithm are given in the following:

Theorem CT2-1

Suppose START is delivered to any node connected to a given node j (or

to j itself). Then

- 15-

a) same as Theorem CT1-l

b) node j will perform <6>. in finite time and exactly once, and
3k

when this happens, it will have d. 1 I for all connected nodes)3

k and dk = 0 for all disconnected nodes k. In other words, it
3

will positively know at that time what nodes are connected, resolv-
ing the problem raised in theorem CTI-2.

Proof

The event Nk - WORK propagates as in PI and hence will happen in finite

time at all nodes k connected to the node that received START. For a
i . "

given node i, after di becomes 1, the event dk 1 (i.e. <3>k in the

present protocol) propagates in the same way as <3>k in PIF and hence

(cf. Thm. PIF-I) it will happen in finite time at node j, completing the

proof of a). Similarly, for the given node i. <4> propagates in theII
same way as <4 >k in PIF and hence <4W'., <4>? and <6>. will happen in finite3 1 j
time, each exactly once-. It remains to-show that <6>. is indeed the signal

indicating that node j knows all connected nodes, namely to show that

kt (<3) t t(<6>) (4.1)

for all nodes k connected to j. For given k and J, consider the nodes

k a " j, where i p3 for L a 0, 1, ..., r-l. In words,
r. i~

this is the branch of the tree rooted at j referred to in Thu. PIF-l on
which node k sits. We wish to prove (4.1) by using induction on the men-
tioned series of nodes, namely we want to prove by induction that

t(<31-) < t(<,4?) for i a k, il ,...P :18 . (4.2)

kObserve that <3>k is not defined in the algorithm and is used here for con-
venience of notation to mean 2>k and similarly, 4>j means 6> .

Since 2 -3>k is the first operation at node i, expression (4.2) is

clearly true for i a k a i0. Now the induction will be compl'ete if we

prove that for any node i, the fact

- 16-

t (<3> k) < t (<4>o) (4.3)

implies

t (<3>k,) < tC'>. (.0 (4.4)

P Pi

We distinguish two cases. Suppose first that Pm P. Then (3.1) applied

to k implies

t (<3> k > t (<3> kk (4.S)
k k

Pj

and (3.2) applied to j implies

t (02,l j tC(02-j) (4.6)

Pk

These, combined with (4.3) and the fact pi P imply (4.4). Suppose
k j Lo usdnt bkEDCnext that pi 0 pi . Let us denote by SEN. CL) and Rcvk(1) the event of

node i sending/receiving MSG to/from neighbor L respectively. Then

<3> and Assumption d) in Sec. 2 imply that

,€,<,.). t(sENic, i)) (4.7)

and 4> says that

t(4 * t(SENDJpJ) (.8
i *€-,l *("i(, I,.

Now (4.3) Assumption c) in Sec. 2 and (4.7), (4.8) imply

t(RCV k(i)) < t(cvJ M) (4.9)

Pi Pi

Lt.

- 17 -

But

t(<3>k. t (Rcvk(i)) (4.10)
pi Pi

since <3> k is performed whenever the first MSGk is received, and similarly,

t (4>J > t(RCV3.(i)) (4.11)
Pi Pi

since 4>0 is performed after having received MSG j from all neighbors.

Now, (4.9) - (4.11) imply (4.4), and this completes the induction and the

proof of the Theorem.

Communication cost

Observe that by Theorem CT2-l, the communication requirements of CT2 are

the same as those of CTI, namely IVI log 2 1l1 bits per link in each direction.

Observe however that the storage and processing requirements, as well as the

required execution time are larger than in CTI.

Protocols CT3 - CTS use a different idea for achieving the termination

property. CT3 is quite wasteful in terms of communication requirements,

but it is convenient in order to illustrate the idea and to be used as a

basis for developing the more efficient versions CT4 and CTS. In addition,

it can be used for different purposes, like learning the network topology.

Protocol CT3

Suppose we use protocol CTI, except that for each node we propagate not only

the identity of the node, but also of its neighbors. In other words MSG j

of CTI will now carry the identity of j as well as of all its neighbors, i.e.

will have the format MSCJ (K.), where K. contains the identities of all

neighbors of j. The termination property is achieved using the fact that,

if a node k receives MSG3 (K), it will eventually receive MSG (K i) as well,

for any i t Kj, and the termination signal will occur when node k will have

I:

- 18 -

heard from all these nodes. Clearly, the algorithm at each node will have

two stages, where In the first one it will learn the identity of its own

neighbors and in the second will proceed with the protocol as described

before. In the description of the protocol, we shall use a special nota-

tion WAKE for messages belonging to the first stage.

Variables of the algorithm at node i

Mi same meaning as in CT2

d* - 0 before entering algorithm,

1 while looking for identity of neighbors,

2 while looking for all connected nodes;

di - 0 when i knows nothing about j (for j 0 i),

I while i knows j only as a neighbor of another node,

2 while i knows J directly (i.e. MSG J (K') has been received);

Ni(t)shows if WAKE has been received from neighbor I (values 0,1);

Ki is the list containing the identities of all neighbors of i.

Messages received and sent by the algorithm at node i

MSGi(Ki) - message containing identities of i and of its neighbors;

WAKEi - message asking the neighbors to wake up and to send their

identity;

START - as before.

Similarly MSG j) and WAKE for received messages.

19 -

Algorithm for node i

Assumption: just before node i enters algorithm, it has K. * empty and

0 0, Nit() - 0 for all j and L c Gi

1. For START

la. d. * 1; M. WORK; send WAKEi to all neighbors.

2. For WAKEL

2a. Ni(t) 1; include I in K.1 1 J

i
2b. if d. a 0, then: same as <la>

2c. d-max {d', 1);

3. if -' c Gi, holds Ni(L') - 1, then

3a. d1 * 2; ;£' c Gi, set N.(t') - 0, send MSGi(K to all
;1 1MG

1 K)

neighbors.

4. For MSGJ (K) and Ni WORK

k k
S. if d? 0 2, then di - 2; k c K, set d. * max (d 11,1 '1 j'1 i

send MSGJ(K 1) to all neighbors.

6. if , holds dj = 2 or 0, then M. - NORMAL.

