
BLÖBBKTf OF Ü.S. AIR FORCE 
AEDC IECBMCAL IIESARY 

prf\MtT "i 

RUE AN 200 NEUILLYSUR SEINE FRA' 

AGARD CONFERENCE PROCEEDINGS No. 271 

Experiments^ Theory and Modelling 

ilPOlTS 

jjMMiisL^jMuiiij 

DISTRIBUTION, AND AVAILABILITY 
ON BACK COVER 



EXECUTIVE SUMMARY 

As stated in the theme for the meeting:  "Recent experiments have demonstrated the persistence of coherent 
structures in turbulent shear flows and consequently have cast doubt on the usual local transport relations and even on 
the usefulness of Reynolds averaging, used in practically all modelling approaches. 

It is the purpose of the symposium to take stock of the present situation in turbulence research and to attempt, 
by bringing together experimentalists and theoreticians, to map out new directions in modelling and experimentation. 
In order to concentrate on one of the most important applied problems, the symposium deals specifically with turbulent 
boundary layers, in both incompressible and compressible fluid flow." 

The existence of coherent vortex structures has led to renewed interest in Lagrangean descriptions of the flow. 
Current work thus emphasizes flow-visualization methods together with development of sophisticated conditional 
sampling methods in hot-wire anemometry. Both the need for such methods and their usefulness are amply demonstrated 
in the research presented at the symposium. Experimentalists have taken up the challenge presented by the existence 
of coherent structures, and new results are reported from several laboratories. 

Theoreticians interested in these new results face the very difficult task of coming to grips with nonlinear vortex 
interactions, a subject which has been somewhat neglected in recent times. Development of a physically satisfactory 
and mathematically tractable theory is a formidable task and progress is very slow. The decomposition of a fluctuating 
flow field into waves is a traditional and thus familiar approach while decomposition into horseshoe vortices (say) 
presents conceptual as well as mathematical difficulties. 

Computer modelling of turbulent shear flows using Reynolds averaged equations with various closure schemes is 
the most useful technique presently available. However, sooner or later, modelling will have to recognize the experimental 
fact of coherent structures. In both theory and modelling, two-level approaches dealing with definite vortex structures 
on one level and some form of random small-scale turbulence on another level are being studied, and significant progress 
is reported at the meeting. 

Finally, considerable attention is paid in several papers to the early development of turbulence, during or immediately 
following transition. These papers go some way toward establishing that wave packets and turbulent spots can be viewed 
as models and perhaps as prototypes for coherent structures in fully developed flow. 

All in all the symposium served its purpose. Probably the most significant result is cross-fertilization of ideas 
among the three groups of researchers. The communication of significant research results, however, is also evident in 
the papers which follow. 

H.W.LIEPMANN 
Chairman, Program Committee 
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EXPERIMENTAL METHODS AND TECHNIQUES IN TURBULENT BOUNDARY LAYER RESEARCH 

by 

Genevieve COMTE-BELLOT 
Ecole Centrale de Lyon 
Laboratoire de Mecanique des Fluides 
36, route de Dardilly - 69130 ECULLY 
Prance 

1. Introduction. 

The arsenal of methods and techniques available to investigate turbulent 
boundary layers is impressive and this is due to at least three reasons : 

(i) the scientific motivations are manifold. For example, for the basic case of an 
incompressible unheated two-dimensional turbulent boundary layer on plane walls 
without a pressure gradient, the interest lies at present in the detailed knowledge 
of all the physical mechanisms involved. Sophisticated multipoint and multicomponent 
measurements are therefore developed. On the other hand, for boundary layers observed 
in real situations, i.e. with additional effects due to pressure gradients, rotation, 
gravity forces, suction or blowing... the goals are less ambitious, but techniques 
which overcome the inherent difficulties due to the situation encountered in pratice 
are needed. For example, investigation of regions of reverse flow is a matter of 
concern for the aerodynamics of airfoils'. When rotation or buoyancy effects are 
present the achievement of the kinetic energy balance is a legitimate objective. The 
data helping to develop the numerical modeling of the flow are also a strong moti- 
vation in these practical situations. 

(ii)the transducers can be placed not only inside the flow(or. even far from the flow), 
as for any turbulent flow, but also at the wall. Special transducers have therefore 
been developed for the measurement of wall pressure fluctuations and velocity gradients 
at the wall. These wall variables are, of course, relevant to other problems, such 
as the noise emitted by solid-flow interactions, or the vibratory response of struc- 
tures excited by turbulent boundary layers. 

(iii) the signal processing technique has gained a great deal of refinement since the 
1960's due to the development of compact electronic devices and computers. There is 
also the need to understand complex unsteady flows through a limited number of probe 
signals. For example, conditional zone averages are used to take into account the 
random and convoluted edge of the boundary layer. Pattern recognition techniques help 
the detection of particular structures making up the turbulent flow. 

This lecture is intended to be a survey of the three points which have been 
listed. The most recent facts will be emphasized as much as possible, and compared with 
routine techniques such as conventional averages, spectra, or space and time correlations. 
Because of the limited time available, the survey is, however, limited to incompressible 
boundary layers. Even in this case, many references could be given and I apologize in 
advance for any omissions. 

2. Actual objectives of boundary layer research 

As mentioned in the introduction, the state of motivation is different for 
the basic case of the boundary layers without a pressure gradient and for the more complex 
usual boundary layers, so that the objectives have to be listed separately. For the former, 
a brief historical evolution of the objectives is helpful for the understanding of the 
present situation, although a highly documented review by WILLMARTH 1975 a is available. 
For the latter, the additional relevant factors have to be pointed out at once. 

2.1. Bgundary_layer_withgut_a_pressure_gradient 

As soon as a statistical approach of turbulence became available, after the 
pioneering work of G.I. TAYLOR for isotropic turbulence, experimental investigations were 
aimed at the measurement of as many statistical characteristics as possible : r.m.s.values 
of velocity fluctuations, energy-spectra, space correlation functions...(TAYLOR 1936 ; 
KLEBANOFF & DIEHL 1952 ; LAUFER 1951 [the fully developed channel or pipe flows are also 
referred to because of their similarity to boundary layers in the wall region)). 

Interest in the balance of the turbulent kinetic energy came in the early 
fifties (KLEBANOFF 1955, LAUFER 1954), along with the idea of preferred turbulent large 
structures to convey energy from the mean flow to turbulence (TOWNSEND 195 6) . The local 
isotropy expected for fine structures was checked and usually obtained except very close 
to the wall because of the large mean velocity gradients. The non-Gaussian features of 
the velocity and its time derivative were also examined in detail (COMTE-BELLOT, 1965). 

The idea of considering turbulence as a material with some sort of constitutive 
law came later (LUMLEY 1970) and assumed different forms. At first, the memory of turbu- 
lence was obtained through space-time correlations (FAVRE, GAVIGLIO & DUMAS 1957; SABOT 
& COMTE-BELLOT 1972, BLACKWELDER & KOVASZNAY 1972 ; SABOT, RENAULT &   COMTE-BELLOT 1973). 
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Integral time scales in the convected frame of reference are, taking the example of the 
wall region, of the order of L.c''cl / lLt with \x,'i       rms of the velocity component u; 
and LCJ^    the longitudinal integral length scale of  n,;  .A second aspect is the res- 
ponse of the boundary layer to imposed perturbations : introduction of sinusoidal pertur- 
bations by HUSSAIN & REYNOLDS 1972 ; introduction of a turbulent spot into a fully 
developed turbulent boundary layer (HARITONIDIS, KAPLAN & WYGNANSKI 1978 ; WYGNANSKI 1979) . 

Other perturbations of interest are the sudden change in the wall condition, 
for example from smooth to rough walls (ANTONIA & LUXTON 1971) or the sudden application 
of a rotation to create 3-D effects (BISSONNETTE & MELLOR 1974 ; LOHMANN 1973 ; ARZOUMANIAN, 
FULACHIER & DUMAS 1979). 

The need to separate the experimental data issued from the turbulent and non- 
turbulent zones was pointed out by KAPLAN & LAUFER 1969 and by KOVASZNAY, KIBENS & 
BLACKWELDER 1970, although the existence of a time-varying but sharp interface had been 
known for a long time in free turbulent flows (CORRSIN & KISTLER 1955). Since then 
conditional zone averaging have been widely used. 

The way entrainment takes place at the boundary layer edge quickly became a 
main objective for experimental research. The mean entrainment rate is also an important 
boundary condition for the numerical modelling of turbulent boundary layers (HEAD & 
PATEL 1970 ; MARI, JEANDEL & MATHIEU 1976). 

From space-time correlations, KOVASZNAY, KIBENS & BLACKWELDER (1970) obtained 
the. image and motion of the large bulges limiting the boundary layer edge(upward motion 
and rotation). Shortly afterwards, measurements of the Reynolds stress at various distances 
from the front or the back of the bulges (conditional point averages)were made by ANTONIA 
who concluded that most of the entrainment takes place at the front (downstream part) of 
the bulges where the Reynolds ^stress is small and matches the external value. 

The search for identifiable structures inside the boundary layer may be important 
for the downstream growth of the layer (Fig. 1). The problem is, per se, difficult because 
it requires looking for some kind of hidden structures in respect to the conspicuous large 
bulges modelling the free edge. However, many elegant methods have been devised : 
(i) visual observations (KLINE, REYNOLDS, SCHRAUB & RUNSTADLER 1967 ; CORINO & BRODKEY 1969: 
KIM, KLINE & REYNOLDS 1971, GRASS 1971, FALCO 1977), (ii) the four quadrant analysis of the 
U. , V      fluctuations (WILLMARTH & LU 1972, WALLACE, ECKELMANN & BRODKEY 1972, LU & 

WILLMARTH 1973, SABOT & COMTE-BELLOT 1976),  (iii) analysis of cross-correlations between 
velocity gradients at the wall and velocities across the boundary layer (BROWN & THOMAS 
1977), (iv) analysis of the activity periods of filtered velocity signals (RAO, NARASIMHA & 
BADRI NARAYANAN 1971) ,  (v) detection of characteristic patterns or "signatures" in the 
velocity signals (WALLACE, BRODKEY & ECKELMANN 1977 ; COMTE-BELLOT, SABOT & SALEH 1979) . 

Close to the wall ( KJ^-i/o  £•    40) typical structures have been clearly obser- 
ved : low-speed streamwise streaks, pairs of contra-rotating vortices aligned in the 
streamwise direction, occasional lift-up of the streaks with a breaking up into a chaotic 
small scale motion ("bursting" sequence  ). For a recent account of the numerous investi- 
gations, one can refer to the paper which will be given later in this meeting by BLACKWELDER. 
The essential result is that the mean frequency of occurrence of the bursts scales with 
the outer flow variables, $~     and Ue , and not with the inner variables, ^/w-l  and u-_f 
(KIM, KLINE & REYNOLDS 1971 ; RAO, NARASIMHA & BADRI NARAYANAN 1971 ; LAUFER & BADRI  ^ 
NARAYANAN 1971). 

Farther from the wall, several features have been reported : (i) existence of 
organized large scale structures inclined to a preferred angle in respect to the mean flow 
(FALCO 1977 ; BROWN & THOMAS 1977), (ii) correlation between these structures and the 
behaviour of the viscous sub-layer (BROWN & THOMAS 1977), (iii) intermittency of very large 
amplitude of  - p u.V (t)  associated with "ejections" ( v>0, U-< 0  ) whose longitudinal 
dimension is small relative to that of the large structures (of the order of L ^V   and 

L-Y,  respectively, with  Lc^, ~ 0.1 L-*-1/,   (SABOT 1976), a result which holds for 
rough walls (GRASS 1971 ; SABOT, SALEH & COMTE-BELLOT 1977), (iv) existence of "typical 
eddies" (average streamwise length approximately  200 v/*-t    )   formed on the upstream side 
of large scale motions (average length  1,6 F ) and associated with significant Reynolds 
stress contributions (FALCO 1977 ; cf. Fig. 1). 

A plausible dynamic model for these structures is still missing. The difficulty 
is to find the origin and development of the large structures and the link with the wall 
events. However, interesting suggestions have been proposed using perturbation and insta- 
bility concepts (COLES & BARKER 1975 ; BROWN & THOMAS 1977 ; MOLLO-CHRISTENSEN 1971 ; 
LANDHAL 1977) pairing processes (OFFEN & KLINE 1973) and vortex models (THE0D0RSEN 1954 ; 
KLINE, REYNOLDS, SCHRAUB & RUNSTALDER 1967 ; WILLMARTH & B0GAR 1977). The vorticity dynamic 
and its relation with the velocity field (stretching, tilting) is probably of great 
importance. In particular, it has been known for a long time, that the skewness factor 
of the time derivative of the velocity fluctuations is very large in the wall region, 

•2>, — 0.80 at ^"-|/^> — 15, and small near the free edge Sy  i  0.20 at J/I =1 
(COMTE-BELLOT 1959, 1965 ; conventional averages). Some of these measurements have been 
recently repeated by WALLACE, BRODKEY & ECKELMANN 1977 and used in a pattern recognition 
technique (cf. section 4.2).  In this context, multipoint vorticity measurements would 
probably be useful, but are very difficult to perform(cf. section 3.1.1.). The difference 

* The term "burst" was introduced by CORRSIN as early as 1957 when investigating with 
RUETENIK the turbulent flow in a 2 D divergent channel, and was related to large u>0 
signals which occur intermittently close to the wall. 
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in the order of magnitude between the integral length scales related to the longitudinal 
velocity component and the transverse component (   L~Cl>zi    Ci 0.1 L' VH    SABOT 1976) 
is also an important experimental fact which shows that the spatial coherence is given 
by different steps in the sequence mechanism which governs the boundary layer growth. 

Finally, the detailed knowledge of wall-pressure fluctuations from the turbu- 
lent velocity field is a matter of concern. Of course, they are theoretically known since 
governed by a Poisson equation, but the relative importance of the different flow regions 
has to be analyzed, after the first speculation of STERNBERG (1962). In most applications 
(aerodynamic noise, GOLDSTEIN 1976 ; panel vibration, MAESTRELLO 1965 ; cavitation at or 
near walls for material damages, ARNDT & GEORGES 1979) it is the instantaneous space- 
time field which is of interest rather than the overall statistical features. Numerical 
modelling has also been attempted for both (DEARDORFP 1970 ; SCHÜMANN 19 75 ; GROTZBACH 
&   SCHUMANN 1979, SCHUMANN, GROTZBACH & KLEISER 1979), and all comparisons with experiments 
are desirable. New developments with more grid points in the wall region, will be presented 
in the course of this meeting by KIM & MOIN. 

2.2. Mgre_cgmplex_bgundary_layers 

Numerous cases of complex turbulent boundary layers, i.e. with extra strain 
rates, are encountered in technical problems and we shall examine some of the most pertinent 
situations. 

2.2.1. Bgundary_layer_with_adyerse_pressure_gradient 

This is a basic case for flows around airfoils in turbomachinery and aeronautics 
and it has been a subject of research since the pioneering work of SCHUBAUER & KLEBANOPF 
1951. The eventual separation of the boundary layer is the main problem to investigate 
with the urgent need to know (i) the mean velocity profile, (ii) the entrainment rate, 
(iii) the fraction of time during which the flow moves upstream (a sort of internal intermit- 
tency),(iv) the importance of the additional normal stress terms relative to the usual 
shear stress term in the equation governing the momentum and the turbulent kinetic energy 
(cf. Fig. 2) and (V) the possible 3D effects. Up-to-date analyses are given by SIMSON, 
STRICKLAND & BARR 1977 and by MELINAND & CHARNAY 1979. In the former, a preliminary 
investigation of the bursting frequency is also reported, but this problem seems far beyond 
the reach and understanding of such a complex flow, at least in the present state of the 
art regarding boundary layers without a pressure gradient. 

2.2.2. Rgtating_turbulent_bgundarY_layer 

The incentive for studying rotating boundary layers comes mainly from their 
occurrence in turbomachines (e.g. on blades of centrifugal compressors) and their impli- 
cation in secondary losses. 

Since the general situation is complex, a basic model has been considered 
(JOHNSTON, HALLEEN & LEZINS 1972, KOYAMA, MASUDA, ARIGA & WATANABE 1979 (a) and 1979 (b). 
It consists of a whole 2D-channel installed on a merry-go-round whose axis of rotation 
is parallel to the span of the channel. The _Coriolis force is responsible for additional 
terms in the rate of production of Ur     , V2-   and uv  as indicated in Fig. 3. This 
implies that the rotation tends to exchange the energy between the u.  and V     components, 
which results in the further change of the production rate of U.V  . As expected, the 
rotation rate does not appear explicitly in the equation of the turbulent kinetic energy 

<3l  since the Coriolis force produces no net work. 

__ The scaling laws imply a new parameter, the rotation number 'R.Oac ss .At 
or JL"x-/  (j   which is positive for the high-pressure side. In this case, when  *R.0at- 
increases, there is at first the occurrence of secondary flows (TAYLOR - GORTLER vortices) 
and then the development of turbulence due to the dominance of the destabilizing effects, 
so that  \>L / ul  and — Puv"   and finally V  increase with respect to the case of no- 
rotation. The increasing turbulence also tends to prevent the boundary layer from 
separating. Numerical predictions have been recently suggested for the evolution of the 
Reynolds stress tensor. They use the fact that the time during which the turbulence is 
submitted to the rotation is short with respect to its own characteristic time, so that 
linear (rapid distorsion) concepts can be used (BERTOGLIO, CHARNAY, GENCE & MATHIEU 1978) . 

2.2.3. BgundarY_layer_gn_curyed_walls 

Boundary layers on concave or convex walls (Fig. 4) are present in many practical 
situations such as the flow along the casing and the guiding vanes of turbomachines. 
An exhaustive survey is given by BRADSHAW (1973) and additional experimental work is re- 
ported by SO & MELLOR (1973) and HUNT & JOUBERT (1976). The new terms which appear in the 
kinetic energy budget are due to the centrifugal force. They are listed in Fig. 4 and it  
can be noted that U/1\/ has the same role as -ZÄ  except for the equation governing \)L 

(a factor Z difference) and hence for the equation giving Ql  . The boundary layer on 
a concave wall ("K^O) has therefore features similar to those which we have just described 
for the high pressure side of a rotating channel. 

2.2.4. Bgundary_layer_with_thermal_stratificatign 

The implication of buoyancy forces in the lower part of the atmospheric boundary 
layer is well known and has been extensively analyzed by MONIN & YAGLOM (1971). Experiments 
in situ (WYNGAARD, COTE & IZUMI 1971, KAIMAL, WYNGAARD, HAUGEN, COTE & IZUMI 1976, BUSCH, 
LARSEN & THOMSON 1979) and simulations in the laboratory (CERMAK 1971 ; MERY, SCHON & SOLAL 
1974, SCHON 1974 ; ARYA 1975 ,; REY 1977 ; REY, SCHON, MATHIEU 1979 )  are at first oriented 
toward a comprehensive view of the turbulence through the determination of the kinetic energy 
budget (Fig. 5), the velocity and temperature spectra and the turbulent diffusion terms. 
The general state is however less advanced than for unheated boundary layers with a zero 
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pressure gradient. For example, no measurements seems to be available for the memory of 
turbulence nor for the eventual existence of coherent events which could be of a very 
distinct nature. 

However, the large turbulent Reynolds numbers encountered in the atmosphere 
have suggested very fine measurements such as the probability density functions of 
velocity and temperature derivatives to check theoretical predictions concerning the fine 
scale intermittency of turbulent flows ( SHEIH, TENNEKES &  LUMLEY 1971, GIBSON & MASIELLO 
1972). 

The main (and practical) objective remains the dispersion of pollutants for 
which the large and energetic turbulent structures are the most efficient and correctly 
simulated in laboratory experiments (PASQUILL 1968 ; MALHOTRA & CERMAK 1964 ; SOLAL 1972). 
The Lagrangian characteristics which are essential are however difficult to determine 
directly in a way similar to the investigation of SNYDER & LUMLEY (1971) for grid turbu- 
lence. A new experimental approach has recently been suggested by SCHON, DANEL, MELINAND, 
REY & CHARNAY (1979) which uses combined particle displacements and stroboscopic views 
of the flow by a rotating laser beam (cf. Section 3.1.4) . 

Sudden changes in the wall heat flux are also of interest. The case of an 
inversion (sudden drop of the wall temperature) makes it possible to investigate the 
relaxation of the previously structured turbulence (CHARNAY, SCHON, ALCARAZ & MATHIEU 1979 ; 
AWAD, MOREL, SCHON &  CHARNAY 1979) . In practice it simulates the temperature step between 
the atmosphere of a city and that of the surrounding country. 

2.2.5. Bgundary_layer_with_mass_transfer 

Boundary layers on porous wall are encountered in nuclear engineering (isotope 
separation) and in turbomachinery (turbine blade cooling). In the laboratory, they are 
often investigated without a pressure gradient (TENNEKES 1965 ; VEROLLET 1972 ; BAKER & 
LAUNDER 1974). The main feature is again the change of the Reynolds shear stress ; it 
increases for blowing, hence makes possible the artificial thickening of normal boundary 
layers ; conversely it decreases for suction and can become so small that turbulence cannot 
be maintained (inverse transition). More knowledge on the detailed structure of the flow 
is again a pending question for a comprehensive view of all the physical mechanisms involved. 

3. Transducer techniques 

In this section, we describe some of the most useful systems, along with the 
main problems one has to be aware of in order to obtain signals which follow faithfully 
the physical variables under investigation. We divide the presentation in two parts : 
(i) the transducer and remote systems which can be used, in principle, in any turbulent 
field except that the presence of a wall requires special attention, and (ii) the trans- 
ducers which are embedded in the wall itself. 

3.1. Measurements_inside_the_bgundary_laYer 

3.1.1. Hgt-wire_anemgmetry 

Because of their versatility and relatively low cost, hot-wire anemometers are 
well suited to the measurement of a given physical variable at a large number of points or 
to that of several physical variables at a given point. Recent surveys of "multichannel" 
or "multivariant" measurements are given by VAN ATTA (1979) and DEMETRIADES (1979) . These 
hot-wire arrays are usually designed for basic situations in which advanced research 
is possible (Pig. 6 and 7) : 

- arrays of hot-wires (6 to 12) spanning the boundary layer in the transverse direction 
BLACKWELDER & KAPLAN 1976. They permit investigation of the topology of the large bulges 
limiting the free edge of turbulent flows. Thermal tagging is often very useful for 
tracking sharp internal fronts and the investigations on boundary layers (CHEN & 
BLACKWELDER 1978 ; LAUFER 1975) have been developed following those on jets or mixing 
layers (SUNYACH 1971). These arrays are also used to investigate the possibility of 
creating coherent structures by disturbing the flow in a manner which triggers inherent 
instabilities (WYGNANSKI, 1979) or to follow the downstream development of a turbulent 
spot artificially introduced into the boundary layer (HARITONIDIS, KAPLAN & WYGNANSKI 1978) 

- probe with three hot-wires to obtain the three components of the velocity fluctuations 
(LARSEN, MATHIASSEN & BUSCH 1979 ; MOFFATT, YAVUZKURT & CRAWFORD 1979 ). 

- probe with an X -wire and a cold wire to obtain two components of the velocity and the 
fluctuations of temperature (JOHNSON 1959, CHARNAY, SCHON & SUNYACH 1973) . 

- combination of a hot-wire and three cold wires to obtain the temperature fluctuation 
and the u. and ir velocity components (FULACHIER 1979) . The volume of the probe is very 
small (around 0.1 mm between each wire). This array in which the V     component is deduced 
from the lateral flapping of the wake of the upstream wire, is derived from the three- 
wire probe designed by BEGUIER, REY, DUMAS & ASTIER 1973, which is itself an extension 
of a three-wire probe first suggested by REICHARDT as early as 1938. 

- array of four cold wires to obtain the three components of the temperature gradient 
(SCREENIVASAN, ANTONIA &  DANH 1977). The measuring volume is 1.2 x 0.9 x 0.6 mm3. 

- combination of interacting sensors to measure the concentration and two velocity compo- 
nents without ambiguity problems for air-helium mixtures (STANFORD & LIBBY 1974 ; 
LARUE & LIBBY 1977 ; LIBBY & LARUE 1979) . The measuring volume is of the order of 0.7 mm3 

and can be improved by split hot-films. 
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- pyramidal probe with four identical wires located along the edges of a tetrahedron to 
get the longitudinal component U);*. of the vorticity fluctuations (KOVASZNAY 1950, 
KISTLER 1952, KASTRINAKIS, ECKELMANN & WILLMARTH 1979) . The measuring volume is of the 
order of 2 mm^. 

- combination of an X  "Wire and a pair of parallel wires to obtain the transverse vorticity 
component tOy. (FOSS 1979) . 

- combination of a single probe, V probe and X probe to obtain the transverse vorticity 
components u>^_ and My (ECKELMANN, NYCHAS, BRODKEY & WALLACE 1977). The largest wire 
separation is of the order of 3 mm. 

In all these systems attention has to be paid to various questions in order to 
get an accurate response : 

a) aerodynamic interference between the elements of the array ; 

b) spatial resolution of the probe ; 

c) time-resolution of the probe ; 

d) calibration of the sensor ; detection and correction of spurious signals ; 
ambiguity problems ; effect of large fluctuations ; extra cooling due to the 
wall vicinity ; 

e) development of low-cost and high quality electronics to operate the 
elements of the sensor ; 

f) acquisition and handling of the large amonts of data provided by the probe. 

Since vorticity is important for the dynamics of turbulence, we shall concen- 
trate on the two components Use and u3 y- which have been mainly considered so far. 
For the other aspects, one can  consult CORRSIN(1963)and COMTE-BELLOT (1976) or also 
FREYMUTH (1978) for references. 

At first, it is necessary to stress that the spatial resolution of the 
vorticity probe is a severe limitation to vorticity measurements, at least from the compu- 
tation of WYNGAARD (19 69) for isotropic turbulence. In short, the probe volume has to be 
®f the order of the Kolmogorov scale. More precisely, the relevant parameters are •?/ cL 
and y/ •£  , where d.     is the wire separation,  £  the hot-wire length and v?  the Kolmogorov 
length scale. For example, lO-y_     is obtained within 3 % if V/eL    —  0.32 and cL  ~ £ . 

On the other hand, in the measurements of u)«, , the smallest miniature pyrami- 
dal probe which has been built has   cL ^ 2 mm, so that reliable signals can only be 
expected in flows with large viscous lengths, such as the oil channel at the Max Planck 
Institut Für Strömungsforschung, originally designed by REICHARDT and described by 
ECKELMANN (1974), in which i// u f   2 v\    ci  0.63 mm. Ordinary laboratory flows cannot 
therefore be investigated for the time being. Moreover, KASTRINAKIS, ECKELMANN & WILLMATH 
(1979) pointed out that the transverse velocity fluctuations v and it/  induce on the 
pyramidal probe a signal which is of the same order of magnitude as the expected vorticity 
signal (Figs. 8 and 9). Since instantaneous values of v     and vJ~     are unknown, no 
correction is possible. 

For the uJy component, which is probably larger than <*>x.  because of a stronger 
relationship to the boundary layer field, FOSS (1979) pointed out some of the difficulties. 
Besides the spatial resolution, which seems to be here again a severe limitation, FOSS 
has to go through the whole analysis of the hot-wire response to large velocity fluctu- 
ations . 

Some short-cuts have also been suggested, such as the measurement of "J^/Tt • 
Although FOSS (1979) thinks that errors are still possible, multipoint measurements would 
be worth making for boundary layer research by taking advantage of the advanced analysis 
of KUO & CORRSIN (1972) who were able to detect the shape of the vorticity structures in 
isotropic turbulence (2 D elongated filaments). 

The wall vicinity creates also many difficulties : decrease of the turbulent 
scales, additional cooling of the sensors by the near-by wall ; occurrence of large 
fluctuations. In ordinary laboratory situations, boundary layers measurements are wrong 
for about  ^u4 Z"*6 ~ 5 (WILLS 1962 ; see also the accurate comparisons made by ALCARAZ 
& MATHIEU 1975 for the measurement of wall shear stress by different methods). 

To investigate the viscous sublayer it is then necessary : (i) to increase the 
physical dimensions of this layer by use of high viscous fluid, such as glycerin (BAKEWELL 
& LUMLEY 1967) or oil (ECKELMANN 1974) and (ii) to use a miniature probe such as a single 
ended hot split-film (HERZOG & LUMLEY 1979) whose measuring dimensions ( •=: 0.25-0.15- 
0.15 mm) are down to at least one-half of the viscous length >/ul     ( — 0.56 mm). 
In addition, the high Prandtl number of glycerin ( TV  = 2340) has the advantage of 
reducing  considerably the- thermal boundary layer thickness of the probe and, hence, 
of suppressing the cooling by the near-by wall. 

3.1.2. Laser_Doggler_Anemgmetry 

Many advantages of the L.D.A. technique are appreciated in turbulent boundary 
layer investigations : the non-intrusiveness of any probe, the extraction of velocity 
fluctuations from other random variables such as temperature or concentration, the linear 
dependence of the detected frequency on the velocity, the possible detection of reverse 
flow simply by the use of an optical frequency shift applied to one of the laser beams 
(e.g. Bragg cell). The latter is especially useful when investigating separating boundary 
layers (SIMPSON, STRICKLAND &   BARR 1977 ; MELINAND & CHARNAY 1979). 
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Sources of concern exist, however, and we shall concentrate on some of the 
most important or recent ones, particularly those which exist because of the vicinity 
of a solid boundary (for a review of the L.D.A. technique see, for example, BUCHHAVE, 
GEORGE & LUMLEY 1979) . 

At first, a practical problem arises from the fixation of the scattering 
particles on the glass ports which have to be cleaned frequently. A spurious peak can 
also occur in the velocity histrogram at  U= O  and should be deleted. 

Concerning the probe volume (volume within the boundary of the optical fringe 
modulation), improvements are in progress to reduce it by the use of beam expanders which 
are introduced upstream of the front lens. The beam waist d.f     of the focused laser beam 
is reduced as expressed by n , 

a, = 4  £A 
•t    IT   d£ 

where <t{  is the beam waist diameter of the unfocused laser, ±.    the focal length of the 
lens and A the wave length of the laser light. The smallest probe volume which has been 
achieved so far (KARPUK & TIEDERMAN 1976) is a 244_,Aw.  long cylinder with a diameter 
of 61/»>n  . It is, of course, oriented so that the axis of the cylinder is parallel to 
the wall and normal to the streamwise velocity. Compared to a standard single hot-wire, 
the diameter of the probe volume is approximately 12 times larger, but the length of the 
probe volume is approximately 2 times smaller (compared to a  5A». wire whose aspect 
ratio is 100). Further reduction is even expected, although the number of fringes has to 
be kept large enough. 

As for the measuring volumes (the region of space from which Doppler signals 
are received and detected by the optics), it is a priori different from the probe volume 
since truncated by the detector field of view. 0RLÖFF (1979) and BÜCHAVE (1979) stressed 
this point and considered different situations, Fig. 10. For example, for the coaxial 
backscattering optics often used in boundary layer investigations, the length of the 
measuring volume is determined by the focal region tl     of the receiving lens. It can 
advantageously be made smaller than the probe volume length ( 2.C = <*•£ /si\w. ®/z_  ) by 
choosing_a receiving lens with a very large aperture, since if      is given by 

I.—   £F*"A/_DL ( r  focal length, J5 aperture of the receiving lens) 

The spatial resolution of the method, which is critical for boundary layer 
studies, has been estimated by GEORGE & LUMLEY (1973) for the continuous many-particle 
L.D.A. The measuring volume is assumed to be the probe volume so that the weighting 
function describing the signal transmitted by the particles has simply a Gaussian shape. 
The attenuation affecting the measurements of the one-dimensional spectrum is found to 
be of the order of 50 % for the Kolmogorov cut off when -v«.* = Yfä   **•/*)  ~ 0.4 ( el. is the 
standard width of the Gaussian function describing the light intensity in the incident 
beam). For comparison purposes, the attenuation encountered with a single hot-wire is 20 %, 
at the same wave-number, when 9/£ ~ 0.40 ( -6. hot-wire length,  ^  Kolmogorov scale) . 
For the burst type single particle LDA numerical computations do not seem to have been 
carried out. 

An opposite effect due to the finite size of the measuring volume is the 
noise generated by the technique itself. For the continuous many-particle LDA there are 
two spurious signals (i) the so-called "ambiguity noise" which is caused by the random- 
dispersion of particles in the fluid (even in a uniform flow field) and the subsequent 
random phase composition of the scattered light,  and (ii) the "gradient noise" due to 
the spatial variation of the velocity (mean velocity and fluctuation) within the measuring 
volume. For the burst type LDA, the first source of noise does not exist since, in principle, 
there is only one or zero particles in the measuring volume. For the gradient noise, 
KARPUK & TIEDERMAN 1976 estimated the error for residence time weighted signals, assuming 
a rectangular probe volume and linear dependence on the distance to the wall for both 
the mean velocity and the r.m.s. of the streamwise velocity fluctuation. Under these 
conditions, for the time - weighted signals : 

= <•*•„ + 
•it, AZ 

<J 

where   u'ü  is the turbulence intensity at the center of the probe volume, 
S      the velocity gradient 
b  the probe volume width 

the turbulence intensity of the streamwise velocity component 

Fig. 11 illustrates the importance of the last two terms for measurements in the viscous 
layer of a channel flow. More recently, BUCHHAVE, GEORGE & LUMLEY 197 9 have shown that 
these terms are equivalent to those occurring in continuous LDA, so that corrections have 
definitively to be taken into account. Of course, lessening the probe volume would further 
reduce the corrections by a substantial amount. 

The two sources of error which we have just presented (and which act in 
opposite directions) affect the turbulence spectra. Fig. 12 illustrates the results usually 
obtained (BUCHHAVE, GEORGE & LUMLEY 1979 ; MELINAND &  CHARNAY 1979) . Much too high levels 
are obtained at high frequencies, even for burst type LDA, which shows that the error due 
to the velocity gradient within the measuring volume is much greater than the error due to 
the averaging effect of the measuring volume. Hot-wire anemometry seems therefore, at least 
so far, to be better suited than laser Doppler anemometry for measurements of turbulence 
spectra (only a single source of error for which exact corrections are available). 

An important shortcoming of the conventional LDA is that it measures the 
velocity at a single point in the fluid. To obtain the complete flow pattern, the 
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experiments have to be repeated, which requires either an accurate mechanism to move the 
LDA or the flow relative to each other, or a scanning optical system (zoom). The latter 
is very flexible and allows displacements up to several meters (e.g. used to investigate 
the instantaneous flow around a large model of helicopter rotor in a wind tunnel , 
BIGGERS & ORLOFF 1974) . The spherical aberration, however, has to be analyzed in detail 
because the system is either over-compensated or under-compensated when used outside its 
range of design (ORLOFF 1979). The subsequent changes in the measuring volume and in the 
errors have therefore to be estimated in every set-up, of course in relation to the size 
of the flow structures to be reached. 

In many industrial studies it is not possible to position the necessary 
window so as to permit direct optical access to the point under investigation. An ingenious 
"endoscopic" L.D.A. has been therefore designed by DANEL 1976 with the help of optical 
fibers, Fig. 13 a.  The size of the optics is reduced considerably, even when three 
different wave lengths are used to obtain the three components of the velocity. Moreover, 
what is believed to be the first extensive use of optical fibers is presented : a coherent 
fiber (with an oil immersion joint) from the laser to the optics and an ordinary fiber 
from the optics to the photo-multiplier. 

The use of optical fibers can also improve multi-points measurements 
(NAKATANI, YORISUE & YAMADA 1979, Fig. 13 b). Two thin beams obtained by expanding laser 
beams with spherical and cylindrical lenses, are used as the incident beams into the flow 
field. A two-dimensional intersection is hence formed, and a set of ordinary optical fibers 
are used to receive the light intensity in the image plane. Instantaneous velocity profiles 
(both normal and transverse components) have been obtained in a branch tube at 8 points 
from the wall. The spatial range covered ( <ü 1 mm) is small in comparison to that covered 
with the zoom technique. However one can consider focusing the spatial range over the 
specific region of interest in an otherwise large flow field ( wall vicinity, inner edge 
of a separating flow). 

Finally, a detailed description of a turbulent boundary layer also includes 
the analysis of intermittent phenomena such as the directional changes within a separating 
boundary layer or the alternation of turbulent and non-turbulent regions at the free edge 
of the layers. If the former case can be dealt with by the LDA technique alone (of course 
with the use of Bragg cells), the latter requires generally some tagging procedure. 
SIMPSON, STRICKLAND & BARR (1977) used smoke and an auxiliary concentration probe whereas 
MELINAND & CHARNAY (1979) seeded only the fluid of the boundary layer. Intermittency 
coefficients seem to be attainable from the abrupt change which occurs in the distribution 
function of the time interval between two successive validated LDA signals. In hot-wire 
anemometry the occurrence of a similar break in the probability curves of the velocity 
derivatives was sometimes used (SUNYACH 1971) . 

3 .1. 3-. Laser_-_Two-f gcus_yelgcimetry 

This technique is based on the time of flight of a particle between two foci 
(Fig. 14). The fringe pattern of the LDA technique is thus replaced by two discrete light 
spots. Then, a particle which goes through the two foci emits two successive pulses of 
scattered light. This method, suggested by THOMPSON (1978) and TANNER (1973) , was greatly 
improved by SCHODL (1976, 1977) for use in turbomachines. 

The striking advantage of the method lies in the very small dimensions of the 
probe volume : the diameter of the focus is of the order of 10/*i« and the distance between 
the two foci is between 0.3 and 0.5 mm. Measurements can therefore be made in narrow 
channels (such as the blade channels of centrifugal compressors). Moreover the possibility 
to set small apertures in the optics reduces the noise due to the background radiation 
generated by the solid surface even in the backscattering mode of operation (Fig. 14). 

To take the presence of turbulence into account , the line between the two foci 
has to be set at first along the mean flow direction and then at various different angles 
with this direction, in the range of the velocity angle fluctuations. The histograms of 
the time of flight correspond therefore to a whole set of conditional probability functions 
from which the joint probability of the velocity (and hence any moments) can, in principle, 
be  deduced. Various corrections have been developed to take into account the broadening 
effects due to the particle and the probe volume. To carry out the measurements, fast elec- 
tronic equipment is used (a few nanoseconds for a fluid velocity of 500 m/s,  AT ~ 0.8 5yus ) . 
Each measurement, e.g. each setting angle, requires, however, a long time of observation 
(3-5 minutes depending on the particle concentration). 

This method deserves to be used in the future as it provides useful results 
in a hostile configuration. New research has been initiated in this area (VOUILLARMET 
1979) . 

3.1.4. Visualization 

Since the pioneering works of HAGEN or REYNOLDS on turbulent flow visuali- 
zation, techniques have been developed continuously and in many cases they allow quantita- 
tive results to be obtained (MERZKIRCH 1974) . 

Among the well-known techniques there is firstly the hydrogen bubble visuali- 
zation method which has enabled KLINE and his co-workers (1967) to discover organized 
structures in the vicinity of the wall. Later, this method made it possible for KIM, KLINE 
& REYNOLDS 1971 to clarify the chain of events leading to an overall model of bursting. 
Observations of smoke-filled boundary layer (pyrotechnic smoke or oil vapour), with 
emphasis on the smoke concentration, have shown various aspects of transition, the develop- 
ment of turbulent spots and the interaction of boundary layer and free stream (FIEDLER & 
HEAD 1966 ; FALCO 1977).Combined with hot-wire anemometry (although in a manual way), 



the  technique has allowed some particular large and small scales motions to be identi- 
fied (FALCO 1977) . Observation can also be made with cameras moving at a speed chosen to 
go along with selected structures (CORINO & BRODKEY 1969) . 

Thermal tagging is a very convenient way to detect the free edges of turbulent 
flows (SUNYACH 1971). Although the coincidence between the thermal and kinetic boundaries 
has not been proved theoretically, it has been supported by many experiments : measurements 
of the thermal and kinetic intermittency factors or simultaneous recordings of the velocity 
and temperature signals (DUMAS, FULACHIER & ARZOUMANIAN 1972 ; KOVASZNAY & PIRASAT ALI 1974 ; 
CHEVRAY & TUTU 1978) . The method is particularly well suited for the edges of boundary 
layers evolving with turbulence in the external stream (CHARNAY, COMTE-BELLOT & MATHIEU 
1976). When used to detect structures embedded inside the turbulent boundary layer, the 
mixing of fluid elements issued from various Darts of the flow can blur the features of 
the structures to be tracked. It is therefore expected that the method would be limited 
to short times of observation following the heating by nulses of a selected region of the 
flow, (such as in the detection of events coming from the wall FULACHIER, ARZOUMANIAN & 
DUMAS 1978), or to the visualization and detection of sharp fronts which suddenly affect 
the whole thickness of the boundary layer (CHEN & BLACKWELDER 1978) äs already observed 
in mixing layers (SUNYACH 1971, Figs. 15 and 16). 

To pass on now to more recent techniques, many deserve attention : 

a) the "smoke-wire" technique suggested by CORKE, KOGA, DRUBKA & NAGIB (1977) . It consists 
of a vertical wire onto which regulated droos of oil are allowed to fall, coating 
the wire along its length in the form of minute droplets. Discrete streaklines are 
then formed from each droplet by burning off the oil through resistive heating. The 
method  seems to be comparable, in its quality (but perhaps not in its simplicity) to the 
hydrogen bubble technique used in water. Work is in progress at the University of Notre- 
Dame to visualize the transition in the mixing layer of separating bubbles on airfoils 
(MÜLLER, private communication), 

b) the use of a glass-rod to fan-out a laser beam (BANDYOPADHYAY 1978) . Slices of a smoke 
filled boundary layer can thus be illuminated. Cine films combined with hot wire data 
give information on the large scale motions (sharpness of the upstream interface, 
existence of vortices extending throughout the boundary layer with their axis preferen- 
tially oriented at about 40° to the wall. Further details will probably be made available 
during the meeting (HEAD & BANDYOPADHYAY). 

c) the use of fluorescent particles, excited by laser, such as rhodamine 6 G dye or uranin 
dye, in the case of liquids. DIMOTAKIS, LYE & MORRISON (1978) extended the technique for 
gases. This method which has been applied to jets, has shown that external unmixed 
fluid can be found all the way to the jet axis. 

d) the generation of a high speed rotating laser beam to illuminate, at regular time 
intervals, small particles"injected into the flow (SCHON, DANEL, MELINAND, REY & CHARNAY 
1979) . The successive positions reached by the same particle moving in the plane swept 
by the beam can be photographed and analyzed to obtain the velocity component in that 
plane and the corresponding Lagrangian correlation function (Fig. 17) . The trajectories 
of several particles can also be photographed at once if the flow is seeded accordingly. 
In the present experiment, the mirror is made up of 16 facets set on a cylindrical support 
(5 mm in diameter) rotating at 4 000 R.P.M, so that the time interval between two sweeps 
is 1 ms. The injected particles are droplets of dioctylphtalate (diameter =: I /*<**        ). 
Small power lasers are well suited for this exoeriment since the particles receive all 
the light of the laser at the instant they are photographed. 

e) the analysis of the light scattered by highly anisotrooic particles which get oriented 
in a preferred way in the flow, depending on the rate of the deformation-tensor. Direct 
measurements of the velocity gradients OUj /""J*./,  have been attempted (JOHNSON 1975 
with tobacco virus which is 3 000 A in length and 150 %     in diameter  ; PETIT 1979 
with thermal spots induced by a high power laser and distorted by the flow). 

f) small mirrors embedded in tiny hollow glass sphere have also been suggested by WEBB 
(private communication) to obtain the instantaneous and local value of the vorticity 
tensor. This work is now in progress. 

g) three dimensional high speed movies have also been used in an attempt to locate the 
large scale structures of flows (PRATURI & BRODKEY 1977), but difficulties arise because 
the features of the phenomena to track are not sufficiently defined. 

3.2. Measurements_made_by_means_of_transducers_embedded_in_the_wall 

Several physical variables are of interest at the wall such as pressure, wall 
shear stress and velocity gradient for unheated boundary layers. Elaborate devices have 
been developed and data obtained in some cases at a large number of points. 

3.2.1. wall_pressure_measurements 

The status of the measuring techniques and the understanding of the pressure f ieH 
under turbulent boundary layers have been recently presented by WILLMARTH (1975 b). 
We shall therefore concentrate here on specific points. 

At first, there is the attenuation caused in the high frequency range by the 
finite size of the pressure transducer. Corrections have been made by CORCOS (1963, 1967) 
in the case of transducers mounted flush with the wall. Their application to real cases is 
however inaccurate. The first reason is that the measured data from which one starts are 
far too much attenuated (down to 0.011 for   u) oL / Ut  —   10 with «L  diameter of the 
sensor). The second reason is that a simple similarity shape of the cross-spectral density 
function f(u5 "? % ')  has to be assumed for both very high frequency  «O  and very small 
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longitudinal or transverse separation ^\ and *^_ (experimental results are obtained UD to 
<JT*/ Ut, ~  5 i.e.  w W u1/ -^     0.4). 

Pin-hoie transducers have therefore been introduced to improve the spatial 
resolution, the diameter of the probe being 3 to 4 times smaller than the diameter of the 
transducer itself. They have, of course, to be used below their own resonant frequency 
which can be estimated by considering the system as a Helmholtz resonator or by using a 
more elaborate theory for the transient response of the orifice and (or) experimental 
tests  (LI.MURA & HATANAKA, 1973). For example, with the dimensions indicated below which 
are close to the miniature sensors developed by BROOKS & HODGSON 1979. 

0.36 mm 
>J_ t<_ 

^\^m\mst   iiiii .0.1 mm 

.0.1 mm 

the resonant frequency is found to be 41 kHz and 31 kHz by the two methods respectively. 

The flow disturbance at the pin-hole orifice is however a matter of concern. 
BULL & THOMAS 1976 took careful measurements with the same measuring surface which is either 
a wall portion or a pin-hole orifice and found that a definite systematic error exists, 
the pin-hole data being too large by a factor of about 4 when <*> "/uf-f ~Z,  0.10 (Fig. 18) . 
A comparison with the scale of turbulence does not seem to have been made. It is however 
possible, from the parameters which are given, to find that   fc^/u-V :>. 0.10 corresDonds to 

K,«*. %j   2.2. The flow pattern is however not known so far and more information would 
probably be gained from the recent analysis by ROCKWELL & NAUDASCHER (1979) concerning the 
self sustained oscillations of impinging free shear layers, in particular in the case of 
cavities. Anyway, the k,<& limit has to be compared will the smallest scales present in the 
pressure field. This is not an easy question to answer because the pressure at a given point 
depends on the whole surrounding velocity field. The theoretical prediction made by PANTON 
& LINEBARGER 1974 (who keep only the linear terms in the velocity fluctuation when resol- 
ving the Poisson equation governing the pressure field) leads to a cutoff located at 

K>J/a-{~    0.10 i.e around  <-)."/u1? ~ 0.6. On the other hand, a rough estimate can be 
made, assuming that the smallest velocity scales making up the pressure field at the wall 
are those located at the edge of the viscous sublayer. In that case y<*-{./v  d  y\-/ij  ~ -J 
and  UtoWV, ~  Us Sw , which leads to a much higher limit, ^^/uJ-f  ü. 5. More infor- 
mation is certainly to be gained from several experimental works now in progress in air 
(BULL 1979, BROOKS & HODGSON 1979) and in water (BENÄRROUS 1979) , 

The obtention of the 1 D wave-number spectra form the frequency spectra 
presents some difficulties in the lower K,-lO range. The reason is that the convection 
velocity strongly depends on the wave-number (WILLS 1970) . Microphone arrays acting 
directly as wave-number filters have therefore been suggested (MAIDANIK & JORGENSEN 1967 ; 
BLAKE & CHASE 1971), Non zero values of the K, - spectra are then obtained when K, -> 0 
and are most useful in the prediction of the noise radiated by turbulent boundary layers. 

Concerning the multi-point and multi-time measurements, the spectacular displays 
offered by EMMERLING, MEIER & DINKELACKER (1973) , and DINKELACKER, HESSEL, MEIER & SCHEWE 
(1977), by means of a Michelson interferometric technique have to be recalled (Fig. 20) 
The pressure fluctuations cause a deflection of the membrane covering the 650 small hole's 
of the measuring plate (hole diameter 0 = 2 . 5 mm so that ^^s 56) and this causes a shift 
of the fringes which are Photographed - 7 000 frames/s - during 30 seconds. For example, 
positive pressure patterns which are at first intense and roughly circular, then larger 
in the cross stream direction, have been identified.  Connections with the ejection and 
burst sequence will probably be made in the near future. 

Finally, considerable information can be gained from the numerical resolution 
of the full Navier Stokes equations as developed by SCHUMANN in 1975. Comparisons of the 
numerical and experimental values of the wall-pressure level can first be made (the 
numerical value is  p'/f»-'^ "*   2.4 and the experimental data give  p'/pu^  in the range 
2.4 to 3.6 (Fig.19 ). It would also be interesting to compare the eventual organized struc- 
tures generated in the model with those observed in real flows. (Figs 20 and 21). 

3.2.2. Wall_shear_stress_fluctuations 

Hot-film embedded in the wall or laid directly on it can be used to obtain the 
two components of the velocity gradient at the wall, ^U/1«  ana ">W/-)u_ (LUDWEIG 1950, 
LIEPMANN & SKINNER 1954, BROWN 1967). Two questions, however, have to be considered care- 
fully in order to get correct measurements : (i) the non-linearity of the expression 

^ ^ cw y^>    relating the surface heat transfer a      to the surface shear Cu/ ; here, 
corrections are compulsory because the wall shear,stress fluctuations are large (the r.m.s. 
value of  ,u/i>^ is about 0.30 times that of QU/"T>H_ ) ; (ii) the spurious heat transfert 
to the substrate which affects the frequency response of the film (BELLHOUSE & SCHULTZ 1966), 
BRISON, CHARNAY & COMTE-BELLOT 1979) ; the film supporting material has therefore to be 
properly selected and isolated from the wall ; fluids with high Prandtl number (water, oil) 
can also be advantageously used. Calibration of the single film (measurement of OU/lu ) 
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is done by reference to data obtained with a Preston tube or to the static pressure gradient 
in a fully developed pipe or channel flow. For the hot film arranged in a V-configuration 
to measure TW/Ty , it is usually assumed that the sum of the two signals is proportional 
to OU/^u  and that the difference produces a signal proportional to ÖW/-^uy   at the wall. 

Several results have been already obtained. SREENIVASAN & ANTONIA 1977 and 
also SANDBORN 1979 have described the highly skewed characteristics of the probability 
density of "kU/Oui  (with large positive values) a result which is compatible with the skew- 
ness factors of ime  longitudinal velocity component u. (COMTE-BELLOT 1965, KREPLIN & 
ECKELMANN 1979 a). The extensive surveys of BLACKWELDER & ECKELMANN 1979, and KREPLIN & 
ECKELMANN 1979 b, deal with space-time correlations and quadrant probability analysis. 
The results indicate that the pair of counter-rotating streamwise vortices pointed out by 
BAKEWELL & LUMLEY 1967, occur frequently in the wall region and that the low speed fluid 
is pumped away from the wall by the vortex pair. 

The electrochemical technique has been also used to measure the limiting values 
of ^U/K  and 1 U//O3 at the wall (MITCHELL & HANRATTY 1966, MIZUSHINA 1971, SIRKAR & 
HANRATTY 1970, LEBOUCHE 1968 and PY 1973). This technique is the mass transfer analogue 
of the constant temperature anemometer when the chemical reaction at the electrode embedded 
in the wall is working under the diffusion - controlling conditions. This is possible for 
large Schmidt numbers, with an appropriate choice for the reactors (redox couple) and 
addition of a large excess of an unreactive electrolyte to the solution. For applications to 
boundary layers, many refinements have been added to the technique : development of array 
of electrodes (up to 20 in the spanwise direction) analysis of the frequency response, 
effect of the setting angle of the electrode relative to the flow direction, detection of 
reversed flows, analysis of non-linear effects. In particular, HANRATTY and his co-workers 
were able to measure very accurately the spanwise spacing A between the streamwises 
vortices close to the wall, ^L/i>  - 105 (LEE, ECKELMAN & HANRATTY 1974) . 

4. Signal processing 

The conventional averages (i.e. moments, correlations, spectra, probability 
density functions...) are well known techniques. We shall not describe them, but just 
emphasize the large amount of information they provide in many technical problems 
(for example, rotating boundary layers). For more sophisticated problems to analyse in 
basic cases, they constitute the first step of any investigation (localisation of region 
with high skewness factor for the time derivative of velocities ; obtention of the space 
and time coherencies...) In a second step, contributions from various fields or from 
various events are sought. The use of conditional sampling in combination with ensemble 
averaging and the introduction of pattern recognition techniques are then compulsory. 
To illustrate this point, an excerpt from the original story of MOLLO-CHRISTENSEN (1971) 
can be quoted : 

"One has to be careful not to be misled by looking at averages, since averages 
may hide rather than reveal the physics of a process. An absurd example may serve as an 
illustration. Say that a blind man using a road bed sensor attempted to find out what motor 
vehicles looked like. Happening to use a road only traveled by airport limousines and 
motorcycles, he concludes that the average vehicle is a compact car with 2.4 wheels. 
He might later attempt to construct a theoretical model of the mechanics of. such a vehicle, 
and may attain fame for a tentative model that looks like a motorcycle with a sidecar whose 
wheel is only in contact with the ground forty percent of the time. In turbulent shear 
flow, this kind of a vehicle has been called an "average eddy", and may or may not exist..." 

4.1. Conditional_ayerages 

4.1.1. Zgne_conditional_ayerages 

In this method separate averages are obtained inside and outside the turbulent 
bulges occurring at the free edge of the boundary layer. This involves the generation of 
an intermittency function X(.t) which takes the value unity in the turbulent region and the 
value zero in the non-turbulent region. Many ways to generate "I(.t]  have been suggested, 
based either on the velocity signal alone through the combination of one or more time 
derivatives (KAPLAN &  LAUFER 1969, KOVASZNAY, KIBENS & BLACKWELDER 1970, SUNYACH 1971 , 
HEDLEY & KEFFER 1974, KIBENS, KOVASZNAY &   OSWALD 1974) or on the concentration of a 
contaminant introduced into the turbulent part of the flow, such as heat (SUNYACH 1971, 
LARUE 1974, CHEN & BLACKWELDER 1978, ANTONIA, PRABHO & STEPHENSON 1975). The latter 
solution is the only one possible when turbulence exists in the free stream (CHARNAY, 
COMTE-BELLOT &  MATHIEU 1976). Uncertainties affect the signal ~t{.t)     so that the use of 
pseudo-turbulent signals has been suggested to improve the settings of the intermittency 
meter (ANTONIA & ATKINSON 1974, KIBENS, KOVASZNAY & OSTWALD 1974). On the other hand, when 
thermal tagging is used, the temperature in the external "cold" zone rises slightly when 
VV~  decreases (CHEN & BLACKWELDER 1978 ; CHEVRAY & TUTU 1978). This could be due to 
molecular conduction (FULACHIER, ARZOUMANIAN & DUMAS 1978). It is therefore necessary to 
estimate the amount of fluid which is mislabelled by the threshold (ANDREWS 1972, 
HAVERBEKE, WOOD & SMITS 1978 ; BLACKWELDER 1979). Such an attempt to find the correct 
T(t) may be considered as similar to the pattern recognition technique (section 4.2). 

Many examples of zone averages are now available. In Fig. 22 we have selected 
the results which deal with the Reynolds stress for a turbulent boundary layer evolving 
in an external flow with free turbulence (after CHARNAY, COMTE-BELLOT and MATHIEU 1976) . 

4.1.2. Point_cgnditignal_ayerages 

In this case samples are taken at a specific point, such as on the turbulent/ 
non-turbulent interface, i.e". when 3T(fcJ  jumps from zero to unity or conversely. 
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Comparisons between the leading and trailing edge characteristics are thus possible. The" 
can be moreover extended to points located near"the edge, on either side, by adjustement"* 
of the time delay and application of the Taylor hypothesis, using the local*mean velocitv. 

The most interesting examples - Pig. 23 - deal with the Reynolds stress distri- 
bution which can be associated with the entrainment of the bulges (ANTONIA 1972, HEDLEY 
& KEFFER 1974). Large values occur at the trailing edges of the bulges. They do not match 
the external values so that entrainment is negligible. On the contrary, small values occur 
at the leading edge where most of the entrainment takes place. 

Instead of being triggered by the signal 'Xi^)   the sampling can be driven 
by a well defined external signal. Ensemble averages then allow us to retain only the deter- 
ministic (periodic) components. In that case, the electronic equipment is sometimes called 
"signal averaging" or "eductor". Then, subtraction of this ensemble average from every 
sample allows us to obtain the random components exclusively. An example is given in Fig. 25 
bis, for the pressure measured on one blade of an industrial rotor. The pulse signal is 
given by the rotating shaft. Upstream of the rotor there is a rod which creates a wake 
which strikes the selected blade at each revolution (MICHEL, ARBEY & SUNYACH 1979) . This 
set-up is an extension, for rotating machines, of the wake cutting experiment of FUJITA & 
KOVASZNAY 1974. It allows us to estimate the discrete and large-band noise radiated in 
the far field, from the periodic and random pressure fields on the blade. 

Up to this point, only one condition has been considered to select the samples. 
It is possible to restrict the choice by several conditions. An example is the four quadrant 
analysis of the instantaneous  uir(t) product in wall shear flows (LU & WILLMARTH 1973) . 
If one tries to get the signature of the ejection events, three conditions are needed : 
U CO  , V > O  and \ \J-\T\ /  u'v' "?•/•  H , an adjustable threshold to separate the "weak" 

from the "violent" ejections (COMTE-BELLOT, SABOT & SALEH 1979 ; Fig. 24). 

4.1.3. Conditignal_ayeraging_with_cgrrectign_for_randgm_convectign_velocity 

In the above sections, the detector signal is taken precisely at the point 
which is selected for the measurements, or in its immediate vicinity. When a large down- 
stream distance separates the location of the condition from the location of the measure- 
ments, a phase scrambling affects the received signals with respect to the detector signal 
because of the random motion of the pattern (e.g. variation in the convection velocity) . 
It is therefore necessary to apply a delay time to the received signal to recover the event 
of interest (Fig. 26). An iterative process is then developed to select the optimum delay 
time for every signal (BLACKWELDER 1977 ; WYGNANSKI 1979).The "realigned" signals are 
then used for the correct ensemble average to be performed. In some cases, the motion and 
the evolution of the event to track are so large and unpredictible that difficulties subsist. 
For example, the spanwise buffeting of a turbulent "spot" in a turbulent boundary layer is 
almost beyond reach (HARITONIDIS, KAPLAN & WYGNANSKI 1978) . 

4.2. P§ttern_recggnitign 

This technique has been introduced by WALLACE & BRODKEY & ECKELMANN 1977. 
A pattern is first devised for a selected physical variable on the basis that it is relevant 
to a typical event or flow structure. For examole, in the wall region, large values of the 
skewness factors of the time derivative of the longitudinal velocity components 
J>, = (_^u-/")bP /[(.^"/'it)1]^   are obtained ( 3( ~ 0.80 for 20 .£ 1"4/<- ^ 50 ' Fi<3-   27) • 

A pattern which allows such a feature is therefore suggested for the velocity component. 
It consists of a gradual deceleration from a local maximum followed by a strong acceleration 
(Fig, 28) . This pattern is then applied to the measured signal  LV. <Lt)  as a "filter" to 
select the parts which meet the criteria. Rather broad thresholds are used for the rate of 
increase and decrease of u(.t)  so that the number of accepted events is large enough to 
form a significant collection. Comparisons between this technique and the four-quadrant 
analysis are interesting, but difficult, because of the difference which exists in practice, 
in the conditions imposed on the signals in the two methods. 

In the development of the technique we can expect simultaneous multi-point 
measurements. The excitation by an external source of the coherent structures themselves 
would be rewarding both for its experimental advantage (recognition of "evoked" structures, 
WYGNANSKI 1979) and the comprehension it would bring of the growth of boundary layers. 

Conclusions 

The state of the art in the investigation of wall turbulent shear flows is 
different for the fundamental case of boundary layers without a pressure gradient than for 
the different cases met in practice (atmospheric boundary layers, boundary layers along 
curved walls and on rotating blades in turbomachines). In the first case, much information 
has been obtained not only of the statistical characteristics of the flow but also of the 
existence of recognizable structures. Interest lies, at present, in the study of the physical 
mechanisms which control these structures and the growth of the boundary layer. In practical 
situations, the values of the extra-strains are of primary importance both for a general 
understanding of the flow and for the satisfactory modelling needed in engineering design. 

It follows that some future trends in experimental boundary layer research can 
be forecast. Attention will probably be paid, at first, to multi-point and multi-time measu- 
rements in order to understand more precisely the origin and the evolution of the main events 
making up the boundary layer. Hot-wires arrays are well suited for this type of investi- 
gation. This is especially true when thermal tagging is used, as the hot-wires, which are 
operated at a low overheat ratio, do not require sophisticated electronics. Aerodynamic 
pertubations have, however, to be analyzed before accurate measurements can be made. As for 
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the  L.D.A.   technique  which  is   ideally  suited  to   separated  flow  investigations,   the 
introduction  of  optical  fibers  will  probably  bring refinements   and  adaptability  to  various 
configurations   (not only  for multi-point measurements  but  also  for   those  made  at  locations 
difficult  to  reach with  conventional   laser   instrumentation).   On  the  other  hand,   visuali- 
zation  of   large  parts  of  the  flow   (in  one  or  several  planes,   with  one  or   several   colors) 
and  the  quantitative  processing of  this  optical  data would merit  investigation. 

Concerning  the  processing  techniques,   the  use  of  conditional  averages  will, 
no  doubt,   remain mandatory  in  all  the basic  flow  configurations.   The pattern  recognition 
technique will  be  a  powerful  way  to  trace   important  events.   Of  course,   intuition   is  needed 
to  define   the   specific  pattern   to  be   looked  for  and  the  normalisation  conditions   to  be 
introduced  for   subsequent  processing.   A  simplier  use  of  this   thechnique   is   the   investi- 
gation  of  the  response  of  the  flow  to  known  perturbations   applied  to  the  boundary  layers. 
Corrections   for  phase   scrambling  have  to  be  considered when  following Lagrangian  events 
in  a  Eulerian  frame,   but  they may be  beyond  reach when   large  random motions   are  present. 

In  conclusion,   much  can  be  gained  in  the  understanding  of  turbulent  boundary 
layers  by  keeping  abreast  of   similar  developments   in  other  flows   (jets,   mixing  layers) 
and  also  of   the   stability  studies   in  both  linear  and  non-linear  analyses.   Attention  should 
also  be  paid  to  the  development  of  direct numerical   simulations  of  turbulent  flows. 
The   space-time  evolution  of  the   structures  which mimic   those  met  in  real   flows   could  thus 
be  more   easily  understood  and,   perhaps,   better  controlled   in   future  research. 
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Fig. 1 - Visualization of a turbulent boundary layer without 
a pressure gradient. Light plane is normal to the wall 
and parallel to the stream direction, "Rc_ ~  4 OOO 
(PALCO 1977) 
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Ten hot-wire rake. The wires can be 
positionned at 1, 2, 3, 4, 6, 8, 11, 15, 
19 and 25 mm from the wall (HARITONIDIS, 
KAPLAN & WYGNANSKI 1978) 

Spanwise rake of hot-wires 
(courtesy of J. HARITONIDIS) 

!    5 

Pour-wire probe for simultaneous- -. 
measurements of lÖ/^x .T^ÄlT1 ' '$•  
(SREENIVASAN, ANTONIA & DANH 1977) 

Four-wire probe for measurement 
of u.,\r; ©"   (FULACHIER 1979) 
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Fig. 6 - Examples of wire arrays 
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Sketch and circuit of the 
Kovasznay type vorticity probe 
for measurement of  Wx 
(KASTRINAKIS, ECKELMANN & 
WILLMARTH 1979) 
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View of the Kovasznay type 
vorticity probe (KASTRINAKIS, 
WALLACE, WILLMARTH & BRODKEY 1978) 
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Sketch of five sensor probe (V probe, 2 and 3 ; X probe, 4 and 5) ; 
U probe, 1) for measurement of two components of vorticity oJ, and uv  
(ECKELMANN, NYCHAS, BRODKEY & WALLACE 1977) Y " 

Fig. 7 - Examples of wire arrays (Cont'd) 
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Fig. 8 - Calibration curve of the 
Kovasznay type vorticity probe 
with respect to uJx ;  ^wx. 
is the voltage across the 
diagonal points A-C- in Fig.7. 
(KASTRINAKIS, ECKELMANN & 
WILLMARTH 1979) 

Fig. 9 - Change of the vorticity 
signal EujK f°

r various 
yaw and pitch angles *f' 
and S-'      (KASTRINAKIS, 
ECKELMANN & WILLMARTH 
1979) 
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Fig. 10 - Sketch showing the difference 
between the probe volume and 
the measuring volume in LDA 
(BUCHHAVE 1979) 

Fig. 12 - Limitation of the LDA for power 
spectra (MELINAND & CHARNAY 197 9) 
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Fig. 11 - Corrections for LDA measurement 
close to a wall 
(KARPUK & TIEDERMAN 1976) 
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A Coherent fiber coupling B Ordinary light guide coupling 

(a) "Endoscopic" LDA system (DANEL 1976) 
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(b) LDA for the measurement of flow velocity profiles 
(NAKATANI, YORISUE & YAMADA 1979) 

Pig. 13 - Use of optical fibers in LDA systems 
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(a)   Princ iple  of  a  time  of   flight  ve 
locimeter   (TANNER   1973) 

SOLID SURFACE 

PROBE VOLUME 
POSITION 

(b) Optica 1 set-up for 
turbomachinery applications 

Fig. 14 - Laser-two-focus velocimetry 
SCHODL 1977 



1-28 
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Fig. 15 -  Instantaneous temperature fluctuations in of a two-dimensional mixing layer. 
The six temperature probes are 1.5 mm apart across the layer and are located 
8 cm from the origin. Note the sharp temperature gradients existing across 
the layer, which are believed to be associated with vorticity layers. 
(Arrows show one such layer). The temperature difference between the two 
streams is 25 °C. The high-velocity side corresponds to the lower traces. 
U, = 18 m/s ; U^ = 0. Time increases from left to right. Horizontal scale : 

1 cm = 1/150 s ; vertical scale : 0.1 cm = 2.8°C. (SUNYACH 1971 ; 
LAUFER 1975) . 
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Fig. 16 - Simultaneous temperature signals in a turbulent boundary layer on a    •_ 
slightly heated plate (~ 12°C) . The horizontal time span is 18.7 UtAt/<) 
( Ue.  - 4.57 m/s, T~  = 9.42 cm) . A particular temperature front is 
denoted by the arrows (CHEN & BLACKWELDER 1978) 
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rotating 
mirrors 

Flg. 17 - Set-up of the rotating laser beam and example 
of trajectories in a mixing layer 
(SCHON, DANEL, MELINAND, REY & CHARNAY 1979) 
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Pin-hole data 

Piezoelectric data 

Pig. 18 - Power spectrum of wall-pressure fluctuations : comparison 
between piezoelectric data and pin-hole data (BULL & THOMAS 1976) 
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Fig. 19 - RMS value of the wall pressure fluctuation and comparison 
with numerical prediction (BENARROUS 1979) 
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Fig. 20 -- Contours of instanteneous pressure fluctuations as measured 
by EMMERLING, MEIER & DINKELACKER 1973, The time interval 
between the two maps is 3.6 ms. 

Fig. 21 - Contour-line plots of the wall pressure fluctuations as obtained 
in numerical simulation of the flow (SCHUMANN 1975) 
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Fig. 22 - Example of zone averaging : values of Reynolds stress inside the 
bulges (a) and outside the bulges (b) for a turbulent boundary layer 
with free stream turbulence (CHARNAY, COMTE-BELLOT & MATHIEU 1976) 
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Fig. 23 - Example of point averaging : distribution of Reynolds stress 
across the interface of a boundary layer without a pressure 
gradient (HEDLEY & KEFFER 1974) 



1      -0.5 0 0.5 1 
t: time    (ms) 

uv(t) 
U'V 

-l> 

-5 

H« 

f.:   0,25 
o:   1 
°:    2 
v:   3 

I Sweeos 

1 
-1 0.5 0 

Fig.   24 Signature of ejections and sweeps : ensemble averages of the u. V  and UAH signals around the time 
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Fig. 25 - Exanrole of periodic averaging : wall pressure spectra on a rotor blade 
in the case"of upstream disturbances (MICHEL, ARBEY & SUNYACH 1979) 

P(0,tn) upstream  Ax = 0 
y*=15 

P(6,tn*TK) 
downstream Ax = 6 

Fig. 26 - Conditional averaging with correction for random convection.The upper 
curve shows the original pattern P(0, tft)obtained from the marked indi- 
vidual time points of the u.(0,fc) signal upstream. The indicated time 
points of the downstream signal in the middle trace are used to form one 
of the P ( o ,  tw + T-ic ) patterns. The variance between the patterns as Ci< 
is varied is shown at the bottom. The minimum value at "CK* corresponds 
to the "best" match between the patterns. (BLACKWELDER 1977) 
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Fig. 28 - Pattern recognition technique : sketch of the signal 
retained for positive ">u/"»t skewness 
(WALLACE, BRODKEY & ECKELMANN 1977) 
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ETUDE EXPERIMENTALE DES APPORTS ET DES EJECTIONS 
DE FLUIDE DANS UNE COUCHE LIMITE TURBULENTE 

M. ELENA, L. FULACHIER, R. DUMAS 

Institut de Mecanique Statistique de la Turbulence 
L. A. C.N.R.S. 

12, Avenue General Leclerc - 13003 - MARSEILLE 

SOMMAIRE 

Les resultats experimentaux presentes concernent aussi bien la structure de la zone interne 
qu'externe de la couche limite. 

Pour Studier la phenomenologie du champ turbulent, la chaleur est utilisee corame contaminant 
passif dans de nombreux cas d'experiences. 

Dans la sous-couche viqueuse, l'ecoulement a un caractere d'intermittence tres net; en particulier 
les apports de fluide en provenance des zones plus eloignees de la paroi l'emportent nettement devant 
les ejections et penetrent,par instant,jusqu'au sein de la sous-couche. 

Lorsque l'on s'eloigne de la paroi, le nombre d'apports diminue et devient du meme ordre que 
le nombre d'ejections de la zone pleinement turbulente.  Les mesures de correlations spatiotemporelles 
laissent ä penser qu'il existe au moins dans la zone interne une liaison entre les apports et les 
ejections qui sont preponderantes. 

Des mesures de probability's conditionnelles montrent que les trajectoires de ces perturbations 
sont en accord avec celles obtenues par visualisations ou mesures de diffusion thermique^ ä partir d'un 
point situe ä la paroi. 

En outre,des mesures de correlations spatiotemporelles en trois points indiquent que les ejections 
sont plus coherentes et plus minces en envergure que les perturbations correspondant aux apports. 
Ces ejections s'elargissent lorsque l'on s'eloigne de la paroi et diffusent ä travers la couche limite. 

SUMMARY 

The experimental results which are presented concern the structure of the internal and external 
zone of the boundary layer. 

To study the turbulent field, heat is used as a passive contaminant, in many experiments. 

In the viscous sublayer, the flow has obvious intermittent characteristics; particularly the 
inward flows from regions which are farther from the wall prevail over the outward flows and penetrate 
the sublayer randomly. 

As the number of inward flow decreases with uncreasing distance from the wall, it becomes of 
the same order as the number of outward flow in the fully turbulent region.  The measurements of the 
space-time correlations reveal that, at least in the internal region, there exists a linkage between 
the inward and the outward flows, the latter being the more dominating. 

Measurements of conditional probabilities show that the trajectories of these disturbances are 
in agreement with the trajectories obtained through visualizing or measuring thermal diffusion from 
a point located at the wall. 

Additionally  measurement of three point space-time correlations indicate that the outward flows 
are more coherent and spanwise thinner than the disturbances corresponding to the inward flow.  These 
outward flows expend when moving off the wall and diffuse through the boundary layer. 
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LISTE DE SYMBOLES 

*, y( J     Coordormees rectangulaires 

X., f* CO    Coordonnees cylindriques 

fc Temps   

( ) . ( /  Valeurs moyennes, fluctuations.avec \    ) —O 

Ct Rayon du tube     - 

p\ Facteur d'aplatissement de la grandeur J   \ '\~%/\PJ 

J»        Facteur de dissymetrie de la grandeur fc    •    Jy • J  / »^ / 

U/.V.W    Composantes du vecteur vitesse instantanee 

U. i        Vitesse moyenne de debit ä travers le tube  : u^ = (^/7Ta?-)J  ai'nrcAr 

W.£        Vitesse ä l'exterieur de la couche limite, ou sur l'axe du tube 

<JL# Vitesse de frottement 

f C    = *>l» 
O  0«q    Epaisseur de couche limite, ä, u = u"e, ä ü = 0.99 ue I> —i        A 

5**       Epaisseur de quantite de mouvement: couche  limite     <§ -J   (PU'/>e «K*1 -  /"«../ / 

tube $**=l<*/*) f (Pa/fr^X"- &/ue)dW«)a 
•»0 

Temperature instantanee ^Q e 
0^ Temperature de debit      6^ = (£ /f^ U.^ of) (  f U <5 f* df 

Qa Temperature ä l'exterieur de lacouche limite, ou sur l'axe du tube 

Qp Temperature ä la paroi 

V Coefficient de viscosite cinematique 

\ Masse volumique Q 

?4 Masse volumique de debit      f^ - ( 1/oNj) J      f & «rdr 

"• Decalage de temps 

Q Facteur d'intermittence 
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1.  INTRODUCTION 

Bien que la couche limite turbulente soit bien connue en ce qui concerne ses proprietes moyennes, 
le mecanisme profond de creation  de la turbulence pres de la paroi, notamment, et de son interaction 
avec la turbulence preexistante est encore un sujet de discussions.  Des Schemas d'ailleurs partiels 
sont proposes; on peut se reporter aux articles recents de Praturi et Brodkey (1) et de Blackwelder (2). 
Une vue generale de lacouche limite est donnee par Wiltnarth (3).  Cependant tous les auteurs sont 
d'accord sur un certain nombre de faits : il se forme continuellement pres de la paroi (y +<w 10) des 
structures allongees instationnaires de periodicite moyenne en envergure de l'ordre de 50 P  (4) 

qui sont ejectees dans la zone interne (y+j^lOO) en donnant lieu ä des fortes bouffees de turbulence, confor- 
mement auxvisualisations de Kline et al.(5).  Ce processus semble etre lie ä celui observe par Corino 
et Brodkey (6); les bouffees de turbulence sont decrites comme resultant de 1'interaction de fluide ä 
vitesse relativement elevee("sweeps")avec du fluide plus lent en provenance de la paroi (''ejections"). 
Certaines analogies sont faites avec les instabilites conduisant ä la formation des "spots" de tur- 
bulence dans la transition laminaire-turbulent sur une paroi lisse; en particulier, le phenomene est 
essentiellement tridimensionnel.  Quant ä la periodicite moyenne du phenomene^ eile semble plutot etre 
liee aux parametres globaux u et 8(7) • Toutefois,   il n'est pas etabli que le processus conduisant ä 

une bouffee de turbulence soit sous la dependance de grands tourbillons preexistant dans la zone 
pleinement turbulente par exemple.  La question est egalement posee en ce qui concerne la diffusion des 
bouffees de turbulence en aval ä travers la couche limite; en particulier,est-ce que les protuberances 
de turbulence lans la zone d'intermittence sont en relation directe avec les ejections depuis la paroi 1 
A ce propos^notons que,le volume des protuberances etant beaucoup plus grand que celui des ejections^ 
il ne pourrait s'agir que d'entrainement de fluide^de facon analogue au grossissement d'un tourbillon 
au cours du temps(ou alors d'un phenomene "d'apairage". 

Les resultats experimentaux qui sont presentes ci-apres concernent principalement la frequence 
des perturbations, ejections et apports, leurs trajectoires pres de la paroi, leurs developpements ä 
travers la couche limite et enfin leurs caracteres tridimensionnels.  Ils sont analyses compte tenu des 
Schemas precites.  Notons que nous app^lerons ejections,des sequences oü le fluide est en provenance 
d'une region plus pres de la paroi que la position de mesure consideree; il n'y a pas necessairement 
concordance avec les "ejections" precitees, observees par Corino et Brodkey.  Nous appelerons apports, 
des sequences ou le fluide est en provenance d'une region plus eloignee de la paroi que la position 
consideree; lä encore il n'y a pas necessairement concordance avec les "sweeps" mentionnes precedemment. 

Les techniques de mesure utilisent essentiellement les correlations spatiotemporelles triples 
(8,9) en deux points et en trois points (10 a et b) ainsi que les contingences spatiotemporelles 
(11, 12).  La paroi etant legerement chauffee, la chaleur est utilisee comme contaminant presque 
passif servant d'indicateur (13, 14, 15). 

2.  METHODES DE MESURES ET CONDITIONS EXPERIMENTALES 

Les mesures ont ete effectuees dans deux types d'ecoulements. Les zones ä proximite de la paroi4 

et notamment la sous-couche visqueusejont ete analysees ä partir de mesures effectuees dans un conduit 
cylindrique de section circulaire; au delä de y+S20, l'analyse a ete faite ä partir de resultats 
experimentaux obtenus dans des couches limites de plaques planes. 

Dans ces differentes experiences, les parois pouvaient etre legerement chauffees, les ecarts de 
temperature maximaux,8 -0 , etant de l'ordre de 20 K. Avec les vitesses maximales utilisees p  e 
(UA<10 ms-'  ), meme au voisinage de la paroi, on peut considerer que la chaleur se comporte comme un 
contaminant pratiquement passif, tout au moins en ce qui concerne les fluctuations (14).  Toutefois, 
on doit signaler que meme ce leger chauffage de la paroi entraine une modification de la composante 
v de la vitesse moyenne perpendiculaire ä celle-ci (16, 17). Ainsi, l'etude de la structure du champ 
turbulent a ete faite soit ä partir des fluctuations des composantes u' et v' de vitesse, soit ä 
partir des fluctuations de temperature.  En effet, la distribution de la temperature instantanee, 0, 
est sous la dependance du vecteur   vitesse instantanee (14, 18). Lorsque la chaleur peut etre 
consideree comme un contaminant passif, comme c'est le cas ici, sa diffusion par la turbulence peut 
etre utilisee pour decrire le champ turbulent et plus specialement les structures a grandes echelles. 
En d'autres termes,comme le souligne notamment Bradshaw (19), la chaleur permet de marquer le fluide; 
de plus,1'utilisation d'echantillonage conditionnel permet de connaitre la provenance des masses 
fluides considerees. 

2.1.  CONDITIONS EXPERIMENTALES 

2.1.1. Conduit Cylindrique 

II s'agit d'une conduite de section circulaire (15) de diametre 2a = 76,6 mm,de longueur L = 1116 mm, 
dont la paroi peut etre chauffee.  Elle est precedee d'un tube de 52 diametres de long environ dans 
laquelle se developpe un ecoulement turbulent isotherme.  Les mesures sont effectuees dans une section 
situee ä 12,8 diametres du debut du chauffage.  Les grandeurs caracteristiques de 1'ecoulement sont 
les suivantes :  u =8,27 ms_l , u, = 6,7 ms~l , u= 0,37 ms-1 , Re = 1440 

6p ~8e = 25 K,8p ~tk  = 22 K 

2.1.2. Couche Limite Isotherme 

Les mesures concernant les fluctuations de vitesse ont ete principalement effectuees dans la 
couche limite turbulente se developpant sous une plaque plane suspendue dans une veine d'experiences Sj 
(0,8 x 0,8 x 4 m), ä 45 cm en dessus du plancher (20).  A la section ou les mesures ont ete effectuees 
(position du point P amont^voir paragraphe 2.4)., les conditions experimentales  S sont les suivantes : 
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-1   8=— ---    -' "e = 16 ms  , 0= 54mm, u^ = 0,59 ms . Re  = 6120 • 

Le gradient longitudinal de pression statique est negligeable :  ——— —— — "0,9.10 

2.1.3. Couche Limite Sur Paroi Chauffee 

Les mesures concernant les fluctuations de temperatarre ont ete faites dans la couche limite 
turbulente se developpant sur la plaque plane chauffee constituant le plancher de la veine d'experiences 
(14) d'une autre soufflerie S„ (0,56 x 0,56 x 4,8m). Les caracteristiques experimentales dans S„ sont 
les suivantes, ä la section ou les mesures ont ete effectuees (position du point P amont,voir paragraphe 
2.7). 

u =12,2 ms~ , 0=  59 mm, u = 0,46 ms~ , 

Re = 4 750,6  -0S22 K. 
p  e 

Le gradient longitudinal de pression est legerement negatif :  J9  —!_£,-44J0~6 . 

2.2. TECHNIQUE DE MESURE DESFLÜCTUATIONS DE VITESSE ET DE TEMPERATURE 

Les signaux relatifs aux fluctuations descomposantes u' et v' de la vitesse ont ete obtenus en 
ecoulement isotherme ä l'aide d'anemometres ä fils chauds fonctionnant ä resistante constante, avec 
circuit de linearisation.  Ces fils, en platine rhodie (10% Rh) , ont un diametre d de 5u. leur longueur I 
est de l'ordre de 1mm (1/d ~ 200). ' 

La composante longitudinale u' est mesuree ä l'aide d'un fil droit. Une sonde ä fils croises en X 
permet d'isoler les composantes longitudinale u' et transversale v' instantanement.  L'ecartement choisi 
entre les deux fils est de 0,4 mm, de teile sorte que l'influence d'un fil sur l'autre soit negligeable 
sans que pour autant l'effet  d 'integration spatiale soit critique (20). 

Les fluctuations de temperature sont detectees ä l'aide d'un anemothermometre ä fil "froid" 
fonctionnant ä intensite constante.  Les fils utilises sont en platine et ont un diametre de lu. .Des 
precautions necessaires pour isoler les fluctuations de temperatures doivent etre prises (21).  L'in- 
tensite I est de 0,15 mA, ce qui correspond ä un coefficient de surchauffe de 310-^ et ä un rapport de 
sensibilite vitesse/temperature de l'ordre de 10~4 dans le cas le plus defavorable . Dans les conditions 

~32. experimentales precitees, l'erreur relative due ä la contamination de u sur la variance ö des fluc- 
tuations de temperature est, dans le cas le plus defavorable, de l'ordre de 10    Une compensation 

par circuit electronique analogique de l'inertie thermique des fils a ete faite bien que la valeur de la 
constante de temps soit faible  (50(43 pour us 5 ms_l , (15)). L' allongement 1/d a ete choisi de 
l'ordre de 600 afin que les effets de bouts jouent un role mineur, sans que pour autant l'integration 
spatiale soit critique. 

2.3. UTILISATION DES FLUCTUATIONS INSTANTANEES 

Afin de mettre en evidence les apports et les ejections au voisinage Immediat de la paroi des 
enregistrements des fluctuations instantanees de la composante longitudinale u' de vitesse et de 
temperature0ont ete effectues.  Pour privilegier les fluctuations de grandes amplitudes, tout en 
conservant leur signe, les  cubes instantanes,u'3 et 8'3, des fluctuations u' et 6' ont ete determines. 
Ces fluctuations u' et 0' ont ete normees VaT  rapport ä leur ecart-type; ainsi, toutes les fluctuations 
d'amplitude inferieure, en valeur absolue, ä une fois l'ecart type du signal relatif ä u' ou 8' sont 
tres attenuees; au contraire, toutes les fluctuationsd'amplitude superieure ä cet ecart-type sont 
amplifiees. 

Dans le cas d'experience en conduit cylindrique (Cf 2.1.1.),ces cubes ont ete obtenus au cal- 
culateur ä partir de l'acquisition numerique des signaux relatifs soit ä u' soit ä 8' (Cf figure 3). 
La frequence d'echantillonage des signaux est de 12 KHZ; cette frequence est süffisante vue l'etendue 
spectrale des variables (15). 

Une methode analogique a ete utilisee (22) dans le cas d'experience relatif ä la couche limite 
isotherme.  Les enregistrements des cubes instantanes  u'3  ont permis de determiner le nombre 
d'apports et d'ejections ä travers la couche limite (Cf. figure 4).  Avec le critere de seuil adopte, 
seuls les signaux d'amplitude superieure ä l'ecart type sont pris en compte. 

2.4. CORRELATIONS SPATIOTEMPORELLES EN DEUX POINTS 

Ces mesures ont ete effectuees dans les couches limites precitees (Cf 2.1.2. et 2.1.3.).  Le 
point Po situe en amont est fixe et le point situe en aval peut se deplacer, soit perpendiculairement 
ä la paroi (point P figure 1). soit lateralement (point P] ou P2 figure 2). 
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Fig. 1 Mesures spatiotemporelles en deux points Po,P. 

L'ecart longitudinal X] entre Po et P' (voir figure 1 ou 2) est quelque peu superieur ä 
l'epaisseur S (X j = l,4lS, cas d'experience en couche limite isotherme, figure 1; X = 1,865, 
cas d'experience en couche limite sur paroi chauffee, figure 2) afin de privilegier les structures 
ä grande echelle.porteuses d' energie cinetique, qui jouent un role fondamental dans les ecoulements 
cisailles. 

D'autre part, pour donner de l'importance aux fluctuations de forte amplitude les correlations 
triples ont ete souvent utilisees. Elles ont de plus l'avantage de donner le signe des fluctuations 
dominantes.  En fait ce sont les coefficients de correlations qui ont ete mesures : soit les 
coefficients de correlation double 

ree = %W &{*+%)/($* e*) 

Tia.\Ui W = uyovttfio/Cü? Vs-)' 

soit les coefficients de correlation trinle 

H^uu = u'otb) a'Hb^)/t^ (u*-^)*)** 

7\*•\   I I «ife rUo;uv = u'o(t)(u.'vOCti-t)/(ür(u'v'- üvyj 

Ces mesures ont ete effectuees avec un correlateur P.A.R. (20, 23) 

L'etude (20), en particulier, des signes des correlations triples precitees ainsi que celle de 
leur valeur absolue,permet de mettre en evidence quel est le "mode" de turbulence qui predomine, 
apport ou ejection. 

2.5.  CORRELATIONS SPATIOTEMPORELLES CONDITIONNELLES EN DEUX POINTS 

Afin de mettre en evidence de facon plus directe les apports et les ejections, nous avons introduit 
des correlations spatiotemporelles conditionnelles (10 a et b, 23) la condition portant sur le signe 
des fluctuations.  Par exemple, en ce qui concerne les fluctuations de temperature Q , si Q>ocela 
correspond ä de l'air chaud en provenance de regions plus proches de la paroi, siQ'^Ocela correspond ä 
de l'air froid en provenance de regions plus eloigneesde la paroi. 

Les correlations spatiotemporelles conditionnelles sont definies par : 

ou m et n sont des signes, +ou-, relatifs ävo(t) et u (hVt) .Pour un couple choisi de signes m et n, 
J(t) = 1 lorsque8'o(t) a le signe m et @"( fe-t-T) le signe n; dans les trois autres cas J(t) =0. 

Ces correlations conditionnelles ne sont pas des coefficients de correlation, mais chacune represente 
la contribution d'un couple de fluctuations de signes donnes au coefficient de correlation total : 
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reo0 = ^+++ ^+~ -t-^-i- +K— 

Notons que cette methode a aussi ete appliquee ä la correlation  u'0 v' , generalisant ainsi aux 
correlations spatiotemporel'.es la decomposition utilisee par Willmarth j.3) pour les tensions de Reynolds. 

La determination des correlations conditionnelles a ete effectuee a l'aide d'un Systeme d'acquisi- 
tion et de traitement numerique de 1'I.M.S.T..  L'acquisition des donnees a ete faite sur deux voies 
par couples de valeurs correspondant aux fluctuations en Po et P.  Ce temps, independant de la cadence 
d'echantillonnage qui separe les deux valeurs,est negligeable.  En ce qui concerne la cadence d'echan- 
tillonnage, on a verifie que la correlation mesuree est correcte quelle que soit cette cadence, ä con- 
dition que le nombre d'echantillons soit süffisant et que le temps d'integration correspondant soit 
tres grand par rapport aux echelles de temps du phenomene considere (25).  L'augmentation de la frequence 
d'echantillonnage permet simplement une resolution incrementale plus fine, mais il est alors necessaire 
d'augmenter le nombre d'echantillons pour avoir un temps d'integration süffisant.  La cadence adoptee 
est de 2000 Hz ce qui correspond ä un temps incremental de 0,5 10-3s  , adapte aux conditions experimen- 
tales.  Le nombre de couples generalement traites est de 60 000, correspondant ä un temps d'integration 
de 30 secondes. 

Des tests du programme de calcul numerique du coefficient de correlation et des correlations 
conditionnelles ont ete effectues. II semble que,principalement pour les decalages de temps faibles, la 
methode numerique soit plus fiable et precise que la methode utilisant le correlateur P.A.R. 

Les mesures ont ete effectuees soit en couche limite sur paroi chauffee, soit en couche limite 
isotherme, les points Po et P 3g P'etant ä la meme distance de la paroi, pratiquement sur une ligne 
de courant. 

2.6.  PR0BABILITES SPA1I0TEMP0RELLES CONDITIONNELLES EN DEUX POINTS 

Les correlations conditionnelles prece'demment introduites ne fournissent pas en fait un critere 
absolu de liaison statistique. 

Certaines proprietes de la turbulence etant liees ä des caracteres non gaussiens, la necessite 
de determiner un tel critere nous a conduit a utiliser les probabilities conditionnelles spatiotempo- 
relles (11). Ces probabilites sont ici relatives aux fluctuations de temperature. On considere les 
probabilites simples et composees telles que, par exemple : 

Trob[^Cb)/Oö>K» et   e'Mioh] 

5JetQ*sont les ecarts types des fluctuations ^et@ ; n0 etK sont des seuils quelconques. 

Pour caracteriser le degre de liaison statistique entre les fluctuations nous introduisons la 
contingencey.  Par exemple : 

Les signes + rappellent, dans l'exemple donne, que l'on ne considere que les sequences de fluide 
dont la temperature est plus elevee que la temperature moyenne aux points Po et P .  Si les evenements 
0u(fc)>H$l etQ(fc+t)>n0" sont statistiquement independants, Ci>++ = o ; s'ils sont completement lies, on 
a : 

^Pwb[Qict)/o;>K.][-i - TroW[e^/o'>la-]] 

On introduit alors une contingence reduite, qui s'ecrit , en utilisant la probabilite conditionnelle 

9  ~^P~ ->i - Prob[e'(i=)/(r>K] 
Ainsi 1'independance statistique est äquivalente ä|= o et la liaison complete entraine ^= 1. 

Si les evenements sont plus ou moins incompatibles, CO^+et &       ont des valeurs negatives.  Des considera- 
tions similaires s'appliquent aux contingences(JTet 3T~ relatives aux sequences de fluide plus froid que 
les temperatures moyennes en Po et P . 

Differents seuils ont ete utilises : h = ho = o, ou l'on considere toutes les sequences ou le 
fluide est chaud ou toutes celles ou le fluide est froid,et h = ho = 1, correspondant au fluide tres 
chaud ou bien tres froid. 

Les contingences conditionnelles spatiotemporelles ont ete determinees avec des methodes nume- 
riques analogues et pour les memes conditions experimentales,que les correlations conditionnelles 
spatiotemporelles. 
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2.7.  CORRELATIONS SPATIOTEMPORELLES EN TROIS POINTS 

Afin de mettre en evidence le caractere tridimensionnel des structures turbulentes a  grande echelle 
des mesures de correlations spatiotemporelles en envergure ont ete effectuees dans la couche limite tur- 
bulente sur paroi chauffee.  Pour atteindre la largeur statistique du domaine de coherence de ces 
structures, des mesures de correlations spatiotemporelles des fluctuations de temperature en trois points 
ont ete faites (10 a et b). 

Fig. 2. Mesures spatiotemporelles en trois points P 1^2* 

P0, Pi et P2 sont situes dans un plan parallele ä la la paroi (figure 2).  La distance XI separant le 
point Po, situe en amont, du point P\ en aval, est de 1,86g (Cf. 2-4);  les deux points PI et P2 
aval, peuvent etre deplaces symetriquement par rapport ä P0P' Dans ces conditions, on definit un 

coefficient de correlation triple entre les fluctuations de temperature en P0, PI et P2, avec un temps 
retard?? entre Po et P1P2 : 

W.= ^ qcbvoqjLbvcy' [ e«4 ( e^ mf 1 
A\L 

Si, pour un temps retard X,   ce coefficient a une valeur importante ceci signifie que statistique- 
ment des structures, qui sont passees ä des instants ten Po, atteignent simultanement les points Pi et 
P2 a des instants correspondants t •ff • En d'autres termes,  1'envergure statistique du domaine de 
coherence est au moins de l'ordre de la distance P1P2 .   En faisant varier la distance P1P2, c'est ä 
dire X3, on obtient la carte des isocoefficients de correlation triple en fonction deTet X3 

(Cf. figure   11). 

Une interpretation similaire des correlations spatiotemporelles doubles, par exemple entre P0 
et Pl.n'est pas possible.  En effet, on ne peut pas distinguer alors une structure de petite envergure 
ayant un parcourt tres aleatoire d'une structure coherente de grande envergure.  L'aire delimitee par 
la ligne oü la correlation spatiotemporelle double, P^a,  ou  '"©»©a, ' s'annule,correspond au domaine 
d'influence qui est evidemment plus large que le domaine de coherence. 

"oof* &&.. ' ^60&M ©o&* ¥"§_. g^ permet de montrer La consideration des signes de 
(Cf. 10 a) qu'il existe trois regions 
statistiquement dominant correspond ä la combinaison de signe ( Ob >0, ©^O^ ö^>0) .  II peut etre 
interprets comme etant du a de l'air chaud passant en Po et transfgre en aval ä la fois en Pi et P2. 
Les regions II et III correspondent respectivement aux combinaisons de signes ( do ^O,  Q^<^  ©A<0) 
et ( 64 >0   e^QI^O); les modes dominants qui y regnent peuvent etre interpretes comme des apports 

d'air froid. 

Les mesures ont ete effectuees au correlateur P.A.R. (23). 

3 . ANALYSE DES RESULTATS EXPERIMENTAUX 

3.1.  ZONES INTERNES 

3.1.1.Des enregistrements des fluctuations de vitesse u' et de temperature 9' ont ete effectues 
jusqu'a une distance de la paroi y+ = 1,7 dans l'ecoulement en conduite cylindrique.  La figure 3^ 
donne les cubes normalises correspondants u' 3/(ü*)3/*   et  g'3/(^i)i/* ;  ceux-ci mettent en relief 

les signaux de forte amplitude qui sont determinants dans le mecanisme non-lineäirede la turbulence. 
Les ordonnees donnent les pourcentages des fluctuations rapportees aux moyennes u et 8 locales. 
On constate qu'ä la distance y+ = 1,7 seuls des apports de fluide plus froid, en provenance de zones 
un peu plus eloignees de la paroi, sont detectees.  Les ejections de fluide plus chaud n'apparaissent que 
peu ä peu, ä mesure que l'on s'eloigne de la paroi.  La figure 4 donne precisement des resultats 
obtenus dans une couche limite turbulente; ceux-ci concernent la frequence d'apport Na et la frequence 
d'ejection Ne obtenues ä partir des cubes u'

3
//{ ~Ü^)^K 
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NB :formule de Rao et al.(7). 
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On verifie bien que, pres de la paroi, seuls les apports subsistent. Un point de mesure de 
Na ä y+ = 1,7, obtenu dans la conduite cylindrique, est egalement porte. Pour que la comparaison soit 
valable la formule de Rao donnee plus loin a ete utilisee pour ramener Na aux conditions de la couche 
limite Si, II s'agit surtout, setnble-t-il, d'apports de couches tres voisines par amincissements locaux 
de la sous-couche visqueuse ; par exemple, ä y+ = 1,7, l'apport correspondrait a  du fluide venant en 
moyenne d'une zone situee ä y+=5 seulement. Par ailleurs cette figure confirme que la frequence Na 
d'ejections augmente lorsqu'on s'eloigne de la paroi, Ne etant egale ä Na ä environ y

+ = 50, au debut 
de la zone turbulente inertielle. 

En ce qui concerne les valeurs de Na et Ne il faut les comparer, par exemple, au nombre de 
bouffees de turbulence ou "bursts" qui serait donne par la formule de Rao (7) : Kg = 1,54 Re"0>'3 soit 
No = 0,0026. Cette valeur correspond pratiquement ä la frequence Ne maximum d'ejections entre y

+ = 50 
et 100 environ, dans la zone de maximum des contraintes tangentielles de Reynolds (on definit 
N = NÖ/u 2). 

10 - 

2<-  -10 

y 
Fig. 5.  Facteursde dissymetrie Su et  d'aplatissement Fu relatifs ä u'. 

Conduit cylindrique. 

Les mesures des facteurs de dissymetrie Su et  Se relatifs au conduit cylindrique sont presentees 
sur le figures 5 et 6.  Elles confirment les resultats precites, en ce qui concerne la predominance des 
survitesses et des refroidissements de grandes amplitudes sur les sousvitesses et les rechauffements pres 
de la paroi.  Les facteurs d'aplatissement Fu et Fe depassent de beaucoup la valeur gaussienne, F = 3, 
tres pres de la paroi, ce qui indique un caractere intermittent de l'ecoulement.  Remarquons(par ailleurs 
qu'aussi bien pour la vitesse u' que pour la temperature 9', Fu et Fs passent par des valeurs minimales 
aux alentours de y+fty20 (valeur pour laquelle Su et Se sont nuls).  Ceci pourrait etre du (26) aux 
instabilitgs de type hydrodynamique, dont l'hypothese est souvent avancee dans cette zone, et qui 
donnerait lieu ä des trains d'ondes harmoniques (S = 0 t F = 1,5). 

A partir des mesures d'autocorrelation ("(fjde u' et de 6' on a determine la frequence integrale : 

[iYT j~r(T) dX \ 

If est un temps toujours relativement grand correspondant ä la partie positive de r(tf) • NL est iiee, 
avec l'hypothese de Taylor,ä l'echelle integrale classique L : 
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Fig. 6.  Facteur de dissymetrie S„ et d'aplatissement FQ relatifs ä 6' 
Conduit cylindrique. 

*_l 

y+ 

Fig. 7. Frequences integrales N? ; ®, A .  relatifs ä u',8'. Conduit cylindrique. 
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Sur la figure 7 on a porte les frequences adimentionnelles NL %. .Elles sont inferieures ä Is 

valeur Nß = 0,0076 calculee ä partir de la formule de Rao precitee,dans l'ecoulement considers. Ceci 
montre que les echelles integrales Lu et Le sont plus grandes que celles correspondant aux distances 
moyennes entre les bouffees.  L'echelle spatiale entre les bouffees correspondrait plutot a  celle du 
maximum de contraintes de Reynolds qui est comprise entre la macroechelle et la microechelle de 
Taylor, comme on peut s'en rendre compte en analysant les cospectres de U,' V (14,27) . 

3.1.2. En ce qui concerne la liaison entre les apports et les ejections,des mesures de correlation 
spatiotemporelles conditionnelles tendraient ä confirmer qu'elle existe,du point de vue statistique, 
au moins dans certaines zones^ comme on va le voir sur la figure 8 donnant le coefficient de correlation 

rcrj= 8/tfc)8/(fc+'ü/(e?eil) ÄÜ, (QllH/Z 

ainsi que les differentes contributions selon les signes des fluctuations 0'. La ligne PoP, parallele 
ä la paroi, situee ä yj = 22,est pratiquement une lignede courant moyenne. Enabscisse le temps adimen- 
sionnel tfft fu/Ä est porte. tS\ correspond au maximum de la correlation et ^correspond au temps de par- 
cours de la distance XI ä la vitesse moyenne locale, soit "X^sX.JS-     On constate que  , 

Fig. 8.  Correlations spatiotemporelles de temperature 0 : f"  coefficient; R++, 
R—, R+-, R-+ correlations conditionnelles. 
Couche limite So 22, SVu  = 0,49, XI = l,86g 
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comme  il  etait attendu,  les sequences  d'apports  R—  (fluide froid)  ont une celerite 
plus forte que la vitesse moyenne ; mals il est plus surprenant de constater que les sequences d'ejec- 
tions R++ (fluide chaud) ont aussi une celerite qui est plus grande que la vitesse moyenne.  D'ailleurs 
on voit aussi que le temps t* < ^*?>   c'est ä dire que les fluctuations les plus coherentes vont plus 
vite que la vitesse moyenne. 

Finalement,dans cette region, il semble qu'il existe des sequences correspondant vraiserablablement 
aux bouffees de turbulence oil les apports et les ejections sont lies.  Ce resultat semble etre specifique 
ä cette region, car des mesures similaires de t~Qß montrent que les temps correspondant aux ejections 
deviennent superieurs ä *£*pour V^lOO (12). 

Remarquons encore que la periode moyenne du phenomene de "bursting" serait (7) ^"^ig r~  5; 
X 

soit ä la distance consideree ici^f = 2,4, ce qui correspond en ordre de grandeur ä la duree pendant 
laquelle la correlation de ffya a une valeur notable , comme on peut le voir sur la figure 8 ou l'ecart 
^t* a ete porte.  Toutefois, ceci ne signifie pas du tout que le temps de coherence des bouffees de 
turbulence soit egal äAt±° 2,4, car il s'agit la, en raisonnant par analogie avec les correlations en 
trois points comparees ä celles en deux points (Cf para 2.7),d'un temps "d'inf luence" etnonpas de" coherence", qui 
peut lui etre tres nettement inferieur (voir par exemple Fig.l6a: envergures     des correlations double 
et triple) . 

02 

-Q2 

•"•"•-•-»-ir+~+ 

AT*= 3.1 

O— o—o- 

I 

R<-+ 

R+ ö-v-^S^I; 

Hit 

Fig. 9. Correlations spatiotemporelles de vitesses u'0, v' 
p.coefficient; R+-, R-+, R++, R—-correlations 
conditionnelles.  Couche limite S| : y+ = 117, 
u/ue = 0,62 , Xx  = 2,78 S . 

Des constatations analogues peuvent etre faites ä partir de la figure 9 donnant le coefficient 
de correlation dans le temps 

 — ——>       sr   r  v *l/9 

Ces correlations conditionnelles sont notees (Cf. para 2.5) R+- etc ... signifiant pour 1'exemple choisi 
que u'0 ( t) et v' ( fc +f) <0 • Les apports correspondent done ä R+- et les ejections ä R-+.  On constate 
que meme ä cette distance de la paroi les sequences d'ejection ont statistiquement un temps optimum 
(minimum de R-+) pratiquement egal au temps t^ compensateur du mouvement moyen, ce qui signifie que l'on 
a encore un effet d'entrainement des ejections par des apports. 

Le temps 2yC= 3,1,correspondant ä la periodicite moyenne des bouffees,a ete egalement porte sur 
la figure 9.  On peut faire les memes commentaires que pour la figure 8. 

3.1.3.  On a aussi effectue une experience significative du transport des perturbations ä l'aide des 
correlations spatiotemporelles de temperature, le point en amont P0 etant place ä yo"= 23 et le point 
en aval P etant deplace longitudinalement  et perpendiculairement ä la paroi (Fig. 1).  En particulier 
les lignes de correlations spatiotemporelles tt ft^K, y, t) maximales, c.S.d. pour la distance ym et 
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le temps t^optimaux qui donnent la correlation maximale ä un Xj fixe, ainsi que les lignes de contingences 
maximales definies de facon analogue _,sont ä priori significatives de la diffusion des perturbations. 

^ 
100- 

x/5 99 
Fig. 10. Couche limite S? :  y+= 23.  Coefficients de correlations et contingences 

reduites spatiotemporelles. 

  Ejections,visualisation Rundstadler etal.(35). 
  Trajectoire moyenne,Shlien et Corrsin (28) 

Sur la Figure 10 on a porte le coefficient de correlation maximal (P@0g^ et les contingences 
reduites maximales ^ pour differents seuils h (Cf. para 2.6.), A titre de comparaison on a egalement 

porte la ligne "ejected eddies" tracee ä partir des visualisations par Kline et al. (5), ainsi que la 
trajectoire moyenne des particules qui auraient ete emises ä la paroi, obtenue par Shlien et Corrsin (28) 
en utilisant une source thermique comme emetteur de contaminant.  Cette derniSre ligne est aussi la 
trajectoire moyenne en y au sens lagrangien (28).  On constate que les particules fluides tres chaudes 
( $ " Cnsk0a4)) s 'ecartent plus rapidement de la paroi que les particules tres froides (S*Cl

r>sK«S')) ). 
Ceci, toutefois, n'infirme pas un couplage possible entre les ejections et les apports, car,le phenomene 
etant tridimensionnel, un apport peut "encadrer" une ejection, comme par exemple dans le modele donne par 
Blackwelder (2) et qui sera repris ä propos des correlations en trois points (Para. 3.3.), les noyaux 
des apports et des ejections se deplacant sur des lignes differentes.  Sauf pres de l'origine corres- 
pondant ä la diffusion initiale, les lignes sont tres peu inclinees. A titre indicatif, la pente de la 
courbe ( ("g^Q)^  pour X\ /S^t   =  ' est de l'ordre de 3°, la pente des diverses lignes tendant vraisem- 
blablement vers celles des lignes de courant moyennes considerees, les perturbations etant finalement 
emportees avec le courant moyen. 

3.1.4. La coherence en envergure des ejections et des apports a ete etudiee ä partir des correlations 
spatiotemporelles en trois points des fluctuations de temperature comme il a ete explique au paragraphe 
2.7. 

Un exemple de resultats est presents sur la figure 11  relatif ä la position y**= 64 (Cf.Fig.2). 
II existe essentiellement deux zones de coefficients de correlation t"&e 6i e^respectivement positifs 
et^negatifs, que l'on peut rattacher aux sequences d'ejections et d'apports.  Si l'on considere 
1 echelle X3/$   on voit que du point de vue statistique les ejections sont relativement minces; 
l'epaisseur au droit du maximum de V&a g^ positif est de l'ordre de 0.07S. Un autre fait important, 
c'est que les ejections apparaissent etre encadrees lateralement par les apports, le Systeme etant 
fortement tridimensionnel.  On peut d'ailleurs, compte tenu des resultats du paragraphe 3.1.1, penser 
que plus pres de la paroi les zones d'ejections s'amincissent,  les zones d'apports prenant de plus en 
plus d'importance.  Cette disposition en envergure des ejections et des apports est en faveur du schema 
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Fig. II.  Coefficients de correlations spatiotemporelles en trois points.  Couche limite S2 
yS = 64, ü/ue = 0,594, X, = l,86g 

precite donne par Blackwelder au voisinage immediat de la paroi.  Notons que l'envergure mesuree entre 
deux dorsales des coefficients  ("j, ß a negatifs correspondant aux apports est de l'ordre de X3 e^ 550P 

SO i>       ,        u* 
alors que la distance correspondante>dans le modele de Blackwelder, est de — — ;  cette difference 

correspond ä un grossissement tout ä fait plansiHe deptfsy+ t\f 10 jusqu'ä y+ = 64. 

3.2 ZONES EXTERNES 

Si l'on admet que la generation de turbulence par bouffees a lieu dans la zone interne, il 
s'agit surtout dans la zone externe d'etudier les liaisons statistiques qui peuvent exister avec ces 
bouffees.  Nous n'envisageons que le cas de la couche limite.  Le cas du conduit est assez different, 
car il existe un effet de la paroi opposee (Cf. Sabot et Comte-Bellot (30)). 

3.2.1.  Du point de vue diffusion, la figure 12 donne 1'evolution des courbes d'isocontingences 
^   (, K a he an), relatives ä des sequences de fluide tres chaud, egales ä la moitie de la contin- 
gence maximale ^jLJ**(h»4) avec meme temps retard optimal.  Les conditions experimentales sont les 
memes que pour la figure 10, (t£-VULzf&), 

Q25- 

Xi/ö 

Fig. 12. Isocontingences  ^> (h=h0=l) = $y^ /j2. 
 AL ligne de contingences maximales & 

Couche  limite S2-yS = 23. 
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Toutefois.le point en amont PG ne peut pas etre considere comme un point 
source puisque des particules fluides passant pres du point en aval P peuvent ne provenir que du 
voisinage de Po oü les fluctuations de temperature sont fortement correlees avec celles en P0- Aussi 
nous avons defini une region source initiale, notee  'E^= 0+£. , en prenant les points experimentaux 
d'isocontingencesegales ä la moitie d'une valeur limite de la contingence maximale,definie par extra- 
polation selon une loi exponentielle, ne prenant done pas en compte la viscosite, pour y »»0(12). 
On voit que cette region source est en accord de forme avec les autres regions pour des temps differents 
de zero. Le point source ä la paroi est virtuel^ä une distance en amont que l'on a evalue (12) avec 
une formule de trajectoire lagrangienne donnee par Batchelor (29) ä X\ >v\ ,3 $. 

Si l'on excepte les instants initiaux,  il apparait que les ejections sont diffusees ä travers 
la couche limite d'une facon qui n'attire pas de remarques tres particulieres; notamment l'hypothese 
de similitude de Batchelor (29) pour la diffusion dans cette zone parait etre verifiee en premiere 
approximation.  On obtient une evolution analogue des isocontingences pour les apports, mais la diffusion 
est moins inclinee par rapport ä la paroi comme on le constate sur la figure 10 pour les contingences 
maximales $^"*(V\s K03 A ). 

3.2.2.  II existe aussi une liaison statistique ä travers la couche limite qui n'est pas due ä un 
transport mais ä une liaison structurelle-analogue dans le cas des ondes ä celle desplans de phase, 
qui est bien mise en evidence par les correlations spatiotemporelles des composantes de la vitesse 
(Fig. 1).  En fait le decalage longitudinal Xi n'est pas indispensable; son introduction a pour effet 
de privile'gier les structures fortement colierentes. De plus on a interet ä considerer les correlations 
triples, significatives des fluctuations de fortes amplitudes (Cf. para 2.4) 

0.4 

U» 
^ 02 

Po 
°A    ///$ 

Fig. 13. Isocoefficients de correlations spatiotemporelles fj. „y .  Q  points de retard optimal. 
Couche limite Sj : yQ = 0,0565 , Xj - 1,41s      ' 

Les figures 13, 14 a et b donnent respectivement les isocoefficients de correlations spatio- 
temporelles triples en deux points (Fig. 1): 

n»0/uu ,   Y* i en f onction, des variables  *C$,  et y/ S .  Le point 
en amont Po est situe ä y0 = 0.0568, soit yS = 119;a la limite de la zone interne. 

Les lignes en traits tiretSs correspondent aux correlations maximales 3T= 0, lieu des points d 
retard optimal. *>Z 
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V 

Fig. 14.  Isocoefficients de correlations spatiotemporelles : a } j?. uv , b . Y\   vv 
Couche limite S^ : y0 = 0,056f>  , Xj^ = 1,41 g .       ' ' 

Les isocorrelations ont sur chaque figure  deux lobes marques de signes opposes.  On peut verifier 

de 
gnes 

de correlations maximales precitees,est de l'ordre de 18° d'apres t"ua.» U«, üe 20° d'apres ft. i.w 
cette derniere valeur etant la plus significative, puisque liee aux tensions "u'v1. ' 

Les visualisations effectuees, en particuiier ä l'IMST (31), montrent que les grandes structures, 
issues de la zone interne,qui forment le plus souvent l'intermittence, ont un angle en moyenne plus 
eleve de l'ordre de 30°,certaines etant meme presque ä 90°.  Toutefois les structures facilement iden- 
tifiables sont celles qui sont relativement figees et pas necessairement tres actives; de plus les 
correlations prennent aussi en compte des structures en voie de disparition, probablement plus couchees 
au long du mouvement et qui,elles aussi,sont peu visibles. 

Les lobes correspondant aux apports apparaissent beaucoup plus allonges au long de 1'ecoulement, 
ce qui est en accord avec les Schemas actuels (1,2). 

Dans une deuxiemes serie d'experiences (9,20) le point en amont P0 etait situe dans la zone 
d'intermittence (y0 = 0,80 6 intermittence 50%, Xl = 1.438).  Les figures 15 a, b, c donnent respective- 
ment les isocoefficients de correlations f^0 u\*.>*"wo HV 

et ^o VV en fonction des variables 
y/§ et tj.  Lorsque le point P est rapproche de la paroi, le temp's compensateur tT^ diminue du fait 
de la vitesse moins elevee regnant dans cette region (voir ä ce propos les temps 2?^ ,introduits par 
Favre et al. (32) et (33) , dans le cas oil X] = o) 

Sur ces figures seuls les lobes correspondant aux ralentissements de vitesse ( U.'0 <Oy U.'<0/v'^o) 
sont bien definis; il s'agit pour l'essentiel du fait que les protuberances d'intermittence ont une 
vitesse u' en moyenne plus faibles que dans la zone non-turbulente.  Toutefois le fait que v' soit 
positif indique une liaison avec des phases d'ejections. 

La pente de la ligne de correlation maximale de iT^o mv (Fig 15b traits tiretes) est dans sa 
partie lineaire de l'ordre de 21°,tout comme dans le cas ou P0 etait dispose ä la limite 
de la zone interne.  Ceci serait done plutot en faveur d'une liaison des protube'rances de l'intermit- 
tence avec les ejections dans la zone interne pleinement turbulente.  Notons cependant que les vi- 
sualisations precitees montrent plutot que les bouffees de fluide arrachees depuis la zone de paroi 
(y'fr'VäÖ) ne gagnent pas directement la zone d'intermittence, mais seulement la zone centrale pleine- 
ment turbulente.  Par la suite la diffusion emmene ces bouffees dans la zone d'intermittence. 
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Te* 
Fig .15. Isocoefficients de correlations spatiotemporelles 

a: rr b: HJ Uj),u.U  • D • 'u,,uy , c : r. Uo / W 
Q points de retard optimal 
Couche limite Sx : yQ = 0,808  , *l =  1,43 fi 

3.2.3.  En ce qui concerne le developpement en envergure des perturbations,1a figure 16 donne une 
comparaison des diverses zones definies dans un plan parallele ä la paroi selon les signes  des 
correlations doubles et en trois points (paragraphe 2.7).  La figure 16a correspond ä la figure 11, 
soit yo = 0.034b ou yj = 64. 

Les figures 16b et c sont relatives ä des plans respectivement situes ä yo = 0.34 2» et y0 = 0.816 
(intermittence 45%).  Les zones hachurees sont celles oü le coefficient de correlation spatiotemporelle 
en trois points 'CSoQ^St. est Posltif, correspondant ä des sequences de fluide chaud.  On voit que 
1'envergure des ejections augmente au fur et ä mesure que l'on s'eloigne de la paroi. A la position 
y = 0.8l8* l'envergure de la zone hachuree au droit  du maximum de correlation estegale ä 0.8S, ce qui 
est pratiquement l'envergure moyenne d'une protuberance d'intermittence ä cette distance y/8 (10b). 

Ceci montre clairement que les protuberances de turbulence sontformees surtout par du fluide en prove- 
nance de zones plus interieures; les visualisations montrent, d'ailleurs, que 1'entrainement de fluide 
exterieur non-turbulent est tres faible dans le cas de la couche limite avec gradient longitudinal de 
pression moyenne nul (31). Mais etant donne que du fluide arrive de 1'Interieur dans une protuberance 
de turbulence , il est necessaire^d'apres ce qui precede, que du fluide reparte en quantite au moinsr 
egale vers l'interieur.  Ceci n'apparait pas dans la figure 16c, car dans la region J[  les valeurs 
positives de  rfeo©.»©». signifient seulement que les ejections sont dominantes (10a, 20), du point de 
vue coherence, mais non pas qu'il n'existe ä certains instants des apports moins coherents donnant 
lieu ä des produits &'0 Ö^J ö^ <0. 

*^ La detransition est pratiquement exclue. 
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Fig. 16. Correlations spatiotemporelles 
dans un plan parallele ä la 
paroi. 

r%S*Q%-°> r6ea=0y 

 ^64=0   »   •   r&o^bu ma)(, 

F§ Q    >0       ./////   fluide chaud  ; 

e0e<&i <°  )   reee. >0 > 

8^9; <0 

(a) y/8 = 0,034, y = 64 ; 

(b) y/5 = 0,34,  y = 1 ; 

(c) y/S = 0,814,  ^ = 0,45. 

T£ 

Une autreconstatation que l'on peut faire sur la figure 16 est 1'aspect fortement tridimensionnel 
des ejections, ce qui est aussi en accord,dans la zone d'intermittence;avec les resultats de 
Kovasznay et al. (34). 

Enfin,si la figure 16 revele une unite de mecanisme dans le processus d'ejection depuis la zone 
interne jusqu'ä la zone d'intermittence, ceci ne signifie pas toutefois qu'une meme ejection parcourt 
directement le trajet a travers toute l'epaisseur de couche limite, comme nous l'avons deja souligne 
au paragraphe precedent. 
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4. CONCLUSIONS. 

De 1'analyse des zones interne et externe qui a ete faite se degage un certain nombre de resul- 
tats, dont les plus marquants sont les suivants : 

4.1. Tres pres de la paroi, au moins juqu'ä y  = 1,7, les enregistrements des fluctuations de tempera- 
ture et de la vitesse longitudinale, ainsi que les factsurs de dissymStrie correspondants, montrent que 
les apports constituent le phenomene dominant. Evidemment, du fait de la conservation du debit de masse, 
il existe necessairement des ejections, mais celles-ci n'apparaissent pas dans ces mesures parce que, 
probablement, elles sont plus diffuses, de faibles amplitudes relatives. 

Au fur et ä mesure que l'on s'eloigne de la paroi, le nombre d'ejections apparentes augmente 
tandis que celui des apports diminue ; dans la zone, 50^1 y+ j£ 100, ces nombres sont pratiquement 
egaux, ä la precision pres des mesures, et voisins du nombre de "bursts" donne, par exemple, par la 
formule de Rao. Par ailleurs, si l'on se refere aux celerites, mesurees ä partir des correlations spa- 
tiotemporelles conditionnelles, les ejections semblent -du moins pour les plus coherentes- etre liees 
aux apports. Enfin, les mesures de correlations spatiotemporelles en trois points montrent que, dans 
une section parallele ä la paroi, les ejections occupent un domaine, relativement mince, entoure par 
des apports formant, en quelque sorte, les deux doigts d'une main. Ces resultats sont en faveur des 
Schemas tridimensionnels, tels qu'on peut les trouver dans les publications de Praturi-Brodkey, ainsi que de 
Blackwelder, dans lesquels les bouffees de turbulence ("bursts") sont creees, dans la zone interne, par 
1'interaction d'ejections ("ejections") et d'apports ("sweep"). 

4.2. En ce qui concerne le transport des perturbations les plus coherentes depuis la zone voisine de la 
paroi, jusque dans la zone pieinement turbulente -mesuree par les probabilites spatiotemporelles con- 
ditionnelles ä partir de y = 23- il se fait par un processus analogue ä la diffusion lagrangienne de 
particules. Les perturbations liees aux ejections s'eloignent plus de la paroi que celles liees aux 
apports : si l'on admet qu'au depart les deux perturbations sont liees, ceci signifie que la bouffee 
se deforme en s'estompant au cours du. temps. 

4.3. II existe aussi -comme le montre les correlations spatiotemporelles de vitesse en deux points, ä 
travers la couche limite- une liaison statistique qui n'est pas due ä un transport mais plutot ä une 
liaison structurelle analogue ä celles des plans de phase dans le cas des ondes. Toutefois, de telles 
liaisons entre les zones interne et intermittente n'ont pas ete decelees. Des visualisations effec- 
tuSes montrent d'ailleurs que 1'eclat d'une bouffee, issue de la zone de paroi, ne s'etend pas, en 
general, au delä de la zone interne pleinement turbulente ; cependant cet eclat est diffuse et peut 
gagner, comme vu precedemment, une protuberance turbulente de la couche limite. 

Dans la zone externe, ce sont les ejections qui semblent jouer -comme le montrent notamment les 
correlations spatiotemporelles en deux et trois points- un role de plus en plus dominant lorsque l'on 
s'eloigne de la paroi, les apports etant de moins en moins coherents. En envergure, le domaine de 
coherence des ejections s'elargit progressivement allant jusqu'ä interesser, du point de vue statistique, 
les protuberances turbulentes. II existe done une unicite du processus qui se traduit par une predomi- 
nence des ejections, en tant que structure coherente ; toutefois, cela ne signifie pas du tout que ces 
ejections sont dues ä un meme tourbillon interessant ä la fois, par exemple, la zone interne pleinement 
turbulente et intermittente. 
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IN THE TURBULENT BOUNDARY LAYER OF PIPE FLOW 

USING LASER-DOPPLER ANEMOMETRY 
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KONINKLIJKE/SHELL-LABORATORIUM, AMSTERDAM 
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P.O. Box 3003, 1003 AA Amsterdam, The Netherlands 

SUMMARY 
The main objective in this investigation has "been the study of the coherent structures in the 

turbulent "boundary layer of a pipe flow. These structures - often called "bursts - are thought to be the 
main mechanism involved in the generation and maintenance of turbulence in flow. 

For the purpose of the study we measured the  frequency and frequency spread as  a function of 
Reynolds number and tried to resolve the structure of the phenomenon by measuring conditional averages. 

The measurements were carried out in a pipe 6 m long and 50 mm in internal diameter,   filled 
with water,  using a laser-Doppler velocimeter,  down to 0.25 mm from the wall, with the size of the 
measuring volume in radial direction being 0.1  mm. 

The output signal of the laser-Doppler anemometer, which  can be regarded as the flow velocity, 
was  fed both into a burst detector as described by Blackwelder and Kaplan and into an electronic delay 
line.  The  output signal of the burst detector was  used to conditionally average  the delayed signal. 

The conditional averages  close to the pipe wall  (y+ « 20)   are in good agreement with those 
found by Blackwelder and Kaplan, but  further from the wall significant  deviations were observed. We  found 
burst phenomena even for y+ =  100,  so that the  structure  appears  to be bigger than expected. 

Results  of the measurements of the burst frequency and frequency spread as a function of the 
Reynolds number,  as well as the conditional averages, are presented. 

1. INTRODUCTION 

In the late sixties detailed flow visualisation studies of turbulent boundary layers (Refs. 1, 2) 
showed that in these layers more or less periodic phenomena occur, related to "coherent structures" in 
these layers. These structures - very often referred to as bursts because of the very rapid changes in 
the velocity during a certain phase of the phenomenon - are thought to be the main mechanism in the 
generation and maintenance of turbulence in flows. Since then coherent structures have been found and 
studied in many other flow systems (Ref. 3). 

The visualisation studies (Refs. 1, 2) ultimately led to the following schematic picture of the 
phenomena in the turbulent boundary layer of a pipe flow. 

The - always present - laminar sublayer, which has a high velocity gradient, starts to thicken 
while the velocity gradient is maintained. As the layer reaches a certain thickness, it becomes unstable 
and trips over its own velocity gradient, probably triggered by turbulent fluctuations in the bulk, 
and generates a roll-vortex which is quite extensive in the tangential direction. The fluid with a low 
velocity is thereby transported from the vicinity of the wall and becomes an obstacle for the fluid 
in the bulk. Pressure begins to build up due to the deceleration of the bulk liquid and shortly after 
that the vortex is swept away by the bulk liquid, leaving only the laminar sublayer. The vortex decays 
in the bulk to generate random turbulence and the whole process starts anew. As the laminar sublayer 
must reach a certain thickness, the process is more o"r less periodical, although it has a random spread, 
probably because it is triggered by random fluctuations. A simplified picture is given in Fig. 1, which 
has been taken from Ref. 1. 

One of the major problems in studying these phenomena is to discriminate between bursts and 
background turbulence. Unambiguous criteria appear to be difficult to define (Refs. k,  5). This will be 
discussed in more detail in the section on signal processing. 

However, visualisation studies have been of a qualitative nature, and although they reveal 
much about the mechanisms involved, a need exists for quantitative measurements. 

A study of coherent structures in pipe flow was initiated and because of the small dimensions 
involved we chose a laser-Doppler velocimeter for the measurement of the average burst frequency as a 
function of the Reynolds number, the frequency spread, the velocity signals and the conditional averages 
of these. In this paper we present the first results of our experimental work. 
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2.  MEASURING EQUIPMENT 

2.1 . The flow system 

The flow system consists of a closed pipe loop partly made of stainless steel and partly of 
Perspex, and is shown in Fig. 2. For stability of the flow centrifugal pumps are used with a maximum 
capacity of 10 l/s. The measuring liquid is water, which is kept at 20 ± 0.2 °C. The throughput is 
measured by means of turbine flow transmitters with digital readout. For the sake of accuracy three 
transmitters are used with overlapping ranges. 

The Perspex measuring pipe, internal diameter of 50 mm and located between the two settling 
chambers, is 6 m long. The actual test section is situated 4.5 m after the entrance of the measuring pipe. 
The test section itself is of a different design to permit the use of a laser-Doppler velocimeter under 
optimum conditions. It consists of a rectangular vessel, internal cross-section 80 x 100 mm and 600 mm long. 
This vessel is filled with the same liquid as the pipe loop (in this case water) and at almost the same 
static pressure as well. In the vessel a glass pipe is fitted with the same internal diameter as the 
measuring pipe, but at the measurement location the glass is removed over half the circumference of the 
pipe and a width of approximately 16 mm. Over the full length of the glass pipe a thin foil is glued on 
the inside which acts as an inner wall for the flow. As this foil is forced in a cylindrical shape 
and is supported by the glass tube along its full length, except at the measurement location, it is rigid 
enough to withstand the pressure fluctuations of the turbulent flow field. In this way a very thin 
(less than 100 urn) wall is obtained without disturbing surface changes close to the measurement location. 
The test section is shown in Figure 3. 

2.2. The laser-Doppler velocimeter 

Detailed descriptions of laser-Doppler velocimeters and their use for measurements in turbulent 
flows have been published in many papers. A convenient compilation can be found in Ref. 6. We will 
therefore confine ourselves to a short review of the main aspects important for this study. As is well 
known, the system uses small particles carried by the flow that scatter the laser light. 

The main advantages of a laser-Doppler velocimeter can be summarised as follows: 

- no calibration required 
- no interference with the flow 
- single component measured 
- strict, linearity 
- using the reference beam mode, easy alignment 
- good spatial resolution. 

Disadvantages of the laser-Doppler velocimeter are: 

- noise in the output signal of the tracker (frequency-to-voltage converter) obscures the signals from the 
small eddies; 

- seeding is necessary in most cases, but in liquid flows the particles will follow the flow without 
difficulty. In gas flows, however, this requires more attention. 

Good spatial resolution can be achieved by a proper choice of the direction of the laser beams, 
the angle between them and their diameter. 

As can be seen from Fig. h,  the measuring volume of a laser-Doppler velocimeter, being as a first 
approximation the intersection volume of the laser beams, is always long and thin, due to the narrow angle 
between the beams. During operation all the signals coming from this volume are processed. This means 
that eddies smaller than the measuring volume are averaged out and hence -cannot be measured. This puts 
an upper limit to the longest dimension of the measuring volume. A reduction of this dimension can be 
achieved by increasing the beam diameter before focussing it into the flow and increasing the angle 
between the beams. 

On the other hand, a reduction of the measuring volume implies that fewer particles per unit 
time will contribute to the scattered light to generate the Doppler signal. In order to measure the 
turbulent fluctuations sufficient particles must traverse the measuring volume per unit time, which puts 
a lower limit to the size of the measuring volume. 

The ratio of the length of the measuring volume to its width is limited by the angle between 
the beams that can be obtained in practice. As this ratio • 1, the spatial resolution differs in the 
three perpendicular directions: in the direction of the beams it is smaller than in the directions 
perpendicular to it. 

For this study the highest spatial resolution is required in the radial direction because in 
the vicinity of the wall the velocity gradients are the largest. In the axial and tangential directions 
the gradients are a lot smaller or even zero. Consequently, optimum operation of the laser-Doppler 
velocimeter will be obtained with the shortest dimension in the radial direction and the longest 
dimension in either the tangential or the axial direction. This is illustrated in Fig. 5. For practical 
reasons the tangential direction was chosen (Fig. 5B), although the axial direction is theoretically 
to be preferred. 
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As  can toe seen from Fig.   k,  the direction of the longest dimension is  also the main direction 
for the laser "beams that create the measuring volume.  This means  that in the case of Fig.   5B  the teams 
hit the pipe wall at a small angle,  far  from perpendicular, which implies that the pipe acts  as a cylinder 
lens,  giving severe  distortion of the "beams. 

To avoid distortion of the laser "beams due to the  small angle of incidence on the pipe wall, 
the pipe was mounted in a rectangular vessel also   filled with water,  and the pipe wall thickness was 
reduced to   100 pm as described in Section 2.1.  In this way the problems  caused toy the change in refractive 
index from air into water were eliminated and distortion toy the pipe wall reduced so far that measurements 
down to 0.5 mm from the wall  could toe made.   The influence of the wall thickness on the laser "beams is 
illustrated in Figs.  6 and 7 which show a laser "beam traversing a wall of respectively 500 um 
and  100 urn with water on tooth sides of the wall at two different positions  from the wall.  These pictures 
show that a wall thickness  of  100 urn must "be achieved. 

The laser-Doppler velocimeter was operated in the reference beam mode  for ease of alignment 
(even the  small distortion caused by the remaining wall thickness necessitates realignment for every 
measurement point  (see also Figs.   6 and 7)).   It  also enabled us to use cross-correlation techniques for 
noise reduction in turbulence power spectral measurements   (Ref.   7).  A disadvantage of the use of the 
reference beam mode is the higher sensitivity to  laser noise. However,  this noise is  confined to the lower 
frequency range  (< 200 kHz)  and toy using a preshift of approximately 1+00-500 kHz,  generated by a rotating 
grating,  the frequency of the Doppler signal was shifted to a band with minimum laser noise. 

The output signal of the photodiode is  filtered by a Krohn-Hite model 3103 band-pass  filter 
(see Fig.   8)  and then fed into a tracker  (TPD model  1077,  designed and constructed by the Technisch 
Physische Dienst,  THO-TH Delft,  the Netherlands) where the frequency is  converted into  a voltage.  The 
output  signal was used for further data processing and displayed on the monitoring oscilloscope. 

2.3.  Signal processing 

The  tracker signal was  low-pass  filtered to remove the noise  (see Fig.   8,  filter   1)  from the 
tracker and to act as  anti-aliasing filter for the delay line.  To toe atole to  change the filtering without 
affecting the operation of the burst detector,   it was  separately band-pass  filtered for use with the 
"burst detector  (see Fig.  8,  filter 2) .  The "burst detector used was of the type described toy Blackwelder 
and Kaplan (Ref.   5). A tourst detector should discriminate "between "bursts and "background turbulence and 
should behave neutrally on  "pseudo turbulence".  This will be  discussed in more detail in Section 2.3.1* 
(Conditional averages). 

2.3.1. Ayerage_burst_fregbuenc2; 

The output of the burst detector was  fed into a pulse  shaper to yield standard pulses that can 
be counted.  It appeared, however,  that the burst detector was not  atole to  discriminate  completely "between 
"bursts  and "background turbulence.  Therefore,  the count had to toe corrected for the erroneous triggering 
of the tourst detector on the "background turtoulence.  How this  is  done will toe discussed in Section 3.1. 

2.3.2. Time_interval_distritoution 

The time lapse "between two successive pulses  from the burst detector was measured and stored 
in a 102l+-position memory and fed into a computer for  further processing.   The imperfect discrimination 
by the burst  detector gave rise to erroneous pulses.  This  could not be avoided, but the  average count was  so 
chosen that it corresponded to the  average tourst  count obtained. 

2.3.3. The_axia]__fluctuating_yelocity_signals 

As  the tourst detector reacts  somewhere during the occurrence  of the bursting phenomenon,  it is 
necessary to delay the signal in the measuring system in order to study the "beginning of the phenomenon. 
The degree of coherence "between successive bursts is  insufficient to use the detection of "burst n to 
trigger the measuring system for burst n +  1.  Therefore,  Blackwelder and Kaplan used two systems: 
the first  (upstream)  is used ftor the detection of the burst  and the second,  a rack of hot-wires,  for 
study of the burst.   This  system has  several disadvantages: 

- The flow field at the location of the measuring system is influenced toy the presence of the detection 
system. 

- The time lapse "between the  detection system and the measuring system is  determined by the distance 
between them and the turbulent convection velocity.  As the latter is not  constant,   the delay time 
is not constant either tout varies  from tourst to tourst. 

- The evolution of the burst between the detection point and the measurement point  complicates the 
measurement:   the tourst may have disappeared on its way from the detection system to the measuring 
system, for-example if it is  detected in its  final state of evolution.   This puts an upper limit to 
the distance "between the detection and measuring systems. 

To circumvent these difficulties in the present study both detection and measurement were 
carried out with the same laser-Doppler velocimeter using an electronic delay line to capture the signal 
and store it for a time that could be varied from 1  ms to  10 s.  In this way the same signal was used 
for detection and measurement.  The delay line employed a 102lt-position memory in which the signal 
was  stored after A/D  conversion. After a certain time,  determined toy a continuously variatole clock, 
the store was read out and fed into a D/A converter.  The delay time chosen was "between 0.5  and  1  times 
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the average time lapse between two successive bursts.  In this way the signal as measured before the 
actual detection moment was still available to study the onset of the burst phenomenon.  The use is 
illustrated in Fig.  9. 

2.3.^.   Conditional averages 

The average value of the turbulent velocity fluctuations is by definition zero.  If, however, 
conditional averaging is used,  this is not necessarily the case.  The conditional average is  defined as 

1       W 

F  (x)  =~    £     f(tn + T - At) 
n=1 

F = conditional average of signal f 
T = time delay since detection moment tn (> 0) 
N = number of samples used 
f = signal to be averaged conditionally 
tn = detection moment, determined by condition criteria 
At = time delay of electronic delay line 

Note again that the position in space at which the measurement is carried out is the same as that at 
which detection occurs! 

Using this technique the "random" background turbulence was averaged out, the distinctive part 
of the phenomenon remaining. The problem was mainly the generation of the trigger signal. If one induces 
a flow field, e.g. in a stirred vessel, the trigger moment can be chosen as the passage of a reference 
marker at the stirrer. In our case, however, the process was spontaneous and not controlled from the 
outside. Therefore, the trigger signal had to be obtained from the velocity signal itself. A burst 
detector as described by Blackwelder and Kaplan (Ref. 5) served this purpose. 

The criterion for satisfactory performance of the burst detector is that filtered white 
noise - a completely random signal that resembles turbulence but of course without the coherent 
structures - must give a conditional average equal to zero for all delay times x. Strictly speaking, 
the burst detector of Blackwelder and Kaplan does not satisfy this condition, but it comes close to 
it, as was reported by them (Ref. 5) and confirmed by our own experiments for which we used basically 
the same burst detector as Blackwelder and Kaplan's. 

For this study a Hewlett-Packard 3721A correlator in the signal recovery mode was used as 
an averager. Either H=102U or 20^8 samples were used to determine the conditional average. 

3.  RESULTS 

3.1. Average burst frequency 

If the reference level on the burst detector is low, it will respond both to bursts and to 
background turbulence. Increasing the reference level will reduce the number of counts per unit time. 
Increasing the reference level even further will cause the burst detector to ignore the smaller bursts. 
In order to determine the optimum threshold level burst count measurements were carried out at various 
threshold levels. We hoped to find a range where the number of counts per unit time would be (almost) 
independent of the reference level. However, this did not happen. Only a weak shoulder appeared in the 
number of counts per unit time as a function of the reference level, as is shown in Figure 10. Although 
it was reproducible, it is too weak to give an unambiguous result for the burst count. Therefore, a more 
indirect technique was used. As stated before, the burst detector reacts either to burst or to background 
turbulence. Just as the conditional average with simulated turbulence is (almost) zero, the contribution 
from the background turbulence to the final conditional average can be ignored. Hence, the final 
conditional average will still be of the correct shape, but as the averager divides the contribution of 
each of the signals by the number of signals to be averaged, its amplitude will be too small, because not 
all signals give a contribution to the conditional average of the burst. Its shape is therefore independent 
of the reference level, but not its amplitude. 

Assuming now that the conditional average is meaningful, it can be used to study the behaviour 
of the burst detector by comparing the velocity signal to which the burst detector reacted with the 
conditional average itself. This enabled us to divide the signals that made the burst detector react into 
two classes: the signals that resembled the conditional average, which represented bursts, and those 
that did not, which were due to background turbulence. With this division the count could be corrected 
to curve b in Figure 10. From this a clear value for the average burst count is obtained. Note that even 
at high reference levels the count still included erroneous counts from random turbulence. Using this 
technique, the average burst frequency was measured at three Reynolds numbers. This is illustrated 
in Figure 11, which shows that the average burst frequency is, as a good approximation, proportional to 
the Reynolds number. 
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3.2.  Measurement of the  frequency spread 

The results  for the  frequency spread were obtained by setting the reference  level such that 
the average count corresponded to the average hurst count as obtained in Figure  10.  The time  interval 
between two successive pulses was measured and fed into a computer.   From over  30 000 measurements 
the time interval distribution was   calculated.  The result is  shown in Figure  12A. 

The interval distribution is  influenced by the imperfect behaviour of the burst detector,  as  it 
also reacts to background turbulence, which can be seen from Figure  10. However,  the  distribution is 
very broad,  so that we think the effect of the probably random distribution of the background turbulence 
is not very important.   Improvement  of the behaviour of the burst detector by implementing more 
sophisticated detection  criteria will improve these results. 

The peak for low values of At is  shown in more  detail in Figure  12B. At this moment we do not yet 
know the cause of this peak, but we tend to believe that it is caused by multiple reaction of the burst 
detector to bigger bursts and/or to the vortical activity shortly after the burst  (see also next section). 

The wide distribution may have three causes: 

1. Variations in the time intervals  can be expected because  triggering is more or less random,  so that 
the time that the  laminar sublayer is  stable is not constant. 

2. The burst effect is  two-dimensional and two bursts positioned differently in the tangential direction 
may both be detected.  The time interval between two such detections may be not,  or not  completely, 
correlated. 

3. Coalescence of bursts may occur,  and if this happens the two bursts will  come  close together. We have 
also found additional evidence  for this  from the velocity signals. 

Plotting of the results  shown in Fig.   12A,  except for the  first two points, which may be erroneous,  on a 
semi-logarithmic  scale,  as  shown in Fig.   13 yields  an almost straight line, which indicates  that the 
distribution observed must be due to a more structural phenomenon, which we do not yet know. 

3.3. Velocity signals 

The actual velocity signals  of u'   show that the phenomenon is  accompanied by vortex motions,  as 
can be seen clearly from the typical signals shown in Figs.   1U—19.   This has also been found from the 
visualisation studies   (Refs.   1,  2).  As will be  shown in the next section,  some velocity-time traces 
resemble the conditionally averaged velocity signals, but some are obscured by the  "random" background 
turbulence.   It can be seen that the  "random" background turbulence mostly has a more or less periodic 
character, which points  at vortices passing by.  The most striking phenomenon in the pictures is the very 
rapid acceleration to which the burst detector reacted roughly k.5  divisions  from the left. 

3.1*.  Conditional averages 

The  conditionally averaged axial velocity fluctuations measured at different y    values  for 
He = 9500  are shown in Figure 20 as  a function of time.  The detection moment  corresponds to t=0. These 
traces  show that the structure extends quite  far  from the wall.  It is  important to note that these 
conditionally averaged axial velocities differ strongly from those reported by Blackwelder and Kaplan for 
higher y+ values,  as   can be  seen from Fig.  21.  The  following causes may explain this  difference: 

- The use  of the hot-wire technique by Blackwelder and Kaplan has prevented them from distinguishing 
between the u'   and v'  components.  As u'v'  is negative,  in particular during bursts,   the decrease in u1 

as measured by us may be compensated by an increase in v' . 

- The use  of the convection velocity to determine the time delay will cause phase  fluctuations which will 
tend to smooth out sharp edges such as those shown here,  especially at higher y* values. Moreover,  the 
wire used for detection is positioned at a low y+ value  (y+ =  15). 

- The evolution of the phenomenon may have strode along so far that the burst had partly disappeared 
before the authors measured it. 

- Our conditionally averaged axial velocity signals are measured at a higher Reynolds number  (9500 vs. 
2550). 

However, study of their velocity signals shows that the bursts can clearly be detected at high 
y+ values, while their conditionally averaged velocity signals are then almost zero. This indicates that 
the last potential  cause is not  so important. 

The  influence of the phase  fluctuations was later on recognised by Blackwelder,  too,  and 
corrected for  (Ref.   8), which resulted in conditionally averaged velocity signals that resemble our 
results, but even then differences  remain. 

We conclude from this that the  conditionally averaged streamwise velocity signals must show 
some structure for high values of y  . 

A striking feature of the  conditional averages  found by Blackwelder and Kaplan and confirmed 
(except, for some  details) by our own measurements is the  following:  Normalising the velocity by dividing 
it by the reference level results  in a conditional average that is   (almost)  independent of the reference 
level. 
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Blackwelder and Kaplan concluded that this was caused by the inclusion of smaller hursts at 
lower reference levels. Although this seems ohvious there are arguments that point in a different 
direction, such as: 

- One does not only measure the hursts at the reference level but also at levels above the reference 
level. This means that a reduction in reference level would give a less than proportional reduction in 
amplitude (maximum difference in velocity) . If one were able to discriminate completely between bursts 
and random turbulence the conditional average would not be affected at all. 

- The burst detector compares as a first approximation the square of the signal with the reference level 
(Ref. 5). This gives a less than proportional reduction in amplitude. 

- The burst detector will give relatively more erroneous trigger pulses at lower reference levels 
(Fig. 10), which results in a reduction in amplitude if we assume that the contribution of the erroneous 
signals to the conditional average is zero. 

This phenomenon will only be clarified through a further study of the behaviour of the burst 
detector and measurement of the size distribution. 

The disappearance of the vortex signals from the conditional averages is probably caused by a 
wide spread in vortex size, which causes phase fluctuations. This is confirmed by the rate of disappearance: 
the more samples are used for conditional averaging, the less pronounced they are. 

1+. C0MCLUSI0HS 

The laser-Doppler anemometer is a useful tool for measuring coherent structures in liquid flows. 
The optical difficulties that arise when measurements are to be made close to the wall can be overcome 
without costly solutions and without risk of distorting the flow field close to the measurement position. 
The laser-Doppler anemometer has some very useful properties for studies of this type. 

Using this technique and the burst detector described by Blackwelder and Kaplan, the average 
burst frequency can be measured with sufficient accuracy. The measurement is, however, very laborious. 
The time interval distribution, on the other hand, cannot be measured so accurately, due to the imperfect 
behaviour of the burst detector. The accuracy of these measurements can be improved by making the criteria 
for detection more complex. This would also improve the the speed of the measurements of the, average burst 
frequency. 

On the basis of our experiments we may say that, as a good approximation, the average number 
of bursts per unit time was proportional to the Reynolds number. The average burst frequency is in 
reasonable agreement with the literature. 

The measurements of the time interval distribution show a very wide distribution which is close 
to linear on a semi-logarithmic scale. This suggests a certain underlying mechanism that we do not yet 
know. But it is too typical to be accidental. 

The velocity signals show that the phenomenon is accompanied by strong vortex motions. It is not 
clear from our experiments whether these are cause or result. 

The good result obtained for the average burst frequency due to the use of the conditional 
average shows that the conditional average is meaningful. This is also illustrated by the ease with which 
velocity signals are obtained that are a good resemblence of the conditional average. 

The disappearance of the vortex motions from the conditional average is probably caused by a 
wide spread in vortex diameter. As the vortex diameter is probably in some way related to the burst size, 
which in its turn will probably be related to the time interval between two bursts, this is not surprising 
because the time interval distribution is very wide. This implies that conditional averages should be used 
in combination with the velocity signals themselves . 

The conditional averages reported here differ significantly from those reported in the literature. 
This is mainly due to the use of improved measuring and processing equipment. 

One of the major problems at this moment is how to combine the results of the visualisation 
studies with studies like this one, in order to obtain a general model for the bursting phenomena in 
boundary layers. At this moment the conclusions drawn from the visualisation studies are not yet in 
agreement with each other. Some investigators conclude that the wall fluid is the cause of bursting, 
others report that the bulk fluid is the cause. The problem can probably only be solved if theoretical 
models can be formulated that explain the results found. 
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FIG.  1     SCHEMATIC   DRAWING   OF   BURSTING   PHENOMENON (TAKEN  FROM REF. 1) 
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DIRECTION   OF   FLOW 

FIG.   2        SCHEMATIC   DRAWING  OF PIPE  LOOP USED   FOR   EXPERIMENTS 
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FIG.     3  CONSTRUCTION OF  TEST   SECTION  AND  PATHS  OF  LASER   BEAMS 
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FIG. 4   SCHEMATIC DIAGRAM  OF OPTICAL SYSTEM   SHOWING  POSITION OF MEASURING VOLUME IN  FLOW 
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A B 

FIG. 5 :      THREE BASIC ORIENTATIONS OF MEASURING VOLUME 

A. RADIAL.     AVERAGING TAKES PLACE  OVER  A RANGE  WITH A 
STEEP GRADIENT IN THE VELOCITY PROFILE;   WORST 
POSSIBLE   ORIENTATION. 

B. TANGENTIAL.     HIGH  RESOLUTION  IN RADIAL DIRECTION; 
OWING TO THE  ROUNDING  OF THE WALL THE  RANGE   OVER 
WHICH   AVERAGING IS DONE IS  SLIGHTLY  LONGER THAN 
THE DIAMETER OF THE MEASURING   VOLUME. 

C. AXIAL.     BEST  POSSIBLE   ORIENTATION;  CANNOT BE REALISED 
WITHOUT VERY COMPLEX OPTICAL SYSTEMS, AND IS 
THERFORE NOT PRACTICAL. 

(SIZE OF MEASURING VOLUME EXAGGERATED   FOR CLARITY) 

FIG. 6.   DISTORTION  OF BEAMS   DUE TO  DIFFERENCE IN REFRACTIVE INDEX 
OF   WALL   AND   LIQUID AT 0.25 mm AND 2.75 mm FROM WALL 

"LIQUID = l33'   nWALL= '-50, WALL THICKNESS =0-5 mrn 
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FIG. 7;   AS  FIG. 6,   BUT  WITH A WALL THICKNESS OF O.I mm 
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FIG. 8     BLOCK   DIAGRAM   OF SIGNAL   PROCESSING  EQUIPMENT 
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TIME 

FIG. 9   THE THREE   IMPORTANT   SIGNALS   IN   MEASURING,  DETECTION   AND  PROCESSING 

SYSTEMS IN RELATION TO  EACH OTHER,  ILLUSTRATING OPERATION OF DELAY LINE 
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FIG. 11.   AVERAGE   BURST   COUNT  PER   I000 s  AS  A  FUNCTION OF  REYNOLDS NUMBER 



3-15 

3000 

2500- 

2000- 

1500 

1000 

500 

NUMBER OF EVENTS 

FIG.  I2A.     MEASURED   DISTRIBUTION   OF THE TIME  BETWEEN 
TWO   SUCCESSIVE  DETECTIONS  MEASURED AT  Re = 9500 AT y+=36 

NUMBER  OF  MEASUREMENTS = 30  209;  NUMBER OF MEASUREMENTS     5.12 s = 2230;    DEAD   TIME  = 0.12 s 
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FIG. I2B:   AS   FIG. I2A,  BUT HIGH-RESOLUTION   DISTRIBUTION   OF THE   PEAK FOR   SHORT  TIME   INTERVALS 
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FIG. 13   SAME  RESULTS   AS   SHOWN  IN FIG. I2A (AMBIGUOUS FIRST TWO POINTS OMITTED) 

NOTE VERY   NEARLY  LINEAR BEHAVIOUR 
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FIGURES   14   AND   15:    REPRESENTATIVE  VELOCITY SIGNALS  AT f- 18 AND Re =9500 

HORIZONTAL SCALE 0.2s/div., VERTICAL SCALE 26.7 mm/s/div., AVERAGE VELOCITY OVER THE PIPE = l90mm/s 
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FIGURES   16 AND 17:    AS  FIGURES  14 AND 15,   AT y+= 36 
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FIG. 20    CONDITIONALLY  AVERAGED AXIAL VELOCITIES AT SEVERAL y+VALUES MEASURED 
AT Re =9500.   COMPARE WITH   FIGURES 14-19(VERTICAL SCALE ARBITRARY) 

Aa; = 0 
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Abstract 

Results of simultaneous measurements of velocity, wall pressure, and wall-shear fluctuations in a 
turbulent boundary layer are presented.  The measurements were performed in a range of velocities from 
40-700 ft/sec, and a range of Reg from 10^ to 105.  The results are analyzed in an attempt to obtain a 
description of the coherent or quasi-ordered structure of the boundary layer turbulence.  On a large scale, 
the boundary layer is dominated by vortical structures which extend to the viscid-inviscid region.  The 
wall region is dominated by the so called "bursting" process.  The relationship or interaction between 
the large scale outer structure and the turbulent "bursts" is still not clearly defined.  The present 
experiments were particularly performed in order to understand how these processes develop and how their 
relationship changes with increasing Reynolds number.  The results of this investigation at high speed, 
while confirming some of the previous results with regard to the mean period between coherent events, 
and their geometrical configuration, did not yet resolve the question as to whether at high subsonic 
speeds there is, besides the outer flow processes, a distinct inner region.  With the limited instrumenta- 
tion available it was not possible at the high subsonic speed to resolve any inner sublayer region, 
although it was found that the outer flow structures exert a strong influence on the wall.  The experi- 
mental results at low subsonic speeds,on the other hand, did indeed identify an inner and outer region, 
and duplicated some of the results obtained at low subsonic speed by other investigations. 

Introduction 

The discovery, by means of visual observations (Refs. 1-7) of an organized structure in turbulent 
shear flows has led to a proliferation of new measurement and data analysis procedures for the investiga- 
tion of the fluctuating properties of such flows (Ref. 8-19).  Questions have been raised concerning the 
adequacy of measurements which utilize instrumentation and analyses not suited to the coherent, quasi- 
periodic nature of the flow structures.  It has been found that the size of the transducers used in the 
measurements and the frequency response of the associated electronics is an important consideration in 
terms of the varied scales of the flow structures; and that single point measurements and conventional 
time averaged analyses cannot reveal much useful information about coherence or intermittency both of 
which are important aspects of the flow processes involved. 

To overcome these problems, modern research efforts have turned to minituarized instrumentation and 
multiple measurements to obtain spatial resolution of the coherent flow structures, and to digitization of 
the measurements so as to allow various time series analyses to be performed on high speed computers. 
With respect to the latter, it has become increasingly popular to apply various conditional sampling 
procedures to the digitized fluctuations in order to isolate temporal sequences associated with the coherent 
structures.  This type of analysis has revealed, among other things, that significant contributions to the 
long time average Reynolds stress occur during intervals when coherent structures are present in the flow, 
thus indicating that the modelling of turbulence and the development of drag and noise reduction mechanisms 
might benefit greatly from a better understanding of these structures. 

Visual observations of turbulent boundary layer flows seeded with various tracers have indicated the 
presence of several different processes involving repetitive flow structures.  The wall region 
(y+ = y uT/v < 100) is characterized by streamwise streaks of low speed fluid which lift up from the wall 
resulting in locally inflexional velocity profiles.  The lift-up is followed by some sort of oscillatory 
motion and then a sudden breakup into small scale turbulence.  The ejection of low speed fluid from the 
wall is accompanied by sweeps of high speed fluid from the outer regions toward the wall.  This overall 
process has been referred to as a "burst" (Refs. 20-21).  On a larger scale, the boundary layer is 
dominated by vortical structures which extend to the viscid-inviscid region (Refs. 6, 14, 16).  The 
relationship or interaction between this large-scale outer structure (LSOS) and the turbulent "bursts" is 
still not clearly defined.  In particular, how these processes and their relationship change with in- 
creasing Reynolds number has not been fully explored.  On the basis of observations and measurements over 
a limited range of Reynolds numbers, it has become commonly accepted that the "bursting" process is 
strictly a sublayer phenomenon that scales with wall variables, while the large-scale outer structure is 
basically Reynolds number independent. A possible link between the two processes may exist in the fact 
that the frequency of occurrence of the turbulent "bursts" has been found to scale with outer flow 
variables and seems to be related to the period of passage of the outer structures (Refs. 22-23). 

The primary goal of this investigation has been directed to study these phenomena at a high subsonic 
speed, and to specifically determine the possible role or influence of pressure fluctuations on the 
processes involved.  Whereas most studies in this area tend to be at relatively low free stream velocities 
(typically, Um < 100 ft/sec) and Reynolds numbers (Reg < 10^), the present results are for a turbulent 
boundary layer with Uro = 675 ft/sec and ReQ = 108,000.  In addition, simultaneous measurements of three 
properties of the turbulent flow, namely, the streamwise velocity, the wall shear and the wall pressure 
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were made. Preliminary results from measurements at Ura = 675 ft/sec led to the conclusion that it would 
be of some value to have comparitive measurements at lower velocities.  Therefore measurements for 
boundary layers with U^ = 73 ft/sec and Uo, = 32 ft/sec were also made, and are presented for comparison. 

Experimental Facilities and Procedures 

The New York university one foot diameter induction tunnel was used for this research.  The facility 
has been described in detail in Refs. 19 and 24.  The capability of varying the velocity from 30 to 700 
ft/sec has since been added to the wind tunnel.  In addition the wind tunnel was modified so as to allow 
the test section to be located at several distances from the inlet of the tunnel.  This allowed the 
measurements to be made at various distances from the inlet depending on the boundary layer thickness 
required (at the lowest velocity, a boundary layer thickness of 3" was reached within 15 ft of the tunnel 
inlet). 

The development of the data gathering system and the analysis programs has been a major part of the 
present research program (see Ref. 19).  The system has been greatly improved by the acquisition of a 
PDP-11/34 mini-computer and a 14 channel tape recorder.  The mini-computer system includes 64K bytes of 
memory, two terminals - one of which is an interaction CRT graphics terminal, floppy and cartridge disk 
mass storage, and most significantly, a 64 channel A/D converter with two programmable clocks.  Programs 
have been developed on this system which are capable of performing the following analysis on a production 
run basis: 

1) Long-time average auto and cross correlations. 

2) Conditional sampling using the variable interval time average (VITA) variance (see 
Kaplan and Laufer (Ref. 25) or Blackwelder and Kaplan (Ref. 8)). 

3) Pattern recognition analysis to compensate for random phase "jitter" in conditional 
samples (see Blackwelder (Ref. 26)). 

4) Short-time, conditionally sampled auto and cross correlations (see Brown and 
Thomas (Ref. 14)). 

These analyses can be applied directly to the original digitized data or to the data after it has been 
filtered using the Fast Fourier Transform to include only components within a chosen bandpass.  In this 
way it should be possible to determine the importance or influence of different frequency ranges on 
particular results. From the use of the different analyses it should also be possible to determine if 
different approaches to conditional sampling produce comparable results when applied to the same data. 

Test Conditions 

In Ref. 19 experimental results were presented for Uc = 675 ft/sec.  Since that time the measurements 
have been repeated for two new sensor arrays and more extensive analyses have been performed.  In addition, 
extensive mean and fluctuating flow measurements at Uco m  75 ft/sec and Uco sa 30 ft/sec have also been made. 
The mean flow properties of the boundary layer at several stations along the tunnel for these three flow 
conditions are summarized in Table I.  Simultaneous measurements of the fluctuations have been made 
primarily with the sensor array shown in Fig. 1 and more recently with that shown in Fig,. 2.  In the 
latter, six wall-shear measurements are oriented so as to yield information about the turbulent structure 
in the lateral directions.  The present results are for data from the following test conditions: 

U = 675 ft/sec, X/D = 31, Both arrays (i.e., Figs. 1 and 2) 

U = 73 ft/sec, X/D = 15.5, Fig. 1 array only 

U = 75 ft/sec, X/D = 20.5, Fig. 2 array only 

U^ = 32.6 ft/sec, X/D = 20.5, Both arrays 

The aim of these tests is to yield data over a wide range of Reynolds numbers (i.e., from approximately 
5000 to 100,000) while maintaining the boundary layer thickness in the neighborhood of 3 to 4 inches.  The 
friction velocity, an important parameter in terms of the wall layer, also takes on a wide range of values 
for these tests, that is, from 1.8 ft/sec to 18 ft/sec. 

Discussion of Measurements 

A.   Velocity, Wall-Shear and Wall-Pressure (Fig. 1) 

Spectral analyses of the measured fluctuations have shown basic agreement with previous measurements 
except in the case of the pressure fluctuations in the two low speed cases (Uco = 73 ft/sec and U<» = 32.6 
ft/sec).  As the result of many previous measurements it is to be expected that the rms level of the wall- 
pressure fluctuations will fall somewhere between 0.5% and 1% of the dynamic pressure, qoo.  In the case of 
Uco = 675 ft/sec a reasonable levei of 0.008 qa, was measured.  But at U^ = 73 ft/sec and 32.6 ft/sec the 
measured levels were equivalent to approximately 0.23 qro and 0.65 q^,, respectively.  The explanation for 
this is that, for the low speed tests, the wall-pressure fluctuations due to the turbulent boundary layer 
become so weak that they drop below the noise "floor" of the measuring devices.  The noise "floor" is made 
up primarily of tunnel noise, although other sources such as transducer vibration response and mis- 
allignment with the tunnel wall may also contribute to it. 

Research performed by other investigators, determined that the level of tunnel noise could be lowered 
with extensive acoustic treatment of the sonic throat section of the tunnel (where the flow undergoes 
rapid acceleration) and by improving the suspension system of the tunnel.  These modifications were not 
undertaken for several reasons.  First, in the high subsonic regime where the primary interest lies, the 
wall-pressure fluctuations due to the turbulent boundary layer are found to be sufficiently above the noise 
"floor" to allow for accurate measurements.  Secondly, in the low speed case the main interest is in looking 
at the wall-shear and fluctuation velocity profiles (for comparison to those obtained at high speed), the 
measurement of which is not significantly affected by tunnel noise as the spectra of these measurements 
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seem to indicate. And lastly, the measurement of very low pressure levels would require transducers with 
much greater sensitivity than the ones that are presently being used. 

Sections of the data are digitized for all three free stream velocities and for both of the measure- 
ment arrays shown in Figs. 1 and 2. Various combinations of the analyses listed previously are applied to 
the digitized data in an attempt to obtain results comparable to those found by other investigators and to 
compare certain properties of the quasi-ordered turbulent structure at the varied flow conditions.  It is 
becoming more evident from continued use of the VITA variance analysis that one must be carefull when 
looking at the mean period between events detected with this scheme.  The number of times that the analysis 
will indicate the occurrence of an event in a fluctuating quantity used as a trigger will depend strongly 
on the threshold level applied to the VITA variance of that quantity.  The results indicate that for all 
three free-stream velocities a threshold level equal to approximately one-half the long time rms of the 
fluctuating quantity in most cases yields a mean period between events given by TUco/6 « 5, although this 
will vary depending on the measurement used as the trigger.  However, this period does not seem to be any 
more significant than any other that is obtained from this analysis with a different threshold. Some 
other criteria would have to be used to determine the threshold which has physical meaning in terms of a 
specific type of organized structure. 

Although care must be taken when interpreting the mean period between events obtained in this way, an 
ensemble average of a set of events detected using the VITA variance can be helpful in depicting average 
or typical characteristics of coherent structures in the flow.  Such a set of ensemble averages of the 
velocity and wall-shear fluctuations are shown in Figs. 3-5 for the three flow conditions and for the 
array shown in Fig. 1.  They were obtained by applying the VITA variance analysis to the velocity fluctua- 
tions at y = ,075"(O) to obtain a set of times where the fluctuations at this point indicate the 
occurrence of flow processes with certain repetitive characteristics. An ensemble average is then taken 
of 512 data points centered about these times for each of the six velocity and one wall-shear measurement. 
It can be seen from Fig. 3, that for U„, = 675 ft/sec there is a definite correlation across all seven 
measurements; that is, the average structure that the analysis triggers on encompasses, or at least has a 
strong influence on, all seven measurements.  That is not the case for the two low speed flows.  Figures 4 
and 5 show that, for the trigger at y = ,075"(0) (i.e., in the wall region), the average structure extends 
or correlates only over the three or four measurements nearest the wall.  The fact that this correlation 
seems to extend almost twice as far from the wall (i.e., to y = .275"(K)) for Uo, = 32.6 ft/sec (Fig. 5) 
than for Uro = 73 ft/sec (Fig. 4) may be an indication that this inner region shrinks toward the wall with 
increasing flow velocity, or alternatively, that it scales with wall variables. 

To see whether a similar coherence exists in the outer measurements for the low speed flows, the 
analysis was repeated using the measurement at y = ,375"(J) as a trigger.  The results, shown in Figs. 6 
and 7 , indicate that there is a correlated structure in the outer region which does not seem to extend 
further down than y = ,275"(K) from the wall.  How far up in the boundary layer this coherence extends 
cannot be deduced from the present measurements. 

An attempt has been made to determine if the loss of coherence with distance is due to noise that 
enters into the ensemble averages because of random variations in the phase between the events at the 
trigger and that at the measurement being averaged (see Blackwelder (Ref. 26)).  A pattern recognition 
analysis was applied to adjust the phase, with respect to the trigger at y = .075"(O), of each event in 
the ensemble averages.  The results shown in Figs. 8 and 9 are to be compared to Figs. 4 and 5, respec- 
tively.  Since each event in the ensemble averages has been shifted to zero time delay, the averaged 
events are centered about t = 0 in all cases.  The actual phase relationship of each average to the trigger 
at y = .075"(O) is given by the average shift of all the events in the ensemble.  This is shown for each 
measurement position on both figures.  It can be seen that for Ura = 73 ft/sec (Fifs. 4 and 8) this phase 
correction procedure has little effect in improving the ensemble averages, thus indicating that the loss of 
coherence in the outer measurements is not due to random phase "jitter" but rather to the fact that the flow 
structures in the wall region do not, on the average, extend beyond y w .075" - .175" (y « 112-261).  On 
the other hand, the phase correction procedure does result in a definite improvement in some of the 
averages for Uco = 32.6 ft/sec (Figs. 5 and 8).  This is particularly evident at y = ,175"(L) and to a 
significantly lesser degree at y = .275"(K).  Thus, after correction for phase "jitter" it becomes more 
clear that as the velocity is lowered the coherence of the inner structure extends further from the wall 
(i.e., to y <g .175" - .275" for U„, =  32.6 ft/sec) or perhaps that the inner region scales with wall 
variables (y+saloO-252).  The results of Fig. 3 for Uro = 675 ft/sec are not inconsistent with this con- 
clusion since all the measurements except the wall-shear are outside the wall region and the high degree 
of correlation of this measurement with the outer region may be only in terms of the low frequency com- 
ponents associated with the outer structure.  This will be discussed further in the following paragraphs. 

The ensemble averaged velocity and wall-shear fluctuations shown in Fig. 3 for Uco = 675 ft/sec can be 
plotted to yield a sequence of fluctuating velocity profiles which are presented in Figure 10.  The 
instantaneous total velocity profiles corresponding to this sequence are shown in Fig. 11.  These profiles 
show a great many similarities to those which have been measured in the wall region of low speed boundary 
layer flows, in particular, to those obtained by Blackwelder and Kaplan (Ref. 8). Attempts to depict the 
profiles in the low speed cases is hindered by the limited number of measurements in a given region, but 
indications are that the flow structures in both the inner and outer regions show the same type of 
coherence.  (A similar conclusion was reached by Chen and Blackwelder (Ref. 16) from measurements of 
velocity and temperature in a boundary layer over a slightly heated wall).  It is not possible to say 
whether these similarities are a result of the fact that the wall region "bursts" possess the same type 
of time signatures in terms of the streamwise velocity as the large scale outer structure or that they are 
a consequence of the detection scheme being used, that is to say, the detection scheme triggers on some 
"typical" structure which exists in both regions. 

On the assumption that the former is the case, the available data will be analyzed further to de- 
termine what relationship exists between measurements in the inner and outer regions. From this, some 
insight may be gained into a possible interaction mechanism between the wall region "bursts" and the large 
scale outer structure. For the low speed flows, this will involve examining individual events occurring 
in the inner and outer regions and seeing if any interaction exists between them.  In the high speed case 
this can only be done with the wall measurements. By looking at these fluctuations in various frequency 
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ranges it may be possible to isolate the components associated with the "bursting" process and to de- 
termine what relationship exists between these and the large scale flow structures.  The success of such an 
analysis will depend strongly on the ability to accurately resolve the very small scales associated with 
turbulent "bursts".  In this regard, a commercially available pressure transducer having a diameter of 
0.010" will be tested and its output compared to that from the transducers now being used (d = 0.040"). 

Some preliminary results have been obtained concerning the behavior of the wall pressure fluctuations 
from the measurements and data discussed in Ref. 19 for U„ = 675 ft/sec.  The measurement grid was similar 
to that shown in Fig. 1 except that fewer sensors were available at that time and the streamwise velocity 
was measured at slightly different positions.  Figure 12 shows the result of taking the ensemble average 
of 60 events detected over an interval of TUco/6" = 2000 using the velocity fluctuations at y/6 = 0.088 as 
the trigger.  The velocity and shear fluctuations are basically the same as those in Fig. 3 since the 
trigger is at approximately the same position in both cases.  From Fig. 12 the wall pressure fluctuations 
can be seen to be characterized by a well defined period of overpressure during the passage of the flow 
structures in the outer region. An examination of the wall pressure fluctuations during individual events 
consistently shows the superposition of large amplitude high frequency components on the more slowly 
varying period of overpressure.  The fact that these high frequency components do not appear on the average 
would indicate that they are either a random phenomenon or that they occur at a random phase with respect 
to the process which triggers the detection scheme.  It should be possible to determine which is the case 
by filtering the pressure fluctuations to obtain some representation of the high frequency components and 
then applying a detection scheme to see if coherence also exists in this aspect of the data. A dominant 
phase relationship between the low and high frequency components of the fluctuations could also be de- 
termined by cross-correlating the two. 

B.   Wall-Shear Measurements in the Lateral Direction (Fig. 2) 

Measurements with the wall-shear array shown in Fig. 2 have been analyzed for U = 675, 75, and 32.6 
ft/sec.  Figures 13-15 show the results of taking ensemble averages at each position using the measurement 
at C as the trigger for detecting the occurrence of events.  It can be seen that except for the high speed 
case (Fig. 13) there is no discernible correlation in the lateral direction, whereas a definite correlation 
exists for the measurement (F) oriented directly downstream of the trigger position.  This is to be ex- 
pected since previous measurements as well as visual observations have indicated that both the wall region 
"bursts" and the large scale outer structures maintain a high degree of coherence for large distances in 
the streamwise direction.  The extent and spread of these structures in the lateral direction is much more 
limited.  In the case of the wall region processes, for example, the separation between the streamwise 
streaks is estimated to be on the order of Z+ m  100, while each individual streak is confined to a fraction 
of this distance. 

It is not clear from the results of Figs. 13-15 whether the detection scheme we are using triggers on 
the wall region structures or on the response of the wall shear to the passage of the large scale outer 
structures.  It can be seen from the non-dimensional distances in Fig. 2 that, at least in the case of 
U» = 32.6 ft/sec, the size and separation of the wall shear sensors should be adequate for discerning some 
aspects of the wall region processes.  However, several factors would seem to indicate that the typical 
wall shear response seen in the measurements at C and F in Figs. 13-15 is a result of the large scale 
outer structure.  First, the typical response histories in the low speed cases (Figs. 14 and 15) con- 
sistently show that what appears to be an overshoot or superimposed high frequency component at the top of 
the rapid change in the wall shear. A similar phenomenon was observed by Brown and Thomas (Ref. 14) in 
their wall shear measurements and led them to speculate that the superimposed high frequency component was 
a manifestation of the "bursting" process.  The high frequency component was seen to occur at a well de- 
termined phase with respect to the low frequency component attributable to the large scale outer structure, 
specifically, it occurred near positive maxima of the fluctuating shear. A similar conclusion concerning 
the present results would seen to be supported by the fact that this effect appears to be more pronounced 
in Fig. 15, i.e., Uro = 32.6 ft/sec (where better resolution is possible of the wall region processes) than 
in Fig. 14 for Uro = 75 ft/sec, and does not appear at all in Fig. 13 for Um = 675 ft/sec where the in- 
strumentation is not capable of resolving any processes on the scale of the wall region. 

A second indication that the well defined time signatures in Figs. 13-15 are basically the response 
of the wall shear to the outer structure comes from the results of a phase correction analysis shown in 
Figs. 16 and 17 for U«, = 675 ft/sec, in Figs. 18 and 19 for U„ = 75 ft/sec and in Figs. 20 and 21 for 
Uco = 32.6 ft/sec.  The set of events which are detected by using T'(C) as a trigger are divided into two 
groups depending on the phase relationship between each event at C and any similar ev-ant found at B by the 
pattern recognition analysis referred to earlier.  The search for a similar event was restricted to time 
delays approximately in the range -5 < t'Uto/S''^ 5.  The ensemble averages obtained for the set of events 
where a match was found at a later time in T!(B) (positive delay) are shown in Figs. 16, 18, and 20 and at 
an earlier time (negative delay) in Figs'. 17, 19 and 21.  The average time delay by which the events in each 
ensemble average were shifted is also indicated in these figures.  The marked improvement, particularly for 
the two low speed cases, in the ensemble averages (compared to Figs. 13-15) shows that a coherence exists 
in the lateral direction which was previously obscured by random phase "jitter" and which extends across 
three or four of the measurements, i.e., Z+ tm  500-5000.  This could not be as a result of wall region 
processes which have been observed to be confined to lateral distances on the order of Z+ «4 50. 

The fact that the events can be separated into two groups with opposite phase relationships across 
the lateral measurements is thought to be an indication of the "arrowhead" or "horseshow" type shape 
(see Fig. 2) that has been hypothesized for the large scale outer structure when looked at from above the 
wall of the boundary layer.  It is clear that the phase relationship one would obtain among a set of 
lateral measurements would depend on which "leg" of the structure crosses the measurements.  From the 
results of Figs. 16-21 it is possible to estimate the angles 9+ and 9- in Fig. 2 that each "leg" makes 
with the X-axis.  Taking the average time delay between the measurements at C and F one obtains a stream- 
wise convection velocity of Uc/Um = 0.70 for Ura = 675 ft/sec, Uc/Uro = 0.69 for U^ = 75 ft/sec and Üc/Um= 0.64 
for Uro = 32.6 ft/sec.  Using these convection velocities and the time delay between W' (C) and T*'(B) in 
Fig. 16, the angle 9+ is estimated (locally and on the average) to be 5.8° for Ura = 675 ft/sec.  The time 
delay in Fig. 19 yields a 9" of 6.3°.  Similarly from Figs. 18 and 19 for Vm  = 75 ft/sec Q+ ^  18° and 
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9" M 15°, and from Figs. 17 and 18 for Um = 32.6 ft/sec 6+ = 20° and 9" = 17°.  The slight differences in 
fi+ and 9" are due to errors in the estimates, since by symmetry they should be equal.  The results in the 
two low speed cases compare favorably with the angle of 22° estimated by Thomas (Ref. 15) from similar 
measurements at Um &  100 ft/sec.  The much smaller angle obtained in the high speed case could be an 
indication that the flow structures become more confined in the lateral direction as the free stream 
velocity is increased. 

Conclusions 

Measurements of the fluctuating properties of a turbulent boundary layer for a wide range of free 
stream conditions have been analyzed to obtain information concerning coherent or quasi-ordered structures 
in the flow.  The primary interest of the investigation is for free stream velocities in the high subsonic 
regime (specifically, U„ = 675 ft/sec), although comparative measurements have been made at two lower 
velocities, i.e. V«,  ra 75 ft/sec and U„ BS 30 ft/sec.  The Reynolds number, Re9, ranges from 10

5 down to 
approximately 10^, while the boundary layer thickness is maintained relatively constant at between 3 to 4 
inches. 

Recordings of the fluctuating streamwise velocity, wall-shear, and wall-pressure in the boundary layer 
are digitized to obtain simultaneous time histories of the fluctuations.  These are analyzed on a mini- 
computer using various conditional sampling procedures to isolate temporal sequences associated with the 
coherent structures.  From this the mean period between occurrences of the flow structures is estimated 
and ensemble averages found.  These ensemble averages and cross-correlations between measurements at 
different positions during the occurrence of events are used to deduce information concerning the geometry 
of the flow structures. 

Measurements for two arrays of sensors have been analyzed in this way.  In one, wall-shear and wall- 
pressure sensors are aligned in the streamwise direction upstream of a rake of six streamwise velocity 
probes.  In the other, wall-shear measurements are aligned so as to yield information about the flow 
structures in the lateral direction.  Using a variable-interval time-average (VITA) variance analysis to 
detect the occurrence of events in the data, the mean period between events (f) is found to be approxi- 
mately given by TU^/SsaS, although some variation is found depending on the measurement used as the trigger 
for detection.  The number of events detected using this technique, however, is strongly dependent on the 
threshold chosen in the analysis.  The estimate given here was obtained with thresholds in the neighbor- 
hood of one-half the overall rms of the fluctuations under consideration.  But this choice seems rather 
arbitrary and the resulting mean period between events should be judged accordingly. 

Irregardless of these questions about the number of events detected, a normalized ensemble average of 
all the events is useful in depicting certain characteristics of the flow structures.  In the case of the 
streamwise velocity measurements normal to the wall for U» = 675 ft/sec, it was found that the average 
structure correlates well over all the measurements including the wall-shear. This was not the case for the 
two low speed flows.  If a measurement near the wall is used as a trigger the resulting ensemble averages 
display coherence only up to a certain distance from the wall (i.e., up to y+ ^ 100-200).  A similar 
coherence exists in the outer measurements when one of these is used as a trigger.  In addition, the 
boundary between the inner and outer regions seems to be further from the wall for Ho = 326 ft/sec than for 
Um = 73 ft/sec.  This may be an indication that the inner region scales with wall variables. 

The similarity of the coherence in the inner and outer regions as well as the similarity between the 
present measurements in the high speed case (which, except for the wall measurements, are in the outer 
region) and the .results obtained by others in the wall region of low speed flows may be due to one of two 
reasons.  Either the detection scheme being used triggers on some "typical" structure existing in various 
regions of the boundary layer, or the wall region "burst" process exhibits the same time signature in terms 
of the streamwise velocity as certain aspects of the large scale outer structure.  It is not possible to 
determine from the present results which of these is actually the case. 

Of particular interest in the high speed results is the fact that the coherence  seen in the outer 
measurements extends to the wall.  Both the wall-shear and the wall-pressure show a definite correlation 
to the passage of the outer structure.  This is not the case, at least on the average, for the two low speed 
flows.  By looking at individual events in the low speed measurements more carefully it should be possible 
to determine if there are events which exhibit some correlation between the inner and outer regions.  To 
determine whether the strong correlation seen in the high speed measurements is due to the inability of the 
sensors to resolve the small scales associated with the wall region processes, a pressure transducer which 
is h  the size of those now being used will be tested.  With regards to this question of the interaction 
between wall region processes and the large scale outer structure, an attempt will also be made to look at 
the measurements in various frequency ranges and to see what relationship exists between them. 

Two important results were obtained from the wall-shear measurements which concentrated on the lateral 
aspects of these flow structure, or to be more precise, of their "footprint".  From two measurements 
aligned in the streamwise direction, the average convection velocity of the flow structures was found to be 
in the range Uc = 0.6 - 0.7 Uco.  This result, combined with the phase relationship found between the same 
event as measured at two adjacent lateral position, was used to determine the angle that the sides of the 
flow structure makes with the streamwise direction.  This angle was found to be approximately 20° for 
U„ = 32.6 ft/sec and 18° for U<*> = 75 ft/sec.  In the high speed case (Uro = 675 ft/sec) a much smaller angle 
of about 6° was estimated.  This would seem to indicate that the flow structures tend to become more 
confined in the lateral direction as the flow velocity increases. 
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COHERENT STRUCTURES IN TIME DEPENDENT SHEAR FLOWS* 

Hermann Viets 

Wright State University 
Dayton, Ohio 45435 

SUMMARY 

The existance of large scale coherent structures in forced unsteady flows is demonstrated. The time 
dependency is produced in the free jet case by a fluidically controlled flapping jet and in the wall bound- 
ary layer case by a mechanical vortex generator. Advantages of the unsteady flows and similarities to"steady" 
turbulent shear flow structure are discussed. 

1. INTRODUCTION 

The existence of coherent structures in turbulent shear flows has greatly complicated the task of 
modelling these flows. Since the use of local transport properties does not appear to be adequate, future 
descriptions of turbulent flows will probably rely more heavily on phenomenalogical models. The flow may 
then be based on some observations of its structure. A very simple example would be to model the coherent 
large scale structure of a free jet by a number of vortices being convected downstream in a jet without a 
large scale structure. Of course, other difficulties arise; in particular, the questions of how this struc- 
ture is initially formed' and the geometrical relationships involved-^. 

The motivation, then, for studying unsteady flows is not only due to their own usefulness but also as 
a guide to the modelling of "steady" flows. In particular, the purpose of the present paper is twofold: 

1. Demonstrate some positive aspects of unsteady flow. 

2. Produce flows in which the origin of the coherent structure is readily 

identifiable, thereby perhaps simplifying the modelling task. 

2. TIME DEPENDENT JET FLOWS 

The introduction of a time dependency into free jet flows has been accomplished by various methods in- 
cluding mechanical4, acoustic5 and fluidic5 means. The fluidic method is considered here and consists of a 
feedback circuit which produces a jet which flaps from side to side5. The main advantage of this system 
(as with all the unsteady jets) is a more rapid mixing of the jet with the surrounding fluid. The unsteady 
jet nozzle employed here is shown in Figure 1 and described in detail in Ref. 6. The feedback loop is incor- 
porated into the nozzle body to minimize the interference with the coflowing stream. 

NOZZLE PLENUM    FEEDBACK LOOP 

\      .32 cm.   /  CONTROL PORT 
X 

,pr¥^-. / 

••i'V*'* •'-"' 

Figure 1. Schematic of the fluidically oscillating jet. 

The large scale coherent structure in free shear layers, as demonstrated by Roshko and Brown7 (See also 
Ref. 1), is difficult to model due to the lack of detailed understanding of its origin. Although it is clear 
that the large scale structure is born in the turbulent shear layer, its growth and geometrical spacing have 
not been predicted analytically. However, it has been shown that the scale must increase with streamwise dis- 
tance2 and that the spacing also increases by the amalgamation of adjoining structures-1*. A simpler problem, 
from the modelling point of view, is the unsteady flow in which the origin of the largest scale structure is 
more evident. 

The large scale structure in the oscillating free turbulent jet is shown in Figure 2. The flow struc- 
ture is visualized by entraining kerosine smoke into the open circuit low speed wind tunnel. The nozzle 
exit is at the left and the flow is from left to right. The ratio of the coflowing stream to nozzle exit 
velocity is .458. Although the jet is highly turbulent, the coflowing stream turbulence is low enough to 
produce a visible study of the entrapment into a unsteady jet. With such a relatively high coflowing 
stream, the amplitude of the jet oscillation is not large but the appearance of the large scale structure 
is evident at various streamwise positions. At position A the large scale structure can only be seen with 
some difficulty. By position B, the structure is a clearly defined mass of fluid which is rotating in the 
clockwise sense. The distrubance has grown quite large by streamwise postion C. 

* Partially Supported by AFOSR Grant No. 78-3525, monitored by Lt. "George Catalano, AFFDL/FXM 
Special thanks are due to Michael Piatt and Mont Ball for their assistance in the construction and per- 

formance of the experiments. 
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Figure 2.    Smoke flow visualization of the oscillating jet in a coflowing stream of 45.I 
the jet velocity. 

of 

If the coflowing stream velocity is reduced to 28% of the jet exit velocity, the magnitude of the large 
scale structure is increased significantly as shown in Figure 3. Now the large scale structure is very evi- 
dent at position A and the structure at position C has grown to the extent that it dominates the jet flow. 
Perhaps even more interesting is the structure at position B where the turbulent flow is clearly rotating 
in a clockwise sense. Since the flow is unsteady, the smoke lines are not streamlines but streaklines so 
the interpretation is less straight forward. However it appears that of the two streaklines at position B, 
the lower one is deflected around the large scale structure while the upper streakline is being entrained 
into the turbulent large scale structure which is the jet. This interpretation is verified by observing 
the oscillation with a strobe light which is tuned so that there is a small frequency difference between 
the strobe frequency and the jet oscillation frequency. Then the jet appears to flap in slow motion and 
the rotational motion may be clearly seen. Thus, the large scale unsteady structure behaves in the same 
way as the large scale undriven flow structure described by Roshko2 and entrains fluid on the upstream side. 
A similar entrainment pattern for the turbulent wake has been found by Bevilaqua and Lykoudis8. The effect 
may be seen for the larger structure at position C in Figure 4 where the turbulent flow is entraining the 
coflowing stream on the upstream side of the large scale structure. 

Figure 3. Smoke flow visualization of the oscillating jet in a coflowing stream of 28% of the 
jet velocity. 

Returning now to Figure 2, it may be seen that the turbulent jet produces a large scale structure of 
its own in addition to that produced by the time dependency. The peaks of smoke on the streaklines closest 
to the nominal jet center!ine all point in a downstream sense, in the same way as those produced by the time 
dependent structure (position C of Figure 4). Thus, the turbulent unsteady jet produces a "steady" and an 
unsteady large scale structure but the unsteady portion appears to dominate the flowfield. This may be some- 
what analogous to the domination of the large scale structure over the fine scale turbulence in the "steady" 
jet. Here "steady" is employed to indicate that the jet is steady in the gross view, while there is unsteadi- 
ness associated with the turbulence structure. 

Both the "steady" and unsteady large scale structures appear to arise through the same, or at least a 
similar, mechanism. The jet produces a perturbation on its surface. This bulge in the surface grows into 
a rotating mass of fluid with a vortex-like structure. In the "steady" case the origin and spacing of the 
structure is not fully understood. In the unsteady case, the bulges are produced at a known position and 
frequency and therefore may be easier to analyze. 
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Figure 4. Smoke flow visualization of the oscillating jet in a coflowing stream of 28% of the 
jet velocity. 

3.  MODELLING THE UNSTEADY JET 

To understand the production of the large scale unsteady structure in the unsteady jet, it is useful to 
construct a very simple phenomonalogical model of the process. It appears that the growth of the unsteady 
structure greatly resembles the growth and subsequent breaking of a water wave. This may be seen by examin- 
ing three positions of the developing large scale structure shown schematically in Figure 5a, where u.(x) 

and u are the jet and coflowing stream velocities, respectively. The original deformation of the free jet 

surface is a relatively small amplitude wave. This wave travels downstream (left to right) at a velocity 
uwave sucn tnat uc < uwave < ui' Tnerefore tne wave ls in a shear flow which causes it to curl in a 
counter-clockwise direction and entrain fluid into itself. Even without shear, it can be shown that the top 
of the wave outruns the bottom and curling results9. After the curling up is completed, the vortex-like 
structure continues to entrain fluid. The photographs of Figure 5b are taken from positions A, B & C of 
Figure 3, where position B has been printed as it would appear on the upper surface of the jet. They clearly 
verify the schematics of Figure 5a. 

\ 
entrained flow 

x 
entrained flow, 

\ 

•£*& 

'zmsu.wi 

Figure 5. Evolution of the jet surface waves. 

If one considers a breaking water wave, the schematic of Figure 5a corresponds to the wave shape at 
three instants of time, however with the wave traveling from right to left. Position A is the earliest 
swellinq of wave. As the wave travels to the left, its forward face steepens and finally breaks as shown 
at position B. By position C the wave has broken and resembles a vortex like structure. The energy of tne 
breaking wave is transformed partially into turbulence, which is eventually dissipated as heat, and partially 
serves to'energize the undertoW9which is the jet velocity itself in the present analogy. The analogy is 
incomplete, however, because the water wave is driven by gravity and somewhat by viscous effects while tne 
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jet structure is entirely a viscous phenomenon. In spite of this, once the viscosity has created a vortex 
sheet at the interface, the deformation of this sheet may be modelled inviscidly^ with considerable 
success. 

The main point then is not that the steady and unsteady flow structures are the same but rather that 
they may have similar origins. As the unsteady structure grows from a large amplitude surface wave, so the 
steady structure may grow from a small amplitude surface wave. 

4.  QUANTITATIVE CONFIRMATION 

The unsteady fluidically controlled jet was examined in some detail by employing a hot wire anemometer 
along with conditioned sampling of the data to reveal the time dependent character of the flowfield. The 
jet was positioned between two Plexiglas sheets to attempt to minimize the three dimensionality of the field, 
as shown in Figure 6. The hot wire anemometer was driven through the flowfield by a motorized traversing 
mechanism which also turns a potentiometer, so the probe position is known at any time. 
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Figure 6. Experimental setup for quantitative tests. Figure 7. Electronic circuitry for conditional 
sampling with the hot wire anemometer. 

The data required are the velocities in the jet at a specific instant of time (or alternately, at a spe- 
cific point in the oscillation cycle, since the oscillation is repeatable). The conditioned sampling method 
is shown schematically in Figure 7. A third hot wire anemometer is employed to indicate the position of the 
jet since its signal is maximized when the jet is in the upward orientation. This signal is electronically 
manipulated to produce a timing spike which activates a Schmitt trigger circuit and eventually a sample and 
hold circuit. Thus the sample and hold only accepts a signal from the two channel hot wire probe when the 
jet is in a predetermined orientation. This orientation may be changed at will due to the presence of a var- 
iable phase shifter. The probe can then traverse across the jet and only record the velocities with the jet 
in a single orientation, neglecting all others. 

The data obtained by the above technique have been reported in some detail in Reference 10. The aim 
here is to investigate quantitatively the existance of large scale coherent structure in the jet as appears 
to be evident in the flow visualization experiments described above. Looking back at the schematic of the 
unsteady jet field in Figure 1, a growing sinusoidal wave traveling downstream, where should one look for 
the existance of the vortex structure observed in the smoke photographs? The question is answered by another 
look at the model of Figure 5. As the bulge of the jet flow curls up to create a vortex structure, it nec- 
essarily does so by breaking toward the upstream direction (as driven by the slower coflowing stream or am- 
bient fluid). Thus the vortex produced would be expected to exist at a position somewhat upstream of the 
initial jet bulge, which in this case is the extreme off axis position of the instantaneous jet centerline. 

A portion of the jet flowfield, for the case of a frequency of 18 Hz and an extreme downward orienta- 
tion of the jet at the nozzle exit, is shown in Figure 8a. The lengths of the arrows are proportion to the 
local velocity and the angles are determined from the measured axial and transverse velocities. The instan- 
taneous jet centerline is also shown, from which it may be estimated that if a vortex is present, it should 
be centered roughly between 16 and 22 jet diameters downstream. No vortex-like structure is evident in this 
region. 
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Figure 8a.    Jet velocity field at a frequency w=18 Hz and phase angle 6=270°. 
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Figure 8b. Coherent structure of the jet 
seen in a moving coordinate 
system. 
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Several investigators have shown, however, that in order to see the coherent motion of a group of 
particles, the observer must be travelling with the velocity of the center of mass of those particles. Prob- 
ably the first examination of this effect was made by Prandtl^who photographed a boundary layer by travel- 
ling at various speeds relative to the flow. Each photograph then revealed a different coherent structure. 

In order to see the structure in the flowfield of Figure 8a, a nominal velocity of the vortex center is 
assumed and that streamwise velocity subtracted from each of the data points in the field. The result is 
shown in Figure 8b and clearly shows a vortex located in the very region where one would expect it based on 
the flow visualization results presented above. 

Based on the phennominological model of Figure 5 and the quantitative results of Figure 8 one can then 
make more predictions of the location of large coherent vortices in a family of instantaneous jets as shown 
in Figure 9. The 12 Hz frequency jet is shown for three phase angles, 90°, 180° and 270° or horizontal 
(sweeping top to bottom), extreme downward or horizontal (sweeping bottom to top) orientation, respectively. 
The centerline positions of the jets are based on quantitative results. The vortices are drawn in the posi- 
tions where they might be expected to be found based on the previous results. 

Searching at the three positions closest to the nozzle exit, A, C and E leads to the conclusion that 
coherent vortices do not exist at those positions. This is, however, entirely consistent with the model 
proposed in Figure 5. It is clear from the flow visualization experiments that it takes some time (or equiv- 
alents, distance) for the bulge on the jet to curl up into a coherent structure. The positions near the jet 
exit have simply not allowed enough time (or distance) for this process to take place. 

Looking for the vortex B, the local jet velocity field is shown in Figure 10a. Assuming the vortex cen- 
ter to exist at roughly x = 22 and subtracting the streamwise velocity at that point results in the Figure 
10b, where the vortex structure is evident. It should be emphasized, of course, that the local structure 
depends upon the velocity of the observer, so subtracting a somewhat different velocity will result in a 
somewhat different appearance of the vortex. However, the important fact that the vortex is there is clear 
in any case. 
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Figure 9.    Anticipated vortex locations 
based on flow visualization 
results. 
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Figure 10a.    Jet velocity field at a 
frequency of u=12 Hz and phase 
angle 6=90°. 
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Figure 10b. Coherent structure of Vortex B 
in a moving coordinate system. 
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The local velocity field for a phase angle of 0 = 180° is shown in Figure 11a. Again no vortex struc- 
ture is seen until the flow is observed from a moving coordinate system as shown in Figure lib. The vortex 
appears to be centered approximately at x = 10. Looking back at the schematic of Figure 9, it may be seen 
that vortices A, D and F are really one and the same vortex at successive times. Thus an indication of the 
translational speed of the vortex can be obtained by locating the vortex F, having already found vortex D. 

CU=l2Hz 

6 = 180° 

Instantaneous 
jet 
centerline 

Figure 11a.    Jet velocity field at a 
frequency of OF 12 Hz and a 
phase angle 9=180°. 
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Figure lib. Coherent structure of Vortex D 
in a moving coordinate system. 
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The jet flowfield in the region where vortex F is expected is shown in Figure 12a. In a moving coordi- 
nate system, the coherent structure of the jet may be seen in Figure 12b. The vortex center is located at 
approximately x = 22. Then the translational velocity of the vortex between the positions D and F of Figure 
9 is 

V AX  = (22-10) 1/24 ft  
time ~ (1/12 sec/cycle) (1/4 cycle) 

The instantaneous centerline velocities corresponding to the locations of vortices D and F are 11.5 m/sec 
and 10.8 m/sec, respectively. It should be noted, however, that the vortex translational velocity is onlj 
an approximate value because the determination of the vortex locations is not precise. A composite view 
of the streamwise velocity distribution corresponding to the jet in Figures 12a and b is shown in Figure 

Figure 12a. Jet velocity field at a 
frequency of «=12 Hz and a 
phase angle of 9=270°. 

16 18  20  22  24 26 28  30 
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Figure 12b. Coherent structure of Vortex F 
in a moving coordinate system. 
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Figure 12c. Composite view of the streamwise velocities in the unsteady jet 
for u = 12 Hz and 0 = 270° 

Further evidence of the existance of a large scale vortex structure in the unsteady jet may be found 
in the instantaneous decay of the jet centerline velocity. In the case of steady jets, the centerline ve- 
locity decay is a monotonically decreasing function of streamwise distance. In the unsteady jet case, the 
centerline velocity decay (where the centerline is a quasi-sinusoidal shape) has a typical behavior^0 shown 
in Figure 13. The velocity decays with streamwise distance, reaches a local minimum and starts to increase 
again. A peak is reached, where upon the decay begins anew. The location of the peak corresponds to the 
existence of a vortex at that position, as illustrated in the inset to Figure 13. 

Considering the induced velocity distribution due to the vortex and superimposing that velocity on a 
monotonically decaying centerline velocity results in the typical distribution of Figure 13. Thus the vis- 
ual observation of a vortex structure in the unsteady jet is consistent with the quantitative measurements, 
specifically the instantaneous velocity structure and its centerline decay. 

f=18Hz 
0=270° 

Figure 13. Effect of the vortex structure 
on the instantaneous jet 
velocity decay. 

X 
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5.  UNSTEADY BOUNDARY LAYER ENERGIZATION 

The use of unsteady flow to energize the boundary layer flow has been accomplished implicitly for some- 
time. If one considers the difference between typical laminar and turbulent boundary layer profiles, the 
turbulent profile is fuller near the wall. That is, the velocity at a given position above the surface is 
greater in the turbulent case than in the laminar case. The difference was ascribed by Prandtl to the tur- 
bulent interchange of momentum between the various layers of flow. This turbulent flow of momentum across 
streamlines is a time dependent process which can be improved by external stimulation and/or the production 
of a large scale structure. 

The mechanical method employed here to produce a time dependency in the boundary layer is shown in Fig- 
ure 14. It consists simply of a cam shaped rotor which rotates in a counter clockwise sense and thereby pro- 
duces a clockwise vortex with each passing of the discontinuity in the rotor surface. The vortices are swept 
downstream by the flow but their presence causes an increased transfer of momentum from the free stream to 
the' lower reaches of the boundary layer. The flow is capable of overcoming a stronger positive pressure 
gradient without separation, as has been shown in Reference 12 for the case of a two dimensional rotor. 
The objective here is to examine the usefulness of a three dimensional rotor geometry and to investigate 
the effect of rotational direction on that jet. 

^MMMM(^ 
Figure 14.    Rotor geometry for boundary 

layer energization. 

The initial motivation for the rotor device was to produce a flowfield similar to the flow above an 
oscillating airfoil  and thereby to improve the life on a stalled airfoil.    Positive results on this appli- 
cation are given in Reference 13.    The method was subsequently applied to a rearward facing step with 
potential application to improve mixing in a dump combustor^. 

Figure 15.    Smoke flow visualization of the 
vortex generation process, u=3000 rpm. 

V_y GO =   + 3000 rpm 
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The actual production of a vortex by the rotor geometry is shown in the photographic sequence of Fig- 
ure 15. In this case the rotor size is 4.76 cmand it is turning in a counter-clockwise direction at 3000 
rpm in a flow moving from left to right at 25.0 m/sec. The rotor produces a vortex-like structure which 
can be seen even more clearly by the use of strobe almost synchronized to the rotor speed so that it pro- 
duces a slow motion version of the flowfield. The field itself is highly repeatable and can even produce 
an apparently standing vortex by means of synchronizing the strobe. It is important to note that the rotor 
does not operate simply as a trip mechanism. The time dependence is^ important because it concentrates the 
vorticity and thereby makes it more effective in terms of energizing the boundary layer. Also of importance 
is the fact that the rotor tip is moving in an upstream direction, so that the rotor is not simply pushing 
the flow downstream. The rotor apparently supplies only the energy required to bring some high energy ex- 
ternal flow down into the boundary layer. 

The present experiments are concerned with a three dimensional rotor which is, on the flow centerline, 
the same dimension as the diagram of Figure 14. However, as one moves away from the centerline (i.e. into 
or out of Figure 14) the size of the rotor tapers to zero at a transverse position of 3.6 cm from the center- 
line. Another difference is that there is no undercut in the rotor shape but the discontinuity in the rotor 
shape is merely a straight step. The subsequent flow visualization results and pressure measurements are 
all made on the centerline of the flowfield. 

Figure 16. Flow separation at the ramp for no rotor. 

CO = 1000 rpm 

2500 rpm 

0=28° 
TAPERED ROTOR 

CO = -2500rpm 

Figure 17. Comparison between rotor motion in the upstream (+) and downstream (-) directions 
for üFIOOO and 2500 rpm, and a tapered rotor. 
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CO = 4000 rpm CO - =4000 rpm 

CO 5000 rpm 5000 rpm 

6=28° 
TAPERED ROTOR 

Figure 18.    Same as  Figure 17 for u=4000 and 5000 rpm. 

The effect of the magnitude and direction of the rotation speed on the ability of the flow to remain 
attached to a 28° ramp is shown in Figures 16-18.    The detached flow for the case of no rotor is shown in 
Figure 16.    The flow separates immediately at the beginning of the ramp.    The nominal velocity at the top 
of the ramp is 32 m/sec.    The photographs in Figures 16-18 are taken with a sufficiently long time exposure 
so that the results are essentially a time average of the flowfield and hence are average streamlines. 
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Figure 19. Pressure rise down the ramp 
for + 1000 rpm and a tapered 
rotor. 
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Figure 20. Pressure rise down the ramp 
for + 5000 rpm and a tapered 
rotor. 
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O) = -1000 rpm 

Figure 21. 

CO = 2500 rpm ^        CO = -2500 rpm 

0 = 28° 
TAPERED ROTOR 

Streak!ines in the ramp flowfield for a tapered rotor moving in the counter- 
clockwise (+) and clockwise (-) directions. 

In Figure 17 the comparison is made between rotation in the counter-clockwise (+) direction and the 
clockwise (-) direction for speed of 1000 and 2500 rpm. The direction of rotation does not appear to be 
a major effect, but the rotation has not yet caused to flow to turn the corner very effectively. With an 
increase of rotational speed to 4000 and 5000 rpm, the effect of the rotation direction becomes very pro- 
nounced. In particular, at u= ±5000 rpm the effect is very strong, resulting in a fully attached flow for 
a counter-clockwise rotation and a fully separated flow for a clockwise rotation. 

The time average pressure distribution on the ramp are shown in Figures 19 and 20 for two sets of ro- 
tational speeds, ±1000 rpm (Figure 19) and ±5000 rpm (Figure 20). At the lower rotational speeds, the pres- 
sure rise on the ramp is rather small and only weakly affected by the direction of rotation. This is incon- 
sistent with the results of Figure 17 and indicates that the frequency of vortex generation is too low to 
achieve sufficient boundary layer energization to allow the flow to remain attached. Changing the direction 
of rotation (at the same w) keeps the frequency of vortex generation unchanged but changes the strength of 
each vortex because the relative velocity between the stream and the rotor is changed. However, since the 
frequency of generation is insufficient for attachment even with the counter-clockwise rotation, the effect 
is minimal. 

At higher rotational speed, however, the effect of rotational direction is very significant as shown in 
Figure 20 for the case of ±5000 rpm. The counter-clockwise rotation (+) produces the stronger vortex and leads 
to a higher pressure rise on the ramp. This result is a reflection of the improved flow attachment on the raup 
and verifies the flow visualization results of Figure 18. 

The details of the flow structure may be seen in the streakline photographs of Figures 21 and 22. In 
this case, the photographs are taken with a single flash strobe and thus yield the instantaneous positions of 
the entrained smoke or streakline. The interpretation of streakline patterns is more difficult but can be 
guided by observations of their dynamic behavior as observed with a tunable strobe light. The results at the 
lower rotational speeds, Figure 21, verify the results of Figure 17 in that the effect of rotation direction 
is not very strong and indeed, the ability of the unsteady energization to cause the flow to remain attached 
is rather limited. However, at larger rotational speeds, Figure 22, the effect of rotor direction is very 
pronounced, leading to a very strong vortex structure and a successful attachment when rotated in the counter- 
clockwise (+) direction. When rotated in the clockwise (-) direction, the strength of the vortices produced 
is greatly reduced (since the relative velocity is reduced) and the resulting flow is not well attached to 
the ramp. 
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Thus the time dependent method of boundary layer energization appears to show promise from the point of 
view of application. Rotation in the upstream direction (+) direction is desirable to maximize the relative 
velocity between the rotor and freestream and thus maximize the vortex strength. Three dimensional rotors 
show the same promise but additional data is needed on geometrical effects. 

CO = 5000 rpm 
0- o Q° 

TAPERED ROTOR 

CO = 5000 rpm 

Figure 22.    Same as Figure 21    for higher rotor speeds. 

6. CONCLUSION 

The existence of large scale time dependent flow structures in forced time dependent shear flows is dem- 
onstrated. These structures dominate the flow and make possible the observed performance improvements of some 
unsteady devices. Because of the more readily definable structure, unsteady flows could be employed to study 
the structure of nominally steady flows from a modelling point of view. 
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SUMMARY 

The paper presents details of seven low-speed equilibrium boundary layer flows rang- 
ing from mildly  favourable pressure gradients to adverse pressure gradients almost suf- 
ficient to cause incipient separation.  The flows are turbulent and second and third order 
correlations of the turbulence are included in addition to measurements of the mean flow. 

The flow parameters are shown to be consistent with existing equilibrium loci.  It 
is also shown that the law of the wall applies to all the flows and that therefore the 
value of von Kärmän's 'constant' in the mixing length formulation of shear stress must 
vary.  The data strongly support the concept of gradient diffusion and it is demonstrated 
that for flows in strong adverse pressure gradient the shear stress gradient results from 
the strong diffusion of turbulence towards the wall and not from changes in the dissipa- 
tion term.  Thus although the mixing length is dependent upon pressure gradient the dissi- 
pation length is not. 

LIST OF SYMBOLS 

H 

h 

J 

k 

L 

I 

m 

P 

q 

Ü 

u 

skin friction coefficient, 

Cf = V^Ue 
maximum shear stress coefficient, 

C  = T   /JpU2 

equilibrium friction parameter, 

Ef = Cf/2J
2 

equilibrium pressure gradient para- 

meter. - (6*/J UjdU /dx e   e 

equilibrium parameter, 
G = (H - l)/(H/Cf/2) 'f' 

= (H -1)/(H/C 12) 

shape parameter,  H = 6*/0 

time-dependent mixing length 

equilibrium shape parameter, 
J = (H - 1)/H 

von Kärmän's constant 

dissipation length scale 

. . 2  ~~2 mixing length, I    <*   h 
dUe 

flow parameter,  m = ^p -pnrr 
e 

probability 

resultant turbulent velocity, 
2    2,2,2 

q  = u  + v + w 

mean velocity in x direction 

mean velocity external to the 
boundary layer 

üref 

u, v,w 

X 

reference velocity 

velocity components of turbulence 

streamwise coordinate measured from 
the start of the test section 

virtual origin of equilibrium flow, 
X = X 0 at 0 

streamwise coordinate of equilibrium 
flow 

coordinate normal to the surface 

intermittency 

boundary layer thickness, 
y = S     at  u/U  = 0.995 

displacement thickness 

= -L f (IT 
TT   I     K  -R U U) d-s 
e 0 

momentum thickness 

i      s 

8 = -% / U(U  - U)dy 
TJe 0 

pressure gradient parameter for 
equilibrium flows, 

dUp 
* -- (26*/Cfüe) w 

fluid density 

shear stress 

maximum shear stress 

shear stress at the wall 

INTRODUCTION 

All prediction methods for turbulent flow are dependent on general analytic or num- 
eric representations of the properties of turbulent flow.  Ideally these generalised 
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representations should be obtained by curve-fitting reliable experimental data which 
cover a sufficiently wide range of conditions to encompass the flows to be predicted. 
Normally such an ideal is not achieved, particularly with the more sophisticated methods 
which require empirical information that is more difficult to measure (or even impossible 
at present) and is consequently neither widely available nor of high accuracy.  These pre- 
diction methods tend to be based on data correlations obtained in relatively simple flows, 
for which the most numerous and reliable data are available, and are then applied to more 
general flows of practical interest. 

The flow for which far and away the most data are available is the so-called 'flat- 
plate flow' both at low and high Mach numbers.  Such data can give information on the 
effect of Reynolds number and Mach number as well as the relationship between turbulence 
stress and the mean properties of the flow.  However the range of conditions covered by 
flat plate data is very narrow and in particular none of the very important effects of 
pressure gradient is present.  A family of flows which includes some of the effects of 
pressure gradient is that of the so-called 'equilibrium flows' 1,2,3 in which pressure 
distributions are selected such that the boundary layers grow with approximately similar 
profiles of velocity and shear stress.   Although equilibrium flows have been used extens- 
ively to supply empirical information there is still a shortage of reliable data. 
Clauser 2 measured two flows in adverse pressure gradients and his work was extended by 
Bradshaw3 who studied the turbulence structure in a corresponding pair of flows.  There 
are also the data of Stratford 4 who studied a flow in which conditions were maintained at 
a point of incipient separation.  The present work was undertaken to provide a greater 
set of equilibrium data than is presently available for attached flows and it is intended 
that the work should be extended to include equilibrium separated flows. 

A general description of the experiment is given in section 2 and the data obtained 
are presented in section 3-  The characteristics of the mean flow and of the turbulence 
structure are discussed in sections 4 and 5 respectively.  Related to the discussion of 
turbulent diffusion in section 5 is an extended mixing length formulation which is given 
in the appendix.  A more detailed account of this work is given in Ref 5- 

2     EXPERIMENTAL DETAILS 

The general problem of setting up a turbulent equilibrium flow has been discussed 
at length in the literature (see for instance Refs 1, 2 and 3).  Although in theory it is 
not possible to set up an equilibrium flow without using a surface of varying roughness, 
in practice flows acceptably close to equilibrium can be obtained without great difficulty.• 
For the present purposes a two-dimensional turbulent boundary layer in incompressible flow 
is deemed to be in equilibrium if it satisfies the following conditions, 

(a) U a x  where  U  is the velocity external to the boundary layer,  x is the axis 

measured along the surface in the streamwise direction and m is a constant para- 
meter of the flow 

(b) 6 a x where  e  is the momentum thickness of the boundary layer.  It is important 
to stress that the virtual origin of x in (a) and (b) must be the same. 

(c) The shape parameter,  H , is constant or dropping slowly as the Reynolds number 
increases. 

The equilibrium flows were set up in the boundary layer tunnel at RAE Bedford which is 
an open return blower tunnel with a nominal speed range of 0-50 m/s.  The leal section is 
5.4m long with inlet dimensions of 1.2 m wide by 0.3 m high.  The roof of the test section 
is constructed of ground plates of aluminium alloy and is fitted along its centre line with 
thirty-three 90 mm diameter removable blank plugs at 150 mm spacing.  A row of static tap- 
pings is also positioned on the centre line between the removable plugs.  The plugs can be 
replaced by others mounting traverse gears and other forms of instrumentation.  The lower 
surface is constructed of a flexible sheet of fibreglass and its position is maintained by 
33 manually operated jacks.  The movement of the lower surface is such that the height of 
the tunnel can be reduced to 150 mm and increased to 750 mm which enables a wide range of 
pressure distributions to be imposed on the flat upper surface where the boundary layer 
measurements are made.  The flexible floor is not sealed at the junctions with the side 
walls and there are gaps of up to about 1 mm wide. 

Like Clauser , we experienced some difficulty in setting up two-dimensional flow in 
adverse pressure gradients.  The flow was found to break away completely from one or other 
side wall.  To overcome this problem screens were placed at the outlet of the test section 
of sufficiently high resistance to ensure that the pressure throughout the test section 
was above the atmospheric pressure.  Under these conditions there was outflow at the cor- 
ners between the flexible floor and the side walls and two-dimensional flow was obtained. 
It is difficult to be certain about the two-dimensionality of a flow and as an aid tufts 
were permanently attached to all four surfaces of the test section and provided a ready 
indication that the flow was running full and approximately parallel with the tunnel axis. 

It is a characteristic of equilibrium boundary layer flows that for negative values 
of m , corresponding to adverse pressure gradients, two flows having different values of 
shape parameter and rates of growth are possible2,6. if the divergence of the duct is 
greater than that required to provide maximum adverse pressure gradient (minimum m ) then 
two distinct duct flows are possible.  Either the symmetry of the flow will be retained, 
with the top and bottom boundary layers both reaching a value of shape parameter higher 
than that corresponding to minimum m , or the flow will become asymmetric with the shape 
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parameter of one of the boundary layers greater than, and that of the other less than, 
that for minimum m .  Consideration -of the corresponding rates of growth of the boundary 
layers shows that, for a given duct divergence, the asymmetric flow produces less pressure 
recovery and is therefore the stable solution.  For turbulent flows the maximum adverse 
pressure gradient corresponds to an attached boundary layer and there is therefore a 
range of duct divergence in which the flow will be asymmetric but both boundary layers 
will be attached.  In the present tunnel configuration it was found that in this range 
of conditions the flow with the higher shape parameter always developed on the flexible 
floor so that the value of the shape parameter of the boundary layer on the_test surface 
was limited to the value corresponding to the maximum adverse pressure gradient.  This 
preferred orientation of the asymmetric flow., which probably resulted from the effect of the 
curvature of the flexible floor near the inlet to the test section, was reversed by placing 
delta type vortex generators at the inlet to the test section on the floor and side walls. 

Seven equilibrium flows have been studied.  In flows 1 and 2 the pressure gradient 
is favourable and is zero in flow 3.  In the remaining four flows the pressure gradient 
is adverse. 

The actual shape of the flexible floor was calculated from a one-dimensional analy- 
sis, such that in the absence of boundary layers 

U  oc X
R 

e      ' 

by selecting a series of values of R  (actually 0.2 steps from -0.8 to 0.4).  The values 
of m that were measured differed considerably from the prescribed R but as will be 
shown in the next section this method of setting up gave at least 1 m and generally more 
than 2 m of closely equilibrium flow. 

Profile data were obtained with pitot tubes and hot wire probes.  The pitot measure-' 
ments were made with a round probe of 1.13 mm outside diameter and a displacement correc- 
tion of 0.15 diameters has been applied to all data given in this paper.  A limited num- 
ber of traverses were also made with a static pressure probe and these showed.that in all 
cases the normal pressure gradient was negligible.  Turbulence characteristics were 
measured with an X hot-wire probe from which mean velocity and second and third order 
turbulence correlation terms have been deduced.  Because of the high turbulence levels in 
some of the flows the hot-wire signals were first linearised before being processed in 
analogue form. 

3    EXPERIMENTAL RESULTS 

The characteristics of the seven flows are shown in Figs 1 to 4.  In Pig 1 the 
external velocity distributions are plotted for flow 1, which has the most favourable 
pressure gradient, and for flows 5 and 7, which are characteristic of the flows with 
adverse pressure gradients.  Also shown in Pig 1 are the fitted curves of the form 

VUref a xin a (X " Vm (1) 

where the coordinate X is measured from the start of the test section and XQ  is the 
effective start of the equilibrium flow and hence the origin of x .  The curves were 
obtained by fitting a straight line to plots of  In U against  ln(X - XQ) using the 
values of X0 determined from the growth of the momentum thickness   9  shown in Pig 2. 
It will be noted that for X > 3m the growth of  9  is approximately linear in all cases. 
The corresponding distributions of shape parameter H and skin friction coefficient  C-f 
are shown in Figs 3 and 4.  The values of  C-p used in Pig 4 have been deduced by fitting 
velocity profiles to the law of the wall.  These figures show the considerable length of 
flow required to achieve steady conditions particularly if the shape parameter H is 
high..  It will also be noted that flow 7 is close to incipient separation. 

For each flow the profile at X = 3858 mm has been selected as typical of the 
equilibrium flow as a whole.  The mean velocity profiles deduced from the pitot tube 
measurements are plotted in Fig 5 and in Pig 6 they are given in log-linear coordinates. 
The normal coordinate,  y , is plotted in Fig 5 in the non-dimensional form of y/x as 
this illustrates very clearly the very great thickness of the layers as H increases 
(eg  compare 7 with 3 which is flat plate). 

The log-linear plots in Pig 6 illustrate that the profiles exhibit a substantial 
linear region and it will be seen that even flow 7 appears to follow the law of the wall 
up to y/<5 ^ 0.1 and for most of the flows the law of the wall is closely followed up to 
at least  y/<5 =«0.2.  This point will be referred to later in section 5 where the corres- 
ponding distributions of shear stress are discussed. 

Pig 7 shows that the flow in the outer part of the boundary layers is similar for 
all the profiles, in the sense of having a common form for the intermittency factor 
proposed by Sarnecki?.  The intermittency factor, y   , is defined by 

U =  YUt + (1 - Y)Ue  , 

U,  being the velocity given by the law of the wall, and is plotted in Pig 7 against a 
normalized coordinate chosen to have a value 0.5 for y - 0.5. 
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4     EQUILIBRIUM LOCUS 

The equilibrium parameters are normally designated  G and -n 

where G - iL^_i /|7 

and 

26*   e 
CfUe dx (3) 

In the general consideration of laminar and turbulent equilibrium layers given in Ref 6 
it is pointed out that these definitions are unsuitable for seperated flows and that 
equivalent, but more general, parameters are an equilibrium friction parameter,  E„ , 
defined by 

2 
o   •   H C„      C„ 

E.  =  G"2  = ^   = -t (4) 
1 2(H - 1)      2J^ 

and an equilibrium pressure gradient parameter,  E  , defined by 

E. = ,/a2 = -f^Y^S - --^-5 (5) 
e 

JP VH - 1J \UQ dx ;      J2U  dx 

where  J = (H - 1)/H may be regarded as an equilibrium shape parameter which was intro- 
duced in Ref 6 and will also be used in this paper. 

Fig 8 gives the equilibrium locus plotted in the form of Ef  against Ep  and in 
addition to the present data,  Bradshaw's3 data are included together with the calculated 
locus of Mellor and Gibson 8.  The straight line shown is the empirical equilibrium locus 
proposed by Green et  at 9 which takes the simple form in the present coordinates of 

Ef =  0.024 - 0.8 E   . (6) 

Clearly the present data are consistent with the existing information and support 
the simple linear relationships of Green et at although the constants could be modified 
to give a slightly better fit. 

5     TURBULENCE STRUCTURE 

5.1  Shear stress profiles 

A selection of the turbulence data is reproduced in Fig 9a~c  For each flow Fig 9 
p    p   p         p 

gives two graphs, the upper one shows the distribution of (u  + v )/Ue  and -uv/Ug  and 
the lower one shows the distribution of the turbulence diffusion velocity of these quan- 

tities in the  y direction, that is (u2v + v-?)/(u2 + v2)Ue  and uv2/ü~vU  .  Throughout 
this section it will be assumed that the terms arising from the w component of the tur- 
bulence, which was not measured, can be approximated by 

w2  - \   (u2 + v2)   and  w2v -= \   (u2v + v3)  . (7) 

•]  p 
The turbulence kinetic energy •= q  can then be approximated by 

\  q2  = \  (u2 + v2 + w2)  - | (u2+ v2) (8) 

and the diffusion of kinetic energy is given by 

q2v/q2Ue  -  (u
2v + v3)/(u2 + v2)Ue  . (9) 
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Also, throughout this section 
as the shear stress and Jq2 
the quantities are always pre 
ible. The well-known charact 
Pig 9. As the shape paramete 
increases further out in the 
is a feature which character! 
in Pig 10.  In Fig 10 it is s 

maximum stress coefficient de 

based on the maximum stress c 
equal to the flat plate value 

, the density will be omitted and (-uv) will be referred to 
as the kinetic energy.  This shorthand is acceptable as 

sented in a non-dimensional form and the flow is incompress- 
eristics of the shear stress profile are clearly evident in 
r increases the shear stress decreases at the wall and 
boundary layer.  The magnitude of the maximum shear stress 
ses the shear stress profile and is shown plotted against  J 
hown that  /C~~  varies linearly with J , where  C  is the 

fined by  C = x   AjpU2 .  It follows that a function G J       x   max d     e 
an be defined which will be constant for all the flows and 

Thus 

H/C /2 kH/Cf/2, 
flat plate 

6.55 (10) 

specifies the straight line in Pig 10. 

There is some arbitrariness in the values of  CT .'for flows 1-3 according to where 
Tmax is evaluated.  The actual maximum value of  x .occurs at  y = 0 but as a measure 
of large-eddy activity in the layer, Bradshaw et al •*-     take the value of x at 
y/6 = 0.25.  As shown in Pig 10 the effect on  /c~  is quite small for the flows studied 

though it may be expected to increase in stronger favourable gradients. 

5.2  Mixing length representation of shear stress 

The most commonly used representations of shear stress in prediction methods are 
based on eddy viscosity and mixing length formulations.  In the mixing length model the 
shear stress is expressed as, 

pi 
dU 
dy (11) 

where the mixing length, I   ,   is generally assumed to be a function of y across the 
layer.  The simplest forms of I     outside the sublayer region approximate to 

and 

0.4y  for  y/6 < 0.2 

0.086 for  y/S > 0.2 

For flows in which  x  varies considerably across the inner region it is clearly imposs- 
ible for both the mixing length model as formulated above and the linear log-law to hold. 
This is because the linear log-law implies that 

= pj,' 
dU 
dy (§) (12) 

which is inconsistent with the mixing length equation unless 

11 This point has been extensively studied by Galbraith and Head J"' and by Glowacki 
and Chi 12 .  in Ref 11 it is demonstrated that the linear log-law is the more universally 
valid and that the mixing length varies from flow to flow.  The same result holds for the 
present data for it has already been shown in Pig 6 that the log-law appears to hold for 
all the data and Pig 11 shows the consequent trend in the mixing length in the inner 
region of the boundary layer.  Over the outer part of the boundary layer no systematic 
trend is evident and the curves are shown coalescing onto a single curve.  The mixing 
length has been deduced from the measured shear stress and mean velocity profiles and 
although there is considerable scatter in the data the trend shown in Fig 11 is unmistak- 
able.  Various devices have been proposed in the literature for modifying the mixing 
length in the wall region so as to recover the law of the wall of which the most direct 
method is to redefine von Kärmän's 'constant',  k , in the inner region as11 

k(y)  = 0.4/x7T 

while retaining an unmodified mixing length in the outer part of the flow.  Rather more 
approximate is the procedure of Ref 12 in which an average value of k  is assumed across 
the inner layer which is a function of the pressure gradient parameter  w . 
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5.3  Turbulence rate equations 

To proceed further with the analysis of the turbulence data it is necessary to 
establish a theoretical framework.  The most appropriate framework is provided by the rate 
equations for turbulence shear stress and kinetic energy which can be deduced from the 
Navier-Stokes equations and are used in approximate form in the more sophisticated pre- 
diction methods. 

For a two-dimensional incompressible turbulent boundary layer the rate equation for 
turbulence shear stress is 

_D_ 
Dt (- uv) 

2 dU ,  3 /  2 , Y) vluv V + w 7       P \3x+ 9yj (13) 

Advection Production Diffusion   Viscous dissipation Pressure strain 

and for turbulence kinetic energy is 

Dtl 2 

Advection 

(- ^)g _ ^v|_ + v£lj + vpu + vv2v +w72 \ 
Production    Diffusion    Viscous dissipation 

cu: 

The production and diffusion terms in these equations have been evaluated from the data 
and are analysed in sub-sections 5• ** and 5.5 respectively.  Although neither the viscous 
dissipation nor the pressure strain terms can be evaluated from the data some interesting 
deductions can be made in relation to the turbulence structure in the wall region if the 
approximate analysis of the rate equations by Bradshaw is followed through. 

By an accident of history associated with the fact that the method of Bradshaw 
et  al 10 was first derived for two-dimensional flow from the kinetic energy (a scalar 
quantity) equation and then_extended to three dimensions 13 by approximating the rate 
equations for (-uv) and (-vw) (vector quantities), Bradshaw 13 had to reconcile his 
derivations of a useable rate equation for shear stress from both of the above equations. 
In doing this he assumed that 

up'/p  <§ uv£ and vp'/p <    yq /2 

and that 

uv 
72 2 a1 ~ 0.15 (15) 

throughout the flow.  It will be noted that the pressure strain term appears only in the 
shear stress equation and it was therefore necessary for Bradshaw 13 to reason that the 
pressure strain term could be regarded as comprising a direct destruction of shear stress, 
analogous to viscous dissipation, _and of a negative production which opposes the genera- 

tion of shear stress by the term v -j— 

for shear stress is obtained 

With these assumptions the following equation 

Dt\. 2a-, <- uv> dy- 
uv); _9_ 

3y 2a-, 
(16) 

where  L  is the dissipation length scale and was chosen to be very similar to the mixing 
length I     over most of the boundary layer.  Equation (16) forms the basis of the analysis 
given in section 5.6 of the wall region of the flow. 

5.4  Turbulence production 

The turbulence production terms have been evaluated from the measured mean flow and 
turbulence profiles and are given in Pig 12 for shear stress; the curves for turbulent 
kinetic energy are very similar but differ in magnitude.  The curves show that as the 
shape parameter of the boundary layer increases the region of maximum production moves 
away from the wall to the middle of the boundary layer.  This is a well-known fact and 
correlates with the trend of the maximum shear stress as shown in Pig 9- 

However, Pig 12 shows that as  H increases the region of maximum production does 
not move uniformly away from the surface but rather that there are two regions of high 
production and the shift is achieved by progressively increasing the production at one 
region and reducing it at the other.  The regions are in the immediate vicinity of the 
wall, where the velocity shear can be very high, and in the middle of the layer.  Thus for 
flows 1 and 3 very high levels of production are indicated near the wall but these levels 
rapidly fall and the production over the outer part of the layer is very small.  By 
contrast the production in flow 7 reaches a maximum in the centre of the layer and falls 
to a low level near the wall.  Intermediate flows 4, 5 and 6 combine both the above 
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distributions (say 3 and 7) in varying amounts and it is noticeable that in flows 5 and 6 
the distributions of production do exhibit a pair of maxima. 

5.5  Turbulence diffusion   

 The diffusion terms in the rate equations are respectively  - -r— (—3— + ^£_l an(j 

— uv  + —¥~\     and are important because diffusion is the process by which turbulence is 
»?.\      P / - 
transferred from one mean stream line to another and in particular controls the growth, 
by entrainment, of boundary layers and shear layers.  The pressure diffusion term cannot 
be measured at present and so the evaluation of the diffusion terms is restricted to the 

2    ,   2 and The diffusion velocities in the  y direction 
2   2 1  v/q. U )  have been given in Pig 9 and clearly show widely varying char- 

triple correlation terms 
2   

(uv /uvU  and 

acteristics over the range of flows studied. 

In the Appendix a simple mixing length argument is used to derive forms for the 
turbulent diffusion terms.  Two principal terms are derived for the diffusion, one related 
to the turbulence itself and the other related to the gradient of the turbulence level, so- 
called gradient diffusion.  The general form of the diffusion shown in Fig 9 is clearly 
more likely to fit the gradient diffusion concept and as shown in Figs 13 and Ik  the data 
are quite well predicted by the following equations, 

and 

q2v 

21 ±1- 
dy V 

—V UV j 

dyl .- ^(q2) 

:n: 

(18) 

In these relationships the length scale, I   , has been taken as the normal mixing length 
and, for numerical convenience, is expressed in terms of y/6  by the following equation, 

H/S o.075(5y/s) (5y/s) + l / (5y/«r + l 
•]/[< (191 

The process of diffusion is important in turbulent flow but should not be thought 
of as the automatic result of the presence of turbulence or even of the presence of a 
finite Reynolds stress.  It is a statistical property that odd-order correlations are all 
zero if the joint probability of the velocity components of the turbulence is symmetrical 
and only the even-order correlations are in general non-zero. 

Thus if the joint probability p(u,v) has the symmetric property that 

p(u,v)  = p(- u, - v)  , 

then the general expression for the (r + s) order correlation, 

(20) 

r s u v f  f . /„ t\,r.,Sj„,., | V\u,V;u V uuuv I Ol   \ 

reduces to 

r s u v 
// 

p(u,v)urvsdudv 

if (r + s) is even 

and 

if (r + s) is odd. 

r s u v 

These results show that whereas a finite Reyno 
with a correlated but entirely symmetric probability 
tial if diffusion is to occur that the turbulent mot 
probability distribution. This makes the prediction 
function of the fine detail of the turbulence rather 
On the other hand this general result is entirely co 
tics of intermittency and the entrainment of laminar 
process by which diffusion is thought to operate in 
phenomena of intermittency may be expected to give r 
distribution. 

Ids stress (r=l, s = 1) can be obtained 
distribution {eg  Gaussian) it is essen- 

ion is such as to produce a skewed 
of diffusion difficult as it is a 
than its overall characteristics. 

nsistent with the known characteris- 
flow which is physically the main 

the outer part of the layer.  The 
ise to a strongly skewed probability 
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According to the simple mixing length model given in the Appendix there are two 
processes that can lead to a skewed probability distribution and hence diffusion.  In 
general terms the fluctuating velocity,  u , is assumed to result from fluid arriving at 
the measurement point from regions of the flow with different mean velocities.  Hence the 
general form of the fluctuating velocity,  u , is, 

u(y,t) u[h(y,t),U(y)] 

where  h  is the instantaneous mixing length and U is the mean velocity.  A 
tribution can result from either a skewed distribution of the mixing length, 
distance in the y  direction which the fluid is assumed to have travelled be 
through the measurement point, or from curvature of the mean velocity profile 
data support the hypothesis that in plane turbulent flow the effects of the c 
the mean velocity profile are the more important and that consequently the mi 
is assumed to have an effectively symmetric probability distribution.  It is 
the Appendix that if the diffusion process is dominated by some directional e 
influence then the alternative form of diffusion will occur.  Smits et al 1^ 
data in a highly curved flow which do not support the gradient diffusion cone 
Ramaprian and Shivaprasad 15 have demonstrated that turbulent diffusion is st 
affected by flow curvature.  It is possible that centrifugal body forces effe 
the probability distribution of the mixing length and give rise to turbulence 
closer to the general form 

skewed dis- 
that is the 
fore passing 

The present 
urvature of 
xing length 
reasoned in 
xternal 
have obtained 
ept and 
rongly 
ctively skew 
diffusion 

2 
q v (a2)' and uv 

3 

u7)2 (22) 

5.i Turbulence structure in the wall region 

Reference has previously been made in section 5.2 to the fact that the 'law of the 
wall' is not compatible with a constant value of von Kärmän's 'constant',  k , in the mix- 
ing length formulation of shear stress in flows with shear stress gradients near the wall. 
It is shown in this section that these two observations can be reconciled to the extent • 
that if the effects of diffusion are included then a constant value of k  in Bradshaw's 
dissipation length scale is compatible with a law of the wall velocity profile. 

As an example of the r 
high shear stress gradient n 
shows that the direct produc 
but Pig 13 shows that there 
further out in the flow. It 
of flow 7 results from a bal 
production and dissipation a 
to provide quantified eviden 
rate equation for shear stre 

ole of the diffusion term consider flow 7 which exhibits a 
ear the wall but a low shear stress at the wall.  Pig 12 
tion of shear stress in the wall region (y/6 < 0.1) is small 
is a large diffusion of shear stress towards the wall from 
is proposed that the shear stress gradient in the wall region 

ance of dissipation and diffusion, and not from a balance of 
s has been widely assumed in the past.  In this section we seek 
ce to support this suggestion and we start from the form of the 
ss deduced by Bradshaw and given in equation (16) as, 

_D_ 
Dt 2a-, 

—v dU   (- uv)    8 
uv> dy " —IT  " Ty 

uv_ 
2 a, (23) 

In the wall region we assume that the convection term is negligible and the diffusion can 
be represented by equation (17). then 

,  —, du   (- uv)2   d / I     d , —si" (- uv) -5— - ==   + T—   -3— (- uv) 
dy     L      dy\ai dy 

=  0  . (24) 

It is also stipulated that the velocity profile must follow the law of the wall and so 
outside the sub-layer and blending regions, 

Tw/p 'Iff 
and the velocity gradient can be expressed as. 

dU 
dy 

(25) 

We are seeking to show that a constant value of k  can be used and so the mixing length, 
%   , and Bradshaw's dissipation length scale,  L , are expressed in the wall region as, 

I     =     L = ky  . 

With these substitutions equation (24) can be written 

(26) 
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yd^F ydy 
d IT 

P )\w - im (27) 

which is an ordinary differential equation for  /x/p  as a function of y . 

Equation (27) requires boundary values of (x/p) and -^— (x/p) at a chosen point in 

the flow.  As the convection term has been neglected and the law of the wall has been 
used to determine the velocity gradient the point must be chosen within the wall region 
and, in general, should be outside the laminar and blending regions where the equation is 
not expected to apply.  There are two simple analytic solutions which correspond to 
special flows 

(i) (28) 

This is the solution appropriate to flat-plate boundary layers. 

(ii) 
2 / al 

k for =  0 (29) 

This is the solution corresponding to incipient separation and will later be shown to be 
in close agreement with the measured data of flow 7. 

A general numerical solution in a closed form can also be obtained as follows: 
Make the substitutions 

(T/V =  In y and a^lc 

then equation (27) becomes 

d^n 

ds2 
= A(n (30) 

Make the further substitution 

dti 
p  =  di (3D 

and equation (30) can then be written 

dp 
ds =  P 

dp 
dn A(n - n3) (32) 

which can be solved for p  as a function of  n  with the boundary conditions that at 
s = sn and p '1 The following explicit equation for p  is then obtained 

Pi + 2A^ # «2 -1 -5) - (i •>! -1 4)| 
Using the definition of p  as given in equation (31) the above equation is written as 

dr, 
ds Px + A 

6 J 
5  n ~    n 

6 I 
5 "1 

This equation can be integrated to give 

dt 

>M('2-H -H-H)[ 
which is written in terms of the coordinate  y as 

/ 

y±  exp 
dt 

.!. »ft«* - § t>) -(,?-!,*) 
(33) 
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Equation (33) has been evaluated numerically using appropriate values of p,  and 

n,  at a starting value of y, = 0.026 .  The values of p,  and  n-,  were selected so that 

the predicted variation of shear stress with y matched the measurements over the inner 
portion of the logarithmic region, using measured values of  T  and  a-, = 0.15, k = 0.4 . w        J- 
The results are shown in Pig 15 as solid lines in the region of the law of the wall and 
dotted elsewhere, where equation (27) should not be expected to apply. 

Plow 4 is a little different from the remainder in that  Tmax  occurs only just 
outside the wall region, as shown in Pig 15,and this probably accounts for the tendency 
to overestimate the shear stress in this case.  For flow 7 the analytic solution (equation 
(29)) is indistinguishable on Pig 15 from the numerical solution within the wall region, 
which indicates that the production is indeed negligible and the shear stress results 
from a simple balance of dissipation and diffusion. 

The level of agreement shown in Pig 15 provides strong support for the basic premise 
of this section that the shear stress gradient results from the strong diffusion of tur- 
bulence towards the wall and not from variations in the dissipation term. 

6     CONCLUSIONS 

The seven turbulent boundary layers studied are shown to be good approximations to 
two-dimensional equilibrium flows.  The mean flow parameters are consistent with existing 
published data and suggest the use of a particular analytic form of the equilibrium locus, 
which is typical of several that have been proposed in the literature.  There is strong 
evidence that the law of the wall holds for all the flows and that, in consequence, ' 
von Kärmän's 'constant' in the mixing length model of shear stress must vary appreciably. 
The evide.nce supporting the general validity of the law of the wall is that all the flows 
exhibit an apparent log-linear region of the correct slope and the values of the skin 
friction at the wall deduced from these curves are consistent with the values of shear 
stress measured in the flow with hot-wire equipment.  In the flow closest to separation 
the law of the wall appears to hold up to  y/6 =^0.1  although by then the shear stress 
is over ten times its value at the wall. 

Consideration of the second and third order correlations of the fluctuating velocity 
has produced the following relatively simple account of the characteristic behaviour of 
the turbulence. 

The production of shear stress is centred about two distinct regions in the layer. 
These regions are immediately adjacent to the wall and at approximately the mid point of 
the layer.  Under conditions of favourable or negligible pressure gradient, with corres- 
ponding low values of shape parameter, very high levels of production occur near the wall 
but these levels fall rapidly and the production over the outer part of the layer is very 
small.  Under incipient separation conditions, with high values of shape parameter, the 
production reaches a maximum in the centre of the layer and falls to a low level near the 
wall.  For intermediate values of shape parameter the above characteristic distributions 
of production are combined in varying amounts and can lead to double humped distribu- 
tions across the layer.  The corresponding distributions of shear stress and turbulent 
kinetic energy are similar to the distributions of production except that the double- 
humped distribution does not occur.  Instead, as the shape pa.rameter increases, the posi- 
tion of the maximum stress moves steadily away from the wall region towards the mid point 
which it reaches under incipient separation conditions. 

The diffusion of shear stress and' turbulent kinetic energy by the turbulence is 
shown to relate to the gradient of the shear stress and kinetic energy rather than their 
magnitudes.  Consequently at the higher shape parameters, when the position of the maxi- 
mum shear stress has moved away from the wall region, shear stress is diffused towards the 
wall in the inner region and towards the external flow in the outer region of the boundary 
layer.  Finally it is shown that if the diffusion of shear stress towards the wall in the 
wall region is taken into account, then the dissipation length scale used by Bradshaw in 
his form of the shear stress rate equation becomes independent of the pressure gradient and 
compatible with the law of the wall velocity profile.  This result is to be contrasted 
with the mixing length representation in which the length scale must be dependent upon 
the pressure gradient if the observed law of the wall velocity profile is to be recovered. 
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Appendix 

MIXING LENGTH MODEL FOR TURBULENCE DIFFUSION 

In this Appendix the mixing length formulation of shear stress is extended to obtain 
expressions for the turbulence diffusion terms.  The derived equations relate the turbu- 
lence diffusion to other turbulence quantities and not to the mean velocity field and are 
not expected therefore to be significantly affected by the absence of any allowance for 
lag in the simple formulation used. 

In the mixing length model of turbulent shear flow the fluid passing through a par- 
ticular point in the flow at time  t  with velocity U(y,t)  is modelled as though it had 
come from another region of the flow at  y + h  with a velocity equal to the time-arranged 
velocity in that region,  U(y + h).  Thus for all time the identity 

U(y,t) U(y + h(t)) (A-l) 

defines the time history of the length scale  h , which is measured in the y direction. 
The turbulence velocity can therefore be expressed as a Taylor series in ascending power 
of h as 

u(y,t; U(y) + h(t) 
J'y       vdy / 

(A-2) 

and the time averaged form of this equation requires that the statistical properties of 
the length scale  h satisfy the following equation, 

0 =  h (Pi  +^(^   + Vdy/ 2  , 2 
My 

The fluctuating component of velocity in the  x direction can be deduced from 
equation (A-2) as 

u  =  U(y,t) - U(y) <§) * 4$< * (A-3) 

where the time-dependence of u and h is now understood. 

It is usual in the derivation of the mixing length model of shear stress to assume 
that the  v  component of turbulence is proportional in magnitude to u and negatively 
correlated with it.  The assumption of negative correlation is valid only if the shear 
stress (- puv) is positive and furthermore is not invariant with inversion of the coordi- 
nate system.  In this analysis it is argued that to be compatible with the physical model 
used to derive equation (A-l),  v  should have the same sign as (- h).  This is because 
if the flow at  y  is modelled as having come from y + h with h > 0  then it follows 
that  v may be expected to be negative.  It is therefore assumed that  v  can be expressed 
as 

~<\ (A-4) 

It follows directly from equation (A-4) that the second and third order correlation 
terms can be written 

uv hul (A-5) 

and 

U V  a  V S): 2     3 UV   a:  U (A-6) 

Substituting equation (A-3) for u  in equation (A-5) yield the following forms for 
the second order correlation terms to order h2  , 

uv « 
|dU,/dU\ 
'dy^dyj 

and    v2 - u2 «  h2/g (A-7) 

Taking the time average  and introducing the mixing length i   , 

2    ~~2 where i       a: h  , yields 
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'dy'Uyj and • ,2(i)' (A-8) 

The third order correlation terms are all functions of (u/h)  which to order h  is 
given by equation (A-3) as 

(u/h) dU\3       3h/dU\2 /d2U 
dy/ 2 W/    Vdy2 (A-9) 

An approximate form of equation (A-9) expressing (u/h) in terms of second order correla- 
tion terms in place of functions of the mean velocity profile can be obtained as follows. 
The mean velocity profile can be expressed in terms of stresses by taking the square root 
of equation (A-8) to yield 

dU =  c/[ 
dy 

uv 
(A-10) 

where 1  for uv < 0 and C = for uv 0 

C has been introduced to remove the ambiguity of sign introduced by taking the square 
2    2 root.  The term d U/dy  in equation (A-9) is then given by differentiating equation 

(A-10) with respect to  y .  For simplicity the mixing length SL     is assumed to be inde- 
pendent of y ,   which is a valid assumption in a boundary layer for y/5 > 0.2 . 
Then 

d2jJ 

dy2 
dc/f uv 

3y~ 
1 dC 
I dy 

1 dC 
l dy 

(A-ll) 

Substituting equations (A-10) and (A-ll) into equation (A-9) gives the following expres- 

sion for (u/h) 

(u/h)- C uv 

%' 
+ ^^(C|uv|M (A-12) 

where the shear stress can be replaced by either of the normal stresses. 

