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FOREWORD

This report was prepared by the Metals and Ceramics Division, Materials

Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems

Command, under Project No. 2418, "Metallic Materials," Task No. 241803,

"Behavior of Metals". The research was conducted by Dr. David I. G. Jones,

Materials Laboratory (AFWAL/MLLN) and Dr. hab. Agnieszka Muszylska,

Institute of Fundamental Technological Research, Polish Academy of Sciences,

Warsaw, Poland, in part while both authors were at Institut National des

Sciences Appliquees, Lyon, France, during the period November 1975 to

August 1976. The subject of turbine and compressor blade vibration pre-

diction and control is of great importance to the United States Air Force,

and it is for this reason that a complete review of the work accomplished

has been prepared. The report was typed by Judy Mann and Kathy Lee Fox.

This report covers work conducted during the period November 1975

to June 1979.
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SECTION I

INTRODUCTION

The past several years have witnessed renewed interest in the effects

of slip on dynamic response of turbine and compressor blades. This is

partly because of a growing recognition that although energy dissipation

mechanisms in blade-disc systems are still not well understood, this

dissipation is one of the most important factors controlling the dynamic

stresses, and partly because of greatly improved computational capabilities

which have permitted linear analysis to reach a quite sophisticated state

of development and Kcnce made the gap in our knowledge very visible.

Nonlinear analysis has not yet reached the same level of development

(References 1-14).

The purpose of this report is to describe a combined analytical/

epxerimental investigation of a compressor blade having a simple dovetail

root, with a view to clarifying the effect of gross slip at the root on

the dynamic response behavior under harmonic excitation. The analytical

part of the investigation examines the modelization of the blade in terms

of a simple inertia-spring system with coulomb type frictional forces at

the blade-disc interface. For simplicity, the disc is assumed to be

infinitely rigid. Of course, this restriction must be relaxed before a

complete blade-disc assembly is analyzed, but we are not at this point yet.

The equations of motion derived on the basis of this simple model are

solved by a method of harmonic balance assuming, in effect, that under

cyclic excitation the blade will exhibit cyclic response at the same

frequency. The solution so obtained is examined numerically to determine

regions of existence and nonexistence, i.e., to determine the frequency

range over which slip occurs and that over which it does not occur

(References 15-18). The agreement between analysis and experiment is

found to be good for the fundamental mode of the blade, and reasonably

good for the next two modes. The experiments were conducted on a blade

in a simple, heavy, fixture with the normal load at the dovetail provided

by two thin wires.
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The outcome of the investigation is that one can predict with a

measure of accuracy the dynamic response behavior of a simple dovetail

blade, provided that the appropriate modal information is either measured

or predicted by more detailed analytical procedures, such as finite element

methods. Extension of the analytical method to more complex blade-disc

systems is a task for the future.

2
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SECTION II

ANALYSIS OF RESPONSE OF A BLADE WITH SLIP AT THE DOVETAIL

1. MODELIZATION OF BLADE IN MODE 1

The type of blade being considered in the analysis is illustrated in

Figure 1. We shall be concentrating attention on analysis of the funda-

mental mode vibration response, and it is assumed that the blade resonant

frequencies are well separated. The blade, when vibrating in its

fundamental mode, can be modelled in terms of the simple mass-spring

system shown in Figure 2, where the inertias I1 and 12, and the spring KI*

are chosen to reproduce the observed modal stiffness and inertia charac-

teristics of each individual blade geometry. Il, 12, and KI* will vary

slightly with the rotation speed of the blade, but this effect is neglected

here. It can be allowed for in the case of any real blade, but would

simply entail chanqing the parameters Il, 12, and K 1* at each rotation

speed for which calculations are carried out. The system is modelled in

terms of rotational motion because the type of motion at the root, when

slip is occurring, is most naturally expressed in such terms.

2. EQUATIONS OF MOTION

For the nonlineir case where slip of the blade root takes place,

the boundary condition seen by the vibrating blade changes from an

essentially clamped-free condition to an essentially pinned-free condition.

For the fundamental mode of the blade, the system can be represented with

some degree of accuracy by the model shown in Figure 2. The equations

of motion of the system with slip are:

I1 1+K1 (l+in I) (01 - 02) = SLei( t Ycos c (1)

12 02 +KI (l+in I ) (02 - 01) + (INRo/cos)sgn 2 O (2)

3
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BLADE

DOVETAIL

DISK

Figure 1. Sketch of Blade in Disc

8, 1 X,#LSu, L SI ~cos a

S Cos a

K AL o/ o

MLNRo/cos 4'

Figure 2. Discrete Mass Model of Blade (Modes 1 and 2)

4



AFWAL-TR-80-4003

The term WNR 0/cos ip is the frictional moment opposing the motion. Figure 2

shows the geometrical factors involved in this derivation. a is the angle

between the blade direction at the tip leading edge (where S is applied)

and the root axis as illustrated in Figure 1. From vertical equilibrium

in Figure 2:

2FlcosiP = N i.e. F1 = N/2cosp

F2  ,F1 = N/2cos I

Moment = 2F2Ro = piNR0/cosp (3)

Equations I and 2 can be rewritten in the form:

Ii0(1i/S) K 1(1n i) (lI/S-62/5) ei(wt-y)Lcoso

12( 02/S)+K 1 (1l+inl) (02/S-61/S)+(UNRo/Scos)sgn 62 =0

This shows that the mobility 81/S depends on vN/S, so that the analysis

within its limits is valid for low or high values of S or of uN; it is

the ratio of these two quantities which is important.

3. SOLUTIONS FOR STEADY STATE MOTION

a. Solution for Non-Slip Condition

If S/pN is sufficiently small, slip cannot occui" and Equations I

and 2 reduce to:

IIeI+Kl(l+in l) (e) = Sei( t-)Lcosa (4)

the solution of which is:

X = 1L = SL2cosae i(WtY)/[- w2+Kl(l+inl)] (5)

5
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The values of I, K, and n, needed to model a specific system are now

determined by comparing the response Xl with the measured response for low

values of SN. The measured resonant frequency wI gives one such

relationship

2
11Wl

2 = K1  (6)

The measured response at resonance gives another:

x~l ]  W 1 L csc L2cosct

S Kn"I  I I'll

I I1  SL 2 coS/nlIXII (7)

and the measured damping nI is given by:

AWl
n I  Wl(8)

Where Awl is the difference between the two frequencies at which the

response is 3 db below the peak response (3.01 actually!).

For example, in the case of the blade used in the experimental

investigations, such calculations are summarized in Section V and the

average parameters were determined to be:

Il = 1.04 x l0
-3 kg m2

K1 = 635 Nm/radian

= 0.010

WI = 124.2 Hz

for the fundamental mode.

6
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b. Solution with Slip

For simplicity, we let n= 0 in Equations I and 2; for the

purposes of this part of the analysis it is sufficient. If we seek a

steady state solution of these equations, then to the first order we

assume that:

82 = 02 sin wt

e1 = ill sin wt + 012 cos wt (9)

S = S sin wt + S2 cos wt

Furthermore, we consider only the first term in the expansion of sgn (62)

{z sgn (cos wt)} in ascending terms of sin(nwt) and cos (nwt), so that:

.4

sgn (cos wt) -4 cos t (10)

Then, introducing these equations into Equations 1 and 2, and comparing

terms in sin wt and cos wt, we have the four algebraic equations for

Xill X12 ' S l, and S2:

(K1-I1 2)eil-K 102 = S1Lcosa

(K1-1lw
2 )l2 = S2Lcosa (11)

(-I2w 2+K1) 2-K1 e i= 0

-Kle 2 = 4i Ro/Ircosl

The solution of this equation is readily obtained. From the values of

0ll, l2' S l and S2 so determined, we then can write the solution for

61 and S in this form:

-S 1 (K1-12w )Lcossln wt ( s41N K cost (12)01= 2[(11+12)K1-1112 W ) cost(

SLcos% = SILcosasinwt-(KI-Iw )(4NR0/wKIcosi)Coswt (13)

7



AFWAL-TR-80-4003

Clearly, we can eliminate S1 in these two equations. This is most

simply done for our present purposes by first calculating loll and ISI,

since these are the quantities we would ordinarily measure. Then:

SI2(KII2 22)2 L2Cos2 +(41R° 2

l 4 [(lI+1 2)Kl-l 1 2
21 2  cosK) (14)

L2cos2 iSi 2 s2 LCos2 22+(KIII 2)2(41Ro/KlCOSO)2 (15)

Eliminating S1 and simplifying gives:

2 L Cos (I [ 1- 11-I /K)2  [i- 6 2 2 4 2
1l l 1 1 B1IIL COS (

2  2
K2 (Ilw2 /K1 ) 2[(l+12 /1 1 )-(1 2 /ll)(ll /Kl) ] 12

X 2 L4 COS2 OII2 (IIw2 K 2

.. 2- 2 (17)
S K1 ( 1W/K 1 )2[l+1 2/ 1-(12/11 )(l 2 Kl) 1 w1

where

81 = 4uNRo/ SLcosocos ~ = (4/7)2 (18)

62 = NRo/SLcosipcos

If 0 = , as for a freely pinned blade or for S very large, then ll

has an infinite amplitude at the frequency where:

2 ) 2 12 11 1 (19)

1 I 1'2 '2

8
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This allows us to estimate 12, since the pinned-free mode of the particular

blade used was determined experimentally to be 429 Hz.

1 I (429) 2 11.93
(124.2)2

12 = 9.51 x 10
- 5 kg m2

for the particular blade used in the experimental investigation. A cal-

culator program to determine Ix2/Sl and IXI/SI is given in Table 1. It

is seen from Equation 17 that IX2 /Sl can exist only over a narrow range

of frequencies, and it is only within this band that slip can occur.

Outside this range, although IXI/SI as given by Equation 16 may exist,

the original assumption that IX2/S! exists is violated and hence we must

return to the linear solution given by Equation 5. Figures 3 to 10 show

the calculated values of IXI/S) and IX2/Sj versus frequency for B2 = 50,

20, 10, 5,2,1,r/4, 0.3 and for the aforementioned values of Il, 12, K1,

and ml. Figure 11 shows a summary of the solution for several values

of a2. These analytical results will be compared with experiment in

Section V.

c. Graphical Solution for Slip Motion and Hysteretic Damping

The equation of motion of the system with slip and hysteretic

stiffness can be written in the more general form:

I . kl .

1101 + - 0l+kl0 - _ ( a + kl0 2)(l+sgn s) = Slcoswt (20)

[1202 + jiNR sgn u2- - (01- 2)-k 1] (l+sgn a) + k102  0

where

S S cosa

9
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TABLE 1

HP67 CALCULATOR PROGRAM TO CALCULATE RESPONSE

Input: put w in x register (Hz)

Manual storage: Storage location 0 - K1(635 Nm/rad)

1 - wl1
20 Hz)

2 - 12/Il(.0915)

4 - rl(.01)

5 -L(.20)

6 -cosa%(.72
4 )

Output: Label A - JXI/SI linear (Equation 5)

Label B - IX,/Sl slip (Equation 16)

Label C - IX2 /SI Slip (Equation 17)

Note: Label A,B, and C must be operated in sequence.