The properties of the protocol are given in the following:

Theorem CT3

Suppose START is delivered to one or more nodes. Then

a) exactly onc message WAKE traverses each link in each direction;

b) <3> happens at all connected nodes in finite time and exactly once;

c) when MSGi(Ki) is sent hy node i (see <3a>), then Ki contains exactly
the identities of all neighbors of i;

d) for each node j in the conrected network, exactly one message MSG(K)
ecc

traverscs each link in each direction; I

- 20 -

e) every node i will perform <6> (i.e. Mi - NORMAL) in finite time and

when this happens it will have dj = 2 for all connected nodes j and d* 0

for all disconnected nodes j (i.e. this is the termination signal).

Proof

The propagation of WAKE happens as in protocol PI and hence a) and b).

Now, c) is clear from condition <3>. For each j, propagation of MSGj(K.)

happens as in protocol PI except that it is triggered by <3> instead of by

START and hence d). In order to prove e), consi4er the situation after all

messages considered in d) have arrived. Then from <S>, a node i will have

d . 2 for all nodes j connected to it. For all disconnected nodes j, it

will have d 0 and hence 46> will be performed. It remains to prove that
there cannot be a situation where <6> holds while dJ a 0 for some connected

node j. If this was the case, there must exist a set of nodes V containing i,

where V is not the entire network and d! a 2 for j c V, while dk - 0 for1 i

k j V. But then <S> shows that d. > 1 for all k that are neighbors of any
k 1

node in Y, contradicting d. - 0 for all k j Y. This completes the proof of

e) and of the theorem.

Communication cost

On each link in each direction we need log2 11i bits for the WAKE message and

IVI (D + 1) log2jVI bits for the MSG messages, where D is the average degree

of the nodes (average number of neighbors). Clearly D a 21E1/IVI and hence
the communication cost is (21EI+IVI. 1) log2IVI bits per link in each direction.

As mentioned before, protocol CT3 employs too much comunication and its

performance can be considerably improved. One way is to use the position

of a variable in a vector to indicate the identity of a node, instead of

explicitly mentioning it. This idea was used in a protocol by Finn [3] and

we present here an improved version of that protocol:

Protocol CT4

Variables of the algorithm are d i d N i(L), Mi with the same meaning as

in CT3.

- 21 -

Messages sent and received by the algorithm at node i

START;
D (d ' d), message sent;

D(L) message received from neighbor I ; we denote its contents by

1 2 V(dd,..., d 1.

Algorithm for node i

Assumption: just before node i enters algorithm, it has all d5 0
1

and Ni () * 0 for all j and I c Gi .

1. For START

Ia. d.i - 1; M. WORK; send D. to all neighbors.

2. For D(Z)

2a. if D(L) = {0,0,...,0.l,0,...,0) , then

2b. Ni(t) 1;

i
2c. if d 0, then: same as <Ia>;

2d. k, set dk max {dk, d11

3. if L' c Gi. holds Ni(L') = 1, then:

3a. di - 2; f,' Gi, set N (1') #- 0; send D. to all

i

neighbors;

4. if D(A) (0,0,...,0,l,0,...,0} and i 1 , then:
4a. if di kk

4 i d 2, then set dk 4- max (d1 , d
k

1

22 -

S. else, if j such that dJ -2 > di, then:

Sa. Yk set max (dk. d k; send D. to all neighbors.

6. if fj holds dl - 2 or 0, then H. * NORMAL
i1

Observe that the message {O,O,...O,1,O,...O} replaces WAKE of protocol CT3.
Note also that Finn's [3] protocol requires a node to send messages every

time its table is updated, while here messages are sent only when relevant
new information is received (see <4a>, <S>). In this sense, the present
version is more efficient than [3]. The properties of the protocol are
summarized in

Theorem CT4

Suppose START is delivered to some node. Then

a) exactly one message {O,O,...O,1,O,...,0) traverses each link in each

direction and this is the first message on each link;

b) <3> happens at all connected nodes exactly once and then d3 > 1 for

all neighbors j of i;

c) no more than IVI messages with format i {O,0,...,l,O,...O) traverse
each link in each direction;

d) same as e) in Theorem CT3.

Proof

Lines <1>, <2c> and the fact that the propagation is as in PI imply a) and b).
From the algorithm it is clear that dJ. can only increase and from <3w, and
Sa> follows that a message 0 (O,O,...,l,O,...O} can be sent by i only when

some dJ is set from 0 or I to 2 and this can happen only once for each J.i
Hence c). Finally d) follows in the same way as e) in Theorem CT3.

- 23 -

Communication cost

Each message contains 21V1 bits and hence at most 21VI (lvI 1) bits

will travel on each link in each direction.

Protocol CT3 can be improved in another way, resulting in a more efficient

protocol CTS.

Protocol CTS

Considerprotocol CT3 with the following variation
Whenever receiving MSG3(K.), a node i consults its table containing (d k

If di = 2, the MSG is discarded, since such a MSG has been previously
I

received and forwarded to all neighbors; this part is the same as in CT3.

If di < 2, then di - 2 and the MSG is sent to all neighbors, but now, beforei I

sending MSGJ(K.), the following pruning operation is performed.:
3

For all k c K., if dk > 1, then k is deleted from Kj; otherwise k is not
1-ok

deleted from K. and the variable d k receives value 1. Then MSGJ (K.) is
3 1 ksent to all neighbors. Node k can indeed by deleted when d. > 1 because

1

in this case k has been sent before by i to neighbors, either as a neighbor
k k kof some node, in which case, d. = I or in MSG , in which case d - . 2. One1 1

way or the other, there is no need to send k again. All properties of CT3

hold here as well, but the pruning operation assures that the identity of each

node k travels no more than twice on each link in each direction: once as a
kneighbor of some node and once in MSGk . Hence the communication cost is

bounded by 21Vl1og 2 1VI bits per link in each direction.

-24-

S. Minimum-hop-path protocols

The problem considered next is to obtain the paths with smallest number

of links (hops) from each node to each other node. As before, at the

beginning of the algorithm a node knows only its own identity and the

adjacent links. When the algorithm is completed at a node i, we want

the node to know its distance d. in terms of number of links to:;all

other nodes to which it is connected and a preferred neighbor p through

which it has the minimum-hop path to k. Observe that we do not require

nodes to know the entire minimum-hop path.

If the travel time of a control message were identical on all links, then

we could have accomplished the minimum-hop-path by using protocol PI

(see Theorem PI-1 c)). However, as stated before; such an assumption

is not practical, and the problem is to design a DNP where nodes will

receive the first message with a given identity from the neighbor pro-

viding the shortest path, even if link delays are arbitrary. Such a

protocol has been proposed by Gallager [1) and here we give its formal

description and validation.

