
RADC-TR-80-109, Vol II (of two)
Final Technical Report
April 1980

SOFTWARE QUALITY MEASUREMENT
MANUAL
General Electric Company

James A. McCall
Mike T. Matsumoto

LAPPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC
ELECT
JUL 2 2 U80

B

ROME AIR DEVELOPMENT CENTER US ARMY INSTITUTE FOR RESEARCH IN
cX, AIR FORCE SYSTEMS COMMAND MANAGEMENT INFORMATION AND COMPUTER SCIENCES
C GRIFFISS AIR FORCE BASE NY 13441 ATLANTA GA 30332

CL3

0791f

lhiz rc=p c has been rt .iewcd by the RADC Public Affairs Office (PA)

I rcleasabie to the National Technical information Service (NTIS). At NTIr
% il be relea.sable to the general public, including foreign nations.

!ZADC-TA'-80-109, Volume I! (of two) has been reviewed and is approved

.ur publication.

A P £P)OVED: ~ ~

JOSEPH P. CAVANO
Project Engineer

APPROVED: -; 4 601mv-0

WENDALL C. BAUMAN, Colonel, USAF

Chief, Information Sciences Division

FOR TIHE Co&1ANDR:

JOHN P.1US
Acting Chief, Plens Office

If your address has changed or if you wish to be removed from the RADC
-ailing list, or if the addressee is no longer employed by your orgauizltun't

please notify RADC (ISIS), Griffiss AFB NY 13441. 1is will assist US in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

MISSION

Rome Air Deveiqnnent Cente'r
PRAVC ptan,6 and execwtea tucatch, devetomeutt, te4~t and
.6eter-ed cquiL6Ztcn ptog~am in AUPPOA~t oj Co~mand, ContAut
Comuninkaoion and Integnc~e (031) acet.ZvitieA. TechnicAtL
a:'%.d enqineeAing 6Luppo't within a,,az o6 .tech-uta competenc~e
i4 ovide, .to ESV Atogumx OJS.ce,6 (PO.6) and othev ESV
etement,. 7he p~incipa2 tehnZco ,ZoZn axeaA w~e
.ommnaL~Ctione,, etachmagnetic guidan~ce and cont~oZ, 6uW%-
veit&tance o6 gtro and and aeAo6pace objec-t6 iLnteW.gefle data
cottection and handting, in~o~mo.tion 6y,64',m .technotogq,
4 Zno.6phA-ic~ r.upagatian, sotid ate .6cences, mi.c~comzue
ph~i4and etect'onia 4eZiabiCty, ma.ntnabkitq and

cmpoatbLtyt.

UNCLASSIFIED
SECUNI SSUkFICATIOM OF THIS PAGE (Whe. e n ise

READ U45TRUCIOIIS)9REPORT DOCtJMENTA7TION PAGE BEFORE COMPLTiG FORM

- 2. GOVT ACCESSION NO'.RECIPINT'S CATALOG NUM1111R

_aULIY EAURMEN MNUSu..0: OECASIPIAONWNrAD

James .M~l

I.GQSUPPLEMJNTRYC OTES DRSS1.PRGA EEET.PRj

450CS Proinie E nn:vanel E. Hockin (AF8iRMIC)448431

Qualityp Metri
Softe M easurement Cne II)----

~~ predOfict Is.fwr uaiyhv
detecting merca wihidniydeiince4ndouetaino
s4 IORce MG coe prdict i feen mCotricsw ich meue the T logic (of ths design

DO ,~ 173 EITIN O I NV65IS OSOLTE NCLASSIFIED
SSCRmT CLSSPIATO O&P NIS PAGE 455WiX6imi e

-- /74 Ow L :C

UNCLASSIFIED

86CUPAY CLASOUICATBON OF T141S PA664Uha Due =eml

A Software Quality Measurement Manuel vas produced which contained
Procedures and guidelines for assisting software system developers in
setting quality goals, applying metrics and making quality assessments.

UNCLASSIFIED
SaCuRgTY CL AMSPICAtinON OP P~ AGgUMha DOWamE

-4,

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES *...... . .

Section

1.0 INTRODUCTION .. . 1
1.1 Purpose....... 1
1.2 Scope 2
1.3 Quality Measurement in Perspective 2

1.4 Manual Organization 6
1.5 Recommended Use of Manual 6

2.0 PROCEDURES FOR INDENTIFYING SOFTWARE QUALITY REQUIREENTS . . . 9
2.1 Idtroduction 9

2.2 Procedures For Identifying Important Quality Factors . . . 11
2.2.1 Procedures 11
2.2.2 An Example of Factors Specification 18

2.3 Procedures for Identifying Critical Software Attributes . . 20

2.3.1 Procedures 20

2.3.2 Example of Identifying Software Criteria 24
2.4 Procedures for Establishing Quantifiable Goals 25

2.4.1 Procedures 25
2.4.2 Example of Metrics 31

2.5 Evaluation of Development Plan 33

3.0 PROCEDURES FOR APPLYING MEASUREMENTS 34

3.1 When to Apply Measurements 34

3.2 Sources of Quality Information 35
3.3 Application of the Measurements 36

3.4 Techniques for Applying Measurements51

J 4.0 PROCEDURES FOR ASSESSING THE QUALITY OF THE SOFTWARE PRODUCT . . 52

4.1 Introduction 52

4.2 Inspector's Assessment 52

TABLE OF CONTENTS (Continued)

Section Pg
4.3 Sensitivity Analysis52

4.4 Use of Noimlization Function to Assess Quality 6 4
4.5 Reporting Assessment Results 61

EFERENCES . 63

ACCESION for

K~S While SectiM
DOC Buff SeCtUe (3C3
UNANNOUNCED0
JUSII ICATION-

By

Difs-t.- AVAIL awi a

'4 1

I o p o." OWI.

LIST OF ILLUSTRATIONS

Figure
Number Page
2.1-1 Framework. 10
2.2-1 Cost vs Benefit Tradeoff 14
3.1-1 Timing of Metrics Application 34
3.2-1 Typical Minium Set of Document & Source Code 35
3.3-1 Application of the Metric Worksheets. 37
4.4-1 Normalization Function for Flexibility During Design 59
4.4-2 Determination of Level of Confidence 60

LIST OF TABLES

Table
Numb~er Page
1.3-1 How Software Metrics Complement Quality Assurance......5
1 .5-1 Index of Three Approaches to Specifying and Assessing

Software Quality.
2.21 Software Quality Requirements Survey Form. 12
2.2-2 System Characteristics and Related Quality Factors 13
2.2-3 The Impact of Not Specifying or Measuring Software

aQuality Factors. 15
2.2-4 Realtlonships Between Software Quality Factors. 16
2.2-5 Typical Factor Tradeoffs 17
2.3-1 Software Criteria and Related Quality Factors 23
2.3-2 Criteria Definitions for Software Quality. 24
2.4-1 Quality Factor Ratings. 27
2.4-2 Quality Metrics Related to Factors 29j4.4-1 Normalization Functions. 57

SECTION 1

INTRODUCTION

1.1 PURPOSE

There has been an increased awareness in recent years of the critical

problems that have been encountered in the development of large scale.

software systems. These problems not only include the cost and schedule

overruns typical of development efforts, and the poor performance of the

systems once they are delivered, but also include the high cost of main-

taining the systems, the lack of portability, and the high sensitivity to

changes in requirements.

The government and 0OD in particular, as customers of many large scale

software system developments, have sponsored many research efforts aimed

at attacking these problems. For example, the efforts related to the

development of a standard DOD programming language, software development

techniques, and development tools and aids all provide partial silution to

the above problems by encouraging a more disciplined approach to the devel-

opment of software and therefore a mre controlled development process.

A related research thrust which has been recently funded by DOD is the

area of software metrics. The research in this area has resulted in the

development and evaluation of a number of metrics which measure various

.attributes of software and relate to different aspects of software quality.

The potential of the software metric concepts can be realized by their

inclusion in software quality assurance programs. Their impact on a

quality assurance program is to provide a more disciplined, engineering

approach to quality assurance and to provide a mechanism for taking a

life cycle viewpoint of software quality; The benefits derived from their

application are realized in life cycle cost reduction.

The purpose of this manual is to present a complete set of Procedures and
guidelines for introducing and utilizing current software quality measure-

ment techniques in a quality assurance program associated with large scale

Iw
1fku

software system developments, These procedures and guidelines will identify:

1. How to identify and specify software quality requirements (Setting

Quality Goals).

2. How and when to apply software metrics (Applying Metrics), and

3. How to interpret the information obtained from the application of

the metrics (Making a Quality Assessment).

1.2 SCOPE

This manual is based on the results of research conducted in support of

the United States Air Force Electronic Systems Division (ESD), Rome Air

Development Center (RADC), and the United States Army Computer Systems

Command's Army Institute for Research in Management Information and Computer

Science (USACSC/AIRMICS). While aspects of the technology of software

metrics require further research, those portions which can currently

provide benefit to a software quality assurance program are emphasized

in this manual. Guidelines and procedures for using the software

metrics are described. The guidelines and procedures are presented in
such a way as to facilitate their application using this manual in a

software development. All of the procedures are described as manual

processes. however, where automated software tool s could be used to
compliment or enhance the process, the tools are identified.

1.3 QUALITY MEASUREMENT IN PERSPECTIVE

The evolution during the past decade of modern programming practices,

structured, disciplined development techniques and methodologies, and

requirements for more structured, effective documentation, has increased

the feasibility of effective measurement of software quality.

*However, before the potential of measurement techniques could be realized

a framework or model of software quality had to be constructed. An

2

AdRm

established model, which at one level provides a user or management

oriented view of quality, is described in Section 2 of this manual in

the perspective of how it can be used to establish software quality

requirements for a specific application.

The actual measurement of software quality is accomplished by applying

software metrics (or measurements) to the documentation and source code

produced during a software development. These measurementslare part of

the established model of software quality and through that model can
be related to various user-oriented aspects of software quality.

The metrics can be classified according to three categories:

* anomaly-detecting

* predictive

9 acceptance

Anomaly-detecting metrics identify deficiencies in documentation or source
code. These deficiencies usually are corrected to improve the quality of

the software product. Standards enforcement is a form of anomaly-detecting

metrics.

Predictive metrics are measurements of the logic of the design and imple-

mentation. These measurements are concerned with form, strucure, density,

complexity type attributes. They provide an indication of the quality that

will be achieved in the end product, based on the nature of the application,

and design and implementation strategies.

Acceptance metrics are measurements that are applied to the end product

to assess the final compliance with requirements. Tests are a form of

J. acceptance-type measurements.

The measurements described and used in this manual are either anomaly-detect-

ing or predictive metrics. They are applied during the development phases

3

to assist in identification of quality problems early so that corrective

actions can be taken early when they are more effective and economical.

The measurement concepts complement current Quality Assurance and testing

practices. They are not a replacement for any current techniques utilized

in normal quality assurance programs. For example, a major objective of

quality assurance is to assure conformance with user/customer requirements.