Internal storage

Storage location A w w2 rad2/sec2

B-Il

fcl PRGM STO C RCL A gX2  gX2

fLBLA RCL o x .RCL D
2 RCL 4 STO C RCL C x
x x 1 gX2  STO E
h ir gx2  - RCL 3
x RCL C RCL 3 STO D 4
gx 2  + x RCL C x
STOA f vrx 4 RCL 2 h T
RCLl1 1 x

h-x
2 x hiT CHS RCL o
X RCL 5 +1
h 7r 9X2  gx2  + RC 5

x x CHS RCL 2 gx
gx 2  RCL 6 1 + x

hx + gx2  RCL 6
x hRTN STO D 1 x
RCL o fLBL B RCL 5 hx gX2

x RCLl 4 RCL D RCL E
STOB 2 hyx x +
RCL A x RCL D STO D f V(X
x hiT x RCL C h RTN
RCL o x RCL 6 RCL 2 fLBLC

gx2 gx2  x RCLD
c 2 1 1fVX

qx h- 1
x RCLo0 - h RTN

10
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For a < 0 : 62 = 0 - one degree of freedom

For B > 0 : two degrees of freedom

= 0 is the condition of the threshold of slip (it will be defined later)

R - geometrical parameter (R /cos)

nl- hysteretic damping coefficient

The solution of Equation 20 is:

o2(t) = A cos(wt + y) (21)

put into Equation 1 and expanding the function sign [-Awsin(wt + y)]

in the Fourier series and leaving only the first term we reduce the

problem to solving the linearized system

1 01 + W _ (1- 62) + k, (01-02) S1coswt

1202 + (02-01) + k, (02-01) : T sgnA (22)

looking for the solution in the form

el(t ) = D cos (wt + y-)

o2 (t) = A cos (wt + y)

if the condition a > 0 is satisfied. If we have B< 0 we look for the

solution

01(t) D* cos (wt-y*) (24)

of the equation

1101 + + kl0 1 = Slcos Wt (25)

14
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The last one gives

S1  kln

D*= *= arctan - (26)
2k -1 w2

11 2  2 2k 1kI  ( ) + n 2

Putting Equation 23 into Equation 22 we get

A 2 4 - 2A2 (sgn A) 2 + [(nlv) 2 + (v-i) 2]= S2 (27)

01 = [12 (v-1)-II] + (nlvl2)

02 =  llv[21 2 (v-i)-11]

03 = (V- j)[1 2 (V- ) -l 
-

1
2 (lv) 

2 2

I1lw2

k 1 (1+nl
2 )

From Equation 27 we set the amplitude A:

+ (niv) + (9 1 v
al

A= W 2 > 2 2, 2'

a102 + S10 -aI03 A=±a102 +  /- z 1O3 amplitude does
i___ -____ not exist

where:

2 = k (l+n 2 [2- +

and the phase angle

Aw 2 n 1 1 2 V + (l-v)al

y = arctan
alin iv-Aw.2 [I2 (V-l)-II1]

15
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The amplitude of the solution (Equation 23) is given in the table on the

previous page. As one can see for some values of the parameters we have

two values of A (one positive and one negative) or four values (real ones!)

In some region the solution (Equation 23) does not exist; it is the

domain of the solution (Equation 24) of the reduced system.

The coefficient of the threshold of slip "s" can be defined as shown

in the above table:

S 1  1 /,I)2
= -.-Vi [ (28)

a1  0 4pNR /12 (V-l)-Ii]2 + (n IVI2) 2

The relationship between A and the amplitude D is

D = /2 1 k 2 2  2

A2 k2 2 + A 1

y arctan (30)2 (0
A12W 2-Ak I (1+nl)-nlaj

where A is calculated from Equation 27. (See table)

A(w) curves are plotted graphically as in Figure 12

2 2
k, (1+n) [ 1 2 1 4T

2 z +- + + (
2 (l-n) 1 12 1, 12 I 12

S1
Different levels of- give different shapes of the IAI(w) curve

(qualitative shape!)

16
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Figure 12. Graphs of ,Al and S versus
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The case fl= 0 (Figure 13) gives:

2 2

S l 1) w2_

1 k, 2l~2)2D ~ [A IA 2 (+ fi 11-22 1E + (31)

S1

D* - 2

A method of connection of the solution D from A is given in Figure 14.

The curves are plotted in an acceleration scale for comparison with

the experimental data. It is only a qualitative picture here.

4. CALCULATION OF APPARENT DAMPING

As Figures 3 to 10 show, the response mobility IXl/Sl of the blade

does not have the classical damped single degree of freedom system shape

but is sharply "cut-off" when slip occurs. Strictly speaking the system

is not "classically" damped and cannot be assigned a true measure of

modal damping. However the shape of IXI/S as a function of frequency

depends only on B2, and for each value of B2 this shape is unique. One

may therefore define an "apparent modal damping" by the usual "half power

bandwidth" definition, i.e., in Figures 3 to 10 we seek the frequencies

fl and fl, when the response is 1/V2/ times the peak amplitude (-3.01 db)

and define the apparent damping as:

+i 1

n = (32)
fi

On this basis, we can plot a graph of versus 1/B2 as in Figure 15.

fnI increases as 1/B2 increases, at least within the range of values

examined here. For I/B2SO.0l, the value of nI remains at the non-slip

value 0. = .01 observed in the tests.

18
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Figure 13. Graphs of JAI and SI/a 1 versus wl/(lllll1
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29 2 1ju)i With slip D*I 2

'D I

A 4r

- I rom Table tor
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Figure 14. Graphical Method of Connecting IDI and IA:
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Figure 15. Graph of Predicted Apparent Dampinn ri versus 1/2
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One can also examine the bending moment at the root as a function

of 82. The value of M is given by:

M = K 0 l  = IXI

M KJX~j(33)

SL L2  S

For a specific blade, one can determine the relationship between M and

the maximum stress in the fundamental (or any other) mode, but at present

it is sufficient to examine IM/SLI as a function of 32 as determined from

Figures 3 to 10. The resulting graph of IM/SLI versus B2 is shown in

Figure 16.

5. CALCULATION OF EFFECTS OF ROTATION SPEED ON APPARENT DAMPING

It is generally difficult to predict the response of a blade at

high rotational speed because the exciting forces on a blade are not

known a-priori. However, for a given blade geometry S will depend on the

rotation speed in the manner:

S = So  (34)

where S0 is the force at some speed o and n is an exponent not neces-

sarily equal to 2. S will be a maximum at the various multiples of the

blade passage frequencies, so that the excitation force at any condition

where a blade passage frequency is near to a natural frequency will be

nearly harmonic.

The normal force N resulting from the rotation speed .4 is given,

as a crude approximation, by a relationship of the type:

N= MR(- 2 35)

22
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Figure 16. Graph of Predicted Value of IM/SLI versus B2 for Mode I
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where M is the blade mass, R an average radius and -2 the rotation speed

in rpm. It is seen that if n = 2, 2 is constant at all speeds and hence

that the damping due to slip will be the same at all speeds, which is

contrary to observation. Hence one must conclude that in most cases

n < 2. For example, if we assume that n = 1.5:

B2  S SoSqCOSa(60) (36)

As a hypothetical example, consider the cases where vi = 0.15, 0.1 and

.1.05, 1N = 0.235 kg, R = 0.5m, R0 = O.Olm, = 15000 rpm, So  40N,

= Q.2m, cosp = 0.5, cosa = 0.724. Then:

o2 = 8.01 Q0.5 (37)

For each value of p and s , one can calculate B2 and hence read the value

of effective loss factor off Figure 15. Some predicted graphs of the

effective loss factor versus 0 are plotted in Figure 17. It is seen

that for p = 0.15. the behavior is very similar to that observed in a

test engine stane (Reference 2), but that as p is decreased, the apparent

modal lamping increases rapidly. It is seen from Equation 36 that it is

desirable to reduce P,M,R and Ro, and increase SO, L, cos and cosA, as

far as possir~le, to achieve high "damping".

6. MODELIZATION OF BLADE IN SECOND BENDING MODE

For the second bending mode of a blade, or for any mode in which

the dformations are primarily bending, the model selected for the funda-

mental mode, iflustrated in Figure 2, is directly applicable and only the

value of I11 12 and KI*, will be different. This means that Equations 1

and 2 and the solutions (Equations 16 and 17) are directly usable. From

the low level tests described in Section V, the corresponding values of
II, K1, and I, are: I = 1.62 x 10-3kg m2

K1 = 11000 Nm/rad

nI = 0.0067

wI = 415 Hz

12/I = 0.150

24
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0.05 50

R\, 0.01 m
171 R : .5m

004 W 0.235kg /40 V
cosD = 0.50 z
cos,, = 0.724

a. S -0
< 0.03 /30a
0 C

o 0
0.02- 20 LL

{3, 0.01 1 0 0

0- - I0 5 0 15

SPEED £2 KRPM

Firqure 1>' Typical Predicted Variation of Iwith ~

The corrtx:'": i solution for '. defined as before, equal to 50, 20,

10, 5, 2, 1, ,,4, and 0.3 are illustrated in Figures 18 to 25.

The difference between the second mode solu~tion and the fundamental

node solution is seen to result only from the &itered values of Il, K1,

I and uJl" This will be true for all the essentially "bending-type"I

nodes for which the moment at the root caused by the blade deformation

is in one direction only, and is not a twisting type of moment, as for

the torsional modes.

The value of 12 is determined from the ratio of the second mode

resonant frequencies in the clamped-free and pinned-free conditions.
For this blade 12 = 2.43 x 10-4 kg in2 .

25
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Figure 18. Predicted Response of Figure 19. Predicted Response of
Blade in Mode 2 for B2 = 50 Blade in Mode 2 for B2 = 20
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Figure 18. Predicted Response of Figure 21. Predicted Response of

Blade in Mode 2 for 2 = 0 Blade in Mode 2 for B 2 
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Figure 20. Predicted Response of Fiqure 21. Predicted Response of
Blade in Mode 2 for B 2 =10 Blade in Mode 2 for 2 5
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7. MODELIZATION OF BLADE IN FIRST TORSIONAL MODE

The third mode observed in the response spectrum appears to be a

torsional type. For this case, the moment at the root when slip occurs

is of a twisting type, as illustrated in Figure 26. In this case I,

Decomes the torsional inertia of the blade, 12 that of the root, and K1

the torsional stiffness. The equation of the blade therefore becomes, in

any predominantly torsional type of mode:

IIu 1+KI (l+i 1 ) (01-e2) = Sbe (wt-Y)cosu,

12 e2 +K (lir I ) (02-01 )+(Jb o)sgn6 2 = 0

when e and C2 are now the torsional deflection of the blade, i.e., for

this type of mode X = b and X2 
= 02b.

I1(01/S)+K 1 (l+ir)l)(9l/S-0 2/S) = bcosA ei(t (38)

12(02/S)+K 1  (l+in,)(02/S--3l/S) = (' 0Nb/S)sgne 2

We tnerefore recover the fundamental mode solution of Equations 16 and 17

if we replace L by b and 1NR /SLcosa cosw by uNb /Sbcosa. The correspond-

inq vl.es of Il, 121 K1, nI , and w are given in Section 5. Figures 27

to 34 show some typical calculated results.

8. NORMAL MODE ANALYSIS OF BLADE RESPONSE WITHOUT SLIP

In order to establish the low amplitude level behavior of the blade,

and to identify parameters in a preliminary fashion, it is essential to

first consider the behavior of the blade with no slip at the root. In

this case, in the fundamental mode, the blade behaves essentially as a

clamped-free beam. Since the blade is twisted, it is necessary to define

a coordinate system within the middle surface as illustrated in Figure 35.
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Figure 26. Discrete Mass Model of Blade with Torsion - Mode 3
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Figure 35. Sketch of Blade Coordinate System
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If the blade is then subjected to an exciting force S(t) S6(x-xl) 6

(y-y1)sin wt normal to the middle surface at the point (x1 ,Yl), then the

equation of motion of the system can be written:

L3A(K*W) + p(D2W/Dt2) = 6(x-x I) 6 (y-yl)sin Wt (39)

where K* is the complex stiffness of the blade, assuming hysteretic

damping and A is a differential operator in the space variables x and y,

and p is the mass per unit area at the point x,y. Since the blade is

usually very stiff in-plane and much more flexible normal to the middle

surface, W is practically normal to the middle surface quite frequently.

Now if the normal modes are known, from experiment or analysis, the

displacement W can be expressed as a series of normal modes:

W W n  (x,y) (40)
n= n

where Wn is a scalar, depending on time, representing the amplitude of

the nth normal mode and n is a vector representing the normalized dis-
placement function in this mode. By definition, the normal modes are

the set of discrete functions which satisfy the homogeneous equation:

2(K n) - ( ) 0 (41)w n /L)n =0

This classical relationship allows one to convert Equation 39 from a

complex partial differential equation in the space variables to an

infinite series (hopefully convergent) of algebraic equations: Putting

Equations 40 and 41 into Equation 39 gives; in complex notation:

[(l+in)pn2 Wn + Wn] n = Sexp(iwt)6(X-Xl)6(y-yI )  (42)
n n n

nl

one must now make use of the orthogonal property of the normal modes:

f fonmdxdy 6mn (43)
xy
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where 6mn = 0 for m n and dm= 1 for m = n. Therefore, the

factoring Equation 42 by I and integrating over the surface gives:

[(l+in)w Wl+Wl] p ,idxdy : -S.'6(x-x )6(y-yl)e1W 't dxdy

where V1l is the scalar product of the vector with itself. This

equation can clearly be written:

m'[2 (l+in) 2 ]W1  
t  (44)

where m1 is the mass of the blade and B is a nondimensional parameter:

mI= f fpdxdy (45)
xy

m 1 f n .$l(x-x1)6(y-yl)dxdy

B1  _ _ _ _ _ _ _ _
f ii$1l.$idxdy
xy

mln(xlY)(xY)

f fa 1 .1 dxdy
x y

where n is the unit vector normal to the middle surface of the blade and, P

S = S7 (x,y). If we let m1 = m/ I  , this means that the behavior of the

blade in the fundamental mode is equivalent to that of a single degree of
2freedom system of mass mi, stiffness K1 = mlW , and loss factor n. Note

that 8 1 depends on the point xly 1. We can define a parameter 61 by

letting (xlyl)E(O,O), the tip of the blade at the leading edge. Then:

11 = 11 n(xI'yl). 1(xIYl) 
(47)
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provided that l i(oo)I = 1, i.e., the modal function oI is normalized.

