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FOREWORD

This report was prepared by the Metals and Ceramics Division, Materials
Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems
Command, under Project No. 2418, "Metallic Materials," Task No. 241803,
“Behavior of Metals”. The research was conducted by Dr. David I. G. Jones,
Materials Laboratory (AFWAL/MLLN) and Dr. hab. Agnieszka Muszyfska,
Institute of Fundamental Technological Research, Polish Academy of Sciences,
Warsaw, Poland, in part while both authors were at Institut National des
Sciences Appliquees, Lyon, France, during the period November 1975 to
August 1976. The subject of turbine and compressor blade vibration pre-
diction and control is of great importance to the United States Air Force,
and it is for this reason that a complete review of the work accomplished
has been prepared. The report was typed by Judy Mann and Kathy Lee Fox.

This report covers work conducted during the period November 1975
to June 1979,
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NOMENCLATURE 3
A Amplitude of the response
; A Amplitude of response of mass m,
i AII Amplitude of response of mass my 3
AD Cross section area of blade between root mating
surfaces and platform
B an m th Fourier coefficient of excitation force
2 bp Breadth of platform 5
? c(a), C*(pn) Functions of gap 1
? cos a Direction cosine 7
; D, DII Amplitude of response of mass m, (tip of blade) 1
j D*, D*II Amplitude of response of mass my (no slip)
f exp Exponential function i
i E Young's modulus of blade material
% f Frequency (Hz)
Fl Normal force at root |
F2 Frictional force at root 3
fi 1 th resonant frequency f
hp Thickness of platform %
h Gap between transducer and blade 3
i /=1 !
I,, I, Moments of inertia i
Kl Modal stiffness in first mode j
kl’ k2 Stiffness
k Effective stiffness ‘
L Length of blade i
KD Length of blade section between root mating ;
corfaces and sub-platform b
Lp +<ngth of sub-platform
ml, m2, m3 Masses q
: Ml’ M2 Masses 5
] M Moment 3
g M M R/k, = M 3
Mo Mass at moving element of impedance head 2
m Integer (m =1, 2, . . .) N
n Number of fixed vanes or mode number
xiii
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NOMENCLATURE, continued

N Net normal locad at dovetail mating surfaces
Nl Net normal load at platform
R, R1 Nondimensional coefficients
R Radius of dovetail sliding surfaces relative to :
root rotation center ;
RD Radius of blade relative to disk axis ?
R Distance between bodies Ml and M, §
S(t) Applied force vector as function of time :
S Amplitude of S
Sl’ S2 Force amplitudes ;
S cos (wt-y) Exciting force i
t Time
Vs Voltage from impedance head
\Y Oscillator voltage
X, Y Coordinates in plane of blade
Xy ¥y Point of application of S(t)
x(t) Horizontal motion of body M,
X1 Displacement of mass 1. (= 51L)
X, (ezL)
x3 Displacement of mass my
X Acceleration
a, oy Friction parameters
o Twist of blade tip relative to root (cos a' =
0.724)
Gy Cop Hysteretic damping coefficients
@, Fluid pumping coefficient
B, 81 Slip threshold coefficient
By 4uﬁko/ﬂSLcosacosw
8, uﬁRo/LScosacosw
Yo Yy Phase angles
5, 61, 1 Phase angles
A Gap
AM Added mass on impedance head
n Loss factor

th mode

n., n' Modal loss factor in n
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NOMENCLATURE, continued

X,/L

Rotation of blade root during slipping (XZ/L)

Modal functions
Nondimensional parameters

Deflection of body Ml

Angle of dovetail mating surfaces relative to

base of root

Coefficient of friction

w/ml - nondimensional frequency parameter
w/mll - nondimensional frequency parameter
Frequency (radians/sec)

nth natural frequency (radians/sec)
Resonant frequency with

Resonant frequency with no slip at m,
Rotation speed (rpm)

Critical rotation speed
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SECTION I
INTRODUCTION

The past several years have witnessed renewed interest in the effects
of slip on dynamic response of turbine and compressor blades. This is
partly because of a growing recognition that although energy dissipation
mechanisms in blade-disc systems are still not well understood, this
dissipation is one of the most important factors controliing the dynamic
stresses, and partly because of greatly improved computational capabilities
which have permitted linear analysis to reach a quite sophisticated state
of development and %cnce made the gap in our knowledge very visible.
Nonlinear analysis has not yet reached the same level of development
{References 1-14).

The purpose of this report is to describe a combined analytical/
epxerimental investigation of a compressor blade having a simple dovetail
root, with a view to clarifying the effect of gross slip at the root on
the dynamic response behavior under harmonic excitation. The analytical
part of the investigation examines the modelization of the blade in terms
of a simple inertia-spring system with coulomb type frictional forces at
the blade-disc interface. For simplicity, the disc is assumed to be
infinitely rigid. Of course, this restriction must be relaxed before a
complete blade-disc assembly is analyzed, but we are not at this point yet.

The equations of motion derived on the basis of this simple model are
solved by a method of harmonic balance assuming, in effect, that under
cyclic excitation the blade will exhibit cyclic response at the same
frequency. The solution so obtained is examined numerically to determine
regions of existence and nonexistence, i.e., to determine the frequency
range over which siip occurs and that over which it does not occur
(References 15-18). The agreement between analysis and experiment is
found to be good for the fundamental mode of the blade, and reasonably
good for the next two modes. The experiments were conducted on a blade
in a simple, heavy, fixture with the normal load at the dovetail provided
by two thin wires. .
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The outcome of the investigation is that one can predict with a
measure of accuracy the dynamic response behavior of a simple dovetail
blade, provided that the appropriate modal information is either measured
or predicted by more detailed analytical procedures, such as finite element
methods. Extension of the analytical method to more complex blade-disc
systems is a task for the future.
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SECTION II
ANALYSIS OF RESPONSE OF A BLADE WITH SLIP AT THE DOVETAIL

1.  MODELIZATION OF BLADE IN MODE 1

The type of blade being considered in the analysis is illustrated in
Figure 1. We shall be concentrating attention on analysis of the funda-
mental mode vibration response, and it is assumed that the blade resonant
frequencies are well separated. The blade, when vibrating in its
fundamental mode, can be modelled in terms of the simple mass-spring
system shown in Figure 2, where the inertias I] and 12, and the spring K]*
are chosen to reproduce the observed modal stiffness and inertia charac-
teristics of each individual blade geometry. I], 12, and K]* will vary
slightly with the rotation speed of the blade, but this effect is neglected
here. It can be allowed for in the case of any real blade, but would
simply entail chanqging the parameters I]’ 12, and K]* at each rotation
speed for which calculations are carried out. The system is modelled in
terms of rotational motion because the type of motion at the root, when
sVip is occurring, is most naturally expressed in such terms.

2.  EQUATIONS OF MOTION

For the nonlinear case where slip of the blade root takes place,
the boundary condition seen by the vibrating blade changes from an
essentially clamped-free condition to an essentially pinned-free condition.
For the fundamental mode of the blade, the system can be represented with
some degree of accuracy by the model shown in Figure 2. The equations
of motion of the system with slip are:

1,64, (1+in)) (8, - 0,) = ste! (4t~ Yo o (1)

1,0,4K; (1+ing) (8, - ;) + (uNR_/cosy)sgn é2 =0 (2)
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DOVETAIL

Figure 1. Sketch of Blade in Disc

Figure 2. Discrete Mass Model of Blade (Modes 1 and 2)
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The term uﬁRo/cosw is the frictional moment opposing the motion. Figure 2
shows the geometrical factors involved in this derivation. o is the angle
between the blade direction at the tip leading edge (where S is applied)
and the root axis as illustrated in Figure 1. From vertical equilibrijum

in Figure 2:
2F cosy = N i.e. Fy = N/2cosy
F, = WFy = uN/2cosy
Moment = 2F2Ro = uNRo/cosw (3)

Equations 1 and 2 can be rewritten in the form:
[ (5 /SYHK (T+in.) (8,/5-9,/S5) = e”“’t'Y)Lcosa
1 1 i 1 2
1,(8,/5)#K (1+in;) (8,/5-0,/5)+(uNR_/Scosy)sgn é2 =0

This shows that the mobility 6,/S depends on uN/S, so that the analysis
within its limits is valid for low or high values of S or of uN; it is
the ratio of these two quantities which is important.

3.  SOLUTIONS FOR STEADY STATE MOTION

a. Solution for Non-Slip Condition

If S/uN is sufficiently small, slip cannot occu: and Equations 1
and 2 reduce to:

I]é]+K1(1+in]) (6]) = Sei(mt-Y)LCOSa (4)

the solution of which is:

X = oyl = stPcosae’ (WYL 1 4k, (14in))] (5)
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The values of I], K], and n needed to model a specific system are now
determined by comparing the response X] with the measured response for low

values of S/uN. The measured resonant frequency Wy gives one such
relationship

The measured response at resonance gives another:

. 2 2
il 9 L cosa i LZCOSa
S Ky Lim

1, = stécosa/n, | X, |

] Mm%

and the measured damping M is given by:

Where Aw] is the difference between the two frequencies at which the

response is 3 db below the peak response (3.01 actually!).

For example, in the case of the blade used in the experimental
investigations, such calculations are summarized in Section V and the

average parameters were determined to be:

1.04 x 1073 kg m?

—
0

K] = 635 Nm/radian
n o= 0.010
wy = 124.2 Hz

for the fundamental mode.

(7)

(8)
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b. Solution with Stip

For simplicity, we let mn = 0 in Equations 1 and 2; for the
purposes of this part of the analysis it is sufficient. If we seek a
steady state solution of these equations, then to the first order we
assume that:

92 = 62 sin wt
e] =893 sin wt + 8y, cos wt (9)
S = S] sin wt + 52 cos wt

Furthermore, we consider only the first term in the expansion of sgn (éz)
{= sgn (cos wt)} in ascending terms of sin{nwt) and cos (nwt), so that:

sgn (cos wt) % — cos wt (10)

4

T

Then, introducing these equations into Equations 1 and 2, and comparing

terms in sin wt and cos wt, we have the four algebraic equations for

X]], X]Z, S], and 52:

2
)

(Ky-T w

171 e”-K]e2 = S]LCOSa

(K]-I]wz)e]z = $,Lcosa (11)
2 _

K19y

= 4uNR0/ncosw

The solution of this equation is readily obtained. From the values of
6]], 6]2, S], and 52 so determined, we then can write the solution for
e] and S in this form:

-S] (K]-Izwz)Lcosasin wt 4uﬁRo 12)
8, = - cos wt 12
1 2 2 (coswwK )
w [(I]+IZ)K]-I]IZw ] 1
SLcosa = S]LCOSasinwt-(K]-I]mZ)(4uﬁR°/nK]cosw)c05wt (13)
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Clearly, we can eliminate S] in these two equations. This is most
simply done for our present purposes by first calculating le]| and |S]|,
since these are the quantities we would ordinarily measure. Then:

5. 2(k,-1w?) 2 2cos%a R\ 2
2 _ 7 1 °2 0
10417 = =7 27 "\ (14)
W [(I]+12)K]—I]Izw ] cosyrk,
L2c0s2a|S|2 = S]2Lc052a+(K]—I]w2)2(4uﬁko/nK1cosw)2 (15)
Eliminating S] and simplifying gives:
I, I,u? 42
4 2 2 2 2 2 1
e 2 L'cos“a [I-B](I-I]w /K]) ] [1- T;'( R;_ﬂ)] B]2L4C052a
< - R (16)
S 2,0 2, .2 2 2y
K2 (1,62/K)) [(1+12/I])-(12/I])(I]w /K;) ] ]
Xo 2 L4C052a[1—B$ (1-I]w2/K])2]
S| k2K (1T (Loal/ke) T2 )
1YY Y 7Rl BT EARE Rl
where
By = 4uNRo/nSLcoswcos a = (4/m)8, (18)
82 = uNRO/SLcoswcosa

If By = 0, as for a freely pinned blade or for S very large, then lX]l
has an infinite amplitude at the freguency where:

L\ ? h  h
(TT)=U+4~=—+1 (19)
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This allows us to estimate 12, since the pinned-free mode of the particular
blade used was determined experimentally to be 429 Hz.