The software quality metric concepts described in this manual provide a

methodology for the user/customer to specify life-cycle-oriented quality

requirements, usually not considered, and a mechanism for measuring if those

requirements have been attained. A function usually performed by quality

assurance personnel is a review/audit of software products produced during

a software development. The software metrics add formalitv and quantifica-

tion to these document and code reviews. The metric concepts also provide

a vehicle for early involvement in the development since there are metrics

which apply to the documents produced early in the development.

Testing is usually oriented toward correctness, reliability, and perfor-

mance (efficiency). The metrics assist in the evaluation of other qualities

like maintainability, portability, and flexibility.

A summarization of how the software metric concepts complement Quality

Assurance activities is provided in Table 1.3-1 based on the quality

assurance program requirements identified in MIL-S-52779.

4

.:i.

Table 1.3-1 How Software Metrics Complement Quality Assurance

QUALITY ASSURANCE IMPACT OF SOFTWARE QUALITY
PROGRAM REQUIREMENTS METRIC CONCEPTS

* Assure Conformance with Adds software quality

Requirements requirements

* Identify Software Anomaly-detecting

Deficiencies metrics

* Provide Configuration No impact

Management

* Conduct Test Assists in evaluation of

other qualities

* Provide Library Controls No impact

e Review Computer Program Predictive metrics

Design

o Assure Software Documentation Metrics assist in evaluation of

Requirement Conformance documentation as well as code

e Conduct Reviews and Audits Procedures for applying metrics

(in form of worksheets) formalizes

inspection process

Provide Tools/Techniques/ This manual describes methodology

Methodology for Quality of using metrics

Assurance

* Provide Subcontractor Control No impact

All of these concepts will be further explained and illustrated in the sub-

sequent sections of this manual.

i5

1"A$

• " " *.

1.4 MANUAL ORGANIZATION

The manual has been organized as a handbook for use in a quality assurance

program. The first section provides introductory information and how the

manual is to be used.

The second section defines the software quality model and describes a

methodology for using this model to establish software quality requirements

or goals for a software development,

The third section describes procedures for measuring the quality of the

software. These procedures cover what to measure, when to measure, and

how to measure.

The fourth section describes procedures for utilizing the information

provided by the measurements to make assessments of the quality of the

software and recommends what information to present to various personnel

involved in the development.

1.5 RECOMMENDED USE OF MANUAL

The software quality metric concepts can be applied at several levels.

In an acquisition manager/contractor environment, there are three approaches

for using the metric concepts. They are:

1. The acquisition manager's staff can apply metrics to the delivered

software procucts.

2. The development manager's staff can apply metrics to software

products and report them to the acquisition manager during

reviews.

3. An independent Quality Assurance contractor can apply metrics to

delivered software products and report them to the acquisition

manager.

6

OF.

Within the software development project organization, there are two

approaches for using the metric concepts. They are:

1. The quality assurance personnel will apply the metrics as an

independent assessment of the quality of the software being produced.

2. The development personnel can apply the metrics during walkthroughs

and reviews.

This manual is oriented toward those personnel who will be applying the

concepts (either quality assurance or development personnel) and recomnends

three approaches to both establishing the quality requirements (Section 2)

and making a quality assessment (Section 4). The three approaches (an

index is provided in Table 1.5-1) in each area are presented in order of

increasing formality of the relationship between quality requirements

and the metrics, that is in order of increasing quantification. The order

of presentation also relates to an increasing requirement for experience

with the concepts by the personnel applying the concepts. Thus, the

approaches can be used as a phased implementation plan for the metric

concepts. It is recommended that the concepts be incrementally phased Into

the quality assurance organization's operation.

This manual should be utilized by the personnel applying the metric con-

cepts. Additional information and definitions can be found in:

"Factors in Software Quality", 3 vols, RADC-TR-77-369, Nov 1977.icCA77]

"Software Quality Metrics Enhancements-Final Report", Vol I of this document

These references should be redu oy the personnel applying the metrics to

familiarize them with the underlying concepts. They should also be referred

"* 1 to periodically for definitions and explanation purposes.

Vi

- 4,,
'r"

-

| , . . , . . .
, .,.,.

I m gig I

Table 1.5-1 Index of Three Approaches to Specifying and Assessing
Software Quality

APPROACH SPECIFYING APPLYING ASSESSING THE QUALITY OF
(LEVEL OF SOFTWARE QUALITY. MEASUREMENTS THE PRODUCT
FORMALITY)

1 Procedures for Procedures for the
identifying important Inspector's assessment
Suslity factors PROCEDURES (Paragraph 4.2)
Paragraph 2.2)

FOR

2 Procedures for APPLYING Procedures for performing
identifying critical TESensitivity analysis
software attributes (Paragraph 4.3)
(Paragraph 2.3) METRIC____ __________

WORKSHEETS
3 Procedures for Procedures for use of

identifying quantifiable (SECTION 3) normalization function
goals (Paragraph 4.4)
(Paragraph 2.4)

8

A"

SECTION 2

PROCEDURES FOR
INDENTIFYING SOF'TARE QUALITY REQUIREMENTS

2.1 INTRODUCTION
The primary purpose of applying Software Quality Metrics in a Quality
Assurance Program is to improve the quality of the software product.
Rather than simply measuring, the concepts are based on achieving a
positive influence on the product, to improve its development.

This section addresses the problem of identifying software quality require-
ments or goals. These requirements are in addition to the functional,
performance, cost, and schedule requirements normally specified for a
software development. The fact that the goals established are related to
the quality of the end product should, in itself, provide some positive
influence. Past research has shown that goal-directed system development

is effective. [WEIN72]

The vehicle for establishing the requirements is the hierarchical model of

software quality defined in [CAVA78]. This model, shown in Figure 2.1-1,

has at its highest level a set of software quality factors which are

user/mnagement-oriented terms and represent the characteristics which
, , comprise software quality. At the next level for each quality factor. is

ja set of criteria which are the attributes if present, that provide the
characteristics represented by the quality factors. The criteria, then,
are software-related terms. At the lowest level of the model are the
metrics which are quantitative measures of the software attributes defined

by the criteria.

The procedures for establishing the quality requirements for a particular
software system utilize this model and will be described as a three level
approach, the levels corresponding to the hierachical levels of the software

9

. i

quality model. The first level establishes the quality factors that
are important. The second level identifies the critical software
attributes. The third level identifies the metrics which will be applied
and establishes ouantitative ratings for the quality factors.

Once the quality requirements have been determined by following the
procedures described in the subsequent paragraphs, they must be trans-
mitted to the development team. In a formal acquisition manager/con-
tractor environment, the Request for Proposal (RFP) is the medium for
identifying these requirements. The results of following the procedures
should be incorporated in the RFP. If the development is being done
internally, the quality requirements should be documented in the same
form as the other system requirements and provided to the development

team. Additionally, a briefing emphasizing the intent of the inclusion of

the quality requirements is recommended.

FRAMEWORK

FAC - MANAGEMENT-ORIENTED
VIEW OF PRODUCT QUAUTY

CIE- SOFTWARE-ORIENTED
ATTRIBUTES WHICH
PROVIDE QUAUTY

- UANTITATIVE MEASURES
OF THOSE ATTRIBUTES

Figure 2.1-1

10

2.2 PROCEDURES FOR IDENTIFYING IMPORTANT QUALITY FACTORS

2.2.1 PROCEDURES
The basic tool to be utilized in identifying the important quality factors

will be the Software Quality Requirements Survey form shown in Table 2.2-1.

The formal definitions of each of the eleven quality factors are provided

on that form.

It is recommended that a briefing be provided to the decision makers using

the tables and figures which follow in this paragraph to solicit their

responses to the survey. The decision makers may include the acquisition

manager, the user/customer, the development manager, and the QA manager.

To complete the survey the following procedures should be followed:

]a. ConlideA &6ic Chaweo tcA o6 the Apptication

The software quality requirements for each system are unique

and are influenced by system or application-dependent character-

istics. There are basic characteristics which affect the

quality requirements and each software system must be evaluated

ftr its basic characteristics. Table 2.2-2 provides a list of

some of these basic characteristics. For example, if the system

is being developed in an environment in which there is a high

rate of technical breakthroughs in hardware design, Portability

should take on an added significance. If the expected life cycle

of the system is long, Maintainability becomes a cost-critical

consideration. If the application is an experimental system

where the software specifications will have a high rate of

change, Flexibility in the software product is highly desirable.

If the functions of the system are expected to be required for a

flong time, while the system itself may change considerably,

Resuability is of prime importance in those modules which

implement the major functions of the system. With the advent of

more computer networks and communication capabilities, more

systems are being required to interface with other systems

11

• , ,C,

Table 2.2-1 Software Quality Requirements Survey Formi

1. The 11 quality factors listed below have been isolated from the cur-
rent 'literature. They are not meant to be exhaustive, but to reflect
what is currently thought to be important. Please indicate whether
you consider each factor to be Very Important (VI), Important (I),
Somewhat Important (SI), or Not Important (NI) as design goals in the
system you are currently working on.

KV=1 FACID5 DEFINITIOSI

________CORRECTNESS Extant to whichi a program satisfies its
specifications and fulfills the user's
mission Objectives.

_____ RELIABILITY Extent to which a po ogm can be expected
to perforin its intended function withrequired precision.

_____EFFICIENCY The asount of comuting resources and cede
required by a pro"ro to perform a function.

________INTEGRITY Extent to wich access to software or data
by unauthorized persons can be controlled.

_____USASILITY Effort required to learn, operate, prepare
input, and interpret output of a pregiom.

______ INTAINAIILITY Effort required to locate and fix an error
in in Operational pregre.

- TESTABILITY Effort required to test a pregro to insure
it perfove its intended function.

_______ PLIUILITY Effort required to modify an operational
prgren.

PORTABILITY Effort required to trensfer a progrom free
on hardware configuration and/r softare
system eniroet to amether.

_______REUSABIITY Extant to which a progra can be wed in other
applications - related to the packaging and
scope of the functions that piogram erf.

______IN7!ROPERAILMT Effort required to chpia on syse with
another.

2. What type(s) of application are you currently involved in?

3. Are you currently in:

__________1. Development phase
___________2. Operations/Maintenance phase

4. Please indicate the title which most closely describes your position:
__________1. Program Manager
___________2. Technical Consultant
___________3. Systems Analyst
___________4. Other (please specify)_ ______

12

IL

and the concept of Interoperability is extremely important. These

and other system characteristics should be considered when identifying

the important quality factors.

Table 2.2-2 System Characteristics and Related Quality Factors

CHARACTERISTIC QUALITY FACTOR

• If human lives are affected Reliability
Correctness
Testability

e Long life cycle Maintainability
Flexibility
Portability

* Real time application Efficiency
Reliability
Correctness

* On-board computer Efficiency
application Reliability

Correctness

e Processes classified Integrity
information

e Interrelated systems Interoperability

1
E

.* C.
...

,;

I.v

;""

J , a";

13

lb. CoraideA L.Le Cycte lmptieation6

The eleven quality factors identified on the survey can be

grouped according to three life cycle activities associated
with a delivered software product. These three activities are

product operation, product revision, and product transition.