The solution of Equation 44 then becomes:

S I (x,y)ei [ (xlYl). l (X lYl)]

W 2 2 (48)

For excitation at (o,o) and measurement of the response at (x,y), we

then have at resonance:

S *I(x,Y)I (IW I =- j I n m l (4 9 )

I inm I W1I

."1 1l(X,y) I 1 §in) (50)

This means that we can measure the normal mode 01 (or any other mode)

by determining JW/Sj for excitation at any fixed point and pickup at

the point x,y and then multiplying by n. If n is not constant for all

measurements (as a result of extraneous sources of hysteretic damping

such as cables), then Equation 50 allows one to compensate for this

source of error. Note that n can be measured by the "half-power

bandwidth" method, so that one can actually determine mI directly from

the peak value of lW/SI at resonance, using Equation 49, if the measure-

ment chain is properly calibrated.
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SECTION IIi

ANALYSIS OF BLADE RESPONSF WITH SLIP AT A PLATFORM

i. INTRODUCTORY REMARKS

Compressor and turbine blade failures caused by excessive vibration

can and often do arise in jet engines whenever high flow-induced

excitation forces, high static stresses, and low modal damping levels

occur at the same time. While blade/disk interactions will complicate

the response behavior of eacn individual blade, and cause circumterential11

changing peak stress levels around the disk, it is slip a* the blade/disk

interface which provides a major mechanicdl source of damping. in addition

to the aerodynamic and material sources. Attempts to increase slip damp-

ing, by means of mid-span or tip shrouds, or by means ot mechanical con-

nections between adjacent blades, have not been very successful, perhaps

because of the tendency for corresponding points on neighboring blades to

vibrate with only relatively small amplitude and phase differences except

where extreme efforts are made to mistune adjacent blades relative to each

other, i.e., the effect is usually to stiffen rather than dissipate energy.

Certainly, the analytical difficulties of predicting the response of

complete blade/disk systems with slip at each blade/disk interface, or

between each blade, are formidable (References 12, 19) and will not be

addressed. We shall examine a configuration in which each blade will

slip relative to the disk rather than relative to neighboring blades.

With proper attention paid to the static and dynamic forces involved, such

a configuration can lead to high slip damping even at high rotational

speeds. The response behavior of such a system is highly nonlinear, so

we shall assume that the compliance of the disk is infinite, as a first

approximation, in order to make the analysis more tractable. Figure 35

shows such a blade concept, as compared with a simple dovetail root and

a Christmas tree root. The gap between the outer step of the blade root

and the disk is very important, since it must close only at the selected

rotational speed above which some damping is required.
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2. ANALYSIS OF DYNAMIC RESPONSE

In order to model the dynamic response behavior of the blade in a

single mode, usually the first, different physical models are required

depending on whether slip is or is not occurring at the root or at the

sub-platform. The blade is represented for purposes of analysis as shown

in Figure 36. The various physical models which represent the blade under

different conditions are shown in Figure 37. The parameter 6 defines

whether slip occurs at the lower dovetail or whether it is locked at this

point, whence X = 0; and 1l defines whether the mass in3, representing the

sub-platform, is slipping against the disk or is locked in place by the

frictional forces, for which case X3=0. The masses in1 , in2, and m 3
and the stiffnesses k I and k 2 must be selected in accordance with the

blade geometry. The disk impedance is assumed to be much greater than

that of the blade, for simplicity.

By experimental or analytical (e.g. finite element) methods, one

can determine the ratio of the response at any point j to the force

applied at any point i. i.e., the compliance G.i .(L.), and this data is

then used either directly in a modal analysis or indirectly to determine

i1, i 2, i 3, and k1,' k 2 for the discrete element model. Both methods

should give comparable results if the respective assumptions and

siiplifications are consistent, but the discrete element model is the

easiest to analyze. For the model, in Figure 38 the equation of motion

Lan be represented for all cases by the equations:

M 1 X + k [I + . -(X 2 + -sgn (P - o))j +

+ 1 (sgn (1, 2 + 1) [k ( , + ~ X' ~
[ 22 W 3 (5 1 )

=S Cos (A
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{r2X2 + 4~NR sgn k2 + k (i2 -X) XiI~( + sgn B).

(i-sgn ( Q s0 ) + 4k X2  0 (52)

{m3 X 3 + pNIR1  sgn XU + k (X3 - Xs) - X + k2
2  ( gn

+ 2(ki + k 2 ) X + sgn (P - Q0) = 0 (53)

where k = klk 2/(k1 + k 2 ) (54)

is the equivalent stiffness, m, m 2 , and m 3 are masses, kI and k2 are

sub-stiffnesses, q is the blade loss factor, S and w are the amplitude

and frequency respectively of the exciting force, i is the dry friction

coefficient, N and N1 are the normal loads between the blade root and

the disk, R and R are coefficients depending on the root geometry

(References 17, 18) , B1I are coefficients of the slip thresholds. If

we let Q be the rotational speed at which the gap A 0 0, then different

solutions occur, depending on whether 0<2o or 0 > o

a. Case I, Q < Q, > 0

The analysis is the same, essentially, as that for a blade with

a simple dovetail root (Equations 17, 18).

Equations 51 to 53 reduce to:

mIXl + k (XI - X2) + k(Xl - X2 ) = S cos Wt (55)

m 2X 2 + PNR sgn X 2 + - (X2 - X1 ) - kXj + 2kX 2 = 0 (56)

We look for an approximate steady state harmonic solution of the nonlinear

Equations 55 and 56 in the form:

X, (t) = D C OS (wt + y - 6) and X2 (t) = A COS (wt + y) (57)
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This is accomplished by expanding the function sgn[-Awsin(wt + y)]

in a Fourier series and retaining the first term only (Reference 16).

The following results are obtained for the amplitude A and the phase y.

-a2 +  O s 2 + a2($2 - 103) (58)

D = 2 - r12 /m 1 ) 2 + (An + /k) 2 ]/(l + r 2 ) (59)

AVm2n - a(l - v + n 2)

arctan AL 2 [ m2 - (i + q 2 )(ml + M2 )]) a (60)

6 = arctan AnM2w
2 + a (61)

Am 2w 
2  Ak(l + n2) - n

where: 0i = w4 [(m1 + M2 - ym2 ) 2 + n2 (ml + m 2)
2 ]/(1 + n2 ) (62)

$2 = nkV 2 /(1 + n 2 ) (63)

= [(v - 1)2 + r,2]/( I + n 2 ) (64)

a= 4N R/r

v min, 2 /k =(w/1)
2

The solution (Equation 57) with amplitude A, expression (Equation 58),
exists when S/ x>vT33 From this we can define the coefficient of the

slip threshold as:

a S/a - (65)
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When n 0, the nonlinear equations (Equations 58 and 59) reduce further

to the very simple form (Reference 17)

A V1 - (/S)z(l - v)z
(66)

S k (w/W1 )
2 11 + m2/m - vm2 /m1 1

D 1 1 - ( a / S ) 2 ( l - V)2( I - V m 2 / m 1) 2  2

- + (67)
k (/ l4(Z+ m2/m1 - Vm2/m1 +0

In these equations R depends on the blade and root geometry. For example,

in the earlier investigations for a twisted blade of length L, twist

angle a between root and tip, dovetail angle 1) and dovetail radius Ro l

it was shown that:

R = R COS 4/L

and that S should be replaced by S cos c.

b. Case 2, Q<Q0, < 0

In some range of the parameters, i.e., when 8 < 0, the solution

(Equation 57) does not exist. This corresponds to the domain of existence

of the linear solution for the one-mass system. In this case, Equations

51 to 53 become:

m1 Xl + K(XI + 2- X) = S COS Wt (68)

X2  0 0 (69)

The solution of Equation 68 is:

X (t) = D* cos (-t - (70)

with D* = S/k'(1 _V )2 + nq2  (71)

and 6* - arctan n/(l - v) (72)
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c. Case 3, 2<o B > 0

Slip now occurs at the mass m3 and ceases to occur at the mass

m2 $ which becomes "locked" at high rotation speeds. The slip at the

mass m3 can contribute significant amounts of damping if the term

ANR 1 in Equation 53 can be made to remain relatively small through

proper control of the blade root geometry.

The equations now take the form:

X1  + KI( )+ X - K1( IT k3  + X ) S C t (73)

m3 X3 + K1  (X3 - Xl) + (X3 - X1 +

+ 2(n X 3 + X3) + UNRlsgnX 3 = 0 (74)

The solution of these equations is written in the form:

X1 = D11cos(wt + 11- 611) and X3(t) = A11cos(wt + X11) (75)

Then, again by the method of harmonic balance, it can be shown that:

-ca10 + 4 s2 +C1(05 - 0405)
A 04 (76)

II A

A (lI + k/k 2 + [119" + k/k)+ /l

(1 + n2  -im 3/ml (77)

AlV1m 3n - a1(l - VI+ n2)
II= arctan (78)

A iiW 2 v1m 3 - (1 + n 2 )(mi + M 3 ) - nO Iv (

Aiinm 3w
2  + e

= arctan (79)

A iim 3w 
2 - AII K 1 (1 + n2 ) -nl
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04 = (vM 3 w
2  

-k 2 2 2 + rV1M3W
2 + k 2 (1 vI) - W 2 (mi + m3 ) (80)+ n 2  + n2

2
05 =n~vj k, + k2 {(1 - v ) 2 + y12}I/(1 + n~2) (81)

6 = [( 1 - 1)2 + n2j/(l + n2) (82)

i= 411NR,/r (83)

V1 = mlW 2 /k1 = (w/WI1 )2  (84)

The solution (Equation 75) exists when S/i>VV3 . From this we define

the appropriate coefficient B of the slip threshold by:

a Val - 3 (85)

d. Case 4, Q > Qo 8<0

In some range of parameters, i.e. B<0, the solution (Equation 75)
does not exist. It corresponds to the linear case, for which the relevant

solution is:

X1 (t) = D* cos (Nt - 6*) (86)

with D1 = S/klV(l - vj) 2 + n z  (87)

and 61 = arctan n/(l - vI) (88)

Figure 39 illustrates a graphical method for constructing the solution
from these equations, for the case q = 0. In this figure, note that:

W 1 , 2  1 i 1  k2 '1 + k2 tlk2 11/2- - +  2+ 1 + + - 4 (89)Wl 1 1 2 M3 k, m3 m3kj
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Figure 39 illustrates clearly the regions of existence of the nonlinear

solutions (tAt 0) for various values of S/ I. When n = 0 and m3 :, I
the solution further simplifies to:

A Vi- (a I/S)Z(l - v1)(- = (90)
S (kl + k 2)Ik/k -V1 - V W(m3/m)(k/k2)(1 - v0)I

D1 illi_- V1 (k/k 2 )(m 3/ml)] 2 [l - (ct1/S)
2 (1 - )2] +(a 2

s k1  [k/k - - V1 (m3 /m 1 ) (k/k 2 ) (1 - 1)]2 _)

=2 2

where it is recognized that vl = 2 /Wl2 and = /17iil. For most

practical cases R1 << 1 in these equations and for a twisted blade, we

replace S by S cos ct. We now have a formal solution for the cases

Q< Qo and Q > Qo' and a numerical example will be discussed after a

review of the static blade behavior. Finally, note that the problem

addressed here is quite similar to that discussed by Williams and

Earles (Reference 3).

