
AOAO87 040 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/B 9/5
ARTWORK ANALYSIS TOOLS FOR VLSI CIRCUITS. (U)

JUN 80 C M BAKER N0001 -75-C-0661
UNCLASSIFIED MIT/LCS/TR-239 NL

0EEEEEEEEEEE
mhmmmmhhhhhumElllE//EEEl/EE,//EI///II/EI/E

/mh/hE/IEI/E*EEEEEEEEE/II/

L.11 IJQ .02.
3112 111112.2. *36

I.4. 0 J11112.0

11111 25 1-4__ 111111.6

MitROCOPY RESOLUTk4 TEST CHART
NATITONAL RURL Al OF I ANDAP(UI I V'T A

W,

LABORATORY FOR N 1 A A C I i I I 'T
Tf: Of-IWI 1*1'(7 -

COMPUTER SCIENCF iNol (XY

"01-FACS/TR-239

ARTWORK ANALYSIS TOOLS
FOR VLSI CIRCUITS

Clark Marshall Baker

1 A I I

I I w I it I, I i'l !I\ I I(()t! I o ,I \ ,I\ j K ((,I!, I k I), i(I

11)(r)I H i

SECURITY CLASSIFICATION OF THIS PAGE aim..he Dat BatR J ___________________

REPORT DOCUMENTATION PAGE EOKCMLTN W

-1 MFT/C 239& 12. GOVT ACCESSION MOS. RECIPIENT'lS CATALOG NUMBER

4. TITLE (and Subtitta) S. TYPE or REPORT & PERIOD COVERED

A-~wokAn.al-ysis ,Thols for visI ir c M.S. & E.E. Theses-may 1080
S. PERFORMING ORG. REPORT NUMBER

MI/LCS/TR-23 9

7. AUTHO(*) 1 CONTRACT OR1 GRANT NUMSIER(8)

9. PEFORMM405,00010. PROGRAM ELEMENT. PROJECT. TASK

M IT/Laboratory for Qmpiter Science fj&" UINMBR

545 Technology Square
Caiibridge, MA 02139 _____________

IS. CONTROLLING OFFICE NAME AND ADDRESS

ARPAI/Departumnt of Defense JT o
1400 Wilson Boulevard 6 2t. NUMBEfR OF PAGES

Arlinigton, VA 22209 7______________

11. MONITORING AGENCY NAMIE A ADDRESS(if diffrnt fhom Cmiimulliii Office) IS. SECURITY CLASS. (Of this report)

* CWA~eparbient of the Navy tkclassified
InfrmaionSystemu Program_____________

Arligtci, A 2217 S..DECL ASSI FICATION/ DOWNGRADING
Arligtin, V 2217 r---SCHEDULE

1S. DISTRIBUTION STATEMENT (of Ohio Report) ,

This documient has been approved for7;p iib keagd and-sadel 0#/
its distribution is unlimtited

17. DISTRIBUTION STATEMENT (of the abootact entered In Block 20, if different heom R0100-

1S. SUPPLEMENTARY NOTES

13. KEY WORDS (Continue on reverse side it necosety and idmity by block nber)

artwo~rk -analysis
circuit extraction r(1LLLAA
design rule checking

20. ASCT (Continue an reverse aide of necoostry ant,Iden~tify by block mbetw)

Current usthods of desiM(1SI)chips c~ not insure that the
chips will perform correctly wm mn~uufactured. Becaue the turnaround

* tine on chip fabr icto varies frcm a few weeks to a few um~ths, a
sde other than * ,yit and ame if it work s 1 rmd . Checking of
chips by hand sizrulation and visual inspection of dueckplots will no~t
catch all of the errors. in addition, the nmbrker of transistors per A
chip is li~wly to increase fzuu tn tkKiawd to ayer a million in h -

D OR N 1473 EDITION OF I Nov III is OBSOLETE 4
SE9CURITY8A AION OF THIS PAGE (W. en . Entred

A: e 7jICA7 17 -03-4

sacurmyY CLA#OUSCAYIMOF 0'lIG PA-08(ft- e 04 Wwd

20.

,.xt few years. This increase in cxmplexity precludes any manual verifi-
7cation meuthods; awie better methoxd is needed.>

4Aseries of Program that use the actual mask descriptions for put
are descried. 'lese programs perform various levels of checks on the
masks, yielding files suitable for simulation. Same of the checks are the
usual 'Odesign ruleo checks of looking for minimua line widths and adequate
spacing betwen wires. However, there are many more constraints in VLSI
circuits than are expressed by the usual design rules. The programs check
these constraints using the mask descriptions as inut. All of the errors
mentioned so far can be classified as syntactic errors; in addition, certain
errors are detected. The detection of semantic errors requires various
levels of sinalation.-The- 4nput-to the simulators is derived frcm the art-

work.i~nFo

:.- Is zr

Code

DI t pecal

Sculnfv CLA a uPICAT OP T0416 PA*6WM Dine Bftee

AMA& -'M

Artwork Analysis Tools for VLSI Circuits

by

Clark Marshall Baker

Copyright (c) KMOcLlSCzts Institute ofC lchnokogy 1980

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge Massachusetts 02139

3

Artwork Analysis Tools for VLSI Circuits

by

Clark Marshall Baker

Submitted to the Department of Electrical Engineering and Computer Science

on May 18, 1980 in partial fulfillment of the requirements for

the Degrees of Master of Sciencc and Electrical Engineer

Abstract

Current methods of designing VI-SI chips do not insure that the chips will perform correctly
when manufactured. Because the turnaround time on chip fabrication varies from a few weeks to a
few months, a scheme other than "try it and see if it works" is needed. Checking of chips by hand
simulation and visual inspection of checkplots will not catch all of the errors. In addition, the
number of transistors per chip is likely to increase from ten thousand to over a million in the next
few years. 'Ibis increase in complexity precludes any manual verification methods; some better
method is needed.

A series of programs that use the actual mask descriptions for input are described. ihese
programs perform various levels of checks on the masks, yielding files suitable for simulation. Some
of the checks are the usual "design rule" checks of looking for minimum line widths and adequate

- [spacing between wires. However, there are many more constraints in VISI circuits than are
expressed by the usual design rules. The programs check these constraints using the mask
descriptions as input. All of the errors mentioned so far can be classified as syntactic errors; in
addition, certain semantic errors are detected. 1"he detection of semantic errors requires various
levels of simulation. 'The input to the simulators is derived from the artwork.

I

Name and "litle of'l'hesis Supervisor:

Stephen A. Ward,
Associate Professor of E'lectrical Engineering and Computer Science

Key Words and Phrases:

VI.SI, artwork analysis, circuit extraction, design rule checking

PiiLC"1.~,,Q J1 AA b~i4 IFjS

*--- [

-4-

ACKNOWLEDGMENTS

The original inspiration for this thesis came from the Schemc79 chip designed by Jack
Holloway, Guy Steele, Gerry Sussman, and Alan Bell in the summer of 1979. Except for
examination of the checkplot for errors and a small amount of hand simulation, there was no way of
making sure that it was going to work. For the fall term offering of the VI SI I)esign course, Randy
Bryant had created a switch-levcl simulator for students to test out their designs before
implementing them. It occurred to me that it might be possible to extract the logic circuit of the
Scheme chip from the actLal mask description. Ibis could then be simulated, with the hope of
discovering any remaining bugs. While I went to work on the node extractor, Chris Terman
implemented a simulator that could handle such a large circuit, In the end, bugs were found in the
Scheme chip and fixed, and after the chip was manufactured, it was found to work.

Many gotd ideas were generated by Chris "'erman, Jon Sieber, and Dave Goddeau. In
addition, sone of the speed improvements came from discussions with Steve Ward and Bert
Haistead.

Ibis thesis would not be as readable as it is without the hard work of I)ebbie Cohn who
turned my draft into granmatically correct, smoothly flowing E'nglish. Miriam Alexander and
Ronni Rosenberg also provided helpful suggestions about grammer and style.

ihe comments and corrections made by Chris 'l'erman, Carl Hewitt, Steve Ward, and Iarry
Seiler have improved the content and presentation of this thesis.

No acknowledgments would be complete without a mention of the great working
environment provided by the Real Time Systems group of the Laboratory for Computer Science.
Both in terms of people and computers, the RTS group provides a place where one can work on
interesting problems, from small "hacks" to large programs, with a minimum amount of trouble.

Many designers have provided me with circuit descriptions to be debugged. Without them,
I would not have been able to test out my ideas and generate a useful series of programs. It is hard to
know if an idea is any good without actually trying it out.

This research was supported by the Advanced Research Projects Agency of the I)cpartment
of Defense and was monitored by the Office of Naval Research under contract number
N00014-75-C-0661.

.+ .+ 4, '+ + --. . .

CONTENTS

1. Introduction .. 7

2. Why VLSIlCircuits Might Not Work ... 10

2.1 Design rules... 10
2.2 Pullup ratios.. 13
2.3 Two threshold drops... 15
2.4 Races*****'*********'****"**'**...***.......***is
2.5 1-1 igh level design errors ... 16
2.6 Editing errors ... 16

3. What Artwork Anaylsis Can Do For Us ... 18

3.1 Design rule chcker..is
3.2 Node extractor.. 19
3.3 Static evaluator... 20
3.4 Dynamic evaluator... 21

4. Design Rule Checkers .. 22

4.1 Raster scan method... 23
4.2 Rectangle method .. 33

5. Node Extractor ... 35

5.1 Basic algorithm.. 35
5.2 Ponds and islands.. 38
5.3 Oh where. oh where, can my transistor be ... 41
5.4 Further processing ... 43

5. Te ututformat ... 47

6. Static Evaluator ..48

6.1 Reading in the network.. 49
6.2 Depletion mode transistor checks.. 50
6.3 "Stuck at" checks 5
6.4 Thrcshold checks... 52
6.5 Ratio checks.. 53

7. Simulators ... 55

7.1 lDiffecnt types Of Simulators... 55
7.2 A posibic design of a switch-lcvel simulator 56
7.3 Possiblc speed improvements .. 61
7.4 User interface .. 63

8. How Does All Of This Relate To The Real World?9 65

8.1 Design rule checking.. 66
8.2 Node extraction.. 67
8.3 Simulation.. 68
8.4 What happens as chips get even larger .. 68

9. Conclusions And Directions For Future Research............................ 70

9.1 The Scheme79 chip.. 70
9.2 D~esign errors that are not checked... 71
9.3 Better design toots ... 72

-7.

1. Introduction

Since this thesis deals with Very Large Scale Inhegrated(VISI) circuits, a description of the

basics is in order. A more detailed discussion can be found in Mead and Conway.[I1 The circuits to

be analyzed are composed of interconnected Iransistors.' Fach transistor can be viewed as a switch

with three components: gate, source, and drain. When the signal on the gate is high, the source and

drain are connected together. When the signal on the gate is low, there is no connection between the

source and the drain. For the purposes of this thesis, the terms source and drain arc intcrchangeable.

gale

Enhancement Mode nMOS Field Effect Transistor

The actual circuit is specified by a series of masks (or layers). 1he six masks we will be

concerned with are metal, polysilicon, diffusion, contact cut, ion implant, and overglass. The first

three are conducton and are used for general wiring. However, whenever a polysilicon wire crosses a

diffusion wire, a transistor is formed.

B D.

AE#

schematic AIIwok

'Transistor with gate A, source R, and drain C

V:! i In-chunnd, mcll-oxidc-sniconductor (MOS), radld-cfccl trnsitor (FIT)

. !I

" -'"~ "" . 4 " -
'

- -

The polysilicon wire is the gate and the diffusion on either side forms the source and drain. Metal

can run over either polysilicon or diffusion without any connection being made. However, it is

sometimes useful to connect metal to polysilicon, or metal to diffusion: the contact cut is used in a

specific way to accomplish this. In addition, it is possible to connect one end of a polysilicon wire to

the end of a diffusion wire through the use of a butting contact. "1he ion implant layer is used to

alter the characteristics of transistors. An implanted transistor, also called a depletion inode transistor,

acts like a resistor. Finally, the overglass layer covers the whole chip with a protective oxide, except

where connections must be made to the input and output pads.