Protocol M[

A node enters the algorithm in the same way as in the CT protocols, namely

when receiving START or the first control message, and at that time is sends

its own identity to all neighbors. After having received the identity of all

neighbors, node i knows all nodes that are at distance I from it. Node i

keeps this information, sends it to all neighbors and then waits to receive

the lists of all nodes that are at distance I from each of its neighbors.

The union of these lists minus the set of nodes already known to i, i.e. those

that are at distance 0 or I from it, is exactly the set of nodes that is at

distance 2 from i. This information is kept again at i and also distributed

to neighbors, and the procedure is repeated. If at some level, the union of

the lists received from all neighbors contains no nodes that are unknown to i,

- 25 -

then node i has completed the algorithm. It sends to all neighbors a

message saying that it has no new node identities to send and stops.

Any further message it may receive is disregarded.

Variables of the algorithm at node i

dk - distance from i to k; set initially to IV) for all k (values 0,1 ... IVj);

PiPk . preferred neighbor from i to k, for all k;

Z. - state of node i showing distance covered by the protocol up to now
(values -1,0,1,...,IVI-l);

Mi shows if node i is currently participating in the protocol (values

NORMAL, WORK);

N.(I) - level of last message received on link (i,L)

(values -1,0,...,IVI-l), for L £ G..

Messages sent and received at node i

MSG(LISTi) - message sent by node i1l
MSG (1,LIST) = MSG(LIST) received on link (i,L)

START

Algorithm for node i

Assumpti n: just before node i enters algorithm, it has pk nil,

kid. * for all k, Z. - N. (m) * -1 for all m z Gi.1 1 1 "

tB~~

- 26 -

1. For START or MSG(tLIST)

2. if Z. u -1, then: di 0 0; M * WORK; Z. 0; LIST. - {i};-1 1. i 1

send MSG(LISTi) to all m c Gi .

3. if MSG and M. 1, then

4. N i () - N *i + 1;

S. k c LIST, then

Sa. if dk Ni(I) + 1, then d Ni () + 1; P k 4-

6. if Zi <_ N(m), fm Gi., then

6a. Z. - Z.i 1; LIST.i = {kId i = Z. send MSG(LISTZi)

to all neighbors;

7. if LISTI - *, then Mi - NORMAL.

Preliminary properties of the protocol are given in Lemma MH-1, while the

main properties appear in Lemma MH-2 and in Theorem MH-l.

Lemma MH-l

Suppose START is delivered to a node (or several nodes). Then for any

connected node i holds:

a) I will enter the protocol in finite time;

b) messages are sent by node i if and only if Z. is incremented at the1
same time; if MSG is sent by i while Zi a Z, receipt of the MSG at

neighbor I will cause Nt(i) Z;

c) Z and Ni (m) for each m e G change only by increments of +1;

d) for each m c Gi, holds Ni(m) a Zi or Zi ± 1 and there is at least one

m for which Ni(m) Z - I (note: this implies Z1 . minmNi(m) + 1);

- 27 -

e) no message can arrive on links (i,m) for which Ni(m) a Zi . 1;

f) if Zi is incremented at time t, then for all m c Gi holds

Ni~ m) (t.) - Zi(t+) or Zi(t.) - 1.

Proof

a) holds since propagation of <2> happens as in PI. Assertion b) holds

since Z. is incremented whenever MSG is sent (<2>,<6>), Ni() is incremented

whenever 4SG is received from t(<4>) and both are initialized to -1. In

addition, c) follows from <2>, <4> and <6a>. Property d) is true imediately

after the time node i enters the algorithm, at which time either Zi a 0

and minm Ni (m) = -1, or Zi = 1 and minm Ni (m) - 0, the latter if i has only

one neighbor and enters the algorithm by receiving MSG from it. Suppose now

that the property is true at node i up to time t- and we want to show that it

will hold at time t+ as well. The variables Ni(-) or Zi can change at time t

only if a MSG is received, from neighbor t say. Let 4 Z.(t-) a Z. We have

several cases:

i) N.(L)(t-) * Z - 1 and dm # L with Ni(m)(t-) - Z - 1; then Ni(t)(t.)-

• Zi(t+) = Z and all other Ni(.) do not change, hence d) continues to

hold at time t ;

ii) NC) t-) = Z - 1 and Pm # L with Ni(m)(t-) - Z - 1; then Ni(L)Ct+) - Z

and Z (t) = Z + 1, since <6> holds at t, and d) continued to hold at t ;

iii) Ni(1)(t-) = Z, in which case Ni(L)(t+) a Z + 1 and Zi(t) - Z, hence d)

continues to hold at time t ;

iv) we claim that Ni(L)(t-) cannot be Z + 1. Suppose Ni(t)(t-) - Z + 1.

Then hi (L)(t+) a Z + 2, and from b) follows that at time tl < t, node I
has sent MSG(LISTI) while Z',- Z + 2. From <6>, <6a> we have Z L(tl-) a Z 1

and NI(i)(tl+) > Z + 1. This means that t2 < tl when i has sent MST(LIST)

to L, while Zi(t2+) a Z + 1. But the latter and Zi(t-) - Z contradicts the

monotonicity of Z. (see c)).
1

- 28 -

This completes the proof of d). Observe now that e) is exactly case iv)

in d). Finally, observe that scanning cases i) - iv) of d), we see that

Zi is incremented only in case ii) and f) clearly holds in this case, com-

pleting the proof of the Lemma.

Definition

The number of links on the minimum-hop path from i to k is called the

distance from i to k.

Lemma MH-2

Under the same conditions as in Lemma t4-l, holds:

a) if a node i has nodes at hop-distance r, then it sets Zi * r in finite

time and then sends MSG(LISTi), where LISTi contains exactly all nodes

k that are at hop-distance r; for all those nodes holds d - r and

this d k is final.i

b) let Si be the largest hop-distance from node i in the network, i.e.

node i does have nodes at hop-distance Si. but not at hop-distance

(Si + 1); then node i will set Zi * (S i + 1) in finite time, at which

time it sends MSG(LISTi) with LIST i * * and performs <7-; node i will

not increase Zi any further.