3. ANALYSIS OF QUASI-STATIC BEHAVIOR

Referring to Figure 40, the radial movement Y of the sub-platform

under the action of the centrifugal load WR D 2 due to the outboard part

of the blade will be less than the gap A up to the speed Q where:

Q0 v r,(92)

where RD is the average radius of the blade relative to the rotation axis

of the disk. When Q> o the springs kp will come into play and provide
the normal load N1 on the mass m3. It is easily seen on the basis of

static equilibrium that:

2
WRD(S2 - 0)2

N (93)
1 + k D/2 kp
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which means that kD > kp if a significant reduction of the centrifugal

loads on the blade is to occur, as is necessary. As an illustration,

consider the blade for which the static extensional stiffness kD of the

root below m3 is provided by a uniform segment of cross-sectional area AD

and length ZD. Then:

kD = E AD/AD (94)

Similarly, if each spring k is considered to be represented, as anP
approximation, by a cantilever beam of length Zp, thickness hp and

breadth bp, then:

kP= 3 E b h3/12i 3  (95)

For Q<Qo, the normal load N on the mass m2 is given by:

N = W pD 2  (96)

Table. 2 gives a calculator program to predict the blade response

with slip at the platform.

W RDQ 2

DISK

Kp K+

SUB-
kD PLATFORM

Figure 40. Quasi-Static Model
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TABLE 2

HP 67 PROGRAM FOR BLADE WITH SLIP AT PLATFORM

Input: Put w in X register (Hz) ; press A, B, C, D in sequence.

Manual Storage: Storage Location I - n,
Storage Location 0 - mi, (Kg)
Storage Location 1 - KI, (N/m)
Storage Location 2 - K2 , (N/m)
Storage Location 4 - al/S
Storage Location 5 - S cos a

Output: Label A - 1X1 linear (aI/S = -) (Equation 87)

Label B - 1X1l linear (al/S = 0) (Equation 71)

Label C - jX1 i slip (Equation 90)

Label D - IX2 1 slip (Equation 91)

Internal Storage: Storage Location 6 w2 (rad/sec)

Storage Location 7 K
Storage Location 8 (u/Wi) 2

Storage Location A 1 -(al/S) 2 (1-w2/W1
2 )2

Program:

fCL PRGM x RCL 6 x 1 RCL 5
fLBLA gx2  RCL 0 hRTN + x

2 RCL E x fLBL C STO A RCL I
× + CHS RCL 1 RCL 7
hT frx RCL 7 RCL 0 RCL 1 hRTN
× h 1/x + fLBL D

gx2  RCL 5 gx2  h I/x RCL 8 RCL 7
STO 6 x STO E RCL 6 - RCL 5
RCL 0 hRTN RCL 1 × gx 2  ×

x fLBLB hRC I STO 8 h 1/x RCL 1
CHS RCL 1 CHS RCL A
RCL 1 h l/x gx 2  1 RCL 2
+ RCL 2 RCL E + STO B
gx 2  h 1/x + RCL 4 RCL 4 RCL B

STO E + fx gX 2  f x

RCL 1 h I/x h 1/x gx 2  + x

hRC I STO 7 RCL 5 CHS fhx hRTN
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4. NUMERICAL ILLUSTRATION

The equations derived in this section permit one to predict the

effects of rotational speed on the dynamic response of any blade provided

that one knows the modal masses and stiffnesses, and the exciting forces.

Unfortunately, this information is rarely available at the time it is

needed. This is especially true of the exciting forces. As an example,

the work of Hansen, Meyer and Manson (Reference 2) represents a very

interesting early investigation of blade damping as a function of

rotation speed. The blade geometry data (Reference 2) indicates that

they used a rectangular section blade of length 50.8mm (2 inches), breadth

15.3mm (0.602 inches), width 1.83mm (0.072 inches) at the tip and 3.05mm

(0.120 inches) at the root. The root was cylindrical, of diameter 7.87m

(0.310 inches). In the tests, the blade was attached, alone, in a 33 cm

(13 inch) diameter disk and excited by impacting it with a falling steel

ball. Although the results are very interesting and useful, it is diffi-

cult to obtain accurate excitation force data from this source.

Ewins (Reference 20) recently described a test system in which air

jets were used as a means of exciting the blades. The test results indi-

cate good qualitative agreement between linear analysis and experiment for

several tuned and untuned blades in a flexible disk, but no estimate of

the exciting forces is given directly. Other investigators (References 14,

21) are equally uninformative as far as this aspect of the problem is con-

cerned. References 22-24 do seem to address the question to some extent.

The cyclic forces acting on a rotating blade-disk system arise as the

blades cut through a quasi-stationary airflow pattern generated by the

fixed blades (vanes) ahead of them. The stationary pressure field along a

circular path through the center of each stationary vane possesses a mini-

mum between each vane and a maximum at each vane station, as illustrated

in Figure 41. If the number of fixed vanes is n, then the rate of repe-

tition of the pressure pulses crossing each rotating blade is nQ/60 Hz, if

Q2 is the rotation speed in rpm. A Fourier expansion of this repeating

pulse then gives:

S (t) = S (V, S) a am cos(mnot/60) (97)
M=1

49



AFWAL-TR-80-
4 003

-X

ROTATING FIXED
VANE S BLADES VANE 5

N AIRSTREAM~

AI.,')NG BLADES

RESS JRE PATTERNS

Figure 41. Flow Induced Loads

50



AFWAL-TR-80-4003

where a m 1 if the pulses are sharp. The amplitude S(V,Q) depends onm

the mean velocity V of the airflow through the stage, which in turn

depends on the power setting of the engine, as well as the rotation

speed Q. It is not easy to determine S(Vs) analytically and little

experimental data from industrial sources seem to have been published.

So we shall consider only a few "typical" cases in this section in order

to illustrate the effect of this important parameter on the blade response.

Each term of Equation 47 gives rise to a possible excitation of a blade

mode, and a typical Campbell diagram is constructed by plotting the

frequencies mn§2/60 against £2 for various values of m, along with the

blade resonant frequencies (fi = 1,2) as a function of Q, as illustrated

in Figure 42. As is seen, the fundamental mode is excited by the blade

passage excitation when Q2 is such that fI = 1 n£2/60 (nth engine order,

point A), by the second harmonic (2nth engine order) when fl = 2 nQ/60

(point B) and so on. The Campbell diagram is a useful means for esti-

mating where the vibration problems are likely to occur, but it gives

no clue as to excitation force magnitudes.

We shall now examine a specific blade geometry, considered in

previous investigations (References 17, 18) and representing a typical

low pressure compressor blade. The main dimensions of this blade are:

L = 20 cm

W = 0.20 kg (0.44 lb)

The other relevant magnitudes are given in the nomenclature, as

specific numbers associated with the relevant symbols. From these

numbers we see from Equations 94, 95, 92, 93, and 96 in succession that:

kD = 2.10 x 10 9N/m (1.2 x 107 lb/in)

k = 2.1 x 10 7N/m (1.2 x 105 lb/in)P

A= 0.057 mm (0.00225 ins)
-6 2 2

N1  1.856 x 10 (£2 0 ?) lbf

N = 8.342 x 10- 2 Newton(l.875 x 10- 4£2 lbf)

with &o = 12000 rpm
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Figure 42. Campbell Diagram
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From Equations 68, 69, 90, and 91 we can then calculate the responsc

of the blade for the cases < o and >&o Some ,'esults are shown in

Figures 43 to 46. From these we can then determir,e the apparent modal

damping nl, defined by the "half power Dandwiitn' 1,iethod, ard olot against

t/S (for 2<Q 0) or aI/S (for 2:1P >) . The results ;or this particular blade

are shown in Figure 47. It is seen that, for D! 1l increases rapidly

as (i/S falls and reaches a very high maximurr v,-.7jc before fnally falling

to zero as a/S - 0, i.e. s2 - 0. On the other namd for <o, the dampingII rapidly increases as iSrises above a threshold ieve (below which a

new peak occurs at lower frequency and with low damping), reaches a peak

of about 0.20, and then drops more slowly as ,iS increases further.

From the values of N and N, given earlier, we can then calculate

.iS and ai/S for any assumed values of S. We shall consider two cases

namely (i) 22.24 N (5 bf) and (ii) S 1. . 1-6 . 3/2

K= 3.8 x ]0-6 Q 3/2 lbf), with 2 in rpm. The first represents a constant

force, as in danson, Meyer and Manson's experimecs (Reference 2, and

the second represents a more likely situation in wrich S increases as ,2

increases, e.g. S = 22.24 N (5 lbf) at 12000 rpm, 1;.!4 N (7.C bf, at

15000 rpm, and 5.96 N (1.34 lbf) at 5000 rpm. Tables 2 and 3 show

typical calculated values of x/S, u1/S, and 21 The appropriate

expressions for -JS and ai/S are:

(i) S 22.2 N(5 lbf)

4uN R 4 x 0.15 x 1.875 x 10-4 2 x 1
I

S TS Lcoscc cos<p 20 x n x 5 x 0.724 x 0.5

9.89 x 10- 7L

4 L, N, 4 x 0.15 x 1.856 x 20- 6  
- )

'- cos - 'r x 5 x ,24

.79 1 G-" " ' " "0
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(ii) S 1.69 x 10-5 S3/2 Newton (3.8 x 10-6 q3/21bf)

4 N R 4 x 0.15 x 1.875 x 10- 2 x I-- o - =

S STrL cosaf cosIp 20 x 7 x 3.8 x 10-6 Q3/2 x 0.724 x 0.5

- 1.301 Q
11 2

a _ 4 _ N1  4 x 0.15 x 1.856 x 10 - 6 ( ,2 - 2
1f

S iS cosc f x 3.8 x I06 3/2 x 0.724

0.1288 (Q
2  2 ao/ .3/2

0

102z
E MODE I

I I

_ 0i_ ONLINEAR

X ~ X,/S

0 10
. 3  

, ,

z
X" NONLINEAR

0 502

FREQUENCY - Hz

<I F

Figure 43. Blade Response for P.- 3-O  0
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Figure 48 shows the variation of n, with Q for these cases. It is

seen that hiqh damping occurs at high speed, as expected. Obviously, the

particular numerical values can be changed to represent other conditions,

but the approach and general behavior remain the same. One other possi-

bility can be examined, namely a blade of the type having a hinged root

with mating surfaces now parallel to the plane of rotation of the root,

and discussed also by Hanson, Meyer, and Manson (Reference 2). For this

type of blade, NI remains just about constant at all speeds, while the

force S changes, usually increasing as Q increases. This would account

for the high damping achieved by this type of blade, since cl would be

nearly constant and otI/S would change in such a way that ill would increase

as P increases.

S 22 24 Newtons

-o-0 S =169 x 10'S 3 ' 2 Newtong

20-

'b,

,G , 20

rqOiTIONAL SPEED S2 KRPM

Fiqure 48. Modal Damping versus Rotational Speed
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SECTION IV

HARMONIC RESPONSE OF A DAMPED TWO-DEGREE OF FREEDOM

SYSTEM WITH GAPS

1. INTRODUCTORY REMARKS

In this section, a two mass mechanical system excited by an external

harmonic force is considered. One of the masses is assumed to move in

the space between two elastic non-inertial buffers. The gaps introduce

a high degree of nonlinearity into the system. The motion of the two

masses is damped by dry friction which also brings nonlinear effects and

hysteretic damping of the elastic members. An approximate steady state

solution is found for the harmonic response case. A graphical method

is adapted for construction of response (amplitude versus frequency)

curves. Numerical examples show the influence of various parameters,

such as amplitude of the exciting force, dry friction, nysteretic damping,

fluid pumping, and elasticity of the buffers on the amplitude of the

response. This section summarizes Reference 16.

It is generally very difficult to predict the dynamic benavior of a

inechanical assembly having gaps between the members, whether introduced

for specific reasons or resulting from wear. In fact, the motion of

systems with gaps is highly nonlinear and is very sensitive to the gap

dimensions and the values of the excitations (Reference 25).

The present section considers the response of a damped two degree

of freedom system with gaps, excited by a harmonically varying force.

The model of the system is based on a modelization of blades in a disc.

Damping in the system is introduced by dry friction between one of the

masses and the supporting environment, hysteretic damping accompanying

motion of the elastic members and fluid pumping in gaps.