The relationship of the quality factors to these activities

is shown in Table 2.2-3. This table also illustrates where

quality indications can be achieved through measurement and

where the impact is felt if poor quality is realized. The

size of this impact determines the cost savings-that can be

exDected if a higher quality system is achieved through the

application of the metrics. This cost savings is somewhat

offset by the cost to apply the metrics and the cost to

develop the higher quality software product as illustrated

in Figure 2.2-1.

___________________LIFE

COST TO DEVELOP CYCLE
HIGH QUALITY SOFTWARE SAVINGS AS

OST TO A RESULT OF

EASURE QUALITY QUAITY
A

Figure 2.2-1

Cost vs Benefit Tradeoff

This cost to implement versus life cycle cost reduction relation-

ship exists for each quality factor. The benefit versus cost-to-

provide ratio for each factor is rated as high, medium, or low in
bthe right hand column of Table 2.2-3. This relationship and the

life cycle implications of the quality factors should be considered

when selecting the important factors for a specific system.

14

"As

I- :I -- = E E =Z

LuLO -C -"= =b

w UI-- .9= =i j -i A

0 0

a 0

0 4-P

44.

CD 0.
0% LO E

0 LUJ

0 C

m- !;C >.

0 .

in

~ - a a - a - a

.~ (A
,to

9- CDo a,

tn

CD I
4- -I

u z IV
go' 4.)

U (n1

aa
E -J

LU >.

a, w L)
0 cc

In c o c o CaJ L)UJ W

1U Liz?-

a ... '.4

I c. PeA6o~rJ Dtawdbo&~ Among the Tentativwe U.6.t o6 Quatit4 FdoA
As a result of steps la and ib, a tentative list of quality

factors should be produced. The next step is to consider the

interrelationships among the factors selected. Table 2.2-4 and

2.2-5 can be used as a quide for determing the relationshipS

between the quality factors. Some factors are synergistic while

others conflict. The impact of conflicting factors is that.
the cost to implement will increase. This will lower the

benefit to cost ratio described in the preceeding paragraph.

Table 2.2-4 Relationships Between Software Quality Factors

FACTORS .

EFFICIENCY

INTEGRITY

USABILITY 0 10 0
_ _ _t% -- /~PAINTAINABILITY 0 10 .* 0 ~:

TESTABILITY 000 00k
FLEXIBILITY o000 oc 0/ 04 0
PORTABILITY 00
REUSABILITY - - - - - - - -' 6

INTEROPERABILMT

LEGEN
If a high degre of quality is presenit for factor,
what degree of quality Is expected for the other:

0 - Hi gh *Low

Blank e No relationship or application depedent

16

Table 2.2-5 Typical Factor Tradeoffs

INTEGRITY The additional code and processing required to
VS control the access of the software or data

EFFICIENCY usually lengthens run time and require additional
storage.

USABILITY The additional code and processing required to ease
VS an operator's tasks or provide more usable output

EFFICIENCY usually lenghten run time and require additional
storage.

MAINTAINABILITY Optimized code, incorporating intricate coding
VS techniques and direct code, always proves

EFFICIENCY problems to the maintainer. Using modularity,
instrumentation,and well commented high level code to
increase the maintainability of-a system usually
increases the overhead resulting in less efficient
operation.

TESTABILITY The above discussion applies to testing.
VS

EFFICIENCY

PORTABILITY The use of direct code or optimized system software
VS or utilities decreases the portability of the

EFFICIENCY system.

FLEXIBILITY The generality required for a flexible system
VS increases overhead and decreases the efficiency

EFFICIENCY of the system.

REUSABILITY The above discussion applies to reusability.
VS

EFFICIENCY

INTEROPERABILITY Agin the added overhead for conversion from
VS standard data representations, and the use of

EFFICIENCY interface routines decreases the operating
efficiency of the system.

FLEXIBILITY Flexibility requires very general and flexible
VS data structures. This increases the data security

INTEGRITY problem.

REUSABILITY As in the above discussion, the generality required
VS by reusable software provides severe protection

INTEGRITY problems.

INTEROPERABILITY Coupled systems allow for more avenues of access and
VS different users who can access the system. The

INTEGRITY potential for accidental access of sensitive data is
increased as well as the opportunities for deliberate
access. Often, coupled systems share data or soft-
ware which compounds the security problems as well.

REUSABILITY The generality required by reusable software makes
VS providing error tolerance and accuracy for all

RELIABILITY cases more difficult. 17
__ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 1

I d. Ident£jy M{o,t Impo ,tant Qua tY FactoAA

Based on la through lc, a list of quality factors considered to
be important for the particular system should be compiled. The
list should be organized in order of importance. A single

decision maker may choose the factors or the choice may be made

by averaging several survey responses. The definitions of the
factors chosen should be included with this list.

le. Provide Explanation jor Choice

The rationale for the decisions made during steps la through Ic

should be documented.

2.2.2 AN EXAMPLE OF FACTORS SPECIFICATION

To illustrate the application of these steps, consider a tactical in-
ventory control system. The inventory control system maintains inven-
tory status and facilitates requisitioning, reordering, and issuing

of supplies to Army units in combat situations. The planned life

of the system is ten years.

Each step described previously will be performed with respect to the

tactical inventory control system.

la. Con,6idV Bahic. Chazac&tt.6t oj the Appticat on

Utilizing table 2.2-2 and considering the unique char-
acteristics of the tactical inventory control system

resulted in the following:
Characteristic Related Quality Factor

C'zetat Suppot 6or R.,1Aity
Combat Ln.ZU CoA ctne.a

Long Li~e Cycte Maata.nabiZity
WLth Stable HaArwAe
And So6tvawe RequiAvwAU

UttLzed By AVmy Suppy UWb =bUt
PeAuonnet

18

VA

InAt4C6a. with Invento Ji IvntepeAabitity
SyAtzm At Othe Aim
Echetona

lb. Con6ideJ LZje Cycte Inrpticatona

Of the five quality factors identified in la, all provide

high or medium life cycle cost benefits according to

Table 2.2-3.

FACTORS COST BENEFIT RATIO

CoiecbteAi High

MaintaiauZb t H.gk

UWab.LLity Mediam

InvtopeAabitLity Hg

lc. Perform Tad4e 066 Among Fadto.

Using Table 2.2-4, there are no conflicts which need to be

considered.

ld. Iden-tqdy M ,6t Impoxan.t Qua t FactoL

Using the survey form, Table 2.2-1, and the guidance

provided by steps la through lc, the following factors

are identified in order of importance. The definitions

are provided.

CORRECTNESS -Extent to which a program satisfies its
specifications and fulfills the user's
m ission objectives.

RELIABILITY -Extent to which a program can be expected
to perform its intended function with
required precision.

USABILITV -Effort required to learn, operate, pre-
pare input, and interpret output of a
program.

19

",' V.. ,

MAINTAINABILITY -Effort required to locate and fix an
error in an operational program.

INTEROPERABILZTY -Effort required to couple one system
with another.

le. Povide Eptnation 6o,% Cko'ce,

CORRECTNESS -System perform critical supply function

RELIABILITY -System performs critical supply functions
in field environment

USABILITY -System will be used by military personnel
with minimum computer training

MAINTAINABILITY -System life cycle is projected to be 10
years and will operate in the field where
military personnel will maintain.

INTEROPERABILITY -System will interface with other supply
systems at higher levels of command

2.3 PROCEDURES FOR IDENTIFYING CRITICAL SOFTWARE ATTRIBUTES

2.3.1 PROCEDURES
The next level of identifying the quality requirements involves proceeding

from the user-oriented quality factors to the software-oriented criteria.
Sets of criteria, which are attributes of the software, are related to the
various factors by definition. Their identification is automatic and
represents a more detailed specification of the quality requirements.

2a. Identy d CL&Wi So4.a. A tti ibutt Reqaufbd

Table 2.3-1 should be used to identify the software attributes

associated with the chosen critical quality factors.

20

V

Table 2.3-1 Software Criteria and Related Quality Factors

FACTOR SOFTWARE CRITERIA FACTOR SOFTWARE CRITURIA

CORRECTNESS TRACEABILITY FLEXIBILITY MODULARITY
CONSISTENCY GENERAL ITY
COMPLETENESS EXPANDABILITY

RELIABILITY ERROR TOLERANCE TESTABILITY SIMPLICITY
CONSISTENCY MOcDULARITY
ACCURACY INSTRUENTATION
SIMPLICITY SELF-DESCRIPTIVENESS

EFFICIENCY STORAGE EFFICIENCY PORTABILITY MO)DULARITY
EXECUTION EFFICIENCY SELF-DESCRIPTIVENESS

MACHINE INDEPENDENCE
INTEGRITY ACCESS CONTROL SOFTWARE SYSTEM

ACCESS AUDIT INDEPENDENCE

USABILITY OPERABILITY REUSABILITY GENERALITY
TRAINING MO)DULARITY
COMMUNICATIVENESS SOFTWARE SYSTEM

INDEPENDENCE

MAINTAINABILITY CONSISTENCY INTEROPERABILITY MODULARITY
COMMUNICATION

21

2b. ftovid& Vef~iAition
The definitions in Table 2.3-2 should also be provided as part
of the specification.

Table 2.3-2 Criteria Definitions for Software Quality

Factors

CRITERION DEFINITION

TRACEA81LITY Those attributes of the software that provide
a thread from the requrements to the imple-
mentation With respect to the specific

_____________ development and operational environment.

C0O4PLETENESS Those attributes of the software that
provide full implementation of the functions

_____________ required.

CONSISTENCY Those attributes of the software that
provide uniform design and implemntation
techniques and notation.

ACCURACY Those attributes of the software that
provide the required precision in calcula-
tions and outputs.

ERROR TOLERAN4CE Those attributes of the software that
provide continuity of operation under
nonnominal conditions.

SIMPLICITY Those attributes of the software that
provide implementation of functions in the
must understandable manner. (Usually
avoidance of practices which increase

_____________ complexity.)

MODULARITY Those attributes of the software that
provide a structure of highly independent
Modules.

GENERALITY Those attributes of the software that
provide breadth to the functions performed.

EXPANDABILITY Those attributes of the software that
provide for expansion of data storage

_____________ requirements or computational functions.

INSTRUMENTATION Those attributes of the software that
provide for the measurement of usage or

_____________ identification of errors.

SELF- Those attributes of the software that
DESCRIPTIVENESS provide explanation of the implementation

of a function.

22

71

Table 2.3-2 Criteria Definitions for Software Quality Factors
(Continued)

CRITERION DEFINITION

EXECUTION Those attributes of the software that
EFFICIENCY provide for minimm processing time.

STORAGE Those attributes of thie software that
EFFICIENCY provide for minimm storage requlrmowts

during operation.

ACCESS CONTROL. Those attributes of the software that
provide for control of the access of
software and data.

ACCESS AUDIT Those attributes of the software that
provide for an audit of the access of
software and data.

1PE1A1IL:TY Those attributes of the software that
determine operation and procedures con-
cened with the operation of the software.,

TRAINING Those attributes of the software that
provide transition from current operation
or initial familiarization.

COWeNICATIrVENESS rioso attributes of the software that
provide useful inputs and outputs wnich
can be assimilated.

SOFTWgARE SYSTEM4 Those attributes of the software that
INOEPENDENCTE determine its dependency on the software

enviroment (operating systems, utilities,
input/output routines, etc.)