Proof

a) Setting of Zi - 0 while sending MSG(LISTi) with LIST - Ii} propagates

as in PI and hence will happen at all nodes in finite time. How suppose

a) holds for all nodes that have nodes at hop-distance (r-l). Consider

a node i that has nodes at hop-distance r. Then itself and all its

neighbors m have nodes at hop-distance (r-l) and by the induction hypothesis,

they set Zm (r-l) and send MSG(LISTM). When such a message arrives at
i, it sets N i(m) 4- (r-l),and after all such messages arrive, <6v will hold

with Zi a (r-l). This causes Z, - r. At this time we have from Le Mi-i,

Ni(m) a r or (r-l) for all m.

- 29 -

Now suppose k is at hop-distance r from, i. Then there is a neighbor

m of i such that k is at hop-distance (r-l) from a and there is no

neighbor m of i such that k is at hop-distance strictly less than (r-l)

from m. By the induction hypothesis, k was sent by a in NSG(LISTa)

while Zm - (r-l) and hence was received at i while Ni(m) - (r-l), but

was sent by no neighbor m' while Z., 4 Z - (r-l). Hence at the time

Z. + r we have dk - r, and therefore k is .ent in SG(LISTi). From

<Sa> it it clear that this d. is final. A similar argument shows that

nodes at hop-distance >r or r from i cannot be included in the LIST i

considered above.

b) First consider a node i s.t. Si a min {S where the min is over all

nodes in the network. All its neighbors m have nodes at distance Si

and by a) they send MSG(LIST) while Z m S.. When all these messages

arrive to i, Zi will become S. * 1, but since i has no nodes at hop-

distance S. + 1, holds LIST. • * and hence i performs <7;. Now suppose1 1

by induction that b) holds for all nodes i for which S.' S - I. Con-

sider a node j with S. = S. Node j has a node k at hop-distance S and

k is included in LISTj when j sends MSG(LIST.) while Zj * S. For an

arbitrary neighbor m of j, node k is at hop-distance (S-1), S or (S+l)

from mn and hence S S-1. If S > S, then a) implies that Z willfrmman eceS a a --

become S in finite time. If S a S-I, then Z will become S in finite

time from the induction hypothesis. Hence from Lena MH-I b), NW(m)

will become S in finite time for all neighbors m of j and hence Z. will

become (S.1). Since j has no nodes at hop-distance (S.1), <7> will hold

and this completes the proof.

From the previous Lemmas, we obtain the following:

Theorem H-1

If START is delivered to a node (or to several nodes), then all connected

nodes will enter the protocol in finite time. All nodes i will complete

the protocol in finite time with correct dk and pk for all connected nodes k

and with dc Pk k nil for all disconnected nodes.i

-30-

Proof
k-

The only unproven part is the setting of pi, which however follows

immediately from the proof of Lemma MH-2 a).

Commnunication cost

Since the identity of any node travels exactly once on each link, we

need IV o 2 ~jbits on each link in each direction.

IVI 109

- 31 -

6. Path-updating protocols

In the protocol of [2], (4] each node maintains a path to each other

node in the network and updating "cycles" allow these paths to be

changed so that they are improved in each cycle and, in addition, the

collection of paths to any given node form at any given time a loop-

free pattern (i.e. a tree). Here we present first the fixed-topology

part of the path-updating protocol and then show that protocol CT2 can

be used to initialize it. The validation of both is based on the PIF

basic protocol.

Protocol PU

The protocol updates paths from all nodes in the network to a given

node s and can be repeated independently to update paths to each of

the other nodes. Therefore, we can present only the protocol for a

given"destination" node s. The protocol works very similar to the

PIF protocol. Here however it is assumed that just before START is

delivered to s, all connected nodes i already have preferred neighbors

s such that the collection of the links (i, p!) form a directed tree

rooted at s. We also assume that at that time, all m. = 0 and in1

addition the variables d S as defined below are such that d > dSp , or

in words ds is strictly decreasing while moving downtree.1

Finally, it is assumed that N (t) 0 for all L c G.. The validation
i I

of the protocol (theorem PU-1) will show that these properties continue

to hold when the protocol is completed, so that a new update cycle can

then be started.

Protocol PU

Variables of the algorithm at node i 0 s

Ni(t) , same as in protocol PIP1

dit - distance from node i to neighbor U as measured at the time it is

needed by the algorithm; can be time-varying (values: any strictly

positive real number), I t GO

- 32 -

d S - estimated distance from i to s on the preferred path;
1

pS - "preferred" neighbor of i for s;

s

Ds(L) - storage for d1 + d,,, for I c Gi;

m! - 1 after performing <3, and before performing <4> ; = 0 otherwise.

Messages received and sent by the algorithm at i

MSGS(d!) - message sent;

MSG s (1,ds) - message received.

Algorithm for node i s

1. For MSGS(1,d
s)

2. N.() 1 1; D!.() ds + d.
I I it

3. if I = P!, then: d. min D!(1') over ' s.t. Nz(,')

m s * 1; send MSG Cs(d) to all neighbors, except ps1 .

4. if 7k' c Gi holds NCL') = 1, then: send MSGS(d) to pi

p k. that achieves min D CL') over 1, e ; M! 4- 0;

VA' e Gi, set Ns (C ') - 0.

The algorithm for s is the same as in PIF except that all messages sent by

s have format MSGS (0).

Theorem PU-1

Suppose the assumptions given just before the presentation of the protocol

hold. Then:

- 33 -

a) theorem PIF-l, where ps refers (only in this part) to the initial

preferred neighbors.

b) the collection of links {(i, p3)) forms at all times a tree rooted

at s with the following properties:

i) ms < ms

i - s
Pi

1 S

(ii) if ms ms O, then ds > dPi P s

1 pi

c) for each link (ij) the "distance" d.i is measured exactly once

by node i; at the end of the protocol, all nodes will have paths

to s that are no longer than before the protocol starts, where the

length of a path is the sum of the weights of the links; if

initially the tree defined by {p.) is not identical to the minimum-

weight-tree in terms of the measured (d it, then there is a nonempty
set of nodes that will strictly improve their paths.

