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1.0 INTRODUCTION

1.1 Background

:Sg/ﬂork described in this report follows that performed under contract

DACA39-77-~ 4 and presented in "Computer Modelling of Jointed Rock Masses" by
*

Cundall dé al (1978) .

In the previous study several computer programs were developed as exam-
ples of the "distinct element method", which is an explicit, time-marching pro-
cedure that models assemblies of discrete blocks or particles that interact mech-
anically. The first program was restricted to rigid blocks, and was a translation
into Fortran of an earlier machine-language code that used interactive graphics
to create and manipulate blocks. A second program introduced simple deformability,
whereby each block has three degrees of freedom to deform internally. A modified
version of the rigid block program was written in order to allow blocks to split
into two, using a simple criterion based on the applied loads and the block dim-
ensions. Finally, an experimental program was written in which blocks could be
discretised internally into finite~-difference triangles. Such blocks are termed
"fully-deformable".

Apart from the inconvenience in having different facilities available
in different programs, the computer programs were written with no particular
emphasis on efficiency or flexible data structures, since the intention was to
demonstrate and test some new formulations. Furthermore, it has become apparent
that it would be difficult to represent certain physical behaviour, such as fluid
interaction, edge-to-edge contact and soft corners, without major overhaul of

the program logic and data structures.

These considerations prompted the program development described in this
report.,

1.2 Scope of Present Work

A completely new program, UnBC+, has been developed, which provides,
in one package, almost all of the capabilities that existed separately in the

»
Cundall, P.A. et al, Technical Report N-78-4, U.S. Army Engineers Waterways
Experiment Station.

+Universal Distinct Element Code.
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previous programs. The principal objective was to write a program that would
allow rigid blocks, simply-deformable blocks and fully-deformable blocks to be
mixed together in one numerical simulation. It is often useful to mix differ-

ent types of block for the following reasons: near a free surface in jointed
rock, the movements arise predominantly from slip and opening of joints. In
these regions rigid blocks may be used, for maximum efficiency of calculation.
On moving away from a free surface, towards the interior of a rock mass, joint
displacements diminish in comparison with deformations of the intact rock, and
the stress distribution is determined largely by the elastic properties of the
rock. Deformable blocks should be used in these regions to represent the rock
behaviour correctly. The correct boundary conditions are especially important
for dynamic calculations in which incident waves are to be propagated towards a
rock structure, and reflected waves are to be absorbed. Again, deformable blocks
are needed near the boundary to provide the correct propagation velocity and the
correct dziving'impedence for absorbing boundaries.

Although the contractural requirement of the study was limited to the
provision of a program incorporating the three types of block noted above, the
opportunity was taken to re-examine the way in which the data describing the
blocks is represented: the "data structure". The data structure determines
to a very great degree how easy it is to represent diverse physical phenomena.
Two guiding principles influenced the choice of a data structure: firstly it
wags assumed that the best data structure is the one that corresponds in a topo-
logical sense most closely to the physical structure. In previous progranms,
the only correspondence was between stored variables and physical variables.

The new program actually stores the variables in memory in a way that has iden-
tical topological properties to the physical arrangement. The second assumption
that was kept in mind during the design of program UDEC was concerned with the
way in which computer hardware is developing. Typical memory sizes have in-
creased and costs have decreased by orders of magnitude over the last decade;
megabyte memories are now common in minicomputers, and are just becoming avail-
able for microcomputers. Execution speeds have also increased, but at a slower
rate. Often, when writing a program, it is possible to make a trade-off between
memory use and execution time: for example, variables may be saved to avoid re-
calculation within a loop. The philosophy of reducing execution time at the
expense of greater memory requirements has been adopted throughout.




Thie numerical formulations of the various block types are almost
identical to those documented in the previous report by Cundall et al (loc cit).
The formulations are not repeated in this report, and the reader is encouraged
to read the previous report in conjunction with this one. Any differences,
such as rounded corners, are described in Chapter 2, which also documents other
changes and additions arising from the new data structure. The data structure
itself is documented in detail in Chapter 3.

Program UDEC allows interaction between three block types: rigid,
simply-deformable and fully-deformable. Of the six possible interactions
(e.g. rigid/rigid, rigid/simply-deformable etc.) five require (due to their basic
formulation) that contacts shall consist of finite stiffnesses. Only the inter-
action between fully-deformable blocks has the possibility of rigid contact
between opposing grid-points. Rezoning is necessary in this case to keep con-
tacting grid-points opposite one another. It was decided to omit rezoning from
program UDEC, and impose a restriction that all contacts be of finite stiffness.
In practice, an arbitrarily-large stiffness may be used, but at the expense of
a very small time step. It was felt that the complication of rezoning was in-
appropriate in a program that was primarily intended to model rock blocks with
finite-stiffness joints, and that its inherent inefficiency could not be justified
by the very small number of cases for which it might be used.




2.0 ADDITIONS AND CHANGES TO PREVIOUS WORK

There are a number of problems associated with existing distinct ele-

ment programs for modelling assemblies of angular blocks. The more important

of these are as follows:

a. The system of "boxes" used for coarse classification of
blocks is quite efficient when the blocks are of a similar
size. For blocks that are much larger than the box

} dimension, much time is taken searching all the boxes

overlapping the block and depositing and moving entries

\ among these boxes. For blocks that are small compared
l to the box size, many potential contacts must be tested

within each box, although only a few will be accepted.

b. It is necessary to perform updates (searches for new
contacts) globally in all programs except RBMC, owing to
the difficulty of guaranteeing that a given corner will

always locate a nearby edge.

J c. There is a limitation on the coordinate system that can

be chosen, so that the dimeunsions of a given block system
must be scaled before running a problem. This restriction
is made because the magnitudes of block coordinates are

used to trigger re-boxing of pointers within the box system.

d. Blocks cannot be deleted, except in the original machine-

language version of the rigid-block program.

‘ e. "Hang-ups" occur when two blocks overlap by an arbitrarily-
small amount, because hlock corners are assumed to be sharp
and infinitely strong.

£f. Contact is always between an edge and a corner; edge-to-edge
contact is only approximately represented by two edge-to-corner . i

contacts.
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g. When the edge of one block slides past the edge of another,
as shown below, there is a discontinuity in contact force
because one edge-to~corner contact must break before another
corner-to-edge contact can form, Stored energy is lost

because a load-carrying contact is suddenly deleted.

_:'_L] _?FJ
FIXED
CORNER-~-TO- ‘ EDGE~-TO -

EDGE CONTACT CORNER CONTACT

All the problems noted above are eliminated in the new formulation
of the distinct element method described in this report. The main changes are
to the data structures, and in the fact that rounded corners are used. Several

specific innovations are described below.

2.1 Detection of Contacts

Chapter 3 describes the new data structues in detail, and the way
in which their topological properties correspond closely with those of the
physical system of blocks that they represent. It is this correspondence that
allows the old "box" scheme to be dispensed with: the connectivity of the physical
system is built into the data structure, which means that potential contacts with
a given block may be detected by a 1ocﬁ1 examination of the linked-list network
surrounding the block. However, for the scheme to work well, there must be a

well-developed connectivity; the main application will be to systems of blocks,




each of which is very near several other blocks. This is likely to be true

for program UDEC, which has the main applications in modelling jointed rock

masses, where blocks are all touching initially.

2.2 Update Triggering

An "update" is defined here as a scan of some region to determine if
new contacts should be made or to erase unwanted contacts. As illustrated be-
low, a new contact can only arise physically within a closed region between

blocks, called a "domain".

=~~~ SOME POTENTIAL
CONTACTS

loomaIN',
\ \

For this reason, an update is limited to an individual domain, and is
triggered by significant relative motion occurring within the domain. A scheme
has been adopted whereby a fictitious displacement is accumulated for each domain.
This displacement is related to the relative motion that has taken place in the
domain since the previous update, and is used to trigger the next update when
the displacement exceeds a certain tolerance. At each time-step, the greatest
relative x- and y-velocities are recorded between any two corners within the do-
main (including corners that are part of a contact). The fictitious displace-

ment is then accumulated as follows:
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u = u o+ {max(lux ,|uy|)} At,
where &2 and ﬁ? are the greater relative velocities, uf is the

fictitious displacement and At is the time-step. An update

is done for the domain when

S8

where Tm is the tolerance on making contacts ("contacts” are established

before the two blocks actually touch: Tm is the distance between

potentially contacting points). The criterion for triggering

updates given above ensures that contacts are always detected

before physical contact is made.

2.3 Rounded Corners

In program UDEC, blocks behave mechanically
of an arc of a circle; the arc is tangent to the two
circle is defined by specifying the distance from the
section points of the circular arc with the adjoining

seems physically more reasonable than a specification

as if each corner consists
adjoining edges. The
block corner to the inter-
edges. This procedure

of a constant radius for

all corners, since sharp corners would be considerably truncated if the same

radius was used for all corners.