I 2
: Tl- + 1 = 1429 5 = 11.93

2 (124.2)

I, = 9.51 x 107° kg w?

for the particular blade used in the experimental investigation. A cal-
culator program to determine IXZ/SI and |X]/S| is given in Table 1. It
is seen from Equation 17 that |X2/S| can exist only over a narrow range
of frequencies, and it is only within this band that slip can occur.
Qutside this range, although ]X]/Sl as given by Equation 16 may exist,
the original assumption that [XZ/SI exists is violated and hence we must
return to the linear solution given by Equation 5. Figures 3 to 10 show
the calculated values of ]X]/Sl and IXZ/SI versus frequency for B, = 50,
20, 10, 5,2,1,1/4, 0.3 and for the aforementioned values of I], 12, K],
and - Figure 11 shows a summary of the solution for several values

of 82. These analytical results will be compared with experiment in
Section V.

¢c. Graphical Solution for S1ip Motion and Hysteretic Damping

The equation of motion of the system with slip and hysteretic
stiffness can be written in the more general form:
k1M 1 KM

118y * = 07%k8,- 5 (=5 8, + k;8,)(1+sgn B) = S, cosut (20)

. . kin .
= ) 1
[1292 + uNR sgn 6,- —grl-(e]-ez)-k]e]] §-(1+sgn 8) + k162 = 0

where

S] = S coso
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Ingut:

Manual storage: Storage location

put » in x register (Hz)

TABLE 1
HP67 CALCULATOR PROGRAM TO CALCULATE RESPONSE

0 - Ky (635 Nm/rad)
1 - w; (120 Hz)
2 - I,/I,(.0915)
" " 3 - 8,(10)
4 - ‘11(-01)
5 - L(.20)
6 - cosa(.724)

Output: Label A - |X;/s| linear (Equation 5)
Label B - |X,/s| slip (Equation 16)
Label C - |X,/s| slip (Equation 17)
Note: Label A,B, and C must be operated in sequence. : ]
Internal storage i
Storage location A - w? rad?/sec?
" n B - Il
fcl PRGM STO C RCL A  gx? gx?
fLBLA RCL o X 2 RCL D
2 RCL 4 STO C RCL C X
X X 1 gx?2 STO E
hn gx? - 3 RCL 3
b4 RCL C RCL 3 STO D 4
gx 2 + X RCL C x
STOA £/x% 4 RCL 2 hn
RCL 1 hl X X z
2 X hn CHS RCL o
§1r RCL 5 + 1 +
gx? gx? + RCL 5
x X CHS RCL 2 gx
gx ? RCL 6 1 + X
e X + gx? RCL 6
X hRTN stoD 1 X
RCL o fI.LBLL. B RCL 5 X gx?
X RCL1 4 RCL D RCL E
STOB 2 hyX X +
RCL A b4 RCL D STO D £/x
X hn X RCL C h RTN
RCL o© X RCL 6 RCL 2 fLBLC
- gx2 gx? x RCLD
gx? hi x 1 £V/x
X RCL © - h RTN
10

- e /£
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For B < 0 : 62 = 0 - one degree of freedom

For B > 0 : two degrees of freedom

B = 0 is the condition of the threshold of slip (it will be defined later)
R - geometrical parameter (Ro/cosw)

ny- hysteretic damping coefficient

The solution of Equation 20 is:

ez(t) = A cos{wt + v) (21)

put into Equation 1 and expanding the function sign [-Awsin(wt + v)]
in the Fourier series and Teaving only the first term we reduce the
problem to solving the linearized system

. k]n-‘ .

116] + W (9]'92) + k] (61'92) - S]COSwt
Lo+ M0 8y s ke (6m6.) = BRR (o (22)
292 T, 279 1 V9279 __——

looking for the solution in the form

e](t) D cos (wt + v-6)

(23)
ez(t) = A cos (wt +v)

if the condition g > 0 is satisfied. If we have g8 < 0 we look for the

solution
e](t) = D* cos (wt-v*) (24)
of the equation
< kyngo
I]e] = 6, * k1e] = S]cos wt (25)

14
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The last one gives

> K1
D* = » 8* = arctan —- > (26)
I 2 ky -1 w
1% 2 . 2 1 1
SOV AL S ™
Putting Equation 23 into Equation 22 we get
A2ute, - 2m’ay (sgn A)g, + oEL(nu)? + (v-1)%] = §2 (27)
¢] = [Iz(v'])'I]] + (n]Vlz)
95 = nlv[ZIZ(v—l)-I]]
b2 = ((v-1)[L,(v-1)-1.] - 1 (n0))2
3 2 1 2'M
- I]w2
T 1. 2y
k]“+n])
0. = SRR
1 T
From Equation 27 we set the amplitude A:
5y S/Tv=1)Z ¥ yZ ¢3<S1 </v-11Z + 2 51 bs
- v nyv b¢1 T (n1v) o<V
A= w202 w2<p?
+ + /s - /'2—_—7'- 1i
a1¢2 19170163 A=ta,6,4V/S161-a163 :gi ;E::i does

w?¢

w2¢1

where:

~ 2 M1 1
2 = — =
w k1 (1+n1)[212 + Il]

and the phase angle

sznlIzv + (1-v)a,
Y = arctan

GIHIV“AwZ[Iz(v-l)-Ill

15
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The amplitude of the solution (Equation 23) is given in the table on the
previous page. As one can see for some values of the parameters we have
two values of A (one positive and one negative) or four values (real ones!)
In some region the solution (Equation 23) does not exist; it is the

domain of the solution (Equation 24) of the reduced system.

The coefficient of the threshold of slip "B" can be defined as shown
in the above table:

- (28)
o 91 4LINR /[IZ (\)"'l)-II]Z + (ﬂ‘\)Iz)z

S, l/wg nS, f (v=1) [T, (v=1)-I;]1-T) (nyv) 2

The relationship between A and the amplitude D is

1 I;w2\2 01'2
D = /r~—§. A2<1' ) ) + (An1+ET) (29)
1+n1

An112w2 + a)
y = arctan (30)

2
ATl,w2~Ak) (1+n;)=njo;

where A is calculated from Equation 27. (See table)

A{w) curves are plotted graphically as in Figure 12

2 2
k1(l+n;) [ 21 2 1 4n, 1 1
w%’z = —-—a—+ — + —_— (— +—

2(1‘7]1) Iz 11 - 122 Il Il Iz
1 4 /%,
w®* = —_— J—
l+n1 Il

S
Different levels of al-give different shapes of the |Al{w) curve
1

(qualitative shape!)




PRI I

AFWAL-TR-80-4003

2 SOLUTIONS

NO SOLYTION

N Py N XTI IR T

}A‘ir

(Al and Sqy/ay versus w

1
1

Graphs of

Figqure 2.

e ity P b e

— e AmRan e



. .»MM%WW.VMAK‘GM"iNE&*” fre o )

AFWAL-TR-80-4003

The case ny = 0 (Figure 13) gives:

2 2(hy
1wl Y AR PR

U}\
—
>
—
N
~n
—
N
€

* = ———

A method of connection of the solution D from A is given in Figure 14.

The curves are plotted in an acceleration scale for comparison with
the experimental data. It is only a qualitative picture here.

4. CALCULATION OF APPARENT DAMPING

As Figures 3 to 10 show, the response mobility |X]/S| of the blade
does not have the classical damped single degree of freedom system shape
but is sharply "cut-off" when sl1ip occurs. Strictly speaking the system
is not "classically" damped and cannot be assigned a true measure of
modal damping. However the shape of IX]/S| as a function of frequency
depends only on 82, and for each value of 62 this shape is unique. One
may therefore define an "apparent modal damping" by the usual "half power
bandwidth" definition, i.e., in Figures 3 to 10 we seek the frequencies
f{ and f{, when the response is 1//2 times the peak amplitude (-3.01 db)

and define the apparent damping as:

(32)

On this basis, we can plot a graph of na versus 1/82 as in Figure 15.
[
Ul increases as 'I/B2 increases, at least within the range of values
examined here. For 1/8250.01, the value of n; remains at the non-slip

value ny = 0.01 observed in the tests.

18
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One can also examine the bending moment at the root as a function
of 32. The value of M is given by:

K, X
_ 1M
M=Ky =71
M K, X,
—l= —|— (33)
SL L2] s

For a specific blade, one can determine the relationship between M and
the maximum stress in the fundamental (or any other) mode, but at present
it is sufficient to examine |M/SL| as a function of 3, as determined from
Figures 3 to 10. The resulting graph of |M/SL| versus By is shown in
Figure 16.

5.  CALCULATION OF EFFECTS OF ROTATION SPEED ON APPARENT DAMPING

It is generally difficult to predict the response of a blade at
high rotational speed because the exciting forces on a blade are not
known a-priori. However, for a given blade geometry S will depend on the

rotation speed 2 in the manner:

s n
S = so(—) (34)

e
where S0 is the force at some speed Jo and n is an exponent not neces-
sarily equal to 2. S will be a maximum at the various multiples of the
blade passage frequencies, so that the excitation force at any condition
where a blade passage frequency is near to a natural frequency will be
nearly harmonic.

The normal force N resulting from the rotation speed .. is given,
as a crude approximation, by a relationship of the type:

22
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where M is the blade mass, R an average radius and 2 the rotation speed
in rpm. It is seen that if n = 2, 62 is constant at all speeds and hence
that the damping due to slip will be the same at all speeds, which is
contrary to observation. Hence one must conclude that in most cases

n < 2. For example, if we assume that n = 1.5:

1.5
4ﬂ2uMRROQO'SQO
By = (36)

SoLcosxpCOSa(60)2

As a hypothetical example, consider the cases where u = 0.15, 0.1 and
+.05, M = 0.235 kg, R = 0.5m, Ro = 0.01m, Qo = 15000 rpm, So = 40N,
- = (.2m, cosy = 0.5, cosa = 0.724. Then:

8, = 8.0u Q02 (37)

For each value of u and §, one can calculate By and hence read the value
of effective loss factor off Figure 15. Some predicted graphs of the
effective loss factor versus 2 are plotted in Figure 17. It is seen

that for u = 0.15, the behavior is very similar to that observed in a
test engine staqe (Reference 2), but that as u is decreased, the apparent
modal damping increases rapidly. It is seen from Equation 36 that it is
desirable to reduce u,M,R and Ro’ and increase So’ L, cosy and cosua, as
far as possinle, to achieve high "damping".

&. MODELIZATION OF BLADE IN SECOND BENDING MODE

For the second bending mode of a blade, or for any mode in which
the derormations are primarily bending, the model selected for the funda-
mental mode., iilustrated in Figure 2, is directly applicable and only the
value of.Ij. 12 and K]*, will be different. This means that Equations 1
and 2 and the solutions (Equations 16 and 17) are directly usable. From
the low level tests described in Section V, the corresponding values of
I], K], and Ny are:

I, = 1.62 x 107 %kg n
Ky = 11000 Nm/rad
ny = 0.0067
w = 415 Hz
= 0.150

Lo/l
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0.05 T T 50
L=02m
R°=0.0lm
R=05m
W= 0.235kg | »
._004 40
IS 0 cosy = 0,50 / g
cosa = 0,724 / e
o =
2 W
% 2
I
E§(3133 30 >
J
< S
s a
= 0.02 20 &
- (&)
2
& =
& >
o
S ool 10 ©
0
0 10 15
SPEED & KRPM
Fiqure 17. Typical Predicted Variation of #1 with Q
The corre:.~nding solution for oo defined as before, equal to 50, 20,

10, 5, 2, 1. +4, and 0.3 are illustrated in Figures 18 to 25.

The difference between the second mode solwtion and the fundamental
mode solution is seen to result only from the &ltered values of I], Ky
1 and wy - This will be true for all the essentially "bending-type"
modes for which the moment at the root caused by the blade deformation
is in one direction only, and is not a twisting type of moment, as for
the torsional modes.

The value of I2 is determined from the ratio of the second mode
resonant frequencies in the clamped-free and pinned-free conditions.