10CHINEThose attributes of the software that
INDEPENDENCE determine its dependency on the hardware

system.

it.COMMUNICATIONS Those attributes of the software that
..OMMNALI7Y provide the use of standard protocols

and interface routines.

DATA COMMNALITY Those attributes of the software that
provide the use of standard data repre-
sentations.

* ,CONCINESS Those attributes of the software that
provide for implementation of a function
with a minimum amount of code.

* 1 23

Ls

2.3.2 EXAMPLE OF IDENTIFYING SOFTWARE CRITERIA
Continuing with the example of paragraph 2.2.2, the software criteria
for the identified quality factors would be chosen.

2a. IckittLy Cx~tenL Sof4A7AL AfttibuteA

Using the relationships provided in Table 2.3-1, the following
criteria would be identified.

CRITERIA RELATED FACTOR

TRACEABILITV

CONSISTENCY .. CORRECTNESS
COMPLETENESS_______

ERROR TOLERANCE
ACCURACY_________ RELIABILITY

CONCISENESS

MOUART MINTAINABILITY
SELF-VESCRIPTIVENESS

TRAINING USABIL ITY

COMMUNICATIONS COMMONALITY INTEROPERABILITY
DATA COMMONALITY.

2b. P'wvide Ve~initin,6

The definitions for each of these criteria would be provided
also.

24

2.4 PROCEDURES FOR ESTABLISHING QUANTIFIABLE G)ALS

2.4.1 PROCEDURES

The last level, which is the most detailed and quantified, requii~s precise
statements of the level of quality that will be acceptable for the software

product.

Currently, the underlying mathematical relationships which allow measurement
at this level of precision do not exist for all of the quality factors. The
mechanism for making the precise statement for any quality factor is a rating

of the factor. The underlying basis for the ratings is the effort or cost

required to perform a function such as to correct or modify the design or

program. For example, rating for maintainability might be that the average

time to fix a problem should be five man-days or that 90% of the problem

fixes should take less than six man-days. This rating would be specified
as a quality requirement. To comply with this specification, the software

would have to exhibit characteristics which, when present, given an indication

that the software will perform to this rating. These characteristics are

measured by metrics which are inserted into a mathematical relationship to

obtain the predicted rating.

In order to choose ratings such as the two mentioned above, data must be

available which allows the decision maker to know what is a "good rating" or
perhaps what is the Industry average. Currently there is generally a lack

of good historical data to establish these expected levels of operations and
maintenance performance for software. There are significant efforts under-

way to compile historical data and derive the associated performance statis-

tics [DUVA76). Individual software development organizations and System

* iProgram Offices should attempt to compile historical data for their particular

environment. Any environment-unique data available should be used as a
check against the data provided as guidelines in this manual. The data

utilized in this section is based on experiences applying the metrics to

several large command and control software systems and other experiences

reported in the literature.

25

L .

3a. Spec.jy Rating Jot Ewih QuaLt4 Far.*o

After identification of the critical quality factors, specific perform-

ance levels or ratings required for each factor should be specified.

Table 2.4.1 should be used as a guideline for identifying the ratings.

for the particular factors. Note that mathematical relationships have

not been established for some of the factors. In those cases, it is

advisable not to levy requirements for meeting a specific quality

rating but instead specify the relative importance of the quality

factor as a development goal. Not that the reliability ratings are

provided in terms familiar to traditional hardware reliability. Just

as in hardware reliability there are significant differences between

ratings of .9 and .99.

3b. Ideznt6y Spec 6i- Metx'a to be Apptied

The next step or an alternative to 3a is to identify the specific metrics

which will be applied to the various software products produced during

the development. The Metric Worksheets described it Section 3 can be

used for this purpose or Table 2.4-2 can be used to Identify the metrics

and reference can be made to RADC-TR-79- [MCCA79J where definitions of

the metrics are provided.

3c. S pezi45tlon 06 Meu,& Tkhultotd VdaueA

In lieu of specifying quality ratings or in addition to the ratings,

specific minitmum values for particular metrics may be specified. This

technique is equivalent to establishing a standard which is to be adhered

to. Violations to the value established are to be reported. Typical

values can be derived by applying the metrics to software products

developed in a particular environment or by looking at the scores re-

* ported in [MCCA77] and [MCCA79]. When establishing these threshold

values based on past project data, projects which have been considered

sucessful, i.e., have demonstrated good characteristics during their

life cycle should be chosen. For example, a system which has been

relatively cost-effective to maintain over its operational history

should be chosen to apply the metrics related to maintainability aid

establish threshold values.

26

/ .Ag. ,A

Table 2.4-1 Quality Factor Ratings

QUALITY FACTOR RATING EXPLANATION RATING GUIDELINES

RELIABILITY * Rating is in terms of the RATING .9 .98** .99 .999
number of errors that occur
after the start of formal ERRORS
testing. TM-LC 10 2 1 .1

Rating = 1- Number of Errors
Number of Lines of
source code exclud-
ing comments

MAINTAINABILITY * Rating is in terms of the RATING .3 .5 .7** .9
average amount of effort
required to locate and fix AVERAGE 7 5 3 1
an error in an operational EFFORT
program. (MAN

Rating = 1-.1 (Average number DAYS)

of man days
per fix)

PORTABILITY * Rating is in terms of the RATING .25 .5.* .75 .9
effort required to convert a
program to run in another % OF 75 50 25 10
environment with respect ORIGINAL
to the effort required to EFFORT
orginally implement the
program.

Rating 1- Effort to Trans rt
Effotto Implement

FLEXIBILITY * Rating is in terms of the RATING .3 .5 ** .7 .9
average effort required to
extend a program to include AVERAGE 14 10 6 2
other requirements. EFFORT

Rating -1-.05 (Average number (MAN
of man days to DAYS)

change)

(Continued)

27

. .. .- m . - i. '

Table 2.4-1 (Continued)

QUALITY FACTOR RATING EXPLANATION

CORRECTNESS The function which the software is to perform is
incorrect. The rating is in terms of effort
required to implement the correct function.

EFFICIENCY The software does not meet performance (speed,
storage) requirements. The rating is in terms
of effort required to modify software to meet
performance requirements.

INTEGRITY The software does not provide required security.
The rating is in terms of effort required to
implement proper levels of security.

USABILITY There is a problem related to operation of the
software, the user interface, or the input/
output. The rating is in terms of effort
required to improve human factors to acceptable
level.

TFSTABILITY The rating is in terms of effort requried to test

changes or fixes.

REUSABILITY The rating is in terms of effort required to use
software in a different application.

INTEROPERABILITY The rating is in terms of effort required to couple
the system to another system.

NOTES

* Data collected to date provides some basis upon which to allow

quantitative ratings for these quality factors. These ratings
should be modified based on data collected within a specific
development environment. Data has not been collected to support
ratings of the other quality factors.

** Indicates rating which might be considered current industry average.

28

V

Table 2.4-2 Quality Metrics Related to Factors

FACTOR METRICS *

CORRECTNESS TRACEABILITY CHECK (TR.l)
COMPLETENESS CHECKLIST (CP.l)
CONSISTENCY CHECKLISTS (CS.1-2)

RELIABILITY ACCURACY CHECKLIST (AY.1)
ERROR TOLERANCE CHECKLISTS (ET.I-S)
DESIGN STRUCTURE MEASURE (ST.l)
STRUCTURED PROGRAMMING CHECK (SI.2)
COMPLEXITY MEASURE (SI.3)
CODING SIMPLICITY MEASURE (SI.4)

EFFICIENCY PERFORMANCE REQUIREMENTS CHECK (EE.l)
ITERATIVE PROCESSING MEASURE (EE.2)
DATA USAGE MEASURE (EE.3)
STORAGE EFFICIENCY MEASURE (EE.4)

INTEGRITY ACCESS CONTROL CHECKLIST (AC.1)
ACCESS AUDIT CHECKLIST (AA.l)

USABILITY OPERABILITY CHECKLIST (OP.I)
TRAINING CHECKLIST (TR.1)
USER INPUT INTERFACE MEASURE (CM.l)
USER OUTPUT INTERFACE MEASURE (CM.2)

MAINTAINABILITY CONSISTENCY CHECKLISTS (CSI-2)
DESIGN STRUCTURE MEASURE (SI.1)
STRUCTURE LANGUAGE CHECK (SI.2)
COMPLEXITY MEASURE (SI.3
CODING SIMPLICITY MEASURE (SI.4)
STABILITY MEASURE (MO.l)
MODULAR INPLEMENTATION MEASURE (MO.2)
QUANTITY OF COMMENTS (SD.1)
EFFECTIVENESS OF COMMENTS MEASURE (SD.2)
DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE

MEASURE (SD.3)
CONCISENESS MEASURE (CO.I)

• Acronym references in parentheses relate to definitions in [MCCA79).

(Continued)

29

Table 2.4-2 Quality Metrics Related to Factors (Continued)

FACTOR METRICS *

FLEXIBILITY MODULAR IMPLEMENTATION MEASURE (MO.2)
INTERFACE MEASURE (GE.l)
GENERALITY CHECKLIST (GE.2)
DATA STORAGE EXPANSION MEASURE (EX.l)
EXTENSIBILITY MEASURE (EX.l)
QUANTITY OF COMMENTS (SD.1)
EFFECTIVENESS OF COMMENTS MEASURE (SD.2)
DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE

MEASURE (SD.3)

DESIGN STRUCTURE MEASURE (SI.1)
TESTABILITY STRUCTURED PROGRAMMING CHECK (SI.2)

COMPLEXITY MEASURE (SI.3)
CODING SIMPLICITY MEASURE (SI.4)
STABILITY MEASURE (MO.1)
MODULAR IMPLEMENTATION MEASURE (MO.2)
TEST CHECKLISTS (IN.1-3)
QUANTITY OF COMMENTS (SD.1)
EFFECTIVENESS OF COMMENTS MEASURE (SD.2)
DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE

MEASURE (SD.3)

PORTABILITY MODULAR IMPLEMENTATION MEASURE (MO.2)
QUANTITY OF COMMENTS (SD.l)
EFFECTIVENESS OF COMMENTS MEASURE (SD.2)
DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE

MEASURE (SD.3)
SOFTWARE SYSTEM INDEPENDENCE MEASURE (SS.1)
MACHINE INDEPENDENCE MEASURE (MI.l)

REUSEABILITY MODULAR IMPLEMENTATION MEASURE (MO.2)
INTERFACE MEASURE (GE.1)
GENERALITY CHECKLIST (GE.2)
QUANTITY OF COMMENTS (SD,1)
EFFECTIVENESS OF COMM ENTS MEASURE (SD.2)
DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE

MEASURE (SD.3)
SOFTWARE SYSTEM INDEPENDENCE MEASURE (SS.1)
MACHINE INDEPENDENCE MEASURE (MI1.)

INTEROPERABILITY MODULAR IMPLEMENTATION MEASURE (MO.2)
COMMUNICATIONS COMMONALITY CHECKLIST (CC.l)
DATA COMMONALITY CHECKLIST (DC.I)

30

2.4.2 EXAMPLE OF METRICS

Using the example of paragraph 2.2.2, the quality ratings would be specified

as follows.

