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Methods for Large-scale Nonlinear Optimization t

Philip E. Gill, Walter Murray, Michael A. Saunders and Margaret H. Wright
Systems Optimization Laboratory

Department of Operations Research
Stanford University
Stanford, CA 94305

ABSTRACT

The application of optimization to electrical power technology often re-
quires the numerical solution of systems that are very large and possibly non-
differentiable. A brief survey of the state of the art of numerical optimization
is presented in which those methods that are directly applicable to power sys-
tem problems will be highlighted. The areas of current research that are most
likely to yield direct benefit to practical computation are identified. The paper
concludes with a survey of available software.

t Presented at the SIAM conference: *Electric Power Problems: the Math-
ematical Challenge,* Seattle, March 1980.
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12 METHODS FOR DENSE PROBLEMS 1

1. Introduction

The application of optimization to the electrical power industry has produced
problems in which the matrices of constraint gradients and second derivatives
are large and sparse. There are two approaches to solving large-scale problems:
methods for small dense problems can be adapted to solve larger problems by
using sparse matrix techniques; or special-purpose methods can be used to reduce
the problem to a related sequence of simpler problems. In this paper we shall
review methods that follow the first approach. In the first three sections we
define a number of "prototype* methods that give the best rate of convergence
when applied to small problems, but are easily adapted to cater for sparsity. It is
demonstrated how sparse matrix techniques can be used to extend the prototype
algorithms to solve several important types of large-scale problems - particularly
problems in which a small number of the variables appear nonlinearly.

Unfortunately many electrical power problems occur with a large number
of nonlinear constraints (see Biggs and Laughton, 1976). This is precisely the
class of problems which are the most difficult to solve numerically. In Section
5 we shall discuss current research that shows promise of allowing such difficult
problems to be solved.

The mathematical description of the problem of concern is:

minimize F(z)zEM*

subject to c,(t) > 0, i = 1,2,..., m.
where F(z) (the objective function) and {c,(:)} (the constraint functions) are
twice continuously differentiable.

In the most difficult problems, each c,{z) is a nonlinear function. Algorithms
~will also be described for problems in which the set {€,iz)} is empty - the un-

constrained optimization problem; and the constraints are all linear functions of

z - the linearly constrained problem.
The n-dimensional column vector g(z) denotes the gradient of F(z), and

G(z) denotes the Hessian matrix of F(z). The vector I refers to a solution of
the optimization problem.

It is impossible for a short survey to give an adequate description of all
the recent developments in a field of study that has grown substantially in com-
plexity and range during the last few years. It is intended, however, that the
references cited in the text will enable the reader to become familiar with the
more substantial and detailed accounts of the subject.

2. Methods for dense problems

All the algorithms discussed in this paper generate a sequence of estimates {z%}

____ ____ ___i



2 METHOD8 FOR NONLINEAR OPTIMIZATION 12

of the optimal point Z. Many do so by generating a search direction pg and a
step length ah such that

z*+1 = zk + apk;
those that have the additional property that F(zg+i) < F(zg) are known as
descent methods. A complete description of the methods used to compute a, is
beyond the scope of this paper. However, it must be emphasised that the robust-
ness of an optimization method will depend upon the method used to compute
ag (see Ortega and Rheinboldt, 1970; Gill et al., 1979).

2.1 Methods for unconstrained minimization.
A useful technique in the optimization of differentiable functions is the utiliza-
tion of a local quadratic model of the objective function. Methods based on such
approximations should be expected to work efficiently for quadratic functions.
One obvious candidate for a quadratic model of the objective function is the
function obtained by taking the first three terms of the Taylor-series expansion
about the current point, i.e.