A combined analytical-graphical method is adopted for determining

the response curves, the amplitude-frequency relationship. This allows

one to determine the steady state response of the system for various

values of the important parameters, particularly gaps, damping, friction,

and excitation.
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2. MODEL OF THE SYSTEM

The idealized model of the system is illustrated in Figure 49. The

system consists of two rigid bodies of mass MI and M2 ioined by a plane

linear spring of rigidity kI and two linear buffer springs of rigidity k2.

Assumptions made in the analysis are: (i) the system is symmetric and

plane, (ii) the masses of the buffers are negligible, and (iii) the body

M2 moves horizontally only, while the body M, pe-forms plane motion.

The external exciting force S cos (wt - y) is applied to the body MI.

During the motion of the body M2 a dry friction force arises, modelled

by Coulomb's law (F = uN, where 1, is the coefficient of friction and N

the normal force). When the amplitude of motion of the body M2 is greater

than the gap A, the springs k2 exert a force. The remaining damping

terms in the system are linear. For small motions of the bodies, the

equations of motion of the system are:

Ml (Rq,+X) + - + ) 4 kj1 =S cos (wt-y) (98)

M X + axX +[! + k2(-) 1

-k + 1M sgn ( 0) = 0, (99)

where

[l+sgn (IXI A)]

a represents the viscous damping coefficient (e.g., fluid resistance),

kh' Xxh represent the hysteretic damping coefficients (e.g., internal

friction in the springs). We will confine attention to the effects of gaps

and damping on the response of the system.
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Moo SC=1Wf,-rj

k'

R

Figure 49. Model of the System

3. STEADY-STATE SOLUTION WITH SLIP

We shall analyze the excited motion only, i.e.:

X = Acoswt, (In)

where A represents the amplitude of the excited vibration. It depends on
the frequency of the exciting force.

Putting Equation 100 into Equation 98 we obtain

MIRl + ' + kll = Scos (wt-,K +

M A 2 A
+ M coswt + h k sin wt (101)

The steady-state solution for Equation 101 is

S[ ( 2) cos (wt-y) + i
I

1 kI

+ 2 1- M W2) coswt + sinwt] - coswt (102)
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where

= 22 (M1 R  2

1

Putting Equations 100 and 102 into Equation 99 we get:

2
k k k

A coswt[ k~i" M 2
2  1 1

2

- Mw2] Asinwt a x W+ a

k 2 AT* sgn (A sinwt)] 2 ~-~ (k1-
2 1 R2

MIRj )cos (t-y) + Xh sin (wt-y) ] = 0 103)

where:
* =[ -sgn(JAcoswtj- A,)]/2 '104 )

The values of the function z* are given in Table 4.

We develop the function '1*, Y* coswt, i'* sinwt and sgn (A sin,.t) in

Fourier series. Limiting attention to the first approximation we have:

27 2 T
= [coswttf W *coswt dt + sinwt Y* sinwt dt] 0 (105)

0 0

Note that when Nh=O, ,*=l-MjRw-/k 1 .
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2 7 2 7T

Y*coS~t W [coswt f Y* Cos 2 wt dt + sinwt UjT* sin(,tcosuwt dt]

0 0

- (2wt + sin 2wt )coswt C(A)coswt (106)

2Tr 27T

Y* sin Wt 7T [coSWtf W T* sinwt coswt dt + sinwt f * sin 2wt dt]

0 0

- 1 (2wt1 - sin 2wtl) sinwt = C* (A) sinwt (107)

2-,

sgn (Asinwt) = sgn A coswt f sgn (sinwt)coswtdt

0

2Tr

+ sinwt f W sgn (sinwt) sinwt dt]

0

sgn A sinwt (108)
Tr

Putting Equation 105 to Equation 108 into Equation 103 and comparing the

coefficients of the trigonometric functions we obtain the basic equation

for the resonance curve A = A(w). (The same result is obtained if one

assumes the solution in the form x = A coswt, T = Bcoswt + D sinwt, where

A, B, D are functions of w).

A2 (w) + [A, 2 (w) + 6S, (w) sgn A]2  S2  (109)
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and the expression for the phase angle:

.NSO,sgnA + A 2)(k,-M Rw ) + AchiVT

y arctan (MS@.sgnA + A2)h(kMI)AhV2 (110)
( sgnA +A AkMR

where

0(w ) = -I *(k2c _M2w+ w I) (k,_ _M2)] 2  (111)
M2M2 R

2( M [(x ~xhc ) +lb (112)

-= 4N M-= M R (1l3
M ' k2 13)

The difficulty of the problem arises because the expression

(Equation 109) is nonlinear with regard to A, due to functions (sgn A)

and t1= t1 (A). The last function, which is included in C (A) and C* (A),

depends also on the gap I (Equation 105). The functions sin 2tl+2t l

and 2(,)t -sin 2wtI are presented in Figure 50. As we see in Figure 50

the function (sin 2t 1+2t I) is practically constant for A>2A and equals

about 3.1.

We shall seek for the explicit solution A=A(w) of Equation 106

supposing that the functions C(A) and C*(A) (Equations 103 and 109) are

constant. Then we shall introduce the functional dependences C=C(A),

C*=C* (A), applying a graphical method.

If the C and C* are supposedly constant we obtain from Equation 62:

![< , 2 -t4 + 2 2 2 l

A(2) = ±S (114)M(,I+¢42)

which is valid for 'l 1.
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0 2 6 8 10

Figure 50. Graph of t= /(o Arc Cos A/A

As we see, for large values of the excitation amplitude S, there

exists one positive value for A and one negative of the same value. For

small values of excitation, motion of this kina is not possible, and

only 4(t) exists - linear motion of the mass MI .

The expression (Equation 114) represents the relation A=A(w), i.e.,

the relationship between the amplitude of the excited vibration and the

frequency of the exciting force in the simplified case C=const,

C*=const. A graphical method of solving Equation 109 with C and C* not

constant will be explained for the particular case of a system with dry

friction only in Section IV.5.

4. STEADY-STATE SOLUTION WITHOUT SLIP

Finally, for the case of small exciting force amplitude S, that is

S<4AN4*/T, no slip of the mass M2 occurs, unless ki > VN. Then the

motion is linear and involves 4i alone, so that the equation of motion

of the system becomes

MIRp + - 4-$ kj 4= Scos(wt-y) (115)

66



AFWAL-TR-80-4003

This can be solved directly for i(t). The graph of p* (where p* is an

amplitude of the response of p) versus w is then a classical response

curve up to the point where * yN/k I, at which point slip occurs, but a

sustained solution with slip does not exist (because S<4oN ,/f). There-

fore, the response under these conditions is "cut-off" at the level
-¢* = ,N/kI , i.e. amplitudes are limited. Only for S>4pNq,*/7 can

infinite amplitudes be sustained at resonance, as in Equation 114, for

zero values of the other damping coefficients.

5. SOME SPECIAL CASES

The case a h=Cx xh= 0 - Dry friction only. Let us consider the case

without damping. The expression (Equation 114) has then the form:

A(w) S (116)
M

where

(MI+M2  k 2 C k 2 C
-T +  T2+

M1 R

- 1 -2

(we omit the sign minus in front of the expression (Equation 116); of

course there are two solutions: positive and negative).

The function A(.) exists only for

0 - 1 2 < - (1+ i) if /p-I

1I k1  1i 3>1
i7T (1 ) . MR (13 i

k I
and if -- (I ) then it takes the value zero.
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The function A(w), (Equation 116), tends to infinity when w or

where

klM1 Ck2  kl M1 Ck2  2 k]

2i R 2+ 1 + C + (-I) L2R - 1 + 2 M1 2R}I (117)

i1,2.j

0 0 ki (/M, + 1)1112 '
For C=0: W 1 0 1 M R kM2

|

For C=Cma x , where (Figure 50)

C 1 (2wt.+sin2wtl)mx 0.987 (118)
Cma x  7 ma (2Tt+S

we have

mM 1  +Cmax- +( 1 )
i  kl M1 Cmaxk2 2  2 1/2

{ 2MR\M +~ 1) 2M2  /2 1 \ 2 21

i-i1,2

0 m 0 mand 0u w, <l W 2 W C 2

For 0, A(O)=Sv'jl-7/k 2C which if C - 0.

Finally the function A(w) (Equation 116) ft- some cases has shapes

presented in Figures 51, 52, and 53.

As one sees, the presence of the dry friction does not eliminate the

resonance peak,,. The curves presented in Figures 51, 52, and 53 are

plotted for tho values C = const. In reality the value of C varies:

0 C Cma x = 0.987, when A varies in the range A _ A _ 25. -hen for

A the curve A(w) with C = 0 is applicable. For A 2-, the curve with
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C = Cmax is used. For A < A < 2A one should plot a family of curves A(w)

with a parameter C varying 0 < C < Cmax and find the corresponding points
at intersections of those curves and lines A = RiA, 1 < Ri < 2,

i = 1,2,3,..., the values Ri being taken from Figure 50.

Figure 54 presents the method of plotting the real curve A (w)

(Equation 116). The shape of the A(w) curve depends on the value of A.

As can be seen in Figure 54, the resonance peaks of the A(w) curve

(the case without damping) always exist (two or one only). The dry
friction does not cancel the resonance, it reduces only the amplitude A.

The opposite effect is brought into play by the amplitude of the exciting

force S. The existence of the gap A changes qualitatively the A(w) curve.

It brings a highly nonlinear effect. For limiting cases A = 0 and A

the response curves correspond to the cases C = 0, C = 1 (Figures 52 - 54)

and then there is no nonlinear effect. In other cases, the nonlinear

effect on A() curves is more distinct if A is greater.

Numerical Example No. 1

Let us consider the example with the following data

M = 1.827 kg, M2  = 15.3 kg, (119)

k= 14272.7 N/rad, R = 9.09 O- 3 m.

Four values of 8: = 0, 0.2, 1, 1.1 and three values of k2 were considered:

k2 = 10
6 N/m; 107N/m; 108N/m. (120)

The calculations were made on an SR 52 calculator.

The resonance curves (Equation 116) have been plotted in coordinates

(WAM/S). In Figures 55-57 we have the family of curves (Equati ,i 116)

with different constant parameters (C/O _I C < C max) for the case n = 0.
They correspond to the values A/A = I;l.I;l.2;v&;2. One can see the

normal shape of the linear resonance curves for a two-degree of freedom

system. For the cases k2 = 10 6N/m and k2 = 10 7N/m the first mode corre-

sponds to the motion of the mass M2. For the case k2 = 10 8N/m the first

mode is that of the mass M . The second resonance zone in the cases
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A

ft2A

110 
1

Figure 55. Response Curves for C =const

(k 2  106 N/rn, 6 0)

2-24

Figure 56. Response Curves for C const

(k2  10 N/rn, 6 0)

VA V24 2A

00 c

Figure 57. Response Curves for C const

(k2  108 N/rn, B 0)
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k = 10 N/m and k 10 N/m for different C is nearly the same, so in this

region the gap nonlinear effect will be small. Such low values of k 2 do

not alter much the values ~2and wo (Equation 117 and Figures 51 and 52).

Then the gap A is introduced and the curves corresponding to non-

linear cases are plotted, applying the method explained previously. For

every value of k 2 two cases of the values of the gap A were treated

(Figures 58-60). To show the influence of the exciting amplitude the

previous curves (Figures 58a - 60a) are plotted on the plane (W,A)

(Figures 58b - 60b), where the scale of A is expressed by the value of

the gap A. As can be seen, a smaller value of S causes a reduction of

the amplitude A and narrows the resonance zone. It cannot, however,

cancel completely the resonance peak. For the smaller gaps (Equation 1)

the nonlinear effect, which obviously has a "hard" character, is less

exhibited. The gap's nonlinear effect lies in the appearance of non-

uniqueness of the amplitude A for certain regions of w.. This effect is

especially evident for large values of k 2 (Figure 60). One should expect

that the middle value of the amplitude (dashed curve, Figures 58b - 60b)

gives an unstable solution (Equation 100).

The comparison between Figures 58, 59, and 60 show the effect of the

buffer's rigidity.