One language for specifying integrated circuit masks is the Callech Inwtnnediate Fon (CIF).

While this language can be read and written by humans, it is expected that in most cases it will be

processed solely by computers. CIF supports commands that specify circles, rectangles, and

polygons in the various layers. In addition, there is a symbol definition facility in which a collection

of geometrical objects to be used repeatedly is placed in a named symbol that can be instantiated

many times. Fach instance can be reflected, rotated and translated.

The anrvrk for a chip can be created in a variety of ways. Some designers use a

graphics-based system. Such a system lets a designer manipulate shapes, define symbols, and call

symbols, showing what the chip looks like at each step on a graphics display. Another approach to

chip design involves writing a program that creates the artwork for the chip. This program is often

written in a language embedded in a standard programming language, for example LISP. In

addition to all the usual language commands, there arc commands to manipulate geometrical objects,

connect certain points together with wires of a certain type, and so on. A third approach is to design

the chip on paper and digitize it into the computer. This method has been and is still very much

used in industry. It is hoped that the computer can assist in the design of VISI chips, but so far

there is no system that comes close to people's expectations or dreams.

The overall idea the reader should have about VISI design is as follows. Currently, chips

arc designed by hand, with computer assistance in keeping track of some of the detail. 'lhe designer

specifics his design in terms of geometrical objects and a certain number of masks. At a higher level

of abstraction, the designcr is working with transistors and their interconnections. At an even higher

level, he may be thinking about logic gatcs, shift registers, memory cells, programmed logic arrays,

and so on. Ihowever, he still specifics everything in tciTns of masks. 'lie design is converted to a

standard format such as CIF and sent out to be manufactured. At some later point, a chip is

returned to be tested. It has some small number of inputs and outputs through which the designer

must interface with the chip. It is not possible for him to look at arbitrary signals within his design,

unless he has provided for this beforehand. Typical chips being manufactured today have 10,000 to

100,000 transistors. Future chips will have 10 to 100 times the current number of transistors.

There are many chances for errors to occur in the design of such a large chip. In addition,

there are many different types of errors that can occur, any one of which may cause the whole chip to

fail, possibly withouti the designer having any idea why. Some tools are needed that will help

designers debug their chips before they are manufactured, so that the chips have a better chance of

working when they are actually implemented. After a brief discussion of some types of errors that

can occur in the design of VLSI circuits, the rest of this thesis will describe some tools that have been

created and used at MIT to aid in chip design.

f.

V! 4-A

- 10-

2. Why VLSI Circuits Might Not Work

"llere are many reasons why a particular design may not work. These range from very low

level problems, such as two signals shorted together because they were too close to each other, to

high level "bugs" in algorithms: In another dimension, VILSI circuits may rail due to production

problems or bonding errors. I Iowever. the latter class of errors is beyond our concern here. We will

concern ourselves with errors that can be discovered from the mask descriptions that will be sent for

fabrication. Any errors that are introticed aftcr that are someone else's responsibility!

The following list of design errors does not include all possible errors, nor all possible error

categories. Mistakes are discoercd by studying the design process, observing errors on actual chips,

and thinking about various consistency checks that might be violated. Some of these errors are

specific to a particular process or computer-aided-design system, while others are universal errors

that can occur in all designs.

2.1 Design rules

There are many low level rules that define various relationships within and between masks.

These rules differ from one process to another. Mead and Conway have defined a set of design rules

that are scalable (within limits) and arc based on a unit of length called lambda.1 All their design

rules are expressed in tenns of lambda and are not tied to a particular process. However, the design

rules are very conservatave, and there can be layouts that violate the design rules but still work.

oe rollowing is a description of the Mead and Conway design rules: the first set deal with

width and spacing withiin a specific layer. The width of a diffusion wire cannot be less than two

4 1lIn 1980. lambda was 200-250 centimicromn

lambda and the distance between two diffusion wires cannot be less than three lambda. The

minimum width and spacing for polysilicon and contact cuts is two lambda while the minimum

width and spacing for metal is three lambda.

Polysilicon Diffusion Metal
orContact cuts

Width and Spacing Design Rules

Next, there are some rules for making Iransislors. Remember that a transistor is formed by

the crossing of a diffusion wire (minimum width two lambda) with a polysilicon wire (min;.num

width two lambda). "hlie minimum distance between a polysilicon wire and a diffusion wire is one

lambda. When forming a transistor, both the polysilicon wire and the diffusion wire must overhang

the gate area by two lambda.

-4I2
D 2

T F

:lit
t

Transistor Design Rules

When making an ion implanted transistor, the ion implant must overhang the gate area by one and a

half lambda in all directions. In addition, the ion implant must come no closer than one and a half

lambda to a non-implanted transistor.

IL

- 12-

1.5

Ion implantation D

T4._ T

1.5

Ion Implantation Design Rules

Thc final set of design rules is for conlact cuts. Ilhere must be a minimum of one lambda

overhang of polysilicon, diffusion, or metal around a contact cut. Also, a polysilicon wire must be

two lambda away from any contact cut in diffusion. Finally, thcre is a special method of connecting

polysilicon to diff,,sion callcd a butling confact. The end of the polysilicon wire overlaps the

diffusion wire by one lambda. A rectangle of metal ('our by six) is placed over the whole

constriction, and a two lambda by four lambda contact cut completes the butting contact.

1 3 1 3 501 2 4 011 4 6

I- -- I I- --
34

EiC]I E<]L

Normal contact Rulting coniact

Contact Cut Design Rules

*...
!4

-13-

2.2 Pullup ratios

One of the basic building blocks of integrated circuit design is the inverter. More

complicated versions of the inverter include nand and nor gates. 11ibc basic inverter is composed of

two transistors: a depletion mode pullup transistor and an enhlancemeti mode pulldown transistor. The

gate area of each of these transistors has a certain channel length and width. A design rule specifies

that tinder certain conditions (see below) the ratio of the length to the width be four. While small

deviations from four are allowed, numbers as far off as two or eight represent errors.

Output

Input W

Basic Inverter (Ratio = 4)

This pullup/pulldown ratio rule can be extended to nand gates. In this case, the effective

channel length is the sum of the two individual pulldown channel lengths. In reality, the

length/width ratio is the same as resistance, and a nand gate contains two resistors in scries.

However, in computing the correct ratio for a nor gate, it is as if only one pulldown is there; it is not

the same as two resistors in parallel.

SO'

-14-

16x2 Ux2

A andB6Ar

A - 2&2 A - 2,2 B-

B- 2&2 Nor pte

Nand sate

Simple Gates

On a simple inverter, thc pullup/piilldown ratio should be eight if the puildown is driven

through a pass ira,,sistor. Ilhere is a voltage drop in the signal going through thc pass transistor, and

si) the signal will not turn on thc puildown transistor as much as whcn it was directly driven. 'Ibis is

compensated for by making the puillip weaker. 'Ibis can also be generalizecd to nand and nor gates

that have inputs that arc driven through pass transistors.

16&2
Enable

Input l] 2K2

Inverter Driven through a PassnTansistor (Ratio =8)

- IS.

2.3 Two threshold drops

l'he following equation relates the source voltage V. to the gate voltage V5 and the drain

voltage Vd: VS = max(Onin(Vd,Vs-Vt)). If we put Vdd through a pass transistor with a gate of Vdd,

we will get Vdd-Vth out However, if we put Vdd-Vih into a pass transistor with a gate of Vdd, we get

V dd-Vih out. not Vdd- 2VIh, Consider what happens when there is a pass transistor driving another

pass transistor. 'The ouiput of the first pass transistor is Vdd-Vth. The output of the second transistor

is Vdd- 2V ,~ 'Ibhis voltage is loo small to be safely used as the input to anything, and represents a

design error.

Vdd Vdd Vdd Vdd

Vdd-Vth Vdd-Vth

Vdd-2Vth

FNamples of T7hreshold Drops

2.4 Races

A race condilion occurs when the output of a particular piece orlogic depends on one of two

signals reaching a certain place before the other. A typical example is the output of a carry chain

being gated to some further piece of logic by a clock. Ilere is a race between the carry output and

the clock transition. The carry output should get there before the clock transition occurs, but the

speed of both signals might depend on the number of gate delays involved. Usually, races are

avoided through the use of clocks with periods long enough to assure that all signals have been

propagated as far as posible.

1,.-4_. . . ,/ - : -:

.16-

2.5 High level design errors

Thc large class of errors that do not relate to the layout. but represent the wrong algorithm

implemented correctly is referred to as high level design error An example of this is a PIA

automatically programmed from microcode when there is an error in the microcode. It is felt that

these errors should be caught by high level simulation. but sometimes they sneak through and end

up in the actual layout.

2.6 Editing errors

Fach chip editor seems to have its own peculiar types of errors that it introduces into the

design. lhe following are some common errors that have been discovered on chips generated at

Mil and Xerox PARC.

A graphics editor that makes it easy to lay a rectangle in the currently selected layer, and

which allows displays at arbitrary scales, can place an unwanted rectangle on the chip. If editing is

done at a scale which is large in relation to the size of the rectangle, this rectangle may go unnoticed.

With a graphics editor implemented on a display that does not have a good method for

displaying the different layers so that they can be distinguished, it is possible for a rectangle to be

drawn in the wrong layer.

Once all the subsections of a chip have been created, they must be wired together. When

this interconnect wiring is done using a graphics editor, one is forced either to use a small scale,

thereby not getting an overall view, or to use a large scale, causing the current wire to shfinlk

drastically. ,ither way'can lead to errors. Another typical mistake is to wire a trunk of bits frwn one

place to another and get the bits reversed.

In layouts generated by computer programs, there have been various roundoff errors that

.IAN

*17-

havc generated gaps in wire runs. Once these programs are debugged. the problem goes away, but it

still may happen the first rime. Most of thesw errors show up as design rule violations.

- 18

3. What Artwork Anaylsis Can Do For Us

The artwork is a very low level representation of the design. It contains no indication of

how the particular design was created, nor the function of the chip. However, it does contain the

information necessary to manufacture the chip. In theory, there is enough information contained in

the artwork to extract the electrical circuit along with its associated parameters .sch as resistances and

capacitances. This information will help us check for all the errors listed in the previous chapter.

It should be noted that the low level of the information can cause problems. It is hard to

relate errors discovered in the artwork to the higher level entity that generated the particular piece of

artwork. An error in a replicated section of artwork will be reported many times by the analysis

program. lhe computation time necessary to analyze a whole chip may be much larger than that

necessary to analyze each of its components.

In its favor, an analysis of the artwork is an analysis of what is to be manufactured. There

are design errors that can show up here that will not exist at higher levels of the design process. If

such a whole chip check can be performed in an acceptable amount of time, it will be worthwhile.

The tools listed below perform artwork analysis. Each is described along with the types of

errors it can discover.

3.1 Design rule checker

aA design rule checker checks most of the geometrical constraints that are imposed by the

particular process. ihe ways in which this might be accomplished will be discussed in the next

chapter. Often, the design rule checker is implemented as a geonetr) engine driven by commands

that implement the necessary constraints, It will be seen that the checking of design rules is not as

straightforward as it might first appear.

9Ii-

-19-

There is no formal language for specifying design rules. Whilc English and pictorial

descriptions of design rules intuitivcly make sense, there are many cases that a computer would

consider errors but the creator of the rules would consider correct. Once the rules have been

specified. the checking can be very time-consuming if pcrfonned on the whole chip. Even though it

may be very time-consuming, a check should be done on the whole artwork just before it is sent olff

to be manufactured, if time permits. 'Ibis check may reveal errors that will not show up when design

rule checking is performed on a module at a time.

'here arc sonic design systems that make design rule violations much harder to construct. In

)AI)AIUS (2]. the user can specify constraints between pairs of objects. If one object is moved.

the other object may possibly have to be moved or adjusted so that all of the constraints are still

obeyed. If the user specifies enough constraints, it will be difficult to create designs with design rule

violations.

In the CAIBAGF system 131 the individual cells are specified in a symbolic description

language ("stick diagram"). The CABBAGE system will convert a stick representation to an actual

layout, compacting as it goes. The layouts produced by CABBAGE are free from design rule

violations.