T r
F(z + p) s Fg. + ghp + ip Gp,

where Gh denotes the Hessian matrix evaluated at the point zh. The idea under-
lying many methods for constrained minimization is that this approximation is a
reasonable model of the objective function, in terms of finding a local minimum.
To make this analogy, it is helpful to consider the quadratic model in terms of
p rather than z. Consider the quadratic function

Q(p) = gkp + !pTGp,

for a fixed vector gg. and symmetric matrix Gg.. If Gg is positive definite, Q(p)
has a unique minimum at the stationary point ph that satisfies Gps + ph = 0,
or equivalently

Gkpg = -g.. (1)

This choice of search direction is not suitable for general application since any
possible indefiniteness in Gg. may result in pg not being a descent direction, i.e.
there may not exist an a such that F(zg + ap,) < F. The class of modified
Newton methods is characterized by the definition of a positive-definite matrix
SUh which is equal to to Gg. on those occasions where G is positive definite, but is
equal to a related positive-definite matrix otherwise (see Gill and Murray, 1974a;
Mor6 and Sorenson, 1979).
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If it is not possible to provide a subroutine to evaluate the second derivatives,
an algorithm with almost identical performance to that of Newton's method can
be obtained by finding the columns of the Hessian using finite differences of the
gradient vector. For details see Gill and Murray (1974b).

A fundamental advantage of Newton-type methods is that under certain
mild restrictions on the objective function, they can be shown to be convergent
to a local minimum of F. However, this advantage is obtained at the cost of
evaluating either the second derivatives or n + 1 gradients at each iteration.
Moreover, it is necessary to solve the set of linear equations (1) from scratch at
each iteration. The class of quasi-Newton methods was designed to avoid both
of these problems (see Dennis and Mord, 19T; Brodlie, 1978). Here, a positive-
definite approximate Hessian B, is known at the k-th iteration and the direction
of search is given by the solution of the 'quadratic program':

4 minimize 1PrBP + ,rp.

On completion of the k-th iteration, a matrix Bk,+1 is computed such that
BA.+z - B; is a matrix of low rank - usually of rank one or two, and Bt+i
satisfies the quasi-Newton condition

B+(Z+l- z) - 1k+1 - gA.

This condition is approximately satisfied by the true Hessian in the neighbour-
hood of the solution. Although there are an infinite number of possible definitions
of B,.+i it is generally accepted that the BFGS formula

Bt+l = Bt + P+ YVPki

where fk -= gA+ 1 - gA, consistently gives good results. Since the approximate
Hessian alters only by a matrix of rank two at each iteration it is possible to
update an invertible form of Bk. This form may be either a triangular factoriza-
tion or an explicit inverse. For numerical computation it is preferable to recur
the triangular factorisation of B (see Gill and Murray, 1972, 1978, for more
details).

All the methods discussed so far require the storage of an n X n approximate
Hessian matrix. Conjugate-gradient methods require the storage of only a few n-
vectors. The following algorithm was suggested by Fletcher and Reeves (1964).
During the first iteration, pl, is just the steepest-descent direction -g(zo). After
the computation of at, the direction of search for the next iteration is found
from the formula

PA+1 -'-- + ,ipP,
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where 119 - uk+1[12/1gh. If ah is computed as the minimum of F(z& + ap)
and the algorithm is used to minimize a quadratic function F(z) = cra+ +ZTQZ
with Q a symmetric positive-definite matrix and c an n-vector, the directions ob-
tained from this algorithm are identical to those of both the Hestenes and Stiefel
conjugate-gradient method for solving the linear equations Qz = -c (Hestenes
and Stiefel, 1952) and the BFGS quasi-Newton method. Unfortunately, if the
approximate Hessian matrix can be stored, the Fletcher-Reeves algorithm is
generally inferior to the BFGS quasi-Newton algorithm in terms of the number
of times that F is evaluated. However, recent research on conjugate-gradient-
type methods has considerably increased their robustness and efficiency. This
work has mainly consisted of deriving methods in which pk+1 is computed from
the gradients of the previous r iterations by solving equations of the form

A 6 ->+ r )p,+, = -g+,,
(Dk+i + ~2 ('YvuigT - =X

where D,.+i is a diagonal matrix. It can be shown that the Fletcher-Reeves
algorithm is the member of this class of methods obtained by using an exact
linear search with r = 1 and Dk+1 equal to the identity matrix. For more
details see Shanno (1978); Nazareth and Nocedal (1979); Gill and Murray (1979);
and Nocedal (1979).

Nonlinear conjugate-gradient methods behave in a similar way to conjugate-
gradient methods for the solution of systems of linear equations. These methods
work best on problems whose Hessian matrices have sets of clustered eigenvalues.
On more general problems, however, even the best method may require a prohibi-
tively large number of iterations. For general problems (i.e. problems without
clustered eigenvalues) conjugate-gradient-type methods require significantly more
function evaluations than quasi-Newton methods.