Proof

Observe that the present protocol is identical to PIF, except that <3> is

performed by a node i only when MSG is received from p (and not as soon

as the first MSG is received as in PIF), we introduce the quantities d!,
1D (L), di1 and the preferred neighbor Pi is changed in 4>. Now, if we

denote by PIs5 the initial tree, <3), and <4> propagate here exactly as in

PIF, provided that in that protocol a MSG traverses any link in Pls much

faster than any other link. Since Theorem PIF-l holds for arbitrary link

travel tiLel, assertion a) follows. In order to prove b), suppose the

assertions hold up to time t- and we want to show that if <3> or <4> happens

at time t at some node i, the assertion continues to hold.

Observe that if <3> happens at node i at time t, then p is not changed and

hence the tree property continues to hold. Also, b) ii) is not affected

by '3' and hence we only have to check that b) i) continues to hold.

Lk

- 34 -

Since ma(t-) 0, we have by the induction hypothesis ms(t) 0 for any j
I

for which p (t) a i and hence b) i) continues to hold for j and i after

time t. On the other hand, when performing <3>, node i receives MSGs

from p!, so that p. must have performed <3> before t, implying that * (t)

and, since m!(t+) = 1, assertion b) i) continues to hold after t Pi
sS

for i and pi as w-11.

Now suppose 4> happens at some node i at time t. Observe that at that

time, i has already received MSG from all neighbors and it performs a. 4- 0.

Consider first any node j such that p.(t) = i. If p.(t = i, where tJo o

is the time the protocol started, then receipt of MSG at i from j means

that j has performed <4> before time t. If p.(t o) # i, then j has changed
50
p before time t and again this shows that it has performed <4> before time t.

Consequently m.(t) a 0 and hence b) i) continues to hold after time t for j

and i. Also, from the way d.s is calculated and p is chosen follows that

d S'> D (i) d s * dji > ds (6.1)
j - J i j

where the last inequality follows from the assumption dji > 0 (see definition

of d). Consequently b) ii) continues to hold after time t. Now, con-
it

sider the pair i and k* w ps(t.). Assertion b) i) holds trivially after t

for i and k* since m! 4- O, while assertion b) ii) holds by the same argument1

as in (6.1). Now (i,k*) cannot close a loop since by b) i), all nodes I in

such a loop must have m, a 0, and going around the loop this would imply by

b) ii) that d i > di . The proof of c) is quite simple and will be deleted

here. The reader is referred to similar proofs that appear in [4, Sec.4) and
(6, Appendix, Lemma I].

Communication cost

Clearly there is exactly one message on each link in each direction.

Its size in bits depends on the number of bits assigned to di.

. ... m1

- 35 -

Protocol PUI (path-updating initialization)

In order to allow proper evolution of the PU protocol, it is necessary

to initialize it in the sense of building the initial trees {(i, p))

for all "destinations" j in the network. This can be done by using

protocol CT2 and we shall give here the additions that allow initiali-

zation of protocol PU.

Variables used by the algorithm at node i

Same as in CT2 except that d? has the meaning as in PU and in addition

m , d d], DJ(L)' tj and . E Gi. with the same meaning as in PU.

Messages sent and received by the algorithm at node i

Same as in PU and in addition, START.

Algorithm for node i

Assumption: just before node i enters the algorithm, it has

N?(t) a m? a 0 for all j and L c G..

1. For START or MSG j(L,d3), j i.

la. -kf MSG, then: N (L) 1 1; D(X) + dJ * d "
1 it

2. if m. = 0, then: M. WORK; ml 1; send MSGi(O) to all
-I I 1

neighbors.

3. if MSG and mj. "0, then: J t; d+ D (L); send MGJcd3)

to all neighbors except pi.

4. if 7tL' E Gi, holds NI(t') 1, then: send MSGJ(d I) to pit

p k' that achieves min D over k l G m 4- 0;
k it i

Vt' c G1, set Ni(t') -0.

- 36 -

S. For MSG (i,d1)

Sa. N.(L) , 1;
I

6. if 1' C Gi, holds.N (t') - 1, then: M. 4-NORMAL; m -0;
I1

v £ Gi , set NlCL') 0.

Theorem PUI-I

Suppose START is delivered to any node. Then any given node J will

perform <6> in finite time and at that time the links {(i, pj))

will form a directed tree rooted at j, with the property d > d>.

for all i. In addition, at that time, all ml - 0, and all Pi

N!(L) - 0.1

Proof

The protocol here evolves as CT2 and hence all properties of CT2 hold

here. Also, for a given j, action <3> j evolves as in PI, so that

Theorem PI-1 c) holds. Consequently, ((i, pi)) as considered after

all nodes perform <3>0 form a tree rooted at J. Also, by <la> and

<3> and the fact dit > 0, the quantities di are strictly decreasing

going downtree. After <3>3 is performed at all nodes, the protocol for

j behaves as in PU, so that all properties continue to hold until j per-

forms <6>

- 7 -

7. Topological changes

The protocols presented so far assume fixed topology of the network.

As such, the CT and 01 protocols may be performed only once and similarly,

the path-updating protocol may be initialized only once (the PU protocol

itself should be repeated periodically to account for load variations).

In this section, we present extensions to the above protocols that take

into consideration failures and additions of links and nodes, the main

idea being that whenever a topological change is sensed at some node, a

new "cycle" of the protocol is triggered to inform the network of the new

situation. Since we are working with a distributed network, we can make

no a priori assumption regarding the number, sequence or timing of topolo-

gical changes, and as such the extended protocols must work for all circum-

stances.

With topological changes occurring in the network, the assumptions of

Sec. 2 should be changed accordingly. In particular, assumptions a) and

c) of Sec. 2 will be changed now to:

a') link (i,j) fails/recovers at the same time that link (j,i) fails/

recovers, so that (i,j) belongs to the network iff (j,i) belongs

to the network;

c')i) each message sent by node i on link (i,j) arrives correctly in

finite nonzero undertermined time or the link fails in finite

time;

ii) whenever a link fails or recovers, both ends are notified in finite

ti,.ie, but not necessarily at the same time;

iii) failure or recovery of a node is considered as failure/recovery of

all adjacent links;

To make ii) above more precise, let F.(L) denote a flag indicating the
1

status of link (i,L) as seen from node i, taking values DOWN or UP if

i considers link (i,t) as down or up respectively. Then we assume:

-38-

if F (L) u Ft(i) and Fi (1) DOWN, then F (i) becomes DOWN in

finite time and before F.i () 4- UP;

if Pi(1) - FI-i) u DOWN and F i(L) UP, then in finite time holds

either F(i) - UP or Fi C) = F (i) DOWN.