R

TC"‘ DI

A

CONSTANT RADIUS CONSTANT DISTANCE TO CORNER
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The distance, D, may be specified by the user, and applies to all
blocks. It is stored as Fortran variable DTOL. Radius and circle centre

are calculated for each corner as follows:

-

2" = {(xL - x_) (xL - x.)}ﬁ
i i i
® = {(xR - x) (xy - x.)}l’
i i i
unit vectors:

L L L
ui = (xi - xi)/z

R R R
u; = (xi - xi)/z

tangent unit vectors:

L L R R
€ = u; € = u

L L R R
tL =9 t,=-u




by vector addition, ’

L L R R
Dui + Rti + Rti = Dui
therefore
D(uR - uL) D(uR - uL)
1 1 2 2
R = T R or R = L R
t1 + tl t2 + t2
D{u; - uR) D(uR -u,)
R = 1 1 R = 2 2
T L R L R
u, +u, (1) u; 4+ oug (2)

Either form (1) or form (2) may be used, depending on the magnitude

of uL + uR compared to uL + uR. The expression with the largest denominator

2 2 1 1l
is used in UDEC.

The circle centre is found from:

x? =X, + Du? + RtF
1 1 1 1

In the present form of UDEC, corners are assumed to be rounded only
for the purpose of calculating contact mechanisms; block mass and moment of
inertia are calculated on the assumption that corners are angular. This assump-

tion is not essential, and the program can be changed quite easily.

2.4 Edge-to-edge contact

Chapter 3 contains a description of the data structures, and in partic-
ular the linked-list representation of a domain. A domain is a closed area
bounded by blocks and contacts: the associated linked-list is a circular chain

of contacts and corners encountered during an anti-clockwise scan of the domain

boundary.

Only two types of contact are needed by the data structure for represent-

ing a system of blocks: corner-to-corner contacts and edge-to~corner contacts.




These will be termed "numerical contacts”. Physically, however, edge-to-edge

contact is important because it corresponds to the case of a rock joint closed

along its whole length. A physical edge-to-edge contact corresponds to a domain

with exactly two numerical contacts in its linked-list. When an edge-to-edge

contact is recognised in this way during a domain scan, it is treated differently

from other contacts in respect of its physical behaviour. For example, it is
more appropriate to express the constitutive model for such a contact in terms
of stresses rather than forces. Stresses can be evaluated by the program since

the length of the physical contact is known from the distance between the two
numerical contacts.

Many types of constitutive model for edge-to-edge contact may be con-
templated. The program provides the displacements at either end of the joint,

and the model must furnish the average normal and shear stress, and the line of

action of the resultant forces. The simplest consitutive model is as follows:

- 10 -
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Aon = fn(on. Aun, Aus)
1]
At = fs(cn, T, Aun, Aus)

o =9 + Ao
n n

T + AT

—
[]

Aarr  Parr

B B
F (l-r)Fn Fg = (1-r)Fg

’—1—
2

Au (AuA + AuB)
n n n
pu =L ad® + add®
s 2 s s
A A
Aun, Au_ = normal and shear displacement
increments at end A of joint;
B B
Aun, Aus = same, at end B of joint
on = normal stress

T = shear stress

T
prime ( ) denotes new value.

fn’ fs = non linear functions

p = joint length

Fn'Fs = overall normal and shear forces

In the procedure presented above, the line of action of the resultant

forces is determined by making the ratio of end forces equal to the ratio of end

displacements:




o

Any other scheme may be substituted: for example, the angle between
the two block faces may be used to determine the line of action, or the centroid
of the overlap area may be used. In both cases, the program already provides

the necessary geometrical data.

2.5 Contact re-clagssification

One advantage of rounded corners is that there are no abrupt transitions
as blocks in contact slide past one another. In the sequence shown below, the
same contact is re-classified successively as corner/edge, corner/corner, edge/

corner.

In previous block programs, the same sequence would involve the initial
contact breaking, and a new one being created. The data structures of UDEC allow
the same contact to be retained through the whole sequence. The only change is
that a code number denoting the classification of the contact is updated as the

blocks move.

2,6 Calculation sequence

In all explicit, time-marching schemes the main calculation cycle con-
sists of applying the law of motion to all mass-points followed by the calculation
of force increments from displacement increments for all spring-like elements
(contacts, continuum zones, fluid cells, etc.). Program UDEC follows this gen-
eral scheme although it is complicated by the need to make and break contacts,
and the fact that many different types of element are allowed to interact.

-12 -




For all blocks:

. accelerate centroids from force-sums.
. calculate strain-rates for simply-deformable blocks from applied

stresses. |
. accelerate grid-point masses from internal and boundary forces l

for fully-deformable blocks.

. update corner velocities and displacements.
. apply new relative velocities to surrounding contacts.
. reset force-sums to zero. i

For all domains:

. accumulate fictitious domain displacements and update domain if
necessary (i.e. make and break contacts).
. compute incremental pore pressures from velocities around domain;

apply resulting forces to blocks. !

For all contacts:

. update contact forces from known relative contact velocities using
constitutive model.

. accumulate centroid force-sums, grid-point force-sums and applied
stresses for simply-deformable blocks from contact forces.

. allow fluid flow between the 2 domains on either side of contact:

update pore pressures.

For all zones:

. compute strain rates; hence new stresses; hence grid-point forces.

2.7 cCreation of blocks and joints by splitting

The main application of program UDEC will be to model in-situ rock masses.
It is convenient to generate the numerical system of rock blocks by specifying
the joints (discontinuities) rather than individual blocks. Not only is the
input data less voluminous, but the joint properties can be specified independently
of the rock properties. Consequently the principal way of creating a system of
rock blocks in UDEC is by splitting existing blocks, and deleting blocks that are
not needed. Almost any geometrical arrangement may be created in this way.
The subroutine that splits blocks may also be called dynamically, while UDEC is
running, so that blocks may fracture as a function of the load applied to them.

- 13 -
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2.8 Pore-pressure calculations

The framework for representing pore-pressure generation and dissipation
exists in UDEC but no tests of the capability have been made at the time of
writing. The data structure provides a network of inter-connected domains and
contacts that can be regarded as reservoirs and pipes respectively. For each
domain, increments in fluid pressure can be calculated from the known incremental
displacements of the block corners that constitute the boundary to the domain.
The block forces arising from the fluid pressures can be calculated, since the
coordinates of each point around a domain are known. During a contact scan,
the pressures on either side of each contact can be relaxed, by assuming that
the constriction corresponding to the contact has a certain hydraulic conduc-
tivity. In this way pore-pressures may be continuously generated and dissipated

as the blocks move.

2.9 Fully-deformable blocks

As discussed in the Introduction, no re-zoning is performed when fully-
deformable blocks slide over one another. The use of finite contact stiffnesses
between blocks enables the calculations for adjacent blocks to be decoupled;
they communicate through a common boundary force. The mass-points (also called
grid-points) on the boundary of a fully-deformable block are accelerated in the
normal way during each time step in proportion to the sum of the forces arising
both from within the block and from any contacts that exist at the points. Rel-
ative contact velocities are updated from the velocities of the block boundaries

on either side of each contact.

The general scheme outlined above is complicated by the fact that grid-
points from opposing blocks need not coincide: edge-to-corner contact is allowed.
In order to calculate forces and displacements at boundary locations other than
grid-points, it is assumed that each boundary segment between grid-points acts as
a rigid bar with prescribed end velocities: the velocities are assumed to vary
linearly along the bar. This assumption is consistent with the assumption that
the triangular zones are of the constant-strain type. Any forces acting on the

bar are digtributed tc the two ends, while maintaining moment and force equilibrium.

- 14 ~
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A further complication is caused by the rounded corners. In the case
of rigid and simply-deformable blocks, forces and velocities are transmitted
exactly at the point of contact. For fully-deformable blocks, the calculation
to do this becomes lengthy, and in some cases ambiguous when several zones meet
at the same grid-point. The present version of UDEC contains an approximate,
but rapid calculation when transmitting forces and velocities at corners that
form part of a contact: the contact force is assumed to act at the corner of
the block, and not at the true contact point found by assuming rounded corners.
Similarly the velocity transmitted to the contact is taken as the corner velocity
even though contact is located somewhat inside the corner-point. The rounded
corners still operate as intended, since the contact normals and the relative
block positions for contact are correct, but the slight error in location of
contact forces and velocities introduces a moment and rotation error, respectively.
It will be necessary to gain experience using the program to find out whether the
errors are significant in practice: if they are too large, the program can be

modified, but at the expense of efficiency.

- 15 -




e e S

3.0 DATA STRUCTURES

3.1 Main Structure

There are many subsidiary pointers and lists that help in retrieving
data quickly, but the main data structure is described as follows. Each block
has a circular linked-list that corresponds to its boundary. Each corner on
the boundary is represented by an array of words that stores the coordinates of
the corner, the velocity and several other items. The corner arrays are linked
together consecutively in the clockwise direction. When two blocks come into
contact their corner lists are broken at the points of contact and an array of
words (corresponding to a contact) is inserted into the break, such that the con-
tact array is common to the corner lists of both blocks. The process of making
a contact is illustrated in Fig. 1. It should be noted that in all diagrams,
computer variables and symbols, the following letters are used in referring to

the various entities:

C contact D domain
P corner Z zone
B block G grid-point

The small boxes labelled "corner array" and "contact array" are placed
on the diagram near the physical locations that they represent, but in the program
UDEC they exist as groups of contiguous memory addresses contained in the single
Fortran array IA( ). The actual locations of the groups in IA( ) are unimportant
and arbitrary, since the data in the groups are retrieved by following the appro-

priate pointers.