2.2 Methods for linearly constrained minimization.

It is common for optimization problems to include linear constraints of the form:

(1) simple bounds on the variables,

_ ziu <_ =1,...,a;

(2) linear constraints (equality or inequality),

i, i+02X2+ +
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The most successful algorithms for linearly constrained minimization are
members of the class of "active set" methods. At each iteration, a particular
subset of the constraints are treated as "active'. The search direction is then
computed so as to stay 'on* these constraints, adding new ones to the active set
as they are encountered. The search direction on the set of active constraints
is found by solving a linearly constrained problem with the active constraints
treated as equalities. Suppose that there are t linearly independent active con-
straints and that their coefficients comprise the rows of the matrix A. We then
need to solve the equality-constraint problem

minimize F(z)
x~lt*(2)

subject to As = I.

Given any feasible point zh we require a vector ph such that zk + Ph it feasible
and close to a minimum of (2). This gives the following quadratic program for

*Ph:
minimize iprBp + crp

pE-R* (3)
subject to Ap = 0.

Here, as in the unconstrained case, Bh denotes some approximation to the
Hessian matrix of F. The t equality constraints have the effect of reducing the
dimensionality of the optimization problem to n - t, as follows. Any vector
satisfying the constraints of (3) can be written in the form p = Zpz, where
Z is an n X (n - t) matrix whose columns form a basis for the set of vectors
orthogonal to (ai}. Written in terms of pZ, the quadratic program (3) becomes
an unconstrained problem with optimum given by the solution of the linear
equations

ZTBhZpZ = --Zgk.

The solution Ph of (3) is recovered as Ph = Zpz. When second derivatives are
known, G(zh) can often be used as Bk. In this case the matrix ZTGhZ is defined
as the projected Hessian matrix and is denoted by Gz. Similarly, the (n - t)-
vector ZTg is defined a the projected gradient and is denoted by gz (see Gill
and Murray, 1974c).

The terms 'gradient projection' and "reduced gradient" are often used
to refer to this problem transformation, which effectively "projects' F into a
*reduced" subspace. Alternatively, one can consider that these methods generate
iterates that remain "on' the constraints while moving to decrease the objective
function.

Any vector u in V" can be written in the form u A Tr + Zu2. At a solu-
tion of the equality-constraint problem (2) the projected gradient will be zero,
which implies that the gradient vector has no component in the space spanned
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* by Z. Thus there must exist t scalars Xi such that

The t-vector X is known as the vector of Lagrange multipiers. Note that X is
the solution of a set of over-determined linear equations.

When a minimum on a particular set of active constraints has been found,
a decision must be taken as to which constraint (if any) should be deleted from
the active set. It can be shown that a Lagrange multiplier gives a first-order
estimate to the change in F for a unit perturbation in the constraint. A posi-
tive Lagrange multiplier Xi indicates that, to first order, the objective function
cannot be reduced by moving off the j-th constraint. Conversely, if the search
direction is computed so that a constraint with a negative multiplier will be
inactive at the next point, there must exist a scalar a such that F(zk% + azpt) <

It is usually more efficient to avoid a complete minimization on a subspace
and delete a constraint earlier when it seems appropriate. A way of investigating
whether a constraint should be deleted at points other than at constrained sta-
tionary points is to compute estimates of the Lagrange multipliers. For example,
the estimate XL defined by the least-squares problem

min IIATX - 011I2

is frequently used. The reader is referred to Gill and Murray (1979) for a detailed
discussion of Lagrange-multiplier estimates.

The apparent differences among algorithms of the reduced-gradient type
arise from the various ways of representing Z, in order to generate search direc-

L tions that remain in the proper subspace. For small dense problems, the best
method for computing Z is based on the QR factorization of AT (see Stewart,
1973). Let Q be an n X na orthogonal matrix such that:

QA T =R(j

where A is a t x t nonsingular upper-triangular matrix. The last n - t rows of Q
can be taken as the columns of the matrix Z, since they are linearly independent
and orthogonal to the rows of A.