The curves for the case with small dry friction factor (8 = 0.2)

are similar to the undamped case (compare Figures 61 and 60a). The effect

of the dry friction damping lies in limiting the curves on the frequency

axis. For low and for high frequency excitation there is no motion

(Equation 100) for the mass M 2 (Figures 62-65). For the higher dry

friction some resonance zones are more narrow but the nonlinear effect of

gaps are more exhibited (compare Figures 61 and 58a). If the dry friction

is sufficiently high the first resonance zone can be cancelled and the

effect of gap's nonlinearity disappears (Figure 62). This effect does

not exist for the case k 2 = 10 8N/in (Figures 63-65) It is obvious, because

the first resonance in this case corresponds to the motion of the massMI
and there is no possibility to cancel it by the dry friction applied to

the mass M.
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Figure 58. Response Curves for the Nonlinear Case (Undamped-

k =10 6N/rn) -(a) Influence of Gaps, (b) Influence2
ot Excitation

AJ

2A2

-- VS

Fiqure 59. Response Curves for Undamped Nonlinear Case (k 2  10 7N/rn),

(a) Influence of Excitation, (b) Influence of Gaps

A

limt

Figure 60. Response Curves for Undamnped Nonlinear Case (k 2  10 8 N/rn),

(a) Influence of Gans, (b) Influence of Excitation
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Figure 61. Response Curves for the Case Figure 6. Response Curves for the Case

