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ABSTRACT

An extensive study of the photoconductivity together with new

measurements of the absorption coefficient of polyacetylene have been

carried out. It is shown that the photoconductivity in trans-(CH)x is

(controlled by localized states (inside the gap) induced either by isomer-

ization or by dilute doping. The presence of such states and their effect

on the photoconductivity of trans-(CH) is accounted for by thex
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Despite great theoretical and technological interest in polyacetylene,

(CH)x, the basic features of its band structure have not been unambiguously

resolved. Since photoconductivity and optical absorption data have frequently

been used to infer information on the band structure of semiconductors,

we have carried out such measurements on (CH) x .

In this letter we report the main results of an extensive study of

the photoconductivity (baph) and absorption coefficient (a) in (CH) X . The

absence. of photoconductivity in cis-(CH)x , despite the similarity in optical

properties indicates that Acph in trans-(CH)x is induced by isomerization.

We find that isomerization generates states deep inside the gap that act as

"safe traps" for minority carriers and thereby enhance the photoconductivity.

Compensation of trans-(CH) with ammonia appears to decrease the number

of safe traps, whereas acceptor doping increases their number. Thus,

chemical doping can be used to control the photoconductive response. The

energy of the safe traps inside the gap is independent of the process used

to generate them; indicative of an intrinsic localized defect level in trans-(CH)X .

A coherent picture based on the soliton model can explain these results,

including the safe trapping.

The photoco nductivity studies were carried out at room temperature ont . 1
thin film samples (thickness of a few microns) polymerized directly on glass sub-

strates. A surface cell configuration was employed using ohmic contacts made with
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silverpaste or Electrodag conducting paints. The measurements were

carried out in the range 0. 6 - 3. 0 eV using chopped light (13. Hz) from a

tungsten lamp dispersed by a prism monochromator. Photocurrents were

measured by phase sensitive detection of the voltage change across a

resistor in series with the sample. Due to excellent thermal anchoring

of the sample to the massive glass substrate, sample heating was found to
2

be unimportant. Where necessary, corrections were made for transmitted

light. The absorption coefficient studies were carried out on freshly grown

semi-transparent thin films on glass substrates. All films were kept under

vacuum or in an inert atmosphere.

In Fig. 1 the logarithm of the photocurrent (Iph) in trans-(CH)x is

shown as a function of incident photon energy. The results were corrected

for transmission (less than 15% over the whole spectrum for this sample).

The inset in Fig. 1 shows a comparison of the same data (curve A) with

results from three other samples of varying quality (see below) in order to

point out the sample dependence of the photocurrent spectrum. Despite the

large variation in the four sets of results, a distinct common feature is the

rather sharp rise above 1. 1 eV. The peak below 1. 5 eV, which may be
. 3

related to the 1. 35 eV peak reported earlier, is not seen in all samples.

Measurements of I in cis-(CH) were attempted under similarph x

conditions without success; no photocurrent has been detected in samples

IfL i)N"c :
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of 80%16 cis-rich (CH) x . In situ isomerization of the same film resulted in

the sizeable Iph shown in Fig. 1. The upper limit on Iph in cis-(CH)x is

three orders of magnitude smaller than in trans-(CH)X .

Since the dark conductivity can be varied by more than twelve orders
4

of magnitude through doping and compensation, we have investigated the

corresponding effects on a ph* The data. after compensation

with ammonia (NH 3 ) and after light doping with AsF are also shown in

Fig. 2. The curve labeled "compensated" is from the same sample as that

labeled "initial result"; the "compensated data were obtained after exposure

to ammonia sufficient to increase the dark resistance by several orders

of magnitude. The curve labeled "acceptor doped" in Fig. 2 was obtained

subsequently from the same sample after light doping with AsF 5

Compensation with ammonia appears to have two distinct effects.

First, at energies near and below the edge, Iph is decreased considerably

relative to the photocurrent at higher energies. Second, the overall photo-

conductive response, including the energy region above the edge, decreases

after compensation. Subsequent light doping with AsF 5 causes a uniform

increase in the photoresponse. Note that the doping and compensation

experiments cause I to vary by more than two orders of magnitude with
ph

essentially no shift of the photoconductive edge. After compensation, the

results for samples (C) and (D) (inset to Fig. 1) change to resemble that

shown by curve (A). The effect of compensation is shown in more detail

for sample (C) in the inset to Fig. 2.