3.2 Node extractor

Other verification programs need higher level information extracted from the artwork by the

nmode extractor. '1ibe first piece of information to be extracted is a list of transistors. lFach transistor

contains the names or three nodes: the gate, the source, and the drain. In addition, there is an

indication of the mode of transistor: enhancement or depletion. While extracting this information,

there are some synlactic checks that can be performed.

.1-

-20-

A contact cut that contains no metal represents an error. It may be argued that this type of

error should be specified in the design rules; nevertheless, the node extractor will catch it too. At

some point, the designer may give symbolic names to some of the nodes. Names must be given to

VDI) and GND. are usually given to all of the input and output pads, and are sometimes given to

the more important internal nodes (e.g. the outputs of a PILA). Given these names, a syntactic check

can be made to be sure that no two nodes with different names are shorted together and that all

nodes with the same name are really connected together. Sometimes, it is possible to have the design

system provide a list of signal names, layers, and coordinates, along with the artwork.

Further information can be extracted from the artwork. The circuit pirmeters, including

node capacitances, resistances, and transistor geometries, would be useful. It should be kept in mind

that the resulting output is likely to be very large. In addition, some of these parameters are difficult

to compute.

3.3 Static evaluator

It might seem that the next logical verification step is simulation of the extracted circuit.

However, simulation is very time-consuming and any errors that can be detected before simulation

can save a lot of time later. Continuing with the compiler analogy of syntactic and semantic errors.

the static evaluator will look for semantic errors

Typical errors detected by this evaluator include transistors with gates that are VDD or

GNI). malformed superbuffer, incorrectly used depletion mode transistors, and transistors which if

turned on would short VDI) to GNI). In addition, a check is made to ensure that every node can

1'*hc node in the extracted circuit which will be connected to Vdd in the actual chip will be referred to as VDD. The node
that will be grounded in the actual chip will be referred to as OND.

-J
- , 2/"' ,

- 21 -

potentially be pulled up and pulled down. A check is also made to detect two threshold drops,

3.4 Dynamic evaluator

At some point, there arc certain errors that can be detected only through simulation. Using

circuits derived from the artwork, there are different levels of simulation possible. For checking the

actual function computed by the chip, a switch-level simulator is needed. For checking the

perfonnance of small sections of the design, a SPICE[4] type circuit simulator would be bCsL Such

a simulator accepts circuit descriptions that include resistors, capacitors. and transistors, and performs

numerical integration to find a solution to the circuit. A third simulator may be necessary for

detection of race conditions and for perfonning gross timing estimates.

There are many simulators in existence.J5,6,7, 8,9) Few of them expect to have input

derived from the actual artwork, and most are based on gates instead of transistors. Often they offer

facilities for defining large objects such as registers, memory, and PLAs. Most of these simulators are

unsuitable, since we need a simulator that can handle the bi-directional nature of pass transistors.

Fortunately, it is not too hard to create a simulator that can use the output of the node extractor.

The design of such a simulator is simplified because of the uniform low level input:

transistors and nodes -- initially there are no gates, no PI.As, and no registers transistors. Also, there

is no hierarchical description of the input. This means that the simulator must simulate each bit of a

memory array, each bit of a shift register, and each term in a PLA. 'Ihis makes it hard to write a

simulator that runs fast. Some of the speed problems can be overcome through the use of clever

algorithms, and some, through the use of fast computers. If switch level simulations of whole chips

arc considered important enough, specialpurpose hardware can be created.

- V . ' ": - ,./

-22-

4. Design Rule Checkers

One of the first verification tools that a chip designer uses is a design rule checker. Having

designed and laid out a chip according to certain geometrical constraints, a designer wants a tool that

will check the work. At first, this might seem like a simple though possibly time-consuming task.

All one must do is feed the rules into the computer and ask it to look for violations. We shall soon

see that it is not that easy.

The reasoning behind the design rules should be kept in mind when thinking about

programs that check for violations. One underlying premise is that the various layers, when

manufactured, may be misaligned by as much as a lambda. This explains the one lambda overlap

required around contact cuts and the one lambda spacing required between polysilicon and

diffusion. Diffusion must be spaced greater than polysilicon because the diffusion process is harder

to control, possibly resulting in wider diffusion lines than desired. Metal is patterned last, and runs

on top of all the other layers. Since they have such a rough terrain to follow, metal wires must be

wide and spaced far from other metal wires.

One construction that poses problems for the design rule checkers is the butting contact. It

violates many of the design rules but is still considered legal. A butting contact can be viewed as two

normal contacts (one from polysilicon to metal, and one from metal to diffusion) placed closer

together than is otherwise allowed by the design rules. Ibis is a space saving design "trick" that is

known to work. The design rule checker must make sure that butting contacts obey the butting

contact design rule and that the rest of the artwork obeys the other design rules.

There seem to be two basic approaches to design rule checking. 'he first, which was

researched for this thesis, is called the raster scan method and takes as input a biinap representation

of the artwork. The second approach, referred to as the reclangle method, deals with the artwork as a

9'__

-23-

series of rectangles and performs operations on these rectangles. "Ihe latter method is the most

connonly used one in performing design rule checks. A discussion of the raster scan algorithm for

performing design rules checks comes next, followed by a brief discussion of the way a typical

rectangle method works.

4.1 Raster scan method

The raster scan algorithm is based on the assumption that design rules can be checked /

locally, and that an examination of a small area of the chip is sufficient to check the design in that

small area. A small window is passed over the chip, and if all design rules are obeyed in the small

window, then the ovcrall chip also obeys all the design rules. The problem of checking design rules

overall is therefore reduced to the problem of checking design rules in a small area.

Assume that the artwork can be represented on a lambda grid with each pixel containing a

bit for each layer. '[he small window is four lambda square, the smallest size it can be to check that

metal lines are at least three lambda wide. The window is moved over the bitmap, such that every

pixel appears in every position of the window. This can be accomplished by buffering three scan

lines2 plus four pixels in memory, and reading the bitmap in raster scan order. At each position, the

four-by-foursquare is checked for legality.

IA lerm meaning "picture element", borrowed from computer graphics. We will use this to represent the smallest square unit
of reoalution.
2Really. portions of four scan lines are burfered The %pace used is equivalent to three whole scan lines.

-.. .

-24-

lambda

IX X X X lambda
x x x x "F

Three scan lines buffered -
>

X X X X

Four pixels

Iluffer Three Scan I.ines and Four Pixels

The problem has now been reduced to design rule checking of four-by-four squares. 'Te

reader should pause and consider the problem; ariving at an acceptable solution required a great

deal of effort.

The design rules break down naturally into three types of checks: single-layer width and

spacing checks, transistor checks, and contact cut checks. The width and spacing checks will be

considered first. The sub-problem to be solved is finding an algorithm that, given a three-by-three

box consisting of zeros and ones, can check to dternnine whether any possible larger view containing

that box is legal, i.e., whether the ones meet the constraint of being at least tnu wide. Since the total

number of three-by-three boxes is only 29= 512 (including rotations and reflections), they could be

enumerated by hand. This would not help us solve the four-by-four case, however. The algorithm

finally used will not find all the design rule violations, just those that are critical; i.e. those wires

through which current might actually flow.

For an error to occur, at least a single "I" mqu, t be alone. In some three-by-three box, this

"1" will be in the center. Scanning around this center I", an aliernalion (A) of zeros and ones will

he found. If the perimeter contained "10010101", then there would be three "I" to "0" alternations

and three "0" to "I" alternations, or six alternations total. If A = 0, then the perimeter must be either

I.

-25 -

all zeros or all ones, either of which is acceptable. If A = 2, the box will look like a group of ones

poking in from the outside to the center, which is fine. Four or more alternations will look like a

fuse, where a wire enters from outside the box, goes through the center (which is one wide) and cxits

out another side. 'Tis last case is an error.

0, 0 00 ,000, 00
0 0 10 i 01 110

Leg I cgal I'rror

Center = 0 A=0 A=2 A=4 A=6

Fxamples of the Width of Two Checking Algorithm

With this algorithm, it bitmap that is 512 bits long can be created that indicates which

three-by-three squares are legal and which are not. "l7his will allow width checks on polysilicon and

diffusion. Since a spacing check on polysilicon is the same as a width check on white space, a

spacing check can also be performed on polysilicon.

'The above algorithm uses three-by-three boxes to perform a minimum widih of iwo test.

Using four-by-four boxes, the same method can perform a minimum width of three test, given that

the width of two test has already been passed. At some point after the minimum width of two test

ja. cen passed four ones will appear in the center of a four-by-four box. When such a box is

found, the alternation rules explained previously are used to check whether (lie width of three test

has been passed. A four-by-four box that does not have four ones in the center automatically passes,

because it does not give any additional infonation for the width of three test.

Given the minimum width of two test and minimum width of three test, we can perform the

V K'' + ,

.26-

following design rulc checks:

I) width2(polysilicon) /* poly width

2) width2(not polysilicon) /* poly spacing 0/

j3) width2(diffusion) I* diffusion width1

4) width3(ditTusion)

5) width2(not diffusion) /* diffusion spacing '

9) width3(not mectal)

10) width2(contact cuts) /* conitact cut width *

11) width2(not contact cuts) /* contact cut spacing *

Tlhe next set of checks to be performed arc those involving contact cu~ts. Contact cuts are to

bc used in very constrained ways. Ignoring thie butting contact for a moment, the only contact cuts

thc author has ever seen have bccn either 2x2 or 2x4 in size. Using a four-by-four window, there is

no way to constrain the contact cuts to be either Wx or 2x4. '1ihey can only be constrained to a size

of 2xit where 0>11 The easiest way to enforce this 2xit constraint is to create at bitmap for contact cut

width checking and change step # 10 above to usc this new bitmnap. If the center or the four-by-four

window contains contact cut. then (lhe whole window must contain metal. Also, in that case the

whole window must contain polysilicon and no diffusion, or diffusion and no polysilicon.

'While there is no design rulc for the maimnum size of contact cuts large ones arc considered bad.

-27-

and i' DDDi

M M M M ppp

if the and orC C ?M M M

M) I) I) I) P P P P

l, D IIand P P P

I) DDlI) P P P

I) I) D) I) PPPP

Simple Contact Cut Rule

When butting contacts are considered, there arc a few more cases to handlc. 'lhcre are three

views of a butting contact that have a contact cut in the center. A check is nade to be sure that the

current view is one of the three legal views.

D DIT P D 1 P P
D I)I' DDT P DTP P

I) D 1)T I) D P D T P P

DDD T DDT P DTP P

Butting Contact 1xtenstions to the Rule (T = P and D)

Another factor that must be taken into account is a two-wide diffusion that designers often extend

under the polysilicon in pullup resistors.

DDTP DDTP t)TPP DTPP
D D T P)D T 'r 1) T P P D T r

) D TT D T 1 D T T T D T T

I) IT T D)1P I) T T T I) T Pp

More Butting Contact Ixtensions Io the Rule

Another contact cut design nle indicates that a contact cut to diffusion must be at least two

V

.i, .u...i, -- ...

lambda from a transistor. ibis is checked by looking for both polysilicon and contact cut present in

the window. When that is found, a new spacing check of width two is performed on the new layer .
created from thc union of the polysilicon and contact cut layers. All or these contact cut design rules

are summarircd here:

10') spccial-width2(contact cuts) /* contact cut width (2xna) 0/

12) if (center is contact cut) contact() /' check special contact cut cases ~

13) if (contact cuts and polysilicon) widti(not (contact CLII or polysilicon))
/* check distance from transistor ~

'Ibcl last set or checks is for transistors. Polysilicon must o~crlap, diffusion by two lambda.

In addition, diffusion must overlap polysilicon by two lambda. Catching all of thc cases in one

check is difficult. Consider thc following case. A vertical, two widc diffusion wire is present. To its

left is a horizontal, two wide polysilicon wire whose right end is one lambda away from the diffusion

wire. 'there is no design rule error here because the mninimium spacing between polysilicon and

diffusion is one lambda. If the polysilicon wire is moved one lambda to the right, a spacing error

occurs. If it is moved another larrbda to the right, a transistor error occurs. Another one lambda

move to the right results in another transistor error. Yet another one lambda move to the right

causes the wire to poke out the other side by only one lambda and this is also an error. One final

move one lambda to the right gives a legal transistor. All these cases must be detected.

p!