The example shown in Fig. 1 illustrates that there are two paths leading
away from a single contact. Depending on the scanning strategy used, it is
possible to follow either block boundaries or the spaces (domains) between blocks.
Fig. 2 illustrates the two possibilities for the same data structure.

Fig. 2(a) shows an anti-clockwise scan that traces the boundary of an

inter-block domain; Fig. 2(b) shows a clockwise scan that traces a block boundary.

The first type of scan is useful when calculating pore pressures from changes in
pore volumes, while the second type of scan is used when up-dating the velocities

of corners and contacts around a block from the motion of the block itself.

- 16 -
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a) BEFORE CONTACT

(>3  CORNER ARRAY
(€]  CONTACT ARRAY

3] POINTER

\

A
S 4

b) AFTER CONTACT

FiG.1: CHANGES IN LINKED LISTS THAT OCCUR WHEN TWQ
BLOCKS COME INTO CONTACT

PETER CUNDALL ASSOCIATES

-17 -




a) 4/ SCAN AROUND THE DOMAIN BETWEEN BLOCKS

(2] CORNER OF BLOCK 2

&) CONTACT BETWEEN
BLOCKS | AND 3

~——

i d) A/ EXAMPLE OF SCAN AROUND A BLOCK
-—

. FIG.2: TWO TYPES OF SCAN THAT ARE POSSIBLE WITH THE
SAME DATA STRUCTURE

PETER CUNDALL ASSOCIATES
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The data structure outlined above is better than those used in previous

distinct element programs for the following reasons:

a) each block has direct access to all its contacts, and thereby to all
neighbouring blocks; the creation and deletion of contacts is made

easy;

b) closed domains between blocks are defined without additional computing
overhead; pore-pressure increments may be calculated from known

velocities around the domain boundaries;

c) each contact has direct access to the two domains on either side of

it; hence the calculation of fluid flow between domains is made easy.

d) edge-to-edge contact may be detected simply by noting when a domain

volume collapses to zero.

e) The search for new contacts can be triggered locally, by monitoring
relative displacements within each domain; the part of a block that

intrudes into a domain can only touch another block in the domain.

The observations made above support the contention made in the Intro-
duction that the best data representation is that which corresponds most closely
to the physical structure: any changes and interactions that occur physically

can be treated in exactly the same way in computer memory.

However, the data structure described above is not suitable for repre-
senting assemblies of particles that are widely-separated, or particles that move
with high velocities. The linked-list scheme assumes that the connectivity of
the system changes gradually, and that the domains between particles are clearly
defined by a closed loop of contacts. The scheme can handle isolated cases
where individual particles lose contact with their neighbours, by using "virtual
contacts"”, which are fictitious links between particles. But the computer program
is not designed for multiple virtual contacts; in this case it becomes inefficient.

3.2 Dpata arrays

The main data structure described above involves two types of data array:
corner and contact arrays. Program UDEC uses a number of other arrays (or groups

of contiguous memory). The complete set is as follows:

- 19 -
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1. Block
2. Domain
3. Corner

4. Contact

S. SDEF extension
6. Zone

7. Grid-point

8. Domain extension

Appendix III lists the complete contents of these data groups. Groups
3 and 4 have already been described; Group 1 stores data for each block, such as
centroid, velocity, material type, and constitutive type number. Group 2 stores
the pore-pressure for a domain and an accumulated displacement that is used to
trigger a contact update for the domain. Group 5 contains the data necessary
for simply-deformable blocks, such as stresses and strain-rates. This group is
linked to the corresponding block data (Group 1) by an extension pointer that is
zero in the case of a rigid block. Groups 6 and 7 store geometrical and connec-
tion data for fully-deformable blocks, where the blocks are discretised into
triangular zones and grid-points. Again, the linkage from the corresponding Group
l is via the extension pointer. Group 8 stores data when edge-to-edge contacts
are detected. Each Group 8 data block is linked to the corresponding domain data

(Group 2) wvia an extension pointer.

3.3 Support Structures

A number of other lists and pointers are used, so that data can be
accessed rapidly and conveniently, particularly when cycling through the main cal-
culation loop.

All blocks, domains, contacts, zones, and grid-points are linked together
into five separate lists. Pointers to the starting address of each list are pro-
vided; Fig. 3 shows this arrangement schematically.

In order to scan through block corners rapidly, and to access, con-
vendently, tie corners to either side of a given corner, a "reverse liist” is
provided for each block that links the corners of a block together in the anti-
clockwise direction. It will be recalled that the normal clockwise list of
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corners could be broken at any number of places to include a contact array. The
reverse list has no such interruptions: it simply links corners. Fig. 4 illus-

trates the reverse list.

Each contact joins two blocks and two domains; pointers are provided
in the contact array to these four addresses. Two further words in the contact
array point to the two corner lists circulating around the two blocks. It is
important to establish an ordering convention for contact pointers, as several
exits are possible after entering a contact during a scan. Fig. 5 gives this
convention. For example, when entering from Block 1 (with block number equal
to the contents of the word with offset KBl), the domain to the left will be found
from the word with offset KDl.

A further convention is observed in the ordering of contacts and corner
data in the anti-clockwise list running around a block boundary. All contacts
appear in the list in the order in which they occur physically. Since corners
are rounded, the actual location of a corner is ambiguous, particularly if there
are several contacts on one corner. The convention is adopted whereby the corner
data array is always placed after all the contact data arrays for that corner.
Fig. 7 illustrates this convention. The convention is convenient because a given

contact can always locate its associated corner(s) by following the linked list

ufdtil a corner is found.

Several data arrays contain additional pointers not noted above: a com-
plete list is given in Appendix III for each data type. As an example, each group
of corner data for a fully-deformable block includes a pointer to the data group

of the corresponding grid-point. Conversely, the grid-point data incorporates a
reverse link to the corner data.

3.4 Memory Management

All requests for memory are handled by the subroutine FIND. FIND is
given the number of words required, and responds by returning the address of a
newly allocated data group, if memory is available. Fresh memory is used to
provide space for a new array unless a group with the correct number of words has
previously been returned. This reclamation of memory is made possible by main-
taining a linked list of redundant memory groups. The list is constructed by
subroutine LOSE and is pointed to by variable JUNK, and its structure is illus-
trated in Fig. 6.
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No attempt is made to subdivide memory groups when smaller numbers of
words are required, but this technique could be used if desired. The implemen-
tation of a suitable scheme should not be too difficult, since all memory manage-
ment is handled through only two routines.

3.5 Access to data in the main array

Integers and real numbers are both stored in the main array, IA( ).
In order to save space on small computers, the program UDEC has been written in
such a way that the word length for integers can differ from the word length for
real numbers. The following schemes are possible, for example:

Integers Reals

16 bits 32 bits
32 bits 32 bits
16 bits 64 bits
32 bits 64 bits
64 bits 64 bits

This flexibility has been achieved by adopting a particular convention
when accessing data from the main array. Integers are accessed directly, as
follows:

N = IA(IADDR)

Real numbers are always accessed via a subroutine call:
CALL SUB(IA (IADDR))
SUBROUTINE SUB (A)
COMMON/ / KOFF
DIMENSION A(l)
R = A(KOFF)
Rera R ig the required rezl number and KCI'F is the offgzet batwesn the
calling address IADDR and the location of the number R. IADDR is typically the

pointer to the start of a particular data array, and KOFF is the offset corres-
ponding to the particular variable being accessed.
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As set-up at present, the program takes the space of two integers to
store one real number, This can be changed by giving different values to the
data offsets, which are variables starting with the letter K. Appendix IV
gives further details.

- 29 -
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4.0 USE OF PROGRAM

The operation of program UDEC is very similar to that of the previous
programs RBM and SDEM. but the user has, in general, more flexibility in the
sequence of operations that may be requested. Appendix I lists the input com-
mands and provides a description of each. Appendix II contains the input and
output from some complete runs. The runs illustrate the use of all available
commands, as well as providing sample problems, which can be used to check

versions of UDEC set up on other computers.

4.1 Creation of Blocks

The creation of the assembly of blocks differs greatly from that of
previous programs. Instead of specifying each block individually, a single,
large block is created and then subdivided repeatedly into many small blocks.
Blocks may be deleted at any stage in order to generate assemblies of complex
geometry. Blocks may be split and deleted even after cycling has started.

4.2 Block Types

Blocks created initially are, by default, rigid. Individual blocks
or groups of blocks subsequently may be changed, before running, to simply-
deformable or fully-deformable blocks. The program also allows block types
to be changed during a run, but this should not be done unless there is a good
physical reason for it; the program may have to be modified if stresses, for

example, must be preserved.