Now the idea for extending DNP's described in the previous sections

to account for topological changes is the following: the cycles of

the protocol will be labelled with increasing numbers, every node

remembers the highest cycle number known to it so far and each of the

cycles corresponds now to the original (nonextended) protocol. When

a node wants to trigger a new cycle as a result of detecting a topolo-

gical change in an adjacent link, it resets its variables, increments the

cycle number and acts as if it has received START for a new cycle with

this number. Here "reseting variables" means to adjust the appropriate

variables to their required initial value as stated in the corresponding

assumption in each of the algorithms (e.g. in MH, p k - nil, dk k for

all k and Z - -1, N.(m) ' -1 for all adjacent m). The number of the
i '1

new cycle will be carried by all messages belonging to this cycle and now,

any node receiving a message with cycle numbers lower than the one known

to it so far discards this message. A node receiving a message with

higher cycle number than the highest known to it, resets its own variables,

increases its remembered cycle number accordingly and acts as if it now

enters the algorithm (i.e. the corresponding cycle of the extended protocol).

In this way the cycle with higher number will "cover" the lower number ones,

in the sense that when a higher cycle reaches any node, the node will forget

the previous knowledge and will participate only in the most "recent" cycle.

Observe that several nodes may start the same new cycle independently, but

the protocol allows this situation to happen, considering it in the same

way as if several nodes receive START in the nonextended protocol.

There is a question, whether it is indeed necessary for all nodes to forget

their entire previous knowledge, or rather it is possible to design proto-

cols where only the information affected by the topological change is dis-

-39-

carded. For the PU protocol, such a protocol appears in [2], [4], [7]

but for the others this is still an open question.

As an example, we shall write exactly the extended MH protocol.

Protocol EMH (extended MM) - Version A)

Variables used by the algorithm at node i

Same as in MM, and in addition:

Ri - highest cycle number known to i (values: 0,1,...)

Fi(L) - status of link (i,L) as known by i (DOWN, UP)

Messages sent and received at node i

MSG(Ri, LISTi) - sent.

MSG(L.,R, LIST) = MSG(R, LIST) received on link (i,l).

Algorithm for node i

Definition: "reset variables" means pk - nil, dk Ii for all k, Z -1,

Ni (L) - -1 for all L for which Fi(L) = UP.

1. Node i becomes operational (Note: Node i becoming operational forces

all operating links (ij') with L' operating, to become operational

for ')

la. F.(2') a-UP for all operating adjacent links (i,V') with 2'

operating;

lb. Fi(L') * DOWN for all nonoperating adjacent links (i,1') or

those links (i,V') with ' nonoperating;

lc. reset variables; Ri - 0; M - NORMAL.1 i

- 40 -

2. Adjacent link (i,L) becomes operational or fails

2a. R. .R. .1;1 1

2b. Fi (t) 4- DOWN or UP according to new status;

2c. reset variables; M. - WORK; d. * 0; Z. 0; LIST i a (i);

send MSG(Ri,LIST.) to all m for which Fi(m) = UP.

3. For MSG(L,R,LIST)

3a. if R > Ri, then

3b. if R > Ri, then: R. - R; same as <2c>;

3c. if M. - WORK, then:

4.-7. same as <4>-<7> in Nff, except that MSG has

format MSG(RL,LISTi).

Note that <2> and <3b> here correspond to <2> in MH, while <3c>

corresponds to <3> in MH. Clearly, similar extended protocols can

be given for the CT and also for the PUI protocols. Their properties

are similar to the ones of EMH-Version A as summarized in:

Theorem EMH-A-l

Consider an arbitrary finite sequence of topological changes with

arbitrary timing and location. Within finite time after the sequence

is completed, all nodes i in the final connected network will have
k k

Mi NORMAL with the same cycle number R., with correct d. and pi for
k k i

all connected nodes k and with di a IVI, pk u nil for all disconnected

nodes k.

Proof

From <2a> and <1>, each topological change increments the cycle counter

Ri at nodes i adjacent to the change. Every change in a link status

41 -

affects two nodes, every change in a node status affects a finite

number of nodes. Let 0i n be the collection of nodes that registern
change of status of an adjacent link, including those due to status

c&anges of the node at the other end of a link, and let (t n) be the

corresponding collection of times when the status change is registered.

Since there is a finite number of topological changes, the collections

(i), (t) are finite. Let R a max [Rfi (tn+)} over all n. Then R is

the highest cycle number ever known ia n the network and the cycle with

number R is started by (one or more) nodes ic(i) that increment their

Ri to R as a result of sensing a topological change. These nodes can

be considered as if they receive START in the MU protocol and, indeed,

the network covered by the cycle with number R registers no more topolo-

gical changes, since no counter number R. is ever increased to (R+1).1

Consequently, the evolution of this cycle is the same as in protocol Ml

and therefore Lemmas MH-I, M1-2 and Theorem M1I-1 hold here, completing

the proof.

In version A of MUE as presented above, as well as all other similar

extended protocols, there is the problem that the cycle counter numbers

{Ri) increases without bound and hence the question of how many bits are

enough to represent this number. In (l1, (31I the authors propose a

modified version of the extended protocols that insure bounded counter

numbers. We present this protocol here formally (version C) and give

a new proof for its validation. The procedure is illustrated as before

on Protocol M11, but similarly can be implemented on CT and PUI. In

order to provide a framework for understanding Version C, it is convenient

to first resent and validate a non-distributed Version B that will intro-

duce the important features of the procedure and then to explain the

equivalence between Versions B and C.

Protocol WiIE - Version B

Messages and variables: same as in version A.

-42-

Algorithm for node i

Same as in Version A, except for the following changes:

Lines <2> and <2a> become:

2. Adjacent link (ijt) fails

2a. R. ~-R. I and proceed to <2b>.
1 1

2'. Adjacent link (ijt) becomes operational

2al. wait until M aM~ L NORMAL and then

Wat. if R. R , then: R (R R foalnder

that are connected to i and furthermore, in all messages

that have been sent by such node r and not received yet,

increase R by (R L - Ri)

2a"'v. if R L Ri. similar to <2a"> for nodes connected to L where

the increment is (R. Ri)

2aIV. Ri1 4- R i + 1 and proceed to <2b>.

After <lc> insert

Id. for all ZU for which F.i(11) = UP, proceed as in <2a',.