D

ED PiorEDEf

[D Enr

F.P F"re

II bWor

P, IlT,, ,.

Ixamples otlTransistor Frors

'the one lambda overlap can be detccted by subtracting the diffusion layer from the

polysilicon layer and looking for an object which is one wide. "ric same check can be used for

diffusion extending past polysilicon.

The polysilicon to diffusion spacing can be checked by looking at a two-by-two box. Since

the number of lcgal two-by-two boxes is small, the list of all possible boxes was gcncrated by hand.

This check handles the case where polysilicon and diffusion touch but do not cross.

' ' ! ' " I 'I

Li W i P ii PLJQ Middle or solid arma

jj I jP Insidbend inPor Dwire

1W Ouuiside bend in P or D wire

) i Sirnight section of P or D wire

[] corner of transistor

fl ttin g c o n ta Mt

w [II~1 s in transistors

I.egal Two-by-Two Views of Transistors (W = White)

The other two cases can be checked by looking at a two-by-three box in which the lower lcft

and lower center cells contain both polysilicon and diffusion. The legal combinations of the rest of

the elcments have been determined experimentally and entered by hand. To summarize the

transistor checks:

14) width l(polysilicon-diffusion)

15) width I diflusion-polysilicon)

16) pdspa c(polysilicon,difTusion)

-31 °

17) tcheck(polysilicon.diffusion)

Scaning at one lambda per pixel will not allow the checker to verify that ion implantation

extends one and a half lambda beyond transistors. lowevcr, it will allow the checker to Iok for at

least a one lambda ovcrlap. If the center of a three-by-three square contains T and I, then a check is

made to be sure thai the whole thre-by-thrcc square contains 1'. A design rule states that iQn

implantation must be one and a half lambda away from a non-implanted transistor. Using the same

scheme, if the center of a three-by-three square contains T and no I. then the whole threc-by-three

square should contain no I.

18) checki(polysilicon.diffusion,ion)

All the above checks performed at once will detcmine if a four-by-four window obeys the

design rules. Fvcn if the function that performs these checks is slow, a caching scheme can be used

to W.ped up the program.

'T'hough the raster scan design rule checking algorithm works, there are some problems with

it. No checks with the ion implantation mask are currently made. Since all rectangles are rounded

to the nearest lambda coordinate and since the ion implantation mask is usually on a half lambda

boundary, some careful thought is ncecssary to fit it into this scheme. Rounding everything to

lambda boundaries can cause other problems. Some designers make use of the half lambda grid to

avoid spacing errors. The design rule checker might report spacing errors when these designs are

rounded to a lunbda grid. Minimum width diagonal rectangles will contain width errors when

placed on a lambda grid. Trying to avoid these problems by moving to a half lambda grid does not

work. for two' reasons. First, the design rule check would Lake four times as long. Second, the

window would be seven-by-seven and the current algorithms for looking at four-by-four windows

and detecting errors do not scale up. A new algorithm would be needed.

-32-

Spacing errors are often reported when in fact none exist. This situation can occur when a

wire goes right, up a lambda, and left. At the bend, there is a one lambda squar of white space. It

looks like there are two wires too close together, though they are really both part of the same wire.

P P P r P P P P

P P P
P P P

P P P

Spacing Error that Should Not be Reported

'hese situations are examined more closely by another part of the program, so that only the real

spacing errors are reported. 'Ibis part of the program needs knowledge of the connectivity (Le..

contact cuts). Currently it does a ponds and islands check on the current layer using a six-by-six

window. 'Ibis removes most of the spurious error reports. Perhaps the node finder described in the

next chapter should be run before the design rule checker.

It should be noted that all knowledge of the design rules is embedded in the actual code of

the program and in pre-generated bit tables. The design rules thcmselves are not input directly into

the checker. The rules were interpreted by the author, not by a program, to produce the necessary

checks. When the design rules change, the programs will require modification. It is even possible

that some future design rules cannot be checked with a four-by-four window.

11e advantages of this mcthod arc its speed, its ability to check entire chips, and its ability to

report only legitimate errors. In addition, this checker could possibly be implemented as a VLSI

chip itself, allowing the checking to be very fast.

-k6N

33-

4.2 Rectangle method

Ie rectangle method can best be described as a geometry engine that works on a set of

rectangles and accepts commands like union, expand.' width, and so on. "le design rules are

expressed in tenns of these commands. To avoid spurious error reports, all the intersecting and

abutting rectangles or a single layer must be combined together into a polygon. A width check is

then performed on this polygon, and spacing checks are perftrmcd between polygons. A typical

way to perform spacing checks is to enlarge each polygon by half of the minimum spacing and then

look for intersecting polygons.

Care must be taken in implementing the various operations of the geometry engine. "lhe

simple approach for finding intersecting rectangles is to compare each rectangle to all the others.

'his results in O(n) performance. Speed improvements can be realized by either sorting or

partitioning the input. 'ic expand operation can be tricky to implement, since it may cause a simple

polygon to acquire an interior area that did not exist previously.

Original Expand 1 Expand 2 Expand 3

, The Expanding Polygon Problem

Ilie research performed for this thesis did not include the development of a rectangle-based

IExpand will enlarge a rectangle (or polygon) by a spceir'ed amount in all directioni This is useful in checking minimum
-paing

-34-

design rule checker. Most of thc existing design rule checkers usC die rectangle approach, and the

reader is referred to them for more information: McCaw 1101 Wilcox [1111 Rosenberg and Bcnlbassat

11 2]. Lindsay and Prcas [131, and Sciler [14].

- 35-

5. Node Extractor

'Ibis chapter discusses the program that has come to be known as the node extractor. It

extracts infonnation about all the transistors along with their connectivity from the mask

descriptions. In the process, certain types of errors are detected. First, a basic dscription of how the

node extractor works is presented. lollowing that is a discussion of some (if the extensions that have

been implemented.

5.1 Basic algorithm

The node extractor has two tasks to perform. First, it must follow the connectivity of the

wires. Second, it must find transistors. 'llie original input format consists of a hierarchical set of

symbols. Fach symbol may contain both basic rectangles and calls to other symbols. A clever

program might be able to extract the circuit description from the lowest level symbol (i.e. a symbol

that contains only boxes), and using that, build up the whole circuit, following the symbol-calling

hierarchy and extracting each symbol only once. Since CIF places no restrictions on the

combination of symbols and boxes, a program of this type would have many strange cases to

consider. Ibe chip designer may run wires over a symbol. 'Ibese wires might cause new transistors

to be created or certain nodes to be connected together (e.g. as in P.A programming). This

approach seemed too hard to implement, even though it would potentially nan very fast.

If the CIF symbol hierarchy is not used, it seems worthwhile to fully instantiate the chip,

crea ting a file of reciatgles. 'lie connectivity can be followed by finding all the rectangles of a given

layer that either abut or intersect. A transistor is fonned whenever a polysilicon rectangle intersects a

diffusion rectangle. Though it sounds like this method should work, there are many problems.

Finding intersecting rectangles is a time-consuming task. Finding all the diffusion rectangles that

II
-36 -

intersect and calling them a node is not really correct, since a diffusion node becomes two nodes

whenever the original is crossed by polysilicon. "1hic polysilicon rectangle could have been made up

of many smaller polysilicon rectangles. In general, the whole chip could have been made up of one

lambda square rectangles. 'Ibis means that the rectangle method could not rely on the designer

having specified cverytlhing with "nice" rectangles, but must assume the worst possible case. The

general solution seems to require the mcrging into polygons of all rectanglcs that intersect or abut.

Therefiore. algorithms now deal with the unions and intersections of polygons. 'Ibis method seemed

too complicated, so a simpler, but pos sibly slower method wits Sought.

Since the design niles were expressed in lambda, aiid since the designers with whom I

worked designed in tenns of lambda, a biintap-bascd approach seemed feasible. In such a scheme,

the whole chip would be represented as a big bitmap with each element representing one square

lambda of the chip. The term bitmap is a little misleading since each "bit" really contains one bit for

each layer; pixel-map might be a better term. While it might be impractical to store the whole

bitmap anywhere at one time, there might be algorithms that can process it in raster scan order,

buffering only a few scan lines in memory at any one time. Raster scan order is left to right, top to

bottom.

Before moving on to some algorithms that deal with bitmap images, there are a few words to

be said in their favor. Once the rectangle format has been converted into a bitmap, information

about which rectangle created what bit has been lost. 'Iis is good because it has the effect of

merging intersecting and abutting rectangles together with little effort. All subsequent algorithms

are insulated from geometrical "features" such as arbitrary polygons, round flashes, and so on.

These have to be dealt with only in one place. The disadvantage of moving to a bitmap version of

the chip is that the run time of any algorithms will probably be proportional to the area of the chip.

p. I f + .. +,.++

-37-

The basic algorithm for following connected regions in a bitmap image comes from the

classic ponds and islands problem which is defined as follows. Gi~en a two dimensional array of

zeros and ones, where the 7cros represent water and the ones land, write a program that counts the

number of land masses and prints out tile area of each one. Assume that land must connect

horizontally and vertically but not diagonally.

o 0 0 0 0 0 0 0 0 0 Ans'er forthiscxample:

0 1 1 1 0 0 -I 1 0 0 4 laid mases

0 I 0 0 0 0 0 I I 0 Aras are l. 6. 8. and20

01 0 00 10 00 0

0l0 00lilO 0 0

o o o o o oI o I0
01 1 1 1 1I 1_]._ 0 0
o 0 0 0 0 LLJ.Y ;1

Classic Ponds and Islands Problem

A common solution uses a procedure that places a footprint on the current piece of land and calls

itself recursively for each of the four surrounding squares, returning when the current square is water

or contains a footprint. 'Ie main driving program scans the whole array, calling the footprint

procedure for each piece of land that has not yet been walked on, 'lis solution is simple to program

and easy to understand. For our purposes it is not suitable, since it randomly accesses the bitmap

array. 'Ibis would result in many page faults when following a node like the metal layer that makes

up Vdd. It would also require the whole bitmap to be part of the program's virtual address space

(>224 pixels for large chips).

-' - .

II

- 38-

5.2 Ponds and islands

While I was thinking about the ponds and islands problem, the following algorithm came to

mind. The data can be processed in raser scan order, with one scan line buffered in memory.' At

each point, access is needed to three bits of infonation: tile current bit, the bit to the left, and the

bit above.

0 0 0 0 0 0 0 0 0 0

0 1 1 I 0 0 1 l 0 0

0 1 0 0 0 0 0 1 1 0

oO 1 o 1 o __ t 1 - o Up
One scan line buffered - 0 I 0 Q0 0] 1 0 0 0 0 1[]11 -H Current

0 1 1 1 1 1 0 1 1 0 Lf

0 I 0 0 1 0 1 1 1 0

0 1 1 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0

Buffer One Scan Line; ILxk Up and Left

Since there are three bits of infonnation, there are eight cases to consider. Four of them can be

handled at once. (1-4) If the current bit is water, there is nothing to do. (5) If the current bit is land

and the other bits are water, then the upper left comer of a new piece of land has been found. This

information is remembered in an array as big as the scan line, and the new piece of land is assigned a

unique number. (6) If the current bit is land and the bit to the left is land, and the bit above is

water, then this is tile top of a horizontal strip and the number is the .lne as the number to the left.

(7) When the top is land and the left is water, then this is the left edge of a vertical strip and the

number is the same as the number above. (8) 'lhe interesting situations occur when all three bits are

IReall), portions or two ran lines are buffered. The total space used is equivalent to that of a single san line

,~ ,;."

. - Z ",. T"[• • iJ] J~l l'ilI JJ *4-,'

.39.

land. (8a) If the number above is thc same as the number to thc left, then that must bc the number

been found, and two pieces of land which previously scemed distinct arc found to be part of the

111 2 2

x x
xx x xx x x

x
x x xx x
x xx x x x

An Eixample of Case (8b,), 2 and 4 Must be Nierged Together

Some bookkeeping is needed to update the counts of one land masms number with thosc of thc other

land rnass.