Fully-deformable blocks are subdivided internally into a mesh of
triangular zones. Each zone is specified manually, using a GENERATE command,
which takes as arguments lists of grid-points and zones. A grid-point must be
assigned to every boundary point (corner) of the block. Grid-points that are

placed on edges cause new corners to be created.

4.3 Material and Constitutive Numbers

Each block and contact carries both a material number and a constitutive
number . Each material number may be associated with a different set of material
properties. Independently, the program may refer to different constitutive models
for different blocks or joints. The present version of the program contains block

and contact subroutines corresponding to constitutive number 1. These subroutines
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model linear elasticity and Coulomb friction, respectively. Dummy subroutines
exist for constitutive numbers 2 to 5; these may be replaced by user-written
routines as explained in Appendix 1IV. If a contact is not given a material

and constitutive number, it assumes, by default the numbers of one of the blocks
comprising the contact. Material properties and even constitutive numbers may
be changed during a run, but the user should be sure that the change is physically
reasonable. The program prevents the user changing block masses after cycling

has commenced, as this would almost certainly be unreascnable.

4.4 Corner Rounding

The ROUND command influences the amount by which corners are rounded,
by setting the distance from the true block corner to the point at which the
circle is tangent to either edge. The command should not be used after cycling
has started because a change in corner geometry would have an unpredictable effect
on contact forces. The rounding distance is also used for other purposes, notably
for controlling contact detection and deletion. Tolerances are set for these
functions, and in the present version of UDEC are taken as fractions of the
rounding length. This calculation may be changed by modifying subroutine TOLSET;
such a modification may be necessary if very small rounding lengths are needed,

since in that case contact updating may be unacceptably frequent.

4.5 Printout

All input lines are echoed, and preceded by the symbol > to distinguish
them from output produced by the program.

Printout is generally self-explanatory, with full error messages.

4.6 Restrictions and Cautions

The program cannot be regarded as being in its final form, as several
planned facilitieg, traps and options were not completed in the time available.
The program is potentially very powerful, as it can model anything from a con-
tinuum to a complete discontinuum, But this very generality ensures that there

are many opportunities for misuse.

The calculated critical time-step is only approximate. If numerical

instability is suspected, the same run should be made with half the time-step
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and double the number of cycles. Any significant difference in the results in-
dicates that the original time-step was too large.

Blocks that become detached from their neighbours may, under some cir-
cumstances, not make correct contact again. The program always maintains one
"virtual" contact for a block that becomes detached; this is to keep the block
linked to the data structure. However a potentially new contact that would
cross the track of the virtual contact will not be made correctly, if at all.
The logic to deal with this situation is quite straightforward, but has not

been written yet. No problems should occur for fairly tight rock masses.

At present, corner radii are only re-calculated when a CYCLE command
is given, although.the centre coordinates for each corner circle are updated at
each time-step. When running problems in which defcrmable blocks are changing
shape rapidly, the total number of required cycles should be split up by using

several CYCLE commands. In this way the radii will never be too much in error.

4.7 Incompressible Plastic Flow

Fully-deformable blocks are discretised internally into a mesh of
finite-difference triangles. Such assemblies of constant-strain triangles are
found to be too stiff when plastic flow is occurring under conditions of near-
incompressibility: for example, collapse loads are overestimated. Nagtegaal
et al (1974) explained this phenomenon, and Marti and Cundall (1980) proposed
a procedure for overcoming the problem. This procedure is called "mixed dis-
cretisation” and consists in averaging the volumetric calculation over two
adjacent triangles, while the deviatoric calculation is done separately for each
triangle. Mixed discretisation could be incorporated easily into UDEC, since
a linked list already exists that could serve to combine alternate triangles
volumetrically.
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5.0 CONCLUSIONS AND FUTURE DEVELOPMENTS

A powerful computer program has been developed that can model a wide
spectrum of problems in solid-body mechanics, ranging from a continuum at one
extreme to a completely discontinuous medium at the other. Furthermore, arbi-
trary mixtures of the two can be accommodated. The program differs from pre-
vious programs mainly in respect of its data structure, which is designed to
have the same topological properties as the physical structure that it represents
The advantage in this is that any structure or connection that exists physically

has an analogue in the linked-list space of the data structure.

The contractural objective of the work reported here was to develop
a program in which rigid blocks, simply-deformably blocks and fully-deformable
blocks could interact with one another. This was achieved. Innovations that
have been made, in addition to the new data structure mentioned above, are: the
creation of block systems by splitting and deletion, and the use of rounded
corners to prevent "locking-up". Parametric studies may be made in which the
rounding dimension is varied for the same problem. More utilitarian improvements
include free-format input with powerful parameter handling and continuation line
logic, and the fact that modifications and changes to blocks and properties may

be made at any stage during a run.

More time was spent developing and coding the new data structure than
was anticipated. Consequently several planned facilities have been provided for
but only exist in skeleton form at present. The reason for this is simply that
time ran out, and not that any difficulty is involved. The program UDEC con-
tains incomplete coding for: pore-pressure generation and dissipation, edge/edge
contact, automatic zoning for fully-deformable blocks, dynamic cracking, struc-
tural connection and handling of initially-free blocks. Some of the coding
is almost complete, but in other cases has only just been started. The total
time for completion of all items noted above would be about six weeks.

Program UDEC has been written in modular form in anticipation of future

extension. Further developments, such as dynamic input and non~reflecting

boundaries should present little difficulty.
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APPENDIX I -~ USER'S MANUAL

I-1 Input Commands

I-2 Error Messages
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Appendix I-l

I nput commands for UDEC

eoeeoesesceeeneeooe oo e

Motes: Upper-case letters in a command or parameter i
must be typed; the remaining letters are optional,
Lower-case parameters stand for numeric values. Integers
must be given for parameters starting with i,j,k,1,m,n.
Real numbers may be given as integers, but
not vice versa.

Input is free~format: parameters may be '
separated by any number of the following
characters, in addition to spaces:
= ( ) ’ /
An additional line should be given
at the end of the input file (after
the STOP command).
The first command should be START or RESTART,

* = comment line
+ = continuation line

Block Material n Constitutive m x1 y! x2 y2 ...

Create a rigid block of material number n

and constitutive number m,

Defaults are n=1, m=l, if m, n omitted,

Corner coordinates are:

{x1,y1), (x2,y2) etc.,in a clockwise direction. Continuation
lines may be used but a pair of numbers defining a corner
must not be separated. Only one BLOCK command may

be used per run at present. Further blocks may be

created with the SPL!IT command, and unwanted ones

deleted with the DELETE command.

Any blocks may be changed to simply=- or fully-

deformable with the CHANGE command.

Change x1 x2 y1 y2 Sdef Material n Constitutive m
Fdef

A1l blocks with centroids lying within the range

x1<{x<{x2 , yl<y<y2 are changed to simply-deformable

or fully deformable (Sdef or Fdef respectively). Material
and constitutive numbers may also be changed.

DAmping ferit freq Mass
Stiffness
Internal

Viscous adaamping is appllied, in the form

of Rayleigh damping. If a qualifier Is

not given as the third parazmeter, full

damping is used, with ferit as the fraction

of critical damping, and freq as the centre
frequency. The word "Mass'" eliminates the
stiffness-proportional dashpots, and "Stiffness"
etiminates the mass-proportional dashpots.
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The word "Internal’ causes the specifled
dampingz to be applied to the 3 internal degrees
of freedom of simnly-deformable blocks.

n DElete x1 x2 yl y2 '

All blocks are deleted in the range
x1<{x<x2, yl<y<y2

Oump n m

Dump memory to printer from the main array
} from address n to addess m. Internal

! pointers MFREE, JUNK, IBPNT, ICPNT and

: IDPNT are also printed. MFREE gives the
highest memory location that is currently
free.

S

FRAction f

f is taken as the fraction of critical
time=-step to be used.

Fix xI x2 yl y2

All blocks are fixed in range
x1<x<x2 , y1<y<y2

FRee x! x2 vyl y2
A1l blocks are set free in range

x1<{x<x2 , y1<y<y2.
Mote: by default, all blocks are free initially.

f Generate x1 x2 y! y2 Manual Gridpoints <{zlist> Zones <zlist>
‘ Automatic

The first block encounterad in the range x1<{x<x2, yl<y<y2
is discretised as fully-deformabie. The automatic
option is not available yet. For manua) generation,
a list of grid-points, <glist>, and zones, <zlist>
must be given. The format for <glist> is:
} x) yl x2 y2 x3 y3 ....
where each x,y pair is a coordinate of a grid-point.
iIf a given coordinate lies within a certain
‘ tolerance of a block corner, the grid-point is placed
b on that corner. If the coordinate lies within the
[ same tolerance of a block edge, a new corner is created in
the edge. The tolerance is taken as 0.9 times the
rounding length. The format for <zlistd is:
11 ml nl 12 m2 n2 cvus
Each triple corresponds to the three xrld points that
dafine the zone, whare the numbering of the grid-
points refers to the order in <glist)>, starting with
the last (i.e. last grid-point Is number 1).
Both (glist> and <zlist> may extend over an
arbitrary number of continuation 1ines, but doubles
and triples should not be split over two llnes.
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Gravity gx gy

Gravitational accelerations are set for
the x- and y- directions.

SLot
All blocks and centroids are plotted
Print Blocks Contacts CORners Domains List DList

Data are printed on blocks, contacts, corners,
domains and linked lists for blocks and domains.

PROperty Material n Bulk b Cohesion ¢
n K =b Density d
KN=gn Friction f
KS=ss G=g

Material properties are defined for

material number n. Properties are:

bulk modulus,b; shear modulus,g; density,d;
joint normal stiffness,sn; shear stiffness,ss:
friction coefficient,f; cohesion,c. l
The first parameter must be the specification
of material number.

Restart

The program is restarted, using data
from the restart file

RSet v jfa ioff

The real value v i{s inserted in the
main array at address [a, with offset ioff.

ROund d

Each block corner is rounded with a
circle that is tangential to the two
corresponding edges at a distance d
from the corner.

SAve

The current problem state is saved on
the restart file.

SCale s
Plot scale is set to s
SPiie x1 yl x2 vy2

A1l blocks in the path of a line
extending from point (x! y1) to (x2 y2)
are split Into two. At present, the line
should not pass through any corner, or 1
run too close to an existing edge.
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STArt
The program does a cold start.
Stop

The run stops.
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Appendix 1-2

Error numbers
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NN
ANE NN

Memory overf low
Unrecognisable command
Mot start or restart as first command
Material number out of range
Block has less than 3 corners
Megative or zero block area
Missing parameter
Missing y-value
Constitutive number out of range
Unrecognised parameter
Contact stiffnesses undefined - cannot cycle
Zero mass block(s) present - cannot cycle
Mass damping for rigid-body motion too high.
Rounding length too great
Contact overlap too great.
internal mass damping too high.
Cannot split fully-deformable block.
Only one block may be created at present -
use SPLIT for more,
Cannot delete final contact in problem.
Internal error, subroutine DELC.
Cannot delete fully-deformable block at present.
Fifth parameter must be "Manual" or "Automatic"
Mot available vet
Cannot find block in range
Zone pointer references non-existent grid-point
Missing data




APPENDIX II EXAMPLE RUNS

II-1 Ball Rolling
II-2 Collapse of Opening in Jointed Rock
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II-1 Ball Rolling

This example illustrates that corner rounding can be taken to the .
extreme of creating a circle from an angular block. The complete input se-
quence to create the blocks and run the problem is given overleaf, Fig. II-1
shows the system of blocks after splitting, but before deletion of unwanted
blocks and final rounding. Fig. II-2 is the plotted output from UDEC, with

plots superimposed after successive 200-cycle increments.
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SLART

PROP MAT=1 DENS=2000 KN=|.E08 XKS=1,E08 F=2.

GRAVITY 4. -8,

NAMP =.8 16. MASS

FRAC 0.10 ‘

BLUCK 0.,=2. 0.,10.5 i4.,10.5 14.,-2.

sSPLlt =-1.,.5%5 15.,8.8

SPLIY 10.5,5. 7.5,11.

SPLIT 12.5,6. 10.,11.

SPLIT =-1,.,3. 12.,9.5

DELETs 0.,9. &.,7.

LELELF 0,,9. 6.,10. :

DL[JE.I":: 8.;11. 8-;]‘. 3

VelLETe ‘.1-,14. 7-,11- !

J Fla \).,1‘. 0-16- ;

} ROUNG 1.115 ]
Ci¥CLE 300 ;

P n i

PLOT O

PRUP MAl=1 F=0,8¢

DAMP Q.14 3¢ 31l FIe> ;

GRAVLIY 0. =10. ;

CYCue 204 f

P o

PLOT 1 ‘

{ CYCLE 2vuv

P b

PLUT 1

CYCug 2uu

P o

PLUT 1

CiCLe 4uy

P b

‘ PLUT 1

’ CYCLE <vy

P 6

PLUT 1

SAVE

STOP

END

-t -
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FiG. II-1: SYSTEM OF BLOCKS PRIOR TO DELETION

FIG.IT -2: MOTION OF 'BLOCK' UNDER GRAVITY
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II-2 Collapse of Opening in Jointed Rock

Figure II-3 shows the initial state of a rock system as produced by
the input sequence given on the following page. The example is intended to
demonstrate the interaction of all three block types in the same problem. The
upper layer of rigid blocks is heavier than the rest. Figures II-4 onwards

i record the movements that take place after several blocks have been removed.

It is interesting to note that "hang-ups" do not occur, due to the rounded
corners. The fully-deformable blocks, which are discretised internally into
four triangles, are deforming in modes that are more complex than those that

are possible with simply-deformable blocks.
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S : SIMPLY DEFORMABLE
F = FULLY DEFORMABLE

FIG.II-3: INITIAL GEOMETRY
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STARY .

SCALE .4w

¥ SMALU (ROL ur Flukl, kuw

ROUMD 1.5

FRAC .42y

GRAVLIIY J =lu

BLUCK v J (TR V) ol el ey N

PROP HAL=1l wi 10T dvuy Kn31,0zih abSiebbe BUHURELaul) 620487 F=ued

PRUP Hal3s uaio=%0ul niZl,vke ad=l.unt F3IU.D
SPLLIE =) 1u ol lu

SPLIT =1 244 ol ¢U

SPLIT =1 30 91 30

SPLIL v v 11U 41

SPLIT 40 v 74U «1
SPLIT 3u v 34 «l
SPLIT 40 v a9 41l
SPLIT Su % 2Su al

SPLIT 20 7.0 o9 43.5

CHANGE U by 3U 4 MATLr[ALSZ
CHANGE v ny 20 3U Sutd
CHANGE U ¢u 1y 20 Fopk
CHANGE 29 «U 1J U Suek
CHANGE 44U ou 1y 249 ¢Der

FIX 0O ou  1vu

GENERATE v 1u 1u 2u 2ALGGAL GRIDEJLBLD (9,19) (u,z0) (U,L0)
+ (lu,10) (lu,ev) ZUsnS Y, 2,9 Lded,0  3,,3 «,1,5
GENERALE lu 2zu 1lu 24U G 19,4 LlU,eu  LU,ly  2uU,lu
+ 20,20 Luwed 1,4,5  2.3,9  3,%,3 4,4,5

GENERATL 44U 20 v <0 & G 45,19 «U,ev  40,1U 356,10

+ 90,2y & Liyeed  4s3.5 3,4,5%  4,1,3

GENERALE 24U,00 10,20 * 4 35,19 5Su,éu 2V,10 oU,lu

+ 60,&0 YA 1'2!5 4'3"’ 3;‘&:5 4,1,3
DUMP 1 1

DAMP .25 .2

DAMP Q.25 1.0 tilesral

CYCLE 10y
PLOT ©
P B
SIap
END TL.
g
TN P~
g Ukt o
PROE T, aLee
pBss WSS e
v
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APPENDIX III - PROGRAM GUIDE

ITI-1
III-2
III-3
III-4

Main Common Block Variables
Parameters & Data Groups
Subroutine Functions

Subroutine Calling Map
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P N

LINE(80)
LINETI(80)
LPNT(1)

RAFLAG
PPFLAG
ERFLAG
STFLAG
COFLAG
NCFLAG
JMPSAY
NERR
JUNK
MEREE
1 BLOCK
| DOM
ISTACK
NCYC
MCTOT
TODEL
FRAC
IROUTE
NLINE
NPAGE
JMPGEN
ALPHA
BETA
CON1
CON2
ALPB

Ci8
c28
DEGRAD
P1
PSCALE
ATOL

BTOL
CcTOL
DTOL
DTOL2
ETOL
FTOL

GTOL
HTOL

Appendix III~1 - Main Common Block Variables

Buffer for current input line in Al format.
Buffer for next Input line.

Pointer to start of parameter | in LINE( )
after removal of blanks, etc.

LTRUE. If pore-pressure calculation requested
.TRUE. If an error has occured

.TRUE. if the first input line has been processed
.TRUE, if the current line is a continuation
.TRUE. if the next line is a continuation

Index of Yast computed GOTO in MON |
Error number

Pointer to list of spare memory groups
First unused memory address

Current block number

Current domain number.

Stack pointer

Currently requested number of cycles

Total number of cycles

Time-step .
Requested fraction of critical time-step
Routing number, used in UDC

Output line count

Output page count

Routing number for continuation line in GEN
Mass damping coefficient

Stiffness damping coeffient

Damping factor

Damping factor

Internal mass damping coefficient for
simply deformable blocks.

Damging faﬁtor derived from ALPB.

PI1/180

3.14159

Plotting scale

Distance between particles at which a contact
is first formed.

Distance between particles at which a contact
is broken,

Maximum (negative) overlap allowed

when forming contacts

Rounding length

=PTOL/2.0 (maximum contact overlap)

Limit on maximum domain displacement

to trigger contact update.
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| BPMNT
1CPNT
IDPNT
10DPNT
AKN(1)
AKS(1)
AMUC )
COH(1)
DENS(!