A basic feature of linearly constrained minimization is that A and Z can be
updated since A changes by only a single row at each iteration. Consequently,
an important consideration in the choice of Z should be the accuracy of the
computed quantities after a long sequence of updates. The orthogonal factoriza-
tion is by far the most accurate method for computing Z. It is the only choice
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of Z that gives a constrained problem whose degree of difficulty is never worse
than that of the original problem. For other methods for computing Z and a
discussion of the relative merits of alternative techniques, see Gill and Murray
(1974b).

If the linear constraints comprise only simple bounds, it is not necessary
to compute a matrix Z since columns of the identity matrix naturally define
a suitable basis for the null space of the constraints. In this case an active
set strategy is equivalent to partitioning the variables into two sets: the set of
fixed variables which are at their upper or lower bounds, and the set of free
variables which are currently being optimized. An unconstrained minimization is
performed with respect to the free variables. This unconstrained problem is al-
tered occasionally if a free variable violates a bound or a fixed variable is allowed
to become free. Clearly, algorithms for bound-constrained minimization are
conceptually closer to algorithms for unconstrained minimization than linearly

F constrained minimization. However, since the number of free variables may be
much smaller than n, the difficulty of the minimization may be significantly
reduced. Intuitively, one would expect that it would be possible to construct
a more efficient algorithm by providing more information about the region in
which the solution is expected to lie.

2.3 Methods for nonlinear eonstraints.
The level of difficulty increases significantly when there are nonlinear constraints.
One of the added complications is that, given a direction of search pk and a point
Zk that satisfies a nonlinear constraint, there may be no step length ak such
that zA + a+kpk also satisfies the constraint. Moreover, methods that attempt to
follow the constraint boundary are no longer suitable. Suppose that Ci(z) is a
constraint that is almost satisfied exactly at zk. The Taylor-series expansion for
c,(zk + p) gives

c,(z& + p) = c(z) + a,(zk)Tp + o(jpHj2),

where ai(z) denotes the gradient of the constraint function c,(z). As zk ap-
proaches the solution, all changes in x lie in the null space of constraints and
a,(zt)Tp F 0. Clearly a first-order expansion of the constraints does not ac-
curately give c€(zh- + p) as a function of p.

At a solution z, suppose that t of the constraints are satisfied exactly and
that these constraints are denoted by {e,(z)}. If A(x) denotes the matrix whose
i-th row is a.(Z)T, there exist t non-negative scalars ) such that

A() = x)
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(For the precise second-order Kuhn-Tucker conditions for optimality see Fiacco

and McCormick, 1964; Powell, 1974.)
An important tool for the understanding and solution of constrained prob-

lems is the Lagrangian function

L(x,) F(Z) - ist, ,{).

The point I is a stationary point of the Lagrangian with optimal multipliers
since

V5L(, i) = 90) - ARW)T  = 0.

Unfortunately, z is not usually a local minimum of the Lafrangian function
(instead it may be a saddle point), but it can be shown that z is the minimum
of L(z, £) when : is restricted to lie in the linear subspace

Z ,- I) = 0. (4)

To illustrate this, consider the problem

minimize F(z) =zlz2

subject to -+ 2 2 = 0.

This problem has the optimal Lagrange multiplier X P .816497. Some lines of
equal function value for the Lagrangian function are shown in Figure 1 together
with the set of z defined by (4). Note that the Lagrangian function has a saddle
point at x and positive curvature along the linearized constraint.

Suppose that :k is an estimate of :. The Taylor-series expansion for c(h- +
p) gives

Aezt + p) = ci(zk) + a,(zk)Tp + O(11p2l).
This expansion can be used to impose the requirement that th + p satisfies all
the constraints to first order, i.e.

A(zk)p > -c(k).

Since the optimal Lagrange multipliers are usually unknown, the Lagrangian
function must be defined using estimates, i. This analysis leads to the following
linearly constrained sub-problem

minimize L(z, )
se I ()subject to A(xt)(x - s,) _>-(zVt).
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Figure 1.

It can be shown that any term of the form oTA(zh)v can be added to the
Lagrangian function of (5) without altering the solution of the sub-problem. By
adding the term XTA(zk)z to the Lagrangian function we ensure that, as zk
approaches *, the optimal Lagrange multipliers of the linearly constrained sub-
problems are equal to those of the nonlinearly constrained problem. This conver-
gence result also implies that the Lagrange multiplier vector from the previous
linearly constrained sub-problem may be used for X. Note that the set of active
constraints is implicitly defined by the solution of the sub-problem. For more
theoretical details of this method see Robinson (1972).