3a Speci4c QuaU ty Facto4 Rating.6

Ratings for two of the five important quality factors can be

established using Table 2.4-1.

Re.Z1abity .99 Require less than one error

per 100 lines of code to be

detected during formal testing.

mvJ:v& ty .8 Require 2 man days as an average

level of maintenance for correcting

an error.

These ratings can also be established at each measurement period during

the development as follows:

E POR CDR IMPL ACCEPTANCERetoai.Uy YT x- -.r 7 .99

Mani b Y .7 .7 .8 .8 .8

The progressively better scores are required because there is

more detailed information in the later phases of the development

to which to apply the metrics and more confidence in the metrics'

indication of quality. This is analagous to the concept of

reliability growth. For other quality factors see step 3b.

3b ,denti6y Speai.c MeftitA to be Appied
The metrics to be applied to assess the level of each important

quality factor are chosen from Table 2.4-2. A subset is shown

on the following page:

31

:' 31

.1
Accuracy Checkli st
Error Tolerance Checklist

* RELIABILITY

Complexity Measure
Coding Simplicity Measure
Modular Implementation Measure

MAINTAINABILITY

Quantity of Commients
Effectiveness of Commenmts

Traceability Check
Completeness Checklist CORRECTNESS
Consistency Checklists
Operability Checklist -- I

User interface ChecklistsA I
Communications Commonal ity INTEROPERABILITV
Data Commonality I R

3c Speci~y ThAtehold Vatue

The following threshold values are established based on past

experience and to provide a goal for the quality factors that

were not given ratings. They were derived by determining the

average scores of past applications of the metrics.

Quantity of Comments .2

Effectiveness of Comments .6

Complexity Measure .1

Traceability Check .9

Completeness Checklist 1.

Consistency Checklist .9

Operability Checklist .6

Training Checklist .75

User Interface Checklist .75

Communications Commonality .8

Data Commonality .8

32

• ,. . ii

2.5 EVALUATION OF DEVELOPMENT PLAN

In an acquisition environment the initial benefits of utilizing the quality

metrics concepts are realized in the source selection process. The acquisi-

tion office should include the quality goals established as software requirements

in the Request for Proposal. The software attributes should be also identi-

fied as required characteristics in the software and the metrics as the

vehicles for assessing their existence. The bidders should be required to

describe how they plan to provide those characteristics in the software.

This discussion should be provided in the portion of the proposal that

describes their development plan.

The description of the bidderk approach for including the required attributes

in the software not only forces acknowledgement of these additional require-

ments but also provides additional information with which to evaluate the

bidders during source selection.

33

V

*/.. J II,

SECTION 3

PROCEDURES FOR APPLYING MEASUREMENTS

3.1 WHEN TO APPLY MEASUREMENTS

The software quality metrics are oriented toward the availability of

information about the software system as it progresses in its development.

In the early phases of the development, the metrics are applied to the

documentation produced to describe the concepts of the system and its

design. In the later phases the metrics are oriented not only to documen-

tation but also to the source code that is available.

Thus, the application of the metrics logically follows the phased devel--

opment of software. The first application of the metric is at the end

of the requirements analysis. The next application is during design.

If the design phase has been decomposed into a preliminary design phase

and a detailed design phase, the metrics should be applied at the end

of each of those phases. During implementation, i.e. coding the metrics

oriented toward the source code should be applied periodically to assess

the quality growth exhibited as the code evolves. The timing of the

application of the metrics is shown in Figure 3.1-1. The application of

the metrics can be done during or just proir to formal customer reviews

(as shown in Figure 3.1-1) or during equivalent activities conducted by

the development personnel.

REQUIREMENTSPROGRAMM4ING TS
RNAIESS DESIGN AND TES T

ANLSSCHECKOUT INTEGRATION]

REQUIREMENT --,
REVIEW PERIODIC

APPLICATION
DURING
CODING
AND
TES TING

PRELIMINARY
DESIGN
REV I EW

CRITICAL
DESIGN
REVIEW

VALIDATION
AND
ACCEPTANCE
TEST
REVIEW

ACCEPTANCE

Fiqure 3.1-1 Timinq of Metrics Application

. -.

3.2 SOURCES OF QUALITY INFORMATION

A typical minimum set of documents and source code are shown in Figure 3.2-1.

These documents plus the source code are the sources of the quality infor-

mation derived from the application of the metrics.

REQUIREMENTS PROGRAMMING TEST
ANALYSIS DESIGN AND ANDCHECKOUT INTEGRATIONI

REQUIREMENTS
SPEC

PRELIMINARY
DESIGN
SPEC
USER'S MANUAL
(DRAFT)

DETAILED
DESIGN
SPEC
TEST PLAN RCE CODE
AND
PROCEDURES DETAILED

DESIGN
SPEC
UPDATED

TEST
RESULTS

USER'S MANUAL
(FINAL)

Figure 3.2-1

35

'7

3.3 APPLICATION OF THE MEASUREMENTS

The vehicle for applying the software metrics are the metric worksheets

contained in this section of the manual. The procedure is to take the

available documentation/source code, apply the appropriate worksheet

(as shown in Figure 3.3-1), and translate the measurements to metric

scores.

The worksheets are organized as follows. In the header portion of the work-

sheet is the worksheet identification which (1) identifies the phase

during which the worksheet is initially used and the level (system

or module) to which the worksheet applies, (2) provides identification of

the system and the module to which the worksheet has been applied, and (3)

provides identification of the date and the inspector who took the measure-

ments. The remaining portion of each worksheet contains the measurements to

be taken and questions to be answered. These measurements and questions are

organized by quality factors identified in parentheses. Each logical

group of measurements and questions have a group identifier and are

bordered. When applying the measurements, only those in the groups that

relate to the quality factors chosen as quality goals should be applied.

Metric Worksheet # 1 and # 2a contain system level metrics and are applied

at the system or major subsystem (CPCI) level to the System Requirements

Specification, the Preliminary Design Specification, the User's Manual, and

the Test documentation.

Metric Worksheets # 2b and #3 contain module level metrics and are applied

to each module's design (Detailed Design Specification) and implementation

(source code).

.efinitions and interpretations of the individual measurements contained

in the worksheets are found in Appendix B of the first volume. Next to

each measurement element on the worksheets is an index into the metric

table in Appendix B.

36

4.*

As shown in Figure 3.3-1, the worksheets may be applied several times during
the development. For example, Metric Worksheet #2b which is applied
for each module to the detailed design document during design is also
applied to the detailed design document after it has been updated to
reflect the actual implementation. The worksheet does not have to be

totally reapplied. The successive applications of any worksheet should
require considerably less effort than the original application. The

successive applications should involve simply updates to reflect the
updates made to the system since the previous application of the worksheet.

DEVELOP1ENT PHASES

REQUIREMENTS DESIGN IMPLEMIENTATION AND
ANALYSIS INTEGRATION

REQUIREMENTS
SPEC

METRIC
WORKSHEET PRELIMINARY# 1 DESIGNSPEC

USER'S MANUAL
(DRAFT) DETAiLED

DESIGN
METRIC SPEC
WORKSHEET (BUILD TO)
2a SOURCE

TEST CODE
PLAN DETAILED
AND DESIGN
PROCEDURES SPEC TEST

(BUILT TO) RESULTS
USER'S MANUAL
(FINAL

METRIC
WORKSIKEEI

#2bI
IErTIC METRIC WOKSEET
WORKSMEET # 3
#2a
UPDATE METRIC WORKSE METRIC WORKSHEET

92b 26UPDATE UPDATE

Figure 3.3-1 Application of the Metric Worksheets

37

....................

METRIC WORKSHEET 1 SYSTEM DATE

REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME: INSPECTOR:

I. COMPLETENESS (CORRECTNESS, RELIABILITY)

1. Number of major functions identified (equivalent to CPCI). CP.l

2. Are requirements itemized so that the various functions to be performed, their

inputs and outputs, are clearly delineated? CP.l(l) Y N

3. Number of major data references. CP.l(2)

4. How many of these data references are not defined? CP.l(2)

5. How many defined functions are not used? CP.1(3)

6. How many referenced functions are not defined? CP.l(4)

7. How many data references are not used? CP.l(2)

8. How many referenced data references are not defined? CP.l(6) :;Y

9. Is the flow of processing and all decision points in that flow described? CP.l(5 Y

10. How many problem reports related to the requirements have been recorded? CP.l(7)

11. How many of those problem reports have been closed (resolved)? CP.l(7)

II. PRECISION (RELIABILITY)

1. Has an error analysis been performed and budgeted to functions? AY.l(1) Y N

2. Are there definitive statements of the accuracy requirements for inputs,

outputs, processing, and constants? AY.l(2) Y N

3. Are there definitive statements of the error tolerance of input data? ET.2(l) Y N

4. Are there definitive statements of the requirements for recovery from

computational failures? ET.3(l) Y N

5. Is there a definitive statement of the requirement for recovery from hardware

faults? ET.4(l) Y N

6. Is there a definitive statement of the requirements for recovery from device

errors? ET.5(l) Y N

11. SECURITY (INTEGRITY)

1. Is there a definitive statement of the requirements for user input/output Y N
access controls? AC.l(l)

2. Is there a definitive statement of the requirements for data base access Y N
controls? AC.l(2)

3. Is there a definitive statement of the requirements for memory protection Y N
across tasks? AC.1(3)

4. Is there a definiti., statement of the requirements for recordinq and Y N
reporting access to system? AA.l(1)

5. Is there a definitive statement of the reauirements for immediate Y N
indication of iccess violation? AA.1(2)

38

-2AM

Pa. 2

METRIC WORKSHEET 1 SYSTEM DATE
REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME: _INSPECTOR:

IV. HUMAN INTERFACE (USABILITY

1. Are all steps in the operation described (operations concept)? OP.l(l) N

2. Are all error conditions to be reported to operator/user identified and

the responses described? OP.l(2) Y N

3. Is there a statement of the requirement for the capability to interrupt

operation, obtain status, modify, and continue processing? OP.l(3) Y N

4. Is there a definitive statement of requirements for optional input media7 Y N
CM.I16)

5. Is there a definitive statement of requirements for optional output media? Y N
CM.2(7)

6. Is there a definitive statement of requirements for selective output 4.control? CM.2(1)

V. PERFORMANCE (EFFICIENCY)

1. Have performance requirements (storage and run time) been identified for
the functions to be performed? EE.. Y N

VI. SYSTEM INTERFACES (INTEROPERABILITY)

1. Is there a definitive statement of the requirements for communication with

other systems? CC.l(1) Y N

2. Is there a definitive statement of the requirements for standard data

representations for communication with other systems? DC.l(l) Y N

VII. INSPECTOR'S COMMENTS

Make any general or specific comments that relate to the quality observed while

applying this checklist.