Py

Pointer to list of blocks

Pointer to list of contacts
Pointer to list of domains

Pointer to outer domain

Normal joint stiffness, material |
Shear joint stiffness, material |
Joint friction coefficient, material
Joint cohesion, material !
Density, material |

Bulk modulus, material |

Shear modulus, material |

Lame constant, material |

Lame constant, materiatl |

Main array
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Apvendix III-2 Parameters & Data Group

Offsets for block data array

Note:

the first integer in each block array

(offset 0) is the block type number, as follows:

1 rigid block
2 simply=cdeformable block
3 fully-deformable block

Pointer to next block in block list
Pointer to one corner in block's corner list
Material number

Constitutive number

x coordinate of centroid

y coordinate of centroid

x vetlocity

y velocity

Angular velocity (anticlockwise positive)
Block mass

Moment of inertia

x centroid force-sum

y centroid force-sum

centroid moment sum

extension pointer (to SDEF or FDEF data)

Offsets for corner data array

Note:

KL
KR

KNB
KXP
KYP
Kxce
KYCP
KRAD
KXDP
KYoe
XGP

the first integer (offset 0) contains
the value MCOR to denote a corner

Pointer to next corner or contact on
block, in clockwise direction.

Pointer to next corner in anticlockwise
direction

Pointer to host block

x coordinate of corner

y coordinate of corner

x coordinate of local circle centre

y coordinate of local circle centre
Radius of local circle

x velocity of corner

y velocity of corner

Pointer to corresponding grid-point if block
is fully-deformable
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Offsets for contact data array
Mote: the first integer (offset 0) contains
the value MCON, to denote a contact

KC Pointer to next contact in contact list

K31 Address of first block involved in contact
KB2 Address of second block involved in contact
KL Pointer to next item in clockwise list

of block corresponding to KBl
KL2 same as KL1, but for block KB2

KD1 Address of domain to left of contact,
zoing from block KB!1 to KB2
KD2 Address of domain to right of contact

going from block KBl to XB2
XCm Material type number

XCC Constitutive number
KXC x contact coordinate
KYC y contact coordinate

KXpcC relative x velocity (of block XB2 relative
to block KB1)
KYDC relative y velocity
KCS relative shear displacement
KCN relative normal displacement
KCFS shear force
KCFN normal force (positive compression)
XCCOD code number:
1 corner/corner contact
2 corner/edge contact (XB1 .. corner,
K&2 .. edge)
3 edge/corner contact

Offsats for domain data array
Note: the first integer (offset 0) contains the
e=== value MDOM, to denote a domain

KD Pointer to next domain in domain list

KPP Pore-pressure for domain

KUMAX Fictitious domain displacement

KDLOOP Pointer to one contact in anticlockwise
list around domain
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Simply=-deformable extension array

YEDI11 )

KED12 ) Strain-rate
XED21 ) tensor

XED22 )

XSt11 )

KS112 ) Internal stress
KSt121 ) tensor

XKS122 )

KSAI1 ) Applied stress
XKSA12 ) tensor (multiplied
K3A21 ) by block

KSA22 ) area)

Offsets for grid-point data
KG Pointer to next grid-point in grid-point list
XCOR Pointer to corresponding block corner

KXG x coordinate
XYG y coordinate
KXDG x velocity
KYDG v velocity
KGF X x force=sum
XGFY y force-sum
KGPM grid-point mass
Offsets for zone data
KZ Pointer to next zone in zone list
XZG Start of triple pointer to 3 surrounding
grid~points
kZS11 )
KZS12 ) Stress tensor
KZS22 )
XZIM Zone mass

Logical unit numbers
LUNIF Unit number for input file
LUNOF Unit number for output file
LUNG Unit number for general |/0 (e.g. restart)
LUNP Unit number for plotted output
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S Bmecamena

Number of words in data arrays
NVCR Corner
MVBL Block
NVCN Contact
NVDO Domain
NVSD Simply-deformable extension
NVZO Zone
NVGP Grid-point

Array limits
MTOP Size of main array (1A)
NMAT Maximum number of materials
NCONS Maximum constitutive numbers
NTYP Number of block types (rigid, SDEF etc)

Head codes (contents of first integer in data array)
MRIG =] Rigid block
MSDEF =2 Simply~-deformable block
MEDEF =3 Fully-deformable block
MCOR Corner
MCON Contact
MDOM Domain
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Agggndix III-3 Subroutine Functions

"SUBROUTLwe ACCUMCA)

“RECURL MAX AND MId VELOCI!IeS Fur CURNER

SUBROUTIuE APLOT
=BLOCKS AnE PLUTTEU

SUBROUTINE ARC(RAV)
~PLOT ARC, RADIUS KAD, CENIKE (AF,ir), FROM (X1,11)
«T0 (X2,Y2). PEN ASSUMED pUwd UN eivIxy.

BLOCK DATA FRtD
=INITIALISE FIXeD PARAMETERS. thlo ROULINE
«(AND IHE CUMMON BLUCK /PARAM/.) CAN e REPLACED
=8Y A SET uf PARAMETER STATEAmcwnIS I¢
~SUPPURTED s5Y THE CUMPILER.

SUBROUTINE oRIDGE(IADL,IAD2,IA3L,LA0e,iCUl,IDNEW)
=MAKE A COUNTACI TU BRIDGE vOWALN LDuM pETwEEN LIST LIIEMS
«LAD1 AND 1AD2 (BLUCKS IABl & i1Asé). ICUL=COwe UF nNEw Sei.
«(XC,YC)=COORDINATES OF CONIACT.
«IDNEW=RETURNED NEW DOMAIN NuMobEx.

SUBRQUTINE CC(AL1,A2)
“PARAMETERS FOR CORNER=CORNER CUNTACT

SUBROUTINE CE(AL1,A2,AP)
~PARAMETERS FOR CURNER-EDGE CUNTACT

SUBROUTINE ChANGE
=CHANGE AULTRIBULES OF EXISTING BLUCKS ~IInls xanGh

SUBROQUTIwNE CL1
=ELASTIC, ISOTROPIC CONSTITULIVE LAw

SUBROUTINE COOQRD(IAC)
=UPDATE CUURDIWATES FOR CONLACT iAC

SUBROUTINE CRAD(IAB)
=CORNER RADIUS AND CIRCLE CENIKE ruUK EACH
=CORNER UF 8LUCK [An

SUBROUTINE CxEAllR
*CRKEALe A buuCa (FROM BLOCA CummANLY

SUBROUTINE CVEL(B,C)
=UPDATE RELATIVE CONTACT vELOCITIES
“B( ) IS BLUCK ARRAY; C( ) IS COwlACT ARRAY

- 57 -




{ SUBROUTINE CVELFD(C)
: “RELATIVE CUNTACT VELOCITIeS FrRUmM veP. VELUCLTLIES

SUBROUTINE CYCLe , 1
=MALN CALCULALION CYCLE

SUBROUTIie DAie ¢Cﬁ> A
=PRUCESS UAMPING COMMAKD S
QP
K
e
SUBROQUTINE Crwud @"6,‘;}\"'
-DELETE 8LOCK IBLOCK RIS
%\e,\ $@J !
o 1

! SUBRQUTINE DELC(IAC)
% <DELETE CONTACT IAC

SUBROUTINE DeELLST(IAD,IPNT,KOFF)
=DELETE ITEm L[AD FRUM LIST PUINLEUL TO
=BY IPNT, wlth OFFSET AITHIN AN I1EM UF KUFF

P

k SUBROUTINE FOC(IPP) '
~DEAL wITH FORCE APPLIED AT CORNek OF FULLYI=DEF BLUCK

SUBROUTINE FDE(IPA,IPB)
t =DEAL WITH FORCE APPLIED TO EDGE OF FULLY=-UEF SuLUCK

SUBRQUTINE FDEF
=SCAN THROUGH GRID=POINTS & ZUNES FuUR FULLY=DEF BLOCK

SUBROUTINE FIND(N,NG)

| =FIND 8 WORDS UF MEMORY -
} =NG = RETURNED ADODRESS

‘ =ERFLAG 15 S&f Iy MEMORY CAnNnNOT BE FOUND

|

SUBROQUTINE FIX(IFIX)
=SET OR RESET FIX FLAG FOR ALL bLUCKS WITHIN RANGE

-

| SUBROUTINE FURD(CON)
g | -FURCE/DISP CALC. FOR CONTACI

i SUBROUTINE GEN
| =PRUCESS "GENERATE" COMMAND, wriCH GENERATES ZONING Fus

g : *FULLY=DEFURMAOLE OBLOCK EITH=R mAWUALLY Ok AUTCMATICALLY.
|

1

3

SUBROUTINE GrJU(IAB,AR,RG2)
*FUR bLUCKN i1ab, CUMPUTES AREA, RAVIUO UF
*GYRATLIUN SQUARED ANO CENTROLU (AP, iP)

FUNCTION GETR(A,KOFF)
*GLET REAL VALUE FROM MAIN ARRAY wITH
*QFFSET KUFF 58




SUBROUTINE HALT
=ERKUK MESSAGES PRINTED HERKE
«PROGRAM STOPS UNvEx CERTAIN CUNDITIUNS

FUNCTION ICALB(IC)
=GET CALLING ADURESS FUR CONLACY LC ¥FROM ELuCA L1BLUCK

FUNCTIGwn [DUMP(LIAD)
“RETuxn DUMALN ADURESS FOR SeEGakdl LAD, pLUCA LoLUCH

FUNCTION Iub1l(IAQ,KUFF)
=GET InTEGER FrOM MAIN ARRAY & lAu+RUrf

FUNCTION IGETGP(I)
=FINO I'TH GRIDPOINT ADDRESS, bLUCKR IBLUCK

SUBROUTINE IMSG
=INITIAL MESSAGE FRUM CODE

SUBROUTINE INeERT(XV,Y0,X,Y,YP,YS,rkMiCAR)
= COMPUTE mUMENT OF INERTIA AouUL GIVEN ALIS

SUBROUTLNE INI
-PREPAKE FUR CYCLING
i ‘
f
SUBROUTINE INSECT(YES) »
~FIND IF 2 LINES [NTEKSECT (RcTURNS YES=.IRUE.) i ]
RETURN COORDS (XP,1P). o

=AND LF SO,
-THE 2 LINES ARE ((X1,12),(42,Y2))

- AND ((X3,13),(X4,14)) :
15 [
SUBROUTINE LOCI,NPAR) oY
=ALL NON=STANDARD I/0 DUNE heKe 3 4
A
o
FUNCTION IVAR(NPAR) 3y A
«TO RETURN INTEGER VALUE OF PARAMETER NPAR RS
‘03

ey
EZ

SUBROUTINE Jumpd
=TO0 JUMP TO NEw BLUCK LN DOMALN Fikum CUNLACT IAD

SUBROUTINE LOSE(N,NG)
=TO RETURN N WORDS OF MEMORY AT AUDRESS NG

- SUBRUUTINE 4Anco(IAo,UNAS,UMOL,A,1)
«TU INSTaLL 4ASS8, Ul & CuulrULL

«IN DLOCK [A® - - .

SUBROQUTINE MAKEC(IAC,IABL,IAB2,1ul,142,I01,1D2,1C00)
=FILL CONTACT DATA BLOCK AT LAC, AwbU LINN TOU CONTACT LIST.

=IABl, IAB2 = BLOCK ADDRESSES
«IL1 , IL2 = ASSOCIALED CIRCUULATLING LISTS
= DOMAIN ADRESSES - 59 -

=ID} , ID2
=1C0D = CONDITION CODE




SUBROUTINE MAKEP(LAD,LAL,IAR,X,(,1lA8)
“FURM CunneR @8 LAD, AHERE LAL=CLGCAWISE Llwnn,
=IARSREVeRSE LINK, (£,Y)=COriek CLUKULS,
=IABSBLUCK ADDKESS

SUBROUTINE MATCH(NTAS, INDEX,NPAK,yUKE ,0aD) 3
=TO MALCn INPUT SIING TO KEtwunl Ln PAALE 7
-INPUL: WNIAB TABLE OF KEY4UKUS 3
- INDEX LIST UF LENGIHS 3
- NPAR PARAMETER w0. L LiwUT LIME R
-OUTPUT: JUMP OISPATCH NHUMBER 4o
- BAU L TRUE. FUR ALSSING PARAMETER o
- OR STRING NOT rFuuwu. o

SUBROUTINE MUN e

-MONITOR 204

Q9 7

o 3

SUBRQUTINE MOTIONC(A) o 2
-LAW OF 40TIUN FOR SINGLE BLUCA F3

SUBROUTINE MOVE(IALL,TAD2,NWD)
“MOVE NaD WJIRDS FROM ADURESS I[ADL [u IAvZ

SUBROUTINE MVBAK(IAC,IAB8,ICOUL)
=MOVE CONTACYT B3ACKNARDS PAST CURNEX (TAKING
=¥ITh IT ALL INTERMEDIATE COwLACLS).
=LACSCUNTACT; IAB=8LOCK; ICOU=wnEw CODE.

SUBRQUTINE MVFUR(IAC,LA8,ICOD)
*MOVE CUNTACI FURwWARDS PAST Cunrher (TARING wITh IT
“ALL INTERMEDIATE CUNTACTLS).
=IAC=CUNTACIL; IAB=HLOCK; ICUu=nEw Clut

SUBROUTINE NEXTCP(IAD,IAON,ICALL)
=FIND NEXT LITEM (IADN) IN CORNER CnAIN AND
=ITS CALLING ADORESS, GIVEN CunrRENI ITEM, LAD
*8LOCK NUMBER ASSUMED TO Be IpuLuCk

SUBROUTINE NEXTO(IAD,IADN)
=FINU NEXT ITEM (IADM) IN DUMAIN CHAIN,.
=IADSCURRENT ITEM; IuOM=DOMALN,
=IdLOCK IS UPDATED FOR EACH CUNTACT ENCUUNIEREL.

SUBROUTIne NEXLULS
=GET abAT SE&vwmeEdT IN VUMALN, snere daGmewn? 18
=DEFLNED AS CURNER UR EDGE. [A3 Io otumenT nudineR.
*CORNER=,Inur, I CURRENT StGuaehl IS A Cunnek,
=FALSE UTHERAISE. CUNTAC=,TRU&, IF A CON1ACT
*HAS JUST BEEN PASSED THROUGH.
«"ITEM"® COUNTS CONTACTS+SEGMENTS
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SUBROUTINE NEXLP(IAD,IAP)
«FIND NeAT CORNENR (iaP) In BLUCK CHAlN,
=GlveN CurRenl ILEm, 1AD, IN CHAlw,
=3L0CA nNuMoERr IS Ia8LICK

SUBROUTLine QUTCP(IAD)
=PRINT LIST iTEn IaAC

SUBROUTINE uwuUT#DG(1AD))
=SCAn TArRQUGA GaID=POINi3 ¢OR PRrIwiuul

SUBROVUTINE OUTFDZ(1AD1)
=SCAN THKQUGH ZU~NE FOR PRINTOUL

SUBROUTIWNE UUIG(A,IAD,ICOR)
“PRINT DATA FOR GRID-POINT, ARKAI A()

SUBROUTINE QUTSOD(A)

=PRINT UUT INTERNAL VARIABLES FUk SIMPLY=CEF. bLGCK

SUBROUTINE PLOTS(X,Y,I)
=SCALeD PLOT

SUBROQUTINE POP(ITENM)
=POP IT=m ERUM STACK

SUBROUTINE PRINT
=MAIN PRINTOUT IS DONE HERE

SUBROUTINE PROP
“RESPUND TU “PROPEATY" CUMMAND

SUBROUTINE PUTFCE(B)
=PUT FURCES FRGM CONTACT INTO oLUCK AT

SUBROUTIWE PUTFDF(A,FX,FY)
*AUD FORCES INTU GRID=POINT'S ruUKCL SUM

SUBROUTINE PUTI(IAD,KUFF,I)

«PUT IWTEGER I AT IACLAD+KUOFF)

SUBROUTINE PUSH(ITENM)
=PUSH 1Il=d unNTU STACA

SUBROUTINE PULP(ARMAL, L)
*PUT VALUE UF PARAMETER I LN AKRKAY
=AND CHECA rOR RANGE OF I

SUBRQUTINE PUTR(A,MOFF, V)
=INSERT HEAL VALUE V INTO MALN ARRAY
“WITH OFFSET KOFF

B( )
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SUBRQUTINe PUTSTR(B)
«PUT APPLIEV STRESSES IN SIMPLI=veFUKRMASLE oLliCa

SUBROQUTINE Pvail(o,CQ)
=yJPUale CURuer VELUCITIES Awv CUUrUINATES.

«8( ) I3 b6LUCK ARRAY; C( ) L3 COnweRr ARKAY,

SUBROUTINE PVELFD(A)
=UPUALTE COrnEn CUQEDS & VELUCLULleD ErUm G.F. Vallekos

LOGICAL FuUnCTIUN usC(IAB)
*RETURNS .TnUE. IF BLOCK IAd nAS AnY CUN1ACYS

SUBROUTINE QUERY(IAC)
«CORNER IS5 SET .TRUE, 1F CONLACT 1AC ON
«8LOCK IuLOCK CORKESPONDS TO A CURNER.

LOGICAL FUNCTIOM RANGE(IAB)
., IRUE. IF bLUOCKA CEWTROID LIadS JULIOIDE RANGE GLVeN BI

=USER.

SUBROUTIwe RELL
-COORDS OF POINT (XP,YP) RELAI'iIVE 10
ALSQ

=LINE ((X1,¥1),(X2,¥2)). COMPUTES
<LENGTH (Z2), COS (C) & SIN (S) Or ULine.

=QUTPUT COUROS: (XR,YR)

SUBROUTINE RELZ2
=SAME AS RELL, BUT C AnNU S ARZ ASOUMED AS InNPUT

FUNCTION RVAR(wPAR)

«TO0 Reluni REAL VALUE OF PAKAmE[tr «“PAR

LOGICAL FUNCTIUn SEP(LCHAR)
~RETURNS ,TRUE. IF ICHAR IS A SePARATUR

SUBROUTINE SPLIT
=SPLIT BLUCKS IN THE PATH OF GlveN Llng

SUBROUTINE SPLI(CIAL1,IAD2,XA,YA,XB,YDB)
=SPLIT 8LOCK (IBLUCKR) BETWEEN (An,IA) AND (AB,YB)

«IADL AUD [AVZ ARE LIST [TeMS vudl serfORE
aSEGMENTS L1dAT o~luu B3€E SPLIT

SUBRUVULING olax]
oSTARTUP ASSIGHMENTS & InlTIlaLlsmlluwn

SUBROUTIwE STRAIN(B,E)
«COMPUTE STKRAIN=RATE TENSOR ¥FUK SIMPLY=DEFGRMABLE oLUCK

=3() 1S THE BLOCK ARRAY
=€() IS Tne EXIENSION ANRAY FUR SINeLI=DEF DATA  _ o _

-~ el
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SUBROUTLINE STrzSS(3,8)
«STRESSES FrUM STRAIN~RALIES ... olMPLY=DEFCRmanLE pLUCK

«8() LS Thz 3LUCK ARRAY
«2() I3 Tde SDEF ELATEMSIDN ARRAL

g

~
<

SUBROUTINE Tiuf
eTU ELLALunmic oLAHKS, &TC. Fhum Iupuf
eLIWE AdD make loOsAd fU LOCALLUN utt PARAMETRENRD SO
SUBROUTINE ToLSe!l Lo
“3ET LULERAWCES FROW AVEKAGE 3u0CK OIMERSICNS k)
gt
SUBROUTLNE TRUE(LAD,X,¥) r ‘
«GET TRUE wLiST ITIch SEFORE CUT @ (£,1). Y ;
“1AD IS WEAKEST CORNER BEFURE (A,Y), Anu L z
“IAD 15 GVEAWRITTEN 4ITH NEW L13T ADURESS. 'y ;
o
™
3
« \')
-3

PROGRAM uDEC
~UNIVERSAL VISTINCT €LEAENI ClvUe
VerRSION 1.V
MARCH 1lvaov,

FOR U.35. Aniid

-wRITTEN BY P.A.CUNDALL,
«(EUROPEAN RESEARCn QFFICE) AWU Uerzade NUCLEAR AGENCY
«UNDER CUNTRACT DAJA37~79=C-u54d.

SUBROUTINE UPDATE
«UPDATE LOMAIw IDOM

SUBROUTINE UPDT
~UPDATE CuUNTACTS In DOMALN Lo

SUBROUTINE VAx(NPAR)
«COMMON RUUTINE FOR IVAR & RVAR

SUBROUTINE XYCUR(A,X,Y)
~RETURNS CORWER COURUS (X,Y) FUR CunweER AKRRAY al)

SUBROUTINE XYFD(A,X,Y,XD,YD)
“RETRIEVE Gilp=POINT COURDS % veELUCLILES

SUBROUTLive ZCS
«TO RelTuin wesuld (&) AxD Jduly veilur (C,d)
«0F Glnk (le'[l)'(kz, 12)
FURCES FOR A ZUac

SUBROUTINE Z3STRAS(A,LLuw)
eSTRALN=KRATES, STRESSES & Henle G.r.
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ULEC
-START

-MON

=-HALT

=PRINT

-SPLIT

-INI

Appendix III-4 Subroutine Calling Map

~-TIDY
-MATCH
-I0
-IMSG
-PROP
-FIX
-DAMP
-DELB

-MATCH
~-QUTSD
-QUTFDZ
-QUTFDG
-QUTCP
-NEXTCP
-NEXTD
-NEXTP

-FIND

~TOLSET
-UPDATE

~PLOTS
-ARC

-GEO
~MAKEB

-SEP

-NEXTCP
~DELC
~LOSE
~DELLST
~MATCH
~FIND

-OUTG

~NEXTCP

-INERT

-INERT

-NEXTCP

=-NEXTP
-CcCc
-CE

-GEO
=-UPDT

~-PLOTS

=-INERT

~TOLSET -GEO

-NEXTD

~NEXTCP
-2Cs
-REL1
-2CS
=-REL2

-NEXTDS

-PUSH

- 64 -

~DELLST

~NEXTD
~NEXTP

~NEXTCP
~QUERY
~JUuMPB

~NEXTCP
~REL1
~2Cs
~REL2

~2Cs
~FIND
~NEXTCP
~COORD

~FIND

-NEXTCP

=NEXTD
-NEXTP =NEXTCP

-NEXTP  -NEXTC

-CC ~2Cs

-CE -~REL1
-~ZCSs
~REL2




ot —~—

——-s,

——

-CYCLE

-GEN

Most "functions" and the commoner subroutines which are listed below have

-MOTION

-STRAIN
~-STRESS

-FDEF

~FORD

=-ACCUM
-NEXTP
~NEXTD
-UPDATE

-FIND
~MATCH

-CVEL
-PVEL
~XYCOR
-CLl
-CL2
-CL3

-CLS
~GPMOT
-XYFD
-PVELFD
~NEXTCP
-2Cs
-REL2

-2STRS
<NEXTP

-CE

*NEXTCP

-XYFD
~NEXTCP
-2ZCs
~REL1
-ZCs
-REL2

~DELLST
-LOSE

-PUTFDF
~PUTFDF
-NEXTP
-NEXTCP
-NEXTCP
-NEXTP

been left out of the "calling map":

Functions

GETR
ICALB
IDOMP
IGET
IGETGP
IVAR
QBC
QTEST
RANGE
RVAR

=NEXTCP

Subroutines
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APPENDIX IV - GUIDE TO PROGRAM CHANGES
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APPENDIX IV - Guide to Program Changes

IV-1 Parameters

All Fortran variables initialised in the BLOCK DATA subroutine FRED
are constant during a UDEC run, and the DATA statements may be replaced with
PARAMETER statements if these are supported by the compiler. This should lead

to an increase in efficiency.

IV-2 Storage of Integers and Real Numbers

Program UDEC, as written, assumes that a real Fortran variable occupies
the space of two integers. This correspondence is only important for quantities
stored in the main array IA( ). If UDEC is to be run on a machine having a dif-
ferent convention for storing variables, the offsets defined in the BLOCK DATA
subroutine will need to be changed, The offset of a variable, referred to a
particular data array, is defined as the number of words from the start of the
data array to the location of the variable, where a "word" can be integer or real,
depending on the type of variable, The numbering for integers starts at O, and
the numbering for reals starts at 1. As an example, the offsets are given below
for the corner data array for the standard program UDEC, and for the program as

it would be set up on a machine in which integers occupy the same space as reals.
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For For
2 integers 1 integer
Variable = 1 real = 1 real
INTEGER REAL INTEGER REAL
COUNT COUNT COUNT COUNT
<head code> (integer) o] (1) (o] (1)

KL (integer 1 1 (2)
KR " 2 (2) 2 (3)
KNB " 3 3 (4)
KXP (real) (4) 3 (4) 5
KYP " (6) 4 () 6
KXCP " (8) 5 (6) 7
KYCP " (10) 6 (n 8
KRAD " (12) 7 (8) 9
KXDP " (14) 8 (9) 10
KYDP " (16) 9 (10) 11
KGP (integer) (18) (10) 11 (12)
—_— ———————————

data array numbers not in parentheses are

for corners offsets used in program; other numbers

(see Appendix III-2) are included to show the full sequence.

Iv-3 Non-standard I/0 and other Operations

All non-standard input/output is done in subroutine IO, and consists
of OPEN and CLOSE calls for the input and output files. These calls may be
replaced by equivalents if another computer is to be used.

The DECODE statements in subroutines IVAR and RVAR may be non-standard
on some machines, and should be replaced as necessary. No other ENCODE or

DECODE statements are used in the program.
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Subroutine VAR packs characters into array IBUF, which is declared a
BYTE array. On some machines this operation may have to be done with an ENCODE
*
statement, if BYTE or INTEGER 1 variables are not allowed.

*
‘ All INTEGER 2 statements may be omitted if they refer to single
variables; statements that refer to arrays should be replaced by DIMENSION

statements.
; The statement INCLUDE 'COMMON.FTN' inserts at that point in the program
' the parameter blocks and main common block. Many computers have a similar

facility, but is invoked differently.

Iv-4 User-supplied Constitutive Subroutines

Dummy subroutines CL2, CL3, CL4 and CLS may be replaced by real sub-
routines: these will be called for materials with constitutive numbers 2,3,4,
and 5 respectively. Input and output variables are passed in common block

/CLCOM/, where the names of the variables have the following meaning:

S1l1
components of
INPUT 512} current stress tensor
522
g:i;} components of
t tensor
DE22 strain increment ten
]
‘ DS11
components of stress
OUTPUT {ﬁg;g} increment tensor
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