Rather than solve a complete linearly constrained problem at each iteration
we can form a quadratic approximation to the Lagrangian function and solve
the resulting inequality quadratic program:

minimize &pTBhp + gT'p

subject to A(x&)p _! -(zk),

where Bk now denotes an approximation to the Hessian of the Lagrangian func-
tion.

The conditions on p% are derived by assuming that G[PkII is small. To allow
for large values of UpJJ it might seem appropriate to find a scalar a such that
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Ilc(z& + apt)ll < lJc(z1)Il. However, such a step may result in the objective func-
tion being increased from its previous value. The solution to this dilemma is to
define a "merit* function which allows a to be adjusted so that the conflicting
aims of achieving feasibility and reducing the objective function are balanced.
Among the possible choices for the merit function are the following

t

P(z, p) = F(z) + E
t

P(z, p) = F(z) + p Ejc,(z)l.

These functions add a penalty to the objective function that depends on the
constraint violation. Note that P is not differentiable.

In our description we have ignored some of the difficulties associated with
solving inequality quadratic programs or linearly constrained sub-problems. For
example, the sub-problem may have no feasible point or an unbounded solution.
Moreover, the quadratic program described here is only one of many alternatives
that can be posed. An alternative strategy is to define an explicit set of active
constraints and solve an equality-constraint quadratic program. This strategy
has some advantages over the scheme described here. However, we have been
concerned here with a unified description that will serve to introduce methods
for large-scale problems. For a selection of QP-based techniques the reader is
referred to Wilson (1963), Murray (1969), Biggs (1972), Garcia and Mangasarian
(1976), Han (1976, 1977), Powell (1977) and Murray and Wright (1978). A dis-
cussion of the relative merits of the alternative approaches is given by Murray
and Wright (1980).

2.4 Methods for non-differentiable functions.
Although non-differentiable problems are in general more difficult to solve, a
distinction must be made between a problem with random discontinuities in
functions or derivatives, and one in which a great deal of information is known
about the nature of any discontinuities. In the former case, the only algorithms
available are of the polytope type (see Nelder and Mead, 1962). In the latter
case, algorithms can take advantage of the special structure.

In some well known instances, the problem functions themselves are not
smooth, but rather are composites of smooth functions. For example, the fol-
lowing non-differentiable function occurs frequently, and is constructed in a par-
ticular way from the set of smooth functions {fi}:

minimize MAx{14(), /W,( )-, .))sEt



531 METHODS FOR SPARSE UNCONSTRAINED MINIMIZATION 11

There has been much research concerning effective methods for these and related
problems, and it is therefore advisable to use a specialized algorithm (see Wolfe,
1974; Murray and Overton, 1979). However, if such an algorithm is not available,
this composite non-differentiable problem can be transformed into a smooth, but
more complex, problem by introducing a new variable z.+,, which is an upper
bound on all the functions {f,(z)). Then the problem is given by

minimize zs+1

subject to 1f4) : z+, s=1,...,m.

Note that the original unconstrained problem has been transformed into a
nonlinearly constrained problem. In fact, all transformations of non-differentiable
composite functions lead to a similar increase in complexity.

3. Methods for large sparse problems

Wherever possible, methods for large-scale optimization will be identical to those
for the dense case, except that sparse matrix techniques will be utilized to mini-
mize the storage and number of operations required. However, we shall often find
that a method that is best for dense problems must be substantially altered if it is
to be extended to the sparse case. In many cases this alteration compromises the
theoretical features of the algorithm to the extent that it is no longer practical.

In many ways, methods for large-scale nonlinear optimization have similar
properties to methods for linear equations. It is now generally accepted that the
most stable methods for dense linear equations are not the most efficient for the
sparse case. Unfortunately, this implies that any method for sparse problems
may sometimes involve numerical processes that are not always as numerically
stable as we would like. The same situation applies to algorithms for general
nonlinearly constrained optimization.