with Dry Friction (k 2  1Cio with Dry Friction (k~ 2 0

N/rn, B 0.2 Nrn, 1)
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Fiur 6. esoneCuve fr heCaFigure 64. Response Curves for the Case

~~~~~~with Dry Friction (k. 10 80 ihDyPicin( 2  1

N/rnm is =.2 N/rn
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The Case N = h- xh = 0. Fluid pumping only.

Let us consider the case without dry friction and without hysteretic

damping. Only the dissipation by fluid pumping in gaps is present. The

response curve is given by Equation 116 (for C = const) with q = 0 (we

omit the sign minus, of course, there exists two solutions: a positive

and a negative):

A(w) =  + 1 (121)

where

0 1 w [ 4 W2 (MI+M 2  + I M) + k2 C] 2(12
M TM (122)

02 w wx ki - W2)@2( ) =M2 MjR m

For small values of the damping coefficient cx the response curve

(Equation 121) has two maximum peaks (for w near w and w2, Equation 70),

Figure 66. The position of the peaks depends on the values of c and C

as well. So the nonlinear effect of the gap can be reflected in the A(w)

curve in the same manner as previously, plotting a family of curves with

C as a parameter and finding the intersection points with corresponding

levels A = R.A, where 1 < R. < 2, i = 1,2..... For A < A the curve

(Equation 121) with C = 0 is valid. For A > 2A the curve (Equation 121)

with C Cmax (Equation 118) is valid.

A

I GmI

Figure 66. Resgonse Curves for a Damped Case

75



AFWAL-TR-80-4003

Numerical Example No. 2

Let us consider the same example as previously, with n = U, adding

the fluid damping coefficient (four different values):

= 103Ns/m; 1500 Ns/m; 4000 Ns/m; 7000 Ns/m. (123)

The results of the calculations of the response curves (Equation 121)

are presented in Figures 67-72. The curves obtained applying the same

graphical method are plotted in the coordinates (w,A), where A is

expressed in terms of the gap's magnitude A. One can see the influence

of the gap coefficient MA/S on the nonlinear behavior of the A(w) curves.

The curves show the influence of the amplitude of the exciting force S

on the A(w) relationship. The growing S causes an increase of A and

some qualitative changes (appearance of new branches of A(w)). The

influence of the damping coefficient ctx can be investigated by comparing

the curves corresponding the same value of k2 (Figures 68 - 72). The

curves A(w), for small values of ctx do not differ much from the curves for

the previous case = 0 (compare for instance Figures 59b and 68). The

greater values of tx cause the disappearance of some A branches (compare

Figures 59 and 69 or 60 and 72), a reduction of the amplitude A and a

disappearance of the resonance (compare Figures 58 and 67, 59 and 69,

60 and 71) and a "softening" of the response curve (compare Figures 69

and 70). The growing coefficient a x changes a little the frequency

W1l W2 of the greatest amplitude A (to smaller values of w for k2 = 10 N/m,

brings closer both of them for k2 = 10 N/m). The increasing coefficient

vx cancels more efficiently the first resonance (for k2 = 10 N/m). The

same value of cx has more influence on the shape of the resonance curve

if k2 is smaller (compare Figures 58, 59, 67 and 69).
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A

A

.L so~

Figure 67. Response Curves (k2 106 N/rn, Figure 68. Response Curves (k2  Or' N/ni,

0,~ 4000 Wi/n) =0 1000 Ns/rn)

A

A

Figure 69. Responsie Curves (k. 10 3 N/rn, Figure 70. Response Curves (k 2  10 N/rn,

0, 1 000 Ns/m) 0, OL 7000 Ns/nJ
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The Case N = = h . Hysteretic damping in the buffer

springs only

Let us consider the case without the dry friction and without the

fluid pumping. Only dissipation by hysteretic damping in the buffers

is present. The response curve is given by Equation 114 (for C = const,

C* = const) with 8 0 (we omit the sign minus):

A()=S - 1

sA() 1 2 (124)

where in this case lis the same as previous (Equation 122) and

mxh C* (i MIR 2).

F2 () = M 1 - K 1- L)

For small values of damping coefficient otxh the response curve (Equation

124) has two maximum peaks (for w being near w, and w2' see Equation 117

and Figure 66).

Numerical Example No. 3

Let us consider example 2 (with 6 = 0), adding the hysteretic

damping coefficient (three values):

xh = 10 7N/m; 10 8N/m; 2 10 1N/m.

The results of the calculations of the response curves (Equation 124) with

different values of axh are presented in Figures 73-75. The curves

are plotted in the same coordinates (w, AM/S) as previously. There can

be seen the influence of the magnitude of the gap coefficient AM/S on

the nonlinear behavior of the A(w) curves. The damping brought by the

buffers has nearly the same influence on A(w) relationship as the fluid

pumping. However, the effect of damping contributed by the coefficient

(xh is much smaller than that of ax (compare the magnitudes of a xh and

r which give nearly the same effect of damping - Figures 69 and 73,

70 and 74, 71 and 75). For sufficiently high damping, the amplitude

A of vibration does not exceed the value of the gap A. The nonlinear
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Figure 74. Response Curves (k, 10 7N/rn,

.£ 0,x 0 , xh= 10 8 N/rn)

A

Figure 75. Response Curves (2 10 8 N

8 0, AX 0, ( h 10 N/rn)
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effect due to the gap is present in all the cases (regions of frequency

where three values of amplitude are present, with sudden non-smooth

changes of amplitude values).

The Case axh -- h = 0. Dry friction and fluid pumping only

Let us consider the case without hysteretic damping. The dissipation

is caused by dry friction and fluid pumping together.

The resonance curve is given by Equation 114 (for C = const and

C* const):

2 2
-02, + +- 2

A(w) =S-- :

M(¢ 1 + ¢2) (125)

where is given by Equation 122 and

MIR O XW.
= M€, 1 kl 2 M

Numerical Example No. 4

We shall consider example 2 with the fluid pumping coefficient

(two values):

la = 2000 Ns/m; 4000 Ns/m.

The results of calculations can be seen in Figures 76 and 77. The

common effect of the dry friction and the fluid damping reduces the

resonance amplitude and limits the zone of frequency (compare Figures 61,

62 and 70, 77). The gap's effect has nearly disappeared.
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6. TIME DEPENDENCE OF THE DEFLECTION

After having found the value of the amplitude A of the solution for

given parameters, and for every value of the frequency w, it is possible

to obtain the time dependence of the deflection ip(t). Putting Equation

100 into Equation 102 we obtain:

t) A * Au

= (k2y* - M2W
2 ) COS Wt - +-- (ax

ce v ) sin wt - pN sign (sin wt). (126)

Taking into account the values of i* (Table 4) for every interval of time,

we can plot the relation (Equation 126) in coordinates (t, p (t)). Figure

78 shows the graphical construction of the Equation 126 for small and

great values of frequency. As it can be seen, due to the nonlinear effects,

the time dependence of the deflection (t) represents a complicated curve.

Practically, in real systems, it will be much more smooth - the modelization

accepted here is quite idealized.

Fiqure 78. Time Dependence of the
Deflection of the Mass M
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7. SUMMARY

The response of a mechanical system to a periodic excitation is

strongly dependent upon the tolerance between parts. In this section

it has been shown that the response (amplitude versus frequency) is

very sensitive to the value of the gaps - the response curves change

not only quantitatively but qualitatively as well with variation of the

gap's magnitude. The presence of gaps introduces nonlinear effects.

A change of the gap's magnitude may increase the amplitude of the

response, which can cause premature damage or failure of the system.

Another nonlinear effect is caused by dry friction in the system.

The dry friction reduces the response amplitudes, it cannot completely

cancel the resonances. Both nonlinear effects cause the nonuniqueness

of the amplitude of the response for certain regions of frequency.

The external damping brings usual effects of amplitude reduction.

A graphical method was adapted for construction of the response curves

for nonlinear systems. This method is valid for any nonlinearity in the

system, but its advantages are especially clear for discontinuous

functions.
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SECTION V

EXPERIMENTAL INVESTIGATIONS

1. BLADE DESCRIPTION

The analytical part of this report describes the fundamental mode

dynamic behavior of a typical jet engine compressor or turbine blade

having a simple dovetail root, with allowance for slip at the root.

The purpose of the test program was to verify, as far as possible, the

results of the analysis. The blade selected for the initial tests was a

relatively large twisted steel blade with a simple root geometry as shown

in Figures 79 and 80. The blade was held in a heavy fixture having

mating surfaces to match the contours of the blade root. The centrifugal

load was represented by means of simple spring loaded wires applied at

the root in such a way as to minimize interference with the blade root

motion during slip. This arrangement, shown in Figure 80, is not ideal

in so far as it does not allow for the effect of the centrifugal load in

untwisting the blade, but it does represent the root conditions far more

adequately than, for instance, clamping the root by means of a bolt, which

would prevent slip and hence inhibit the very phenomenon being studied.

The tlade was about 20 cm long.

2. TEST SYSTEM

For determining the mode shapes of the blade, a digital test system

illustrated in Figure 81 was used. The blade was solidly clamped at the

dovetail and excited by a small shaker through a force gauge at the block.

The acceleration response was measured at several points on the blade

surface using a miniature accelerometer and transfer functions measured

at several points on the blade.

For the harmonic vibration tests on the blade with slip, the analog

test system illustrated in Figure 82 was used. The Bruel and Kjaer Model

1014 Beat Frequency Oscillator can generate a harmonically oscillating

voltage of maqnieude 0 to 120 volts at any selected frequency from 20 Hz

to 20 KHz. The output impedance, measured in ohms, can be varied according

to the type of excitation device used in order to match impedances as
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Leading

Edge

Trailing

Edge

Fiqure 79. Blade Geometry

Figure 80. Photoqraph of Blade in Fixture
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INTEGRATOR ANALYZER s

INTERFACE INTERFACE

Figure 81. Digital Test System

[ VOLTMETERFRQEC

ACCELEROMETER

Figure 82. Analog Test System
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closely as possible. As the frequency is varied, the current through

the output terminals to the exciter can be controlled by means of the
"compressor". This is simply a feedback loop which measures the voltage

across a fixed resistor in the output circuit, and uses it to control

the output current. A meter gives the output voltage across the terminals.

The output current of the oscillator was fed directly to a magnetic

transducer (Electro Model 3030-HTB). The impedance setting of the

oscillator was set at 600 ohms in order to best match the impedance of

the transducer, thereby minimizing distortion of the output signal. The

transducer consists essentially of a magnetized iron rod with many coils

of fine insulated wire surrounding it, through which the oscillating

current flows. This current produces an oscillating magnetic field

which modulates the steady magnetic field of the rod, and hence produces

an oscillating harmonic force on any iron object placed nearby. The

magnitude of this force depends on the amplitude of the oscillating on

current and on the gap between the end of the magnetized rod and the

object being excited. A typical transducer section is shown in

Figure 83.

The waveform of the input signal to the transducer was monitored

on a dual - beam oscilloscope (Ballantine Model 1066S). The frequency

of the signal was measured by a digital frequency meter (Hewlett Packard

Model 5216A). The pickup system used a miniature accelerometer (Endevco

Type 22) weighing about 0.2 grams. The acceleration amplitude of the

blade at the point where the accelerometer was attached, with cyano-

acrylate adhesive, was detected by the quartz crystal in the accelero-

meter, unlike the transducer, is an extremely high impedance device so

that a special high input impedance amplifier (MB N-400 Zero Drive

amplifier) had to be used to amplify the signal before it could be read

off the Vacuum Tube Voltmeter (Hewlett Packard Model 3400A) and monitored

on the other channel of the dual beam oscilloscope. A "line-driver"

(MB Type 9402215) was used to reduce loss of signal in a relatively

long cable. Because of the high system impedance, current levels in the

cables were very low and care had to be taken to avoid excessive loss of

signal or pickup of stray signals.
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5.7 cm._. STEEL CASE

MAGNETIZED CORE 1.4 cm

MULTI -TURN COIL

13.2 cm

Figure 83. Transducer Section (Sketch)

3. MEASUREMENT OF MODE SHAPES

For the first two modes of the compressor blade, the transfer

functions IX/SI were measured, as a function of frequency, using a small

shaker acting through an impedance head for excitation and an accelero-

meter for pickup as in Figure 81. Results were plotted for points (0,0),

(0,1) --- as illustrated in Figure 80. Figure 84 shows a typical response.

Figures 85 to 89 show more detailed plots near each resonance. The system

was not calibrated. The product (X/S)nn was then calculated for each

mode, as shown in these figures. Note that (X/S) is drawn on a decibel

scale, so that one must convert back to a linear scale in performing the

calculation, as follows:

X I
linear = log,-l X db

10 TO-

For example, for point (0,0), mode 1, = 39db and nI = 0.00287.

• Si log0 ( L9 x 0.00287 = 0.256

The summarized modal data is given in Table 5. These modes are plotted in

Figures 90 and 91. The modes can now be used to calculate the equivalent

masses and stiffnesses of the discrete model of the blade.
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Figure 89. Resonance Peaks for Point 3,2

TABLE 5

MODE SHAPE DATA

Point (X/S)nl (X/S)n2 l i 2

0,0 +0,256 +0,157 +1,000 +1,000
0,1 +0,234 +0,117 +0,914 +0,745
0,2 +0,214 +0,086 +0,836 +0,548
1,0 +0,189 +0,039 +0,738 +0,248
1,0 +0,148 +0,004 +0,578 +0,025
1,2 +0,147 -0,023 +0,574 -0,146
2,0 +0,107 -0,043 +0,418 -0,274
2,1 +0,087 -0,057 +0,340 -0,363
2,2 +0,070 -0,081 +0,273 -0,516
3,0 +0,043 -- +0,168 --

3,1 +0,034 -0,061 +0,131 -0,388
3,2 +0,015 -0,060 +0,058 -0,381
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Note that the frequency wn changes somewhat with the position of the

measurement. This is due to mass loading by the accelerometer. The

difference is sufficiently small to be insignificant, and is assumed to

have only second-order effects on the mode shapes, in view of the wide

separation of the resonant frequencies. Finally, note that *n is a

vector, assumed to be normal to the blade middle surface. The direction

cosines relative to the major axis of the root were measured to be:

Station Inclination co cos (X

0 440 0.724

1 36 0.808

2 31 0.861

3 20 0.938

4 13 0.972

4. CALCULATION OF MODAL INERTIA AND STIFFNESS FROM MODE SHAPES

The thickness of the blade was measured at several stations and

across the chord. Figure 92 shows the distribution of thickness. The

values of m1 and B1 were determined from Equations 45 and 46 using the

modal data, the direction cosines, and the density of the blade material,
.3

assumed to be 0.27 lb/in 3
. On this basis:

I  ff ph dxdy = 0.235 kg
xy

mln (xI, y 1). 1  (xI, yl) 0.235 x 1 x 1
_ __1 = _ _ --= = 7.25

ff..h i dxdy 0.0324
xy

0. 235
I 0] -7-2-5 0.0324 kg

.. u I Z'96 x 1 0 kqm'

K" i l 0.0324 (2 x 120) 1,419 N/rl

K L 2K1  737 Nm/i

9"
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Note that the value of Kl is measured in N/m because X is the

independent variable, not XI/L, where L is the blade length.

5. MEASUREMENT OF RESPONSE WITH SLIP

The tests with slip were conducted using a magnetic transducer for

excitation, with a pre-selected gap, (0.04 in., Imm) at several different

force levels ranging from 0.0064 Newtons to 0.125 Newtons, the maximum

that could be generated with the transducer available. The net normal

force provided by the two springs to the wires at the root of the blade

was varied from 10 kg to 25 kg. As the excitation frequency was increased

slowly, at low force levels, the classical shape of the response curve

(IXI/SI versus frequency) was reproduced, but as the exciting force was

increased the behavior became increasingly nonlinear. The results

obtained for tests with air and water as the working fluid around the

blade root mating surfaces are shown in Figures 93 to IO for the first

three modes. Test results are summarized in Tables 6 to 10.

Several significant facts may be noted from these figures. One is

that as S is decreased, a point is reached at which slip never occurs

and the behavior is then linear. In that case, the only significant

remaining source of damping is hysteresis of the blade material itself.

The second is the fact that as water is substituted for air as the

working fluid at the root, slip occurs far more readily. This is

accounted for by the fact that coefficient of friction is lower in this

case. Figures 101 and 102 show some of the acceleration waveforms

observed on the oscilloscope screen for various conditions. The upper

curves represent the blade acceleration, and the lower curves the force,

all at the point of maximum amplitude. In air, one can see significant

deviations from a true sinusoidal shape. In water, the lower threshold

of slip seems to allow high order harmonics to be present in the signal.

The reason for this is not known.
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Finally, the experiments are compared with analysis in Figures 103