For this blade 1. = 2.43 x 10°% kg m°.
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7.  MODELIZATION OF BLADE IN FIRST TORSIONAL MODE

The third mode observed in the response spectrum appears to be a
torsional type. For this case, the moment at the root when slip occurs
is of a twisting type, as illustrated in Figure 26. In this case I
pecomes the torsiocnal inertia of the blade, I2 that of the root, and K1
the torsional stiffness. The equation of the blade therefore becomes, in
any predominantly torsional type of mode:

I]u]+K] (1+1n1) (61-62) = Sbe1(“t'Y)c05a

1y6,4K, (1+in]) (62—8])+(uﬁbo)sgn92 =0

when 8] and 02 are now the torsional deflection of the blade, i.e., for
this type of mode X] = G]b and X? = ezb.

I](é]/S)+K] (1+i1,)(8,/5-8,/S) = bcosa o i (wt-y)

Iy(8,/S)+K, (1+in,)(8,/5-8,/5) = (b /S)sgns,

We tnerefore recover the fundamental mode solution of Equations 16 and 17
if we replace L by b and uNRO/SLCOSa cosy by uNbO/Sbcosa. The correspond-
, and w, are given in Section 5. Figures 27

1 |
to 34 show some typical calculated results.

ing valaes of I], 12, K], n

8.  NORMAL MODE ANALYSIS OF BLADE RESPONSE WITHOUT SLIP

In order to establish the low amplitude level behavior of the blade,
and to identify parameters in a preliminary fashion, it is essential to
first consider the behavior of the blade with no slip at the root. In
this case, in the fundamental mode, the blade behaves essentially as a
clamped-free beam. Since the blade is twisted, it is necessary to define
a coordinate system within the middle surface as illustrated in Figure 35.

28
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Figure 26. Discrete Mass Model of Blade with Torsion - Mode 3
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If the blade is then subjected to an exciting force S(t) = Ss(x-x1) §
(y-y])sin wt normal to the middle surface at the point (x],y]), then the
equation of motion of the system can be written;

L3a(k) + u(a%i/at?) = ‘s’zs(x-x]) § (y-y,)sin ut (39)

where K* is the complex stiffness of the blade, assuming hysteretic
damping and A is a differential operator in the space variables x and y,
and u is the mass per unit area at the point x,y. Since the blade is
usually very stiff in-plane and much more flexible normal to the middle
surface, W is practically normal to the middle surface quite frequently.
Now if the normal modes are known, from experiment or analysis, the
displacement ﬁ can be expressed as a series of normal modes:

0

W= giz ] W0, (X,y) (40)

where wn is a scalar, deggnding on time, representing the amplitude of
the nth normal mode and ¢ is a vector representing the normalized dis-
placement function in this mode. By definition, the normal modes are
the set of discrete functions which satisfy the homogeneous equation:

Ak ) - (W28 = 0 (41)

This classical relationship allows one to convert Equation 39 from a
complex partial differential equation in the space variables to an
infinite series (hopefully convergent) of algebraic equations: Putting
Equations 40 and 41 into Equation 39 gives; in complex notation:

o 0]

S LO+in)ue Wy + i To, = Sexpliut)6(x-x,)8(y-y;) (42)
n=1

one must now make use of the orthogonal property of the normal modes:

/ fu$6$mdxdy = 6mn
Xy

33




e

AFWAL-TR-80-4003

where 6mn =0 form# n and dmm =1 for m = n. Therefore, the
factoring Equation 42 by o} and integrating over the surface gives:
. 200 i = 2 _ 22 iwt
[(1+1n)w]w]+w]]£ §u¢].¢]dxdy ={ §S.¢‘6(x—x])6(y-y])e dxdy
where'31f31 is the scalar product of the vector'SI with itself. This
equation can clearly be written:
jwt

m[ud (14in)-w" T, = 8)Se (a4)

14
where m, is the mass of the blade and B] is a nondimensional parameter:

udxdy (45)

m]n(X] ,,Y-l).d)](X] sy'l)

J IU$]-¢]dXdy
XYy

where n is the unit vector normal to the middle surface of the blade and
S = Sn(x,y). If we let my = m%/él, this means that the behavior of the
blade in the fundamental mode is equivalent to that of a single degree of
freedop system of mass m s stiffness K1 = m]wﬁ, and loss factor n. Note
that B] depends on the point X12Yy- We can define a parameter B] by
letting (x],y])E(0,0), the tip of the blade at the leading edge. Then:

!

81 = B] n(X],y])-¢](X],y1> (47)
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provided that lbl(o,o)l =1, i.e., the modal function ¢, is normalized.
The solution of Equation 44 then becomes:

_se (x,y)ei“’t[?(x],y]).?b‘] (xqy7)]
W = (48)
m[u] (14in)-u’]

For excitation at (o0,0) and measurement of the response at (x,y), we
then have at resonance:

Sle;(x>¥)]

W = ——— (49)
|1nm]w]|

oy Gox)| = (18ln) (50)

This means that we can measure the normal mode ¢] (or any other mode)

by determining |W/S| for excitation at any fixed point and pickup at
the point x,y and then multiplying by n. If n is not constant for all
measurements (as a result of extraneous sources of hysteretic damping
such as cables), then Equation 50 allows one to compensate for this
source of error. Note that n can be measured by the "half-power
bandwidth” method, 50 that one can actually determine m, directly from
the peak value of |W/S| at resonance, using Equation 49, if the measure-
ment chain is properly calibrated.
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SECTION T11
ANALYSIS OF BLADE RESPONSE WITH SLIP AT A PLATFORM
1. INTRODUCTORY REMARKS

Compressor and turbine blade failures caused by excessive vibration
can and often do arise in jet engines whenever high flow-induced
excitation forces, high static stresses, and low modal damping levels
occur at the same time. While blade/disk interactions will complicate
the response behavior of eacn individual blade, and cause circumterentiaily
changina peak stress levels around the disk, it is slip a* the blade/disk
interface which provides a major mechanical source of damping. in addition

to the aerodynamic and material sources. Attempts to increase slip damp- |

ing, by means of mid-span or tip shrouds, or by means ot mechanical con-
nections between adjacent blades, have not been very successful, perhaps
because of the tendency for corresponding points on neighboring blades to
vibrate with only relatively small amplitude and phase differences except
where extreme efforts are made to mistune adjacent blades relative to each
other, i.e., the effect is usually to stiffen rather than dissipate energy.
Certainly, the analytical difficulties of predicting the response of
complete blade/disk systems with slip at each blade/disk interface., or
between each blade, are formidable (References 12, 19) and will not be
addressed. We shall examine a configuration in which each blade will

slip relative to the disk rather than relative to neighboring blades.

With proper attention paid to the static and dynamic forces involved, such
a configuration can lead to high slip damping even at high rotational
speeds. The response behavior of such a system is highly nonlinear, so

we shall assume that the ccompliance of the disk is infinite, as a first
approximation, in order to make the analysis more tractable. Figure 35
shows such a blade concept, as compared with a simple dovetail root and

a Christmas tree root. The gap between the outer step of the blade root
and the disk is very important, since it must close only at the selected
rotational speed above which some damping is required.
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2. ANALYSIS OF DYNAMIC RESPONSE

In order to model the dynamic response behavior of the blade in a
single mode, usually the first, different physical models are required
depending on whether slip is or is not occurring at the root or at the
sub-platform. The blade is represented for purposes of analysis as shown
in Figure 36. The various physical models which represent the blade under
different conditions are shown in Figure 37. The parameter B8 defines
whether slip occurs at the lower dovetail or whether it is locked at this
point, whence X2 = 0; and By defines whether the mass Mms3s representing the
sub-platform, is slipping against the disk or is locked in place by the
frictional forces, for which case X3 = 0. The masses Mys Moy and m,
and the stiffnesses k] and k2 must be selected in accordance with the
blade geometry. The disk impedance is assumed to be much greater than
that of the blade, for simplicity.

By experimental or analytical (e.g. finite element) methods, one
can determine the ratio of the response at any point j to the force
applied at any point i, i.e., the compliance Gij(“)’ and this data is
then used either directly in a modal analysis or indirectly to determine
mys My, Mg, and k], k2 for the discrete element model. Both methods
should give comparable results if the respective assumptions and
simplifications are consistent, but the discrete element model is the
easiest to analyze. For the model, in Figure 38 the equation of motion
can be represented for all cases by the equations:

. ) . (1 - sgn (2 - Qg)
mX, + k x1+%x1—(x2+£-x2) 3 +
sgn(si - wg) + 1 k noe nos
+ kl 3 k—z' xl + ; X, - <X3 + : Xa)

= S Cc0s et ‘3

(51)
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Figure 38. Blade Modelization
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{mziz + uNR sgn X, + k [% (X, - %) - xq} (1 + sgn B).

(l - sgn (@ - 520)> + 4k Xy, = 0 (52)
{m3§3 + uN'LRl sgn ).(3 + k)‘[% ().(3 - ).(1) - Xl] + kz% >.(3} (1 + sgn Bl)
+ 2(k; + k) X3||1 + san (@ - 2¢)] = 0 (53)

where k = k1ko/(k; + kp) (54)

is the equivalent stiffness, mis My, and my are masses, k] and k2 are
sub-stiffnesses, n is the blade loss factor, S and w are the amplitude
and frequency respectively of the exciting force, u is the dry friction
coefficient, N and N] are the normal loads between the blade root and
the disk, R and R] are coefficients depending on the root geometry
(References 17, 18) g, By are coefficients of the slip thresholds. If
we let Qo be the rotational speed at which the gap & - 0, then different
solutions occur, depending on whether f<iey or Q> Q.

a. Case 1, Q< QO, g >0

The analysis is the same, essentially, as that for a blade with
a simple dovetail root (Equations 17, 18).

Equations 51 to 53 reduce to:

myXy + E% (il - 22) + k(X; - X5) = S cos wt (55)

m,X, + uNR sgn X, + 5% (X, - X;) - kX; + 2kX, = 0 (56)

sl o he i Fat | S i

We look for an approximate stzady state harmonic solution of the nonlinear
Equations 55 and 56 in the form:

X;(t) = D z0s (wt + y ~ 8) and X, (t) = A cos (ot + y) (57)

40
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This is accomplished by expanding the function sgn[-Awsin{wt + v)]
in a Fourier series and retaining the first term only (Reference 16).
The following results are obtained for the amplitude A and the phase Y.

-aff, + Jﬂ1 s% + az(ﬂz - £193)
A= p (58)
1

D = J[Az(l - vnp/m;)2 + (An + a/k)2]1/(1 + n?) (59)

Avmpn = a(l - v + n2)
y = arctan (60)
sz[vmz - (1 + n?) (m; + my)] - nav

Anm2w2 + a
§ = arctan (61)
Ampw? - Ak(l + n2) - n?

where: @, = o%[{m; + my = vmy)2 + n2(m; + my)21/(1 + n2) (62)
B, = nkv? /(1 + n2) (63)
B3 = [(v - 1)2 + n2]/(1 + n2) (64)
o = 4uN R/t
v = ma2/k = (w/wy)?

The solution (Equation 57) with amplitude A, expression (Equation 58),
exists when S/a>/@g . From this we can define the coefficient of the
slip threshold as:

B =S/a - /By (65)
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When n = 0, the nonlinear equations (Equations 58 and 59) reduce further
to the very simple form (Reference 17)

A

S

Y1 - (a/S)YZ(1 - v)?%
= (66)
k (w/w1)?|l + my/m; - vmy/my |

D

1 (1 - (a/S)2(1 = v)2(1 - wvmy/my)2 fa\?
€ -

k (w/wl)“(l + mz/ml - \)mz/l'(l].)2 S

S

In these equations R depends on the blade and root geometry. For example,
in the earlier investigations for a twisted blade of length L, twist
angle a'between root and tip, dovetail angle ¢ and dovetail radius Ro’

it was shown that:

R = Ro cos /L

and that S should be replaced by S cos a'.

b. Case 2, a<q , 8 <0

In some range of the parameters, i.e., when 8 < 0, the solution
(Equation 57) does not exist. This corresponds to the domain of existence
of the linear solution for the one-mass system. In this case, Equations
51 to 53 become:

mlil + K(X; + a2 kl) = S cos wt (68)
w

X2 = 0 (69)

The solution of Equation 68 is:

] X (t) = D* cos (ot - §%) (70)
with D* = S/kV(1 -v)2 + n? (71)
ﬁ and §* = arctan n/ (1 - v) (72)
%
4?2
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c. Case 3, Q<Qo, B] >0

Slip now occurs at the mass ms and ceases to occur at the mass
My s which becomes "locked” at high rotation speeds. The slip at the
mass m; can contribute significant amounts of damping if the term
uN]R1 in Equation 53 can be made to remain relatively small through
proper control of the blade root geometry.

The equations now take the form:

mpX; + Kl(g- ).(1)+ X - K1<% ).(3 + X3) = 8 COSmt

(73)
m3X3 + Kl[‘%(}.(s - ).(1) + (Xa - Xl)]+
+ Kz(% ).(3 + X3> + uNRlsgn).(g, =0 (74)
The solution of these equations is written in the form:

X‘ = Dllcos(wt *Yqy - 611) and X3(t) = AIIcos(mt + YII) (75)

Then, again by the method of harmonic balance, it can be shown that:

2 2
-a1 s +'J;u52 + a;(fs = Bufs)
Arp = (76)
By
2 2 2
AT (1 4 ky/ k)" + [A; (Y + k,/ky) + 0,7k, ]
_ I 2’1 II 2" "1 1M
Dy = 7 T VyMa/my (77)
(1 +n%)
AII\)lmgn - a3 (l = vy+ n2)
ypp = arctan (78)
Arqe?lvimg - (1 + n2)(m; + m3) = najvy
AIInmng + a;

§;1 = arctan (79)

Apmze? - Ki(l + n2) - na;

Arr
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\)lm3w2 2 v1m3w2 2
By ={——— - k] n? + [—_____ + k2(1 = vy) = w2(my + my)| (80)

1 + n? 1+ n?

2
Bs = niv; k; +k2{(1-v1>2+n2}1/(1+n2) (81)
B = [(v; - 1)2 + n2]/(1 + n2) (82)
a)] = 4].1N1R1/1T (83)
v = mlwz/kl = (w/w11)2 (84)

The solution (Equation 75) exists when S/a]>/ﬁg . From this we define
the appropriate coefficient 8 of the slip threshold by:

B =S/ay; - /B3 (85)

d. Case 4, q > Qo’ B<0

In some range of parameters, i.e. 8<0, the solution {Equation 75)

does not exist. It corresponds to the linear case, for which the relevant
solution is:

X1 (t) = DY cos (wt - 6?) (86)
with DY = s/k /(T = V) Z ¥ 77 (87)
and 6: = arctan n/(1 - v;) (88)

Figure 39 illustrates a graphical method for constructing the salution
from these equations, for the case n = 0. In this figure, note that:

*
wylye2 1 m, k2 fus] k2 2 m1k2
—_— e~ — ] + — ]|+ 1 +tal— 11 + —) + 1 - 4
wi1 /E mj kl my kl m3k1
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Figure 39 illustrates clearly the regions of existence of the nonlinear

solutions (|A| # 0) for various values of S/a]. When n = 0 and my = 0,
the solution further simplifies to:

a, VI = (a1/8)%(1 - vy)?
| = (90)
s (k1 + k) Jik/ky = vy = vitmg/mp) (k/k2) (1 = vy)|
D, 1 ‘J[l ~ vy (k/ky) (m3/my) 1201 = (a;/S)?(1 - v;)?] (“1)2( )
= + — 91
S ki (k/ky = vi = vi(m3/my) (k/kz) (1 = vp)]? S

where it is recognized that vy ® w2/w$] and Wy = /kl/m]. For most

practical cases R] << 1 in these equations and for a twisted blade, we
!

replace S by S cos o. We now have a formal solution for the cases

Q< Qo and Z-Qo’ and a numerical example will be discussed after a

review of the static blade behavior. Finally, note that the problem

addressed here is quite similar to that discussed by Williams and
Earles (Reference 3).

3.  ANALYSIS OF QUASI-STATIC BEHAVIOR

Referring to Figure 40, the radial movement Y of the sub-platform
under the action of the centrifugal load NRDQ2 due to the outboard part
of the blade will be less than the gap A up to the speed Qo where:

9 = /EDA7WRD (92)

where RD is the average radius of the blade relative to the rotation axis

of the disk. When Q>QO, the springs kp will come into play and provide
the normal load N] on the mass M-

It is easily seen on the basis of
static equilibrium that:

2
WRD(QZ - Qq)
N =

1+ kD/z kp

46
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which means that kD > kp if a significant reduction of the centrifugal
loads on the blade is to occur, as is necessary. As an illustration,
consider the blade for which the static extensional stiffness kD of the
root below mq is provided by a uniform segment of cross-sectional area AD
and length QD' Then:

i kD = E AD/RD (94)
S Similarly, if each spring kp is considered to be represented, as an
: approximation, by a cantilever beam of Tength Ep, thickness hp and
breadth bp, then:
= 3 3
kp = 3 E byh3/1243 (95)
L)
§
: For Q<QO, the normal load N on the mass m, is given by:
N =W RD§22 (96)
Table. 2 gives a calculator program to predict the blade response
with slip at the platform.
2
$ W R,Q
DISK
A Y
T ——4+
SUB-
k PLATFORM

Figure 40. Quasi-Static Model
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TABLE 2

HP 67 PROGRAM FOR BLADE WITH SLIP AT PLATFORM

Input: Put u in

Manual Storage:

Qutput: Label A
Label B
Label C
Label D
Internal Storage:

Program:
fCL PRGM X
LBLA gx?
2 RCL E
% +
hn £/x%
x h 1/x
gx? RCL 5
STO 6 x
RCL 0 hRTN
x fLBL B
CHS RCL 1
RCL 1 h 1/x
+ RCL 2
gx? h 1/x
STO E +
RCL 1 h 1/x
hRC I STO 7

X register (Hz); pr

Storage Location I
Storage Location 0
Storage Location 1
Storage Location 2
Storage Location 4
Storage Location 5

- |¥3} linear (ay/s

|X;| linear (ay/S

1X1I slip (Equati

|X2| slip (Equati

Storage Location
Storage Location
Storage Location
Storage Location

ess A, B, C, D in sequence,
-

- m, (Kg)

= Kll (N/m)

- K2’ (N/m)

- a1/8

- S cos o

= ») (Equation 87)

= 0) (Equation 71)

on 90)

on 91)

6 w? (rad/sec)

7 K

8 (w/wy)?

A 1-(a1/8)2 (1-w?/w1?)?

RCL 6 x 1 RCL 5
RCL O hRTN + x
X fLBL C STO A RCL 1
CHS RCL 1 RCL 7 H
RCL 7 RCL 0O RCL 1 hRTN
+ + + fI.BL D
gx? h 1/x RCL 8 RCL 7
STO E RCL 6 - RCL 5
RCL 1 x gx? x
hRC I STO 8 h 1/x RCL 1
x CHS RCL A 2
gx? 1 x RCL 2
RCL E + STO B $
+ RCL 4 RCL 4 RCL B
£V/x x gx? fvx
h 1/x gx? + x
RCL 5 CHS £/x hRTN
48
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4.  NUMERICAL ILLUSTRATION

The equations derived in this section permit one to predict the
effects of rotational speed on the dynamic response of any blade provided
that one knows the modal masses and stiffnesses, and the exciting forces.
Unfortunately, this information is rarely available at the time it is
needed. This is especially true of the exciting farces. As an example,
the work of Hansen, Meyer and Manson (Reference 2) represents a very
interesting early investigation of blade damping as a function of
rotation speed. The blade geometry data (Reference 2) indicates that
they used a rectangular section blade of length 50.8mm (2 inches), breadth
15.3mm (0.602 inches), width 1.83mm (0.072 inches) at the tip and 3.05mm
(0.120 inches) at the root. The root was cylindrical, of diameter 7.87mm
(0.310 inches). In the tests, the blade was attached, alone, in a 33 cm
(13 inch) diameter disk and excited by impacting it with a falling steel
ball. Although the results are very interesting and useful, it is diffi-
cult to obtain accurate excitation force data from this source.

Ewins {Reference 20) recently described a test system in which air
jets were used as a means of exciting the blades. The test results indi-
cate good qualitative agreement between linear analysis and experiment for
several tuned and untuned blades in a flexible disk, but no estimate of
the exciting forces is given directly. Qther investigators (References 14,
21) are equally uninformative as far as this aspect of the problem is con-
cerned. References 22-24 do seem to address the question to some extent.

The cyclic forces acting on a rotating blade-disk system arise as the
blades cut through a quasi-stationary airflow pattern generated by the
fixed blades (vanes) ahead of them. The stationary pressure field along a
circular path through the center of each stationary vane possesses a mini-
mum between each vane and a maximum at each vane station, as jllustrated
in Figure 41. If the number of fixed vanes is n, then the rate of repe-
tition of the pressure pulses crossing each rotating blade is nQ/60 Hz, if
Q0 is the rotation speed in rpm. A Fourier expansion of this repeating
pulse then gives:

S(t) = S(v,2) }E:l an cos (mnat/60) (97)
m =

49
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Figure 41. Flow Induced Loads
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where a. = 1 if the pulses are sharp. The amplitude S(V,Q) depends on
the mean velocity V of the airflow through the stage, which in turn
depends on the power setting of the engine, as well as the rotation
speed . It is not easy to determine S({V,2) analytically and little
experimental data from industrial sources seem to have been published.
So we shall consider only a few "typical" cases in this section in order
to illustrate the effect of this important parameter on the blade response.
Each term of Equation 47 gives rise to a possible excitation of a blade
mode, and a typical Campbell diagram is constructed by plotting the
frequencies mn2/60 against @ for various values of m, along with the
blade resonant frequencies (fi = 1,2) as a function of Q, as illustrated
in Figure 42. ' As is seen, the fundamental mode is excited by the blade
passage excitation when @ is such that f] = 1 nQ/60 {nth engine order,
point A), by the second harmonic (2nth engine order) when f] = 2 n2/60
(point B) and so on. The Campbell diagram is a useful means for esti-
mating where the vibration problems are likely to occur, but it gives

no clue as to excitation force magnitudes.

We shall now examine a specific blade geometry, considered in
previous investigations (References 17, 18) and representing a typical
low pressure compressor blade. The main dimensions of this blade are:

20 cm

= —
il it

0.20 kg (0.44 1b)

The other relevant magnitudes are given in the nomenclature, as
specific numbers associated with the relevant symbols. From these
numbers we see from Equations 94, 95, 92, 93, and 96 in succession that:

kp = 2.10 x 10°N/m (1.2 x 107 1b/in)
ky = 2.1 % 10/N/m (1.2 x 10° 1b/in)
5 = 0.057 mm (0.00225 ins)
N, = 1.856 x 1078 (2 - 22) 1bf
i 42 .
N = 8.382 x 10" %%Newton(1.875 x 107407 1bF)
with Qo = 12000 rpm
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From Equations 68, 69, 90, and 91 we can then calculate the response
of the blade for the cases u<  and i>@ . Some results are shown in
Figures 43 to 46. From these we can then determire the apparent modal
damping n}, defined by the "half power pandwilth' wmethod, and piot against
/S (for Q<QO) or u]/S {for 3390). The results *or this particular blade
are shown in Figure 47. 1t is seen that, for U“LD, g increases rapidly
as «/S falls and reaches a very high maximur vo'uc before finally falling

to zero as a/S > 0, i.e. &> 0. On the other hand for “w% , the damping {
rapidly increases as a]/S rises above a threshcid ieve: (below which a

new peak occurs at lower frequency and with low damping), reaches a peak

of about 0.20, and then drops more slowly as u]/S increases further. §

From the values of N and N1 given earlier, we can then calculate ‘
+S and a]/S for any assumed values of S. We shall consider two cases )
namely (1) 5 = 22.24 N (5 'bf) and (ii) S = 1.69 « 1070 ;, 3/2
{= 3.8 x 107°% ¢ 3/2 1bf), with £ in rpm. The first represents a constant
force, as in -danson, Meyer and Manson's experimeats (Reference 2} and

the second represents a more likely situation in wnich S increases as &

Attt o e

increases, e.g. S = 22.24 N (5 1bf) at 12000 rpm, 51.73 W (7.0 1bf. at
15000 rpm, and 5.96 N (1.34 1bf) at 5000 rpm. Tables 2 and 3 show
typical calculated values of /S, u]/S, and - The appropriate

expressions tor ../S and a]/S are:

(1) S.=22.2 N(5 1bf)

4.2

% AN Ro i 4 x 0.15 x 1.875 x 10 '2° x 1
S S Lcosa cosy 20 x ™ x 5 x 0.724 x 0.5
- 9.89 x 10777
, 4N, 8% 0.35 % 1.856 x 1070 f )
S wcos - wasxua 4

-8 B 2.
3.79 x 16 ¢ T
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(i1)

1.69 x 10720372 Newton (3.8 x 1078 03/%1pf)
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Figure 48 shows the variation of n} with Q for these cases. It is
seen that high damping occurs at high speed, as expected. Obviously, the
particular numerical vaiues can be changed to represent other conditions,
but the approach ancd general behavior remain the same. OQne other possi-
bility can be examined, namely a blade of the type having a hinged root
with mating surfaces now parallel to the plane of rotation of the root,
and discussed also by Hanson, Meyer, and Manson (Reference 2). For this
type of blade, N1 remains just about constant at all speeds, white the
force S changes, usually increasing as Q increases. This would account
for the high damping achieved by this type of blade, since,a1 would be
nearly constant and a]/S would change in such a way that N would increase
as Q0 increases.

Ty T T
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Figure 48. Modal Dampina versus Rotational Speed
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SECTION IV

HARMONIC RESPONSE OF A DAMPED TWO-DEGREE OF FREEDOM
SYSTEM WITH GAPS

1. INTRODUCTORY REMARKS

In this section, a lwo mass mechanical system excited by an external
harmonic force is considered. (Qne of the masses is assumed to move in
the space between two elastic non-inertial buffers. The gaps introduce
a high degree of nonlinearity into the system. The motion of the two
masses is damped by dry friction which also brings nonlinear effects and
hysteretic damping of the elastic members. An approximate steady state
solution is found for the harmonic response case. A graphical method
is adapted for construction of response (amplitude versus frequency)
curves. Numerical examples show the influence of various parameters,
such as amplitude of the exciting force, dry friction, nysteretic damping,
fluid pumping, and elasticity of the buffers on the amplitude of the
response. This section summarizes Reference 16.

It is generally very difficult to predict the dynamic benavior of a
nechanical assembly having gaps between the members, whether introduced
for specific reasons or resulting from wear. In fact, the motion of
systems with gaps is highly nonlinear and is very sensitive to the gap
dimensions and the values of the excitations (Reference 25).

The present section considers the response of a damped two degree
of freedom system with gaps, excited by a harmonically varying force.
The model of the system is based on a modelization of blades in a disc.
Damping in the system is introduced by dry friction between one of the
masses and the supporting environment, hysteretic damping accompanying
motion of the elastic members and fluid pumping in gaps.

A combined analytical-graphical method is adopted for determining
the response curves, the amplitude-frequency relationship. This allows
one to determine the steady state response of the system for various
values of the important parameters, particularly gaps, damping, friction,
and excitation.
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2. MODEL OF THE SYSTEM

The idealized model of the system is illustrated in Figure 49. The
system consists of two rigid bodies of mass Mi and M2 joined by a plane
linear spring of rigidity k] and two linear buffer springs of rigidity k2.
Assumptions made in the analysis are: (i) the system is symmetric and
plane, (ii) the masses of the buffers are negligible. and (iii) the body
M2 moves horizontally only, while the body M? performs plane motion.

The external exciting force S cos (wt - y) is applied to the body M].
During the motion of the body M2 a dry friction force arises, modelled

by Coulomb's law (F = uN, where u is the coefficient of friction and N

the normal force). When the amplitude of motion of the body M2 is greater
than the gap A, the springs k2 exert a force. The remaining damping

terms in the system are linear. For small motions of the bodies, the
equations of motion of the system are:

[T o e
M] (Ry+X) + —w@ (y+ é) + k=S cos (wt-v) (98)
v : Yxh ¢
MZX + ozXX +[T X + kz(x-A)] U

-ky¥ + uN sgn (X) = G, (99)

where

v = % iwsan ([X] - )]

oy represents the viscous damping coefficient (e.g., fluid resistance),
%h> *xh represent the hysteretic damping coefficients (e.g., internal
friction in the springs). We will confine attention to the effects of gaps
and damping on the response of the system.

60
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M, p—— S cos(w!-])

L2

K, P

xlt)

My F

Figure 49. Model of the Sysiem

3. STEADY-STATE SOLUTION WITH SLIP

We shall analyze the excited motion only, i.e.:
X = Acoswt,

where A represents the amplitude of the excited vibration.
the frequency of the exciting force.

Putting Equation 100 into Equation 98 we obtain
e e} h e
M]R\p + —g— VI k]w = Scos {(wt-v) +
+ M]sz coswt + %uh é'sin wt

The steady-state solution for Equation 101 is

n(t) = S 5 [ (1-‘1%E wz) cos (wt-y) + 2yn Sin(wt-Y)]

kg

k

M.R o
+ Bl_,[ (1- —%—*m2) coswt + “yh sinwt] - % coswt

i 1

61
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where

Putting Equations 100 and 102 into Equation 99 we get:

A coswt [ ot - Ml lﬁ(fl -
w ¥ 2* 'R T Z\R
*

2

ko
- M wz)] - A sinwt [a wta,, y*+ —l—yb-]-
1 X xh R¢2

*

- k,A¥* - uN sgn (A sinmt)] R [ (k]-

2
¢ k0%
- mRf)cos (ut-y) + ayp ST (wtoy) ] = 0 1103)
where:
y* = [T-sgn(|Acoswt]-A)]/2 "104)

The values of the function ¥* are given in Table 4.

We develop the function w*, ¥* coswt, ¥* sinwt and sgn (A sinut) in
Fourier series. Limiting attention to the first approximation we have:

27 2n

p* = % { c05wtjﬁw v*coswt dt + sinwt jr” Y* sinwt dt] =0 L 105)
0 0

2
Note that when “tho’ ¢*=1-M}Rw“/k]~
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2m 2m
y*coswt = f [COSwt j. © yx coslut dt + sinwt j’w ¥* sinutcoswt dt]
0 0
% (Zwt + sin Zwt])COSwt = C(A)coswt (106)

¥* sin ot = %[cowtf “yx ginut coswt dt + sinwt f Y* sin wt dt]

% (Zwt] - sin Zut]) sinwt = C* (A) sinwt (107)
2
sgn (Asinwt) = sgn A % [ coswt Jr Y sgn (sinwt)coswtdt
0
+ s1nwt/ sgn (sinwt) sinwt dt]
_ 4 ;
= - sgn A sinut (108)

Putting Equation 105 to Equation 108 into Equation 103 and comparing the
coefficients of the trigonometric functions we obtain the basic equation
for the resonance curve A = A(w). (The same result is obtained if one
assumes the solution in the form x = A coswt, ¥ = Bcoswt + D sinwt, where
A, B, D are functions of w).

2

Aoy (w) + [Agy (w) + 350, (w) sgn AP = §?

(109)
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and the expression for the phase angle:

B 2
(—Sq: sgnA + A¢ )(k -M,Rw") + Aa, , Vo,
y = arctan E bl 2,21 1 5 th 7 (110) :
(ﬁScb*sgnA + A¢2)awh—A(k]-M]Rw /8, 'i
where ‘
k k 2
. 2 4) _ 1_(_1 ) 2)]
9y (w) = - [q>*(k2c Mp” + & o\ M (111)
do(w) = l[(i) (u wro  C*) + (—xy)ﬁ] (112)
2 M [ Ox LTy, Ro,
= M.M_R
_ 4N - 172
g = g M = o (113)

The difficulty of the problem arises because the expression
(Equation 109) is nonlinear with regard to A, due to functions (sgn A)
and ty=t (A). The last function, which is included in C (A) and C* {(A),
depends also on the gap 4 (Equation 105). The functions sin 2wt1+2wt1

and 2mt]-sin 2wt. are presented in Figure 50. As we see in Figure 50

1
the function (sin 2mt1+2wt]) is practically constant for A>2A and equals

about 3.1.

We shall seek for the explicit solution A=A{w) of Equation 106
supposing that the functions C(A) and C*(A) (Equations 103 and 109) are
constant. Then we shall introduce the functional dependences C=C(A),
C*=C* (A), applying a graphical method.

If the C and C* are supposedly constant we obtain from Equation 62:

ROx®2 “/;1+®§‘M2¢f o1
A(w) = *S 3 (114)
M(d1+¢3)

which is valid for o, 1.
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Figure 5G. Graph of t] = 1/w Arc Cos A/A

As we see, for large values of the excitation amplitude S, there
exists one positive value for A and one negative of the same value. For
small values of excitation, motion of this kind is not possible, and
only y(t) exists - linear motion of the mass M, .

The expression (Equation 114) represents the relation A=A(w), i.e.,
the relationship between the amplitude of the excited vibratiaon and the
frequency of the exciting force in the simplified case C=const,
C*=const. A graphical method of solving Equation 109 with C and C* not
constant will be explained for the particular case of a system with dry
friction only in Section IV.5.

4.  STEADY-STATE SOLUTION WITHQUT SLIP

Finally, for the case of small exciting force ampiitude S, that is
S<4uNé,/m, no slip of the mass M2 occurs, unless k,y > uN. Then the
motion is linear and involves ¢ alone, so that the equation of motion
of the system becomes

= “¢h -
MjRy + — ¢ + kyy= Scos(wt-v) (115)

w

et 4o
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This can be solved directly for w(t). The graph of y* (where y* is an
amplitude of the response of y) versus w is then a classical response
curve up to the point where w*z_uN/k], at which point slip occurs, but a
sustained solution with slip does not exist (because S<4uNg,/m). There-
fore, the response under these conditions is "cut-off" at the Teve}

x o= uN/k], i.e. amplitudes are limited. Only for S$>4uN¢, /7 can
infinite amplitudes be sustained at resonance, as in Equation 114, for
zero values of the other damping coefficients.

5.  SOME SPECIAL CASES

The case awh:ux:uxhzo - Dry friction only. Let us consider the case
without damping. The expression (Equation 114) has then the form:

S vl—ﬁ2¢*2
Aw) = 5 ———— (116)
v
where
. . 5 M1+M2 k2C kzc
31 = wheu?( Mt M2)+ M
MR
b, = 1- w?

(we omit the sign minus in front of the expression (Equation 116); of
course there are two solutions: positive and negative).

The function A(w) exists only for

ki

1
" MR (1+

if p<l

R
k
1 2 ! 1y .

K 1
and if m2 = M~%A(i t é) then it takes the value zero.
1 ;
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The function A(w), (Equation 116), tends to infinity when w - wy or

W > ws, where

k M Ck k Ck k 1/2
] ( 1 2 i 1 ] 2 1
o {5 _+1)+_ + (1) [—~(~—- 1)+ ]+ oo
2M]R 9 2M2 ZM]R M2 2M2 M]MZR
i=1,2.
k M 1/2
For €=0 wO =0, wO = {—l—»(—l*+ 1)}
1 2 R \M
1 2
For C=C__ > where (Figure 50)
¢ =L (out +sinaut,) = 3=t - 0987 (118)
max 1 1 max b ) ’
we have
2 2 1/2
m k] M] Cmaxk2 i kl M1 Cmaxk2 ky
m.={—- = + ] +—-~+(—.|) m‘M——l - + - 2—
1=1,2
and 0 = wy wy < W) wg < wy 7 wg

It

For w =0, A(O)=S/]_B2/k2C which » « if C » Q.

Finally the function A(w) (Equation 116) i.r some cases has shapes

presented in Figures 51, 52, and 53.

As one sees, the presence of the dry friction does not eliminate the ﬁﬁ
resonance peaks. The curves presented in Figures 51, 52, and 53 are
plotted for the values C = const. In reality the value of C varies:
0-C~C = 0.987, when A varies in the range 4 -~ A - 24. Then for

max
A - . the curve A(w) with C = 0 is applicable. For A - 2., the curve with
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EPE

C = Cmax is used. For A < A < 2A one should plot a family of curves A{w)
with a parameter C varying 0 < C < Cmax and find the corresponding points ;
at intersections of those curves and lines A = RiA’ 1< Ri < 2,

i=1,2,3,..., the values Ri being taken from Figure 50.

Figure 54 presents the method of plotting the real curve A (w)
(Equation 116). The shape of the A(w) curve depends on the value of A.
As can be seen in Figure 54, the resonance peaks of the A(w) curve
(the case without damping) always exist (two or one only). The dry |
friction does not cancel the resonance, it reduces only the amplitude A.
The opposite effect is brought into play by the amplitude of the exciting
force S. The existence of the gap A changes qualitatively the A(w) curve.
[t brings a highly nonlinear effect. For limiting cases &4 = 0 and A = =,
the response curves correspond to the cases C = 0, C = 1 {Figures 52 - 54)
and then there is no nonlinear effect. In other cases, the nonlinear
effect on A{w) curves is more distinct if 2 is greater.

Numerical Example No. 1

Let us consider the example with the following data

M,

3

1.827 kg, MZ = 15.3 kga (]]9)
R =9.09 10 "m.

k 14272.7 N/rad,

1
Four values of B: 5 =0, 0.2, 1, 1.1 and three values of k2 were considered:
k, = 10°%N/m; 10"N/m; 10%w/m. (120)

L 4
The calculations were made on an SR 52 calculator.

The resonance curves (Equation 116) have been plotted in coordinates
(10,AM/S). In Figures 55-57 we have the family of curves (Equa-izn 116)
with different constant parameters (C/0 < C < Cmax) for the case n = 0.
They correspond to the values A/A = 131.1;1.2;/2;2. One can see the
normal shape of the linear resonance curves for a two-degree of freedom
system. For the cases k2 = 106N/m and k2 = 107N/m the figst mode corre-
sponds to the motion of the mass M2. For the case k2 = 10°N/m the first

mode is that of the mass M]. The second resonance zone in the cases
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Figure 55. Response Curves for C =
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Figure 56. Response Curves for C
= 10" N/m, 8 = 0)

= const
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Figure 57. Response Curves for C = const
- 108 n/m,
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k2 = 106N/m and k2 = 107N/m for different C is nearly the same, so in this
region the gap nonlinear effect will be small. Such low values of k2 do ;
not alter much the values Wo and wg (Equation 117 and Figures 51 and 52).

Then the gap & is introduced and the curves corresponding to non-
linear cases are plotted, applying the method explained previously. For
every value of k2 two cases of the values of the gap A were treated
(Figures 58-60). To show the influence of the exciting amplitude the
previous curves (Figures 58a - 60a) are plotted on the plane (w,A)
(Figures 58b - 60b), where the scale of A is expressed by the value of
the gap A. As can be seen, a smaller value of S causes a reduction of
the amplitude A and narrows the resonance zone. It cannot, however,
cancel completely the resonance peak. For the smaller gaps (Equation 1)
the nonlinear effect, which obviously has a "hard" character, is less

TSRS TIPS &= t5]

exhibited. The gap's nonlinear effect lies in the appearance of non-
uniqueness of the amplitude A for certain regions of w. This effect is
especially evident for large values of k2 (Figure 60). One should expect
that the middle value of the amplitude (dashed curve, Figures 58b - 60b)
gives an unstable solution (Equation 100).

The comparison between Figures 58, 59, and 60 show the effect of the
buffer's rigidity.

The curves for the case with smal) dry friction factor (B = 0.2)
are similar to the undamped case {(compare Figures 61 and 60a). The effect
of the dry friction damping 1ies in 1imiting the curves on the frequency
axis. For low and for high frequency excitation there is no motion
(Equation 100) for the mass M, (Figures 62-65). For the higher dry
friction some resonance zones are more narrow but the nonlinear effect of
gaps are more exhibited (compare Figures 61 and 58a). If the dry friction
is sufficiently high the first resonance zone can be cancelled and the
effect of gap's nonlinearity disappears (Figure 62). This effect does
1 not exist for the case k2 = 108N/m (Figures 63-65) It is obvious, because
the first resonance in this case corresponds to the motion of the mass M]
and there is no possibility to cancel it by the dry friction applied to
the mass M.
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Figure 58. Response Curves for the Nonlinear Case (Undamped-
k2 = 106 N/m) - (a) Influence of Gaps, (b) Influence
ot Excitation

Afj , PRy 1
wr FRR-TY j
FE 4 !
1o}
e 0 o5 =

Fiqure 59. Response Curves for Undamped Nonlinear Case (k. = 107 N/m),

2
(a) Influence of Excitation, (b) Influence of Gaps

Figure 60. Response Curves for Undamped Nonlinear Case (k2 = 108 N/m),

(a) Infiuence of Gans, (b) Influence of Excitation
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Figure 61. Response Curves for the Case Figure 62. Response Curves for the Case
with Dry Friction (k, = 10° with Dry Friction (k, = 10° |
N/m’B=]) N/m,3=].]) :
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- |
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21f)
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Figure 63. Response Curves for the Case Figure 64. Response Curves for the Case
with Dry Friction (k, = 10% with Ory Friction (k, - 10°
N/m, & = 0.2) N/m, & = 1)

2

Figure 65. Response Curves for the Case

with Dry Friction (k, = 10°
N/m, g = 1.1)
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¢h—i—gxh = 0. Fluyid pumping only. 4

Let us consider the case without dry friction and without hysteretic
damping. Only the dissipation by fluid pumping in gaps is present. The

response curve is given by Equation 116 (for C = const) with n = 0 (we
omit the sign minus, of course, there exists two solutions: a positive

The Case uN = o

and a negative):

Aw) = 3 = — (121)
: \l¢1(w) + 92 (w)
ﬁ where ‘
; <M1+Mz K,C k,CY 2
i o1 (w) = [‘*’u - e Nt M2>+ M ] (122)
§ wey, [ ki
? 42 (w) = —> (MTi - wz)-
z For small values of the damping coefficient oy the response curve
‘f (Equation 121) has two maximum peaks (for w near Wy and Wo > Equation 70),
? Figure 66. The position of the peaks depends on the values of o and C 3
b as well. So the nonlinear effect of the gap can be reflected in the A(w)
: curve in the same manner as previously, plotting a family of curves with
f C as a parameter and finding the intersection points with corresponding

levels A = RiA, where 1 5-Ri <2,1=1,2,.... For A < A the curve
(Equation 121) with C = 0 is valid. For A > 2A the curve (Equation 121)

‘ with C = Cmax (Equation 118) is valid.

A

| #

%‘ 1 1
w; [Z ] @

i Figure 66. Resnonse Curves for a Damped Case o
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Numerical Example No. 2

Let us consider the same example as previously, with n = 0, adding
the fluid damping coefficient (four different values):

a = ]O3Ns/m; 1500 Ns/m; 4000 Ns/m; 7000 Ns/m. (123)

The results of the calculations of the response curves (Equation 121)

are presented in Figures 67-72. The curves obtained applying the same
graphical method are plotted in the coordinates (w,A), where A is
expressed in terms of the gap's magnitude A. One can see the influence
of the gap coefficient MA/S on the nonlinear behavior of the A(w) curves.
The curves show the influence of the amplitude of the exciting force S
on the A{w) relationship. The growing S causes an increase of A and

some qualitative changes (appearance of new branches of A{w)). The
influence of the damping coefficient a, can be investigated by comparing
the curves corresponding the same value of k2 (Figures 68 - 72). The
curves A{w), for small values of a, do not differ much from the curves for
the previous case 8 = 0 (compare for instance Figures 59b and 68). The
greater values of o, cause the disappearance of some A branches (compare
Figures 59 and 69 or 60 and 72), a reduction of the amplitude A and a
disappearance of the resonance (compare Figures 58 and 67, 59 and 69,

60 and 71} and a "softening" of the response curve (compare Figures 69
and 70). The growing coefficient a changes a little the freguency

Wys Wy of the greatest amplitude A (to7sma11er values of w for k2 = 106N/m,
brings closer both of them for k2 = 10'N/m). The increasin98c0effic1ent
Oy cancels more efficiently the first resonance (for k2 = 10°N/m). The
same value of ay has more influence on the shape of the resonance curve
if k2 is smaller {compare Figures 58, 59, 67 and 69).
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Figure 67.

Figure 69.

Response Curves (k2 = 106 N/m,
2 =0, e ® 4000 Ns/m)

£ s-*n'
2 sedfLod

Response Curves (k2 = 107 N/m,
s = U, ny E 4000 Ns/m)

g = =

Figure 71.

Respuase Curves (k? = 108 N/m,
=0, «, = 1000 Ns/m)

o

Figure 68. Response (Curves (k2 = 107 N/m,

%= 0, = 1000 Ns/m)

Figure 70. Response Curves (k2 = ]08 N/m,
R=0,ua = 7000 Ns/m)
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Figure 72. Response Curves (k2 = 18 N/m,

g = 0, o, = 7000 Ns/m)

SIS




AFWAL-TR-80-4103

The Case N = Ay = Syn = 0. Hysteretic damping in the buffer

springs only

Let us consider the case without the dry friction and without the
fluid pumping. Only dissipation by hysteretic damping in the buffers
is present. The response curve is given by Equation 114 (for C = const,
C* = const) with 8 = 0 (we omit the sign minus):

- 1
Alw) = (124)

2
J¢1(w) + 95 (w)

where in this case ¢] is the same as previous (Eguation 122) and

Rl

a_,C*
h
do(w) = XM (l - ET— u2>.

For small values of damping coefficient i the response curve (Equation
124) has two maximum peaks (for w being near W) and wy, See Equation 117

and Figure 66).

Numerical Example No. 3

Let us consider example 2 (with 8 = 0), adding the hysteretic

damping coefficient (three values):

oy, ° 10"N/m; 108n/m; 2 10'ON/m.

The results of the calculations of the response curves (Equation 124) with
different values of ap are presented in Figures 73-75. The curves

are plotted in the same coordinates (w, AM/S) as previously. There can
be seen the influence of the magnitude of the gap coefficient AM/S on
the nonlinear behavior of the A(w) curves. The damping brought by the
buffers has nearly the same influence on A{w) relationship as the fluid
pumping. However, the effect of damping contributed by the coefficient
Up is much smaller than that of o, (compare the magnitudes of Gh and
. which give nearly the same effect of damping - Figures 69 and 73,

70 and 74, 71 and 75). For sufficiently high damping, the amplitude

A of vibration does not exceed the value of the gap A. The nonlinear
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Figure 73. Response Curves (k2 106 N/m,

=0, %, =0, uy 2.10'9 v/m)
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Figure 74. Response Curves (k, = 107 N/m,

L _ _ a8
5 =0, a, = 0, ap = 10° N/m)

»

[

Figure 75. Response Curves (k2 = 108 N/m,
- - _ 7
8 =20, a, = 0, agy, = 10" N/m)
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effect due to the gap is present in all the cases (regians of frequency
where three values of amplitude are present, with sudden non-smooth
changes of amplitude values).

= 0. Dry friction and fluid pumping only

The Case Aeh i~awh

Let us consider the case without hysteretic damping. The dissipation
is caused by dry friction and fluid pumping together.

The resonance curve is given by Equation 114 (for C = const and
C* const):

2 2
S “Béod, + ‘A1(1-32¢§) + 9,

M(p; + ¢§) (125)

where ¢] is given by Equation 122 and

Numerical Example No. 4

We shall consider example 2 with the fluid pumping coefficient
(two values):

a, = 2000 Ns/m; 4000 Ns/m.
The results of calculations can be seen in Figures 76 and 77. The
common effect of the dry friction and the fluid damping reduces the

resonance amplitude ang limits the zone of frequency (compare Figures 61,
62 and 70, 77). The gap's effect has nearly disdppeared.
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Figure 76. Response Curves (k2 = 106 N/m,
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6. TIME DEPENDENCE OF THE DEFLECTION y

After having found the value of the amplitude A of the solution for
given parameters, and for every value of the frequency w, it is possible
to obtain the time dependence of the deflection y(t). Putting Equation
100 into Equation 102 we obtain:

*
v(t) = 1]:—1' (kz‘{’ - M2w2) cos wt - 1]:—(: (ax +
o * -
‘T’fﬂ ¥") sin wt - uN sign (sin ot). (126)

Taking into account the values of y* (Table 4) for every interval of time,
we can plot the relation (Equation 126) in coordinates (t, ¢ (t)). Figure
78 shows the graphical construction of the Equation 126 for small and

great values of frequency. As it can be seen, due to the nonlinear effects,
the time dependence of the deflection y(t) represents a complicated curve.
Practically, in real systems, it will be much more smooth - the modelization
accepted here is quite idealized.

Fiqure 78. Time Dependence of the
Deflection of the Mass M]
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7. SUMMARY

The response of a mechanical system to a periodic excitation is
strongly dependent upon the tolerance between parts. In this section
it has been shown that the response (amplitude versus frequency) 1is
very sensitive to the value of the gaps - the response curves change
not only quantitatively but qualitatively as weil with variation of the
gap's magnitude. The presence of gaps introduces nonlinear effects.

A change of the gap's magnitude may increase the amplitude of the
response, which can cause premature damage or failure of the system.

Another nonlinear effect is caused by dry friction in the system.
The dry friction reduces the response amplitudes, it cannot completely
cancel the reéonances. Both nonlinear effects cause the nonuniqueness
of the amplitude of the response for certain regions of freguency.
The external damping brings usual effects of amplitude reduction.

A graphical method was adapted for construction of the response curves
for nonlinear systems. This method is valid for any nontinearity in the
system, but its advantages are especially clear for discontinuous
functions.

83

IS,




AFWAL-TR-80-4003

SECTION V
EXPERIMENTAL INVESTIGATIONS

BLADE DESCRIPTION

The analytical part of this report describes the fundamental mode
dynamic behavior of a typical jet engine compressor or turbine blade
having a simple dovetail root, with allowance for slip at the root.
The purpose of the test program was to verify, as far as possibie, the
results of the analysis. The blade selected for the initial tests was a
relatively large twisted steel blade with a simple root geometry as shown
in Figures 79 and 80. The blade was held in a heavy fixture having
mating surfaces to match the contours of the blade root. The centrifugal
load was represented by means of simple spring loaded wires applied at

the root in such a way as to minimize interference with the blade root
motion during slip. This arrangement, shown in Figure 80, is not ideal

in so far as it does not allow for the effect of the centrifugal load in
untwisting the blade, but it does represent the root conditions far more
adequately than, for instance, clamping the root by means of a bolt, which
would prevent slip and hence inhibit the very phenomenon being studied.
The blade was about 20 cm long.

2.  TEST SYSTEM

For determining the mode shapes of the blade, a digital test system
illustrated in Figure 81 was used. The blade was solidly clamped at the
dovetail and excited by a small shaker through a force gauge at the block.
The acceleration response was measured at several points on the blade
surface using a miniature accelerometer and transfer functions measured
at several points on the blade.

For the harmonic vibration tests on the blade with slip, the analog
test system illustrated in Figure 82 was used. The Bruel and Kjaer Model
1014 Beat Frequency Oscillator can generate a harmonically oscillating
voltage of magnitude 0 to 120 volts at any selected frequency from 20 Hz
to 20 KHz. The output impedance, measured in ohms, can be varied according
to the type of excitation device used in order to match impedances as

24




L N e e e o - ————... PR e RS- ad

AFWAL-TR-80-4003
§
!
!
3
f Leading
/ Edge
Trailing
Edge
Figure 79. Blade Geometry
% {
Figure 80. Photograph of Blade in Fixture a
1
? |

85

L e e b et e Dk Ay OF O




AFWAL-TR-80-4003
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closely as possible. As the frequency is varied, the current through

the output terminals to the exciter can be controlled by means of the
"compressor”. This is simply a feedback loop which measures the voltage
across a fixed resistor in the output circuit, and uses it to control

the output current. A meter gives the output voltage across the terminals.

The output current of the oscillator was fed directly to a magnetic
transducer (Electro Model 3030-HTB). The impedance setting of the
oscillator was set at 600 ohms in order to best match the impedance of
the transducer, thereby minimizing distortion of the output signal. The
transducer consists essentially of a magnetized iron rod with many coils
of fine insulated wire surrounding it, through which the oscillating
current flows. This current produces an oscillating magnetic field
which modulates the steady magnetic field of the rod, and hence produces
an oscillating harmonic force on any iron object placed nearby. The
magnitude of this force depends on the amplitude of the oscillating on f
current and on the gap between the end of the magnetized rod and the
object being excited. A typical transducer section is shown in
Figure 83.

The waveform of the input signal to the transducer was monitored
on a dual - beam oscilloscope (Ballantine Model 1066S). The freguency
of the signal was measured by a digital frequency meter (Hewlett Packard }
Model 5216A). The pickup system used a miniature accelerometer (Endevco
Type 22) weighing about 0.2 grams. The acceleration amplitude of the
blade at the point where the accelerometer was attached, with cyano-

acrylate adhesive, was detected by the quartz crystal in the accelero-
meter, unlike the transducer, is an extremely high impedance device so
that a special high input impedance amplifier (MB N-400 Zero Drive
amplifier) had to be used to amplify the signal before it could be read
off the Vacuum Tube Voltmeter (Hewlett Packard Model 3400A) and monitored
on the other channel of the dual beam oscilloscope. A "line-driver"

(MB Type 9402215) was used to reduce loss of signal in a relatively

long cable. Because of the high system impedance, current levels in the
cables were very low and care had to be taken to avoid excessive loss of

signal or pickup of stray signals.
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3. MEASUREMENT OF MODE SHAPES

For the first two modes of the compressor blade, the transfer
functions IR/SI were measured, as a function of frequency, using a small
shaker acting through an impedance head for excitation and an accelero-
meter for pickup as in Figure 81. Results were plotted for points (0,0),

(0,1) --- as illustrated in Figure 80. Figure 84 shows a typical response.

Figures 85 to 89 show more detailed plots near each resonance. The system
was not calibrated. The product (X/S)n was then calculated for each
mode, as shown in these figures. Note that (X/S) is drawn on a decibel
scale, so that one must convert back to a linear scale in performing the
calculation, as follows:

lA

’ linear = 10916] ( %ﬁgé_)
For example, for point (0,0), mode 1, g = 39db and n = 0.00287.

wni<:

X
n

1 -1 { 39 _
< = 109y ( 20 ) x 0.00287 = 0.256

The summarized modal data is given in Table 5. These modes are plotted in
Figures 90 and 91. The modes can now be used to calculate the equivalent
masses and stiffnesses of the discrete model of the blade.
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Figure 89. Resonance Peaks for Point 3,2
TABLE 5
MODE SHAPE DATA
Point (X/S)n; (X/S)n, ¢ $2
0,0 +0,256 +0,157 +1,000 +1,000
0,1 +0,234 +0,117 +0¢,914 +0,745
0,2 +0,214 +0,086 +0,836 +0,548
1,0 +0,189 +0,039 +0,738 +0,248
1,0 +0,148 +0,004 +0,578 +0,025
1,2 +0,147 -0,023 +0,574 -0,146
2,0 +0,107 -0,043 +0,418 -0,274
2,1 +0,087 -0,057 +0,340 -0,363
2,2 +0,070 -0,081 +0,273 -0,516
3,0 +0,043 -~ +0,168 -
3,1 +0,034 -0,061 +0,131 -0,388
3,2 +0,015 -0,060 +0,058 -0,381
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Note that the frequency Wy changes somewhat with the position of the
measurement. This is due to mass loading by the accelerometer. The
difference is sufficiently small to be insignificant, and is assumed to
have only second-order effects on the mode shapes, in view of the wide
separation of the resonant frequencies. Finally, note that $n is a
vector, assumed to be normal to the blade middle surface. The direction
cosines relative to the major axis of the root were measured to be:

Station Inclination a® cos o
0 44° 0.724
1 36 0.808
2 31 0.861
3 20 0.938
4 13 0.972

4. CALCULATION OF MODAL INERTIA AND STIFFNESS FROM MODE SHAPES

The thickness of the blade was measured at several stations and
across the chord. Figure 92 shows the distribution of thickness. The
values of m, and B] were determined from Equations 45 and 46 using the
modal data, the direction cosines, and the density of the blade material,
assumed to be 0.27 1b/1n3. On this basis:

s [f oh axay = 0.235 kg
Xy

b mn (x1, y]).¢>1 (x], y]) i 0.235 x 1 x 1 _,
P S e 2725
Sieh b].$] dxdy 0.0324
Xy
: _0.235
L 0.0324 kg
BEE L’m} 5109 x 1070 kgt
K'] - m]v.‘{ 20,0324 (20 x 12037 = 16819 N/m

¢ LK) = 737 Ny

D s L
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Figure 92. Thickness Distribution of Blade
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Note that the value of K] is measured in N/m because X] is the
independent variable, not X]/L, where L is the blade length.

5. MEASUREMENT OF RESPONSE WITH SLIP

The tests with slip were conducted using a magnetic transducer for
excitation, with a pre-selected gap, (0.04 in., Tmm) at several different
force levels ranging from 0.0064 Newtons to 0.125 Newtons, the maximum
that could be generated with the transducer available. The net normal
force provided by the two springs to the wires at the root of the blade
was varied from 10 kg to 25 kg. As the excitation frequency was increased
stowly, at Tow force levels, the classical shape of the response curve
(IX]/Sl versus frequency) was reproduced, but as the exciting force was
increased the behavior became increasingly nonlinear. The results
obtained for tests with air and water as the working fluid around the
blade root mating surfaces are shown in Figures 93 to 100 for the first
three modes. Test results are summarized in Tables 6 to 10.

Several significant facts may be noted from these figures. QOne is
that as S is decreased, a point is reached at which slip never occurs
and the behavior is then linear. In that case, the only significant

remaining source of damping is hysteresis of the blade material itself.
The second is the fact that as water is substituted for air as the
working fluid at the root, slip occurs far more readily. This is
accounted for by the fact that coefficient of friction is lower in this b

case. Figures 101 and 102 show some of the acceleration waveforms 3
observed on the oscilloscope screen for various conditions. The upper
curves represent the biade acceleration, and the lower curves the force,
all at the point of maximum amplitude. In air, one can see significant
deviations from a true sinusoidal shape. In water, the lower threshold
of slip seems to allow high order harmonics to be present in the signal.
The reason for this is not known.
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Finally, the experiments are compared with analysis in Figures 103
to 107.

6. DIRECT MEASUREMENT OF MODAL MASS AND STIFFNESS

Section 2.3 describes the linear modal analysis of blade response
without stip (fully clamped root). From this analysis the observed
resonant peak acceleration at the point 0,0 of the blade, when excited at
the same point by a force S, is:

Schosa

2
BUIT

SL2c05u - SLZCOSa

|7 S ¢ (127)
MWy |X]| ﬂ]lx]l

From Figures 93 to 97 for the fundamental mode, S and |X]l at tow force
levels, where slip does not occur, are known. Ul is the observed modal
damping and W) is the observed resonant frequency. Table 11 gives the
collected results. It is seen that I]z1.04 X 10'3 kgm2 and K](=I]w]2) =
635 Nm/m. These values are very close to those determined from the

measured mode shapes.

7. MEASURED MODAL DAMPING

Further understanding of the test results is afforded by examining the
apparent modal damping H] = Af/f], where f] is the resonance frequency and
Af is the frequency 3 db below peak amplitude (3.01 db actually). Clearly,
since the system behavior is highly nonlinear, this linear system repre-
sentation is not particularly appropriate except as a crude numerical
indicator of the effect of slip. Even so, a graph of é] versus 1/82 ﬂs
most informative, as Figure 108 shows. It appears that the graph of ufl
versus S/uN is nearly a straight line, for each fluid, terminating with
a discontinuity at ny = 0.01 (the linear damping) and finite values of
S/uN. The agreement between analysis and experiment is good.
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RESPONSE - X, METERS

1073 T T T T T T 3
 MODE 2 ]
| K, =272000 Nm/m .
L, =0.0067 .
B, =242
(o]
107 —
- -
107 -3
C o 3
s o AR ;
[~ $=0.084 N B
- o) N =10 Kg 1
| w,= 418 Hz _
— Analysis
O Experiment
L L 1 1 1 1 1
340 360 380 400 420 440 460 480
FREQUENCY Hz
Figure 107. Measured and Predicted Response for Mode 2

(S = 0.084 Newtons, N = 10 kg, Air)
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Figure 108. Measured and Predicted Damping Versus 1/82
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Finally, for very low load levels the residual damping is linear and
apparently hysteretic in nature, and its source is possibly the blade
material itself. For the first mode ny = 0.01 at about 120 Hz. Further
tests on the second and third modes show that n, = 0.006 and ng = 0.0015
for the second and third modes, at 420 Hz and 920 Hz, respectively.