3.1 Methods for sparse unconstrained minimliation.
For unconstrained minimization it is no longer clear that quasi-Newton methods
are the most effective techniques. Toint (1979) derived a sparse quasi-Newton
update of the form

Bt+l = Bk + Uh,

where U* is a matrix of rank n that has the same sparsity pattern as Bk. In
order to compute the correction U% it is necessary to solve a system of equations
with a coefficient matrix having the same structure as Bk. Unlike the dense
case, it is not possible to guarantee that Bt will be positive definite, and cons.-
quently quasi-Newton methods are identical to modified-Newton methods in the
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requirement for a related positive- definite matrix to define pt. Note that the
- - three advantages of dense quasi-Newton methods over finite-difference methods

have been lost - the maintenance of positive definiteness, the ability to recur Bkt
in invertible form and the lower overhead per iteration. This reversal in perfor-
mance is made more striking if finite-differences of the gradient vector are taken
along certain linear combinations of the co-ordinate directions. This enables
the approximate Hessian to be found in significantly fewer than n + 1 gradient
evaluations (see Curtis et al., 1971; Gill and Murray, 1973; Powell and Toint,
1979)

If there are a large number of variables and the Hessian matrix is not sparse
or structured, conjugate-gradient methods, instead of being the lowest ranked
algorithms, become the only algorithms that can be applied with any chance
of success. Problems whose Hessian matrices at the solution contain sets of
clustered eigenvalues may be minimized in significantly fewer than n iterations.
Problems without this property may require anything from between n and 5n
iterations, with approximately 2n iterations or fewer being a common figure for
moderately difficult problems. Clearly, for a very large unconstrained problem
without structure, of the order of several thousand variables, there is currently
no algorithm that can be applied and be expected to work effciently.

3.2 Methods for sparse linear constraint.
In this section we shall discuss methods for large-scale linearly constrained min-
imization that exploit the sparsity in A or G.

When A is large and sparse it is not practical to update the orthogonal
factorization of the matrix of active constraints as constraints enter and leave
the basis. Instead, the problem is formulated in a slightly different way so that

* the extensive results on updating the sparse factorizations occurring in linear
programming may be utilized.

Consider the problem

minimize F(z)

subject to Az = 1 1i zi ui.

The matrix A is now m X n with m < n. If the original problem does not
conform to this standard form it can be made to do so by the introduction of
slack variables. In this event the resulting matrix A will have a special struc-

j ture, involving columns that are columns of the identity matrix. This does not
seriously increase the storage requirements since the matrix A will be stored in
packed form.

A typical set of t active constraints must comprise the m rows of Ax = b
and t - ms simple bounds. It is not possible in the large sparse case to compute
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the columns of Z explicitly. If we assume without loss of generality that the last
n - t variables are on their bounds, the active constraint matrix A for a typical
iteration can be partitioned so that

where B is an m X m basise matrix. This partition effectively divides the vari-
ables into three classes - dependent, independent and temporarily fixed. The
following matrix Z is orthogonal to the rows of A:

(-B-ISJ
Z=

0

In this case the columns of Z are not computed explicitly, since the quantities
actually needed are products of the form Zp and ZTg, and these can be obtained

by solving a system of equations involving B or BT.
If the matrix ZTGZ is very large at any trial solution, a conjugate-gradient

method must be used to compute pz, since ZTGZ will, in general, be a dense
matrix - regardless of any possible sparsity of G and Z. Given the current
inefficiency of conjugate-gradient methods on problems without clustered eigen-
values, this seriously limits our ability to solve general large-scale optimization
problems.

Fortunately, there is an important class of problems for which it is known a
priori that the projected Hessian matrix can never be greater than a manageable
size. These problems have a small number of variables that appear nonlinearly
in the objective function, i.e. F(z) is of the form

F(z) = f(l) + crt,

where I = (zI, z2,..., Zq) r , 2 = (Zq+, .) and f() denotes any differ-
entiable nonlinear function. In this case the dimension of the projected Hessian
matrix at the solution is bounded by q. If q is small enough, a quasi-Newton
approximation to GZ can be updated in the usual way. For the complete details
of this algorithm see Murtagh and Saunders (1978).

Any linearly constrained algorithm based on an active set strategy requires
an initial feasible point zo. This point is best found by linear programming
(the typical *Phase 1' of the simplex method). Thus when minimizing linear
functions, an algorithm for large-scale linearly constrained optimization should
be competitive with large-scale linear programming codes.
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* ,3.3 Methods for sparse nonlinear constraints.
The results of the previous section lead us to write large-scale nonlinearly con-
strained problems in the form

minimize f(l) + crz
subject to c(!) + A1z = bl

A21+ A32 =b2
L5 zi _ ui.