to 107.

6. DIRECT MEASUREMENT OF MODAL MASS AND STIFFNESS

Section 2.3 describes the linear modal analysis of blade response

without slip (fully clamped root). From this analysis the observed

resonant peak acceleration at the point 0,0 of the blade, when excited at

the same point by a force S, is:

= SL2cosa

22

I = SL 2cos - SL 2cosa (127)2 l ' l I

From Figures 93 to 97 for the fundamental mode, S and 1XIy at low force

levels, where slip does not occur, are known. n, is the observed modal

damping and wl is the observed resonant frequency. Table 11 gives the

collected results. It is seen that Il=l.O4 x 10
-3 kgm 2 and Kl(1ll 1l) =

635 Nm/m. These values are very close to those determined from the

measured mode shapes.

7. MEASURED MODAL DAMPING

Further understanding of the test results is afforded by examining the

apparent modal damping n, = Af/f l, where fl is the resonance frequency and

Af is the frequency 3 db below peak amplitude (3.01 db actually). Clearly,

since the system behavior is highly nonlinear, this linear system repre-

sentation is not particularly appropriate except as a crude numerical

indicator of the effect of slip. Even so, a graph of n, versus '/2 is

most informative, as Figure 108 shows. It appears that the graph of n,

versus /N is nearly a straight line, for each fluid, terminating with

a discontinuity at q, = 0.01 (the linear damping) and finite values of

S/0N. The agreement between analysis and experiment is good.
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Finally, for very low load levels the residual damping is linear and

apparently hysteretic in nature, and its source is possibly the blade

material itself. For the first mode n,= 0.01 at about 120 Hz. Further

tests on the second and third modes show that q2= 0.006 and n3= 0.0015

for the second and third modes, at 420 Hz and 920 Hz, respectively.

This variation of n n with frequency is again fairly consistent with

published data for such damping.

8. CALIBRATION OF TEST SYSTEM

In order to be able to conduct quantitative measurements of the

response of the blade to a known harmonic force, it is necessary to

calibrate the measurement and excitation systems. For example, the

voltage across the fixed resistor in the exciter/oscillator system, at

the load terminals, must be monitored and related in some way to the

force applied to the blade. Similarily, the signal from the acceler-

ometer, after passing through the line driver, the charge amplifier and

the various cables is read-at the voltmeter, and the relationship

between this voltage and the actual acceleration must be determined for

the particular system and components used. This is the aim of the

calibration procedures, which must be conducted prior to testing and from

time to time thereafter.

The accelerometer-Zero Drive-Charge Amplifier-Voltmeter measurement

chain is calibrated by introducing a known harmonic acceleration at the

accelerometer and simply observing the R.M.S. (root mean square) voltage

registered at the voltmeter. The known acceleration is generated by a

small electrodynamic shaker, having a steel ball embedded in a hollow

cavity in the shaker table, as illustrated in Figure 109 (step 1). At an

acceleration of just over 1 g at the table, the steel ball will separate

from the floor of the Cavity and impacts occur. These are easily noted

as "hash" on the otherwise smooth sinusoidal trace on the oscilloscope

screen. The acceleration at the shaker table is adjusted until the

"hash" just appears. Hence, the accelerometer is calibrated to 1 9. For

the Endevco 22 accelerometer, MB Zero Drive and Amplifier, and HP 3400A

voltmeter, this calibration was:

I g 1.91 volts (8 db)
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Fiqure 109. Calibration Setups

For the Endevco Type 2226 accelerometer used in the calibration of the

transducer, the appropriate calibration was:

1 g - 7.60 volts (17.6 db)

In order to calibrate the transducer, it was necessary to measure

the force generated on a block of iron placed a distance h (the gap)

from the active end of the transducer and having a certain oscillating

voltage V at the output terminals, corresponding to a definite current in

the circuit. A three step process is necessary, since the force cannot be

measured directly. Figure 109 shows the three steps in this sequence.

The first step is to calibrate the accelerometer, as discussed

already. When this step has been accomplished, one has a numerical

relationship between the acceleration seen by the accelerometer and the

voltage registered by the voltmeter, in volts or decibels with 0.707

volts - 0 db, because this is an R.M.S. voltmeter.
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The second step was to calibrate the impedance head, so that it in

turn can be used to measure force. This was accomplished by applying a

known acceleration, using the results of step 1, to a shaker table

supporting the impedance head. The force experienced by the crystal of

the impedance head is equal to (M 0+ AM)X, the d'Alembert force corre-

sponding to the acceleration X acting on the mass M 0+AM above the crystal.

M 0is the built-in mass of the impedance head itself and AM is the added

mass of the soft iron piece. Since M 0 may not be known, one can vary

the mass AM and measure the output voltage V S of the force gage,

registered at the voltmeter for each case. With X known from the

corresponding accelerometer reading, we can then plot a graph of V S/X

against Am for the particular force gage used (Wilcoxon Z 602). The

intersection of the line defined by the measured points with the negative

AM axis corresponds to the mass M 0of the impedance head above the crystal.

With M 0then known, any reading of (M 0+ M)X gives the force corresponding

to the acceleration X and the voltage output V S from the force gage, via

the charge amplifier, the zero drive and the cables. It was found that

M0=30 grams. Hence one has the calibration; for example, for V5S = 13.5

volts, Am = 11.5 grams, the acceleration X was 0.168 g's. Therefore:

13.5 volts =_(11.5 + 301 x 0.168 x 9.81 Newtons
1000

or

1 volt -- 5.08 x 10 - Newtons (128)

This result is dimensioned properly by converting M 0 and AM to kilograms

and the acceleration (0.168 g's) to meters per second.

The third step is to calibrate the transducer itself, using the force

gage. The force gage was placed on a rigid block and the transducer was

then brought close to the iron block, with separation h as shown in

Figure 109, step 3. The voltage V, corresponding to a particular level

of the oscillator current in the transducer coils, is set at a particular

value, such as 30 volts. The gap is set at a particular value, in this

case 0.043 inches (1.092 mmi), by means of a feeler gage or a metal sheet
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of this thickness. The force gage was then connected, again through the

same zero drive, charge amplifier, and cables to the voltmeter. From

the force gage calibration, given in Equation 128, the force was then

calculated directly from the observed voltage. The test data supports

the assumption that S a V, but only one gap setting was tested so that

the other assumption, namely S a 1/h, was not verified. However, the same

gap was used in all tests, so this omission was not too important. The

variation of Sh/V with frequency is shown in Figure 110. One can

therefore estimate S for any given frequency and voltage for the

particular gap setting.

The effective centrifugal load on the blade was provided by two

springs. This force was determined by measuring the change in length of

the springs under load, and this in turn was calibrated by applying

known static loads to each spring in turn and measuring the corresponding

length.

9. TESTS ON BLADE WITH SLIP AT A PLATFORM

With the specific blade used in the earlier experiments on blade root

damping, the use of a gravity loaded rod in a guide allowed a controlled

frictional load to be applied at selected points, as illustrated in

Figures 111 and 112. The same magnetic transducer and pickup accelerometer

were used as in the previous tests, and the gap between transducer and

blade was set at 0.040 inches (1.02 mm) as before. Hence, all calibration

factors were unchanged. The distance X was 2.25 inches (57.2 mm), and at

this point , (X/L) = 0.20, as shown in Figure 90. The blade was excited

at various force levels and for various normal loads as before. The

results are summarized in Table 12. Figure 113 shows typical plots of

response versus frequency for the undamped bliade and for a normal load of

1.70 kilograms. For purposes of comparison with the analysis of Section 3,

we note that the mode shape in the fundamental mode would not change too

much, so that M 1  .036 kilogram as before. For the blade without the

normal load, the stiffness K eis the same as before, i.e., K e=22,500 N/rn.
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The change in resonant frequency from about 125 Hz (unloaded) to 148 Hz

loaded, leads to K1 = 30,600 1!m. The value R = 0.2 corresponds to

the modal amplitude 41(5.72/20) = 0.20. It is seen that analysis and

experiment agree quite well. A friction coefficient p = 0.3 was

determined for slip between the rod and the blade leading edge.

10-2

10-3

0
-' O V 30VOLTS

SV 15 VOLTS
SV 7.5 VOLTS

z

cn 104

10-51

10 100 1000 10000
FREQUENCY - Hz

Figure 110. Calibration Curve for Transducer
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Figure 111. Blade in Test Fixture

Normal Load

Guide Block Steel Rod

I magnetic

Transducer

Accelerometer

I Endevco 22

Figure 112. Test Fixture

122



-_.. .... 7 - - ----- - - ,- - -

AFWAL.-TR-80-4003

TABLE 12

TESTS ON BLADE WITH SLIP AT "PLATFORM"

MODE 1, X 2.25 in (57.15 mm), R1 = 0.20

Input N Force S CL 1 Freq Response X1
(volts) (kg) Newtons S (HZ) (volts) (metres)

40 0 0.079 0 127 3.75 7.70E-5 0.024
126 2.5 5.21
129 2.5 4.98
130 2.0 3.92
133 1.0 1.87
139 0.50 8.57x15

6

159 0.20 2.62
194 0.10 8.80x10-6
171 0.15 1. ;D xlO
152 0.25 3.59
127 4.0 8.22E-5
125 2.0 4.24
123 1.0 2.19

118 0.5 1.19
107 0.2 5.79E-6

95 0.1 3.67
74 0.05 3.03
48 0.023 3.31
20 0.017

40 0.02

40 1.70 0.079 11.2 147 1.50 2.3DE-5 0.0612

143 1.05 1.70
152 1.05 1.51

153 1.00 1.42
162 0.50 6.31E-6
185 0.20 1.94
222 0.10 6.72E-7

40 3.52 0.079 23.1 149 3.20 4.78E-5 0.0338
146 2.40 3.73
151 2.40 3.49
152 2.00 2.87

155 1.00 1.38
164 0.50 6.16E-6
191 0.20 1.82

226 0.10 6.49E-7
147 4.00 6.13E-5
146 3.00 4.66
146 2.00 3.11
143 1.00 1.62
138 0.50 8.70E-6
123 0.20 4.38
103 0.10 3.12
82 0.05 2.46
43 0.02 3.58
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TABLE 12 (CONCLUDED)

Input N Force S I1 Freq Response xI n
(volts) kg N S (HZ) (volts) (Wn

40 2.61 0.079 17.1 148 2.50 3.78F~-5 0.0405
I145 1.75 2.76

151 1.75 2.54
156 1.00 1.36

164 0.50 6.16E-6
194 0.20 1.76
226 0.10 6.49E-7
147 2.60 3.99E-5
145 1.50 2.36E-5
142 1.00 1.64

137 0.50 8.83E-6
122 0.20 4.45
100 0.10 3.31

79 0.05 2.65
63 0.03 2.50

143 1.00 1.62E-5
137 0.50 8.83E-6
123 0.20 4.38

104 0.10 3.06
83 0.05 2.40
65 0.03 2.35

40 1.35 0.079 8.84 145 2.10 3.31E-5 0.0483
143 1.50 2.43
150 1.50 2.21
154 1,00 1.40
163 0.50 6.24E-6
199 0.203 1.86
225 0.10 6.54E-7
146 2.20 3.42
142 1.00 1.64
136 0.50 8.96E-6
121 0.20 4.53
102 0.10 3.18

81 0.05 2.52
62 0.03 2.59

40 1.70 0.079 11.2 145 1.50 2.35E-5
142 1.00 1.64
137 0.50 8.83E-6
122 0.20 4.45
100 0.10 3.31

79 0.05 2.65
63 0.03 2.50

124



AFWAL-TR-80-4003

0
CN

'-.4
'-4

14-

0 CI

0Z >4 - - ---

00

'-44

024-

00

C- 0 0

lu- 0

CY o Nf _ _ _ C1 0

1252



AFWAL-TR-80-4003

SECTION VI

CONCLUSIONS

The analytical and experimental investigations described in this

report have shown that the apparent modal damping in a simple dovetail

blade can be predicted on the basis of assumed gross slip at the blade

root-disc interface, provided that the exciting force exceeds a certain

threshold amplitude. For driving forces below this level, the damping

arises from other sources such as hysteresis in the blade material or

non-slip interaction at the blade root-disc interface. The investigation

has been restricted to a relatively simple problem, and much more effort is

needed if one is to design and build blades which are optimized with

respect to slip damping at high rotation speeds. However, the basic

analytical techniques and physical modelization remain the same.

It has also been shown that a specific configuration of compressor

or turbine blade root geometry, in which part of the root contacts the

disk only at high rotational speeds, can provide high levels of slip

damping, provided that the relevant stiffnesses are properly selected.

The analysis can provide the basis for preliminary design investigations,

but laboratory and spin pit testing will be necessary to establish the

accuracy of the approach and to develop the specific configurations most

appropriate for practical application. The changes in blade geometry

needed to optimize this type of damping do not represent very large

departures from current practice, nor need they represent any weight

increases over current blades.

Apart from experimental and spin pit testing, a logical follow on

effort would investigate the effects of finite disk compliance, and hence

of multiple blade systems, on the dynamic behavior. However, one would

expect high levels of slip damping to still be attainable. It is hoped

that this report will stimulate or encourage such investigations, since

the need for high damping in rotating blades is becoming ever more

urgent.

126



AFWAL-TR-80-4003

REFERENCES

1. L. E. Goodman and J. H. Klumpp, "Analysis of Slip Damping with
Reference to Turbine-Blade Vibration", J. Appl, Mechanics,
pp. 421-629, 1956.

2. J. P. Hanson, A. J. Meyer, and S. S. Manson, "A Method of Evaluating
Loose-Blade Mounting as a Means of Suppressing Turbine and
Compressor Blade Vibration", Proc. S.E.S.A., Vol. 10, No. 2,
p. 103, 1958.

3. E. J. Williams and S. W. E. Earles, "Optimization of the Response
of Frictionally Damped Beam Type Structures with Reference to Gas
Turbine Compressor Blading", J. Eng. for Industry, Trans. A.S.M.E.,
Paper No. 73-DET-108, 1973.

4. S. S. Manson, "Stress Investigation in Gas Turbine Discs and Blades",
SAE Quarterly Trans., Vol. 3, No. 2, p. 229, 1969.

5. R. C. F. Dye and T. A. Henry, "Vibration Amplitudes of Compressor
Blades Resulting from Scatter in Blade Natural Frequencies",
J. Eng. for Power, July 1969.

6. V. P. Ivanov, "Nekotorie voprosy kolebanyi lopatochnikh
ventozov i drugikh uprugikh tel obladajushchikh cikli-
checkoi simetriel (Vibration Problems of Blade Discs and Other
Elastic Bodies Having Cyclic Symmetry)", Sbornik Statici No. 6,
Moskva 1971.

7. V. 0. Bauer, "Vliania rastroiki chastot lopatok na resonan-
snyie kolebania (Influence of Mistuning of Blade Frequency
on Resonant Vibrations)", Cbornik Statici, 6, Moskva, 1971.

8. P. O. Shimov, "Issledovania vliania dinamicheskoi niednoro-
dnosti koltzevoi reshotki na resonansynie kolebania ieio
profilei (Analysis of the Influence of Dynamic Inhomogeneity
of the Ring Net on Resonant Vibration of its Profile)", Sbornik
Statici, 6, 1971.

9. D. S. Whitehead, "Effect of Mistuning on the Vibration of
Turbomachine Blades Induced by Wakes", J. Mech. Eng. Sci.,
V. S., No. 1, 1966.

10. A. L. Eshleman, Jr., and J. D. Van Dyke, Jr., "A Rational Method
of Analysis by Matrix Methods of Acoustically Loaded Structure for
Prediction of Sonic Fatigue Strength", in Acoustical Fatigue in
Aerospace Structures, p. 723, eds. W. J. Trapp and D. M. Forney, Jr.,
Syracuse University Press, New York, 1965.

11. R. L. Bielawa, "An Analytic Study of the Energy Dissipation of
Turbomachinery Bladed-Disc Assemblies Due to Intershroud Rubbing",
Trans. ASME, J. Mech. Design, ASME paper No. 77-DET-73, 1977.

127



AFWAL-TR-80-4003

REFERENCES (CONTINUED)

12. A. V. Srinivasan (ed.), Structural Dynamic Aspects of Bladed Disk
Assemblies, ASME Publication, papers presented at Winter Annual
Meeting, New York, December 1976.

13. M. P. Hanson, "Vibration Damper for Axial-Flow Compressor Blading,"
Proc. S.E.S.A., Vol. XIV, No. 1, 1955.

14. S. B. Chubb, "Evaluation of Wire Lacing for the Control of Gas
Turbine Blade Vibration," ASME Paper 67-VIBR-47, presented at
ASME Vibration Conference, Boston, March 1967.

15. D. I. G. Jones and A. Muszynska, "Effect of Slip on Response of a
Vibrating Compressor Blade," presented at ASME Gas Turbine
Conference, Atlanta, Georgia, November 1977 (ASME Paper No.
77-WA/GT-3).

16. D. I. G. Jones and A. Muszyi'ska, "Harmonic Response of a
Damped Two-Degree of Freedom System with Gaps," Nonlinear
Vibration Problems - Zagadnienia Drgan Nieliniowych, Vol. 19,
Warszawa, 1978.

17. D. I. G. Jones and A. Muszyiska, "Vibration of a Compressor Blade
with Slip at the Root," Shock and Vibration Bulletin, 48, 1978,
U. S. Naval Research Laboratory.

18. D. I. G. Jones and A. Muszyn'ka, "Nonlinear Modelization of Non-
Conservative Blade Vibration Response," Proc. ICNO Conference
on Non-linear Oscillations, Prague, Czechoslovakia, September 1978.

19. J. S. Rao, Turbine Blading Excitation and Vibration," J. Sound
and Vibration, Vol. 9, No. 3, pp. 15-22, 1977.

20. D. J. Ewins, "An Experimental Investigation of the Forced Vibration
of Bladed Discs Due to Aerodynamic Excitation," in Structural
Dynamic Aspects of Bladed Disk Assemblies, ASME publication of
papers presented at ASME Winter Annual Meeting, New York,
December 1976.

21. R. B. Kolb, "Measured Vibratory Motions of Turbine Blades,"
ASME Paper 67-VIBR-66, presented at ASME Vibrations Conference,
Boston, March 1967.

22. B. A. Squires, "Forces on Blades in a Rotor Stage when the
Air Flow Is Distorted," Rolls Royce Internal Report, MCR 90157,
1969.

128



AFWAL-TR-80-4003

REFERENCES (CONCLUDED)

23. T. J. Barber and H. 0. Weingold, "Vibratory Forcing Functions
Produced by Nonuniform Cascades," J. Eng. for Power, Trans.
ASME, 100 (1), pp. 82-88, 1978.

24. J. F. Traexler, "Turbomachinery Vibration," Shock and Vibration
Digest, Vol. 9, No. 8, August 1977.

25. R. E. Beckett and K. C. Pan, "Effects of Looseness on Dynamic
Behavior," Shock and Vibration Bulletin, 41, Part 6, 1970.

129

*U.S.Government P inting Office: 1980 - 657-084/723