39

' , .- ', 4 .- ,

METRIC WORKSHEET 2a SYSTEM DATE;

DESIGN/SYSTEM LEVEL NAME: INSPECTOR:

I. COMPLETENESS (CORRECTNESS, RELIABILITY)

1. Is there a matrix relating itemized requirements to modules which implement Y N

those requirements? TR.I

2. How many major functions (CPCIS) are identified? CP.I

3. How many functions identified are not defined? CP.I(2)

'4. How many defined functions are not used? CP.l(3)

5. How many interfaces between functions are not defined? CP.l(6)

6. Number of total problem reports recorded? CP.1(7)

7. Number of those reports that have not been closed (resolved?) CP.1(7)

8. Profile of problem reports: (number of following types) a. Computational
b. Logic

II. PRECISION (RELIABILITY) c. Input/output
d. Data handling

1. Have math library routines to be used been e. OS/System Support
f. Configurationchecked for sufficiency with regards to Y N g. Routine/Routine

requirements? AY.(3) I interface
accuracy h. Routine/System

2. Is concurrent processing centrally Interface

controlled? ET.l(l) Y N i. Tape Processing
j. User interface

3. How many error conditions are reported k. data base interface

by the system? ET.I(2) Y N 1. user requested
changes

4. How many of those errors are automatically m. Preset data
fixed or bypassed and processing continues? n. Global variable

ET 1(2) definition
5. How many, require operator interventionpr

ET 1(2) p. Recurrent errors6. Are provisions for recovery from hardware Y N q. Documentation

faults provided? ET.4(2) r. Requirement

7. Are provisions for recovery from device compliance

errors provided? ET.5(2) Y N s. Operator
t. Questions

,-....u..Hardware
III STRUCTURE (RELIABILITY, MAINTAINABILITY,TESABILITY,

PORTABILITY, REUSABILITY, INTEROPERABILITY)

I. Is a hierarchy of system, identifying all modules in the system provided? Y N
2. Number of Modules SI.I(2) SIM.I()

3. Are there any duplicate functions? SI.l(2) Y N

4. Based on hierarchy or a call/called matrix, how many modules are called by

more than one other module? GE.l

5. Are the constants used in the system defined once? GE.2(5) Y

40

60 .. .

Pg. 2

METRIC WORKSHEET 2a SYSTEM DATE;

DESIGNZSYSTEM LEVEL NAME INSPECTOR:

IV. OPTIMIZATION (EFFICIENCY)

1. Are storage requirements allocated to design? SE.1(1) Y N

2. Are virtual storage facilities used? SE.l(2) Y N

3. Is dynamic memory management used? SE.l(5) Y N

4. Is a performance optimizing compiler used? SE.1(7) Y N

5. Is global data defined once? CS.2(3) Y N

6. Have Data Base or files been organized for efficient processing? EE.3(5) Y N

7. Is data packing used? EE.2(5) Y N

8. Number of overlays EE.2(4)

9. Overlay efficiency - memory allocation EE.2(4)

max overlay size

min overlay size

V. SECURITY (INTEGRITY)

1. Are user Input/Output access controls provided? AC.1(1) Y N

2. Are Data Base access controls provided? AC.l(2) Y N

3. Is memory protection across tasks provided? AC.l(3) Y N

4. Are there provisions for recording and reporting errors? AC.2(1,2) Y N

VI. SYSTEM INTERFACES (INTEROPERABILITY)

1. How many other systems will this system interface with? CC.I(l)

2. Have protoc 1 standards been established? CC.l(2) Y N

3. Are they being complied with? CC.1(2) Y N

4. Number of modules used for input and output to other systems? CC.1(3,4) Y N

5. Has a standard data representation been established or translation

standards between representations been established? DC.1(1) Y N

6. Are they being complied with? DC.1(2)

7. Number of modules used to perform translations? (C.1(3)

VII. HUMAN INTERFACE (USABILITY)

1 . Are all steps in operation described including alternative flows? 0P.I(I)1 Y I N

2. Number of operator actions? OP.1(4)

41

Aim 46I

I
Pg. 3

SMETRIC WORKSHEET 2a SYSTEM DATE:
__DESIGN/SYSTEM LEVEL NAME: ._INSPECTOR

VII. HUMAN INTERFACE (USABILITY) Continued

3. Estimated or Actual time to perform? OP.l(4)
4. Budgeted time for complete job? OP.l(4)

5. Are job set up and tear down procedures described? OP.l(5)

6. Is a hard copy of operator interactions to be maintained? OP.l(6) Y N

7. Number of operator messages and responses? OP.1(2)

8. Number of different formats? OP.l(2)

9. Are all error conditions and responses appropriately described? OP.l(2)

10. Does the capability exist for the operator to interrupt, obtain status,

save, modify, and continue processing? OP.l(3) Y N

11. Are lesson plans/training materials for operators, end users, and

maintainers provided? TN.l(l) Y N

12. Are realistic, simulated exercises provided? TN.I(2) Y N

13. Are help and diagnostic information available? TN.1(3)

14. Number of input formats CM.I(2)

15. Number of input values CM.I(1)

16. Number of default values CM.l(l)

17. Number of self-identifying input values CM.I(3)

18. Can input be verified by user prior to execution? CM.1(4)

19. Is input terminated by explicitly defined by logical end of input? CM.1(5 y N

20. Can input be specified from different media? CM.l(6) Y N

21. Are there selective output controls? CM.2(1) Y N

22. Do outputs have unique descriptive user oriented labels? CM.2(5) Y N

23. Do outputs have user oriented units? CM.2(3) Y N

24. Number of output formats? CM.2(4)

25. Are logical groups of output separated for user emamination? CM.2(5) Y N

26. Are relationships between error messages and outputs unambiguous? CM.2(6 Y N
27. Are there provisions for directing output to different media? CM.2(7) Y_ N

VIII. TESTING (TESTABILITY) APPLY TO TEST PLAN, PROCEDURES, RESULTS

1. Number of paths? IN.l(1) 4. Number of input parameters to

2. Number of paths to be tested? be tested? IN.1(2)

3. Number of input parametersN.1(l 5. Number of interfaces? IN.2(1)

42

METRIC WORKSHEET 2a SYSTEM DATE:

DESIGN/SYSTEM LEVEL NAME; __________INSPECTOR;

VIII. TESTING (TESTABILITY) -APPLY TO TEST PLAN, PROCEDURES, RESULTS (CONTINUED)

6. Number of interfaces to be tested? IN.2(l) 9. Number of modules? IN.3(l)

7. Number of itemized performance requim~ 10. Number of modules to be

8. Number of performance requirements to be eecsd N3l
tested? N22 11. Are test inputs and outputs

provided in summairy

X INSPFCTOR'S COMMENTS

Make any general or specific conmments about the quality observed while applying this

checklist.

43

METRIC WORKSHEET 2b SYSTEM NAME: DATE:
DESIGN/MODULE LEVEL MODULE NAME: INSPECTOR:

I. COMPLETENESS (CORRECTNESS, RELIABILITY)

1. Car, you clearly distinguish inputs, outputs, and the function being performed? CP.l(l) Y N

2. How many data references are not defined, computed, or obtained from an external
source? CP.l(2) *-

3. Are all cTnditions and processing defined for each decision point? CP.I(5) N

4. How many problem reports have been recorded for this module? CP.l(7)

5. Profile of Problem Reports: a. Computational

6. Number of problem reports still outstanding CPl(7 b. Logic

II. PRECISION (RELIABILITY) c. Input/Output

1. When an error condition is detected, is it V N e. System/OS Supportpassed to calling module? ET.I(3) eSyemOSupr

2. Have numerical techniques being used in algori- f. Configuration
thm been analyzed with regards to accuracy --

requirements? AY.1(4) Y g. Routine/Routine Inter-

face3. Are values of inputs range tested? ET.2(2) Y N h. Routine/System Inter-
4. Are conflicting requests and illegal combina- Y N i face

tions identified and checked? ET.2(3) . . Tape Processing

j. User Interface

5. Is there a check to see if all necessary data V N k. Data Base Interface
is available before processing begins? ET.2(5)

1. User Requested Changes

6. Is all input checked, reporting all errors, y N P
before processing begins? ET.2(4) F Preset Data

- - n. Global Variable Defi-

7. Are loop and multiple transfer index parameters Y N nition
p. Recurrent Errors

range tested before use? ET.3(2) .

q. Documentation

8. Are subscripts range tested before use? ET.3(3) Y N;r. Requirement Compliance

9. Are outputs checked for reasonableness before

processing continues? ET.3(4) y N t Operator

u. Questions

v. Hardware

Ill. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)
1. How many Decision Points are there? 3. RHow many conditional branches are

SI.3 there? SI.3

2. How many subdecision Points are 4. How many unconditional branches
there? SI.3 are there? SI.3

44

METRIC WORKSHEET 2B SYSTEM NAME:

DESIGN/MODULE LEVEL MODULE NAME:I g

III. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY) (CONTINUED)

5. Is the module dependent on the 7. Are any limitations of the proces-

source of the input or the N sing performed by the module YIN
destination of the output? SI.1(3) [identified? EX.2(l)

6. Is the module dependent on know- i 8. Number of entrances into mdu]s
ledge of prior processing? SI.1(3) Y N uI. 5)

IV. REFERENCES (MAINTAINABILITY, FLEXIBILITY, TESTABILITY, PORTABILITY, REUSABILITY,
INTEROPERABILITY)

1. Number of references to system 8. Is temporary storage shared with
library routines, utilities or other other modules? MO.2(7)
system provided facilities SS.l(1) 9. Does the module mix input, out-

2. Number of input/output actions put and processing functions in
MI.1(2) same module? GE.2(l)

3. Number of calling sequence parameters
MO.2(3) 10. Number of machine dependent

4. How many calling sequence parameters functions performed? GE.2(2)
are control variables MO.2(3)

11. Is processing data volume limited? N
5. Is input passed as calling sequence GE.2(3)

parameters MO.2(4) N 12. Is processing data value limite? Y N
Y GE.2 (4)

6. Is output passed back to calling 13. Is a common, standard subset of
module? MO.2(5) Y N programming language to be used? Y N

SS.l(2)
7. Is control returned to calling Y N 14. Is the programming language

module MO.2(6) available in other machines? Y N
MI.I(l)

V. EXPANDABILITY (FLEXIBILITY)

1. Is logical processing independent of storage specification? EX.l(l) Y N

2. Are accuracy, convergence, or timing attributes parametric? EX.2(l) Y N

3. Is module table driven? EX.2(2) Y N

VI. OPTIMIZATION (EFFICIENCY)

1. Are specific performance requirements (storage and routine) allocated to this
module? EE.l ILLY NJ

45

M 6

METRIC WORKSHEET 2b SYSTEM NAME:

DESIGN/MODULE LEVEL MODULE NAME: Pg. 3

VI. OPTIMIZATION (EFFICIENCY) (CONTINUED)

2. Which category does processing fall in: EE.2

~ Real-time

On-line

Time-constrained

Non-time critical

3. Are non-loop dependent functions kept out of loops? EE.2(l)

4. Is bit/byte packing/unpacking performed in loops? EE.2(5)

5. Is data indexed or reference efficiently? EE.3(5)

VII. FUNCTIONAL CATEGORIZATION

Categorize function performed by this module according to following:

WCONTROL - an executive module whose prime function is to invoke other modules.

INPUT/OUTPUT - a module whose prime function is to communicate data between
the computer and the user.

F PRE/POSTPROCESSOR - a module whose prime function is to prepare data for or
after the invocation of a computation or data management

module.

W ALGORITHM - a module whose prime function is computation.

Z] DATA MANAGEMENT - a moudle whose prime function is to control the flow of
data within the computer.

[SYSTEM - a module whose function is the scheduling of system resources for
other modules.

VIII. CONSISTENCY

1. Does the design representation comply with established standards CS.1(1) Y N

2. Do input/output references comply with established standards CS.l(3) Y N

3. Do calling sequences comply with established standards CS.I(2) Y N

4. Is error handling done according to established standards CS.l(4) Y N

5. Are variable named according to established standards CS.2(2) Y N

6. Are global variables used as defined globally CS.2(3) Y N

46-
pI

- .,.,'

METRIC WORKSHEET 2b SYSTEM NAME: Pa._______4_

'.ESIGN/MODULE LEVEL MODULE NAME:P.4

IX. INSPECTOR'S COMMENTS

Make any specific or general commnents about the quality observed while applying this

'1 checklist?

47

METRIC WORKSHEET 3 SYSTEM NAME: DATE:

SOURCE CODE/MODULE LEVEL MODULE NAME: INSPECTOR;

I. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)

1. Number of lines of code M0.2(2) 11. Nuner of sub-decision points
SI.3

2. Number of lines excluding comments 12. Number of conditional branches
SI.4(2) (computed go to) SI.4(8)

3. Number of machine level language 13. Number of unconditional branches
statements SD.3(1) (GOTO, ESCAPE) SI.4(9)

4. Number of declarative statements 14. Number of loops (WHILE, DO)
SI.4 SI.4(3)

5. Number of data manipulation state- 15. Number of loops with jumps out of
ments SI.4 loop SI.4(3)

6. Number of statement labels 5 .4(6) 16. Number of loop indicies that are
(Do not count format statements) modified SI.4(4)

7. Number of entrances into module 17. Number of constructs that perform
SI.I(5) module modification (SWITCH,

8. Number of exits from module ALTER) SI.4(5)
SI,1(5) 18. Number of negative or complicated

9. Maximum nesting level SI.4(7) compound boolean expressions
SI. (2)

10. Number of decision points 19. Is a structured language use Y N10. umbe of ecison pintsSI.2
(IF, WHILE, REPEAT, DO, CASE) SI.3 20. Is flow top to bottom (are there Y N

any backward branching GOTOs)sI. 4 (_----

II. CONCISENESS (MAINTAINABILITY) - SEE SUPPLEMENT

1. Number of operators CO.l 3. Number of Operands CO.1

2. Number of unique operators CO.l 4. Number of unique operands CO.1

III. SELF-DESCRIPTIVENESS (MAINTAINABILITY, FLEXIBILITY, TESTABILITY, PORTABILITY, REUSPBILITY)

1. Number of lines of comments SD.l 7. Are non-standard HOL statements

2. Number of non-blank lines of comments commented? SD.2(5)

SD.1
3. Are there prologue comments provided 8. How many declared variables are

containing information about the not described by comments?
function, author, version number, -S.2(6)
date, inputs, outputs, assumptions V N
and limitations? 9. Are variable names (mnemonics)

4. Is there a comment which indicates descriptive of the physical or
what itemized requirement is functional property they
satisfied by this module? SD.2(l) represent? SD.3(2)

10. Do the comments do more than
5. How many decision points and trans- repeat the operation? SD.2(7)

fers of control are not commented? Y N
SD. 2(3)

11. Is the code logically blocked and
6. Is all machine language code com- indented? SD.3(3)

mented? SD.2(4) Y N

12. Number of lines with more than
I statement. SD.3(4)

13. Number of continuation line
48 SO.3t4)

&11i Mit

METRIC WORKSHEET 3 SYSTEM NAME:

SOURCE CODE YMODULE LEVEL MODULE NAME: Pg. 2

IV. INPUT/OUTPUT (RELIABILITY, FLEXIBILITY, PORTABILITY)

1. Number of input statements MI.l(2) 4. Are inputs range-tested (for
inputs via calling sequences,

2. Number of output statements MI.l(2) global data, and input

statements) ET.2(2)
3. Is amount of input that can be 5. Are possible conflicts or illegal

handled parametric? GE.2(3) combinations in inputs checked?
ET.2(3) N

6. Is there a check to determine if
all data is available prior to

processing? ET.2(5)Y _N

V. REFERENCES (RELIABILITY, MAINTAINABILITY. TESTABILITY. FLEXVILITY. PORTABILITY, REUSABILITY)

1. Number of calls to other modules 6. How many parameters passed to or
MO.2(l.) from other modules are not defined

2. Number of references to system in this module? M0.2(3)
library routines, utilities, or
other system provided functions 7 Is

SS.1(1) 7. Is input data pacsed as parameter?
3. Number of calling sequence parameters MD.2(4)

M0.2(3)
4. How many elements in calling 8 Ip

sequences are not parameters? li . moul e back toM0.2(3)calnmoue M.()_J_

5. How many of the calling parameters
(input) are control variables? . Icontrol returned to calling YN

D module? M0.2(6)

VI. DATA (CORRECTNESS, RELIABILITY, MAINTAINABILITY, TESTABILITY)

1. Number of local variables SI.4(lO) 4. How many global variables are not
used consistently with respect to

2. Number of global variables SI.4(lO) units or type? CS.2(4)

3. Number of global variables renamed 5. How many variables are used for

SE.I(3) more than one purpose? CS.2(3)

VII. ERROR HANDLING - (RELIABILITY) VIII. (EFFICIENCY)

1. How many loop and multiple transfer 1. Number of mix mode expressions?
index parameters are not range EE.3(3)
tested before use? ET.3(2) 2. How many variables are initialized

when declared? EE.3(2)
2. Are subscript values range tested 3. How many loops have non-loop

before use? ET.3(3) dependent statements in them?EE.20)

Y N 4. How many loops have bit/byte
3. When an error condition occurs, is it packing/unpacking? EE.2(5)

passed to the calling module? ET.I(3) Y NSE.(6)

4. Are the results of a computation 5. How many compound expressions
checked before outputting or before defined more than once? EE.2(3)
processing continues? ET.3(4) Y N 49

METRIC WORKSHEET 3 SYSTEM NAME:

SOURCE COE/MODULE LEVEL MGDULE NAME: Pg. 3

IX. PORTABILITY X. FLEXIBILITY.

1. Is code independent of word and 1 . Is module table driven EX.2(2) Y N

character size? MI.l(3) V- N 2. Are there any limits to data

Ivalues that can be processed?
2. Number of lines of machine language "GE.2(4)

statements. MI.]
3. Is data representation machine 3. Are there any limits to amounts

independent? MI.1(4) of data that can be processed?indeendnt? I.14) Yl NGE.2(3) Y H N

4. Is data access/storage system soft- 4. Are accuracy, convergence and
ware independent? SS.1 - timing attributes parametric? N

XI. DYNAMIC MEASUREMENTS (EFFICIENCY, RELIABILITY)

1. During execution are outputs within accuracy tolerances? AY.1(5) Y

2. During module/development testing, what was run time? EX.2(3)

3. Complete memory map for execution of this module SE.1.(4)
Size (words of memory)

APPLICATION

SYSTEM

DATA

OTHER

4. During execution how many data items were referenced but not modified EE.3(6)

5. During execution how many data items were modified EE.3(7)

XII. INSPECTORS COMMENTS

Make any general or specific comments that relate to the quality observed by you while
applying this checklist:

50

3.4 TECHNIQUES FOR APPLYING MEASUREMENTS

Section 1.5 identified organizational approaches for utilizing the quality

metric concepts during a software development. These approaches included

both acquisition environments and internal development environments. The

purpose of this section is to describe, at a lower level, how the metrics

would be applied in either case.

The first technique for applying the metrics is by formal inspection. The

formal inspection is performed by personnel of an organization independent

of the development organization.(the acquisition office, an independent quality

assurance group, or an independent contractor). The metric worksheets are

applied to delivered products at scheduled times and the results are formally

reported.

The second technique is to utilize the worksheets during structured design

and code walkthroughs held by the development team. A specific participant

of the walkthrough can be designated for applying the worksheets and report-

ing any deficiencies during the walkthrough or a representative of the

quality assurance organization can participate in the walkthrough with the

purpose of taking the measurements of the design or code.

The last technique is for the development team to utilize the worksheets as

guidelines, self-evaluations or in a peer review mode to enhance the qualtiy

of the products they produce.

51

_ 7

SECTION 4

PROCEDURES FOR ASSESSING THE QUALITY OF THE SOFTWARE PRODUCT

4.1 INTRODUCTION

The benefits of applying the software quality metrics are realized when the

information gained from their application is analyzed, The analyses that can

be done based on the metric data are described in the subsequent paragraphs.

There are three levels at which analyses can be performed. These levels are

related to the level of detail to which the quality assurance organization

wishes to go in order to arrive at a quality assessment.

4.2 INSPECTOR'S ASSESSMENT

The first level at which an assessment can be made relies on the discipline

and consistency introduced by the application of the worksheets. An inspec-

tor, using the worksheets, asks the same questions and takes the same counts for

each module's source code or design document,etc. that is reviewed. Based on

this consistent evaluation, a subjective comparison of products can be made.

la. Vocmeu.t Zspecto4'4 A6e6,6ment

The last section in each worksheet is a space for the inspec-

tor to make comments on the quality observed while applying the

worksheet. Comments should indicate an overall assessment as well

as point out particular problem areas such as lack of comments,

inefficiencies in implementation, or overly complex control flow.

lb. Compite se. 6ment6 So-% SyAtem Reuiew

By compiling all of the inspector's assessments on the various

documents and source code available at any time during the develop-

ment, deficiencies can be identified.

4.3 SENSITIVITY ANALYSIS
The second level of detail utilizes experience gained through the application
of metrics and the accumulation of historical information to take advantage

of the quantitative nature of the metrics. The values of the measurements

are used as indicators for evaluation of the progress toward a high quality

product.

52

'Ii.

At appropriate times during a large-scale development, the application of

the worksheets allows calculation of the metrics. The correspondence of the

worksheets to the metrics is shown in Appendix B of [MCCA79]. The results of
these calculations is a matrix of measurements. The metrics that have been

established to date are at two levels-system level and module level. The
approach to be described is applicable to both levels and will be described
in relationship to the module level metric.

A n by k matrix of measurements results from the application of the metrics to

the existing products of the development (e.g., at design, the products might

include review material, design specifications, test plans, etc.) where there

are k modules and n module level measurements applicable at this particular time.

r n l . . . mlkl

= m2l

Lmnl •mnkj

This matrix represents a profile of all of the modules in the system with

respect to a number of characteristics measured by the metrics. The analyses

that can be performed are described in the following steps:

2a. AMaeh Vajiation o Mea6uAement6

Each row in the above matrix represents how each module in the

system scored with respect to a particular metric. By summing all
the values and calculating the average and standard deviation for

that metric, each individual module's score can then be compared

with the average and standard deviation. Those modules that

score less than one standard deviation from the average should be

identified for further examination. These calculations are

illustrated below:

k

for metric i; Average Score = Ai
= I M ij /k

J-- k 2
Standard Deviation = 1 = a (M -A)2 /k

Report Module j if Mij < AI - i

53

M,"

2b. A.6eAA Low Sy6.tem Scou.A

In examining a particular measure across all modules, consistently
low scores may exist. It may be that a design or implementation
technique used widely by the development team was the cause. This

situation identifies the need for a new standard or stricter

enforcement of existing standards to improve the overall develop-
ment effort.

2c. A6eA.6 Sco4 e Aggait T1ARhoZt&

As experience is gained with the metrics and data is accumulated,
threshold values or industry acceptable limits may be established.

The scores, for each module for a particular metric should be com-

pared with the established threshold. A simple example is the
percent of comments per line of source code. Certainly code

which exhibits only one or two percent measurements for this
metric would be identified for corrective action. It may be

that ten percent Is a minimum acceptable level. Another example

is the complexity measure. A specific value of the complexity

measure greater than some chosen value should be identified for
corrective action

Report Module j if Mij <Ti (or >T for complexity
measures)

Where Ti = threshold value

specified for metric i.

4.4 USE OF NORMALIZATION FUNCTION TO ASSESS QUALITY

The last level of assessing Quality is using the normalization functions to

predict the quality in guantitative terms. The normalization functions

are utilized in the following manner.

For a particular time there is an associated matrix of coefficients which

represent the results of linear multivariate regression analyses against

empirical data (past software developments). These coefficients, when

multiplied by the measurement matrix results in an evaluation (prediction)

54

of the quality of the product based on the development to date. This

coefficient matrix, shown below, has n columns for the coefficients of

the various metrics and 11 rows for the 11 quality factors.

c11 c12 . . . cln

d = . .

To evaluate the current degree or level of a particular quality factor, i,

for a module, j, the particular column in the measurement matrix is multiplied

by the row in the coefficient matrix. The resultant value:

Cill m ij + ci,2 m2,j Ci,n mm,j 2 ri,j

is the current predicted rating of that module, j for the quality factor, i.

This predicted rating is then compared to the previously established rating

to determine if the quality is as least as sufficient as required. The

coefficient matrix should be relatively sparse (many Cij = 0). Only sub-

sets of the entire set of metrics applicable at any one time relate to the

criteria of any particular quality factor.

Multiplying the complete measurement matrix by the coefficient matrix

results in a ratings matrix. This matrix contains the current predicted

ratings of each module for each quality factor. Each module then can be

compared with the preset rating for each quality factor.
r11 r12 r

CMR_

-r lll r 11,kJ

This approach represents the most formal approach to evaluating the quality

of a product utilizing the software quality metrics. Because the coefficient

matrix has been developed only for a limited sample in a particular environment,

it is neither generally applicable nor has statistical confidence in its value

been achieved.
55

k.;- ,., V
:

' : " :, :" ':':I
!!

! II '" : -j

To use the normalization functions that currently exist the following steps

should be performed.

3a. Appty Noma&zatovn Function

Table 4.4-1 contains the normalization functions that currently

exist. If any of the quality factors identified in that table

have been specified as a requirement of the development, then the

metrics identified in the table should be substituted into the

equation and the predicted rating calculated. Normalization

functions which include several metrics can be used if available,

otherwise functions for individual metrics should be used. This

predicted rating should be compared with the specified rating.

To illustrate the procedure the normalization function that has

been developed for the factor Flexibility will be used. The

normalization function, applicable during the design phase,

relates measures of modular implementation to the flexibility of

the software. The predicted rating of flexibility is in terms

of the average time to implement a change in specifications. The

normalization function is shown in Figure 4.4-1. The measurements

associated with the modular implementation metric are taken from

design documents. The measurements involve identifying if input,

output and processing functions are mixed in the same module, if

application and machine-dependent functions are mixed in the same

module and if processing is data volume limited. As an example,

assume the measurements were applied during the design phase and a

value of 0.65 was measured. Inserting this value in the normalization

function results in a predicted rating for flexibility of .33 as

identified by point A in Figure 4.4-l. If the Acquisition Manager

had specified a rating of 0.2 which is identified by point B, he

has an indication that the software development is progressing well

with respect to this desired quality.

An organization using this manual is encouraged to establish these

1functions in its specific environment by following the procedures

described in [MCCA77] and [tCCA79].

56

Table 4.4-1 Normalization Functions

RELIABILITY_(DESIGN) __________________

MULTI VARIATE .18 M ET1+ .19 M SI3 ET.1 Error Tolerance Checklist
FUNCTION ETlS13 I.3 Complexity Measure

INDIVIDUAL .34 M ET.1
FUNCTIONS .34 M SI3 J
RELIABILITY (IMPLEMENTATION)

MULTIVARIATE .48MET.1+ .14M 5i1 E. ro oeac hcls
FUNCTION E. ro oeac hcls

S1.3 Complexity Measure
INDIVIDUAL .57 N 51. S.1 Design Structure Measure

.58 TS.l SI.4 Coding Simplicity Measure
.58 M SI.l
.53 MS.

MAINTAINABILITY (DESIGN)

INDIVIDUAL .57 M SI3 SI.3 Complexity Measure
FUNCTION .53 MS1.1 IS1.1 Design Structure Measure
MAINTAINABILITY (IMPLEMENTATION) _________________

MULTIVARIArE -.2+.61 M5 SI.+
1'MMO.2+ 33 SD .2 S1.3 Complexity MeasureFUNCTION NO.2 Modular Implementation

INDIVDUALMeasure
IUNIIDUAL1 SD.2 Effectiveness of Comments

FUNCION 2. SM5 3 Measure
.71 MS."SD 3 Descriptiveness of
.6 M Implementation
. NSD. 3 Language Measure

.5 Ms. S1.1 Design Structure

.4 m S1.1I. Measure
SI.4SI.4Coding Simplicity Measure

FLEXIBILITY (DESIGN) __________________

INDIVIDUAL
FUNCTIONS .51 NMO.2 MO.2 Modular Implementation

.56 MGE.2 GE.2 Generality Checklist

(Continued)

57

Table 4.4-1 Normalization Functions (Continued)

FLEXIBILITY (IMPLEMENTATION)

MULTIVARIATE .22MMO.2+ .
44M GE2+.09MSD.3

FUNCTION

INDIVIDUAL
FUNCTIONS .MO2MO.2 Modular Implementationf. 2 GE.2 GE.2 Generality Checklist

.5MSD.2 SD.2 Effectiveness of Comments
.56MSD Measure

SD.3 SD.3 Descriptiveness of
Implementation
Language Measure

MULTIVARIATE -1.7+.19M SD.1+ .7MSD.2 + .5MS. .4M.

FUNCIONS1.0M S11 0.1 Quantity of Commients
1.1 SD.2 Effectiveness of

lMrI. Commients Measure
1.5M SD.2 S0.3 Descriptiveness of

Implementation
Language Measure

141.1 Machine Independence
Measure

S1.1 Design Structure
Measure

58

owa

IL
Nc

UU
ON'

II i

66x

I I-

59

z L

3b. CatcuLate Confidence in Quatity Ase6,ment

Using statistical techniques a level of confidence can be

calculated. The calculation is based on the standard error of

estimate for the normalization function (given in Table 3.3.3-2,

Vol. I) and can be derived from a normal curve table found in most

statistics texts. An example of the devivation process is shown

in Figure 4.4-2 for the situation described above. Here it is

shown that the Acquisition Manager has an 86 percent level of

confidence that the flexibility of the system will be better than

the specified rating.

MEAN = .33

(SPECIFIED -RATING) .2

MEAN - .33 (PREDICTED RATING,
STANDARD DEVIATION x .12 (STANDARD ERROR OF EST1MATE)

LEVEL OF CONFIDENCE z Pr {X ~2-2 .86 (SHADED AREA)

Figure 4.4-2 Determination of Level of Confidence

60

*.A't

4,5 REPORTING ASSESSMENT RESULTS

Each of the preceeding steps described in this section are easily automated.

If the metrics are applied automatically then the metric data is available in

machine readable form. If the worksheets are applied manually, then the

data can be entered into a file, used to calculate the metric, and formatted

Into the measurement matrix format. The automation of the analyses involve
simple matrix manipulations'. The results of the analyses should be reported
at various levels of detail. The formats of the reports'are left to the

discretion of the quality assurance organization. The content of the

reports to the different managers is recommended in the following paragraphs.

l a. Repo'it .to the Aquiit-o Madnage'L/Veve~opmnt ManageA

The report content to the Acquisition Manager and the Develop-

ment manager sould provide summary information about the progress
of the development toward the quality goals identified at the be

beginning of the project.

For example if ratings were specified for several quality factors,

the current predicted ratings should be reported.

PREDICTED RATING
QUALITY GOALS BASED ON DESIGN DECUMENT

RELIABILITY .9 .8

MAINTAINABILITY .8 .95

If specific ratings were not identified but the important qualities

were identified, a report might describe the percentage of modules

that currently are Judged to be below the average quality (as a

result of the sensitivity analysis) or that are below a specified

threshold value jas a result of the threshold analysis). These

statistics provide a progress status to the manager. Further

progress status Is indicated by reporting the quality growth
of tfe systm or of Individual modules. The quality growth is

VIct4 L by r*portinq the &core% achieved during the various

w4 O © 0 t. 96-iwatte ytc the ratings should progresslvely

61

score higher than those received during requirements. This progress

is based on the identification of problems in the early phases

which can then be corrected.

lb. Repo't6 to Qualty A6wu~nce Ma=ne

In addition to the summary quality progress reports described

in la, the quality assurance manager and his staff will want

detailed metric reports. These reports will provide all of

the results of the Analyses described in 4.2, 4.3, and 4.4, and

perhaps provide the measurement matrix itself for examinations.

In addition to the detailed reports, the quality assurance manager

should be provided with reports on the status of the application of

the metrics themselves by the quality assurance staff. These

status reports will provide information on total number of modules

and the number which inspectors have analyzed.

lc. Repo't6 to the Devetopment Team

The development team should be provided detailed information on

an exception basis. This information is derived from the

analyses. Examples of the information would be quality problems

that have been identified. which characteristics or measurements

of the software products are poor, and which modules have been

identified as requiring rework. These exception reports should

contain the details of why the assessment revealed them as

potential problems. It is based onthis information that corrective

actions will be taken.

9.r

REFERENCES

[MCCA77) McCall, J., Richards, P., Walters, G. "Factors in Software
cualit "RADC-TR-77-369, Nov 1977, 3 Vols (A049014)(A049015) &
A04900 5 -

[tMcCA79) McCall, J., Matsumoto, M., "Metrics Enhancements", RADC-TR-79 *

Aug 1979.

[WE1N72) Weinberg,G, "The Psychology of Improved Programmning Performance,"
DATAM'ATION, Nov 1972.

[CAVA78) Cai'ano, J, McCall, J, "A Framwork for the Measurement of Software
Quality " Proceedings of the ACM Software Quality Assurance
Workshop, NOV 1978.i [DUVA76] Duvall, L.M., "Software Data Repository Study," RADC-TR-76-.387,
Dec 76, (A050636).

63

Aw L1111