The linearly constrained sub-problem analogous to (5) for this problem is given
by

minimize f (i) + cTt - iT((.) - c(ik) - pi)1- 1,%))

subject to c(k) + AR()(R - !A) + Alf = bl
A21 + A3,2= b2

where A denotes the matrix of gradients of c(l). The essential feature of this
problem is that the dimension of the projected Hessian matrix of the Lagrangian
function is bounded by q. This implies that each linearly constrained sub-
problem can be solved using the techniques mentioned in the last section.

Murtagh and Saunders (1980) have described a technique based on solving
a similar set of linearly constrained problems. They add a penalty term of the
form

to the Lagrangian function so that the sub-problem is more likely to have a
bounded solution.

As in the linear constraint case, we must rely on conjugate-gradient methods
to solve the sub-problem if the projected Hessian matrix cannot be stored in the
machine.

4. Numerical software

As the theoretical basis of algorithms becomes more complex and the scope
of optimization widens, it becomes more difficult for those actively engaged in
practical problem solving to write their own software. Software libraries and
software distribution centers partially solve this problem by making a variety of
techniques immediately available to the non-specialist.
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Those interested in obtaining software should be aware of the different
ways in which mathematical software is disseminated. Often a new optimiza-
tion method is published in a research journal and the method is accompanied
by a short program implementing the new techniques discussed in the paper.
Alternatively, a program will be obtainable from the author on application.
Usually this program is written simply to test out the new theoretical develop-
ments and will only work on a few selected examples. In general, little attention
is given to the standard of the coding or the documentation. A much better way
of obtaining mathematical software is from a software library. This term does
not mean simply a collection of programs from varied sources, written in isola-
tion, that are grouped together in one place with some uniform documentation.
Rather, a program library is a set of routines that are conceived and written
within a unified framework, to be available to a general community of users.

At this time there are only three organizations that distribute library quality
software for optimization:
The Numerical Algorithms Group (NAG) Library, Banbury Road, Oxford, Eng-
land.

The NPL Numerical Optimization Software Library, The Division of Numerical
Analysis and Computer Science, National Physical Laboratory, Teddington,
Middlesex, England.

The MINPACK project, Applied Mathematics Division, Argonne National Lab-
oratory, fllinois, USA.

Before acquiring a piece of software from a source other than a genuine
software library, a prospective user should obtain answers to the following ques-
tions:

(i) How quickly are errors in the code corrected? If the routine is the result of
some piece of research, the author may no longer be employed by the distributing
organization or may no longer be concerned with its maintenance.

(ii) Is the routine written in a high-level language that is available at the
prospective users computer installation? Even the most commonly used lan-
guages have dialects which are only available at certain installations.

(iii) What changes will need to be made to the routine in order to run the
software at the installation? The most easily transported routines will be written
in a portable high-level language such as ANSI-Fortran. It is inevitable that
some changes will need to be made since certain constants, such as the relative
machine precision, must be tailored to the host machine (for this reason, users
should be wary of routines that require no alteration!).

(iv) Is there adequate documentation? We have shown that there are many
different problem categories in optimization. One feature of the documentation
should be an adequate description of the problem category for which it is in-
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- . tended. Also the documentation should include the results of the application of
the routine to a simple, but non-trivial, example problem.

For other sources of optimization software see Gill and Murray (1974b, pp
242-243) and Nazareth (1978).

There are far fewer codes available for large-scale nonlinear optimization
than codes for small problems. Several factors contribute to this situation.
Historically, computational research on large-scale optimization has occurred in
the commercial field, with numerical work on nonlinear problems being more the
province of "academic' research. This has occurred partly because the academic
community tends to measure the quality of research by the quantity of theoreti-
cal papers that are published in scientific journals. This has tended to discourage
the considerable investment of time needed to complete a large-scale optimiza-
tion code. (The emphasis on short theoretical results also goes some way to
explain the large number of published papers on unconstrained optimization and
nonlinear least-squares problems.)

As a result of this imbalance, methods for large-scale nonlinear optimization
have tended to be developed as *add on' features of linear programming codes

-- when a better approach may be to consider linear programming as a special case
of nonlinear optimization.