S ') - . . I

-40-

No action required

[P, Agn unique number

Current number = left number

[11 Current number = top number

T Current number = Mcrge(left.top)

Basic Raster-Scan Ponds and Islands Algorithm

'he same algorithm that works with land and water will also work with polysilicon,

diffusion, and metal. For the purposes of following wircs and finding transistors, four derived layers

will be used. Metal (M) and polysilicon (1P) correspond to the mask layers by the same name. In the

node extractor, diffusion (I)) will be the diffusion mask minus the polysilicon mask and transistors

(I) will be the diffusion mask intersected with the polysilicon mask.

The basic algorithm for following connectivity given a raster scan version of the masks can

be thought of as a ponds and islands search on four layers at once. 'Tlie electrical properties of

contact cuts can be added by checking to see it :he current cell contains P, M, and C. If it does,

merge the number of the polysilicon layer with the number of the metal layer. If not, check the

current cell for I), M, and C, and merge the number of the metal layer with the number of the

diffusion layer if this is the case. A simple design nle check can be performed at this time if desired.

If the current cell contains M and C but no P or 1) then it represents an unnecessary use of the

contact cut and should probably be flagged as an error.

0'"

.~ -____._______

-41 -

5.3 Oh where, oh where, can my transistor be?

While all the above has been necessary, it does not find transistors. tlowcvcr, it does give us

a good data base upon which to base a transistor detection algorithm. ibe follo% ing information is

a'ailable in the interior of a transistor: the node number of the T layer, the node number of the P

layer, and the ion implantation bit. However, edges of the transistor layer actually contain the useful

information, namely the node numbers of the diffusions. At the center of the transistor, there is no

diffusion, and hence no diffusion node numbers.

"lhe node extractor finds pieces of transistors and writes them into a file. 'fliese pieces will

be proccssed further by another program. A piece of a transistor consists of the node numbers for T,

P, and I), along with a bit for ion implantation.)uring the ponds and islands processing, the

transistor finder looks for one of four cases: (1) current cell is transistor and left is diffusion, (2)

current cell is diffusion and left is transistor, (3) current cell is transistor and up is diffusion, or (4)

current cell is diffusion and up is transistor. For each match (and there may be more than one), a

transistor record is generated.

D = diffusion minus polysilicon

T = diffusion and polysilicon

Basic Transistor Finding Algorithm

After the node finder has finished, some firther processing is needed on the transistor pieces

to turn them into transistors. Since some of the node numbers may have changed from the time the

transistor piece was written out until the time the node finder finishes running, all the node numbers

in the transistor pieces must be updated to reflect the final node numbers. The pieces are then; ii
4.t

9, .

-42-

sorted by their transistor node numbers, bringing all the pieces of a particular transistor together,

Reading through the sorted file, all the information on one transistor is gathered. making sure that

the polysilicon numbers are the same for each record, and a list ol'diffusion numbers is created. If

there is only one diffusion number, then a degenerate transistor (i.e. a MOS capacitor) has been

found, these are currently ignored. Most of these are caused by the one lambda overlap of

polbsilicon and diffusion found in butting contacts. If there are two diffusion numbers, then a

nonnal transistor has been found, and it is written out to the circuit file. If there are three or more

different diffusion numbers associated with one transistor, then an unusual transistor has been

found. While these transistors are theoretically possible, I have not yet found one on an actual chip.

'hcse unusual transistors can either be flagged as errors or converted to some number of normal

transistos.

1 2

0 0

3 4
3 4

Example of an Unusual Transistor

While this scheme for finding transistors might seem too simple at first, it has worked on

many designs, including some constructed with the intent of confusing it. Even butting contacts and

butting contacts in the middle of depletion mode pullups do not cause confusion.

* 4

'1.

- 43 -

5.4 Further processing

There is an opportunity here for some further checking. Assuming that the designer has symbolic

names for some of his nodes, the program can make sure that two different symbols do not have the

same node number. If there is a provision for the designer to pass smbolic names through the CIF

language and if he gives symbolic names to many signals (including the same name at many different

locations), then this check will catch shorts. A similar check for the sime name having two different

node numbers will catch open connections.

Ihe program that writes the final transistor file keeps track of some information for each

node number. It knows whether that node number has been used as the gate of a transistor, and

whether the node number has been used as the source or drain of a transistor. After all the

transistors have been processed, a check can be made for mateijal that is not connected to any

transistors, nodes that arc defined but not referenced, and nodes that are referenccd but not defined.

A node that is not connected to any transistors indicates a piece of material on the chip that

is not connected to anything. These pieces occur for many reasons, the most common of which is

caused by the designer's name or logo.1 Extraneous pieces of material on the chip can also come

from the use of library cells that have unused busses. Some graphics editors make it easy to

accidentally drop small pieces of material in the chip. Some designers use certain layers for

alignment marks. The node finder will detect all these cases.

A node that is referenced but not defined is a node that has only the gates of transistors

connected to it. TFhis must represent an error, since such a node will befloating in the manufactured

1These logo, cause problems in all phaes of artwork analysis. Iloweser, it is probably best to include them, just to check ror
the case when a misplaced logo interferes with the rest of the circuit

.

-44.

chip. Input nodes will not be reported as "referenced but not defined" because the standard input

pad has a transistor with gate and source connected to ground' and drain as the input. 'his

transistor protects the rest of the chip from static induced overvoltage.

When the transistor file is created, there are some single transistor checks that are performed.

Any transistor with a gate of VI)l) or GN) is flagged as a possible error. In addition, any transistor

which, if turned on, would connect VI)l) and GNI) together, is flagged.

5.5 Extensions

For further checking and simulation, it will be useful to gather some additional infonnation

during node extraction. lhe extraction of any complicated informtation may significantly degrade

the performance of the node extractor. The approach taken was to extract some simple parameters

about each node, and see what could be derived that information. For each of the layers on which

the ponds and islands search is performed, three numbers are extracted: the length of the left edge,

the length of the top edge, and the area.

Incrernent left count of M

"I-j Increment lop count of M

Increment area of M

Simple Parameter Ixtraction Algorithm

1B1y this point in the processing. !he designer has received checkploL of hLs chip that have each node labeled. I le has told the
node extractor the number of VD)l) and GND.

-45 -

T T T T

L X X X X X X XX

I.~~ ~ XX X Xx xx
I- X X T X

I. XXX XXX

eft = 4 Top = 7
Area = 15

F.xamplc Using the Simple Parameter Extraction Algorithm

:rom this information, we can derivc the capacitance of each node. and the leiigil/width ratio of

each transistor. 'Te capacitance of a node is one of the factors that influences the ocrall speed of

the chip. Thc Icigth/width ratio of a transistor will allow certain ratio checks to be perfrinned by

the static evaluator.

The capacitance of a node depends on its area and. in the case of diffusion, its perimeter

(side-wall capacitance). Most of the capacitance will be between a nodc and the subsirale. Although

when metal crosses over polysilicon there is a small capacitor created between the metal and the

polysilicon, those cases will be ignored. All capacitance will be assumed to exist fron the node to the

substrate. 'Ibis assumption breaks down when the designer specifically constructs a boolstrap

capacitor by placing polysilicon over diffusion.

While there is insufficient information extracted to compute the length/width ratio of an

arbitrarily shaped transistor, most transistors fall into one of three classes which can be computed

from our simple numbers. "1be gate area of most transistors is rectangular and therefore can be

calculated exactly and easily. If the top (T) times the left (I.) is equal to the area (A), then the gate

area must be rectangular, since this fonnula only holds for rectangles.

If the gate area is not rectangular, the resistance can be estimated. T"o know which way the

current flows through the transistor, two orientation bits (Oh's) must be added to the transistor

record. One bit indicates a vertical Iransistor(i.e., diffusion was found above or below the gate area)

_..

I -46-

and thc other bit a horizontial Iransislor(i.e, diffusion was found to the lef't or right of the gate area).

If both bits are set, thc transistor has bcnds in it (as in thc output pads). Usually, these transistors are

two lambda wide. The length can bc gucssed as the area divided by two. minus one for each bend.

Since thc number of bends is unknown, only one is assumed. The equation is Length = A/2-1,

Width = 2. 'I'lcre is really not enough information for obtining exact l,,ngth/w idth ratios, so some

other method would be required if exact numbers were needed. For now, tlie above approach seems

to work.

TIhe last case to consider is that of a non-rectangular transistor with only one of the two

onenrtation bits set. Experience indicates that these usually occur in depletion mode pullups with

butting contacts. H-ere, the gate area is two wide at thc top, changing to six wide at the bottom. If

the gate area is two wide at one end and the general shape has one change of width over its length,

we can calculate the resistance from our top, left, and area information. 'ie equation is Length=

(l.*W-A)/(W-2), Width =2.

X Xx x
X XX X
Xx x X xx xx xx x
Xx x X x xx xx x x
Xx x X X X
Xx x X X X
Xx x X X X

Wx 7x2 10z2

L=8 L=8 L=6
T=2 T=6 T=7

A=16 A=20 A=22

09=10 00=10 00=11

Transistors whose Resistances are Calculated Correctly

N3f

-47 -

Currently, no attempt is made to extract the resistances of the various nodes. "illis

information would be useful but is hard to obtain, as mentioned before. "lic length/width ratios of

the transistors %ill be used by the static evaluator described in the following chapter.

5.6 The output format

No attempt has been made to create a neilivrk definition ainguage suitable for all the

different levels of description and simulation. Instead, a simple fonlat with four different types of

records is used. There is a separate record type for each of the following: cnhanccment mode

transistors, depletion mode transistors, input nodes, and node dimension records. Both types of

transistor records contain the names of the gate, source, drain, channel length, channel width, and

coordinates on the checkplot of the transistor. 'Ibe input records contain the names of the nodes

that are inputs, for later use by the static evaluator. The node dimension records contain the area

and perimeter information for each layer of each node, for later use by the simulator. There is no

declaration entry in the output file for each node. Instead, the names of all the nodes can be derived

from the transistor information.

The node extractor should be able to produce output suitable for input to the SPICE

simulator, if needed, since all necessary information is extracted. If bootstrapping is used, the node

extractor would have to be changed to detect capacitance between nodes (as opposed to capacitance

from a node to the substrate).

I.

-48-

6. Static Evaluator

The development of the node extractor allowed easy conversion from artwork to a circuit

desription. The obvious next step seemed to be simulation. In the process of simulating various

designs, it became clear that there were some errors detected hy simulation, which could have been

detected earlier by a program that analyzed the circuit. Such a program would perform a static

anah'si of the circuit, looking for anomalous configurations of transistors. In addition, there are

various errors which switch lc el simulation does not detect, but for which the static evaluator could

check.

An analogy to conpilers can be drawn here. The errors that the design rule checker finds

are like the errors detected by the syntax phase of the compiler. Errors detected by the static

evaluator are similar to errors detected by the semantic phase of a good compiler. Finally, errors

discovered during simulation correspond to errors discovered during execution or interpretation of a

program. A compiler might warn the user that his program contains variables which are set but not

used, or used before given a value. It might also warn the user that there are statements in the

program that can never be reached. Similarly, the static evaluator will find parts of the circuit which

depend on nodes that can never be given a value, and it will locate nodes which can never be turned

on (or of).

The static evaluator takes, as its input, the list of transistors and input nodes output by the

node extractor. Each transistor is identified by the node numbers of the gate, source, and drain,

along with its length/width ratio. In addition, there are assumed to be two distinguished nodes:

VI)D and GND. No assumption is made about clocking. 'le identification of input nodes is

necessary to distinguish them from undefined nodes. An input node is assumed to be potentially

pulled up or pulled down (grounded).

. "-

.49-

6.1 Reading in the network

As each enhancement mode transistor is read, it is added to the program's data base of

transistors. Certain checks arc made immediately, based solcly on the inforimation contained in that

transistor. A diagnostic is generated if the gate of the transistor is either VI)l) or GNI). A

diagnostic is also generated if any of the gate. source, or drain nodes are the same.

Gate= VDD Gate=GNt) Gate Drain Gate-Source Source =)rain

Illegal -nhancement Mode Transistors

Depletion mode transistors are handled in a slightly more complicated way. A depiction

mode transistor is typically used as a pullup resistor, in which case the drain is connected to VI)D and

the source and gate are connected together. Sometimes depletion mode transistors arc used as

superbuffers in which case the drain is still connected to VDD, but the source and gate are not

connected together. The final use of a depletion mode transistor is as a "yellow transistor', one in

which the designer wants the polysilicon and diffusion wires to cross, but without creating a

transistor. If it is implanted (usually indicated as a yellow layer), a depletion mode transistor is

created. That transistor is like a resislor, in which the two wires cross each other at the expense of

some speed. 'he classic use of yellow transistors occurs in multiplexors. A yellow transistor can be

detected because neither the source nor the drain are VI)I), something that is never true for a

depletion mode transistor used as a pullup resistor.

SV69..

.50-

Must be VDD VDD not VDD

Pullup Pan of Yellow

supperbufter transistor

Types of Depiction Mode Transistors

When a dcpletion inode transistor is read, a check i made to see if the gatc is the same as

either the source or the drain. If so., the other node must be VI)l): otherwise a diagnostic is

generated. This detects unpowcred pullup resistors. If this transistor is a yellow transistor, it is

conerted into an enhancement mode transistor with a gate of VI)l). At this point, a check is made

to detect whether both the source and drain are VI)!). All non-yellow transistors arc entered on a

list ofpullup resistors.

When an input node is read, it is marked as being possibly pulled up, and possibly pulled

down. This completes the initial processing of the circuit.

6.2 Depletion mode transistor checks

Once yellow transistors have been converted, there are only three ways in which depiction

mode transistors are used: nornial pullup, inverting superbuffer, and non-inverting superbuffer.

While there is no nile that says these are the only uses of depletion mode transistors, these three are

the only ones which have been encountered in practice by the author.1 As other uses are found, they

can be added to the list of legal ones.

lOne dcsgncr ha deplcoon modc pulldowns to ground on sonic of his input pads. Currenlly ihese would be fla ed as an
err".

-51"

Simple Non-inventing lnvcrting
pulup superbuffer supcrbuffier

Legal Uses of I)epletion Modc Transistor (1)

To check for proper use of depletion modc transistors, the list of these transistors is scanned.

For each transistor, a pattern match is performed against the set of legal uses. Any that do not match

are flagged as potential errors. In addition. the total number of each pattern found is reported as

information for the designer.

6.3 "Stuck at" checks

For a particular node to be useful, there must be some way to give it the value 1 and some

way to give it the value 0. In general, it i; impossible to determine if a given node can ever take on a

particular value without simulating the circuit. However, a simple check can be made by assuming

certain transistors can bc turned on and verifying that for each node, a path exists to a pulled up

node and to ground.

A series of passes is made over the enhancement transistor data base until no more

proJagaion s occur. At each transistor, a check is made to see if one side ol the transistor is pulled up

and the other unmarked. If so, the unmarked side is marked as pulled up (this counts as a

propagation). 'Te same test is made for ground. When this process settles, a scan is made of all the

nodcs. A node that does not have both the pulled up and pulled down bits set is flagged as an error.

In an actual chip, especially ones designed either by a computer or with libraries of cells,

~i A,

I ,

-52-

these "stuck at" conditions often occur and are not considered errors. Typically, certain parts of a

PI.A come in pairs, %ith two pullups in cach pair. If one of tie minlcrn lines is not used, there will

be no way to set it to zero: it will be stuck at one. If a designer uses only paii of the function of a

predefined cell, the unused part may contain some "stuck at" errors. 'cln though a spurious error

mesage might occur, the checks seem worth perfoniming. It does not take long to rcic" all the

warnings output by the program.

6.4 Threshold checks

Earlier. the problems of driving a pass Iransislor with a signal that is one or more thireshold

drops below Vdd were discussed. The database that has been built so far cm) be tsed to check for

that type of error. Two items must be detected: (1) a signal one threshold drop below Vdd. and (2)

what a pass transistor looks like.

In the previous section, multiple passes were made over the network during which each

node was marked as potentially pulled up. To dctermine threshold drops, more care in our marking

is necessary. Any node that has a depletion mode pullup resistor attached to it will be marked

"pulled up". as will any node that is an input node. The nodes that can be reached from pulled up

nodes will be marked "indirectly pulled up". This indicates that these nodes are at least one

threshold below Vdd. A pass transistor with a gate driven by an "indirectly pulled up" node is an

error.

Currently, (lie method for detecting pass transistors is not foolproof; some of them might be

missed. Pass transistors must be distinguished from transistors in pulldown chains. One

distinguishing characteristic of transistors in pulidown chains is that there are no transistor gates

connected to the intermediate nodes in the pulldown chain. For a pass transistor to be useful, the

I ,. *8'

-53-

gate of some other transistor must eventually use the value passed through it, which means that there

must be a node with gates connected to it somewhere down the line. The current scheme does not

implement the "down the line" check. If it finds a transistor with a gate connected to an "indirectly

pulled up" node, a source connected to a node that is "indirectly pulled up", and gates connected to

the drain, the transistor is flagged as a possible error.

Though depletion mode pullups used in superbuffers should haxc their gates connected to

nodes that are "pulled up", this check is not currently made.

6.5 Ratio checks

The ratio of the size of the pullup resistor to the size of the pulldown resistor should be

four.1l] hlie effect of driving a pulldown transistor with a Vdd-Vth signal is to double its resistance.

Since the node extractor makes an attempt to calculate the length and width of each transistor, an

attempt can also be made to check the ptllup/pulldown ratio. The first problem is locating the

appropriate transistors on which to perform the check. Finding the pullup transistor is easy; from

there it is necessary to look for possible pulldown paths.

The following scheme for finding pulldown paths was devised after much experimentation.

A pulldown path is a path from a pulled up node to ground that passes through pulldown

transistors. Ftch pulldown transistor is visited no more than once. There are no gates connected to

an intermediate node, and none of the intermediate nodes are pulled up. No pulidown path is

longer than seven transistors (or some other arbitrarily chosen small number).

-54-

Possble pl)Uldowf paths are:
AB
AD

C.B
C,D

It D

Ixamlples of P'ossible Pulldown Paths

After finding a pulidown path. the ratio calculation is fairly straightforward, though it

should include the fact that transistors with gates that arc "indirectly pulled up" arc twice the

resistance of those with gates that are "pulled up". One problem pertains to ratios that are not

exactly four. Most chips will work if the ratio is off by a small amount. lhe ratio affects both the

switching speed, and the thresholds at which certain voltages are said to be zero or one. One point of

view allows for accepting a range of legal ratios instead of an ab%olutc ratio of four. On the other

hand, a chip designer who very carefully made sure that each ratio was exactly four might be

interested to know where a mistake occurred. Currently, the program checks for the exact value.

Experience indicates that chips either contain almost no violations or very many. The output can be

sorted on the ratios so that the extremes can be examined first, and mtiple occurrences of the same

errors are listed together.

A nor gate contains several pulidown paths. 'llie ratio check is performed for each path

independently. If both pulldown transistors were turned on at once, the node would be pulled

down faster than if only one were turned on. 'Iis is not bad, and corTesponds to a ratio of eight to

one. "ich of the pulldown paths in a nor gate could have a different resistance. 'Ibese will be

considered one at a time and any that are in error will be reported.

IL

-55-

7. Simulators

After all the errors that can be detected through static analysis have bcen removcd, it is time

for dynamic analysis, or simulation. Though the research pcrfoirmed for this thesis did not result in

the crcation of a simulator by the author, it did result in some further simulation research by other

people. An in-depth discussion of simulation docs not belong in this thesis, but an overview of

simulation is appropriate, along with a description of two possible algorithms for perfirming

switch-level simulation. For deeper covenge of simulation issues. (he reader is referred to Bryant

1151 and Tennan (161.

7.1 Different types of simulators

There are many different levels at which simulation of VLSI circuits can be performed.

Usually, simulation at a low level implies circuit simulation. The input is a set of circuit elements:

resistors, capacitors, transistors (with length/width ratios), voltage sources, and input signals (eg.,

square waves of a specified frequency). The output is a series of graphs, showing the waveforms of

each signal. The algorithm performs many separate integration steps for each unit of simulated time.

This type of simulator is exemplified by SPICE which is usually nrn on small circuits (on the order

of an output pad) and is expensive to run.

The next level up from circuit simulation is swich-level sintulation. In this type, transistors

are modeled as switches that are either on or off. Fixed delays are a%.ociated with the transmission of

signals and with the changing of state of transisto 'Ibis will be the level of simulation emphasixed

in the rest of this chapter.

One level tip from switch-level simulation is gate-level simulation. (A gate is composed of

two or more transistors.) 'Ibe input to a gate-level simulator consists of a list of objects with their

b ,

-.56-

inputs, outputs, and inf)rmation describing their interconnections. Typical objects includc nand

gates, inverters, and possibly registers and memories, This level of simulation is used for debugging

'rt. circuits. It is not a good method for modeling components of VI.SI circuits, bcca&i- there are

certain circuit configurations which occur in VLSI circuits that cannot be modeled as objects with

inputs and outputs. Ixamples include pass transistors and circuits with charge sharing.

'lbe highest level of simulation is usually called funefioal simulajion. 'Ibis level of

simulation does not have any info)rmation about the underlying circuit (since the cincuit might not

have been des.igned yet). Instead, it tries to model the input/output behavior of the component

modules. For example, if the chip is going to have a finite state machine as the main controller, then

that will be simulated as a single module. Program variables are used to represent the chip's

registers. Subroutines are used to model particular pieces of the chip. This type of simulation

usually rmns very fast, allowing the designer to simulate many clock cycles. 'lie clever designer will

develop test data with a functional simulator and use it to test the final chip. Ideally, the output

from the finctional simulator should agree with the output from a switch-level simulator.

7.2 A possible design of a switch-level simulator

For simulating the information derived from the artwork, switch-level simulation is the

appropiate level of simulation to use. Circuit level simulation is too low a level, since the user is

usually not interested in the actual wavefoms that occur at each node in the chip. If all of the

conservative design niles have been obeyed, the chip should work (though it might logically

compute a result diflerent from what is desired). In addition, today's designs are too large to be

simulated as a whole at the circuit level. On the other hand, gate-level simulation is too high a level,

since this type of simulator does not model all of the possible nMOS circuits well. The output of the

.57-

node extractor would require additional processing to group transistors into gatc infonnation, which

could be used as input for a gate-lcvel simulator. This would be difficult. however. since it is not

always possible to form gates from all transistors. Often a gate-lcvel simulator contains an cxtensive

user interface, including macros and editing capabilities, which allow an easy and concise method for

entering a circuit. When the input is computcr-gencrated. such capabilities are not needed. The

programmer of a simulator might spend so much limc providing an casy method for entering input

that he becomes distracted from the real problem of simulation. Sonic attempts have been made to

modify a TI'I, simulator to work with nMOS, but with little success. Stating with a switch-lcvel

simulator would probably have given better results.

Before a discussion of Ame possible implementations of a switch-level simulator it is first

necessary to consider some issues which arise in typical circuits. Transistors are used not only as

switches, but also as pullup resistors. 'Ibis means that a pulled up node has a value of I unless it is

also connected to ground. Charge can be siored on the gates of transistors and on nodes with

enough capacitance (such as long wires). This charge will retain the state of that node, even when

the driving force is removed. In the simulator, the assumption is made that the charge lasts forever

though in reality, the charge leaks away slowly and must be refreshed (dynamic logic). Charge

sharing can also occur, i.e., two isolated pools of charge can he merged if the pass transistor between

them is turned on.

"I

4- 58 -

IL _1 LL E=D
l I 0 0F=G

D E F C

IA 8 C

O-L -°L E = Charged I
F = Charged 0

D E F G

A 0 _
? m F=?

)D E F G

Example of Charge Sharing

) 'The difficult question to answer is what happens when a zero is merged with a one: is the result zero

or one? Often it is neither. If charge sharing is not handled, or if it comes from two equally sized

pools of 0 and I merging, the resulting value will be undetined (X). Charge sharing can be either

ignored, since most designs do not make use of it, or handled by the simulator using the capacitances

reported by the node finder. Initial values for the internal nodes must also be considered. Three

possibilities are (1) initialize all internal nodes to zero or one, (2) set each node to zero or one

randomly, or (3) introduce another value (I) that indicates an initial value. 'he simulator should

treat X's and I's in the same manner (both as "undefined") when computing new values, but the

distinction can be useful in notifying the designer if any problems occur.

Two possible methods of switch-lcvcl simulation will be presented. 'Ib1e first one, the

equivalence class method, is easy to explain and easy to implement. 'Ie second one, the event driven

meihod, is slightly more complicated but runs much faster.

irA'

-59-

7.2.1 The equivalence class method

In the equivalence class method of simulation, three pieces of information are associated

with each node: an old state, a new state, and a bit which is set if there is a puilup transistor on the

node. The user sets all the input variables to the desired values and instructs the simulator to

simulate the circuit until it setles, at which point the values of the nodes (either internal or output

pads) can be displayed.

lie simulator makes repeated passes, called inicrosleps, o~er the circuit. When a pass is

made and t more changes take place, the simulation has settled. A microstep consists of the

following steps.

1) Place each node in its own equivalence class.

2) For each transistor that is turned on (i.e. its gate has a value of 1),
merge the equivalence classes of its soume and drain.

3) lor each equivalence class, determine the value of the equivalence
class by looking at the old value of each node in the equivalence
class. ie value is determined from a collection of nodes that may
be connected to VI)I), connected to GN), pulled up, charged 1,
charged 0, initial, or undefined. Once this value is determined, the
new value of each node in the equivalence class is set to this value.

4) For each node, copy the new values to the old values, noting if any
changes occurred.

5) If any changes occurred, repeat from step 1. Otherwise, the circuit
has settled.

Some i-sues are ignored in this simple statement of the algorithm. lhe two major points to

consider arc the merging of equivalence classes and the determination of the new value for the

elements in an equivalence class from the collection of old values. What should happen when the

user connects VI)l) and GND together? What does it mean when a pass transistor has a gate of X?

IP ...

-60-

'lie real problem with this algorithm is its speed. At each microstep every node and every

transistor must be examined, whether a change has OCcuTed or not. If the simulator only took action

when a change occurred, it could compute its work much faster. A good test example is an inverter

chain 1000 inverters long. To simulate a signal propagating through the inverter chain, the

equivalence class algorithm requires 1000*1000 operations. Flowevcr, an algorithm that recomputes

only when something changes should take only 1000 operations.

hliough an inverter chain 1000 long does not usually occur on a real chip, and though many

chips contain many signals moving at the same time, an improvement in speed can be realized by an

algorithm that does not recompute the whole chip at each inicrostcp. 'lhe event based simulator

incorporates such an algorithm.

7.2.2 The event oased method

In an event based simulator, each node has a bit that is set if it is pulled up. and a variable

that contains its current state. In addition, an eveni lisi is used to store a list of actions to be taken.

Initially, the circuit is in a consistent state (possibly all l's) and the event list is empty. Ihe user

changes the value of sone node (usually an inpat) and instructs the simulator to perform

computations until the circuit settles. Once it has settled, the values of any nodes can be examined.

When the user changes the value of a node, the simulator enqueties on the event list an

event that contains the name of the node and its new value (i.e., forced 0 or forced 1). Then, the

following algorithm is executed tutil the event list is empty.

I) 'lle first event is removed from the event list. A new potential is
calculated for the node. based on the potentials of all the other
nodes connected by turned-on transistors to this node.

-61 -

2) If this new potential is the same as the old, then this event has no

effect. No further processing is performed on this event, and the
execution continues from step 1.

3) A scan is made of all transistors with sources or drains that are

connected to this node. If the change to the new value could
possibly change some other node (that might be on the other side of
a, transistor with a gate of"X), that node is enqucued on the event
list

4) If the change in value would affect any transistors with gates that
are connectcd to the node. then all such transistors are enqucued on
the event list.

5) "lhe value of this node is updated to reflect the new value and
processing continues from step 1.

Computations of new values based on old ones are performed with table lookups. "he

network is stored so that it is easy to find all transistors with sources and drains (or gates) that are

connected to a particular node. The net result of this algorithm is that simulation is performed only

on the pieces of the circuit that change.

Many simulation schemes are possible, but the above two should give the reader some ideas

about selecting an implementation of his own. The specific details of the simulation step have been

found to be particularly sensitive; a slight change in a functioning simulator often causes it to stop

working. It is important to have a set of test examples to verify that the simulator still works after a

modification has been made.

7.3 Possible speed improvements

There are many possible ways to speed up the simulator. A few ideas which have been

partially implemented 1161 arc discussed here.

Though it has been indicated here that a circuit should be viewed as a collection of

transistors by the simulator, often an actual designer thinks in terms of gates. An improvement in

S,-.

-62-

speed could be made if it is possible to find all the gates in a circuit, and if it is faster to simulate the

gates rather than the individual transistors which make them up. Any transistors that are not part of

a gate would still be simulated in the usual way.

A gate can be recognized by finding a node that is pulled up and then is simply pulled down,

i.e. there are paths from the pulled up node to ground, through transistors with intermediate nodes

that are not used anywhere else. The output of the pulled up node may go through pass transistors,

but eventu~ally it can only be connected to a transistor's gates. Output from such a node is a strict

function of its inputs (the gates of the transistors in the pulldown chain), and it does not require

simulation of its component transistors to determine its value.

A common method of implementing combinational circuits and read-only memory uses

Programmed Logic Arrays (PI.As). If a PLA can be recognized, it can be replaced by a table lookup.

The general form of a PLA is some number of inputs connected to a number of mintenns, which are

in turn connected to outputs. The minterms are pulled up and potentially pulled down by various

inputs. 'Ihe outputs are pulled up and potentially pulled down by various minterms. Such a

structure can be recognized by one of two methods

A check can be made for structures that fit the specific shape of a PIA. I'llis will work, but

additional optimization is possible. Most PLAs have superbuffered outputs. An algorithm that

looks for blocks of logic with outputs that can be computed from their inputs would not only find

the PI.A, but would detect that the real output is on the far side of the superbuffers. In addition,

such a program may find pieces of logic that were not implemented as PI.As, but nevertheless can be

converted into tables. For example, it might be possible to convert an inverting supcrbuffer into a

simple inverter.

-63-

7.4 User interface

An area that is often overlooked in simulator design is the user inierface. A poor user

interface can make the fastest algorithm useless. Unfortunately, there is no set of rules to follow to

create a good user interface. A few of the interfacc-related issues to keep in mind when designing a

simulator are mentioned below.

Ie circuit input format is not really a problem when a simulator is driven from extracted

circuits, though it should be readable by the user. Many errors that arc discovered duiing simulation

can be patched in the circuit file, using a text editor. This means that it is not necessary to re-extract

the entire circuit before simulating it again.

It should be possible to specify different step sizes during the simulation. When debugging

a circuit for the first time, the user might discover an unclocked feedback loop resulting in a circuit

that never settles. "'Mis user needs a command to execute a single microstep or event at a time, letting

him examine values in between. After completing that process, he might want to step through the

various clock phases of the circuit himself, examining variables at each step. When the user is sure

that everything is working correctly, he needs a conmand to execute a full clock cycle. When

individual cycles work, he will want to set ip certain input vectors and run the chip through many

cycles. Some chips designed to interface with memories may require an interface more complicated

than vectors of inputs, since they require simulation of a piece of the outside world. 'Ibis leads to the

next capability.

Some chips use a straightforward two-phase clocking scheme, while others use a more

complicated one. It seems that the only way to handle all the possible clocking and input/output

requirements is by providing the user with a facility for writing macros or programs that can call the

simulator. Such a language could be embedded in LISP. 'Ibis would allow the user to tailor the

WIWI.

him~l,

-64-

simulator to his own needs. writing routines for reset, clocking. input, and so on.

Designers often create families of custom chips. In the future, there will be a need for a

simulator to accept the circuits from a family of chips along with an interconnection list, and to

simulate the entire family at once. making sure the interface between them is correct. 'liis technique

may also be useful to the designer of a chip who has not yet completed the final wiring, but who has

completed and simulated all the major pieces. lie may want to simulate the entire chip b) hooking

up the individual pieces. Ibis facilitN %ould adlow final simulation to he perforimed at the ia me time

as final wiring.

,-

EI

-65-

8. How Does All Of This Relate To The Real World?

Even if the work in this thesis were applicable only to designs following the Mead and

Conway approach, it would still be useful to a group of university researchers. The hope is that it

can he applied to a much larger selection of designs than those used so far. In this chapter, we will

touch on sonic of the problems that might occur with this design %crification when other types of

designs are used.

Some overall observations can be made befire looking at each program in detail. Tihe

underlying assumption that was used in this thesis is that designs arc expressed in tenns of lambda

(or fractions of lambda) and that the designs arc exprssed in teims of rectangles. While most

designers use some basic unit of resolution, it is often much smaller than lambda and certainly too

small to use as a scale for rasterization. Most design systems support additional primitive shapes in

addition to the rectangle. Examples include round flashes (i.e., cinles), wires (a locus of points a

specified distance from a multi-segment line), and polygons (both convex ones and othcis). In

industry, the assumption of orthogonal geometry does not hold.

The assumption that there are only six layers is not a valid one in industry. Some common 4
.1

additional layers that must be handled include buried contacts a second layer of metal, a second

layer of polysilicon, and two or three more layers of ion implantation.2 None of these extra mask

layers add any new concepts. "lhough the node finder will contain more layers to follow and the

circutit file will have more types of transistors, the basic algorithms will remain the same.

When a change is made in technology (i.e., from nMOS to cMOS or bipolar). larger changes

IA method or connecting polysilicon to diffusion that does not use metal. This allows metal to be run over poly-diffusion
contacts without any interaction.
2 The different ion implantation masks are used to control the thresholds of the transisiom.

.66.

will have to bc madc. While thc author has never seen a design in either of these other technologis,

the assumption is that the basic transistor finding algorithm will have to be changed. Chang [171

presents an algorithm for performing higher level checks on bipolar devices. He claims that it is

possible to design many devices that pass all the design nile checks, but are still incorrect. Perhaps a

scheme similar to his can be used to recognize and extract the transistors in bipolar circuits.

lie different design verification tools will be considered one at a time. Any limitations that

can be foreseen will be discussed, along with possible solutions to these problems.

8.1 Design rule checking

This algorithm suffers the most when brought to bear on real world problems. "Ibe one

lambda grid no longer applies. The complexity of the current design rule checking algorithm scales

up very poorly when a window larger than four-by-four is used. Also, the design rules used in

industry are much more complicated than those stated in this thesis. h'is complication comes from

the need to save space in order to increase yield and, in the long run, decrease costs. Typical rules

specify one particular spacing unless some other condition occurs, in which case the spacing can be

, reduced a little. While industry has whole-chip design rule checkers, they are based on the geometry

engine approach, with the Cray I as the engine.

Even using the Mead and Conway design rules, the raster scan design nile checker cannot

handle diagonal lines. When these are converted to a raster image, an error occurs in either width,

spacing, or both. lA)sleben and 'lhompson [181 also use a raster scan algorithn for performing

topological analysis. "liough they restrict their discussion to orthogonal geometries, they present a

clever method by which 450 rectangles can be handled. Each "bit" is now represented by four bits,

with 0000 representing white and 1111 representing black. Ilie bit pattern 0101 represents a square

i4.

,' ..,'

-67 -

in which the lower left is black and the upper right is white.

NSEW 0101

l.oslebcn and Thompson 450 algorithm

'lhe codes have been constructed such that logical operations (such as "and" and "or") have the

same results on the codes as on the original single bit. It may he possible to use this algorithm to

implement a raster scan design rule checker that uses a small window.

8.2 Node extraction

The granularity of the rasterization should not cause the node extractor any problems.