The main property of Version B is given in Theorem MHE-B-1, but first

we need several definitions:

Definitions

A link (i,L) is said to be operating if F i L) * L (i) a UP. Two nodes
are said to be connected if there is a set of operating nodes and links
connecting them. A set of nodes is said to be connected if every pair

-43-

of nodes in the set is connected. A set of nodes S is said to be at

level R if min Ri - R for i e S. A set of nodes S (connected or not)

is said to be synchronized if either a) or b) below holds:

a) all nodes i c S have M WORK.

b) there is at least one node i c S with M. = NORMAL and then holds:1

i) 1j c S with M. - NORMAL holds R. - Ri and

ii) fj e S with M - WORK holds R. >_ R.

Theorem MHE-B-1

In MHE - Version B, if at any time t a set of nodes S is connected, then

it is also synchronized. Furthermore, if the set is at level R at time t

and if any node j will be connected at any future time t'> t to any node

i e S, then it will have RC(t') > R. (Note: the first property is the

important one; the second is only helpful in the proof).

Proof

We proceed by induction on events happening in the network. Suppose

both properties above hold up to time t-. Explicitly, every set of

nodes S' that was connected at any time T < t was also synchronized at

that time and every node j that was connected to any node in S' at any

time between T and t- had RJ X level of S' at time T. The events that

can happen at time t and affect the properties of the Theorem are: (i) a

node becomes operational, (ii) a link fails, (iii) a link is brought up

and (iv) Mi and/or Ri is changed. We proceed to check each of the possi-

bilities. First, a node that becomes operational will not connect to the

rest of the network until <ld> holds, so that this case reduces to (iii).

Second, if the set was synchronized at t- and a link fails, it will remain

synchronized just after the failure, except that one has to take into con-

sideration that the failure causes changes of Mi and Ri at the adjacent

nodes. However these changes are treated in (iv). Observe next that

- 44 -

(iii) can happen only if Mi(t-) - Ml(t-) u NORMAL, where (ii) is the

link under consideration. Suppose first that I and I do not belong to

two disconnected sets at time t-. Then, since the set under considera-

tion is synchronized at time t- by the induction hypothesis, it follows

that Ri(t-) = Ru(t-). Hence <2a"> and <2a"', do not apply and therefore

the only relevant variables that are changed are Mi, Rip MZ, R. (lines

<2atv> and on), and this again reduces to (iv). Suppose now that the

new link (i,t) does connect two previously disconnected sets. If Ri(t-) -

RA(t-), the same argument as before applies. If for example, Ri(t-)< Rt(t-),

let t' be the time just after execution of <2a">, but before execution of

<2a 1 V>. Recall that i-(t-) - t-) NORMAL and since each of the sets

are synchronized at t-, we have R r(t-) I Ri(t-) for all r connected to i and

Rr(t-) > RL(t-) for all r connected to 1, with equality in both cases for

those nodes r that have Mr (t-) u NORMAL. Now, from t- to t' all nodes r

connected to i raise their cycle number Rr by RI(t-) - Ri(t-) and so do all

messages in transient, and hence, the new combined set remains synchronized

at t'. Now the transition from t' to t+ is execution of <2alV> and on, and

again this reduces to case (iv), which is treated next. Observe that Ri

is increased if and only if Mi is WORK or becomes WORK, and clearly if at

t- the set was synchronized, it will remain so at t+. Therefore the only

situation that remains to be treated is Mi - NORMAL, in which case R is not

changed. Let R be the value of Ri at time t- (and t+). We must show that

for all nodes j c St, where St is the set of nodes connected to i at time t,

we have R. (t) > R, with equality if M. (t) - NORMAL. But since S is synchro-
3 3 t

nized at t- by the induction hypothesis, the condition M (t) - NORMAL requires

R (t) I R for all j. c St. and therefore it is sufficient to show that
Rj (t) . R for all j c St. At time t, node i performs M1 * NORMAL and let P

be the set of nodes k for which dik(t) < JJ. Nodes k c P certainly have

Rk(t) ! R. Now take any node a such that a c St , but a J P. We want to

show that R a(t) :o R. Observe that there must exist a node B cS, 6 1 P

such that B is at time t a neighbor of a node y c St 0 P (see Pig. 1). Since

P, node B was disconnected from y at some time after R * L. Let SY beY T-

|,j /

- 45 -

the connected set containing y at time T-, where r < t is the time

when link (B,y) was brought up. At that time M was NORMAL and R > R
Y y --

and by the induction hypothesis, SY was at level R. In addition,

by the second assertion of the Theorem that holds at time T- because

of the induction hypothesis, the fact that a is connected at time

t > T to y C Sf implies R (t)' level of SY at T- > R.

This completes the proof of case (iv) and shows that the connected

set remains synchronized. It remains to prove that any node that will

become connected to any node in the considered connected set St will

have at that time counter number > R.

At time t, every node i c St has Ri ! R and Ri never decreases. Let

t' be the first time after t when a node j' becomes connected to any

node i c S t Since until that time all connected sets are synchronized,

it must hold that Rj,(t') > R by the same argument as in (iii) above.

Consequently, after t' all sets remain synchronized and the same argument
shows that the property remains true for all future connections, completing

the proof of the Theorem.

Having proved the main properties of Version B, we can now make a few

observations about this (non-distributed) Version that will allow us to

introduce an equivalent distributed version.

- 46 -

Lemma MIE-B-l

In MHE - Version B, the following properties hold:

a) if <2a'> holds at time t and nodes i and I are connected at time

t-, then Ri(t-) a R1 (t-) and hence <2a") - <2a"'>are not performed.

b) Theorem ?4E-A-1 holds for version B as well.

c) for any node r, Rr is nondecreasing and, unless Rr is increased by

<2a"> or <2a"'>, it has increments of +1; if a node i sends two

consecutive messages on a given link with counter numbers R', R"

respectively, then R" > R' and if the second message is not related

to the performing of <2a"> or <2a'">, then R" a R' or R" a R' + 1.

d) if node i receives MSG (1,R, LIST) and R > Ri, then LIST a ()

and this message was sent by I while increasing R,, i.e. either

in <2c> or <3b>, but not in <6b>.

e) the values of R and Ri are not necessary for the algorithm; we

only need to know if R < Ri, R a Ri or R R.