ILL --- ---....
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The optical density of a carefully prepared uniform thin film is

shown on Fig. 3 as a function of photon energy. The data were obtained

with the film cooled to 77 K and have been normalized to show the absorption

coefficient. Note that the absorption increases by more than two orders of

magnitude at the sharp edge above 1.4 eV. The basic differences between
5

this result and those reported earlier are the somewhat sharper edge and

wider range in C. due to the high quality (CH) film. The photocurrent

results from Fig. 1 are also shown as logoI ph for comparison. We note

that the photoconductivity edge is about 0. 3 eV lower in energy than that of

the absorption coefficient.

In addition to the main absorption, a weak absorption peak at about

0. 9 eV is also evident in the data of Fig. 3. A second weak absorption at

about 1. 4 eV, reported previously, is detectable when the data are expanded

to a proper scale. The oscillator strengths of these two weak absorptions

are comparable and about three orders of magnitude smaller than that of

the main absorption.

Summarizing; isomerization gives rise to photoconductivity in

trans -(CH) with an edge near 1. 1 eV, about 0.4 eV below the absorptionx

edge. Compensation and acceptor doping decrease and increase the

photoconductivity, respectively, without changing the position of the edge.

The sharp rise in a together with the monotonic decrease above 2 eV
5,6

has been attributed to the direct interband transition in a one-dimensional

K ;/".4
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(ld) band structure. The square root divergence of the joint density of

states is presumably rounded by disorder and three-dimensional (3-d)
7

interchain coupling. The results of Fig. 3 would then imply a 1-d direct

band gap of about 1. 6 eV with 3-d coupling and disorder decreasing the

minimum gap to about 1.4 eV.

The peak in . near 2 eV is related to the transition from the peak

in the density of states in the valence band (VB) to that of the conduction:

band (CB). The rounding appears to shift the position of the peaks in the

VB and CB densities of states by about 0. 2 eV. These results are sketched

on a band diagram in the inset of Fig. 3, referring all energies

to the edge of the valence band. The weak absorption near 0. 9 eV would

then correspond to a transition between the peak in VB density of states

and a sharp level inside the gap; relative to the VB3 edge, the gap state

occurs at about 0. 7 eV. Similarly the second weak absorption peaking at

1.4 eV described above locates a second sharp level near 1. 1 eV above the

VB edge. Independent evidence of this second level is found in the structure

observed in Ah starting at about 1. 1 eV with a maximum near 1. 5 eVph

(see Figs. I and 2). The magnitude is sample dependent, and the peak is

removed by compensation. We note that in this analysis we have ignored

any shifts resulting from energy dependent matrix elements associated

with the optical transitions.

i
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Photoconductivity arises whcn photon absorption results in

generation of electron-hole (e-h) pairs which can be separated in an

electric field. Often, the photogenerated e-h pairs cannot be separated

due to exciton formation or geminate recombination. In such a case one
7

has absorption without photoconduction. Since the onset of Aa is about
ph

0.1 eV lower in energy than the onset of a, it is clear that the photoconduc-

tion process in trans-(CH) is intimately associated with the presence of
x

states deep inside the gap. The fact that we have not been able to detect

photoconductivity in cis-(CH)x indicates that such states have been created

in the isomerization process.

It is well-known that photoconductivity can be enhanced by the

-i presence of states in the gap, so-called "safe-traps"; i. e. localized states

that can capture electrons (minority carriers) and prevent recombination
8

with mobile holes. As a result, the recombination time is lengthened con-

siderably, thereby enhancing the photoconductivity. In the absence of trap-
8

ping, and under steady state conditions

Aaph= eTRr (I + eb) P e

where r is the carrier photogeneration rate, TR is the recombination

lifetime, P is the electron mobility and bP is the hole mobility. In the
e e

case of safe trapped minority carriers (electrons, the additional photo-

generated holes will increase with the number of trapped electrons. They

will continue to produce a photocurrent until the trapped electrons eventually
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.. recombine either directly or by primary excitation back into the conduction

band. If the average time a minority carrier spends in a safe trap is T

and T1 <T R ) is the average time before it is trapped, equation (2) then
8

becomes:

~T
erTRC1 +b+b -- Je (2)ph R T eI

For T >> , 1 Iph is enhanced by T I2 T >> I and the photoconductive decay

is determined by T . In such a case a ph would turn on at an energy

corresponding to the transition from the VB to the safe trap state inside

the gap, explaining the unusual result of Fig. 3. Preliminary measurements

indicate a. long decay time of o'rder a few msec, consistent with

these ideas. The sample dependent peak in the photocurrent spectrum

(Figs. I and 2) corresponds to direct excitation of an electron from the VB peak

into a safe trap. For such a direct excitation one obtains essentially 100%

trapping, or T 0.
1

Compensation of trans-(CH)x would chemically fill the

safe traps making them unavailable for photoexcited electrons. Acceptor

doping would tend to generate new safe traps and/or empty the filled ones

making them available for photoexcited electrons. The fact that (Fig. 2)

acceptor doping can increase tao well beyond the undoped result while
ph

leaving the photoconductivity edge at the same energy is therefore critically

important.

I
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The observation that isomerization induces safe trap states inside the, "h 10, 11, 12

gap is suggestive of the applicability of the soliton model. In that picture

0
the neutral soliton, S , state at the center of the gap would be the safe trap.

Since such a state would have an unpaired electron already in it, the energy

required to excite an electron from the VB into S (to create S') should be more

than the energy of the initial state due to the Coulomb interaction. The result

sketched in the inset of Fig. 3, suggests a correlation energy of about 0.3-0.4 eV.

In the soliton picture the weak absorption turning on near 0. 7 eV would be related

to the excitation of an electron from the VB into the S state at the center of

the gap. Such a transition would require the presence of positively charged

•, , as inferred from the thermopower results.

The identification of the safe traps as neutral solitons suggests a more

i -detailed understanding of the long lifetime, T 2 . Due to the difference in spatial
13 12

extent of charged and neutral solitons, the transition of a safe trapped electron

to the VB or GB would require a major lattice deformation. As a result, such

transition rates would be slowed by an orthogonality factor similar to that which

arises in polaron theory. Moreover, even after excitation to the nearby CB,
II

calculations show that direct (band edge) radiative recombination is forbidden

in the vicinity of a soliton. Thus, although considerable detailed theoretical work

is required, it may be possible to understand the safe trapping in terms of a

basic model of the coupled electron-lattice system.
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1> In conclusion, we have shown that the photoconductivity in trans-(CH)

is controlled by localized states (inside the gap) induced either by isomer-

ization or by dilute doping. The presence of such states and their effect on

the photoconductivity of trans-(CH) is 00y accounted for by the soliton

model.
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Despite great theoretical and technological interest in polyacetylene,

(CH)x , the basic features of its band structure have not been unambiguously

resolved. Since photoconductivity and optical absorption data have frequently

been used to infer information on the band structure of semiconductors,

we have carried out such measurements on (CH)X .

In this Ltter we report the main results of an extensive study of

the photoconductivity (aph) and absorption coefficient (a) in (CH)x . The

absence of photoconductivity in cis-(CH) , despite the similarity in optical

properties indicates that Arph in trans-(CH)x is induced by isomerization.

We find that isomerization generates states deep inside the gap that act as

"safe traps" for minority carriers and thereby enhance the photoconductivity.

Compensation of trans-(CH) with ammonia appears to decrease the numberx

of safe traps, whereas acceptor doping increases their number. Thus,

chemical doping can be used to control the photoconductive response. The

energy of the safe traps inside the gap is independent of the process used

to generate them; indicative of an intrinsic localized defect level in trans-(CH) )

A coherent picture based on the soliton model can explain these results,

including the safe trapping.

The photoco nductivity studies were carried out at room temperature on
1

thin film samples (thickness of a few microns) polymerized directly on glass sub-

strates. A surface cell configuration was employed using ohmic contacts made with

I)
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