The shortage of codes for large-scale nonlinear optimization is further ag-
gravated by difficulties in disseminating these codes to the user community.
Methods for large problems must include sophisticated input and output routines
in order to handle the large quantities of data associated with the linear con-
straints. This requirement limits both the degree of portability that can be
achieved and the size of the host machine.

In spite of the difficulties, some portable (or near portable) codes have been
developed for large-scale constrained optimization. For linear programs, MINOS
(Murtagh and Saunders, 1978) and XMP (Marsten, 1978) are appropriate. The
system MINOS is also designed to handle a nonlinear objective function. It nor-
mally uses a quasi-Newton approximation to the projected Hessian ZTGZ, in
the form RTR, where R is upper triangular. For problems where R would be
extremely large, the software described by Marsten and Shanno (19T9) may be
preferable. However, at this time we cannot expect any general-purpose code to
be efficient on problems in this class.

For problems with nonlinear constraints, the algorithm discussed in Section
3.3 has been implemented in the nonlinear programming system MINOS/AUG-
MENTED (Murtagh and Saunders, 1980a, b). The matrix of constraint gradients
may be sparse, and there may be a large set of purely linear constraints. Both
objective and constraint gradients must be computable. (This is usually no
restriction with electrical power problems.)
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5. Current research
It is a feature of optimal electrical power flow problems that the number of
constraints active at the solution is unlikely to be large. This is because many
constraints are present to prevent solutions that have no physical significance. A
model would be considered to produce a *bad design" if a significant number of
these constraints were satisfied at the solution. This feature presents a serious
impediment to the routine solution of power flow problems by the methods dis-
cussed in Sections 3.2 and 3.3 since it is unlikely that the (n - t) X (ns - t) set
of equations

ZTGZPZ = - gt(6)

can be solved in core. However, if the Hessian matrix and constraint gradients
are sparse, matrix-vector products of the form Z7GZv can be computed rela-
tively cheaply by forming, in turn, vi = Zv, v2 == Cvi and V3 = ZTV2. This
property can be utilized fully if pZ is found using the linear conjugate-gradient
method (see Hestenes and Stiefel, 1952). The linear conjugate-gradient algorithm
is usually derived as a direct method, in the sense that, theoretically, the exact
solution is round after ns - t iterations. However, in practice the algorithm be-
haves more like an iterative method since it has the potential of converging in
fewer than, or more than, ns - t iterations.

Recently, Dembo (1979) has suggested a "truncated Newton method", in
which the linear conjugate-gradient method is terminated even though a solution
to (6) may not have been determined. The last iterate of the linear conjugate-
gradient algorithm is then used as the direction of search. If a single linear itera-
tion is used, it can be shown that pZ will be the steepest-descent direction in the
subspace spanned by Z. If a full n - t iterations are used, pz will be the Newton
direction defined by the solutio of (6). Thus the truncated Newton algorithm
computes a vector that interpolates between the steepest-descent direction and
Newton direction.

The search direction defined by (6) is satisfactory only if ZTGZ is positive
definite. An indefinite matrix ZTGZ allows the possibility that pZ is not a
descent direction and this may result in convergence to a non-optimal point.

An important feature of the class of modified Newton algorithms described
in Section 2 is the ability to detect that ZTGZ is not sufficiently positive definite
and to compute a satisfactory descent direction regardless. A straightforward ap-
plication of a linear conjugate-gradient algorithm would not have this property.
Moreover, the linear conjugate-gradient algorithm is numerically unstable when
applied to an indefinite system.

Another unsatisfactory feature of the truncated Newton method is the use
of the direction of steepest descent. It is well known that the method of steepest
descent is very inefficient. Consequently, unless a large number of iterations
of the linear conjugate-gradent method are used, the resulting search direction
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may have more in common with the steepest-descent direction than the Newton
direction.

Recent research has been concerned with deriving truncated Newton methods
that do not require F to have a uniformly positive-definite projected Hessian. In

t addition, they generate a set of linear conjugate directions that are conjugate

to a vector other than the steepest-descent direction. This latter feature gives
a truncated Newton method in which pz interpolates the Newton direction and

-I the direction obtained from a nonlinear conjugate-gradient algorithm.
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