General expressions for the diffusion of shear stress and turbulent kinetic energy 
can be written by substituting equation (A-12) into the expressions given in equation 
(A-6).  The diffusion of shear stress is given by 

h3C|w|2" h^   _d_    fclTTTllix (A-13) 

-  Ui ^ .-J  -i    -t-'+'-ii^n    r-\v-, Jii'a    uliiUolOn cinstic 3   is  givsn  S-ppPOXxina,tsly  uy 

2 
q v 

2     J u  v   + f Cq 
,3 

h_ _d_ 
,3  dy Cq (A-14) 

Equations (A-13) and (A-14) demonstrate a dependence of the turbulence diffusion 
both on the magnitude of the turbulence and on its gradient.  The significance of the first 

•z     -z. 
term depends on the magnitude of tr/A  which will be zero if h(t) has a symmetrical 
probability distribution.  The present data demonstrate that in plane turbulent flow the 
first term is insignificant and that the second gradient term dominates.  Smits et  al -^ 
have obtained data in a highly curved flow in which the diffusion is a function of the 
turbulence level and so in that case the first term in the above equations dominates. 

With the assumption that  h a  I       it is concluded that in plane turbulent flow 

:v   ••• l  ^-(c|uv|2)  and q2v °= - h3 ,3 dy' - * ^ (A-15: 

which for  uv < 0 reduce  to 
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uv2  « l  A.(_ OT)2     and     q2v <*  4 ^(qV  . (A-16) 

If some mechanism, such as perhaps centrifugal body forces, is present which leads 
to a strongly asymmetric probability distribution of the mixing length then 

3 

uv  « C uv 2     and    q v « Cq2 (A-17) 
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Fig 1  Free stream velocity distribution for 
flows 1, 5 and 7 

Fig 2  Growth of the momentum thickness for all 
flows 
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Fig 3  Shape parameter distributions for all 
flows 

Fig 4  Skin friction distributions for all flows 
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Fig 12  Production of turbulent shear stress 
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Fig 14  Turbulence diffusion of q . Flows 1-5. 
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SUMMARY 

Commonly-used wall shear stress correlations appropriate for rough walls imply a 
degree of equilibrium between the boundary layer and the wall.  For two roughness geometries 
examined experimentally in zero pressure gradient, equilibrium in the mean velocity appears 
to exist beyond 3 50 times the roughness height from the origin of roughness.  For moder- 
ately close spacing of simple three-dimensional roughness elements, a correlation due to 
Dvorak appears accurate; for less dense spacing (but still "fully rough" conditions) the 
correlation underestimates the wall stress significantly.  The equilibrium boundary layer 
studied experimentally showed unexpectedly large turbulent intensities, constant integral 
length scales, no region of constant stress and a semi-logarithmic region best described 
with a von Karman constant of 0.36 ± .02. 

COMMONLY USED SYMBOLS 

d zero plane displacement height. 
k geometrical roughness height. 
n boundary layer shape factor (equation 17). 
V longitidinal mean velocity. 
V]_ free stream velocity.  . ,„ 
Vx shear velocity = (To/p) 
x, Z  longitudinal and cross-stream co-ordinates. 
6 nominal boundary layer thickness (see equation 18). 
6* displacement thickness. 
A roughness density; longitudinal spacing of square bars in the two-dimensional case. 
Xe density of roughness equivalent to X. 
K von Karman's constant (equation 4 and following equations). 
9 momentum thickness. 
p fluid density. 
T total wall shear stress. 
v kinematic viscosity. 

1. INTRODUCTION 

When estimating wall shear stress created by a fluid flowing over a rough wall, it 
is neither practical nor desirable to calculate the details of the flow around individual 
roughness elements by finite difference solutions of the full fluid equations.  Semi- 
empirical relationships are usually constructed which link roughness geometry to some bulk 
description of the boundary layer which forms on the surface, an integral property of the 
boundary layer often being used.  This practice lends itself to the use of well known in- 
tegral techniques for the prediction of the boundary layer growth. 

Wall stress relationships so formulated imply, for their existence, a degree of dynamic 
equilibrium between the boundary layer and the surface beneath it.  This equilibrium is 
usually assumed but its limits are seldom identified.  Strictly self preserving boundary 
layers can exist in zero pressure gradient only when wall shear stress co-efficients are 
exactly constant, the roughness height and spacing growing linearly in the streamwise 
direction to remain constant fractions of the boundary layer thickness.  In the more common 
case of constant roughness height and spacing, it appears likely that equilibrium would 
be approached some distance downstream of the origin of roughness.  It is the purpose of 
this work to investigate when this equilibrium is attained in one or two cases, and to 
measure some of the characteristics of the approximately self-preserving boundary layer 
so created.  A second goal is to check the accuracy of one wall stress relationship, that 
proposed by Dvorak (ref. 1), when used for three dimensional roughness elements of simple 
geometry. 

The semi-empirical basis for the wall stress relationship is first reviewed, in an 
attempt to clarify the limitations of the correlation.  Experiments are then described 
which test the correlation and the approach to equilibrium.  The results are then dis- 
cussed, with reference to the original objectives of the work.  A well known integral 
calculation procedure due to Head (ref. 2) is used where necessary to provide quantitative 
results. 

2. FORMULATION OF THEORY 

In developing an equation for the mean velocity close to a wall, a first step is to 
form a "law of the wall" by dimensional analysis (Millikan, ref. 3).  For smooth walls 
this takes the form: 

V = fn[Vx, v, z] (1) 
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so that |- = f n [ Z/ (£-) ] 

and the local length scale for the flow is (v/v ). 

For very rough walls, it is usually assumed that viscosity is not important, tacitly 
implying that the roughness has sharp edges and a sufficiently large height.  A common 

rule is that the viscosity is no longer important when (—%.)   > 70 but this must depend on 

the form of the roughness and the flow characteristics as well. 
If viscosity is not important, a length scale for the roughness must be identified to 

construct an equation similar to (1).  Even when roughness elements project from an other- 
wise smooth wall, the case considered in this report, the effective height of the roughness 
may be different from its geometric height so that the origin of Z and of the roughness 
height depend on the roughness density. 

One formulation consistent with these ideas is described by figure 1, where symbols 
are defined, and by the equations: 

V = fn [V , Z-d, k-d, A] 

V_      rZ-d   A , 
V   rn lk-d' k-dJ 

(2) 

T 
The effective length scale is now (k-d) and a density parameter A, expressing the effect- 
ive lateral and longitudinal proximity of adjacent roughness elements, is also introduced. 
Note that expression (2) is not general in the sense that the surface is still assumed to 
be fully rough; viscous effects are therefore absent. 

As roughness elements become more closely spaced, sheltering of neighbouring elements 
takes place and the effective height of the roughness elements decreases.  The magnitude 
of d, often called the zero plane displacement, then increases so that d is dependent on 
A, and of course on the roughness geometry.  For large enough spacing between discrete 
elements, X/ (k-d) is large and the effective height of the roughness is then the actual 
height k, the displacement parameter d being zero.  It is important to identify cases in 
which this simplification is permissable,  and it is consistent with the foregoing argu- 
ments that d will be zero when the flow separating from any individual roughness element 
becomes effectively reattached before separating again due to the upstream effect of the 
next roughness element.  The full height of an element (k) is then the appropriate physical 
length on which to base the dimensional analysis of equation (2), not the reduced height 
(k-d). 

It appears from studies of flow about individual roughness elements that reattachment 
distances vary from about 15 times the roughness height, (see ref. 4), for an isolated 
two-dimensional roughness element such as a fence, to as little as 2.5 times the roughness 
height for an isolated cube (ref. 5).  (In both cases reattachment distances are indicated 
as measured from the front face of the element). 

These reattachment distances and the details of the flow behind the element must 
depend not only on the geometry of the element but also on the mean velocity and turbulence 
characteristics of the approaching flow, so that considerable variation can be expected. 
Indications from other studies by Lee and Soleman (ref. 6) are that a "change of regime, 
from isolated flow to wake interference flow," occurs at cube spacings (laterally and 
longitudinally) of about 3.4 k; the roughness correlation of Dvorak shows a marked change 
for a spacing of about 5 k for two-dimensional bars; Counihan's studies (ref. 7) show a 
change in the functional form of his "roughness length" at a spacing which would be 
equivalent to 6.7 k for two-dimensional elements of height k.  These and other studies 
confirm that sheltering effects rise rapidly for spacings less than about 3 k between 
three dimensional elements and for spacings less than 5 to 15 k for two-dimensional 
elements.  For greater spacings (lower roughness densities) it appears plausible to assume 
that d = 0. 

It is worth remarking, in connection with equation (2), that regular and close spacing 
of uniformly shaped roughness elements can lead to the "D-type" of roughness described by 
Perry, Schofield and Joubert (ref. 8).  For this case d becomes dependent on parameters 
describing the flow, such as pipe diameter, for roughened pipes, or boundary layer thick- 
ness, for roughened walls.  This occurs apparently only for regular and close spacing of 
two-dimensional elements and is not of concern in this report. 

Once a law of the wall has been formulated, the usual assumption for flow farther 
away from the wall, 

|| = fn [VT, (Z-d)] (3) 

leads to the semi-logarithmic law in the form: 

where B is now a function of X/ (k-d) and K is either a universal constant, as is usually 
assumed, or may be a function also of A/(k-d) for rough walls. (z-d) 

Equation (4) applies away from the immediate vicinity of individual elements (l   '/ 
(k-d) > 2) but in the "near wall" region (z/<5 < 0.3 for zero pressure gradient).  Compar- 
able limits exist in the smooth wall case in which the viscous sublayer is excluded.  This 
form of equation has variables more readily identified with the actual flow field than 
those used in the comparable and fairly common equation: 

L = l In (!-) (5) 
V   K kZ ' 
T O 



V 1 m 2v 
V K V 

•I 

7-3 

in which Z0 a "roughness length" has no obvious physical relationship to the actual 
roughness height. 

Another common expression is: 

+ B' -AY 
•l T 

where r^- is the shift in the velocity profile due to the roughness and is therefore a 
t AV . 

function of roughness density and geometry.  The form of — is always chosen to be: 

and — is plotted against (—-p-) for any one roughness geometry and density as in Dvorak's 

paper (ref. 1).  Although plausible in principle, this formulation is misleading for fully 

rough surfaces in that it implies that the roughness function — depends on viscosity where- 

as this is not the case for sufficiently rough surfaces. 
Provided the roughness density is not sufficiently great to create sheltering effects, 

d can be assumed to be zero.  This report considers only such cases (equivalent two- 

dimensional spacing of  / (k > 32) and is further concerned only with roughness consisting 
of identically shaped elements spaced uniformly and projecting from an otherwise smooth 
surface.  No confusion arises about the origin for Z or the definition of k for this 
simple geometry.  Thus we assume a semi-logarithmic velocity distribution of the form: 

Y-=iln£+B' (6) 
V   K   k v 

T 

where B  is a function of the roughness geometry and spacing. 
Following Millikan (ref. 3) and others, the complete velocity distribution can be 

described, for zero pressure gradient, by: 

V_=i m (|) +B
[ +h(f) (7) 

z       
T 

where h (-»-) is a universal function describing that part of the velocity profile which 

deviates from the logarithmic distribution in the centre of the boundary layer.  This 
assumes some kind of equilibrium of the entire flow, a point discussed later.  For Z = <S, 
V=V-| (the free stream velocity), and equation (7) becomes: 

YI = I ln (| 
V   K    vk 
T 

or, absorbing the constant h(l) into the function B 

-,  - ~  ln (£) + B  + h(l) (8) 
T 

YL = im(|)+B" (9) 

Equation (7) subtracted from aquation (8) gives the defect law in the form: 

Yl=Y = fn (|) + constant (10) 
T     z 

where the function of (-»-) is independent of roughness density or spacing, a conclusion 

confirmed experimentally by Hama (9) and others. 
Equation (9) involves the boundary layer thickness 6 and it is sometimes more conven- 

ient to replace S  by &*  the "displacement thickness" defined by: 

5   )0   ^ • *? «<%> 

Using equation (10) in the above, it can be seen that 

-=— =J"- = universal constant (11) 
0    V-E 

provided equation (10) holds for a sufficiently wide range of Z/5.  Using (11), equation 

(9) becomes:  Yl = I j>n («1Y) + B (12) 
V      K       JC VT 

Dvorak (1) correlated experimental results from various sources to suggest a form for 
the function B of equation (12) , valid for square two-dimensional bars of height k and 
spacing X  and for  A/k 5 5: 

B = A + 5.95 (0.48 J,n | - 1) (13) 
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where A is a constant with value about 4.8. 
Equations (12) and (13) are restricted to cases in which viscosity effects are absent. 

They allow the shear stress co-efficient Cf, defined as 2 &-)    , to be found for any height 

ratio S*/k and spacing A/k. 
Equation (7) and those that follow from it, imply an equilibrium in the entire flow, 

so that properties such as turbulent length scales, spectra and so on when non-dimension- 
allzed by a single length scale and a single velocity scale do not change rapidly enough 
in the streamwise direction to have their gradients affect the flow in any way.  Strictly 
this is a "self-preservation" of the flow and is possible in zero pressure gradient only 
when Cf = constant, the boundary layer grows linearly and 6*/k, A/k are constants.  If S* 
grows linearly in the streamwise direction k and A should also increase linearly.  However, 
over limited streamwise distances far from the origin, it appears that boundary layers 
growing over roughness with k, A constant can be considered to be in equilibrium, as will 
be demonstrated later. 

The correlation of equation (13) is valid only for square two-dimensional bars normal 
to the flow, and it is necessary to generalize these results to other roughness element 
geometries of various>shapes.  As described in ref. 10, this simply results in the use of 
the ratio Ae/k in place of A/k, defining the former as: 

Ae 3 <CD>B ^p . 
k "" (

C
D'E 

AF 
where (C„)D is the drag co-efficient of a two-dimensional bar of height k measured with a U    D 

particular upstream boundary layer; (Cn)F is the drag co-efficient of a typical roughness 

element of height k measured with the same upstream boundary layer and  P/Ap is the ratio 
of plan area to frontal area for the new roughness element.  Since cubes or rectangular 
plates with a face normal to the flow both have drag coeefficiants of about 1.2, as do 
square bars normal to the flow, equation (14) reduces for these roughness element geometries 
to: 

_    A 
Xe P /-, r, 
k-~Ä7 (15) 

The correlation of equations (12) and (13) is plotted as the solid curves of figure 
2 for various Ae/k of  10  and above, an approximate limit for the assumption that d of 
equations (2) (3) (4) is zero. 

These correlations for wall shear stress can be linked with a boundary layer shape 
if a suitable calculation procedure is adopted.  For present purposes, we have adopted 
Head's integral method (2), used by Dvorak (1) and shown to be fairly accurate for zero 
pressure gradient cases at least.  The method, used with the usual momentum integral 
equation and the assumption that the non-dimensional shape of the boundary layer does not 
change in the streamwise direction, result in the following conclusions (see ref. 10 for 
details) : 

(ry1-) = known arithmetic function of n (16) 
vl 

where n is a suitable shape factor describing the boundary layer shape, defined here by: 

n = \   {—  - 1) (17) 

with 8 as the usual momentum thickness. 
This quantity n is the exponent of a power law if a power law adequately describes 

the mean velocity profile.  If a power law is not an adequate description of the profile, 
n can be regarded as a simple shape factor, closely related to the more common shape 

S* factor (•£—) . 

Using equation (16) with equations (12) and (13) allows the shape factor n to be 
5 *     Ae 5 Ae expressed in terms of ^— and -j— or, with the use of (11) in terms of r-  and =— .  The 

latter form is shown by solid curves in figure 3, and is of course valid only if the 
assumption of equilibrium is valid. 

Head's method, used with the correlation of Dvorak and the assumption of exact 
6* Vi 

equilibrium (dn/dx = d(6*/6)/dx = 0) also gives values for the ratio (— ^) of equation 
•£ 

(11) in the range 3.80 to 4.00, for reasonable values of A/k. 
Experiments are compared to these predictions in the next section.  In every case 6* 

and 9 were found directly from the measured velocity profiles and n found from them using 
equation (17).  The nominal boundary layer thickness 6 was then deduced from the relation- 
ship: 

IT = — <18> o*    n 

an equation strictly valid for a power law profile but useful in defining an equivalent 
or consistent 6 in any case. 

3.   EXPERIMENTAL ARRANGEMENTS 

Three boundary layers have been studied experimentally in the large Ü.B.C. open- 
circuit wind tunnel.  The tunnel has a test section 24.4 m long, 2.44 m wide and initially 
1,5m in height.  The test section roof is adjusted to maintain zero pressure gradient in 
the entire test section length.  Since the tunnel is the blower type, exhausting directly 
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into the room, the pressure in the entire test section is then zero gauge, a great advan- 
tage in some measurements. 

Floor roughness was created by fastening thin vertical strips of aluminum to the wall 
at regular intervals.  The ratio of height to width of each strip was always 2:1 and 
values of Xe/k from equation (15) were 32 for tests I and II and 128 for test III.  Rough- 
ness heights k were 38.1 mm in test I and 25.4 mm for tests II and III.  The roughness 
strips were placed in lines across the tunnel, adjacent lines being displaced so that the 
pattern was staggered. 

Wall shear stress was measured directly from a drag plate, a large isolated section 
of roughened floor fastened to a balance.  Velocities were measured with a linearized hot 
wire anemometer.  Details of the measurement techniques and arrangements can be found in 
ref. 10 or ref. 11. 

Experimental set II was conducted as a check on set I; both had the same geometrical 
arrangements but set II had a roughness size 2/3 that of set I.  Set III was a study of 
relatively sparse roughness undertaken to explore the limits to the roughness correlations 
described in section 2. 

4.   RESULTS 

The measured values of 6*/k and 6/k are listed in appendix I together with values of 
n and 6/k deduced from them, at each streamwise position x/k.  Measured wall shear stress 
VT Vi § * 
—•  is also listed, both as a distinct quantity and also in the ratio {=+• j—).  No evidence 

of Reynolds number (viscous) effects was found in these tests. 
V      6* 6 Measured results for =?-  , n, T—  and the deduced values of T-  were plotted in figures 

2 and 3.  The measured values for sets I and II approach the predicted equilibrium con- 
Xe ditions for their roughness density (*— = 32) at distances downstream of the roughness 

origin greater than about 350 times the roughness height.  This appears to be the develop- 
ment length required with this roughness density at least, for the mean velocity to reach 
a modest degree of equilibrium.  It is reassuring that the values from both sets I and II 
approach equilibrium at about the same x/k, as they should, and that the results from set 
I and set II remain on the appropriate equilibrium line for all values of x/k greater 
than 350. 

The plotted values from set III appear to approach an equilibrium condition with 
Xe T-—  between 60 and 80, as indicated by the plots of figures 2 and 3.  This is distinctly 

different from the value of 128 predicted from the roughness geometry and density; the 
wall shear stress is clearly higher in the measurements than had been predicted from the 
correlation of measurements on two-dimensional bars. 

For the set III data, it is likely that the shear stress associated with the smooth 
wall between roughness elements is a significant part of the total stress.  Roberson and 
Chen (ref. 12) estimate for a roughness consisting of cubes with a density given by 
X=128, that about 40% of the wall stress arises from the smooth wall.  In the present 
model used to generalize Dvorak's collection of square bar measurements to other roughness 
geometries, it was implicitly assumed that the flow between roughness elements is the same 
for two and three-dimensional elements, hence giving rise to equal shear stress contrib- 
utions from the smooth wall sections in equivalent roughness cases.  This is not accurate 
for two reasons:  flow separation is greater for two-dimensional bars than for three 
dimensional strips, as noted in section 2; the reattaching and developing boundary layer 
behind two-dimensional bars will be very different from that behind three dimensional 
strips and will probably have greater three dimensionality and larger wall shear stress. 
For both of these reasons, the smooth wall stress in the three dimensional case will be 
greater than that for the two-dimensional bars and the total stress will therefore be 
higher.  This effect will be small for concentrated roughness but will become increasing- 
ly significant for widely spread elements.  Apparently, at X/k = 128, it leads to differ- 
ences in total stress of the order of 20%, as shown in figure 2.  Until the flow is 
analyzed in greater detail between two and three-dimensional roughness elements, perhaps 
along the lines suggested by Roberson and Chen, no quantitative corrections to Dvorak's 
correlation can be made.  We conclude that Dvorak's correlation is useful for a variety 
of roughness geometries only for Xe/k less than about 50 and that it will underestimate 

the values of ^ and n for surfaces of lower roughness density, for three-dimensional 
vl 

roughness elements. 
The equation (6) developed in section (2) from dimensional arguments, is often de- 

duced from the assumptions of a constant stress region and of a Prandtl mixing length pro- 
portional to Z.  Neither of these assumptions appears valid from measurements made in the 
set I series at the farthest downstream location, x/k ~  493. 

The measured shear stress above the wall is shown in figure 4, together with average 
value of wall shear stress deduced using the drag plate.  No measurements were made above 
the wall for Z/k < 2 since individual roughness elements create strong spatial non- 
uniformities in this region. Although the values of shear stress extrapolate smoothly to 
the measured wall stress, there is no evidence of a constant stress region.  In this case 
the inner tenth of the layer, that usually associated with a constant stress region, is 
occupied by the inner sublayer (Z/k ? 2) so that it is not surprising that a constant 
stress region is not evident. 

Measurements of auto correlation of longitudinal turbulence velocity were made at 
Z x various (^-), and these were converted to integral length scales L using the local mean 

7, 
velocity at the same -r-.     There is no consistent trend in these scales with Z over the 
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range investigated, as shown in figure 5.  This is in agreement with the common observa- 
tion that length scales for boundary layers increase with Z only for the region Z/S < 0.2, 
and are constant thereafter.  Apparently in this data for set I, the region in which 
Lu scales with Z      is not evident and only the region in which XL  scales with a con- 

stant outer length typified by 6, is encountered. 

It is interesting to note that the ratio of (XLU/S) found here is about 0.3 which is 

similar to that reported for the neutrally stable atmosphere for heights above 200 feet, 
if <5 is interpreted for the atmosphere as the gradient height of about 1500 feet (see 
ref. 13). 

The longitudinal turbulence intensity for the data of set I is shown in figure 6, non- 

dimensionalized by VT.  It is easy to presume, from dimensional considerations like those 

in section 2, that /u2 /V will be a universal function of Z/6 just as  1~V is universal, 
T 

but this turns out to be incorrect, a fact discussed by Bradshaw (ref. 14).  The surpris- 
ing degree of non-universality is shown in figure 6 where present measurements are com- 
pared with those made by Corrsin and Kistler (ref. 15) above a rough wall.  Despite the 

fact that rr1- was about the same in both cases, the differences in the density and geometry 

of roughness apparently make the turbulence distributions in these two cases very different. 
The near universality of the velocity defect law, (Vr

1-V)/VT = f(y/s) can be examined 

rather simply by noting the value of the constant of equation (11).  Clauser (ref. 16) 
found a value of 3.6 from his collection of data; calculated values using Head's method 
for equilibrium layers of the sort studied here, range from 3.8 to 4.0; measured values of 
this parameter for the set I, II and III boundary layers (in their apparent equilibrium 
ranges) run from 4.05 to 3.92 aside from one isolated value at 4.10 in set III:  (see 
Appendix I).  This comparison suggests that the expected equilibrium in the mean flow is 
being approached quite closely. 

The velocity measurements for set I have been used to deduce the value of K, often 
called von Karman's constant, used in equation (6).  These are listed in Appendix I to- 
gether with the other data and show no trend with x/k.  The average value, 0.36 is consid- 
erably lower than the usual value of 0.40 or 0.41 usually assumed.  Had the latter value 
been used to deduce the shear stress from measured velocity profiles, errors of between 
16 and 54 per cent would have been made.  There is some evidence that K varies with Reynolds 
number, being lower at very high Reynolds numbers and in fully rough situations such as 
those encountered in the atmosphere.  Wooding, Bradley and Marshall (ref. 17) report an 
average value^bf 0.35 for K from their own collection of data and Businger et. al. (ref. 
18) reports the same value from other full-scale measurements.  Thus, K may vary slowly 
with Reynolds number, becoming more nearly constant for very high Reynolds number or 
fully rough wall cases.  The present data add support to this argument, but does not rule 
out the possibility already mentioned in section 2, that K depends upon the roughness 
density A. 

5.   CONCLUSIONS 

1. Equilibrium of the mean velocity, implied in simple correlations relating roughness 
geometry to boundary layer characteristics, is reached about 350 times the roughness 
height downstream of the origin of the roughness, for constant roughness density and 
height. 

2. For a range of moderate roughness densities, equivalent to square two-dimensional 
bars placed across the flow with longititudinal spacings between 10 and 50 times their 
height, the roughness correlation of Dvorak has been generalized to three-dimensional 
roughness elements and has been found accurate. 

3. For low roughness density (few roughness elements) the correlation of Dvorak, when 
generalized to three-dimensional roughness elements, predicts shear stress and shape 
factors which are lower than the observed values.  This is probably related to the 
importance of the wall stress associated with the smooth wall between roughness 
elements in the case of sparse roughness. 

4. No region of constant stress was evident in the stress measurements conducted in one 
case; the height of the roughness elements was large enough, in this case to create an 
inner "sublayer" influenced by individual element geometry and location, which obscur- 
red the region usually associated with constant stress. 

5. Integral length scales measured in one case were essentially constant through the 
boundary layer, being about one-third of the boundary layer thickness. 

6. The longitudinal turbulence intensity measured in one case was considerably larger 
than in comparable measurements made elsewhere.  It appears that the "inactive" 
motions generated by the large roughness elements in this case contribute consider- 
able kinetic energy to the turbulence, while not significantly influencing mean 
velocity or shear stress within the layer. 

7. The von Karman's constant, used in the semi-logarithmic mean velocity correlation, 
has an average value of 0.36 for one of the rough wall boundary layers studied here. 
This is lower than the value of 0.41 often used and adds support to previous reports 
listing low values of this "constant" for very rough wall boundary layers. 
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APPENDIX I 

(a)  Data of Set I jß = 32,  k = = 38.1 mm. 

X 
k 

5* 
k 

e 
k n 

5 
k Vl V 

XL„ 
5 K 

140.8 2.17 1.28 0.35 8.38 0.0607 4.26 0.271 0.33 

268.8 2.83 1.75 0.31 11.93 0.0556 4.26 0.317 0.35 

332.8 3.25 2.06 0.29 14.44 0.0543 4.14 0.290 0.38 

396.8 3.51 2.27 0.27 16.49 0.0534 3.99 0.304 0.38 

492.8 4.08 0.67 0.26 19.73 0.0527 3. 92 0.289 0.34 
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(b)      Data  of  Set   II X« =   32,     k  =  25.4  mm 

(c)     Data  of  Set   III k 
=   128, 25.4  mm 

Figure   I 

DESCRIPTION   OF   SYMBOLS    USED   IN THE   "WALL   LAW" 

X 
k 

6* 
k 

e 
k n 

6 
k 

VT 
Vl 

Via* 

V 
145.5 1.93 1.10 0.380 7 0.0625 4.41 

193.5 2. 06 1.26 0.320 8.5 0.0600 4.04 

253.5 2.54 1.59 0.300 11 0.0570 4.05 

349.5 2.85 1.83 0.280 13 0.0560 4.04 

445.5 3.61 2.34 0.270 17 0.0530 4.00 

541.5 3.92 2.55 0.267 19 0.0525 3.93 

637.5 4.54 2. 98 0.261 22 0.0520 3.96 

685. 5 4.54 2.99 0.260 22 0.0520 3. 96 

X 
k 

6* 
k 

e 
k n 

6 
k Vl 

145.5 1.36 0.856 0.294 5.99 0. 055 4.12 

193.5 1.55 0. 993 0.284 7.00 0.0540 4.10 

253.5 1.68 1.10 0.265 8.01 0.0530 3.96 

349.5 2.06 1.35 0.260 9.97 0.0520 3.96 

445.5 2.40 1.55 0.250 12.00 0.0505 3.96 

541.5 2.92 1.97 0.242 15.00 0.0490 3.97 

637.5 3.26 2. 20 0.240 16.98 0.0475 4. 04 

733.5 3.86 2.61 0.240 19.99 0.0470 4.10 

z 

h 

J7. 

1 
U(z) 

EFFECTIVE    ELEMENT   HEIGHT 
(k-d) / 

/ 
/ 

k 

77777777777 

1 
77777777777777        11IIIKII11 lit 7111111111 

EFFECTIVE    ZERO   PLANE 

AVERAGE    WALL   STRESS   To 
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Figure   3 
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Figure   4 

SHEAR   STRESS MEASUREMENTS 
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TURBULENCE BEHAVIOUR IN A SHOCK WAVE/BOUNDARY LAYER INTERACTION 

by 

P. Ardonceau, D.H. Lee, T. Alziary de Roquefort, R. Goethals 

C.E.A.T. - E.N.S.M.A. 

43 Rue de 1'Aerodrome, 86000 Poitiers (France) 

SUMMARY 

An experimental study of a two-dimensional shock wave boundary layer interaction is presented. 
Experiments are carried out at a nominal Mach number of 2.25 for three compression corners of 8°, 13° and 
18° corresponding respectively to attached flow, incipient separation and well separated flow.  The Rey- 
nolds number based on overall thickness of the undisturbed boundary layer is Re <50 = 1.0 10 .  The measu- 
rements involve wall static pressure, static and total pressure profiles, determination of the mean and 
RMS fluctuations of the u and v velocity components with a laser doppler anemometer, hot wire measurements 
of the mass flow fluctuations and spectrum analysis of the hot wire signal. 

NOMENCLATURE 

C correlation coefficient of ( u)' and T't 

E(f) spectral density 

M Mach number 

R^j hot wire imposed resistance 

Rlt hot wire resistance at total temperature 

S  =3 Log E/3 Log OU|R  T._   hot wire sensitivity 
pu ' w,  c J 

Sxt - -3 Log E/3 Log Tt|Rw pu  coefficients 

a^ = (Rw
-RTt)/RTt     overheat ratio 

f     frequency 

p     static pressure 

r = Spu/Sij    ratio of the sensitivity coefficients 

u     longitudinal velocity component 

v     vertical velocity component 

w     lateral velocity component 

Re Reynolds number 

a ramp angle 

6 boundary layer thickness 

p density 

(pu) mass flux 

( )' instantaneous value 

< ( )'> RMS value 

( ) mean value 

1.  INTRODUCTION 

One of the main difficulties in the numerical prevision of shock wave turbulent boundary layer 
interaction is the modeling of turbulence in a compressible flow subjected to a very fast evolution. With 
a suitable turbulence model, the mean flow field may be calculated either by using an interacting boundary 
layer approach (complete solution {1}, boundary layer only {2, 3} or, more directly, by solving the full 
compressible Navier Stokes equations {3, 4, 5, 6, 7}. However in each case the agreement with the experi- 
mental data is not quite satisfactory for the wall pressure or skin friction coefficient and really poor 
when the mean velocity profiles or the turbulent quantities are considered. For some computations this 
unsatisfactory result may be attributed to the use of rather rough turbulence models based on the eddy vis- 
cosity concept.  But even with more sophisticated models, using for instance several partial differential 
equations for the transport of turbulent kinetic energy, Reynolds stresses... etc..., the prediction re- 
mains unsatisfactory, especially when the boundary layer separates, although the computation becomes time- 
consuming. 

Clearly there is a need for experimental results on the behaviour of turbulence in such flows 
at first in order to improve the modeling. Recently several experimental studies concerning turbulent 
quantities have been published {7, 8, 9, 10, 11} and reviewed {3}.  The aim of the present work is to fur- 
nish reliable data on mean and turbulent RMS quantities and secondly to obtain additional informations on 
the phenomenological mechanisms involved in the SW/TBL interaction with and without flow separation. 
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Although many practical situations encountered in external aerodynamics or in turbomachinery 
involve transonic or weakly supersonic flows, the present work is conducted at a Mach number of 2.25. This 
value was preferred in order to avoid some experimental difficulties like chocking of the wind tunnel or 
complicated calibration of the hot wire anemometer.  It is assumed that the turbulence behaviour is not 
drastically affected by the Mach number in the transonic-supersonic range. 

2.  EXPERIMENTAL .-SETUP AND DATA REDUCTION 

2.1. Wind tunnel and models 

Experiments are conducted in a M = 2.25 wind tunnel (section 150x150 mm2) driven by a M = 6 
ejector.  Stagnation pressure is 0.9 bars and the resulting Reynolds number is l.lxl07/m.  The flow is 
slightly heated in the plenum chamber (^  300°K) in order to obtain a recovery temperature at M = 2.25 
equal to the ambiant temperature.  The wall may be considered to satisfy the adiabatic condition, which 
is hoped to lead to a very low total temperature fluctuation level according to the strong Reynolds ana- 
logy concept.  The tunnel may be runned up to 2' without any noticeable change in flow conditions. The 
wall boundary layer used to produce the shock wave/boundary layer interaction is fully turbulent (Re 50 

= 

105). 

Two types of SW/BL interactions have been considered namely the incident shock wave configu- 
ration and the compression corner.  The two-dimensionality of the flow has been tested with three models 
for each configuration, by means of surface oil-flow patterns.  The models are respectively a total span 
type, finite span type and a third type fitted with fences (fig. 1).  Very good results are obtained with 
the "B2" or "B3" ramps, the "Bi" ramp or the three "A" shock generators lead to a rather three dimensio- 
nal flow (fig. 2).  The "B2" was finally chosen for its better compatibility with optical methods. 

Three angles of the ramp are selected : 8°, 13° and 18° corresponding to three behaviours of 
the boundary layer : 

- attached 
- incipient separation 
- separated    (fig.  2) 

2.2. Instrumentation 

Pressure measurements. 

They include, surface, static and pitot pressure measurements.  Static and Pitot probes as 
well as hot wire probe, are mounted on a unique probe support situated downstream of the ramp and auto- 
matically actuated along the y axis (fig. 3). A very weak probe interference has been observed on the 
surface pressure measurements in the separation region (a = 18°). 

Flow visualisation. 

Shadowgraph and schlieren pictures have been taken with various exposure times (down to 2us) 
(fig. 4).  High speed movies have also been recorded at two speeds : 8000 and 35000 frames/s. 

Laser Doppler Anemometry. 

Mean flow velocity components and RMS velocities (along the x and y axis) are measured with 
a laser anemometer. AQhigh power, Argon laser (Coherent Radiation CR6) is used in the dual forward scatter 
mode {12} on the 5145 X line (approximately 2W).  The beam splitter is adjusted to obtain a 20 urn fringe- 
spacing with a f = 600 mm focusing lens. A Bragg cell (TSI mod.980) is used when measuring the normal 
velocity component or when the mean longitudinal component becomes too small (relative to the velocity 
fluctuations).  The laser and the other optical components are mounted on the same optical bench which is 
moved by a computer program along a normal to the wall (fig. 5).  The two beams are slightly directed 
towards the wall and the y = 0 position is defined as the point where the beam crossing occurs on the 
center of the tunnel wall. 

Signal processing is achieved via digital counters (TSI mod.1990 and DELTALAB CEAT ANL 200). 
The conventional high pass - low pass filter bank is replaced by a special scanning filter which covers 
the Doppler signal spectrum.  The filter (bandwith Af = 5 MHz) is swept between two previously defined 
frequency limits fj, f2-  Several advantages may be found : 

f2-fi 
1) Signal to noise ratio improvement = 10 log ——— 

2) The filtering may be completely automatized and is thus much faster and reliable than manual tuning 

During this work, the frequency limits were defined before the flow probing thus allowing a 
fj, f2 bandwidth much larger than the signal bandwidth. A faster procedure would be to perform first a 
fast sweep to define the signal spectrum location and the particules/sec ratio and then make a second 
sweep with a better estimate of : flt f2 and of the sweep time to pick up a significant number of signals. 

Hot wire anemometry. 

A constant temperature hot wire anemometer (CTA DISA M 55) is used to measure the mass flux 
density fluctuation <(pu)'> and the total temperature fluctuations <T{.>. With the additional hypothesis 
that the pressure fluctuations are small (ie <p'>/p << 1) one may deduce the velocity fluctuation level 
<u'>. 
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The probes (DISA 55P11) are modified in two ways 

1) the gap between the two prongs is reduced to = 1 mm to increase spatial resolution and hot wire 
strength 

2) the wire (<j> = 5 vim) is welded sufficiently "slack" to eliminate some parasitic high frequency compo- 
nents in the signal due to the strain gage effect {13}. 

A symmetrical bridge (DISA 55M12) is preferred to the conventional 1/20 bridge for its better 
stability at high overheat ratios when the frequency response of the anemometer is very large ( = 300 kHz) . 

The frequency response has been evaluated at several overheat ratios in the flow conditions. 
The hot wire probe is optically heated by a power modulated laser beam. (The TSI Bragg cell is fed with a 
40 MHz sinuso'idally modulated wave resulting in a quasi sinusoidal modulation of the first order diffrac- 
ted beam). The behaviour of the hot wire system is examinated at several overheat ratios (fig. 6). 

A very good frequency response is obtained for an overheat aw = 0.75 with a gain = 10, fil- 
ter = 4 setting. At the lowest overheat a^ =  .26 the 3dB frequency response does not exceed 100 kHz. The 
data for the mass flux fluctuation level are obtained with high and medium overheat ratios (aw =0.8 and 
a^ = 0.5) (cf. 3.3) resulting in an upper frequency limit greater than 150 kHz which is high enough to 
take into account the whole spectrum of the fluctuations. 

Spectrum analysis. 

At high overheat ratios the hot wire is mainly sensitive to the mass flux fluctuations, pro- 
vided that the total temperature fluctuations are small. The spectrum of the hot wire fluctuating signal 
may be identified to the mass flux fluctuation spectrum. A spectral analysis of the whole flow field is 
made with a SAICOR 51 A spectrum analyser, regardless to the Mach number influence on the hot wire signal 
in the transonic and low supersonic range. 

2.3. Hot wire data reduction 

Following the Morkovin-Kovasznay analysis of the hot wire response in supersonic flow {14, 
15} the fluctuations are splitted up in mass flux and total temperature fluctuations. The relations 
between the instantaneous hot wire voltage e'(t) and the aerodynamic fluctuations may be written provided 
that the Mach number is high enough : 

e'(t) _ s  (pu)'(t)      Tt(t) 

E      pU   -^ Tt  f^ 

which leads to the mean square relation 

2 «„-> <Tl>   9 (<rl>)z (•!>* = s2  <£ä^ - 2 csTf s  22^ ^£l + si    l^t 
W PU I   lt      OU       =—      Xt E      ^  *> pu ' v       pu   Tt -n- 

where C is the correlation coefficient between pu' and Tt and Spu , Sj are the hot wire sensitivity 
coefficients. 

These coefficients are obtained from a direct calibration of the hot wire system (hot wire + 
anemometer) in a special M = 3.5,20x20 mm2 wind tunnel. The mass flux variation in the wind tunnel nozzle 
is used to modify pu, the nozzle is designed to give a linear evolution of p~u(x) with the distance to the 
M = 1 section. T^ is varied via the generating temperature and the calibration is repeated for several 
hot wire resistances Rw (fig. 7) {11}. Strictly speaking Spu and Sxt 

a*e dependent upon p~u, Tt and Rw . 
However SpU may be considered as a function of p~u alone (fig. 8). Results for several hot wire resistan- 
ces and even different probes are grouped together between the dashed lines. Sft is mainly a function of 
the overheat ratio (fig. 8). 

It is to be noted that even at aw = 0.8 the ratios between the two sensitivities Spu and Sxt 
is still small ^0.5 which proves that the hot wire remains sensitive to the total temperature fluctua- 
tions. 

In order to measure <pu'>, <Tt> and their correlation coefficient C at leas't three overheat 
ratios must be used. In fact a higher number is necessary due to the data dispersion. This was done with 
7 overheat ratios at several locations in the interacting boundary layer. A very low level of the total 
temperature fluctuations was found everywhere (fig. 9) and a precise evaluation of T^ was very difficult 
to obtain. However the simplification : 

<e'> _    <pu'> 

K       PU -^ 

leads to underestimate the mass flux fluctuations (fig. 10). A precise and a fast method to measure 
<(pu)'>/pu" is to use two overheat ratios. It may be shown that when r = Spu/STt is not too small (high 
overheat) and provided that <rSx>ff£ is not large (y  .01 in the present study), the relation between 
<e'>, <pu'> and <TJ.> may be written as 

1  <e'> _ r<pu'>  C<Tt> 
STt  E      pü      f^ 
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Then only two relations are necessary to determine <(pu)'>. C and <Tt> remain unknown but are 
not neglected. A comparison between the three methods (one, two and seven overheats) is given in fig. 10. 

Measurements of <(pu)'> shown in the paper are obtained with two overheat ratios. 

3. RESULTS 

3.1. Mean flow-field 

The increase of the wall pressure measured at the wall is presented fig. 11 for the three 
ramp angles. The typical "kink" on the distribution for the 18° angle is an indication of flow separation 
confirmed by the surface oil flow pattern (fig. 11). A slight overshoot of the wall pressure is observed 
at X/6Q = 5 distance from the hinge line. 

The longitudinal component of the mean velocity is presented fig. 12 as obtained with the 
laser Doppler anemometer. Velocities are measured along the same axis upstream and downstream of the 
hinge line regardless of the mean flow turning on the corner. 

The slowing of the bottom of the boundary layer is clearly visible especially on the a = 18° 
angle. The maximum gradient section of the BL lies farther from the wall as the angle increases. Data ob- 
tained inside and near the separation bubble are of questionable quality due to a very pronounced biasing 
effect of the signal sampling : a very low particles/s rate was found in the vicinity of the bubble where 
the signals mainly correspond to high speed flow originating from the outer part of the BL. A typical be- 
haviour of the BL velocity profiles is observed downstream of the separated region on the a = 18° ramp. 
The flow is highly accelerated near the wall which results in a characteristic profile including two in- 
flexion points {16}. This feature may be attributed to the mixing effect of the turbulence which is very 
effective (see 3.2.). 

The velocity profiles deduced from static and Pitot pressure measurements (the total tempera- 
ture remains nearly constant) are in fairly good agreement with the LDA data. A 3 % difference was found 
in the undisturbed flow, probably due to an underestimate of the fringe spacing (fig. 13b). The effect of 
the large turbulent fluctuations on the pressure measurements is not taken into account. This effect may 
be very strong in regions where <u'>/ü = 0(1). 

3.2. Fluctuation measurements 

Turbulent quantities measured are <(pu)'> (hot wire), <u'> and <v'> (LDA) in the whole flow 
field. Total temperature fluctuations <Tt> and the correlation coefficient between (pu)' and Tt were ob- 
tained for some profiles to test the total temperatures fluctuation level, and then <u'> velocities were 
deduced from hot wire data with the assumption p'/p << 1 and compared with LDA measurements. 

The effect of the mean flow compression on the <(pu)'> fluctuation component is presented in 
fig. 14. There is a continuous increase of the maximum fluctuation level with the ramp angle which is 
respectively multiplied by 3, 4, and 5 relative to the initial level. The vertical extent of the turbu- 
lent region also increases but more between the 13/18° angles than between the 8/13° angles. This results 
from the large thickening of the BL in the separated region and also from the formation of large eddy 
structures originating from the separation bubble. 

Measurements have been performed even at locations where the mean Mach number is less than 
1.5 and it has been demonstrated that the sensitivity coefficients exhibits large changes in transonic 
flows with a pronounced non linear character. A M = 1.5 line has been reported and below this line re- 
sults are certainly under-evaluated (Spu decreases with the Mach number below M = 1.4). Thus an assumed 
constant value of Spu leads to under estimate (pu)'. 

The laser anemometer is not sensitive to any Mach number influence and the <u'> measurements 
reveal the existence of a very intense maximum of velocity fluctuations appearing near the wall at a = 13 
and rising up to more than 60/2 when a = 18° (fig. 15). This result conflicts with the observation made 
by Mikulla & Horstman {17} that the separation of the BL leads to a lower level avay from the wall (60/3). 

The <v'> component exhibits an increase similar to that of the <u'> component when a = 8 
but the general level remains moderate on the ramp for a = 13 and 18° (fig. 16). It must be reminded 
here that the fluctuations are measured along a normal to the wall before turning by the ramp. 

The <v'> measured are a combination of <u;je>> <v%>  and u^v^ where # denotes quantities measu- 
red relative to the mean streamline direction. The rather small values of <v'> measured on the 13° and 
18° ramps may be attributed to a strong and negative value of u'v'. A third measurement in a 45° direc- 
tion is to be made which will give informations on the Reynolds stresses. 

3.3. Flow visualisation - Spectral analysis 

Strioscopic visualisations of the flow have been obtained with long (l/50s) and short expo- 
sure times (2us) (fig. 4). Numerous large scale structures, inclined relative to the flow may be seen in 
the incoming boundary layer. The visibility of these structures suggests a quite large lateral extension 
and their longitudinal scale seems to be comparable to the BL thickness. On the back of the shock wave, 
which penetrates very deeply into the BL, the appearance of the flow indicates a sudden increase of the 
density fluctuations which is in good agreement with the velocity fluctuations measurements. Pressure 
waves associated with the intermittent motion of the outer boundary layer in the reattachment region {18} 
are clearly seen on the 18° ramp. Strong pressure fluctuation levels (10 or 100 times higher than in the 
undisturbed BL) are currently observed in supersonic separated flows {19}. 
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Films were also recorded at a rate of 8000 frames/s. No instability of the flow was eviden- 
ced. The use of a higher speed camera (1O0000 frames/s) is hoped to reveal more detailed informations on 
the behaviour of the incoming turbulent structures. 

A complete set of spectra of the mass flux fluctuations recorded on the 18° ramp is presen- 
ted fig. 17. The amplitude of the spectral density E(f) has been multiplied by the frequency so that the 
area of a part of the spectrum between two frequencies is equal to the energy contained between these 
two frequencies. 

The vertical scale is arbitrary for each spectrum. In the incoming BL,the energy is located 
in a 5 to 50 kHz band.with a maximum at 30 kHz which corresponds in the Taylor's sense to a longitudinal 
scale of about 2 &0. 

On the x = -12 mm a general increase of the spectral density is evidenced (the scale is di- 
vided by 2 relative to the first profiles) . A maximum still remains at the same frequency "\< 30 kHz but 
in addition an increase of energy in a low frequency range ( 2 kHz) appears at the bottom of the BL. 
This feature persists on the next profiles and disappears only at x = 60 mm. 

This high level in the low frequency range evidenced near the outer  edge of the BL at 
x = -12 , y = 8 and x = -4 , y = 14 may be attribued to a weak instability in the shock position. 

The low frequency component of the spectra is not very well explained. It appears very lo- 
cally on the 8° data and extents on a larger part of the flow for the 13° ramp angle and down to x = 36 
on the 18° data. 

4. DISCUSSION AND CONCLUSION 

Detailed informations on the turbulent structures are uneasy to obtain due to the Mach num- 
ber limitation of the hot wire anemometer and the sampled nature of the data obtained from LDA. However 
flow visualisations and spectra of the mass flux fluctuations seem to confirm the existence in the main 
part of the BL of large turbulent structures similar to those found in incompressible flows {20, 21, 22}. 

Downstream of the reattachment point some kind of longitudinal vortices with lateral orga- 
nization could be expected from previous works. But transverse probing in the z direction reveals no 
variation of the v and <v'> components. Moreover the oil flow surface visualisations do not show any 
evidence of cellular structure organization in the reattachment region. 

One of the main features of the SW/TBL interaction is certainly its fast streamwise evolu- 
tion which occurs within a few boundary layer thicknesses. This scale is of the same order of magnitude 
as the incoming turbulent structures scale. This may cast some doubt about the suitability of the clas- 
sical mean value approach and leads to take into account the large scale structures in a more explicit 
way. 

The interaction region is characterized by a large increase of the <u'> fluctuation espe- 
cially in the shear layer above the separation bubble. This increase is expected on inspection of the  
transport equation for u'2 and is very likely due to the high value of the production term -2p(3ü/3y)u'v'. 

The ratio <u'> / <v'> is plotted on figure 18. It appears that there is a very large in- 
crease of anisotropy above the bubble. This situation may be explained by the fact that the turbulent 
kinetic energy is produced on the u' component and redistributed on the v' and w' components mainly 
through the pressure strain correlations. Due to the very short x extent of the phenomena the tendency 
to isotropy cannot balance the large production and values of <u'> / <v'> larger than 4 are obtained in 
some region. Clearly any modeling of the turbulence behaviour based on an equilibrium concept will fail 
in this region. 

Downstream, on the ramp, the ratio <u'> / <v'> decreases and the boundary layer recovers 
a less anisotropic state. For a = 18° , x = 60 the profile has a rather similar shape to the one encoun- 
tered in the undisturbed boundary layer (x = - 36)• The higher general level for x = 60 may be attri- 
buted to the fact that the <u'> and <v'> values are relative to an axis system defined upstream of 
the hinge line as noted in 3.2. One may conclude that a longitudinal extent of about 6 S0  is typical 
for a return to a more usual ratio of <u'> / <v'> . Therefore, any modeling based on a frozen distribu- 
tion concept is questionable. 

The phenomenon may be considered as a relaxation process for the distribution of energy bet- 
ween the u'z, v'z, w'z components. In fact many authors {3} solving the complete Navier Stokes equations 
with some eddy viscosity model, tried to take into account this relaxation process by introducing some 
empirical relaxation length. The preceding results suggest to use Reynolds stress transport equations 
and show the dominant importance of the pressure strain terms which unfortunately are very difficult to 
estimate in a compressible flow subjected to a high mean strain rate. 

At last one must notice the appearance of low frequency fluctuations in the vicinity of the 
bubble. No isolated frequency can be evidenced and the spectra seems to be fully continuous. So, on the 
present results it is very hard to distinguish between these unidentified low frequency fluctuations and 
the "proper" turbulence component. Transverse correlation measurements are planned in order to eludidate 
this point. But even if the origin is an organized motion of the whole bubble one may suspect a strong 
interaction with the turbulence near the wall where the frequencies are of the same order of magnitude. 
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LONGITUDINAL VORTICES IN A CONCAVE SURFACE BOUNDARY LAYER 

R.I. Crane and S.H. Winoto 

Department of Mechanical Engineering, 
Imperial College of Science and Technology, 

Exhibition Road, 
London  SW7 2BX, 

U.K. 

SUMMARY 

Local measurements of mean and fluctuating velocity, by laser anemometer, have been 
made inside the the developing concave surface boundary layer in a free-surface water 
channel at Reynolds numbers Re   (based on channel width) up to 16000. Concave surface 
radius was 3.5 times channel width and the ratio of spanwise mean boundary layer thick- 
ness to surface radius ranged between 0.03 and 0.11. 

Systems of longitudinal vortices developed without artificial triggering.  Vortex 
wavelength varied across the span by as much as a factor of 2, but mean wavelength was 
typically 1.3 times the boundary layer thickness and did not vary significantly in the 
flow direction.  Continuous vortex growth at Re = 9800 contrasted with apparent break- 
up of the vortices at Re  = 16000.  Maximum amplitude of the transverse variation in 
longitudinal mean velocity did not exceed 10% of potential wall velocity upw;     momentum 
thickness varied across the span by a factor up to 4.  Lateral mean velocity parallel 
to the wall had a maximum amplitude typically 3% of upw  and lateral fluctuation intensity 
was generally greater than 40%. 

LIST OF SYMBOLS 

a channel width 
b water depth 
e voltage proportional tOjDoppler signal frequency representing u 
G Görtier number Re6 (&/r)^ t , 
GT turbulent Görtier number (upwB/o .olSuj: S   )(6/r)^ 
r concave wall radius 
Rea bulk flow Reynolds number uba/v 
Reg momentum thickness Reynolds number up„8/v 
n,v,w velocity components in §,   y,   z  directions respectively 
u£ bulk velocity (volume flow rate * ab) 
u_ value of u in potential core and linear extrapolation into boundary layer 
upw u     at y  =  0 
y,z coordinates defined in Fig. 1(c) 
6 boundary layer physical thickness 
6* boundary layer displacement thickness 
6 boundary layer momentum thickness 
A vortex wavelength 
v kinematic viscosity 
<|> angular coordinate defined in Fig. 1(c) 

subscripts 

av       value averaged between wave crest and trough positions 
I   value at boundary layer edge 

superscripts 

mean value of fluctuating quantity 
'    r.m.s. value of fluctuating_quantity 
* value at crest position in u(_z)   distribution 
v    value at trough position in u(zj distribution 

1.  INTRODUCTION 

An upsurge of interest in concave surface boundary layers in recent years has arisen 
from the inability of current calculation methods to make satisfactory predictions of 
flows with significant curvature.  One application of considerable importance is the 
estimation of heat transfer and skin friction on the pressure surfaces of turbine blading, 
where curvature, acceleration and high turbulence intensity combine to produce rather 
complex boundary layer behaviour.  In particular, the de-stabilising influence of concave 
curvature gives rise to strong three-dimensional effects.  The occurrence in turbulent 
layers of systems of longitudinal vortices, analogous to Görtier vortices in laminar 
layers, is now well established, having been first observed by Tani (1).  Subsequent 
investigations, notably those of So and Mellor (2) and Meroney and Bradshaw (3), have 
revealed details of the turbulence structure in boundary layers which were well developed 
before encountering concave curvature, without much emphasis on the vortex pattern itself. 
With sufficiently strong curvature, the quasi-steady vortices will exert a strong 
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influence on mass, momentum and heat transfer;  their geometry, strength, etc.  there- 
fore require more detailed study. 

The work reported here is an extension to higher Reynolds numbers of an experimental 
study of Görtier vortices (4, 5) aimed at determining the distribution of longitudinal 
and lateral velocity within the vortices.  Using a water channel with only a short 
straight length upstream of a constant-radius 90° bend, curvature parameter 6/r (ratio 
of boundary layer thickness to concave surface radius) was of order 0.1 in a developing 
duct flow with a potential core.  This curvature is similar to that of ref. (2), in 
contrast to values around 0.01 in ref. (3).  The Reynolds number Rea,   based on channel 
width a (40 mm) and bulk velocity u^, has so far been limited to 16000, an order of 
magnitude less than those of ref. (2) and (3).  A study of the effects of controlling 
and systematically varying the vortex wavelength A is in progress (to complement current 
work by Bradshaw (6)), but the present results are confined to vortices developing 
naturally without artificial triggering.  The use of laser Doppler anemometry has reduced 
the possibility that spatial averaging (as with a hot wire) will mask such features as 
sharp troughs in transverse distributions of velocity, and has also avoided any physical 
interference which could alter the unstable flow pattern. 

2. EXPERIMENTAL DETAILS 

A block diagram of the flow circuit is shown in Fig. 1(a), the heat exchanger being 
necessary to maintain a constant water temperature over a period of several hours opera- 
tion.  Water is pumped through multiple hoses into a bank of glass balls at entry to 
the Perspex channel, to provide a reasonably uniform flow into the settling chamber. 
Three gauze screens are followed by a 5:1 contraction and a straight channel section of 
length 1.4a.  The 90° bend, with outer wall of radius 3.5a, is constructed from 3 mm 
thick walls set in machined grooves in a 15 mm thick base , with ties at the top of the 
walls to maintain their spacing.  Downstream of the bend, a 2.8a  straight section is 
followed by a diffuser and a chamber of similar dimensions to the settling chamber.  The 
polished surfaces are hydrauically smooth, with special attention paid to the joint 
between contraction and concave wall.  The channel base is mounted on a milling table, 
to give two-dimensional motion in the horizontal plane, which in turn is attached to the 
cantilevered platform of a vertical traversing device. 

A free-surface channel was originally chosen to facilitate flow visualization at any 
desired position, so the effective aspect ratio b/a   is determined by the depth b  of water. 
In the present work, b/a  was 3.5, a compromise which allowed a reasonable Reynolds 
number to be obtained with a given pump capacity while avoiding unacceptable secondary 
flow effects. Guided by hydrogen bubble visualization (in a range of flow rates limited 
by bubble buoyancy at the lower end and rapid dispersion at the upper end), it was found 
that the longitudinal vortex system was not noticeably affected by end-wall secondary 
flow in the central 70% of the span. 

Fig. 1(b) shows the fixed laser anemometer system in relation to the test section. 
The fringe mode of operation was used, with a beam crossing half-angle between 6.9° and 
7.4° (depending on the proximity of the curved wall to the integrated optical unit), 
giving a calibration factor between 504 and 544 kHz per m/s.  Dimensions of the beam 
intersection volume were approximately 1.5 mm and 0.2 mm in the normal (y) and longitu- 
dinal (<f>) directions respectively.  Transfer of measurements from the longitudinal (<j>) 
velocity component u to the transverse (z) component w  was effected by rotation of the 
integrated optical unit and polarised laser.  An attempt was made to detect the sign of 
w  using a rotating diffraction grating, but this requires further development to give a 
sufficiently steady frequency shift to match the low magnitude of this velocity component. 
All signal processing was carried out by a frequency tracker, most data points being 
obtained from five successive integrating periods of ten seconds each. 

In view of the problems of measuring the streamwise pressure distribution directly at 
low flow speeds, and of avoiding too much obstruction of the laser beams by tappings 
etc., the distribution has been indicated by the variation in potential wall velocity 
upw;     this was obtained by extrapolating to the wall the linear portion of the velocity 
profile in the invlscid core flow. 

Coordinates and dimensions are defined in Fig. 1(c), representing top and side views 
of the test section. 

3. MEASUREMENT PROCEDURE 

The measurements reported here were made at nominal Reynolds numbers Rea  of 9800 and 
16000.  Traverses in the z-direction were made at several distances from the concave wall, 
the closest approach possible with the present optical arrangement being y = 1 mm. Having 
identified crests and troughs in these transverse velocity distributions, profiles in the 
y-direction were measured at the corresponding z-positions.  Chosen streamwise stations 
ranged between a position 0.68a upstream of bend entry, and tj> - 76°.  Checks were made 
to determine the repeatability of the vortex positions. 

4. RESULTS AND DISCUSSION 

Examples of velocity profiles at bend entry are shown in Fig. 2.  The longitudinal 
pressure gradient on the concave wall is indicated by the distribution of potential wall 
velocity upw  in Fig. 3.  At Rea   =  9800, the resulting boundary layer thickness S  was 



9-3 

measured as 0.13a at $ -  0 and 0.37a at $ = 76° (defined by the y-position where 
u/up(yJ = 0.99).  Whereas previous work on this topic has largely dealt with boundary 
layers developed on long straight surfaces upstream of the bends, the present work is 
concerned with flows much closer to transition, relying on the curvature and the 
region of adverse pressure gradient at bend entry to produce a turbulent layer in the 
downstream part of the bend.  A,comparison may be made wi'th data on critical values of 
the Görtier number G  =  Keg(S/r;5 at transition;  cascade measurements quoted by Kan et ai. 
(7), for example, suggest completion of transition at G  -  7, while Liepmann's (8) zero 
pressure gradient data on constant curvature surfaces, with low turbulence levels, 
indicated transition at G  values between 6 and 9.  Present data for spanwise-averaged 
momentum thickness Qav  at <f> = 57° give G - 13 at both Rea  = 9800 and 16000 (having 
earlier exceeded 20 at the higher Rea) 

Longitudinal vortices developed without artificial triggering, at least three pairs 
being detected at each station. No evidence of a similar structure was found in the 
convex wall boundary layer.  To aid subsequent discussion, an idealized vortex system 
is shown diagrammatically in Fig. 4.  Vortex wavelength X  was found to vary across the 
span by as much as a factor of two, but the positions of the crests and troughs in the 
transverse variation of the mean velocity ü did not vary significantly in the ^-direction. 
Mean wavelength Xav,   found by averaging the distances between consecutive crests and 
between consecutive troughs at each station was approximately 21 mm at Rea   = 9800, 19 mm 
at Rea  =  16000, these being around 1.3 to 1.6 times the local average boundary layer 
thickness 5  .  An exception occurred at Rea  = 16000, $  =  76°, where the vortex pattern 
appeared to be breaking up.  At this station, vortex positions were no longer repeatable 
from run to run and were less clearly defined, some longitudinal velocity distributions 
giving the impression of a wavelength as low as 11 mm while the variation in lateral 
component suggested wavelengths similar to those further upstream. The disturbances which 
are amplified into the observed vortex system are probably related to some physical 
feature of the channel (as yet unidentified). To determine if this is so, or whether the 
vortices are amplified selectively from a broad spectrum of initial disturbances (as 
predicted for laminar flows), vortex generators are now being placed in the contraction, 
sized so as not to influence the vortex strength.  Early results, indicating some 
suppression of the natural wavelength in favour of that imposed by the generators, 
suggest only weak selectivity. 

By analogy with Smith's (9) calculated stability diagram for laminar flows, Tani (1) 
indicated the degree of instablity in his flows by plotting the data on an equivalent 
chart, in which Görtier number G  was replaced by the so-called turbulent Görtier number 
GT.     This was defined using eddy viscosity ve in place of molecular kinematic viscosity, 
with ve taken as 0.018 uj&    where uj is the velocity at the boundary layer edge.  Fig. 
5 shows the present data, using spanwise mean 6 and <$*, to be well inside the unstable 
region on such a diagram.  (The dashed line indicates the uncertainty in X.) 

Fig. 6 and 7 show examples of the distributions of mean streamwise velocity «, 
estimated uncertainty being ±2%.  The striking difference between these results and those 
for Görtier vortces in laminar boundary layers in the same channel (4, 5) is in the 
amplitude of u(z);  here, this amplitude did not generally exceed 10% of u

pw,   compared 
with values up to 40% in laminar layers.  The only exception was 19% of upw  at Rea  = 
9800, <t>  = 76°, y = 1 mm, where the high mean velocity gradient and greatest possible 
fractional error in y  could increase considerably the uncertainty in amplitude.  Measure- 
ments closer to the wall, not feasible with the present optical arrangement, might reveal 
larger amplitudes, but in laminar layers the peak amplitude occurred in the region of 
y/S   - 0.5.  At Rea= 9800, an increase  in the maximum value of amplitude k (v -  ü)from 
0.045u  to at least O.OSu  between • = 57° and 76°, indicated continuing vortex growth, 
whereas at Rea = 16000, vortex strength as measured by this maximum amplitude of around 
0.06upw appeared approximately constant over the same distance.  The shape of the trans- 
verse distributions, with crests and troughs of roughly equal sharpness, is similar to 
those in laminar flows (5) at Rea  = 2300 and below, but is markedly different from some 
of those measured at Rea  =  3800 (5) which featured flattened crests and sharp troughs, 
unsteady in their spanwise positions. 

Momentum thickness calculated from the profiles (defined here as f (u/u   ) (l-u/u^dy 
where up(y)   is the potential velocity, extrapolated from the core flow) showed a marked 
variation across the span.  At the lower Re, the ratio of e at a trough position to that 
at a crest was 1.7 at ty  = 57° and 4.1 at 76 ;  corresponding ratios at Re    = 16000 were 
2.2  and 3.6 

Profiles of r.m.s. Doppler signal e', as a percentage of the local mean signal e, 
in Fig. 8 shows that fluctuation intensity is generally greater at wave trough positions, 
where fluid is being swept away from the wall.  Except where shown by the scatter band, 
the scatter in five repeated measurements is contained within the width of the plotted 
symbol;  the uncertainty in each measurement is estimated as 12% of e'.  The relationship 
between e'/e  and u'/u  may be gauged from estimates of spectral broadening caused by the 
mean velocity gradient and finite particle transit time in the measuring volume and by 
instrument noise.  Typical values at Re = 16000, <(> = 76° are such that e'/w =  1.8% in 
the potential core becomes u'/ir = 1.7%, while e'/w =  8.6% at y/a  =0.1 becomes u'/u = 
8.5%.  Measurements of turbulent energy spectra are in progress at the time of writing. 

Examples of the limited number of measurements of transverse mean velocity magnitude 
|w| are presented in Fig.s 9 & 10.   Unlike the case of laminar flows, crests and troughs 
in the w(z)   distributions are not aligned, in general, with "mean" positions in u(z), 
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and vice  versa;     this indicates a rather distorted vortex pattern.  However, profiles 
normal to the wall, at positions of maxima in \w\(z),   are closer to the idealized 
pattern.  No particular directional meaning is implied in the w(y)   plots;  however, 
the change of sign shown near y/a  =  0.2 was indicated by a reduction of the Doppler 
signal below the detectable level in this region.  No significant trend in the amplitude 
of w(z)   could be detected, typical values of amplitude being 0.02upw  to 0.03upW at 
distances from the wall where peaks in the w(y)   profiles were found.  In laminar flow at 
Rea   =  2300, w  amplitudes (expressed as a fraction of upw)   at least twice these values 
were found. 

Measurements of w', the r.m.s. value of the fluctuating part  of w,  were limited by 
the fact that, at the low values of w  in these flows, intensities w'/w  greater than 
about 40% cannot be handled without frequency shifting.   At Rea   =  16000, intensities 
less than 40%, but still greater than 30%, were found only for 0.05< y/a   < 0.15 at <|> = 
57°;  at <j> = 76° the limit was exceeded over the whole boundary layer.  Almost all data 
at Re     =  9800 were in excess of the limit.  These results are consistent with unsteadi- 
ness in the spanwise positions of the vortices, on a small scale. 

5. CONCLUSIONS 

Details of the longitudinal vortex structure have been revealed by use of a non- 
disturbing velocity measurement technique.  Vortices developing without artificial 
triggering were found to have a mean wavelength of the order of the boundary layer 
thickness, as found in other investigations.  Their mean lateral positions were repeatable 
except near the bend exit at the higher flow rate, where signs of break-up appeared, 
in contrast with continued vortex growth at the lower flow rate. 

Amplitudes of the transverse variation in longitudinal and lateral 'mean velocity, 
the former reaching 10% of the potential wall velocity, were considerably less than 
in laminar Görtier vortex flows in the same channel;  momentum thickness varied 
laterally by up to a factor 4.  Longitudinal turbulence intensity varied laterally 
in a manner consistent with the vortex flow pattern, while the lateral intensity was 
generally in excess of the 40% (approx.) limit  of the present instrumentation. 

Future work will include an examination of the factors controlling vortex wavelength, 
and more detailed study of the apparent breakdown of the vortex structure at increased 
Reynolds numbers. 
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Technische Universität, 135 Strasse des 17. Juni 
D 1000 Berlin 12, Germany 

SUMMARY 

Comprehensive measurements of mean and fluctuating velocities and shear stresses in three-dimensio- 
nal boundary layers are urgently needed to establish turbulence models for the computation of boundary 
layer flows. The aim of the present investigation has been to provide such measurements and to develop or 
improve measuring techniques for such measurements, especially in the near-wall region of a pressure-driven 
three-dimensional boundary layer on a curved wall. This report describes measuring techniques and associated 
probe effects being due to (a) aerodynamic interference, (b) strong curvature of the streamlines in the 
inner region of the boundary layer, (c) wall effects on the hot-wire and the cobra probe signals, (d) low 
mean flow and high turbulent intensities close to separation, (e) problems related to accurate measurements 
of the distance between a hot wire and the wall, and (f) manufacturing problems of hot-wire probes. 

1. INTRODUCTION 

Comprehensive measurements of mean and fluctuating velocities, shear stresses and of skin friction 
in three-dimensional boundary layers are still rare but are urgently needed to establish turbulence models 
for the computation of boundary layer flows. The aim of the present investigation has been to provide 
such measurements in a pressure-driven three-dimensional turbulent boundary layer with special emphasis on 
the region close to the curved wall. Measurements have already been presented in tabulated form in 
Fernholz et al.(l), and a detailed discussion of the results will be published at a later date. The pre- 
sent report describes the measuring techniques and associated probe effects giving special attention to 
probe-flow interference. 
Substantial aerodynamic interference effects were observed when hot-wire probes were used in a turbulent 
boundary layer with the stem inclined to the wall at an angle of 5 to 10 degrees. These effects could be 
explained, and were eliminated by developing a family of probes with single normal, slanted and crossed 
wires which kept disturbances of the highly curved flow to a minimum. 
Flow angles were measured by means of hot-wire probes and twin-tube yawmeters, and a comparison of the 
results indicated severe aerodynamic interference effects when the latter probes were used in the near- 
wall region. 
Anomalies of the mean velocity distribution in the inner layer led to the detection of errors in the deter- 
mination of the absolute distance of the hot wire from the wall. Since 'in situ' measurements of the 
hot-wire distance from the wall could not be carried out due to access problems in the test section, an 
indirect measuring technique was developed to determine this distance with an accuracy of + 0.01 mm. 
Finally, measuring techniques (and, where possible, their accuracy and repeatability) are cTiscussed for 
the components of the Reynolds stress tensor and the skin friction. 

2. EXPERIMENTAL ARRANGEMENT AND FLOW CONFIGURATION 

A description of the wind tunnel used in this investigation was given by Vagt(2). It is a low- 
speed blower tunnel with a 12 KW motor and centrifugal fan, an airfilter intake and a 2 m long settling 
chamber with two wire-gauzes (open area ratio 38 %)  followed by an 11:1 axisymmetric contraction (Fig.l). 
A carefully organized programme of adjustment of the screens resulted in a uniform exit velocity so that 
local mean velocities U in the core of the flow varied at most by + 1.5 %  with a turbulence intensity 
(ÜT? ) X/2/U of 0.10 %  Tn a frequency range up to 10 Hz. All measurements were performed at a test sec- 
tion inlet Velocity of about 18 m/s, and the Reynolds number Ujn-|e^/v = 1.23 x 10

,s per meter was kept 
constant. The laboratory was airconditioned (room temperature constant at 22 + 0.5 C) in order to minimize 
the drift of hot wires and transducers. 
The test section consisted of a sting-mounted horizontal inner cylinder (0.25 m diameter, 1.55 m long and 
made of Ultramid S) with an elliptical nose cone and a concentric perforated outer cylinder with 0.60 m 
diameter. Pitot tubes and hot-wire probes, mounted on an electrically driven traverse gear, were intro- 
duced into the test section through a slot along a generator of the wall of the outer cylinder. The 
traverse gear allowed precise linear (incremental resolution 0.005 mm, system Heidenhain) and angular 
(resolution 0.09 degree) movements. Surface fences, (5 mm diameter) protruding approximately 0.10 mm 
from the surface of the inner cylinder (Vagt & Fernholz(3)), alternated with static pressure tappings 
(0.8 mm diameter) along a generator of the inner cylinder. By turning the inner and/or the outer cylinder 
measurements could be made with the wall probes at fixed positions x along the circumference and with the 
other probes at any position in the flow field covered by a turning angle of about 30 degrees. 
At the downstream end of the annulus a back plate was fitted to control the width of the flow exit and the 
axial pressure distribution in the test section. By inclining this back plate so that it was no longer 
normal to the axis of the cylinder the circumferential pressure distribution in the downstream half of the 
annulus could be made asymmetric, causing the originally axisymmetric boundary layer to become three- 
dimensional. A schematic diagram of the flow is shown in Fig.(2). The turning of the boundary layer 
causes flow deflections of up to 31 degrees near the wall, and the curved flow can bring about aerodynamic 
interference effects which substantially affect probe signals. 
The flow direction outside the boundary layer is almost parallel to the axis of the cylinder, with a maxi- 
mum angle of incidence in the xz-plane of about 2 degrees, and an upwash angle of about 5 degrees. It is 
a consequence of using a perforated outer cylinder that the flow deflection in the freestream is very  small. 
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The test boundary layer was thickened artificially by a tripping device mounted on the circumference of 
the cylinder at the downstream end of the nose-cone. This consists of a strip of 'Dymo' tape with the 
letter V printed at intervals of 4 mm with the apices pointing upstream. The tape is 0.40 mm thick and 
the overall height of a printed V is 0.65 mm. 
The development of the boundary layer from axisymmetric to three-dimensional is _shown in Fig. (3) where we 
have plotted the free-stream velocity uj , the skin-friction and the flow angle ji , at a distance 
y = 0.15 mm from the wall which is the angle measured closest to that of the limiting streamline. A 
description and interpretation of the mean and fluctuating flow measurements in this three-dimensional 
boundary layer with a strong adverse pressure gradient will be published elsewhere. The measurements can 
be found in tabulated form in a report by Fernholz et al.(l). 

3. HOT-WIRE INSTRUMENTATION AND PROBES 

Mean and fluctuating velocities were measured for the most part by means of probes with either a 
single normal wire or crossed wires. These wires were specially developed for this investigation, and 
operated by means of DFVLR (HDA III) constant-temperature anemometer units (Froebel (4)). The calibration 
curves were linearized by a polynomial linearizer (Froebel (5)) which provided a very  good approximation 
in the velocity range investigated (3 to 30 m/s). For the measurements of flow angles the anemometers were 
connected to DFVLR integrators (Froebel(6)) allowing integration times up to 1000 s. These integrators have 
an input impedance of 10 M (l , and the main unit is a temperature-compensated field-effect transistor (FET) 
amplifier with a very  high amplification and capacitive feedback. For measurements of velocity fluctuations 
the anemometers were used in conjunction with a turbulence-intensity measuring device (Froebel & Vagt(7)) 
which provided r.m.s. values,sums,differences and divisions of signals. The signals were read into a tele- 
type unit by means of a data transfer unit (Schlumberger DTU) - connected to a digital voltmeter (Schlum- 
berger A220) - punched on a paper tape and finally evaluated on a HP 1000 computer. 
The hot wires were calibrated in the free stream of the test section at a position (x=531 mm, 4> = 0°) where 
the turbulence level was less than 0.003 and where the velocity was constant in a range 20 <y <140 mm 
normal to the wall. 
The flow velocity was measured in the same plane by means of a Pitot-probe (1 mm diameter) and a static 
pressure tapping and evaluated by an automatic micro-manometer with a resolution of 0.01 mm water column 
(Froebel & Vagt(8)). The hot-wire calibration curve was checked after each profile measurement. It turned 
out to be very  stable indeed due to the air filters and the temperature control in the laboratory. 

The single and cross-wire probes were designed to cause as little aerodynamic interference as possible, and 
their design and manufacturing process was described in detail by Dahm & Vagt(9). Figure (4) shows a 
sketch of a single normal, hot-wire probe. The distance between the prongs is 4 mm and their length 
10 mm. The hot-wire consists of a central sensitive section of platinum-coated wolfram wire, 5 ^m in dia- 
meter and 1.3 mm long. The gold-plated end sections are approximately 30 y m in diameter and are soldered 
to the prongs which have the same diameter at the tip as the plated wire. The ratio of "active" wire 
length to diameter is 260, the nominal wire resistance 6 a  at 22.5° C and the resistance of the prongs and 
the electrical leads approximately 0.5 Q   .    The wires were operated at a resistance of about 1.7 times the 
cold resistance. 
The influence of aerodynamic interference on the probe signal was investigated by using the "rotation test" 
described by Comte-ßellot et al.(10). If the normal-wire probe rotated through 90° about the wire axis 
from the position in which the stem is aligned with the mean flow direction (i.e. to a position normal to 
the flow direction) then the mean velocity measured by the hot-wire increases by 2.3 % in the velocity range 
up to 30 m/s. This is slightly higher than the value given by(10) and Strohl & Comte-Bellot(ll) for their 
reference probe A with very  long prongs but lower than for their probe E which is similar to our probe. An 
extrapolation of the results of Comte-Bellot et al.(10) shows that the aerodynamic disturbance due to the 
stem increases the velocity by approximately 0.3 %  while that due to the prongs (for a prong diameter at 
the tip <0.3 mm and a prong spacing larger than 3 mm) brings about an increase of about 2 %,  the two 
effects adding up to the figure of 2.3 %  quoted above. Bissonnette & Mellor(12) have also used a hot-wire 
probe with the stem normal to the wall. Our investigation confirms their suggestion "that interference 
effects need not be too critical", if the hot-wire probes are properly designed. 

The cross-wire probe is shown in Fig.(5a). Stem and prongs have the same size as those of the normal-wire 
probe. The gap between the two wires is 1 mm in order to avoid effects of thermal wake interference 
(Guitton & Pate!(13)), and the distance between the prongs is again 4 mm. The aerodynamic interference 
test - though not as detailed as that of(10) - agreed with their results in general and showed that the 
probe signals were not seriously affected in the probe  positions used in the investigation. 

Special care was taken during the soldering process to make sure that the wires of all probes were neither 
slack - which would cause changes of the calibration curve of a slanted wire - nor under tension when 
heated - which would cause strain gauge effects caused by a transfer of prong vibrations to the hot wire. 
The slanted-wire probe (Fig.5b) used for the measurement of the Reynolds stress component v'w1 is dis- 
cussed in section 4.1. 

4. MEASURING TECHNIQUES 

4.1 MEAN AND FLUCTUATING VEL0CITIES- 

In a three-dimensional boundary layer the velocity vector isdetermined by its coordinates x,y,z 
in the flow field, its flow angle and its magnitude. If a hot-wire probe is used to measure flow angle and 
magnitude of the velocity, a number ofproblems occur when such measurements are carried out in the iirmediate 
vicinity of the wall, say for the dimensionless wall distance y+ < 40 (y+ = UT • y/v , where uT is the skin 
friction velocity  (xw/p)  » v the kinematic viscosity and y the distance normal to the wall). Since our 
measurements were performed in a boundary layer with a severe adverse pressure gradient, the problems were 
aggravated by the high turbulence level in the boundary layer which reached values up to 60 %. 
Mean and fluctuating velocities were measured with single normal hot wires, with slanted hot wires, and 
with cross-wire probes. 

In the case of mean flow measurements, we were worried most by_the high turbulence level in the severe 
adverse pressure gradient. Measurements of the mean velocity ü can be corrected by taking into account 
higher-order terms of the so called wire-response equation (e.g. Vagt(14), eqn. 8.10). However, this 
contains triple correlation terms of the velocity fluctuations u' and w' which are difficult to measure. 
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This means that it is still rather complicated to correct hot-wire signals in highly turbulent flows and 
that we must be content, at least at present, if the data measured by a hot wire and by Pitot tubes, which 
respond in very different ways to high levels of turbulence, show satisfactory agreement. We have there- 
fore compared mean-velocity data obtained by round and flattened Pitot tubes and a single normal hot wire 
in Fig.(6). These measurements were performed at x = 1014 mm, well into the adverse pressure gradient 
region, on one of the two lines of symmetry of our flow configuration where the flow was aligned with the 
axis. —  !/2 _ 
The local turbulence level (u'  )  /u is very high, reaching the above mentioned 60 %,  but agreement 
between the velocities measured by the various probes is surprisingly good. The open circles represent 
hot-wire data before the distance between the wall and the hot-wire could be determined more accurately, 
as described in section 4.2, and the full circles the data where the wall distance was corrected by 0.10 mm. 
Data obtained with the larger flattened Pitot tube lie consistently below the other data for reasons which 
we are unable to explain. 
A further need for correction may arise from the influence of the wall acting as a heat sink for the 
approaching hot wire. Oka and Kostic(15) have demonstrated this effect very clearly in Fig.(7) where velo- 
city measurements in the viscous sublayer (y+ <10) lie considerably higher than they should according to 
the universal relationship u+ = y+. The upper curve is likely to be valid only for the particular wall ma- 
terial used in the experiments and probably for the type of hot-wire used. It must be obtained therefore 
for each experiment individually. 
For our pairing of wall material and hot-wire probe the "heat sink effect" became noticeable at a wall 
distance of approximately 1.50 mm (cf. section 4.2) at zero flow velocity. But even at much smaller wall 
distances (y+ >4 compare Fig.(10) and y >0.15 mm compare Fig.(6)) forced convection appears to have 
dominated the heat transfer from the wire, so that the "heat sink" effect is much less severe than in the 
case investigated by Oka & Kosti£(15). For this reason it was decided not to correct the hot-wire data for 
wall effects. 

All probes were set along the local flow direction which was determined by a hot wire as described in sec- 
tion 4.3, and the measurements were presented in tabulated form accordingly(l).       
The normal component \P^   was measured by a single normal wire in the usual way. The u'w' term was obtained 
at first by means of a cross-wire probe, the wires of which lay in xz-planes one millimeter apart to avoid 
interference of the thermal wakes. The effective location of the measurements is then assumed to be half- 
way between the two wires, which is correct for the outer region but does not hold for the inner region 
where shear gradients are large. We have therefore used a single normal wire set at + 45° to the mean flow 
direction. If the hot wire is calibrated in either of these two positions, u'w' is determined from 

ÜV = (2K2 T1 (e^-   ep2- Ml-k2)"1 (4.1.1) 
there e' denotes the voltage, K a calibration constant, and 1 and 2 denote the two wire inclinations. Using 
a single wire also avoids an incorrect alignment of the cross-wire probe with respect to the flow angle 
which is different for the two wires, having a large gradient in the near-wall region. 
The output signal of any hot-wire probe inclined to the mean flow can be affected greatly by vibrations of 
the wire (strain gauge effect) caused by a periodic shedding of eddies from the prongs. Since the resonance 
frequency of our probes is known to be at about 8000 Hz the hot-wire signal on the oscilloscope was 
checked beforehand whether such a strain gauge effect occured (see Vagt(14)). If this was the case the 
tension of the wire was reduced to about zero under heating conditions. 
Theyaw-parameterk was found to be very small for flow angles less than 70° and could therefore be neglected 
for this hot-wire probe (Dahm & Vagt(9)). 
The normal stress component w1"*2 was determined from the single normal wire, this time in three positions 
(the third, normal to the flow, to obtain Ü7"2), via the relationship  „ 

w^ = [(K2)-1 . (e? + iJZ ) - -2 ] üi^L- (4.1.2) 

This method had again the advantage that the wire was in one plane only. 
No corrections were introduced to account for the high turbulence level since the triple and quadruple corre- 
lation terms necessary for such a procedure were not measured. The data could be corrected as follows 
(Vagt(14)) with k=0: 

+ (LTW^ / iT2" ü) I"1 

- (v'2 w'VvT2" Ü2)]" (4.1.3) 

+ 0.5 (vFü7?  /ÜV 0) I"1. 

ü77   by the factor fl 
w^z    " [1 
and 
u'w'  by the factor [1 

Both the normal-stress component v^ and the shear-stress component u''v' were measured by means of a cross- 
wire probe, now in the xy-plane, where the goose-neck lay in a plane at approximately 90° to the flow direc- 
tion. This arrangement minimizes aerodynamic interference effects. The two wires of the probe were aligned 
approximately at + 45° to the flow direction and the probe stem was inclined at 2.5° to account for the 
average upwash angle. This angle varied across the boundary layer from zero at the wall to at most 5 at the 
boundary layer edge, but our probe-driving device could not be adapted continuously to changes in this 
direction. However, deviations of 2° from the true upwash angle caused errors of 4 %  at most at the outer 
edge of the boundary layer. Values of u'v' were measured by the same probe (longer integration times were 
necessary in this case) but here deviations of the pitch angle caused slightly larger errors, 4 %  on average 
and 7 % maximum error. The projections of the wires on the xz plane were parallel to the projection of the 
mean flow vector passing through the mid point between the two wire projections. For the evaluation of 
v' and u'v' the following relations were used: 

and 

u'v' 

(1 + k2) (e- - e^)* /[2K2 (1 - k2)2] (4.1.4) 

= [2 Kz(l - k2) ]_1 (ip - iJ2 ), (4.1.5) 

with wires at flow angles a= + 45, k as the yaw parameter and K as a calibration constant. 
Corrections for high turbulence levels can again be taken into account by multiplying 

v7^ by the factor [l - (v'z w'2 ) / (v77 ü2) ] 

and 

-1 
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UV    by the factor    [l +0.5 (vV"2" / uV   ü)]   _1. (4.1.6) 
k is assumed to be zero.         
The measurement of the term v'w1  is more difficult than that of the other components since, at first sight, 
the hot-wire array needs a rotatable probe stem lying in the direction of the mean velocity vector.    Such 
a probe arrangement - as first used by Johnston  (17)  - may, however, cause aerodynamic interference effects 
in a highly curved flow (cf.  Fig. 12) which are probably made even worse by the probe holder.    In this con- 
text attention should be drawn to the probe arrangement used by Elsenaar & Boelsma(18) where we would have 
expected aerodynamic interference effects to occur also. 
To avoid this difficulty the slanted-wire probe shown in Fig.(5b) was developed.    This could be introduced 
into the flow with the stem perpendicular and the plane of the gooseneck across the flow; the prongs are 
then parallel  to the xz-plane.    When the angle y    is zero the slanted wire is set at 45    to the flow direc- 
tion in the xy-plane, y2 being the angle between2the projections of the wire and the mean flow velocity 
vector in the xz-plane.    The wire had to be rotated into four different positions - determined by y2 - in 
order to obtain the signals necessary for the evaluation of v'w1   .    This was done by the following relation- 

VV  =   [^=135o - ^=315o + (j^f1 (e^=0o - i£.lfl0o)]   • 

_, , (4.1.7) 
•  4  [(1  - 0.25(1  - k2)]   •  [K2(l  - k2)2   fzl'\ 

Special emphasis was laid upon avoiding aerodynamic interference effects which could be confined for this 
probe to a range of the angle of rotation y   of about 36  .    So the probe signals were not affected by distur- 
bances from the prongs at the positions needed in eqn.(4.1.7). 
Bissonnette & Mellor(12) also used a 45° slanted-wire probe, but with vertical prongs and stem which was 
rotated continuously with signals being recorded on an xy-plotter. For a comparison between fixed and rotat- 
ing hot-wire probes and the corresponding signal evaluations the reader is referred to Pierce & Ezekwe(19). 

4.2    WALL DISTANCE 

The measurement of the absolute distance between a measuring probe and the wall needs a certain 
amount of care if circular or flattened Pi tot probes are used but it causes serious problems in the case 
of a hot-wire probe which can get closer to a wall than any other measuring device.    As will be shown below, 
a difference in wall distance of 0.1 mm influences the interpretation of velocity measurements in the near- 
wall region greatly and leads easily to wrong conclusions.    Therefore it is astonishing how little inform- 
ation is available about the determination of the wall  distance. 
Wi 1 ls(20)claims that he was able to read the distance of a hot wire to an accuracy of 0.00127 mm on a micro- 
meter head, and obtained the zero distance by viewing the wire and its reflection in the test wall through 
a microscope and a 45° mirror, the distances between the two images being measured on a graticule in the 
eye-piece.    Van Thinh(21) observed the distance of the wire from the wall by means of a microscope situated 
on the other side of the glass test wall.    In the first case the wall must be reflecting, in the second 
transparent.    If neither of these conditions is given, a method described by 0rlando(22) can be used.  There 
a "wall-stop" soldered to the probe stem prevents the wire from being accidentally damaged by the wall. The 
distance of the wire from the wall when the wall stop makes contact was measured by an optical comparator and 
set nominally to 0.127 mm with an accuracy of approximately 0.025 mm. 
Finally Hebbar & Melnik(16) report on a combined optical-si ghting-electrical method which is similar to the 
distance measuring techniques described below and used in our own investigation.    Their method is, however, 
confined to probe arrays where the prongs emerge from the test wall and to non-conducting walls since the 
plated ends of the hot wire must touch the wall in the measuring process. 
Our measuring technique can be applied to all  cases where the probe is introduced into the boundary layer 
from the free stream.    The calibration curve holds for our family of hot-wire probes in connection with 
the specific wall material but an extension of its validity to geometrically similar probes should be 
possible.    For the application of this technique one must be sure - and we have ascertained this - that 
the hot-wire axis is straight and lies always parallel to the surface. 
The calibration procedure ran as follows. The normal-wire probe was calibrated in the free stream for the 
velocity range investigated - i.e.  zero voltage output for zero velocity and 10 V output for the maximum 
velocity - and connected to an r.m.s. meter and an oscilloscope. The oscilloscope served to detect large 
oscillations which gave an indication of the proximity of the wall  since they occured just before the wire 
touched the wall. They were due to relative movements between the wire and the test wall caused by "natural" 
vibrations of the laboratory building. 
With the wind in the test section switched off, the output voltage was at first zero when the hot wire was 
moved from a fixed arbitrary, relatively large distance towards the wall. Close to the wall - in our case 
at about a distance of 1.5 mm - the wire feels the cooling effect of the wall. The output signal plotted 
against a relative value Ay of the wall distance increases, reaches a maximum and falls off again.    Fig.(8) 
shows two typical output distributions in the immediate vicinity of the wall and some shapes and configu- 
rations of wires and prongs after contact with the wall.    The datum points beyond the maximum are lower 
again because the wire is further away from the wall than at the maximum output due to probe deformation 
after the contact with the wall.    From careful measurements of these deformed probe configurations and the 
wire behaviour close to the wall  - some probes had to be destroyed voluntarily - we could define the position 
of the wire relative to the wall with an accuracy of ± 0.010 mm.    Thus the output voltage measured against 
the relative distance could now be related to the actual distance from the wall, e.g. the effective voltage 
u    = 1.75 V corresponds with a wall distance of 0.10 t 0.01  mm (Fig.  9).  Figure (9) shows the voltage output 
curves for all  the hot-wire probes used.  Since tight manufacturing tolerances could be maintained, the output 
curves are almost identical for the chosen pairing of wall material and probe type up to an output voltage 
of about 2 V.  For higher output voltages, i.e.  smaller wall  distances slight inaccuracies of the probe geo- 
metry or of the probe driving mechanism can cause deviations between the individual  curves. 
So, once the calibration curve for a pairing of hot-wire probe and wall material has been established the 
determination of the absolute wall distance is straightforward:      After the calibration in the free stream 
the probe is moved towards the wall, with the wind switched off, until  the voltmeter shows some output value 
not far from the maximum but still on the "universal" calibration curve which is related to a certain absolute 
wall distance.   In our case this was  1.75 V equivalent to 0.10 ± 0.01 mm from the wall  (Fig.9). 
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Measurements with an accuracy of +0.01 mm can only be achieved if the traversing mechanism is aligned with 
an accuracy better than that mentioned above and if the probe can always be traversed perpendicular to the 
wall. The translational motion was transferred to the probe without any backlash. It had a travel of 
200 mm with a resolution of 5 ym. The traversing mechanism was mounted externally and independent of the 
test section. Nevertheless, it is possible that the calibration may be changed when the wind is on but we 
have no reason to suspect that this is the case. 

As for the angular movement, a rotation of 360° with a resolution of 6 minutes was possible with this 
arrangement. 
Such accurate measurements of the wall distance were important only for velocity measurements in the region 
y <40, as can be seen from Fig.(10). The behaviour of the uncorrected datum points in the near-wall region 
which could not be explained by wall cooling effects on the hot-wire led us to suspect that we 
might not have given enough care to the determination of the distance between the hot-wire axis and the 
wall. The necessary corrections were large indeed and brought the measurements back to the linear relation- 
ship u+ = y+ for the viscous sublayer. 

4.3 FLOW ANGLE 

Before we discuss the problems which occur when flow angles must be measured in a turbulent bounda- 
ry layer the reader's attention is drawn to the distinction between "mean direction of flow" and the 
"mean flow direction" which was introduced by Rose(23). Quoting from Hebbar & Melnik(16), "the mean direc- 
tion of flow in any plane is the time-averaged direction of the instantaneous component of the velocity 
vector in that plane, whereas the mean flow direction is defined by mean-velocity components." Rose derived 
a relationship lor the difference between the angle of the mean direction of flow and that of the mean 
flow direction R _ 

3-im = - ^f • (4.-3.1) 

For our measurements this correction would have changed 8 at most by 1 to 2° in the region where u'w' 
reached its maximum and was therefore omitted. 
Flow angles were measured by a modified version of the rotated hot-wire technique and for comparison by 
cobra probes which are probably the best of the nulled direction probes (Dean(24)). The tubes of the two 
twin-tube yawmeters (cobra probes) were chamfered at an angle of 35 or 55° in plan view and were parallel 
to the text wall for about 10 mm. They then rose in a "gooseneck" before entering the outer cylinder per- 
pendicularly. The tip of each probe was on the axis formed by this perpendicular stem. The 35° and 55° 
ground tubes were 0.90 mm and 0.50 mm in diameter. 
Unfortunately, the response time of the smaller probe was so long in this "low mean velocity", highly tur- 
bulent flow region near the wall that integration times were too long for practical measurements. All 
measurements with the cobra probe were recorded by means of a Statham transducer the signals of which were 
integrated to obtain an average value in the highly turbulent region (due to a more efficient control me- 
chanism the transducer was superior to the micromanometer system). Near-wall measurements of the flow 
angle were not only hampered by probe size and response time but also because the cobra probe interfered 
with the curved flow. This can be seen in Fig.(11) where measurements of the mean flow angle 8 are com- 
pared. The two measuring techniques give good agreements in the outer region of the boundary layer but 
differ by more than 30 %  in the near wall region. The cobra-probe measurements may give the impression 
that the alignment of the velocity vector close to the wall was constant whereas the hot-wire measurments 
show a monotonic increase of the flow angle towards the wall. This agrees with the momentum equation for 
curved flow, requiring an increase in curvature with decreasing velocity if the normal pressure in the 
boundary layer is constant. 
It is interesting to note that interference effects even between small hot-wire probes and the flow in the 
near-wall region of a boundary layer can become substantial as shown in Fig.(12). The flow angle \    was 
measured with a single normal hot-wire probe, the stem of which was inclined at 5° to the wall in one case 
(see Johnston(17)) and perpendicular in the other. The former probe gives flow angles which, close to the 
wall, show a behaviour similar to that, of the cobra-probe in Fig. (11), that is the flow angle is approxi- 
mately constant. The stems of both cobra probe and inclined hot-wire probe affect the near-wall flow so 
strongly that these measurements are not representative of the actual flow, which has a much higher deflec- 
tion. 