This variation of UM with frequency is again fairly consistent with
published data for such damping.

8. CALIBRATION OF TEST SYSTEM

In order to be able to conduct quantitative measurements of the 1
response of the blade to a known harmonic force, it is necessary to
calibrate the measurement and excitation systems. For example, the
voltage across the fixed resistor in the exciter/oscillator system, at
the load terminals, must be monitored and related in some way to the
force applied to the blade. Similarily, the signal from the acceler-
ometer, after passing through the line driver, the charge amplifier and
the various cables is read at the voltmeter, and the relationship
between this voltage and the actual acceleration must be determined for

the particular system and components used. This is the aim of the
calibration procedures, which must be conducted prior to testing and from
time to time thereafter.

The accelerometer-Zero Drive-Charge Amplifier-Voltmeter measurement
chain is calibrated by introducing a known harmonic acceleration at the
accelerometer and simply observing the R.M.S. {root mean square) voltage

registered at the voltmeter. The known acceleration is generated by a
small electrodynamic shaker, having a steel ball embedded in a hollow
cavity in the shaker table, as illustrated in Figure 109 (step 1). At an
acceleration of just over 1 g at the table, the steel ball will separate
from the floor of the cavity and impacts occur. These are easily noted
as "hash" on the otherwise smooth sinusoidal trace on the oscilloscope
screen. The acceieration at the shaker table is adjusted until the
"hash" just appears. Hence, the accelerometer is calibrated to 1 3. For
the Endevco 22 accelerometer, MB Zero Drive and Amplifier, and HP 3400A
voltmeter, this calibration was:

1 g - 1.91 volts (8 db)
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VOLTMETER VOLTMETER VOLTMETER
0SCILLOSCOPE
OSCILLOSCOPE OSCILLOSCOPE
CHARGE
AMPLIFIER
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»| I—_______
CHARGE || LINE CHARGE LINE
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l___.I:l__.1 DRIVER 4
GAP
SHAKER AI::——
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Fiqure 109. Calibration Setups

For the Endevco Type 2226 accelerometer used in the calibration of the
transducer, the appropriate calibration was:

19 z7.60 volts (17.6 db)

In order to calibrate the transducer, it was necessary to measure
the force generated on a block of iron placed a distance h (the gap)
from the active end of the transducer and having a certain oscillating
voltage V at the output terminals, corresponding to a definite current in
the circuit. A three step process is necessary, since the force cannot be
measured directly. Figure 109 shows the three steps in this sequence.

The first step is to calibrate the accelerometer, as discussed
already. When this step has been accomplished, one has a numerical
relationship between the acceleration seen by the accelerometer and the
voltage registered by the voltmeter, in volts or decibels with 0.707
volts - 0 db, because this is an R.M.S. voltmeter.
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The second step was to calibrate the impedance head, so that it in
turn can be used to measure force. This was accomplished by applying a
known acceleration, using the results of step 1, to a shaker table
supporting the impedance head. The forcg experienced by the crystal of
the impedance head is equal tg (M0 + AM)X, the d'Alembert force corre-
sponding to the acceleration X acting on the mass M0+AM above the crystal.
Mo is the built-in mass of the impedance head itself and AM is the added
mass of the soft iron piece. Since Mo may not be known, one can vary
the mass AM and measure the output voltage VS of ghe force gage,
registered at the voltmeter for each case. With X known from the .
corresponding accelerometer reading, we can then plot a graph of VS/X
against Am for the particular force gage used (Wilcoxon Z 602). The
intersection of the line defined by the measured points with the negative
AM axis corresponds to the mass M0 of the impedance head above the crystal.
With M0 then known, any reading of (Mo + M)X gives the force corresponding
to the acceleration X and the voltage output VS from the force gage, via
the charge amplifier, the zero drive and the cables. It was found that
M0 = 30 grams. Hence one has the calibration; for example, for VS = 13.5
volts, Am = 11.5 grams, the acceleration X was 0.168 g's. Therefore:

13.5 volts = (11.5 + 30 x 0.168 x 9.81 Newtons
1000

or

1 volt = 5.08 x 10”3 Newtons (128)

This result is dimensioned properly by converting Mo and AM to kilograms
and the acceleration (0.168 g's) to meters per second.

The third step is to calibrate the transducer itself, using the force
gage. The force gage was placed on a rigid block and the transducer was
then brought close to the iron block, with separation h as shown in
Figure 109, step 3. The voltage V, corresponding to a particular level
of the oscillator current in the transducer coils, is set at a particular
value, such as 30 volts. The gap is set at a particular value, in this
case 0.043 inches (1.092 mm), by means of a feeler gage or a metal sheet
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of this thickness. The force gage was then connected, again through the
same zero drive, charge amplifier, and cables to the voltmeter. From

the force gage calibration, given in Equation 128, the force was then
calculated directly from the observed voltage. The test data supports

the assumption that S o V, but only one gap setting was tested so that

the other assumption, namely S o 1/h, was not verified. However, the same
gap was used in all tests, so this omission was not too important. The
variation of Sh/V with frequency is shown in Figure 110. One can
therefore estimate S for any given frequency and voltage for the
particular gap setting.

The effective centrifugal load on the blade was provided by two
springs. This force was determined by measuring the change in length of
the springs under load, and this in turn was calibrated by applying
knowri static loads to each spring in turn and measuring the corresponding
length.

9.  TESTS ON BLADE WITH SLIP AT A PLATFORM

With the specific blade used in the earlier experiments on blade root
damping, the use of a gravity loaded rod in a guide allowed a controlled
frictional load to be applied at selected points, as illustrated in
Figures 111 and 112. The same magnetic transducer and pickup accelerometer
were used as in the previous tests, and the gap between transducer and
blade was set at 0.040 inches (1.02 mm) as before. Hence, all calibration
factors were unchanged. The distance X was 2.25 inches (57.2 mm), and at
this point o3 (X/L) = 0.20, as shown in Figure 90. The blade was excited
at various force levels and for various normal loads as before. The
results are summarized in Table 12. Figure 113 shows typical plots of
response versus frequency for the undamped biade and for a normal load of
1.70 kilograms. For purposes of comparison with the analysis of Section 3,
we note that the mode shape in the fundamental mode would not change too
much, so that M] ~ 0.036 kilogram as before. For the blade without the
normal load, the stiffness Ke is the same as before, i.e., Ke = 22,500 N/m.
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The change in resonant frequency from about 125 Hz (unloaded) to 148 Hz
loaded, leads to K] = 30,600 I'/m. The value R] = 0.2 corresponds to
the modal amplitude ¢](5.72/20) =~ 0.20. It is seen that analysis and
experiment agree quite well. A friction coefficient u = 0.3 was
determined for slip between the rod and the blade leading edge.

1072
I —o——
1073
F
5 L
S
J [ O V = 30 VOLTS
€ OV =15 VOLTS
€ I V V £ 7.5 VOLTS }
z :
>
~
& l0_4_
[
103
10 100 1000 10000

FREQUENCY — Hz

Figure 110. Calibration Curve for Transducer
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Figure 111. Blade in Test Fixture
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Figure 112. Test Fixture
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TABLE 12

TESTS ON BLADE WITH SLIP AT "“PLATFORM"
MODE 1, X = 2.25 in (57.15 mm}, R] = 0.20

X

Input N Force S il Freq Response 1 ni
(volts) (kg) Newtons S (HZ) (volts) (metres)
40 0 0.079 0 127 3.75 7.70E-5 0.024
126 2.5 5.21
129 2.5 4.98
130 2.0 3.92
133 1.0 1.87 _6
139 0.50 8.57x15
P 159 0.20 262 -7
: 194 0.10 8.80x10_6
8 171 0.15 1.0 x10
: 152 0.25 3.59
127 4.0 8.22E-5
125 2.0 4.24
123 1.0 2.19
118 0.5 1.19
107 0.2 5.79E-6
95 0.1 3.67
# 74 0.05 3.03
; 48 0.023 3.31
20 0.017
40 0.02
40 1.70 0.079 11.2 147 1.50 2.DE-5 0.0612
143 1.05 1.70
, 152 1.05 1.51
153 1.00 1.42
162 0.50 6.31E-6
185 0.20 1.94
222 0.10 6.72E~7
40 3.52 0.079 23.1 149 3.20 4 ,78E-5 0.0338
146 2.40 3.73
151 2.40 3.49
152 2.00 2.87
155 1.00 1.38
164 0.50 6.16E-6
191 0.20 1.82
226 0.10 6.49E-7
147 4.00 6.13E~5
146 3.00 4,66
146 2,00 3.11
143 1.00 1.62
138 0.50 8.70E-6
123 0.20 4,38
103 0.10 3.12
82 0.05 2.46
43 0.62 3.58
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3 TABLE 12 (CONCLUDED)
|
: Input N Force § o1 Freq Response xl a’
* (volts) kg N S (HZ) (volts) (m) .-_-__‘L__\_
E 40 2.61  0.079 17.1 148 2.50 3.78E-5 0.0405
2 145 1.75 2.76
1 151 1.75 2.54
156 1.00 1.36
164 0.50 6.16E-6
194 0.20 1.76
226 0.10 6.49E~7
147 2.60 3.99g-5
145 1.50 2.36E-5
142 1.00 1.64
137 0.50 8.83E-6
122 0.20 4,45
100 0.10 3.3
79 0.05 2.65
63 0.03 2.50
143 1.00 1.62E-5
137 0.50 8.83E-6
123 0.20 4.38
104 0.10 3.06
83 0.05 2,40
65 0.03 2.35
40 1.35 0.079 8.84 145 2.10 3.31E-5 0.0483
143 1.50 2.43
150 1.50 2.21
154 1.00 1.40
163 0.50 6.24E-6
189 0.20 1.86
225 0.10 6 .54E-7
146 2.20 3.42
142 1.00 1.64
136 0.50 8,96E-6
121 0.20 4,53
102 0.10 3.18
81 0.05 2,52
62 0.03 2.59
40 1.70  0.079 11.2 145 1.50 2.35E-5
142 1.00 1.64
137 0.50 8.83E-6
122 0.20 4.45
100 0.10 3.31
79 0.05 2.65
63 0.03 2,50
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SECTION VI
CONCLUSIONS

The analytical and experimental investigations described in this
report have shown that the apparent modal damping in a simple dovetail
blade can be predicted on the basis of assumed gross slip at the blade
root-disc interface, provided that the exciting force exceeds a certain
threshold amplitude. For driving forces below this level, the damping
arises from other sources such as hysteresis in the blade material or
non-s1ip interaction at the blade root-disc interface. The investigation

has been restricted to a relatively simple problem, and much more effort is

needed if one is to design and build blades which are optimized with
respect to slip damping at high rotation speeds. However, the basic
analytical techniques and physical modelization remain the same.

It has also been shown that a specific configuration of compressor
or turbine blade root geometry, in which part of the root contacts the
disk only at high rotational speeds, can provide high levels of slip
damping, provided that the relevant stiffnesses are properly selected.
The analysis can provide the basis for preliminary design investigations,
but laboratory and spin pit testing will be necessary to establish the
accuracy of the approach and to develop the specific configurations most
appropriate for practical application. The changes in blade geometry
needed to optimize this type of damping do not represent very large
departures from current practice, nor need they represent any weight
increases over current blades.

Apart from experimental and spin pit testing, a logical follow on
effort would investigate the effects of finite disk compliance, and hence
of multiple blade systems, on the dynamic behavior. However, one would
expect high levels of slip damping to still be attainable. It is hoped
that this report will stimulate or encourage such investigations, since
the need for high damping in rotating blades is becoming ever more
urgent.
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