Wires must have some minimum width. If the basic pixel is made somewhat smaller than half the

minimum width of a wire, then each wire is sure to be detected by the node extractor.

The effects of differing technologies has already been discussed. Currently, the changes

necessary to process cMOS are not considered to be much of a problem, though bipolar might

require more work. As more exotic technologies are invented, tile hardest part of node extraction

will be transistor recognition. As long as transistor information is directly related to the mask layers,

this should not be a problem.

-68-

8.3 Simulation

The simulator is the program least affected by "real world" designs. "The input is still just a

file of transistors, and the only difference might be in total size of the file. As designs become larger.

the simulator will run slower. Currently, its speed depends on the number of transistors that are

changing and the depth of the circuit. Faster simulation algorithms will no doubt be developed, and

since simulation presents an opportunity for multiprocessing, there may he some very fast simulators

in the future.

I)iffering technologies may require small changes to the simulator, but no major changes are

anticipated. The current simulator 1161 is table driven and could be made to read in a set of

technology-dependent simulation rules.

8.4 What happens as chips get even larger

The speed of the node extractor is dependent on the si/e of the chip. As designs get larger,

the node extractor slows down. '1This effect will be offset by taster comptutcrs and better algorithms.

In addition, the node extracting algorithm is simple enough to be implemented with a small amount

of special purpose hardware. At somc point, chips may become too large for such a brute force

approach. Sonic of the other methods considered for this thesis, but rejected as too complicated,

may be necessary.

The static analyier w ill also be stowcd do,, n by larger circuits. Since it neoer took very :ong

to run, however, its speed shOuld Vot he a factor when compared to the speed of thc node extractor

and simulator.

The scaling problems of the simulator hac already been mentioned. In addition to

multiprocessing and better algorithms, extraction of additional higher level functions from the

l ..,'.,+ ~~~~ ~M L+,,+s'm
'' .tt W.s ' "

circuit (memories, registers, alu's) should improve the spccd of simulation. Other ideas beingJ considered include the generation of complied code that will perform the simulation and the

creation of special purpose hardware that takes ad vantage of thc parallel aspects of simulation.

* lDesigns airc going to gct larger, but (lie approach takcn in this thesis should be able to keep

LIP With the larger designs for at least the next few years.

JJ

-70-

9. Conclusions And Directions For Future Research

Most of the ideas contained in this thesis have been implemented, and used to verify over 30

j designs. The general reaction of designers is that tie time spent running the programs, checking

each of the error reports and performing simulation, was time well spent. Few designs emerged

unscathed. Many of the errors detected would have prevented the chip from working after

manufacture.

9.1 The Scherne79 chip

The chip for which these tools were originally written and for wshich the most experience has

been accumulated is the Schcme79 chip.19 'Ihis chip implements a 32-bit LISP microprocessor,

complete with an on-chip evaluator and garbage collector. The chip is 3000 lambda by 2375 lambda

and contains 7811 enhancement mode transistors, 1637 depletion mode transistors and 2411

electrically distinct nodes. 'Ilie circuit for the Scheme chip can be extracted from the mask

information in about 5 hours of CPU time on a PDP-11/70. This includes the time necessary to

produce a plot that shows all the node numbers which the the simulator will use.

When the designers considered the chip to be finished and ready for fabrication, 1 errors

were detected through artwork analysis and simulation. lhe initial errors were discovered by

symbolic naming of the input and output pads and subsequent detection that some pads really

belonged to the same node. Next, some named internal nodes were discovered to have the same

node numbers. After this. most of the errors were discovered during simulation. By the time the

deadline for fabrication came, the simula,' a Scheme chip had both performed a garbage collection

and interpreted a simple IISP program. 'lliough this did not constitute an exhaustive test, it was all

that time allowed.

iF.

-71-

After the Scheme chip was manufactured and returned. its tests were successful; the chip

worked. During further testing of the actual chip, two more errors have been discovered. One, a

"bug" in the garbage collection algorithm, could have been detected if the particular case had been

simulated. The other, a race condition in some of the logic added to an output pad in an attempt to

make it latch a signal, was not detected, because the simulator was not designed to detect race

conditions. Fortunately, the correct value of this pad caii be dctcmined by other means, so that the

chip is usable.

9.2 Design errors that are not checked

Other designs have been run through all the checks and have been fabricated, but none

have been tested enough to detenrmine if they work. It would be nice if we could be sure that any

design that passes all of the tests described in this thesis would work when fabricated. Such a

statement cannot yet be made; therefore some mention should be made about the kinds of errors

that might slip by all the checks and cause a chip to fail.

ilie largest area in which no checks are performed is timing. The simulator does not have a

good idea of timing, nor is there any analysis of critical paihs nor checking for race conditions or

hazards. In dynamic circuits, no checking is done for stale bits, bits that were not refreshed often

enough. More work is needed in these areas.

Another unchecked problem area is power and ground bus sizing. When large DC currents

flow through small aluminum wires, the aluminum atoms migrate. This causes the wire to become

even thinner, which increases the migration. FvenLually, the wire breaks, causing an open circuit. A

scheme has been developed by the author for checking power/ground bus sizing, but it has not yet

been implemented.

.1....

-72-

Further thought is needed in the generation of test cases for the simulator. It is hard for the

designer to create exhaustive test cases. The simulator can aid in this task by keeping track of nodes

which have never changed state and reporting them to the user. He can then try to devise better test

cases that would cause those nodes to change state. If the user identifies all state vectors (Le, PLA

feedback temis) to the simulator, an additional piece of usefil bookkeeping can be performed. The

simulator could keep track of the states that have been visited and report on those which have not.

'Iis concludes the list of currently undetected problems that could lead to non-finctional

chips. As the relationship between the Mead and Conway design style and the actual analog

finctions of the chip is better understood, more areas can be checked. At some point, it will not be

worth investing more computer time in the extraction or simulation of difficult cases, and the best

approach will be actual fabrication and testing.

9.3 Better design tools

If the tools used to design the chip were better, then none of these design verification

programs would be necessary. 'Ihis thesis has attacked the easy problem of design verification. The

computer-aided creation of the designs is a harder problem. Currently there is little agreement in

the field about the right way to do design automation in VLSI. The computer should be able to help

the designer control some of the complexity, but the amount of help it can provide in the actual

design process iemains to be seen.

Although predictions can be made about the operation of design tools of the future, it seems

more profitable to look instead at how some of the circuit extraction software can be integrated into

an overall design system. both in the present and in the future.

Integrating the current software with a design automation system will have the effect of

. -9.."Mimi

r-73-
"closing many loops". The output of simulation based on circuits extracted from the artwork can be
compared with that of functional simulation. Individual cells can be design rule checked, circuit

extracted, and simulated as they are created. All these different representations can be made

available to the designer. 'lhere will still be a final check performed on the whole chip, but the

number of errors detected should be very small if all these other checks have been pcrformcd along
the way.

II

-74.

REFERENCES

1. Mead, Carver and Conway, Lynn, Inlroduci ion io VLSI Syslerns.
(Reading. Massachusetts: Addison-Wesley Publishing Co., 1980).

2. Shrobe. Howard, Private communication.

3. Ilsuch, Min-Yu, "Symbolic Layout and Compaction of Integrated
Circuits," Hcectronics Research I :iburatory Memorandum No). UCIVERLI
M79/80, D~ecember 10, 1979. Uni~crsity of California. licr-kclcy.

4. Nagel, L. W. and Pederson, 1). 0.. "SPICE (Simulation Program with
Integrated Circuit Fnmphasis)," FHcctron ics Research L aboratory
Memnoranidum No. FRI'-M382, April 12, 1973. University of Calafornia,
Berkeley.

5. Wilcox, P.. "Digital Logic Simulation at the Gate and Functional Level,"
I'roeeedings 161 Diesign Auloinalion Conference, Julie, 1979, San Diego,
California, pp. 242-248.

6. Sherwood, W., "A Hybrid Scheduling 'Fechnique for Hierarchical Logic
Simulators." Proceedings 16 1h Design Automnation Contference, Junie, 1979,
San D~iego, California, pp. 249-254.

7. Navabi, Z. and Hill, F. J., "Efficient Simulation of AHP1L," Proceedings
161h D~esign Aufiaon Conference, Junie, 1979, San Diego, California, pp.
255-262.

8. Giambiasi, N.. Miara, A., and Muriach. D)., "S11 OG: A Practical Tool for
L~arge D~igital Netmork Simulation," Proceedings 161h Design Auloinalion
Conference, Julie, 1979, San D~iego, California, pp. 263-271.

9. Hill, 1). and v'anCleemput, W., "SABLE: A TFool for Generating
Structured, MIulti-LIevel Simulations." Proceedings 16 th Design Auloinalion
Cvmfrren('e, Junie, 1979, San Diego, California, pp. 272-279.

10. McCaw, C. It., "Unified Shapes Checker -- A Checking TFool for 1.Sf."
Proceedings 161h D~esign Alutomnation Conference San IDiego, California,
June, 1979, pp. 81-87.

11. Wilcox, P.. Rombeek, H., and Caughey, 1). M., "Design Rule Verification
Based on One Dimensional Scans," Proceedings 15th Design Auloinalion
Conference, Las Vegas, Nevada, June, 1978, pp. 285-289.

12. Rosenberg, L, Benbassat. C., "CRITIC: An Integrated Circuit Design

Rule Checking Program," Proceedings I Ith Design Aulomalion Conference,
June. 1974, pp. 14-19.

13. Lindsay, B. W. and Preas, I. T.. "Design Rule Checking and Analysis of
IC Mask Design," Proceedings 131h Design Automation Conference, June,
1976, pp. 301-308.

14. Seiler, L, Private communication.

15. Bryant, R. F., Simuhilion of 3O /.S LI. Ph.). thesis in preparation, MrI
)epartment of Electrical Engineering and Computer Science.

16. Terman, C. J., Sinulation Tools for VISi Design, Ph.D. thesis in
preparation, MIT)cpartment of Electrical Engineering and Computer
Science.

17. Chang, C. S., "I.S! L.ayout Checking Using Bipolar Device Recognition
Technique," Proceedings 16 1h Design Automalion Conference, San Diego,
California, June, 1979, pp. 95-101.

18. L.osleben, Paul and Thompson, Kathryn, "Topological Analysis for VLSI
Circuits," Proceedings 16 1h Design Autonation Conference, San Diego,
California, June, 1979, pp. 461-473.

19. Holloway, J., Steele, G., Sussman, G., Bell, A., The SCHFIE-79 Chip,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
AI Memo No. 559, December 1979.

ia4

K,"

OFFICIAL DISTPRIJTMN LIST

Defense Technical Infonration Center
CaImero Station
Alexandria, VA 22314 12 copies

Office of Naval Research Office of Naval ResearchInformation Systems Program Code 455Code 437 Arlington, VA 22217
g7Arlington, VA 22217 copy

2 copies
Dr. A. L. SlafkoskyOffice of Naval Research Scientific Advisor

Branch Office/Boston Commandant of the Marine Corps
Building 114, Section D (Code RD-I)
666 Simmer Street Washington, D. C. 20380
Boston, MA 02210 1 c-py

a copy
Office of Naval Researchffice of Naval Research Code 458

Branch Office/Chicago Arlington, VA 22217
536 South Clark Street 1 copy
Chicago, IL 60605

1 copy Naval Ocean Systems Center, Code 91
Headquarters-Camputer Sciences &

Office of Naval Research Simulation Department
Branch Office/Pasadena San Diego, CA 92152
1030 East Green Street Mr. Lloyd Z. Maudlin
Pasadena, CA 91106 1 copy

1 copy
Mr. E. H. Gleissner

New York Area Naval Ship Research & Development Center
715 Broadway - 5th floor Computation & Math Department
New York, N. Y. 10003 Bethesda, MD 20084

1 copy 1 copy

Naval Research Laboratory Captain Grace M. Hopper, USNR
Technical Information Division NAVDAC-OOH
Code 2627 Department of the Navy
Washington, D. C. 20375 Washingon, D. C. 20374

6 copies 1 copy

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217

1 copy

V

-DATE

FILMEi