The "perpendicular" hot-wire probe shows, as_in Fig.(11), a monotonic increase of the flow angle towards 
the wall. The assumption that the pressure p imposed on the boundary layer is constant in the y direction 
is plausible, but cannot be proved satisfactorily by present experimental techniques for static pressure 
measurements in the near-wall region, as was shown by Vagt & Fernholz(25). Nevertheless, near-wall measure- 
ments of the flow angle by cobra probes or inclined hot-wire probes should be carefully checked for aero- 
dynamic interference effects. They may explain the "mysterious" collateral near-wall flow, found for 
example by Pierce & Krommenhoek(26) and Hebbar & Melnik(16). The latter authors have used a hot-wire probe 
the prongs of which were introduced vertically through the test wall as was suggested by Rogers & Head(27) 
and also applied by Vermeulen(28). 
Rogers & Head gave an indication of some aerodynamic interference in a range of about 70° from the original 
position of the wire normal to the flow, but there is no information about the behaviour of this type of 
probe with long thin prongs in a highly turbulent flow, especially for measurements far away from the wall. 
In the near-wall region the above authors (27) found a monotonic increase of the flow angle towards the wall 
which indicates that aerodynamic interference effects should have been negligible. 
Flow angle measurements with a hot wire are usually straightforward if the flow-angle characteristic of the 
hot wire is symmetric so that the bisector method can be applied. At a fixed height y the wire is rotated 
about the probe axis until maximum output voltage gives approximately the main flow direction. From this 
position the hot wire is rotated until about half the maximum voltage is indicated on the voltmeter and the 
corresponding angle is measured by means of a protractor. The voltage output is determined very accurately 
by integrating up to 100 s and must then be found again on the opposite side of the hot wire flow-angle 
characteristic. The mean of the two protractor readings is taken as the flow direction. This technique 
can be applied to flows or flow regions not too close to a wall where the turbulence level is low (< 20 %) 
and where temperature changes in the flow during the measurement of the flow angle can be kept small. A 
typical flow-angle characteristic for such "easy" flows is shown in Fig. (13a). Close to a wall .however, 
the flow angle characteristics become flat (Fig. 13b), and a temperature chance of 1 C during the measuring 
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period can cause an error of 4 degrees for the same output voltage on both sides of the maximum.  For near- 
wall measurements the flow temperature must therefore be kept constant within a very small temperature range 
in order to obtain accurate flow-angle data. Such a close temperature control  (± 0.1 C)  is difficult to 
achieve, and it is not surprising that the measuring time for one flow angle has been one hour in some cases. 
The measuring time can be drastically reduced to about one minute by another technique which allows to perform 
flow-angle measurements in flow regions where velocity fluctuations are large compared to the mean velocity 
and/or where wall effects are severe. Here the flow angle is determined by means of the minima of the flow- 
angle characteristics  (Fig.14) as described below. Because of the high turbulence level, the hot-wire output 
had to be damped by setting a time constant in a range from 1 to 25 seconds. Damping, i.e.  large time 
constants, causes the flow angle characteristic to become asymmetric and thus prevents the use of the bisector 
method. 
The new technique needs a plot of the flow-angle characteristic at the measuring position over a range + 120° 
so that the minima are clearly visible on the graph of an xy-plotter for example. For a fixed time constant 
and a given speed of rotation of the probe the distance between the minima remains constant for all flow- 
angle characteristics. 
The measuring procedure is as follows:  First, a reference flow-angle characteristic is measured in a flow 
region where the flow angle is known, e.g. in the free stream, and the location of this angle is determined 
on the graph by calculating the mid point of the distance between the minima of this reference curve (in our 
case this is curve a in Fig.  14). The characteristics b to e were measured at different heights y in the 
boundary layer and the distances between the mid points between the respective minima and the location of 
the reference flow angle gave the magnitude of the individual flow angle B(y). The scale of the abscissa, 
where a unit length is related to degrees has to be determined at the outset of the experiment. 
For the practical application of this method hot-wires must be inspected carefully under a microscope in 
order to ascertain that the wire axis is straight, parallel to the wall  (in our case normal  to the stem), 
and that the connection between the prong tips and the wire is carefully smoothed and polished after the 
soldering process. 
A further improvement of near-wall characteristics was obtained by amplifying the output voltage by a factor 3. 
This is shown in Fig.(15) in which curve (1) represents the hot-wire signal as calibrated for the whole 
velocity range at y = 0.10 mm and curve (2) the same signal with amplification. But even then it is still 
difficult to determine the minima of curve (2) accurately. Only when the wire was moved another 0.05 mm out- 
wards from the wall was it easy to find the minima (curve 3). So the minimum distance from the wall  for which 
this technique can be applied, depends apparently on the magnitude of the turbulence level and the heat con- 
ductivity of the wall. Accuracy and repeatability of this method lie within ± 1    but are better in the low 
turbulence outer region of a boundary layer and reach ± 0.5 degrees in the freestream (see also Delleur(37)). 
A similar technique of measuring flow angles suggested by Bissonnette & Mellor(12) could not be applied here 
since a symmetric angular-response characteristic is then necessary. 
4.4 SKIN FRICTION 

There is no need to emphasize the importance of knowing the wall shear stress in turbulent boundary 
layers. Unfortunately, all the problems associated with skin friction measurements in two-dimensional flow 
are made even more complicated by the additional measurements of the angle of the limiting streamline which 
must be known in a three-dimensional boundary layer.  Pierce & Krommenhoek(26) have investigated several  tech- 
niques of measuring the wall shear stress which have been used successfully in two dimensional boundary layers. 
Theyshowed, for example, that a Preston tube, a claw-type Preston tube and a hot wire, flush mounted into a 
wall, indicate wall shear stress values within 10 % of those measured by a direct force reading device, with 
the majority of readings within 5 % of the mechanical  shear meter. A comparison between measurements made 
using hot-film gauges, Preston tubes and sublayer fences in a relaxing three-dimensional  boundary layer was 
performed by Hebbar & Melnik(16, table 12). These authors found differences of ± 4 % in the skin friction 
values measured. Judging this excellent agreement, one should keep in mind, however, that the three-dimensional 
boundary layer in which these comparative measurements were made was far from separation and returning to a 
two-dimensional  flow. 
Furthermore McCroskey & Durbin(29) performed flow angle and shear stress measurements using heated films and 
hot-wires, especially the V-shaped hot-film probe, and Vagt & Fernholz(3)  investigated the properties of a 
surface fence in a three-dimensional flow. 
An attempt was made to show the advantages and disadvantages of the different devices to measure skin friction 
in Table (1). We disagree here somewhat with results of Hebbar & Melnik(16, table II) who find that the accu- 
racy of measuring the wall flow angle hardly differs between a Preston tube, a surface fence and a hot wire 
mounted flush in a wall. 
One of the most important distinctions between the different methods of measuring skin friction is whether 
they depend on the logarithmic law of the wall or not. Measuring techniques based on the log-law are usually 
easy to handle but there is no a priori justification for using such a two-dimensional calibration in three- 
dimensional flow. At present one must therefore rely on the few comparative measurements of skin friction 
with a Preston tube and a direct force measuring device (floating element balance)  in a three-dimensional 
boundary layer performed by Pierce & Krommenhoek(26). These comparative measurements agree within a few per- 
cent. Additional measurements as announced by Pierce et al.(30) are, however, very welcome. 
Relying on these results we have used Preston tubes to measure skin friction in the three-dimensional boundary 
layer. Further, though indirect, checks were made on the validity of this measuring technique by using two 
Preston tubes of different outer diameters d (0.434 and 0.89 mm) and by plotting the measurements in the law 
of the wall coordinates u   and y+. Measurements at the two stations in the three-dimensional region (x = 998 
and 1031 mm) where the comparison was made agreed within + 4 %, the pressure difference Ap (Preston) being 
in a range 0.06 < Ap < 0.55 mm of water column. Since the measuring time for the smaller Preston tube was 
about an order of magnitude larger, the 0.89 mm tube was used for all measurements in the region downstream 
of x = 1014 mm. The repeatibility of the measurements then lay within a bandwidth of + 5 %. falling to 
+ 30 % close to separation due to the very small pressure differences and the high fluctuations of the 
signal. 
For the pressure measurements, which were in a range between 0.02 and 4 mm of water, a Statham transducer 
(PM 97 TC) and an electronically controlled micromanometer (Froebel & Vagt(8)) were used. For accurate 
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results special  care had to be observed to keep the density of the manometer fluid constant. 
The Preston tube was set to an average angle determined from flow-angle measurements close to the wall. 
A more accurate adjustment has not been necessary since the sensitivity of circular Pitot probes to 
changes in flow direction is very low within a range of + 15°.    This argument contradicts East & Hoxey(31) 
and East(32) who suggested that a Preston tube should be aligned in the flow direction at a height y = 0.125 
or 0.33 d,  respectively. 
The calibration curve of Patel(33) was used to determine the skin friction, thus assuming implicitly that 
the law of the wall  in two-dimensional  flow can be transfered to three-dimensional  flow.    If the magnitudes 
of the skin friction velocity and the mean velocity are inserted into the logarithmic law 

(lÜJ'krl)    =    K"1 ln(y| uT|/ v) + C (4.4.1) 
good agreement between measurements and eqn.(4.4.1) was obtained.    This statement does not hold for profile 
0802 which describes a velocity distribution close to separation where the uncertainties of the skin fric- 
tion measurement were largest.    Although these experiments were performed in a boundary layer with strong 
three-dimensionality, one could argue that these effects had not enough time to change the turbulence 
structure and with it the logarithmic law of the wall  over a flow length of about four boundary layer 
thicknesses.    Further measurements may therefore be necessary. 

Patel(33) investigated the validity of the logarithmic law over a wide range of streamwise pressure gra- 
dients in two-dimensional  flow and recommended to use the constants K = 0.42 and C = 5.45 (see also (16))- 
Coles gave a slightly different pair of constants, K = 0.40 and C = 5.10, which was found to agree well 
with a large number of velocity distributions  (see Fernholz & Finley(34)).    We have plotted eqn.(4.4.1) 
with both pairs of constants for comparison. 
Opinions apparently differ in what velocity should be used for the law of the wall in three-dimensional 
boundary layers, and a few examples are therefore given below. 
East & Hoxey(31) suggested ü = ] ü. ] . sec Bw where ß« 1S the angle of the limiting   streamline, East(32) 
ü =  |_ü | cos $_where tp is the angle of the velocity vector in the external flow, and van den Berg & 
Elsenaar(35) üT   as the component of the velocity vector in the direction of the wall  shear stress. 
East(32) also remarked that when the cross flow is large the magnitude of the velocity vector should be 
used. 
Finally we discuss briefly measurements performed with surface fences built into the curved wall.    Calibra- 
tion curves and flow angle characteristics of these fences which had a height of about 0.10 mm were 
described in (3).    Measurements with the surface fences agreed satisfactorily with the Preston tube results 
over most of the boundary layer, with discrepancies ranging from  +12 % to about  + 30 % confined to the 
last part of the development close to separation.    These discrepancies were partly due to the small height 
of the fences resulting in pressure signals of a few hundredths of a millimeter of water against values 
ten times larger obtained with the Preston tube. 
It may be useful to draw the reader's attention to the rather long response times  (more than 15 minutes) 
which are necessary for flow measurements near the wall. 
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Fig. 5b   Rotatable slanted wire for vV-measurements 
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Measuring device 
Dependence 
on log-law 

Measurement of 
flow direction 

Aerodynamic 
interference 
effects 

Ease of 
application 

"Point" 
measurement Calibration 

Preston probe yes no included in 
calibration 

good, but 
static 

pressure 
measurements 
necessary 

good    ++ 
universal 
calibration 

curve 

Combined Preston 
and Cobra-probe 

yes yes included in 
calibration 

good good    +- 
special 

calibration 
curve 

necessary 

Floating element 
balance 

no yea no difficult 
and 

expensive 

depends on 
size of ele- 
ment and on 
sensitivity 
of balance: 

+- 

calibration 
necessary 

Surface fence basically 
no 

yes 

included in 
calibration, 
distance of 
two fences 
in flow di- 
rection must 
be "100 fen- 
ce heights 

good to 
difficult 

depends on 
size of ele- 
ment, usual- 
ly less good 
than Preston- 

probe 
usually: +- 

necessary 

Hot-film or wire 
fluah-mounted 

no yes 
depends on 
overheat 

ratio 
usually: no 

good to 
difficult 

depends on 
size 

usually: +- 
necessary 

Table 1    Comparison of methods measuring wall shear stress 
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DEVELOPMENTS IN THE COMPUTATION OF TURBULENT BOUNDARY LAYERS 

Morris W. Rubesin 
Ames Research Center, NASA, Moffett Field, California 94035, U.S.A. 

SUMMARY 

Computational  techniques applicable to turbulent boundary layers are classified into solutions of 
Reynolds-averaged equations,  in which all  the effects of the turbulence are modelled, and solutions of three- 
dimensional, time-dependent Navier-Stokes equations, in which the large eddies are calculated and only the 
turbulence at scales smaller than the computational mesh spacings has to be modelled.    Current computation 
costs place engineering computations in the first of these categories; large eddy simulations are appropriate 
currently for special  studies of the dynamical processes of turbulence in idealized flow fields.    It is shown 
that the two methods are interrelated and that each can gain from advances in the other.    The degree of suc- 
cess of a pair of increasingly complex Reynolds stress models to broaden their range of applicability is 
examined through comparisons with experimental data for a variety of flow conditions.    An example of a large- 
eddy simulation is presented, compared with experimental results, and used to evaluate the models for pres- 
sure rate-of-strain correlations and dissipation in the Reynolds-averaged equations. 

NOMENCLATURE 

a transverse body radius 

Ci modelling coefficient in pressure rate-of- 
strain correlation, turbulence-turbulence 
interaction (Rotta term) 

C. skin-friction coefficient 

turbulence production tensor, Eq.  (37) 

turbulence kinetic energy 

static enthalpy 

V 

Dij 
e 

h 

h" 

i 

PiJ 
Pr, 

p* 

P 

P* 

P* 

P*' 

Qj 

q 

Re 

Re-, 

°ij 
Ui 

ui 

fluctuating enthalpy in mass-weighted 
variables 

length scale 

mixing length 

turbulence production tensor, Eq.  (37) 

Prandtl number for molecular motions 

mean specific static pressure 

static pressure 

specific static pressure, p/p 

resolvable fluctuating specific static 
pressure 

subgrid fluctuating specific static 
pressure 

heat flux vector 

turbulence speed 

modelling coefficient, near-wall modifica- 
tion,  Eq.   (31) 

turbulence Reynolds number, Eq.  (32) 

modelling coefficient, near wall modifica- 
tion, Eq.   (31) 

rate of strain tensor 

mean velocity component in    ith   direction 

velocity component in the    ith   direction, 
mass-weighted in compressible flows 

resolvable fluctuating velocity component 
in    ith    direction 

<5.. 
ij 

"10 

veff 

subgrid fluctuating velocity component in    ith 
direction 

fluctuating velocity in mass-weighted variables 

surface mass-transfer normal velocity 

fluctuating velocity normal to surface 

distance normal to surface 

scaling factor in turbulence simulation 

modelling coefficient in pressure rate of strain 
correlation turbulence mean-flow interaction 

modelling coefficient, Eq.  (31), or scaling 
factor in turbulence simulation 

modelling coefficient, Eq.  (31) 

modelling coefficient in pressure rate of strain 
correlation — turbulence mean-flow interaction 

modelling coefficient, Eq.  (31) 

modelling coefficient, Eq.  (31) 

modelling coefficient in pressure rate of strain 
correlation — turbulence mean-flow interaction 

boundary-layer thickness 

Kronecker delta 

eddy viscosity (turbulence kinematic viscosity) 

turbulence kinetic energy dissipation rate 

dissipation rates of Reynolds stress component 
Tij 

boundary-layer edge turbulence intensity factor 

low Reynolds number modelling coefficient, 
Eq. (31) 

fluid viscosity 

fluid kinematic viscosity 

effective eddy viscosity in subgrid model 

fluid density 

instantaneous fluid density 

modelling coefficient, Eq. (31) 
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a*   modelling coefficient, Eq. (31) ( ) . a partial derivative with respect to the 
'  ith coordinate 

T..  Reynolds stress component 
' J 

n..  vorticity tensor Superscripts: 

a turbulence specific dissipation rate T    total quantity, turbulent plus molecular 
process 

Subscripts: (')  partial derivative with respect to time 

e    boundary-!ayer edge condition or experimen- 
tal value Other: 

w    surface quantity < >  filtered average 

1,2,3 Cartesian axes direction (")  time averaged 

INTRODUCTION 

Advances in computer technology and numerical analysis during the past decade have made it possible to 
compute the characteristics of turbulent flow fields with a degree of detail that was impossible in the past. 
This computational power has been applied to problems both in engineering and in basic fluid mechanics. 
Engineering methods have been confined largely to the solution of statistical equations of turbulence, 
usually for steady-state conditions. The increased computational power has permitted the use of second-order 
closure methods wherein partial differential equations are used to describe the scales, intensity, and even 
the individual components of Reynolds stresses distributed throughout the flow field. It is becoming quite 
standard in advanced engineering problems to use two-equation models representing the transport of turbulence 
kinetic energy and a measure of the turbulence scale to establish the local eddy viscosity. The underlying 
impetus to this work has been the premise that the increased complexity of a model tends to broaden its range 
of applicability, thereby making it a predictive tool. The past simple models of statistical turbulence, 
such as the mixing-length models, largely were used to explain flow-field behavior after the experimental 
results were obtained; they could be used only to interpolate between or moderately extrapolate conditions 
of a particular experiment. New situations required new experiments to guide modelling changes. With the 
more detailed second-order closure models, however, the rather large number of experimental coefficients 
employed requires drawing upon experiments of different kinds of flow fields for evaluating the modelling 
coefficients of the different mechanisms. For example, the coefficient for the dissipation of turbulence 
kinetic energy is determined in part from experiments dealing with the decay of isotropic turbulence. Coeffi- 
cients for terms representing the exchange between individual components of Reynolds stress by the correla- 
tion of fluctuations in pressure and the instantaneous rate of strain come largely from experiments in 
homogeneous turbulence created by either uniform shearing or normal strains. Thus, when these models are 
used in boundary-layer flows, many of their terms reflect the behavior of turbulence under other conditions, 
thereby possibly broadening the model's range of applicability. On the other hand, this reliance on a group 
of different kinds of experiments to establish the modelling coefficients often results in a somewhat less 
accurate representation of a particular flow field than is provided by a fine-tuned, simple empirical model. 
Engineers working continuously with certain kinds of flow fields tend to fine-tune the second-order models 
as well, without (it is hoped) losing too much of the generality potential within the model. 

Perhaps an even more important application of the powerful computation tools available today has been in 
the rather new field of the numerical simulation of the large eddies of turbulence. In these calculations, 
the three-dimensional and time-dependent character of the turbulent flow fields is retained. The principal 
approximations involved in these methods is in the manner of accounting for the scales of turbulence that are 
too small to be resolved, even in the largest of the computers, for the time-dependent and spatially-dependent 
boundary conditions, and for the initial field of the turbulence. Because the initial and boundary conditions 
involve so many degrees of freedom, it cannot be expected that individual computational realizations will be 
significant or even realistic. What can be expected or at least hoped for is that the results of the compu- 
tations viewed statistically will accurately reflect the highly nonlinear mechanisms that govern the dynamics 
of the flows. 

The computations, to date, have shown much promise but they need considerable development; moreover, they 
are much too costly to be considered as engineering tools. They are invaluable, however, as a technique for 
the study of fluid mechanics in that they yield a mass of information about a flow field that experiments 
involving discrete numbers of probes cannot possibly provide. The numerical analyst —when faced with making 
the choices necessary for starting his problem, the ranges of scales he is to examine, and the techniques of 
accounting for the subgrid scales — is forced to consider the details of turbulence that modelers of statisti- 
cal turbulence have had to ignore. The apparent turbulence that numerical instabilities or bifurcations can 
create forces the serious worker in turbulence simulation to continually compare his numerical results with 
experimental data for similar flow fields. Because of the mass of detail contained within the calculations, 
where for example any statistical moment can be generated, it is often found that even the classic experiments 
lack data that unambiguously define the turbulence that was present. 

The purpose of this paper is to demonstrate that both methods of turbulence computation have much in 
common and that they are distinguished primarily by the fraction of the turbulence that is chosen to be 
modelled. The statistical methods model all of the turbulence, ignoring most of the scale and all of the 
phase character of the actual turbulence. The large eddy simulations compute the actual physical character 
of the larger scales of the turbulence and model only those scales of turbulence smaller than the computa- 
tional mesh dimensions. The fraction of turbulence the subgrid model represents depends largely on the local 
turbulence Reynolds number and on the number of mesh points that the computer can handle. 

In the present discussion, the two methods are interrelated; a review is given of the success or failure 
of a pair of second-order closure methods to model the statistical properties of a variety of turbulent flow 
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fields, without adjustment of modelling constants; and some examples of large eddy simulations for simply 
strained homogeneous turbulent flow fields are presented and compared with data. Examples of statistical 
model information that can be gained from these computations is shown. Finally, a plea is made for coordi- 
nated experiments and large eddy simulations, which together should prove to be most valuable in explaining 
the physics of turbulence under a variety of flow conditions. 

TURBULENT FLOW EQUATIONS 

In the analysis of turbulent motions, it is generally believed that the basic physics of the fluid flow 
is contained within the Navier Stokes equations. Since these same equations apply at a point in space and 
time for both laminar and turbulent motions, the distinction between these types of flows arises from the 
initial and boundary conditions the flows experience and from their response to small disturbances that are 
always present in real flow fields. This response is largely dependent on the Reynolds number of the flow. 
The properties of turbulence, then, are the consequence of the fluid instabilities that occur at high Reynolds 
number and the subsequent nonlinear, apparently chaotic, mixing processes that take place. It is these non- 
linear processes that produce a broad range of length scales of motion within the turbulent flow and this, in 
turn, affects finite difference computations greatly. 

The length scales range from those comparable to the characteristic dimensions of the apparatus down to 
those where the turbulent motions have largely been dissipated by viscosity into heat. Even the largest 
available computers fall far short of being able to resolve such a broad range of scales for flow fields of 
technological interest. Although the prospects of increasing the resolution of the turbulence scale with 
future computers is good (Ref. 1), it is not expected that it will be possible to compute the smallest dissi- 
pation scales, at Reynolds numbers of interest, in the reasonably near future. 

A variety of turbulence models has been developed to account for these small irresolvable subgrid scales. 
These models have a great deal in common with the models for Reynolds stresses in statistical turbulence 
theory. This is demonstrated in this section through the equations for an incompressible fluid that describe 
the small scales of turbulence and their effect on the larger scales and the mean flow. 

The instantaneous motion of an incompressible, viscous fluid is described by the continuity and Navier- 
Stokes equations 

and 

where 

uo,J = ° 

ü. + (u.uj + sijP*- vu1fj: 

(i) 

(2) 

P/P (3) 

The instantaneous, local velocity can be expressed as the sum of three components: the time mean velocity, 
the sum of the fluctuating turbulence components whose length scales can be resolved by the finite-difference 
computational scheme; and the sum of those fluctuations too small to be resolved, namely 

ui = Ui + ui + ui (4) 

The other dependent variable, the pressure, can also be resolved in a similar manner 

p* = P* + p* + p*' (5) 

To convert Eqs. (1) and (2) to contain only resolvable dependent variables, it is necessary to average them 
or filter them in some manner. For the purposes at hand, it is not necessary to define the filtering process 
precisely. It can represent a weighted average over a line in space, a surface, a volume, or even a charac- 
teristic time comparable to the time scales of the small length scales of turbulence. The filtering process, 
represented by the symbol < >, will be defined in such a way as to accomplish the following: 

<u!> = 0 

<ün.> = Üi 

<u.> 
= Ui 

<ulUj> = 0 

<u!uj> = 0 

<Ui,f = <u 

(6) 

Note that the fourth and fifth definitions in (6) imply that the two scales of turbulence are uncorrelated 
over the filter domain and that the domain is small compared to the scales of the mean motion. Leonard 
(Ref. 2) has demonstrated the limitations of these assumptions, but the simplicity resulting from them is 
attractive for the present development. 

With Eq. (4), Eq. (1) becomes 

U. • + u. . + u'. . 
J.J   3,3        3,3 

(7) 
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When filtered according to Eq. (6), Eq. (7) reduces to 

UJ.J + Bj.j-° <8> 

When Eq. (8) is time-averaged in the Reynolds sense, that is, 

J 
11ml r f(t)dt (9) 

there results 

uJ5J = 0 (10) 

Of course, subtracting Eq. (10) from Eq. (8), and Eq. (8) from Eq. (7) yields 

and 

Qj.j-0 (11) 

ui,j " ° <12> 

Similar operations of filtering and time-averaging on the Navier-Stokes equations (Eq.  (2)) yield the fol- 
lowing forms of the momentum equation.    The mean-momentum equations are 

The momentum equations for the resolvable turbulence scales needed to evaluate the    G.    in Eq.  (13) are 

*i+ Vi,j= -6ijP!j+ vGi,j,j - ajui,o" (aiaj - ¥?.J " (<uiui> • <1Ji^F)>o (14) 

The equations for the instantaneous values of the filtered moments of the subgrid scales, themselves at 
resolvable scales, can be expressed as 

<ui'uk> + (uj + ty^.j - -<ukuj>(ui + Gi},j " <uiuj>(uk+ Qk>,j 

- <u]u^>jj - <u^p*!> - <u!p^> 

+ V<uiuk>.j.j-Zv<ukj,li.j> (15) 

An equation for the subgrid turbulence kinetic energy, defined as 

<q2> = <uV.> (16) 

follows from the trace of Eq.  (15): 

<q2> + (Uj + Qj)<q2>5j  = -2<u!uj>(U.  + u1)jJ  -  <uj(2p*'  + q2)>J 

+ v<q2>  ,   .  - 2v<u'.   .u!   ,> (17) 

Equation (13) shows that the influence on the mean motion of the two scales of turbulence is through the 
sum of two Reynolds stresses, each associated with the different scales. In statistical turbulence theory, 
the different scales of turbulence are ignored by summing these Reynolds stresses into a single stress which 
is then modelled. Thus, all the effects of the turbulence on the mean motion are modelled. In large eddy 
simulations, however, the u-j are calculated as functions of time and in three dimensions and the correspond- 
ing large eddy Reynolds stresses are then computed through time averaging. (Actually, most large eddy simu- 
lations compute the sum of U^ and Q.,-, but in principle the mean flow is affected as stated.) Only the small 
scales are modelled and their influence is felt on the mean flow through the Reynolds stresses they contribute 
and in their effect on the larger scales of the turbulence. As the larger fraction of the turbulence spectrum 
is computed, less reliance has to be placed on contributions of the turbulence model. A mechanism exists, 
then, for converging on the correct statistical description of turbulence through a systematic increase in the 
fraction of the resolved turbulence scales. It is not clear, to date, how the quality of the subgrid turbu- 
lence model affects this convergence rate and actually how many scales of the large eddies require computation 
to provide a good description of the turbulence transport mechanism in a variety of flow fields. Another 
apparent advantage of the method of large eddy simulations is based on the optimism regarding the generation 
of a universal subgrid model. This optimism reflects the experimental evidence that the small scales of tur- 
bulence in a variety of flow fields exhibit similar spectral characteristics when scaled in the Kolmogorov 
sense. 

Equation (14) illustrates the influence of the mean flow and the subgrid turbulence scales on the resolv- 
able scales of the turbulence. It shows that the growth of the resolvable turbulence along a mean streamline 
is acted on by the turbulence pressure and viscous diffusion in the same manner that the corresponding terms 
act in the mean flow. The additional last three terms represent the interactions between the resolvable tur- 
bulence and the mean flow, the components of the resolvable turbulence, and the subgrid scales of the turbu- 
lence. It is the latter terms that must be modelled to close the calculation of the resolvable scales. 
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Incidentally, these calculations must be performed in three dimensions and in time for each component of 
the resolvable turbulence; it is a rather costly process on today's computers. 

Equations (15) and (17) provide insight into the modelling of the subgrid turbulence scales needed to 
"close" Eqs. (13) and (14). When either Eq. (15) or Eq. (17) for the subgrid scale moments is compared with 
the equations representing the Reynolds stresses or kinetic energy in a statistical turbulence formulation, 
it is noted that they have essentially the same form except that the mean flow in the statistical equations 
has been replaced by the instantaneous large-scale motions, and the subgrid-scale moments have a time 
dependence. This strong similarity between the subgrid-moment equations and the Reynolds stress equations 
suggests that much of the experience gained with statistical modelling procedures eventually will be able 
to be applied to subgrid modelling. At present, the limitations of computer storage encourage use of the 
simplest of subgrid models, analogous to the first-order closure methods, such as constant eddy diffusivities 
or mixing-length models in statistical Reynolds stress methods. Equations (15) and (16), however, suggest 
that second-order closure methods applied in statistical methods over the past decade will have a role in 
subgrid closure as well. Computer limitations and costs, also, will restrict large-eddy simulation in the 
near future to simple flow fields. The results, however, will provide considerable insight into the physics 
of turbulence and will contribute to modelling of the statistical equations. Some preliminary studies of the 
latter are given later in this paper. 

STATISTICAL TURBULENCE MODELLING 

Since the 1968 Stanford conference on the computation of turbulent boundary layers (Ref. 3), statistical 
turbulence modelling for engineering applications has gone in two directions. The first has been the fine 
tuning of first-order closure methods, involving algebraic mixing-length models. This was accomplished by 
fitting the models to well-defined experiments with attached boundary layers experiencing pressure gradients 
and/or surface mass transfer. References 4 and 5 are examples of this approach. Although these methods yield 
excellent representations of the data within their range of application, their abilities to extrapolate beyond 
the ranges of the experiments that form their basis is questionable. Any introduction of additional length 
scales into the boundary-!ayer characteristics, such as a transverse radius of curvature comparable to the 
boundary-!ayer thickness or an injection slot dimension, requires considerable remodelling of the length 
scales. In the absence of experimental guidance, this remodelling has to be based on ad hoc assumptions. 
Further, in flow fields where changes in the mean flow are rapid, the assumption inherent in most first-order 
closure methods, that the turbulence remains in equilibrium with the mean flow, may not be true. The recogni- 
tion of these limitations of first-order closure methods has led to considerable work in the second direction, 
namely second-order closure methods, where one or more of the characteristics of turbulence is represented by 
a partial differential transport equation. These methods are based largely on the concepts presented in the 
pioneering papers by Kolmogorov (Ref. 6), Chou (Ref. 7), and Rotta (Refs^S.g). As explained in the Intro- 
duction, the impetus behind the development of second-order closure methods was the belief that they have the 
potential of a broad range of applicability and may, with further development, become predictive tools in 
engineering computations. 

An ideal predictive turbulence model would be one that could remain unaltered in form and in its empiri- 
cal coefficients for all flow fields. It is questionable, however, that such an ideal universal model can be 
achieved within the framework of statistical models, even when allowance is made for acceptable engineering 
error. Such models inherently ignore spectral and phase relationships between eddies of different sizes. 
The larger eddies in a turbulent flow are known to reflect the particular nature of the flow and this alone 
is sufficient to raise doubts regarding the potential universality of statistical models. Of course, zonal 
turbulence models that differ from flow to flow but can be related to some particular mean flow feature are 
also of value to the design engineer; they may be the best that can be expected of statistical models. Such 
zonal models, however, introduce mathematical difficulties in the identification of the bounds of different 
zones of applicability of the individual models, and the means of coupling the interaction between these 
zones. It is much easier to deal with the same model throughout the flow. In view of this, it would be 
illuminating to learn how well or how poorly a fixed model could work on a variety of boundary-layer flows. 
To demonstrate this, calculations based on a pair of fixed second-order closure models will be compared here 
with data from a variety of experiments. 

The particular models chosen for this comparison have been developed for the most part by Wilcox and 
Traci (Ref. 10) with some collaboration by the present author (Ref. 11), and were an outgrowth of the early 
work of Saffman (Ref. 12). One model uses an eddy viscosity, which is dependent on the kinetic energy of 
turbulence and the dissipation rate per unit of kinetic energy (a specific dissipation rate or Saffman1s 
"pseudovorticity"). The other model closes the Reynolds stress equations directly, with the scale of turbu- 
lence again being defined with the specific dissipation rate. In choosing these models for comparison here, 
the author does not wish to imply that he believes them to be the best of the second-order closure methods 
available today to represent boundary-layer flows. In some respects, the models developed by Launder and 
his colleagues (Refs. 13,14) are more general and represent the mean flow very close to a surface in a more' 
realistic manner (Refs. 14,15). On the other hand, computations of some compressible flow fields with two- 
equation models favor the Wilcox-Rubesin model (Ref. 11). It is not clear at present which, if any, existing 
model will be most uniformly valid for all applications. The primary reason for presenting models in which 
the author was involved was his access to computer codes containing them; as a result, the codes could be 
used to generate the examples that follow. Also, since both of these models and those identified with 
Launder utilize essentially the same data to establish their modelling coefficients, it should not make much 
difference in the examination of the universality of second-order closure modelling of boundary-layer flows 
which family of models is employed. 

Mean Flow Equations and Boundary Conditions 

The mean flow equations used in computing the examples that will be treated later are written for a 
compressible fluid in mass-weighted-average dependent variables (Ref. 16). The conservation equations for 
mass, momentum, and energy are as follows: 

P + (pujhj = 0 (18) 
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(p'h) + (pu.h),. = p + u.p,. + PTLU.   . - (pQ. 
J J J        J IJ     hj J 

(19) 

(20) 

Here, the symbols    T-JJ and Qj     denote the specific mass-weighted-average total shear stress and heat flux 
that include the contributions of both the molecular and turbulent transport.    These quantities are defined as 

and 

T l 
T  . = 2v S.. - •=• u,   ,&..    + T. . U ij      3    k,k ij u 

P^h'j + Qj 

the mean rate of strain tensor in Eq. (21) is 

S.. = i (u. . + u. .' 
ij  2 vui,j  uj,r 

(21) 

(22) 

(23) 

Finally, T.. and Q. are the mass-weighted-averaged Reynolds stress tensor and heat flux vector defined by 

(24) 

<pu."u,"> * 
 ! J 

IJ P 

<pu,"h"> 
_J_ 

where p is the instantaneous density, <9> denotes the time average of e, and e" is the fluctuating part 
of e in mass-weighted-average formulation. The surface boundary conditions for Eqs. (18) to (20) are: 

, at x2 = 0 

Ui = 0 \ 

u2 = 0 or vw(xi) 

h = hw(xj) or (3h/3x2) = (3h/3x2)w 

(25) 

All flow variables approach free-stream flow conditions in general flow-field computations.    For the special 
case of two-dimensional boundary layers, boundary conditions at the boundary-layer edge are 

at   x2 = s(xx) 

"i = Ue(xi) 

h = he(x!) 

The two models used to close these equations are given in the following sections. 

Two-Equation Eddy-Diffusivity Model 

The two-equation model considered here utilizes an eddy diffusivity defined as 

e = Y*6/<J3 

(26) 

(27) 

where the turbulence kinetic energy e and specific dissipation rate <o are given by the turbulence model- 
ling equations: 

and 

(p'e) + (pUj-e),j = PT-jjU-jj " P*Pue + [(v1 + o*pe)ekj],j 

(p'u2) + (pUjio2)^. = Y TpTljU1,j " ^B + 2a(d,kÄ,k)]p(ü
3 + [(y + (Jpe)(oi2),j],j 

(28) 

(29) 

To account for compressibility, all the dependent variables are expressed as mass-weighted averages (Ref. 16). 
The length scale is represented by 

i = 
,1/2 

(30) 
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The modelling closure coefficients employed are as follows 

(5 = 3/20, ß* = 9/100, a  = a*  = 1/2 

y* = [1 - (1 - A2)exp(-ReT/Re)] 

YY* = YJI  -  (1  - A2)exp(-ReT/Rj] 

Yoo = 10/9,  X = 1/11,  Re = 1,  Ru = 2 

The Reynolds number of turbulence is given by 

ReT = ^ 

(31) 

(32) 

The boundary conditions appropriate to these modelling equations, when they are applied to boundary layers, 
have been guided by asymptotic analysis and reference to other models. The surface boundary conditions for 
Eqs. (19) and (20) are as follows: 

at x2 = 0 

e = 0 

20 v, w 
10 

BX2' 

(33a) 

at x2 = s(xi) 

e = iUe2(Xl) 

l  = 0.09 ß*1/It6(x1) 
(33b) 

As the quantity Ji/p*1/1* behaves much like the classical mixing length, the proportionality coefficient of 
0.09 in Eq. (19) is readily seen to be consistent with the Escudier eddy-viscosity model (Ref. 17). 

Since it was desired to model Reynolds stresses that do not necessarily align with the mean rates of 
strain, the constitutive relationship relating these quantities was written as 

:.. =| es,.. + 2e(s.. - \ u^ .s..) + 1J  3  1J    \ lj  3 k,k ij/ (ß*u2 + 2SmnSnm) 
(S. Si  .  + S. tt  .' v im mj   jm mi • 

(34) 

where the third term on the right was guided by the work of Saffman (Ref. 18). The vorticity tensor used 
here is defined as 

"id = 2 <ui,j - Ud,i> (35) 

and the mean rate of strain is given by Eq.  (23). 

Reynolds Stress Equation Model 

The modelling in the Reynolds stress equations (RSE) presented here utilizes (1) a particular version 
of the pressure rate-of-strain correlation presented by Launder et al. in Ref. 14, (2) gradient diffusion 
for third-order correlations involving velocity and pressure, and (3) isotropic dissipation.    Following 
Launder et al., the pressure rate-of-strain correlation is represented as 

p<ui.j + uj.i> • cie*4ij+! 5ije) - Kpij • i %•) • KDTJ -1 P5ii)- ^eSio (36) 

where the first term on the right, called the Rotta term, is proportional to the anisotropy of the turbulence. 
The terms preceded by the modelling coefficients a, I, and y are contributed by the interaction of turbu- 
lence and mean flow expressed in terms of 

ij 
Tikuj,k + Tjkui,k 

Dij = Tikuk,j + Tjkuk,i (37) 

P = 2 Pij " 2 Dii = TmnSnm 

In choosing the values of a, ß, y,  Wilcox and the author opted to rely on experimental data rather than the 
symmetry arguments recommended by Rotta (Ref. 8) and carried out by Launder et al. (Ref. 14). The first 
experimental observation employed was that 

= 1 
'33 2 (T

H 
+ T2 (38) 
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when a homogeneous turbulent flow is equally stretched in the xx direction and compressed in the x2 
direction, which by continuity in an incompressible fluid leaves the x3 direction unstrained (Ref. 19). 
The second observation was that a field of homogeneous turbulence in rigid body rotation decays without 
developing anisotropy (Ref. 20). The latter data forces a = ß. The remaining constants are evaluated, 
after representative values of T22/TU and t12/e are established from data in a homogeneous shear flow or 
in the law-of-the-wall region of a flat-plate boundary layer. The model used here was based on the approxi- 
mate relationships T22/TH = 1/2 and T12/e = 0.3, both of which are consistent with the form of the two- 
equation model in shear flow. Further remarks regarding the modelling constants found in this way will be 
made in the section on large eddy simulations. 

With the modelling described, the Reynolds stress equations expressed in terms of the components of 
Reynolds stress are 

(px'.j) + (PVij)>k = -PTimuj,m " pTjmui,m + ! ^^ij " M^ij + I %") 

+ p(TjmSmi + TimSmj " I WWij) + I pe(SiJ " I uk,k6ij) + ^ + ff*pe)Tij,k]'k 
(39) 

The components of the Reynolds heat flux are modelled with 

(pty + (PUJQ^.J - px.jh,. - pQjUl>J - B**pUQ1 + (p^+ «***P«)QI,J].J 

The specific dissipation rate used to provide the scale of the turbulence is again given by Eq. (20). 
In these equations 

(40) 

and the modelling coefficients are 

e/u 

e = "2Tii 

(4i: 

20 100  ' 

'l ~ ui„ 

Y 'co 

er= cr: 

13 
14 Re = 1 

25 

! - O - x*)exp^ 

1 -  (1 - **,exp££)" 

Ci» = [I " I exP(-5x)] 

a - a* = p- , a** = 2 

Rw = 3 

(42) 

where 

2S    S mnnm 

Again, the Reynolds number of turbulence   ReT   is given by Eqs.  (30) and (32).    At the solid surface, 
Eqs.  (24) again apply and, in addition 

at   x2 = 0 

Q. =0 

T. . = 0 
(43) 

At the boundary-layer edge, in addition to Eqs. (24), it is required that 

at x2 = s 

Q. = 0 

x  =f tU^x,)^ 
(44) 

Examples of Turbulence Model Application 

As an initial example of the use of the turbulence models presented here, consideration is given to the 
distortion of a field of fully developed, homogeneous turbulence by application of plane or normal strains. 
This case acts as a test of the models when near-surface effects are absent. The particular case treated 
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corresponds to the flow in the experiment by Tucker and Reynolds (Ref. 19). Figure 1 shows a schematic 
diagram of the test channel. The fluid enters at the left, 1s conditioned through screens, and passes 
toward the right in parallel flow until it reaches the station where the constant rate of strain is applied. 
The constant strain is achieved by exponentially expanding the channel in the x direction and contracting 
it in the y direction so as to maintain a constant cross-sectional area. The straining causes the initially 
nearly isotropic turbulence to become anisotropic, a measure of which is the straining parameter plotted as 
the ordinate in the lower portion of the figure. After the fluid is strained, it is returned to a parallel 
flow. Here the fluid tends to return to isotropy. 

Use of the RSE model in computing this flow is noted to yield reasonably good agreement with the data. 
At the initiation of straining, the computed growth of anisotropy is somewhat faster than the data, but this 
trend reverses toward the end of the straining region and downstream. These trends were influenced by the 
assumed form of Clm in Eq. (42) which was adjusted to fit an aggregate of homogeneous flow experiments, not 
just that of Tucker and Reynolds. Use of the two-equation model in the computations suffers in two respects. 
First, the model shows the difficulties of all eddy viscosity models when a sudden application or removal of 
mean strain occurs. Although the elements making up the eddy viscosity (e and u) vary continuously where 
the discontinuities in strain occur, the corresponding Reynolds stresses are still discontinuous. Second, 
the rate of generation of anisotropy, by the two-equation model away from the stations where the discontinui- 
ties occurred, was too slow. Thus, although the RSE model has been shown to yield rather good agreement with 
the data, this example illustrates that two-equation models are limited to flow conditions with more gradual 
application of mean strain. 

An example of the application of the turbulence models to a boundary-layer flow of an incompressible 
fluid is demonstrated in Figs. 2 through 4. The data are from the experiment conducted by Bradshaw in which 
a turbulent boundary layer was exposed to a sudden application of an adverse pressure gradient (Ref. 21). The 
data points designated with open symbols result from a reinterpretation of the basic data by an independent 
analysis (Ref. 22) and provide an indication of the uncertainty inherent in the data. Figure 2 shows the 
distribution of skin friction and boundary-layer shape factor along the test zone. The computations were 
started by matching the momentum-thickness Reynolds number from a flat-plate calculation to the Reynolds num- 
ber measured at the upstream station. Beyond this station, the experimental pressure distributions were 
imposed on the boundary-layer calculations. It is observed that the two-eqUation model and the Reynolds- 
stress model both yield skin friction and shape factor results that are nearly the same, and that both agree 
well with the data. It should be noted that no adjustments were made to the modelling to account for the 
pressure gradient. 

The measured and computed mean-velocity profiles at the farthest downstream station are shown in Fig. 3, 
which is expressed in wall-law coordinates. The computations based on both models yield results in good 
agreement with the data. In the "law-of-the-wall" region, the computed results agree with the standard 
logarithmic formula. In that region, also, there is a little better agreement with Coles' reinterpretation 
of the data (Ref. 22). Neither of these observations is surprising, as the use of the logarithmic law with 
the constants shown played a major role in the data reinterpretation and in establishing some of the modelling 
coefficients used in both models. Perhaps more significant is that the computed results based on both models 
show the enhanced contribution of the "wake" region that is characteristic of boundary-layer flows in adverse 
pressure gradients. 

Figure 4 compares the Reynolds stress, turbulence energy, and mean-velocity profiles, computed from the 
two models, with Bradshaw's data. In these figures, the distance normal to the surface has been normalized 
by the boundary-layer thickness. Generally, the Reynolds stress components and the turbulent kinetic energy 
given by the two models differ less from each other than from the data. The normal components of Reynolds 
stress — <u'2>, <w'2> and, to a lesser degree, the kinetic energy — are evaluated rather poorly in the inner 
half of the boundary layer. On the other hand, the normal Reynolds stress <v'2> and the shear stress 
<-u'v'> fit the data much better. This reflects the adjustment of some of the modelling coefficients to 
provide good mean-velocity profiles in a flat-plate boundary layer, where a good evaluation of the Reynolds 
shear stress is paramount. In the coordinates of this figure, the two-equation model shows a little advan- 
tage over the RSE model; however, both models yield results that reflect the "flattening" of the velocity 
profile introduced by the adverse pressure gradient. 

The results that have been shown here are representative of comparisons of many other sets of data with 
computed results based on the two models. For attached, subsonic boundary layers on flat plates, with or 
without pressure gradients, there seems to be no advantage to the Reynolds stress model. Under these flow 
conditions, the departure of the turbulence from being in equilibrium with the mean flow is apparently too 
small to cause the two-equation model difficulties that were indicated earlier with suddenly distorted 
homogeneous flows. 

The growth of a turbulent boundary layer on a small-radius circular cylinder with its axis parallel to 
the free stream is an example of a flow where the mixing-length formulation required considerable change, from 
that on a flat plate, to make computations conform with the experimental results. Generally, the data showed 
that as the ratio of the boundary-!ayer thickness to the transverse radius increased, the "wake" region of the 
boundary layer diminished (as occurs on a flat plate in a favorable pressure gradient). Also the skin-friction 
coefficient at a given Reynolds number based on boundary-layer thickness increased with diminishing body 
radius. When Rao (Ref. 23) examined this flow field, he concluded that conformance with his data could be 
achieved if he employed a wall-region law equivalent to setting the mixing length in the inner region of the 
boundary layer to 

*m=ky 
an(l + y/a)/1 + y/a (45) 

(y/a)     J 

In studying the same problem, Richmond (Ref. 24) deduced a formulation equivalent to 

*m = ky (1  + Y/2a) 

(1 +y/a)3/2 
(46) 
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For values of y » a, Eq. (45) remains within a few percent of % = ky, whereas Eq. (46) shows a reduc- 
tion of about 50%. These differences result in adjusting the position of data in opposite directions, in 
terms of y+, relative to the universal "law of the wall" and demonstrates vividly how arbitrary the exten- 
sions of mixing-length closure can be. 

The RSE second-order closure model given here was applied without change to this type of flow to see if 
the experimental data could be represented. