i

¢

D0 #iLE cory.

DAGEGS 86

RADC-TR-80-109, Vol Ii (of two)

Final Technical Report
April 1980 '

SCFTWARE QUALITY MEASUREMENT
MANUAL

General Electric Company

James A. McCall
Mike T. Matsumoto

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC

ELECTE

JUL 221980
B
ROME AIR DEVELOPMENT CENTER US ARMY INSTITUTE FOR RESEARCH IN
AIR FORCE SYSTEMS COMMAND MANAGEMENT INFORMATION AND COMPUTER SCIENCES
GRIFFISS AIR FORCE BASE NY 13441 ATLANTA GA 30332

B0 7 91 n 4

“his veporc has been reviewcd by the RADC Public Acfairs Office (PA) ang
., roleasable to the National Technical information Service (NTIS). At NTIS
¢ will be releasable to the generzl public, including foreign nations. =

RADC-Te-80-109, Volume IT (of two) has been reviewed and is approved

rur publication.

4
APPROVED: M ﬂ &VM

JOSEPH P. CAVANO
Project Engineer

APPROVED: %*/JCéi

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: %_p v A

JOHN P. HUSS
Acting Chief, Plens Office

If your address has changed or if vou wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your orgaunizativu,
please notify RADC (ISIS), Griffiss AFB NY 13441. 1his will aseist us {n &

maintaining a current mailing list.

Do not return this copy. Retain or destroy.

7~

,mg |
§

MISSION
of
Rome Air Development Center

RADC plans and executes rescurch, develooment, test and
selected acquisition proghams Ln Aupport of Command, Control
Communications and Intelligence {C°1) activities. Technical
and engineerding support within a-cas of technical cempetence
L provide to ESD Program 044/ ces (POs) and other ESD
elemenis. The prineipal tichnical mission avreas are
comrianications, electremagnetic gudldarce and control, sur-
velllance of ground and aerospace objects, .ntelligence data
collection and handling, Aingornmation sysiem technology,
Lonosphornic propagation, solid state sciences, microwave
physics and electronic reliability, maintainabitity and
compatib ity .

%

£ 5% 0 53K X LF R SF RAF HLF HSF RS S F HSF RSF K SF 9

p—— ™ .

A N

UNCLASSIFIED
SECURI P ORLSSIFICATION OF THIS PAGE (When Dats Entered).

9 REPORT DOCUMENTATION PAGE BEFOBE CONPL BTG ORM
2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

.RADC -80-1069 - VEL AT (of two)| AD-AO Ao 6T8E

4. TITLE (and Subtitle) .
9 Final fechnical t .
SOFTWARE QUALITY MFASURMNT MANUAL 7 Junewlii®78 ~ Julymi®79

\/Ol M mga ;”. . r = — 3 ;1‘/:\

T Tames A.JMcCall Fsﬁsfz-n—c- 16
Mike T.,Matsumoto

MR e 2 Atk 3

el ima

Lo,
]
AR

4P CRERTSRYING ORGANTEATION NANE AND ADDRESS 10. PROGRAM ELEMENT, PROJE

-3 Genera ectric Company AREA & WORK UN| €

y| Information Systems Programs v 63728F ' / \7 é -
450 Persian Drive, Sunnyvale CA 94086 ,"7‘L 252 9

11. CONTROLLING OFFICE NAME AND ADDRESS . i

/ l Apr M98

Rome Air Development Center (ISIS) 7 GES
Gr:lffiss AF% NY 1344])
MONITORING AGENCY NAME & ADORESS(if dilferent trom Controlling Olﬂc.) 18, SEQURITV CLASS. (of this report)
. UNCLASSIFIED
Same 18a. D!C ASSIFICATION/DOWNGRADING
N/ ASCHEDULE

6. DISTRIBUTION STATEMENT (of this Roport) e

Approved for public release; distribution unlimited.

A
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i dilferent from Report)

T K AT R Y —er

Same

18. SUPPLEMENTARY NOTES
| RADC Project Engineer: Joseph P. Cavano (ISIS) 315 330-4325
USACSC Project Engineer: Daniel E. Hocking (AIRMICS) 404 894-3111

19. KEY WORDS (Cantinue on reyerse side il necessary and identity by dock number)
Software Quality
Quality Metrics
Software Measurement

“Soﬂ:‘:‘?e(ﬁn'enﬁ’ics '(or measurements) wﬁ'icﬁ ptecfict. software quality have

been refined and enhanced. Metrics were classified as anomaly-
detecting metrics which identify deficiencies in documentation or
source code, predictive metrics which measure the logic of the design
and implementation, and acceptance metrics which are applied to the end
ptoduct to assess compliance with requirements.

{(Cont'd)

DD , %%, 1473 oimion oF 1 nov ¢33 CesoLETE UNCLASSIFIED

JAN T
e ——
SECURITY CLASSIFICATION OF THIS PAGE (When Deta

//7‘(7L A

UNCLASSIFIED
SRCURITY CLASSIFICATION OF THIS PAGE(When Date Entored)
+
A Software Quality Measurement Manual was produced which contained

procedures and guidelines for assisting software system developers in
setting quality goals, applying metrics and making quality assessments.

14

DR2Ta ab ¥y AT
AR
A L

B A

“

UNCLASSIFIED

" SECURITY CLASSIPICATION OF Tv'" PAGE(When Dete Entered)

Bl LR ST

P

r-”l‘,;j‘ e A e

~ E‘ ‘~
'
Iy
LY
YO
s

I
LR ')

1o

Section

].o

2.0

3.0

4.0

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS , ,

LISTOFT”LES..............

INTRODUCTION« v s o
¥.1 Purpose
1.2 SCOPE « & & v ¢ v ¢ e 0 o o o o .
1.3 Quality Measurement in Perspective
1.4 Manual Organization c e e e e e
1.5 Recommended Use of Manual

PROCEDURES FOR INDENTIFYING SOFTWARE QUALITY

2.1 Irdtroduction

2.2 Procedures For ldentifying Important Quality Factors
2.2.1 Procedures s « ¢ 0 o
2.2.2 An Example of Factors Specification

2.3 Procedures for Identifying Critical Software Attributes .

2.3.1 Procedures .

. i

. . 1

REQUIREMENTS . .

¢« 8 o o v o s o

e« o o o * s @

2.3.2 Example of ldentifying Software Criteria
2.4 Procedures for Establishing Quantifiable Goals

2.4.1 Procedures . . .
2.4.2 Example of Metrics
2.5 Evaluation of Development Plan .

PROCEDURES FOR APPLYING MEASUREMENTS .
3.1 When to Apply Measurements . . .
3.2 Sources of Quality Information .

® & & * 8 s o

3.3 Application of the Measurements . . .

3.4 Techniques for Applying Measurements

PROCEDURES FOR ASSESSING THE QUALITY OF THE SOFTWARE PRODUCT .

4.1 Introduction
4.2 Inspector's Assessment

e 8 ® ® e ¢ @& & » B 8 o & s o

TABLE OF CONTENTS (Continued)

4.4 Use of Normalization Function to Assess Quality

4.5 Reporting Assessment Results

Section
4.3 Sensitivity Analysis
REFERENCES

ACCESSION for
NTIS White Section
00C Bulf Section [J

UNANNOUNCED o
JUSTY ICATION

oY e
DISTRISUTION/AVARABRATY

Dist___ AVAIL. “and/or SPERIL

A

e & 8 & % 5 B s % & B ¢ B s " s b 0 s " s 0 0 0

Page.
L] sz

.“
. 61

. 63

. .l T— -
v R ———..... o o SR
’ y
LIST OF ILLUSTRATIONS
Figure
Number Page
2.1-1 Framework ¢ ¢ ¢ 4 ¢ ¢ t ¢ e e o v s o s 0o oo oee.10
2.2-1 Cost vs Benefit Tradeoff14
3.1-1 Timing of Metrics Application 3
3.2-1 Typical Minimum Set of Document & Source Code 35
3.3-1 Application of the Metric Worksheets 37
4.4-1 Normalization Function for Flexibility During Design 59
4.4-2 Determmination of Level of Confidence60
LIST OF TABLES
Table
Number Page
1.3-1 How Software Metrics Complement Quality Assurance 5
1.5-1 Index of Three Approaches to Specifying and Assessing
Software Quality ¢ ¢ o L v o b bt e e e e e e e 8
: 2.2-1 Software Quality Requirements Survey Form12
'; 2.2-2 System Characteristics and Related Quality Factors 13
: 2.2-3 The Impact of Not Specifying or Measuring Software
S QUality FACTOPS .+ .« v v v v o v o v v v o v o e o en oo 15
R 2.2-4 Realtionships Between Software Quality Factors 16
L 2.2-5 Typical Factor Tradeoffso v v v v v v voo .17
£ 2.3-1 Software Criteria and Related Quality Factors 23
g 2.3-2 Criteria Definitions for Software Quality20
4 2.4-1 Quality Factor Ratings ¢ v ¢« v ¢ ¢ ¢ v s o v o s o 27
? 2.4-2 Quality Metrics Related to Factors 29
’ ; 4.4-1 Normalization Functionso v oo ov oo .. 57

SECTION 1
INTRODUCTION

1.1 PURPOSE

There has been an increased awareness in recent years of the critical
problems that have been encountered in the development of large scale.
software systems. These problems not only include the cost and schedule
overruns typical of development efforts, and the poor performance of the
systems once they are delivered, but also include the high cost of main-
taining the systems, the lack of portability, and the high sensitivity to

changes in requirements.

The government and 000 in particular, as customers of many large scale
software system developments, have sponsored many research efforts aimed
at attacking these problems. For example, the efforts related to the
development of a standard 00D programming language, software development
techniques, and development tools and aids all provide partial salution to
the above problems by encouraging a more disciplined approach to the devel-
opment of software and therefore a more controlled development process.

A related research thrust which has been recently funded by DOD is the
area of software metrics. The research in this area has resulted in the
development and evaluation of a number of metrics which measure various

attributes of software and relate to different aspects of software quality.

The potential of the software metric concepts can be realized by their
inclusion in software quality assurance programs. Their impact on a
quality assurance program is to provide a more disciplined, engineering
approach to quality assurance and to provide a mechanism for taking a

life cycle viewpoint of software quality. The benefits derived from their
application are realized in 1ife cycle cost reduction.

The purpose of this manual is to present a complete set of procedures and
guidelines for introducing and utilizing curvent software quality measure-
ment techniques in a quality assurance program associated with large scale

1

e i e

software system developments. These procedures and guidelines will identify:

1. How to identify and specify software quality requirements (Setting
Quality Goals).

2. How and when to apply software metrics (Applying Metrics), and

3. How to interpret the information obtained from the application of
the metrics (Making a Quality Assessment). L

1.2 SCOPE

This manual is based on the results of research conducted in support of

the United States Air Force Electronic Systems Division (ESD), Rome Air
Development Center (RADC), and the United States Army Computer Systems
Command's Army Institute for Research in Management Information and Computer
Science (USACSC/AIRMICS). While aspects of the technology of software
metrics require further research, those portions which can currently
provide benefit to a software quality assurance program are emphasized

in this manual. Guidelines and procedures for using the software

metrics are described. The guidelines and procedures are presented in

3 , such a way as to facilitate their application using this manual in a

‘ ;_ software development. A1l of the procedures are described as manual

Ty processes. however, where automated software tools could be used to

L compliment or enhance the process, the tools are identified. e

e g
iu;> 1.3 QUALITY MEASUREMENT IN PERSPECTIVE '
] ‘; The evolution during the past decade of modern programming practices,

¥- ~ structured, disciplined development techniques and methodologies, and

i " requirements for more structured, effective documentation, has in¢reased

the feasibility of effective measurement of software quality,

g,

However, before the potential of measurement techniques could be realized
a framework or model of software quality had to be constructed. An

Y R

established model, which at one level provides a user or management
oriented view of quality, is described in Section 2 of this manual in
the perspective of how it can be used to establish software quaiity
requirements for a specific application.

The actual measurement of software quality is accomplished by applying
software metrics (or measurements) to the documentation and source code
produced during a software development. These measurements are part of
the established model of software quality and through that model can

be related to various user-oriented aspects of software quality.

The metrics can be classified according to three categories:

e anomaly-detecting
e predictive
® acceptance

Anomaly-detecting metrics identify deficiencies in documentation or source
code. These deficiencies usually are corrected to improve the quality of
the software product. Standards enforcement is a form of anomaly-detecting
metrics.

Predictive metrics are measurements of the logic of the design and imple-
mentation. These measurements are concerned with form, strucure, density,
complexity type attributes. They provide an indication of the quality that
will be achieved in the end product, based on the nature of the application,
and design and implementation strategies,

Acceptance metrics are measurements that are applied to the end product
to assess the final compliance with requirements. Tests are a form of
acceptance-type measurements.

The measurements described and used in this manual are either anomaly-detect-
ing or predictive metrics. They are applied during the development phases

3

to assist in identification of quality problems early so that corrective
actions can be taken early when they are more effective and economical.

The measurement concepts complement current Quality Assurance and testing
practices. They are not a replacement for any current techniques utilized
in normal quality assurance programs. For example, a major objective of
quality assurance is to assure conformance with user/customer requirements.
The software quality metric concepts described in this manual provide a
methodology for the user/customer to specify life-cycle-oriented quality
requirements, usually not considered, and a mechanism for measuring if those
requirements have been attained. A function usually performed by quality
assurance personnel is a review/audit of software products produced during
a software development. The software metrics add formality and quantifica-
tion to these document and code reviews. The metric concepts also provide
a vehicle for early involvement in the development since there are metrics
which apply to the documents produced early in the development.

Testing is usually oriented toward correctness, reliability, and perfor -
mance (efficiency). The metrics assist in the evaluation of other qualities
like maintainability, portability, and flexibility,

A summarization of how the software metric concepts complement Quality
Assurance activities is provided in Table 1.3-1 based on the quality
assurance program requirements identified in MIL-S-52779,

A sarratall

AN gt 7 ronian Swripsl

e -

e

- .
ﬁ%‘ s é‘v“,"‘“%"v.‘.‘i!&s;r.m,4...,., R

§
i
y

Table 1.3-1

How Software Metrics Complement Quality Assurance

QUALITY ASSURANCE

PROGRAM REQUIREMENTS

IMPACT OF SOFTWARE QUALITY
METRIC CONCEPTS

Assure Conformance with
Requirements

Identify Software
Deficiencies

Provide Configuration
Management

Conduct Test

Provide Library Controls

Review Computer Pfogram
Design

Assure Software Documentation
Requirement Conformance

Conduct Reviews and Audits

Provide Tools/Techniques/
Methodology for Quality
Assurance

Provide Subcontractor Control

Adds software quality
requirements

Anomaly-detecting
metrics

No impact

Assists in evaluation of
other qualities

No impact

Predictive metrics

Metrics assist in evaluation of
documentation as well as code

Procedures for applying metrics
(in form of worksheets) formalizes
inspection process

This manual describes methodology
of using metrics

No impact

A1l of these concepts will be further explained and illustrated in the sub-
sequent sections of this manual.

B

1.4 MANUAL ORGANIZATION
The manual has been organized as a handbook for use in a quality assurance
program. The first section provides introductory information and how the

manual is to be used.

The second section defines the software quality model and describes a
methodology for using this model to establish software quality requirements
or goals for a software development,

The third section describes procedures for measuring the quality of the
software. These procedures cover what to measure, when to measure, and

how to measure.

The fourth section describes procedures for utilizing the information
provided by the measurements to make assessments of the quality of the
software and recommends what information to present to various personnel

involved in the development.

1.5 RECOMMENDED USE OF MANUAL

The software quality metric concepts can be applied at several levels,

In an acquisition manager/contractor environment, there are three approaches
for using the metric concepts. They are:

1. The acquisition manager's staff can apply metrics to the delivered
software procucts.

2. The development manager's staff can apply metrics to software
products and report them to the acquisition manager during
reviews.

3. An independent Quality Assurance contractor can apply metrics to
delivered software products and report them to the acquisition

manager,

WPNPRY. v ppoe S

N ol Yo

y . - ; ‘,4......,,_—-—_..___w,11

Within the software development project organization, there are.two
approaches for using the metric concepts. They are:

PRI L S~ N N

1. The quality assurance personnel will apply the metrics as an
independent assessment of the quality of the software being produced. 1

2. The development personnel can apply the metrics during walkthroughs
and reviews.

This manual is oriented toward those personnel who will be applying the b
concepts (either quality assurance or development personnel) and recommends !i
three approaches to.both establishing the quality requirements (Section 2)
and making a quality assessment (Section 4). The three approaches (an
index is provided in Table 1.5-1) in each area are presented in order of !
increasing formality of the relationship between quality requirements }
and the metrics, that is in order of increasing quantification. The order
of presentation also relates to an increasing requirement for experience :
with the concepts by the personnel applying the concepts. Thus, the E
approaches can be used as a phased implementation plan for the metric 1
concepts. It is recommended that the concepts be incrementally phased into .
the quality assurance organization's operation.

This manual should be utilized by the personnel applying the metric con- :
cepts. Additional information and definitions can be found in: 4

“Factors in Software Quality", 3 vols, RADC-TR-77-369, Nov 1977.[McCA77]

B "Software Quality Metrics Enhancements-Final Report", Vol I of this document

These references should be reau py the personnel applying the metrics to
familiarize them with the underlying concepts. They should also be referred
to periodically for definitions and explanation purposes,

Table 1.5-1 Index of Three Approaches to Specifying and Assessing
Software Quality

SPECIFYING

APPROACH APPLYING ASSESSING THE QUALITY OF
(LEVEL OF SOFTWARE QUALITY . MEASUREMENTS THE PRODUCT
FORMALITY)
1 Procedures for Procedures for the
identifying important inspector's assessment
uality factors PROCEDURES (Paragraph 4.2)
?Pcrlgraph 2.2)
FOR
2 Procedures for APPLYING Procedures for perforwing
{dentifying critica) THE sensitivity analysis
software attributes (Paragraph 4.3)
(Paragraph 2.3) METRIC
WORKSHEETS
3 Procedures for Procedures for use of
(SECTION 3) normalization function

Mel‘utifylng quantifiablel

s
?::ngnph 2.4)

(Paragraph 4.4)

SECTION 2
PROCEDURES FOR
INDENTIFYING SOFTWARE QUALITY REQUIREMENTS

2.1 INTRODUCTION

The primary purpose of applying Software Quality Metrics in a Quality
Assurance Program is to improve the quality of the software product.
Rather than simply measuring, the concepts are based on achieving a
positive influence on the product, to improve its development.

This section addresses the problem of identifying software quality require-
ments or goals. These requirements are in addition to the functional,
performance, cost, and schedule requirements normally specified for a
software deVelopment. The fact that the goals established are related to
the quality of the end product should, in itself, provide some positive
influence. Past research has shown that goal-directed system development
is effective. [WEIN72]

The vehicle for establishing the requirements is the hierarchical model of
software quality defined in [CAVA78]. This model, shown in Figure 2.1-1,
has at its highest level a set of software quality factors which are
user/management-oriented terms and represent the characteristics which
comprise software quality. At the next level for each quality factor, is
a set of criteria which are the attributes if present, that provide the
characteristics represented by the quality factors. The criteria, then,
are software-related terms. At the lowest level of the mode} are the
metrics which are quantitative measures of the software attributes defined

by the criteria.

The procedures for establishing the quality requirements for a particular
software system utilize this model and will be described as a three level
approach, the levels corresponding to the hierachical levels of the software

9

e

quality model. The first level establishes the quality factors that

are important. The second level identifies the critical software
attributes. The third level identifies the metrics which will be applied
and establishes auantitative ratings for the quality factors.

Once the quality requirements have been determined by following the
procedures described in the subsequent paragraphs, they must be trans-
mitted to the development team. In a formal acquisition manager/con-
tractor environment, the Request for Proposal (RFP) is the medium for
identifying these requirements. The results of following the procedures
should be incorporated in the RFP. If the development is being done
internally, the quality requirements should be documented in the same

form as the other .system requirements and provided to the development
team. Additionally, a briefing emphasizing the intent of the inclusion of
the quality requirements is recommended.

FRAMEWORK
FACTOR ~ MANAGEMENT-ORIENTED
VIEW OF PRODUCT QUALITY
- SOFTWARE-ORIENTED .
CRITERIA ATTRIBUTES WHICH

PROVIDE QUALITY

= QUANTITATIVE MEASURES

METRICS OF THOSE ATTRIBUTES

1

Figure 2.1

~u N [e T
e ot AR
. .
o e ¥,
Y RO Ny - - S

2.2 PROCEDURES FOR IDENTIFYING IMPORTANT QUALITY FACTORS

2.2.1 PROCEDURES

The basic ;ool to be utilized in identifying the important quality factors
will be the Software Quality Requirements Survey form shown in Table 2.2-1.
The formal definitions of each of the eleven quality factors are provided
on that form.

It is recommended that a briefing be provided to the decision makers using
the tables and figures which follow in this paragraph to solicit their
responses to the survey. The decision makers may include the acquisition
manager, the user/customer, the development manager, and the QA manager.
To complete the survey the following procedures should be followed:

la.

Considen Basic Characteristics of the Application
The software quality requirements for each system are unique
and are influenced by system or application-dependent character-

istics. There are basic characteristics which affect the
quality requirements and each software system must be evaluated

for its basic characteristics. Table 2.2-2 provides a list of
some of these basic characteristics. For example, if the system
is being developed in an environment in which there is a high
rate of technical breakthroughs in hardware design, Portability
should take on an added significance, If the expected life cycle
of the system is long, Maintainability becomes a cost-critical
consideration. If the application is an experimental system
where the software specifications will have a high rate of
change, Flexibility in the software product is highly desirable.
[f the functions of the system are expected to be required for a
Tong time, while the system itself may change considerably,
Resuability is of prime importance in those modules which
implement the major functions of the system, With the advent of
more computer networks and communication capabilities, more
systems are being required to interface with other systems

n

T ey T

DY FINEE

Table 2.2-1 Software Quality Requirements Survey Form

1. The 11 quality factors 1isted below have been isolated from the cur-
rent literature. They are not meant to be exhaustive, but to reflect
what is currently thought to be important. Please indicate whether
you consider each factor to be Very Important (VI), Important (I),
Somewhat Important (SI), or Not Important (NI) as design goals in the
system you are currently working on. '

BESPORSE FACTORS DEFINITION
CORRECTNESS Extent %0 which a program satisfies its

spacifications and fylfills the user's
mission cbjectives.

RELIABILITY Extent to which a program can be expected
: to perform its intended function with
required precision.

EFFICIENCY The amount of computing resources and code

required by a program to perform a function.
- INTEGRITY Extent to which access to software or data

by unauthorizad persons can be controlled.

USABILITY Effort required to learn, operats, prepare
input, and interpret output of & progres.

MAINTAINABILITY Effort required to locate and fix an ervor
in an operational progres.

TESTABILITY Effort requived to tast a program to {nsure

- it performs its intended functiom.

FLEXIBILITY Effort required to modify an operational
program.

PORTABILITY Effort required to transfer a program from

one hardware configuration smd/or software
systam environment to another.

REUSABILITY Extant to which a progrem can be used in other
applications - related to the packaging and
scope of the functions that programs perform.

INTEROPERABILITY Effort required to chuple one system with
another,

2. What type(s) of application are you current]y involved in?
!/

3. Are you currently in:

1. Development phase
2. Operations/Maintenance phase

4. Please indicate the title which most closely describes your position:

1. Program Manager

2. Technical Consultant

3. Systems Analyst

4. Other (please specify) N

the important quality factors.

and the concept of Interoperability is extremely important,
and other system characteristics should be considered when identifying

These

Table 2,2-2 System Characteristics and Related Quality Factors

CHARACTERISTIC

QUALITY FACTOR

o If human lives are affected

o Long life cycle

e Real time application

¢ On-board computer

application

e Processes classified
information

e Interrelated systems

3

-y

Reliability
Correctness
Testability

Maintainability
Flexibility
Portability

Efficiency
Reliability
Correctness

Efficiency
Reliability
Correctness

Integrity

Interoperability

S

. . - v
PN N e
& P e -

13

1b.

14

Considen Life Cyele ImpLications
The eleven quality factors identified on the survey can be
grouped according to three life cycle activities associated
with a delivered software product. These three activities are
product operation, product revision, and product transition.
The relationship of the quality factors to these activities

is shown in Table 2.2-3. This table also illustrates where
quality indications can be achieved through measurement and
where the impact is felt if poor quality is reélized. The
size of this impact determines the cost savings -that can be
expected if a higher quality system is achieved through the
application of the metrics. This cost savings is somewhat
offset by the cost to apply the metrics and the cost to
develop the higher quality software product as illustrated

in Figure 2.2-1.

. LIFE
COST TO DEVELOP CYCLE
HIGH QUALITY SOFTWARE SAVINGS AS

-5537-70 A RESULT OF
MEASURE QUALITY QUALITY

A

Figure 2.2-1
Cost vs Benefit Tradeoff

This cost to implement versus life cycle cost reduction relation-
ship exists for each quality factor. The benefit versus cost-to-
provide ratio for each factor is rated as high, medium, or low in
the right hand column of Table 2.2-3. This relationship and the
1ife cycle implications of the quality factors should be considered
when selecting the important factors for a specific system.

.~ i« < -

pazileaa si A3L{enb sood Jo 3oedwy saaym - X paanseaw 3q pnoys s4o03dey AL enb auaym - :AN3I931 &

wy
MO X X \V. \V/ ALIT18YYIdOYILN] »ﬂ
WNIO3W X v | v ALII8YSNIY ;
WNIO3W X \V4 \V4 ALITI8Y1¥0d i
i
q
WNIQ3W X X \V4 \V/ ALTTISIX3T4 M
HOIH X X X \V4 \V4 ALITIEYISIL ‘
HOIH X X Y 7 ALTIGYNIVINIVW
WIIG3N X X \V4 \V/ ALITIEVSN
MO X \V/ \V/ \V/ ALT¥93INI
MO : X \V4 Vs v AIN3IDI443 _
HOIH X X X Y, V. Y ALITISYIT3Y
HOIH X X X \V/ \V/ \V4 SSINLIFUU0D
SU0LIv4
NOILISNWYL NOISIAZY |NOIlvy3do | 1S31 |sns3a |NoIsia SISATWNY | 3eum
301A0Ud WSas | % SR ™ J1or0-3a13
0L 1502 . 3009
a3AVS 150D
a3173dx3 INIWAOTIA3A-LS0d 1o:<3<>m ININdOT3A30

sJ4030e4 Ajt[enDh auem3yoS buruansesy 40 buihyidads JoN jo 3oedwl 3yl £-2°2 alqel

T e

R G T e -
R, !ﬂ“‘ﬂ”’wﬁ.&w«ﬂk& T
P T A N 3

A Pe LS

lc. Perform Tradeofds Among the Tentative List of Quality Factoas,
As a result of steps la and 1b, a tentative list of quality
factors should be produced. The next step is to consider the
interrelationships among the factors selected, Table 2,2-4 and
2.2-5 can be used as a quide for determing the relationships
between the quality factors. Some factors are synergistic while
others conflict. The impact of conflicting factors is that
the cost to implement will increase, This will lower the
benefit to cost ratio described in the preceeding paragraph, '%

Table 2.2-4 Relationships Between Software Quality Factors

AS? &
& &
FACTORS S I~
e"% S
CORRECTNESS @g? §
Ay
RELIABILITY e 4«*" &
S E/) & ;i
EFFICIENCY N $ A ¥
¥/ & i
INTEGRITY Py ¥$ S/ a)
N S ‘
R
USABILITY Ol0|elo *,Né ;éy § §
MINTAIMBILITY | | O | @ ®) § Q
<& W]
TESTABILITY Ol|0|® o)le) é"’\ L
\V
) FLEXIBILITY oJloll IX leolkelle) g §
PORTABILITY o olo fp“
1 B REUSABILITY o0 e olololo \«.
. INTEROPERABILITY CIN) o)
\, LEGEND
If a high degree of quality is present for factor,
] what degree of quality is expected for the other:
g QO = High Q@ -
o ' Blank = No relationship or application dependent
}

A

AL eI

Table 2.2-5 Typical Factor Tradeoffs

INTEGRITY The additional code and processing required to
'S control the access of the software or data
EFFICIENCY - usually lengthens run time and require additional
storage.
USABILITY The additional code and processing required to ease
Vs an operator's tasks or provide more usable output
EFFICIENCY usually lenghten run time and require additional
storage.
MAINTAINABILITY Optimized code, incorporating intricate coding
' techniques and direct code, always proviles
EFFICIENCY problems to the maintainer, Using modularity,
instrumentation,and well commented high level code to
increase the maintainability of a system usually
increases the overhead resulting in less efficient
operation.
TESTABILITY The above discussion applies to testing.
VS
EFFICIENCY
PORTABILITY The use of direct code or optimized system software
' or utilities decreases the portability of the
EFFICIENCY system.
FLEXIBILITY The generality required for a flexible system
'S increases overhead and decreases the efficiency
EFFICIENCY of the system.
REUSABILITY The above discussion applies to reusability.
' \
EFFICIENCY .
B =
INTEROPERABILITY A&Ain the added overhead for conversion from
Vs standard data representations, and the use of
EFFICIENCY interface routines decreases the operating
efficiency of the system.
FLEXIBILITY Flexibility requires very general and flexible
VS data structures. This increases the data security
INTEGRITY problem.
REUSABILITY As in the above discussion, the generality required
Vs by reusable software provides severe protection
INTEGRITY problems.
INTEROPERABILITY Coupled systems allow for more avenues of access and
ERL) different users who can access the system. The
INTEGRITY potential for accidental access of sensitive data is
increased as well as the opportunities for deliberate
access. Often, coupled systems share data or soft-
ware which compounds the security problems as well.
REUSABILITY The generality required by reusable software makes
') providing error tolerance and accuracy for all
RELIABILITY cases more difficult.

17

1d.

le.

Identify Most Impontant Quality Factors

Based on la through 1c, a 1ist of quality factors considered to
be important for the particular system should be compiled. The
list should be organized in order of importance. A single
decision maker may choose the factors or the choice may be made
by averaging several survey responses. The definitions of the
factors chosen should be included with this 1ist.

Provide Explanation for Choice

The rationale for the decisions made during steps la through 1c
should be documented.

2.2.2 AN EXAMPLE OF FACTORS SPECIFICATION

To illustrate the application of these steps, consider a tactical in-
ventory control system. The inventory control system maintains inven-
tory status and facilitates requisttioning, reordering, and issuing
of supplies to Army units in combat situations. The planned life

of the system is ten years.

Each step described previously will be performed with respect to the
tactical inventory control system.

la.

18

Considen Basic Characternistics of the Application
Utilizing table 2.2-2 and considering the unique char-
acteristics of the tactical inventory control system
resulted in the following:

Characteristic Related Quality Factor
Critical Support for Reliability

Combat Units Cormnectness

Long Life Cycle Maintainability

With Stable Harndware
And So {tware Requirements

Utitized By Aumy Supply Usability
Personnel

1b.

1c.

1d.

Intergaces with Inventory Interoperability
Systems At Other Aumy P
Echelons

Considen Life Cycle Imolications

Of the five quality factors identified in la, all provide
high or medium Tife cycle cost benefits according to
Table 2.2-3.

FACTORS COST BENEFIT RATIO
ReLiablity High

Connectness High
Maintainability High

Usabitity Medium
Interoperability High

Pergorm Trade 0§48 Among Factorns

Using Table 2.2-4, there are no conflicts which need to be
considered.

Identidy Most Impontant Quality Factons

Using the survey form, Table 2.2-1, and the guidance
provided by steps 1a through 1c, the following factors
are identified in order of importance. The definitions

are provided.

CORRECTNESS -Extent to which a program satisfies {ts
specifications and fulfills the user's
mission objectives.

RELIABILITY -Extent to which a program can be expected
to perform its intended function with

required precision.
USABILITY -Effort required to learn, operate, pre-

pare input, and interpret output of a
program,

19

MAINTAINABILITY -Effort required to locate and fix an
error in an operational program.

INTEROPERABILITY -Effort required to couple one system
with another.

le. Provide Explanation for Cheice
CORRECTNESS -System performs critical supply function

RELIABILITY -System performs critical supply functions
in field environment

USABILITY ~System will be used by military personnel
with minimum computer training

MAINTAINABILITY -System life cycle is projected to be 10
years and will operate in the field where
military personnel will maintain.

INTEROPERABILITY -System will interface with other supply
systems at higher levels of command

2.3 PROCEDURES FOR IDENTIFYING CRITICAL SOFTWARE ATTRIBUTES

2.3.1 PROCEDURES

The next level of identifying the quality requirements involves proceeding
from the user-oriented quality factors to the software-oriented criteria.
Sets of criteria, which are attributes of the software, are related to the
various factors by definition. Their identification is automatic and
represents a more detailed specification of the quality requirements.

2a. Identify Critical Software Attrnibutes Required
Table 2.3-1 should be used to identify the software attributes
associated with the chosen critical quality factors.

20

Table 2.3-1 Software Criteria and Related Quality Factors

FACTOR SOFTWARE CRITERIA FACTOR SOFTWARE CRITERIA
CORRECTNESS TRACEABILITY FLEXIBILITY MODULARITY
CONSISTENCY GENERALITY
COMPLETENESS EXPANDABILITY
RELIABILITY ERROR TOLERANCE TESTABILITY SIMPLICITY
CONSISTENCY MODULARITY
ACCURACY INSTRUMENTATION
SIMPLICITY SELF-DESCRIPTIVENESS
EFFICIENCY STORAGE EFFICIENCY PORTABILITY MODULARITY
EXECUTION EFFICIENCY SELF~DESCRIPTIVENESS
MACHINE INDEPENDENCE
INTEGRITY ACCESS CONTROL SOFTWARE SYSTEM
ACCESS AUDIT INDEPENDENCE
USABILITY OPERABILITY REUSABILITY GENERALITY
TRAINING MODULARITY
COMMUNICATIVENESS SOFTWARE SYSTEM
INDEPENDENCE
MAINTAINABILITY § CONSISTENCY INTEROPERABILITY MODULARITY
COMMUNICATION
COMMONALITY

DATA COMMONALITY

21

! 2b. Provide Deginitions \
The definitions in Table 2.3-2 should also be provided as part 1
of the specification.

b Table 2.3-2 Criteria Definitions for Software Quality
Factors

CRITERION OEFINITION

L

TRACEABILITY Those attributes of the software that provide
a thread from the requirements to the imple-
mentation with respect to the specific
development and operational environment.

COMPLETENESS Those attributes of the software that
) provide full implementation of the functions
regquired.
3 CONSISTENCY Those attributes of the software that

provide uniform design and implementation
techniques and notation.

ACCURACY Those attributes of the software that
provide the required precision in calcula-
tions and outputs.

1 ERROR TOLERANCE | Those attributes of the software that
provide continuity of operation under
nonnominal conditioms.

SIMPLICITY Those attributes of the software that
provide implementation of functions in the
most understandable manner. (Usually
avoidance of practicas which increase

complexity.)
A MODULARITY Those attributes of the software that
: provide a structure of highly independent
modules. '
GENERALITY Those attributes of the software that '

provide breadth to the functions perforwed.

EXPANDABILITY Those atiributes of the software that
provide for expansion of data storage
requiremsnts or computational functions.

- INSTRUMENTATION | Those attributes of the software that
.. provide for the measurement of usage or
1dentification of errors.

B T

SELF- Those attributes of the software that
DESCRIPTIVENESS | provide explanation of the implementation
of a function.

e

st . amte Dl L

Table 2.3-2 Criteria Definitions for Software Quality Factors

SUN U PO P PR S

JPERABILITY Those attributes of the software that
determine operation and procedures con-
cerned with the operation of the software.;

(Continued)
1
CRITERION DEFINITION)
1

EXECUTION Those attributes of the software that i

EFFICIENCY provide for minimum processing time. ‘

STORAGE Those atsributes of tne software that | i

EFFICIENCY provide for minimum storage requirements !

. during operation. :

ACCESS CONTROL Those attributes of the software that i P
provide for control of the access of ‘l |
software and data. i |

ACCESS AUDIT Those attributes of the software that |
provide for an audit of the access of !
software and data.)

TRAINING Those attributes of the software that
provide transition from current operation ;
or initial familiarization. |

COMMUN[CATIVENESS Those attridutes of the software that
provide useful inputs and outduts wnich
can be assimilated. i

SOFTWARE SYSTEM Thase attributes of the software that ;
[NOEPENDENCE determine its dependency on the software |

environment (operating systems, utilities,
tnput/output routines, etc.) {

S MACKINE Those attributes of the softwars that !
Ly INDEPENDENCE daterming its dependency on the hardware
~i R systam., !
‘ '\'.; COMMUNICATTONS Those attributes of the software that
b COMMONAL [TY provide the use of standard protocols
and interfacs routines.
B DATA COMMONALITY Those attributes of the software that
provide the use of standard data repree
I sentations. i
Lo -, CONC [SENESS Those attributes of the software that |
' provide for implementation of a function
; | #ith a mintmm amount of code.]

23

SRR R C VG .

A

2.3.2 EXAMPLE OF IDENTIFYING SOFTWARE CRITERIA
Continuing with the example of paragraph 2.2.2, the software criteria
for the identified quality factors would be chosen.

2a.

2b.

ldentify Critical Software Attrnibutes

Using the relationships provided in Table 2.3-1, the following
criteria would be identified.

CRITERIA RELATED FACTOR
TRACEABILITY.
CONSISTENCY —————— CORRECTNESS
COMPLETENESS)
ERROR TOLERANCE——__\
ACCURACY. \——— RELIABILITY
SIMPLICITY
CONCISENESS
MODULARITY \-—mmmmnm

SELF-DESCRIPTIVENESS
OPERABILITY.

TRAINING USABILITY
COMMUNTCATIVENESS — \
COMMUNICATIONS COMMONALITY —————— INTEROPERASILITY

OATA COMONALITY _______—

Provide Deginitions

The definitions for each of these criteria would be provided
also.

-
t

o

2.4 PROCEDURES FOR ESTABLISHING QUANTIFIABLE GOALS

2.4.1 PROCEDURES

The last level, which is the most detailed and quantified, requires precise
statements of the Tevel of quality that will be acceptable for the software
product.

Currently, the underlying mathematical relationships which allow measurement
at this level of precision do not exist for all of the quality factors. The
mechanism for making the precise statement for any quality factor is a rating
of the factor. The underlying basis for the ratings is the effort or cost
required to perform a function such as to correct or modify the design or
program. For example, rating for maintainability might be that the average
time to fix a problem should be five man-days or that 90% of the problem
fixes should take less than six man-days. This rating would be specified

as a quality requirement. To comply with this specification, the software
would have to exhibit characteristics which, when present, given an indication
that the software will perform to this rating. These characteristics are
measured by metrics which are inserted into a mathematical relationship to
obtain the predicted rating.

In order to choose ratings such as the two mentioned above, data must be
available which allows the decision maker to know what is a "good rating” or
perhaps what is the industry average. Currently there is generally a lack
of good historical data to establish these expected levels of operations and
maintenance performance for software. There are significant efforts under-
way to compile historical data and derive the associated performance statis-
tics [DUVA76]. Individual software development organizations and System
Program Offices should attempt to compile historical data for their particular
environment. Any environment-unique data available should be used as a
check against the data provided as guidelines in this manual. The data
utilized in this section is based on experiences applying the metrics to
several large command and control software systems and other experiences
reported in the 1iterature.

25

JURY FEAPRPP RS . N

O

PRIRDY

3a.

3c.

EX VIR

Specify Rating for Each Quality Factor

After identification of the critical quality factors, specific perform-
ance levels or ratings required for each factor should be specified.
Table 2.4.1 should be used as a guideline for identifying the ratings.
for the particular factors. 'Note that mathematical relationships have
not been established for some of the factors. In those cases, it is
advisable not to levy requirements for meeting a specific quality
rating but instead specify the relative importance of the quality"
factor as a development goal. Not that the reliability ratings are
provided in terms familiar to traditional hardware reiiability. Just

as in hardware reliability there are significant differences between
ratings of .9 and .99.

Identify Specific Metrics to be Applied
The next step or an alternative to 3a is to identify the specific metrics

. Which will be applied to the various software products produced during

the development. The Metric Worksheets described ipn Section 3 can be
used for this purpose or Table 2.4-2 can be used to'identify the metrics
and reference can be made to RADC-TR-79- [MCCA79] where definitions of
the metrics are provided.

Specification of Metric Threshotd Values

In 1ieu of specifying qual?ty‘ratings or in addition to the ratings,
specific minimum values for particular metrics may be specified. This
technique is equivalent to establishing a standard which is to be adhered
to. Violations to the value established are to be reported. Typical
values can be derived by applying the metrics to software products
developed in a particular environment or by looking at the scores re-
ported in [MCCA77] and [MCCA79]. When establishing these threshold
values based on past project data, projects which have been considered
sucessful, i.e., have demonstrated good characteristics during their
life cycle should be chosen. For example, a system which has been
relatively cost-effective to maintain over its operational history
should be chosen to apply the metrics related to maintainability and
establish threshold values.

- - ———— .

Table 2.4-1 Quality Factor Ratings
QUALITY FACTOR RATING EXPLANATION RATING GUIDELINES
RELIABILITY * Rating is in terms of the RATING |.9].98*+1 .99 | .999
number of errors that occur
after the start of formal ERRORS
testing. 00 LOC |10 2 1 |
Rating = 1- Number of Errors
Number of Lines of
source code exclud-
ing comments
MAINTAINABILITY * Rating is in terms of the RATING .3 |.5 JI* 1.9
average amount of effort
required to locate and fix AVERAGE | 7 5 3 1
an error in an operational EFFORT
program. (MAN
Rating = 1-.1 (Average number DAYS)
of man days
per fix)
PORTABILITY * Rating is in terms of the RATING |.25].5** |.75 |.9
effort required to convert a
program to run in another % OF 75 | 50 25 10
L environment with respect ORIGINAL
1 to the effort required to EFFORT
o orginally implement the
T program.
e Rating = 1- Effort to Transport
A tffort to Implement
_‘ FLEXIBILITY * Rating is in terms of the RATING 31.5* .7 |.9
3 Y average effort required to
Iy : extend a program to include AVERAGE | 14 {10 6 2
, . other requirements. EFFORT
Rating = 1-.05 (Average number (mcs)
C of man days to
change)
! .
) : (Continued)
. . x
¥ {
: . 27
NE !
‘ i

Table 2.4-1 (Continued)

QUALITY FACTOR RATING EXPLANATION

CORRECTNESS The function which the software is to perform is
incorrect. The rating is in terms of effort
required to implement the correct function.

EFFICIENCY The software does not meet performance (speed,
storage) requirements. The rating is in terms
of effort required to modify software to meet
performance requirements.

INTEGRITY The software does not provide required security.
The rating is in terms of effort required to
impiement proper levels of security.

USABILITY There is a problem related to operation of the 1
software, the user interface, or the input/]

output. The rating is in terms of effort

f ;equ;red to improve human factors to acceptable i

evel. i

TESTABILITY The rating is in terms of effort requried to test T
changes or fixes.

REUSABILITY The rating is in terms of effort required to use
software in a different application.

INTEROPERABILITY The rating is in terms of effort required to couple !
the system to another system.

NOTES

. * Data collected to date provides some basis upon which to allow
quantitative ratings for these quality factors. These ratings
should be modified based on data collected within a specific
development environment. Data has not been collected to support
ratings of the other quality factors.

** Indicates rating which might be considered current industry average.

b b

badia-i o

Table 2.4-2 Quality Metrics Related to Factors

FACTOR

METRICS *

CORRECTNESS

TRACEABILITY CHECK (TR.1)
COMPLETENESS CHECKLIST (CP.1)
CONSISTENCY CHECKLISTS (CS.1-2)

RELIABILITY

ACCURACY CHECKLIST (AY.1)
ERROR TOLERANCE CHECKLISTS (ET.1-S)
DESIGN STRUCTURE MEASURE (ST.1)
STRUCTURED PROGRAMMING CHECK (SI.2)
COMPLEXITY MEASURE (SI.3)

CODING SIMPLICITY MEASURE (SI.4)

EFFICIENCY

PERFORMANCE REQUIREMENTS CHECK (EE.1)
ITERATIVE PROCESSING MEASURE (EE.2)
DATA USAGE MEASURE (EE.3)

STORAGE EFFICIENCY MEASURE (EE.4)

INTEGRITY

ACCESS CONTROL CHECKLIST (AC.1)
ACCESS AUDIT CHECKLIST (AA.1)

USABILITY

OPERABILITY CHECKLIST (OP.1)
TRAINING CHECKLIST (TR.1)

USER INPUT INTERFACE MEASURE (CM.1)
USER OUTPUT INTERFACE MEASURE (CM.2)

MAINTAINABILITY

CONSISTENCY CHECKLISTS (CS1-2)

DESIGN STRUCTURE MEASURE (SI.1)

STRUCTURE LANGUAGE CHECK (SI.2)

COMPLEXITY MEASURE (SI.3

CODING SIMPLICITY MEASURE (SI.4)

STABILITY MEASURE (MO,1)

MODULAR INPLEMENTATION MEASURE (M0.2)

QUANTITY OF COMMENTS (SD.1)

EFFECTIVENESS OF COMMENTS MEASURE (SD.2)

DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE
MEASURE (SD.3)

CONCISENESS MEASURE (C0.1)

* Acronym references in parentheses relate to definitions in [MCCA79].

{Continued)

Table 2.4-2 Quality Metrics Related to Factors (Continued)

FACTOR

METRICS *

FLEXIBILITY

MODULAR IMPLEMENTATION MEASURE (M0.2)

INTERFACE MEASURE (GE.1)

GENERALITY CHECKLIST (GE.2)

DATA STORAGE EXPANSION MEASURE (EX.1)

EXTENSIBILITY MEASURE (EX.T)

QUANTITY OF COMMENTS (SD.1)

EFFECTIVENESS OF COMMENTS MEASURE (SD.2)

DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE
MEASURE (SD.3)

TESTABILITY

DESIGN STRUCTURE MEASURE (SI.1)

STRUCTURED PROGRAMMING CHECK (SI.2)

COMPLEXITY MEASURE (SI.3)

CODING SIMPLICITY MEASURE (SI.4)

STABILITY MEASURE (MO.1)

MODULAR IMPLEMENTATION MEASURE (MO0.2)

TEST CHECKLISTS (IN.1-3)

QUANTITY OF COMMENTS (SD.1)

EFFECTIVENESS OF COMMENTS MEASURE (SD.2)

DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE
MEASURE (SD.3)

PORTABILITY

MODULAR IMPLEMENTATION MEASURE (M0.2)

QUANTITY OF COMMENTS (SD.1)

EFFECTIVENESS OF COMMENTS MEASURE (SD.2)

DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE
MEASURE (SD,3)

SOFTWARE SYSTEM INDEPENDENCE MEASURE (SS.1)

MACHINE INDEPENDENCE MEASURE (MI.1)

REUSEABILITY

MODULAR IMPLEMENTATION MEASURE (M0.2)

INTERFACE MEASURE (GE.1)

GENERALITY CHECKLIST (GE.2)

QUANTITY OF COMMENTS (SD.1)

EFFECTIVENESS OF COMMENTS MEASURE (SD.2)

DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE
MEASURE (SD,3)

SOFTWARE SYSTEM INDEPENDENCE MEASURE (SS.1)

MACHINE INDEPENDENCE MEASURE (MI.1)

INTEROPERABILITY

MODULAR IMPLEMENTATION MEASURE (M0.2)
COMMUNICATIONS COMMONALITY CHECKLIST (CC.1)
DATA COMMONALITY CHECKLIST (DC.1)

30

PN P

2.4.2 EXAMPLE OF METRICS ‘ 1
Using the example of paragraph 2.2.2, the quality ratings would be specified
as follows.

3a Specific Quality Facton Ratings
Ratings for two of the five important quality factors can be
established using Table 2.4-1.

Reliability .99 Require less than one error
per 100 lines of code to be
detected during formal testing.

Maintainability .8 Require 2 man days as an average
level of maintenance for correcting
an error.

These ratings can also be established at each measurement period during
the development as follows:

B%Q POR CDR IMPL ACCEPTANCE
ReLiability . w8 NN .9 .99
Maintainability . .7 .8 .8 .8

The progressively better scores are required because there is

more detailed information in the later phases of the development
to which to apply the metrics and more confidence in the metrics' 4
indication of quality. This is analagous to the concept of
reliability growth. For other quality factors see step 3b.

3b Identify Specific Metrics to be Applied
The metrics to be applied to assess the level of each important
quality factor are chosen from Table 2.4-2. A subset is shown
on the following page:

3 |

i e it AN 1 ;Y. o D S

Accuracy Checklist
Error Tolerance Checklist

/

RELIABILITY

\

Compiexity Measure

Coding Simplicity Measure
Modular Implementation Megg;;;:§§§§===
. . = JAINTAINABILITY

Quantity of Comments__._—/_‘

Effectiveness of Comments

Traceability Check —
Completeness Checklist____——=— CORRECTNESS

Consistency Checklists__—"

Operability Checklist.___.__—_
: : USABILITY
User interface Checklist;_,////P—_

Communications Commonality ———= INTEROPERABILITY
Data Commonality

Specify Threshold Values

The following threshold values are established based on past
experience and to provide a goal for the quality factors that
were not given ratings. They were derived by determining the
average scores of past applications of the metrics.

Quantity of Comments .2
Effectiveness of Comments .6
Complexity Measure .1
Traceability Check .9
Completeness Checklist 1.
Consistency Checklist .9
Operability Checklist .6
Training Checklist .75
User Interface Checklist .75
Communications Commonality .8
Data Commonality .8

o

2.5 EVALUATION OF DEVELOPMENT PLAN

In an acquisition environment the initial benefits of utilizing the quality
metrics concepts are realized in the source selection process. The acquisi-

tion office should include the quality goals established as software requirements

in the Request for Proposal. The software attributes should be also identi-
fied as required characteristics in the software and the metrics as the
vehicles for assessing their existence. The bidders should be required to
describe how they plan to provide those characteristics in the software.
This discussion should be provided in the portion of the proposal that
describes their development plan.

The description of the biddert approach for including the required attributes
in the software not only forces acknowledgement of these additional require-
ments but also provides additional information with which to evaluate the
bidders during source selection.

33

SECTION 3
PROCEDURES FOR APPLYING MEASUREMENTS

3.1 WHEN TO APPLY MEASUREMENTS

The software quality metrics are oriented toward the availability of
information about the software system as it progresses in its development.
In the early phases of the development, the metrics are applied to the
documentation produced to describe the concepts of the system and its
design. In the later phases the metrics are oriented not only to documen-
tation but also to the source code that is available,

Thus, the application of the metrics logically follows the phased devel-
opment of software. The first application of the metric is at the end
of the requirements analysis. The next application is during design.

If the design phase has been decomposed into a preliminary design phase
and a detailed design phase, the metrics should be applied at the end
of each of those phases. During implementation, i.e. coding the metrics
oriented toward the source code should be applied periodically to assess
the quality growth exhibited as the code evolves. The timing of the
application of the metrics is shown in Figure 3.1-1. The application of
the metrics can be done during or just proir to formal customer reviews
(as shown in Figure 3.1-1) or during equivalent activities conducted by
the development personnel.

REQUIREMENTS PROGRAMMING TEST

DESIGN AND
ANA|
LYSIS CHECKOUT INTEGRATION

ML

REQUIREMENT -
REVIEW PERIODIC
APPLICATION
OURING
CODING

AND
TESTING

PREL [MINARY
DESIGN
REVIEW

CRITICAL
DESIGN
REVIEW

VAL IDATION
AND
ACCEPTANCE
TEST
REVIEW

ACCEPTANCE

34

Figure 3.1-1 Timing of Metrics Application

3.2 SOQURCES OF QUALITY INFORMATION

A typical minimum set of documents and source code are shown in Figure 3.2-1.
These documents plus the source code are the sources of the quality infor-

mation derived from the application of the metrics.

4 PROGRAMMING TEST
EﬁggigggsNTs DESIGN AND AND
CHECKOUT INTEGRATION
T
REQUIREMENTS
SPEC
A
PRELIMINARY
DESIGN
SPEC
USER'S MANUAL
(DRAFT)
JAN
DETAILED
DESIGN
SPEC A
Xﬁﬁ’ PLAN SOURCE CODE
PROCEDURES DETAILED
DESIGN
SPEC
UPDATED Z&
TEST
RESULTS

Figure 3.2-1

USER'S MANUAL

(FINAL)

-

3.3 APPLICATION OF THE MEASUREMENTS
The vehicle for applying the software metrics are the metric worksheets

contained in this section of the manual. The procedure is to take the
available documentation/source code, apply the appropriate worksheet
(as shown in Figure 3.3-1), and translate the measurements to metric

scores.

The worksheets are organized as follows. In the header portion of the work-
sheet is the worksheet identification which (1) identifies the phase

during which the worksheet is initially used and the level (system

or module) to which the worksheet applies, (2) provides identification of
the system and the module to which the worksheet has been applied, and (3)
prevides identification of the date and the inspector who took the measure-
ments. The remaining portion of each worksheet contains the measurements to
be taken and questions to be answered. These measurements and questions are
organized by quality factors identified in parentheses, Each logical

group of measurements and questions have a group identifier and are
bordered. When applying the measurements, only those in the groups that
relate to the quality factors chosen as quality goals should be applied.

Metric Worksheet # 1 and # 2a contain system level metrics and are applied
at the system or major subsystem (CPCI) level to the System Requirements
Specification, the Preliminary Design Specification, the User's Manual, and
the Test documentation.

Metric Worksheets # 2b and #3 contain module level metrics and are applied
to each module's design (Detailed Design Specification) and implementation
(source code).

sefinitions and interpretations of the individual measurements contained
in the worksheets are found in Appendix B of the first volume. Next to
each measurement element on the worksheets is an index into the metric
table in Appendix B.

.l

As shown in Figure 3.3-1, the worksheets may be applied several times during
the development. For example, Metric Worksheet #2b which is applied

for each module to the detailed design document during design is also
applied to the detailed design document after it has been updated to

reflect the actual implementation. The worksheet does not have to be
totally reapplied. The successive applications of any worksheet should
require considerably less effort than the original application, The
successive applications should involve simply updates to reflect the

updates made to the system since the previous application of the worksheet.

DEVELOPMENT PHASES]

TEST
REQUIREMENTS DESIGN IMPLEMENTATION | AND
ANALYSIS INTEGRATION
hd L]
;
REQUIREMENTS
SPEC
METRIC
PREL IMINARY
woRKSHEET - PRCLLY
SPEC
USER'S MANUAL
(DRAFT)
P i DETAILED
DESIGN
e o
. WORKSH
t 2 SOURCE
TEST COLE
mﬂ o:'sr?n.m
PROCEDIRES obpc TEST
USER'S MANUAL f
(FINAL)
METRIC
£ WORKSHEET
"
METRIC METRIC WORKSHEET 4
VORKSHEET 3
]
WDATE METRIC MORKSHEET HETRIC VORKSHEET
f 2
UPDATE .
B Figure 3.3-1 Application of the Metric Worksheets

37

METRIC WORKSHEET } SYSTEM DATE

REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME : INSPECTOR:

I.

COMPLETENESS (CORRECTNESS, RELIABILITY)

Number of major functions identified (equivalent to CPCI). CP.}

R

2. Are requirements itemized so that the various functions to be performed, their
inputs and outputs, are clearly delineated? CP.1(1) VIN
3. Number of major data references. CP.1(2)
4. How many of these data references are not defined? CP,1(2)
5. How many defined functions are not used? CP.1(3)
6. How many referenced functions are not defined? CP.1(4)
7. How many data references are not used? CP.1(2)
8. How many referenced data references are not defined? CP.1(6)
9. Is the flow of processing and all decision points in that flow described? CP.1(5] ;4] N
10. How many problem reports related to the requirements have been recorded? cP.1(7)
11. How many of those problem reports have been closed (resolved)? CP.1(7)
I1. PRECISION (RELIABILITY)
1. Has an error analysis been performed and budgeted to functions? AY.1(1) YIN
2. Are there definitive statements of the accuracy requirements for inputs,
outputs, processing, and constants? AY.1(2) N
3. Are there definitive statements of the error tolerance of input data? ET.2(1) N
4. Are there definitive statements of the requirements for recovery from
computaticnal failures? ET.3(1) Y] N
5. Is there a definitive statement of the requirement for recovery from hardware
faults? ET.4(1) YIN
6. Is there a definitive statement of the requirements for recovery from device
errors? ET.5(1) YI{N
IIT1. SECURITY (INTEGRITY)
1. Is there a definitive statement of the requirements for user input/output viN
access controls? 1)
2. Is there a definitive statement of the requirements for data base access vl x
controls? AC.1(2)
3. Is there a definitive statement of the requirements for memory protection vy I N
across tasks? AC.1(3)
4. Is there a definitive statement of the requirements for recording and Y1 N
reporting access to system? AA.1(1)
5. Is there a definitive statement of the reauirements for immediate vyl N
indication of access violation? AA.1(2)

o o o H sy RL W‘“‘W o
" vl I

METRIC WORKSHEET 1 SYSTEM DATE

REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME : INSPECTOR:

————————

IV. HUMAN INTERFACE (USABILITY)

1. Are all] steps in the operation described (operations concept)? OP.1(1) Y| N
2. Are all error conditions to be reported to operator/user identified and
the responses described? OP.1(2) Y N
3. Is there a statement of the requirement for the capability to interrupt
operation, obtain status, modify, and continue processing? 0P.1(3) N
4. Is there a definitive statement of requirements for optional inputcﬂe?Zgg N
5. Is there a definitive statement of requirements for optional output ﬁe?i;? Y N
' cMm.2(7
6. Is there a definitive statement of requirements for selective output Y N
control? CM.2(1)
V. PERFORMANCE (EFFICIENCY)
|
1. Have performance requirements (storage and run time) been identified for ! :
the functions to be performed? EE.1 |y . N
1 N
VI. SYSTEM INTERFACES (INTEROPERABILITY)
1. Is there a definitive statement of the requirements for communication with
other systems? CC.1(1) Y N
2. Is there a definitive statement of the requirements for standard data
representations for communication with other systems? DC.1{1) Y N

VII. INSPECTOR'S COMMENTS

Make any general or specific comments that relate to the quality observed while

applying this checklist.

3

METRIC WORKSHEET 2a SYSTEM DATE:
DESIGN/SYSTEM LEVEL NAME : INSPECTOR;

I. COMPLETENESS (CORRECTNESS, RELIABILITY)

1. Is there a matrix relating itemized requirements to modules which implement Y N
those requirements? TR.1 2\
2. How many major functions (CPCIS) are identified? CP.}
3. How many functions identified are not defined? CP.1(2)
‘4, How many defined functions are not used? CP.1(3))
5. How many interfaces between functions are not defined? cP.1(6)
6. Number of total problem reports recorded? CP.1(7)
7. Number of those reports that have not been closed (resolved?) CP.1(7)
8. Profile of problem reports: {number of following types) g. Eomputational
3 . Logic
I1. PRECISION (RELIABILITY) 5 é!iﬁ‘ﬁiﬁﬁ??ﬁg
i 1. Have math library routines to be used been ?: ggéi{;ﬁi:tiggport
checked for sufficiency with regards to YI[N g. Routine/Routine
accuracy requirements? AY.1(3) b RLEE?::?gsstem
2. Is concurrent processing centrally] Interface .
controlled? ET.1(1) VIM| 3o Tape Processing
3. How many error conditions are reported k. data base interface
by the system? ET.1(2) Mg o e ested
4. How many of those errvors are automatically w. E;ggg% 3::?able
fixed or bypassed and processing continues? * .
How many, t:quire opethor inteiventi%;?lfz) Rdefinitlon
6. Are provisions for recovery from hardagié(z) . Recurrent ?rrors
ar q. Documentation
faults provided? ET.4(2) r. Requirement
7. Are provisions for recovery from device compliance
errors provided? ET.5(2) VN :: gg:gg:g;s
u. Hardware
£ III STRUCTURE (RELIABILITY, MAINTAINABILITY,TESABILITY,
r . PORTABILITY, REUSABILITY, INTEROPERABILITY)
i 1. Is a hierarchy of system, identifying all modules in the system provided? Y N
2. Number of Modules SI.1(2) sL.10)
3. Are there any duplicate functions? SI.1(2) Y N q
4. Based on hierarchy or a call/called matrix, how many modules are called by
more than one other modgle? GE.1 |
3 5. Are the constants used in the system defined once? GE.2(5) Y l

Pg.

METRIC WORKSHEET 2a SYSTEM DATE :

M
DESIGN/SYSTEM LEVEL NAME INSPECTOR

IV. OPTIMIZATION (EFFICIENCY)

W 0 N OB W N

Are storage requirements allocated to design? SE.1(1)
Are virtual storage facilities used? SE.1(2)
Is dynamic memory management used? SE.1(5)
Is a performance optimizing compiler used? SE.1(7)
Is global data defined once? (S.2(3)
Have Data Base or files been organized for efficient processing? EE.3(5)
Is data packing used? EE.2(5)
Number of overlays EE.2(4)
Overlay efficiency - memory allocation EE.2(4)
max overlay size
min overlay size

< |< |< |=< |=< |« |=<

Z|2 |22 2 |Z2 |2

V. SECURITY (INTEGRITY)

oW N -
D R

Are user Input/Output access controls provided? AC.1(1)

Are Data Base access controls provided? AC.1(2)

Is memory protection across tasks provided? AC.1{3)

Are there provisions for recording and reporting errors? AC.2(1,2)

< |=< |< |<

x 1z |2 |=

VI. SYSTEM INTERFACES (INTEROPERABILITY)

(S N N VS S
P

-}

How many other systems will this system interface with? CC.1(1)

Have protoc 1 standards been established? CC.1(2)

Are they being complied with? (CC.1(2)

Number of modules used for input and output to other systems? CC.1(3,4)
Has a standard data representation been established or translation
standards between representations been established? DC.1(1)

Are they being complied with? DC.1(2)

Number of modules used to perform translations? 0C.1(3)

VII. HUMAN INTERFACE (USABILITY)

Are all steps in operation described including alternative flows? oP.1(1)
Number of operator actions? OP.1(4)

4

Pg.3

METRIC WORKSHEET 2a SYSTEM DATE:
DESIGN/SYSTEM LEVEL NAME : INSPECTOR . !

n !

VII. HUMAN INTERFACE (USABILITY) Continued

3. Estimated or Actual time to perform? 0P.1(4) N
4. Budgeted time for complete job? QP.1(4) .
5. Are job set up and tear down procedures described? QP.1(5)
6. Is a hard copy of operator interactions to be maintained? 0P.1(6) Y I N 1
7. Number of operator messages and responses? OP.1(2)
. 8. Number of different formats? OP.1(2) _ |
9. Are all error conditions and responses appropriately described? 0P.1(2) :
k 10. Does the capability exist for the operator to interrupt, obtain status, 1

save, modify, and continue processing? QP.1(3) Y N

11. Are lesson plans/training materials for operators, end users, and
maintainers provided? TN.1{1) Y N
12. Are realistic, simulated exercises provided? TN.1(2) N
13. Are help and diagnostic information available? TN.1(3)
14. Number of input formats CM.1(2)
15. Number of input values CM.1(1)
I

e

16. Number of default values CM.1(1)

17. Number of self-identifying input values CM.1(3)
18. Can input be verified by user prior to execution? CM.1(4) 9

19. Is input terminated by explicitly defined by logical end of input? CM.1(5} y | N |]
20. Can input be specified from different media? CM.1(6) Y N
21. Are there selective output controls? (M,2(1) \f N
| 22. Do outputs have unique descriptive user oriented labels? CM.2(5) Y N
. 23. Do outputs have user oriented units? CM.2(3) Y N
- 24, Number of output formats? CM.2(4)
‘ 25. Are logical groups of output separated for user emamination? CM.2(5) Y N
26. Are relationships between error messages and outputs unambiguous? CM.2(6) Y N
27. Are there provisions for directing output to different media? CM.2(7) Y N

VIII. TESTING (TESTABILITY) APPLY TO TEST PLAN, PROCEDURES, RESULTS

‘ 1. Number of paths? IN.1{1) 4, Number of input parameters to
* 2. Number of paths to be test?ﬂ?](] be tested? 1IN.1(2)
Number of input parameterst'](1 5, Number of interfaces? IN.2(1)

METRIC WORKSHEET 2a SYSTEM DATE:
OESIGN/SYSTEM LEVEL NAME ; INSPECTOR;

VIII. TESTING (TESTABILITY) - APPLY TO TEST PLAN, PROCEDURES, RESULTS (CONTINUED)

Number of interfaces to be tested? IN.2(1) 9. Number of modules? IN.3(1) 1
7. Number of itemized performance requisﬁws?gi? .10. :::ez:szg1modrge§(;$ be
8. Number of performance requirements to be : :
tested? IN.2(2) 1. S:gv:::: }:p::;m::: outputs]
M3

IX DATA BASE

Number of unique data items in data base SI.1(6)
2. Number of preset data items SI.1(6)"
3. Number of major segments (files) in data base SI.1(7)

X INSPECTOR'S COMMENTS

Make any general or specific comments about the quality observed while applying this

checklist.

43

}
METRIC WORKSHEET 2b SYSTEM NAME: DATE: !
DESIGN/MODULE LEVEL MODULE NAME: INSPECTOR: ;
4
1. COMPLETENESS (CORRECTNESS, RELIABILITY))

1. Can you clearly distinguish inputs, outputs, and the function being performed? CP.1(1)] v N

2. How many data references are not defined, computed, or obtained from an external
source? CP.1(2)

3. Are all c&hditions and processing defined for each decision point? CP.1(5) YN

4, How many problem reports have been recorded for this module? CP.1(7)

Profile of Problem Reports: a. Computational
Number of problem reports still outstanding CP)(7)

b. Logic

I1. PRECISION (RELIABILITY) c. Input/Output

1. When an error condition is detected, is it YIN
passed to calling module? ET.1(3)

2. Have numerical techniques being used in algori-
thm been analyzed with regards to accuracy

e. System/0S Support

f. Configuration

requirements? AY.1(4) VN 9. Routine/Routine Inter-
3. Are values of inputs range tested? ET.2(2) YN h. ;:ﬁiine/System Inter-
4. Are conflicting requests and illegal combina- YN face

i. Tape Processing

tions identified and checked? ET.2(3)

j. User Interface

5. Is there a check to see if all necessary data YIN
is available before processing begins? ET.2(5)

k. Data Base Interface

1. User Requested Changes

6. Is all input checked, reporting all errors, Y IN
before processing begins? ET.2(4) W m Preset Data

n. Global Variable Defi-
nition
p. Recurrent Errors

7. Are loop and multiple transfer index parameters | Y [N
range tested before use? ET.3(2)

q. Documentation

. Y IN
8. Are subscripts range tested before use? ET.3(3) r. Requirement Compliance
9. Are outputs checked for reasonableness before
processing continues? ET.3(4) Y IN t. Operator

u. Questions

v. Hardware
I11. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)
1. _hom man; Decision Points are there? 3. Sow many conditional branches are
SL.3 there? SI.3
2. How many subdecision Points are 4. How many unconditional branches
there? SI.3 are there? SI.3

44

METRIC WORKSHEET 2B
DESIGN/MODULE LEVEL

SYSTEM NAME:
MODULE NAME:

Pg. 2

I1I. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY) (CONTINUED)
5. Is the module dependent on the 7. Are any limitations of the proces-
source of the input or the N sing performed by the module YiN
destination of the output? SI.1(3) identified? EX.2(1)
6. Is the module dependent on know- N 8. Number of entrances into mgdu]?s
ledge of prior processing? SI.1(3) L.1(%)
9. Number of exits from modu]g
B ! 1.1(5)
IV. REFERENCES (MAINTAINABILITY, FLEXIBILITY, TESTABILITY, PORTABILITY, REUSABILITY,
INTEROPERABILITY)
1. Number of references to system 8. Is temporary storage shared with
library routines, utilities or other other modules? ™M0.2(7)
system provided facilities §5.1(1)
9. Does the module mix input, out-
2. Number of input/output actions put and processing functions in
MI.1(2) same module? GE.2(1) — —
3. Number of calling sequence parameters
MO.2(3) 10. Number of machine dependent
4. How many calling sequence parameters functions performed? GE.2(2)
are control variables M).2(3)
11. Is processing data volume limitedqY | N |
5. Is input passed as calling sequence GE.2(3)
parameters M).2(4) n | 12- Is processing data value 1imi{e9? YN
N GE.2(4)] —
6. Is output passed back to calling 13. Is a common, standard subset of
module? MO.2(5) N programming language to be used? }Y | N
7. Is control returned to calling N 14. Is the programming language |
module M0.2(6) available in other machines? YiN
MI.1(1)
V. EXPANDABILITY (FLEXIBILITY)
1. Is logical processing independent of storage specification? EX.1(1) Y| N
2. Are accuracy, convergence, or timing attributes parametric? EX.2(1) Y| N
3. Is module table driven? EX.2(2) Y| N
VI. OPTIMIZATION (EFFICIENCY)
1. Are specific performance requirements (storage and routine) allocated to this
module? EE.1
YIN

45

METRIC WORKSHEET 2b SYSTEM NAME:

DESIGN/MODULE LEVEL MODULE NAME: Pg.
VI. OPTIMIZATION (EFFICIENCY) (CONTINUED)
2. Which category does processing fall in: EE.2
Real-time
On-line
Time-constrained
Non-time critical
3. Are non-loop dependent functions kept out of loops? EE.2(1)
4. s bit/byte packing/unpacking performed in loops? EE.2(5)
5. [Is data indexed or reference efficiently? EE.3(5)
VII. FUNCTIONAL CATEGORIZATION

-

Categorize function performed by this module according to following:

the computer and the user.

module.

ALGORITHM - a module whose prime function is computation.

data within the computer.

other modules.

CONTROL - an executive module whose prime function is to invoke other modules.

INPUT/OUTPUT - a module whose prime function is to communicate data between

PRE/POSTPROCESSOR - a module whose prime function is to prepare data for or
after the invocation of a computatioen or data management

DATA MANAGEMENT - a moudle whose prime function is to control the flow of

SYSTEM - a module whose function is the scheduling of system resources for

VIII. CONSISTEWCY

1.
2.

Does the design representation comply with established standards CS.1(1)
Do input/output references comply with established standards (S.1(3)

Do calling sequences comply with established standards CS.1(2)

Is error handling done according to established standards CS.1(4)

Are variable named according to established standards (CS.2(2)

Are global variables used as defined globally CS.2(3)

46

o i e i

METRIC WORKSHEET 2b SYSTEM NAME:
TESIGN/MODULE LEVEL MODULE NAME: ~

IX. [INSPECTOR'S COMMENTS

Make any specific or general comments about the quality observed while applying this
checklist?

47

METRIC WORKSHEET 3
SOURCE CODE/MODULE LEVEL

SYSTEM NAME:
MODULE NAME:

DATE:

INSPECTOR;

STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)

Number of lines of code M0.2(2)

Number of lines excluding comments
S1.4(2)

Number of machine level language

statements SD.3(1)

Number of declarative statements

SI.4

Number of data manipulation state-

ments SI.4

Number of statement labels S1.4(6)

(Do not count format statementsi

Number of entrances into module

SI.1{5)
Number of exits from module

SI.1(5)
Maximum nesting level SI.4(7)

Number of decision points
(IF, WHILE, REPEAT, DO, CASE) SI.3

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Number of sub-decision pog?ts
.3

Number of conditional branches

(computed go to) SI.4(8)

Number of unconditional branches

(0TO, ESCAPE) SI1.4(9)

Number of loops (WHILE, DO}
SI.4(3)

Number of loops with jumps out of

Toop SI.4(3)

Number of loop indicies that are

modified SI.4(4)

Number of constructs that perform

module modification (SWITCH,

ALTER) SI.4(5)

Number of negative or comnlicated

compound boolean expressions 2)

Is a structured language E%éé

Is flow top to bottom (are there
any backward branching GOTOs)S‘.4(]

CONCISENESS (MAINTAINABILITY) - SEE SUPPLEMENT

Number of operators (0.1

Number of unique operators (0.1

3.

4.

Number of Operands (0.1

Number of unique operands (0.1

SELF-DESCRIPTIVENESS (MAINTAINABILITY, rFLEX

IBILITY, TESTABILITY, PORTAg}LITY, REUSABILITY)

48

Number of lines of comments SD.1

Number of non-blank lines of comments
SD.1

Are there prologue comments provided

containing information about the

function, author, version number,

date, inputs, outputs, assumptions

and limitations?

Is there a comment which indicates

what itemized requirement is

satisfied by this module? SD.2(1)

How many decision points and trans-
fers of control are not commented?
$D.2(3)

Is all machine language code com-
mented? SD.2(4)

7.

10.

12.

13.

Are non-standard HOL statements
commented? SD.2(5)

How many declared variables are
not described by comments?
SD.2(6)

Are variable names (mnemonics)
descriptive of the physical or
functional property they

represent? S0.3(2
Do the comments do more than

repeat the operation? $D.2(7)

Is the code logically blocked and
indented? SD.3(3)

Number of lines with more than

1 statement. SD.3(4)

Number of continuation line
S0. 304)

g Gl g s o

METRIC WORKSHEET 3
SOURCE CODE MODULE LEVEL

SYSTEM NAME:
MODULE NAME:

Pg. 2

IV. INPUT/OUTPUT (RELIABILITY, FLEXIBILITY, PORTABILITY)
1. Number of input statements MI.1(2) 4. Are inputs range-tested (for
inputs via calling sequences,
2. Number of output statements MI.1(2) global data, and input YIN
statements) ET.2(2
3. Is amount of input that can be 5. Are possible conflicts or illegal
handled parametric? GE.2(3) combinations in inputs checked?
YIN ET.2(3) YN
6. Is there a check to determine if
all data is available prior to
processing? ET.2(5) YN
V. REFERENCES (RELIABILITY, MAINTAINABILITY. TESTABILITY. FLEXSBILITY. PORTABILITY, REUSABILITY)
1. Number of calls to other mo%ﬂgzl) 6. How many parameters passed to or
b from other modules are not defined
2. Number of references to system : -
library routines,‘utiﬁt‘ies‘, or in this module? MD.2(3)
other system provided f“"“;g"f(]) 7. s input data pacsed as parameter?| Y I N
3. Number of calling sequence parameters M0.2(4)
. : . M0.2(3)
. How many elements in calling
8. Is output data passed back to YN
?
sequences are not oaramterhsb. 2(3) calling module? MD.2(5)
5. How many of the calling parameters
: . . I
(input) are control vamab‘l&)s '2(3) l 9. Is control returned to calling Y|N
: l module? MO0.2{6)
VI. DATA (CORRECTNESS, RELIABILITY, MAINTAINABILITY, TESTABILITY)
1. Number of local variables SI.4(10) 4. How many global variables are not
used consistently with respect to
2. Number of global variables SI1.4(10) units or type? (S.2(4)
3. Number of global variables renamed 5. How many variables are used for
SE.1{3) more than one purpose? (S.2(3)
VII. ERROR HANDLING - {RELIABILITY) VIII. (EFFICIENCY)
1. How many loop and multiple transfer 1. Number of mix mode expressions?
index parameters are not range EE. 3(3)
tested before use? ET.3(2) 2. How many variables are initialized
when declared? EE.3(2)
2. Are subscript values range tested 3. How many loops have non-loop
before use? ET.3(3) dependent statements in them?EE.Q)
YI|N 4. How many loops have bit/byte
3. When an error condition occurs, is it packing/unpacking? EE.2(5)
passed to the calling module? ET.1(3)| Y [N SE.1(6)
4. Are the results of a computation 5. How many compound expressions
checked before outputting or before defined more than once? EE.2(3)
processing continues? ET.3(4) YN 49

METRIC WORKSHEET 3 SYSTEM NAME:

T T e T T T T T R TR

SOURCE COOE /MODULE LEVEL MCOULE NAME: Pg. 3
IX. PORTABILITY FLEXIBILITY-
1. Is code independent of word and Is module table driven EX.2(2)
character size? MI.1(3)
YIN Are there any limits to data
values that can be processed?
2. Number of lines of machine language ‘GE.2(4)
statements. MI.1
3. Is data representation machine Are there any limits to amounts
independent? MI.1(4) of data that can be processed?
YN GE.2(3)
4, 1Is data access/storage system soft- Are accuracy, convergence and
ware independent? SS.1 timing attributes parametric?
YN EX.2(1)
XI. DYNAMIC MEASUREMENTS (EFFICIENCY, RELIABILITY)
1. During execution are outputs within accuracy tolerances? AY.1(5)
2. During module/development testing, what was run time? EX.2(3)
3. Complete memory map for execution of this module SE.1(4)
Size (words of memory)
APPLICATION
SYSTEM
DATA
OTHER

4. During execution how many data items were referenced but not modified EE.3(6)

5. During execution how many data items were modified EE.3(7)

XII. INSPECTORS COMMENTS

Make any general or specific comments that relate to the quality observed by you while
applying this checklist:

3.4 TECHNIQUES FOR APPLYING MEASUREMENTS

Section 1.5 identified organizational approaches for utilizing the quality
metric concepts during a software development. These approaches included
both acquisition environments and internal development environments. The
purpose of this section is to describe, at a lower level, how the metrics
would be applied in either case.

The first technique for applying the metrics is by formal inspection. The
formal inspection is performed by personnel of an organization independent

of the development organization (the acquisition office, an independent quality
assurance group, or an independent contractor). The metric worksheets are
applied to delivered products at scheduled times and the results are formally
reported.

The second technique is to utilize the worksheets during structured design
and code walkthroughs held by the development team. A specific participant
of the walkthrough can be designated for applying the worksheets and report-
ing any deficiencies during the walkthrough or a representative of the
quality assurance organization can participate in the walkthrough with the
purpose of taking the measurements of the design or code.

The last technique is for the development team to utilize the worksheets as
guidelines, self-evaluations or in a peer review mode to enhance the qualtiy
of the products they produce.

51

b one o

SECTION 4
PROCEDURES FOR ASSESSING THE QUALITY OF THE SOFTWARE PRODUCT

4.1 INTRODUCTION

The benefits of applying the software quality metrics are realized when the
information gained from their application is analyzed, The analyses that can
be done based on the metric data are described in the subsequent paragraphs.
There are three levels at which analyses can be performed, These levels are
related to the level of detail to which the quality assurance organization
wishes to go in order to arrive at a quality assessment, |

4.2 INSPECTOR'S ASSESSMENT

The first level at which an assessment can be made relies on the discipline

and consistency introduced by the application of the worksheets. An inspec-
tor, using the worksheets, asks the same questions and takes the same counts for
each module's source code or design document,etc. that is reviewed. Based on
this consistent evaluation, a subjective comparison of products can be made.

Ta. Document Imspectorn's Assessment
The last section in each worksheet is a space for the inspec-
tor to make comments on the quality observed while applying the
worksheet. Comments should indicate an overall assessment as well
as point out particular problem areas such as lack of comments,
inefficiencies in implementation, or overly complex control flow.

1b. Compile Assessments for System Review
By compiling all of the inspector's assessments on the various
documents and source code available at any time during the develop-
ment, deficiencies can be identified.

4.3 SENSITIVITY ANALYSIS

The second level of detail utilizes experience gained through the application
of metrics and the accumulation of historical information to take advantage
of the quantitative nature of the metrics. The values of the measurements
are used as indicators for evaluation of the progress toward a high quality
product.

52

L i1 W

At appropriate times during a large-scale development, the application of

the worksheets allows calculation of the metrics. The correspondence of the
worksheets to the metrics is shown in Appendix B of [MCCA79]. The results of
these calculations is a matrix of measurements. The metrics that have been
established to date are at two levels-system level and module level. The
approach to be described is applicable to both levels and will be described
in relationship to the module level metric.

A n by k matrix of measurements results from the application of the metrics to
the existing products of the development (e.g., at design, the products might
include review material, design specifications, test plans, etc.) where there

are k modulies and n module level measurements applicable at this particular time.

M1™2. . . . ™k
- m21
Mﬂ -

M1 T Mok
This matrix represents a profile of all of the modules in the system with

respect to a number of characteristics measured by the metrics. The analyses
that can be performed are described in the following steps:

2a. Assess Varnilation of Measurements
Each row in the above matrix represents how each module in the
system scored with respect to a particular metric. By summing all
the values and calculating the average and standard deviation for
that metric, each individual module's score can then be compared
with the average and standard deviation. Those modules that
score less than one standard deviation from the average should be
identified for further examination. These calculations are
illustrated below:

k
for metric ¥; Average Score = A; = g_ M5k

]
k
Standard Deviation = o, = ¢ (M, .-A)zlk
R P

Report Module j if Mij <Ay - o4

2b. Assess Low System Scores
In examining a particular measure across all modules, consistently
low scores may exist. It may be that a design or implementation
technique used widely by the development team was the cause. This
situation identifies the need for a new standard or stricter
enforcement of existing standards to improve the overall develop-
ment effort.

2c. Assess Scornes Against Thresholds
As experience is gained with the metrics and data is accumulated,
threshold values or industry acceptable limits may be established.
The scores, for each module for a particular metric should be com-
pared with the established threshold. A simple example is the
percent of comments per line of source code. Certainly code
which exhibits only one or two percent measurements for this
metric would be identified for corrective action. It may be
that ten percent is a minimum acceptable level. Another example
is the complexity measure. A specific value of the complexity
measure greater than some chosen value should be identified for
corrective action]

Report Module Jj if M1j <74 {or>T fo; complexity
measures

Where Ti = threshold value
specified for metric i.

: 4.4 USE OF NORMALIZATION FUNCTION TO ASSESS QUALITY
.] The last level of assessing Quality is using the normalization functions to '

predict the quality in guantitative terms. The normalization functions
are utilized in the following manner,

For a particular time there is an associated matrix of coefficients which
; represent the results of linear multivariate regression analyses against
? empirical data (past software developments). These coefficients, when

' multiplied by the measurement matrix results in an evaluation (prediction)

54

T e e e - R - o aom - -

Y Rdavi -
! e e - £0°5 PR o

p

of the quality of the product based on the development to date, This
coefficient matrix, shown below, has n columns for the coefficients of
the various metrics and 11 rows for the 11 quality factors,

‘M %2, . . %m

11,1 “1,n

To evaluate the current degree or level of a particular quality factor, i,
for a module, j, the particular column in the measurement matrix is multiplied
by the row in the coefficient matrix. The resultant value:

m +c

S0 MLY%, M, T %0 Mg T ML
is the current predicted rating of that module, j for the quality factor, 1.
This predicted rating is then compared to the previously established rating
to determine if the quality is as least as sufficient as required. The
coefficient matrix should be relatively sparse {(many cij = 0). Only sub-
sets of the entire set of metrics applicable at any one time relate to the

criteria of any particular quality factor.

Multiplying the complete measurement matrix by the coefficient matrix
results in a ratings matrix. This matrix contains the current pﬁedicted
ratings of each module for each quality factor. Each module then can be
compared with the preset rating for each quality factor.

™ M2 - . Tk

1,0 - ™1,k

This approach represents the most formal approach to evaluating the quality

of a product utilizing the software quality metrics, Because the coefficient
matrix has been developed only for a limited sample in a particular environment,
it is neither generally applicable nor has statistical confidence in its value
been achieved.

55

To use the normalization functions that currently exist the following steps
should be performed.

3a. Apply Nonmalization Function

Table 4.4-1 contains the normalization functions that currently
exist. If any of the quality factors identified in that table
have been specified as a requirement of the development, then the
metrics identified in the table should be substituted into the
equation and the predicted rating calculated. Normalization
functions which include several metrics can be used if available,
otherwise functions for individual metrics should be used. This
predicted rating should be compared with the specified rating.

To illustrate the procedure the normalization function that has
been developed for the factor Flexibility will be used. The
normalization function, applicable during the design phase,
relates measures of modular implementation to the flexibility of
the software. The predicted rating of flexibility is in terms

of the average time to implement a change in specifications. The
normalization function is shown in Figure 4.4-1. The measurements
associated with the modular implementation metric are taken from
design documents. The measurements involve identifying if input,
output and processing functions are mixed in the same module, if
application and machine-dependent functions are mixed in the same
module and if processing is data volume limited. As an example,
assume the measurements were applied during the design phase and a
value of 0.65 was measured. Inserting this value in the normalization
function results in a predicted rating for flexibility of .33 as
jdentified by point A in Figure 4.4-1. If the Acquisition Manager
had specified a rating of 0.2 which is identified by point B, he
has an indication that the software development is progressing well
with respect to this desired quality.

An organization using this manual is encouraged to establish these
functions in its specific environment by following the procedures
described in [MCCA77] and [MCCA79].

56

Table 4.4-1 Normalization Functions

RELIABILITY (DESIGN)

MULTIVARIATE .18 MET] + .19 M 3 ET.1 Error Tolerance Checklist
FUNCTION . SL.3 SI.3 Complexity Measure
INDIVIDUAL .34 Mo
FUNCTIONS .

38 My 4

RELIABILITY (IMPLEMENTATION)

MULTIVARIATE -48Mp * - 14M

FUNCTION SI.1 ET.1 Error Tolerance Checklist
SI1.3 Complexity Measure
INDIVIDUAL .57 M‘ET] SI.1 Design Structure Measure
* SI1.4 Coding Simplicity Measure
*58 Mgy,
.53 MSI.3
-53 Mgy 4

MAINTAINABILITY (DESIGN)

INDIVIDUAL .57 MSI 3 SI.3 Complexity Measure
FUNCTION ‘ SI.1 Design Structure Measure
.53 MSI 1
MAINTAINABILITY (IMPLEMENTATION)
MULTIIARIATE -.2+.61 Mop 3% -1%p_2*+335p.2| 51.3 complexity Measure
M0.2 Modular Implementation
Measure
éﬂgg%gﬂ? 2.1 M SD.2 Effectiveness of Comments
] Measure
N MSD 2 SD 3 Descriptiveness of
6 M : Implementation
' SD.3 Language Measure
.5 MSI) SI.1 Design Structure
M . Measure
. SI.4 SI.4 Coding Simplicity Measure
| : FLEXIBILITY (DESIGN)
INDIVIDUAL
FUNCTIONS .51 MMO 2 MO.2 Modular Implementation
. . GE.2 Generality Checklist
.56 MGE 2

(Continued)

.

57

-~ e,

Table 4.4-1 Normalization Functions (Continued)

FLEXIBILITY (IMPLEMENTATION)

MULTIVARIATE .22M.. .+ .44M__ .+.09M
T ION Mvo. 2 Ge.2"-0Msp 3

INDIVIDUAL

FUNCTIONS 'GMMO.Z
'72MGE.2
'59MSD.2
‘SGMSD.3

MO.2 Modular Implementation
Measure

GE.2 Generality Checklist

SD.2 Effectiveness of Comments
Measure

SD.3 Descriptiveness of
Implementation
Language Measure

PORTABILITY (IMPLEMENTATION)

MULTIVARIATE _]'7+']9MSD.1+ '76MSD.2+2'5MSD.3+'64MMI.1

FUNCTION

INDIVIDUAL

FUNCTIONS 1.0,
1My
1M

SD.1 Quantity of Comments

SD.2 Effectiveness of
Comments Measure

SD.3 Descriptiveness of
Implementation
Language Measure

MI.1 Machine Independence
Measure .

SI.1 Design Structure
Measure

58

ubjsaq Bupang A3L11qixaL4 404 UOLIOUNS UOLIRZilewdON L~y 'y danby4 -
w
ISVHd N9ISIO/IUNSVIW NOTLVINIWITIWI HVINOOH 2 OW
0L 6 8 L899 ¢ y g2 v
7 T | R | | N | T T 7
] ~
“ - 4
~
\\.
e B T TR '
\\ " e
~ .
- | 4«
B N < D e _ e
\
- 1Y J9NVIDD 0L
-~ SAVO-NVH 9AV
e 45 "
_E—m. P 7~
2°OW S~ 1,
\ _ @.
\
~ .
N, \ N.-
I -
- co
—_ ao

L T A AP P D o+ et w

A+ e . i A et e) BT+ * et

e s -

3b. Calculate Confidence in Quality Assessment

Using statistical techniques a level of confidence can b2
calculated. The calculation is based on the standard error of
estimate for the normaiization function (given in Table 3.3.3-2,
Vol. I} and can be derived from a normal curve table found in most
statistics texts. An example of the devivation process is shown
in Figure 4.4-2 for the situation described above. Here it is
shown that the Acquisition Manager has an 86 percent level of
confidence that the flexibility of the system will be better than
the specified rating.

MEAN = .33

(SPECIFIZD RATING) .2

l

MEAN = .33 (PREDICTED RATING)
STANDARD DEVIATION = .12 (STANDARC ZRROR OF SSTIMATE)
LEVEL OF CONFIDENCE = {x > } = .36 (SHADED AREA)

Figure 4.4-2 Determination of Level of Confidence

4.5 REPORTING ASSESSMENT RESULTS

Each of the preceeding steps described in this section are easily automated.
If the metrics are applied automatically then the metric data is available in
machine readable form. If the worksheets are applied manually, then the
data can be entered into a file, used to calculate the metric, and formatted
into the measurement matrix format. The automation of the analyses {involve
simple matrix manipulations. The results of the analyses should be reported
at various levels of detail. The formats of the reports-are left to the
discretion of the quality assurance organization. The content of the

reports to the different managers is recommended in the following paragraphs.

1a.

Repont to the Acquisition Managen/Development Managen

The report content to the Acquisition Manager and the Develop-
ment manager should provide summary information about the progress
of the development toward the quality goals identified at the be
beginning of the project.

For example if ratings were specified for several quality factors,
the current predicted ratings should be reported.

PREDICTED RATING

QUALITY GOALS BASED ON DESIGN DECUMENT
RELIABILITY .9 .8
MAINTAINABILITY .8 .95

If specific ratings were not identified but the important qualities
were identified, a report might describe the percentage of modules
that currently are judged to be below the average quality (as a
result of the sensitivity analysis) or that are below a specified
threshold value (as a result of the threshold analysis). These
statistics provide a progress status to the manager, Further
progress status is indicated by reporting the quality growth

of the system or of individual modules. The quality growth is
picted by reporting the scores achieved during the various

ohstes of develoomemt Ullisately the ratings should progressively

)

1b.

lc.

score higher than those received during requirements. This progress
is based on the identification of problems in the early phases
which can then be corrected.

Reponts to Quality Assurance Managen

In addition to the summary quality progress reports described

in la, the quality assurance manager and his staff will want
detailed metric reports. These reports will provide all of

the results of the Analyses described in 4.2, 4.3, and 4.4, and
perhaps provide the measurement matrix itself for examinations.

In addition to the detailed reports, the quality assurance manager
should be provided with reports on the status of the application of
the metrics themselves by the quality assurance staff. These
status reports will provide information on total number of modules
and the number which inspectors have analyzed.

Reponts to the Development Team

The development team should be provided detailed information on

an exception basis. This information is derived from the
analyses. Examples of the information would be quality problems
that have been identified. which characteristics or measurements

of the software products are poor, and which modules have been
identified as requiring rework. These exception reports should
contain the details of why the assessment revealed them as
potential problems. It is based onthis information that corrective
actions will be taken.

- &

SUNP TN

[MCCA77]
[McCA79]
[WeIn72]

[CAVA78]

[DUVAT76]

—y Ty —wmwmw»m,

REFERENCES

McCall, J., Richards, P., Walters, G., "Factors in Software
?.mgg%;’ RADC-TR-77-369, Nov 1977, 3 Vols (A049014)(A049015) &

McCall, J., Matsumoto, M., "Metrics Enhancements", RADC-TR-79
Aug 1979.

Weinberg,G, "The Psychology of Improved Programming Performance,"
DATAMATION, Nov 1972.

Cavano, J, McCalil, J, "A Framwork for the Measurement of Software
Quality," Proceedings of the ACM Software Quality Assurance
Workshop, nov 1978,

Duvall, L.M., "Software Data Repository Study," RADC-TR-76-387,
Dec 76, (A050636).

63

e