Proof

a) follows Theorem MHE-B-l. Part b) can be proved exactly as Theorem

E-A-I. For c), the fact that Rr and the counter numbers in consecu-

tive messages can only increase is obvious from 42a>, <3b,, <2a">, <2a"'>.

The rest can be proved by a common induction as follows: suppose both

properties hold until time t-. The counter Rr can be increased at time t

only in <2a> and <3b> and in both cases only by +1. Furthermore, the

message with R" can be sent by i only in <2a> while incrementing Ri by 1,

in <3b> while incrementing Ri to R which is exactly Ri + I by the induction

hypothesis, or in <6b> while maintaining Ri to the previous level. This

proves both c) and d). Finally e) is clear from the algorithm.

- 47 -

Protocol MHE - Version C

Variables used by the algorithm at node i

Same as in MH and in addition F.(L) as in Version A and:
1

Qi(L) whose meaning is Ri - XRL (L) where XR (1) is the largest

counter number received from neighbor I in version B.

Messages sent and received at node i

MSG (ARi, LISTi) - sent, where ARi has the meaning .of the difference

between Ri in Version B and last Ri sent on this

link.

MSG (1,ARLIST) - received.

Algorithm for node i

Definition: "reset variables" has the same meaning as in version A.

1. Node i becomes operational (same Note as in Version A)

la.-lb. same as in Versions A and B;

lc. reset variables; Qi(ZI) 0 for all . for which Fi(L') * UP;

M. - NORMAL.

id. if there is an operational link (i,') for which M., a NORMAL,

proceed as in <2a'>; else wait until this happens and then

proceed as in <2a'>.

2. Adja-ent link (i,L) fails

2a. Qi(t') * Qi(L') + 1 YL' 0 L for which F(LI) UP; proceed

to c2b>.

2'. Adjacent link (i,L) is operational and FiCt) * FL(i) - DOWN and

Mi * Ha NORMAL.

" i. ... m

- 48 -

2a'. Qi Ct) - 0; QCL') 4 Q, CI') 1 -' for which F(i') * UP;

2b. F. C) - DOWN or UP according to new status;1

2c. reset variables; Mi WORK; d.1 4- 0; Z 0; LIST {i};
send MSG(,LIST.) to all m for which Fi(m) X UP.

3. For MSG(L,ARLIST)

3'. if AR < Qi(), then: Qi0) 4- Qi () - AR.

3a. else

3b. if AR > Qi(l) (note: i.e. AR a 1, Q1 CZ) a 0), then:

3b'. Qi(1') - Q.(L') +1 A' for which F(11) a UP;

same as <2c>;

3b:. Qi (-) 0;

3c. if H. M WORK, then

4.-7. same as in <4> - <7> in Nil, except that MSG has format

MSG(O,LIST d.

We have numbered the lines in Version C to correspond to the appropriate

lines in Version B. The note appearing in <3b> holds because of Lemma

IIE-B-1 c). Observe that <2a'> in Version C is equivalent to <2a">,

<2a"> of Version B. This is because if i and I are connected at time t-,

where t is the time of the event occurence, then in version B, Ri(t-) a R1(t-)

from Lemma MiE-B-I a) and <2a'> in version C says exactly the same thing.

If, on the other hand, i and z are disconnected at time t-, the effect of

bringing Ri(t-) and R,(t-) to the same level while raising accordingly

all appropriate counter numbers is equivalent to <2a'> of Version C. This

implies that Versions B and C are equivalent. Furthermore, Version C is

distributed and the counter numbers are bounded as shown below:

-49-

Theorem MIiE-C-I

a) The counter numbers AR in MSG take values 0 and I only.

b) For every i and L, the variable QiCt) I IEI where IEJ is the

number of links in the network.

Proof

All messages sent in the algorithm have AR - 0 or 1 and this proves

part a). To see that b) holds, observe that Q.i() can increase only

if, while link (ij) is operating, node i keeps sending NSG(1,LISTi)

to 1, but I does not respond. After the cycle corresponding to the

first of these messages covers the entire netowrk (or is covered by

another cycle), no link can be brought up, since lack of response from

L does not allow any other node k to return to M k - NORMAL. Therefore

the worst case is when all links fail one after the other in such a

way that each increments Qi(1) and the total number can be no higher

than tEl - 1 (for all links except (i,t)) plus 1 for the case when

(i,l) just came up.

- so -

8. Conclusions

In this paper we have addressed the problem of providing formal
description and validation to a number of Distributed Network

Protocols. After introducing two simple basic protocols in Sec. 3

that form building blocks and unifying framework for the more complex

ones, we introduce three classes of DNP's - connectivity test, minimum-
hop paths and path-updating. For each we provide the algorithm for
the nodes participating in the protocol and formal proof of its valida-

tion, extensively using the properties of the basic protocol on which

it is based. Finally, we present a unified way to extend those proto-

cols to the case of changes in the network topology.

- 51 -

Footnotes

1. The statement "For..." means "the actions taken by the processor

when receiving

2. The notation <-> will always denote the corresponding line in the

Algorithm under consideration.

3. We use superscript s throughout the description of the present

protocol to explicitly indicate the node that propagates the

information.

4. We write the time in parentheses to indicate the value of a para-

meter at a specific time. Also, t- and t denote the time just

before/after time t.

-52-

References

1. R.G. Gallager, A shortest path routing algorithm with automatic

resynch, unpublished note, March 1976.

2. A. Segall, P.M. Merlin & R.G. Gallager, A recoverable protocol for

loop-free distributed routing, Proc. of ICC, June 1978, Toronto.

3. S.G. Finn, Resynch procedures and a failsafe network protocol,

IEEE Trans. on Comm., Vol. COM-27, Nr. 6, pp. 840-846, June 1979.

4. P.M. Merlin & A. Segall, A failsafe distributed routing protocol,

IEEE Trans. on Comm., Vol. COM-27, Nr. 9, pp. 1280-1288, Sept. 1979.

S. P.M. Merlin, Specification and validation of protocols, IEEE Trans.

on Comm., Vol. COM-27, Nr. 11, pp. 1671-1681, Nov. 1979.

6. A. Segall, Optimal distributed routing for virtual line-switched

data networks, IEEE Trans. on Comm., Vol. C0M-27, No. 1, pp. 201-209,

Jan. 1979.

7. A. Segall, Advances in verifiable failsafe routing procedures,

submitted to IEEE Trans. on Con.

. . .. - ... -.. IINIIIA

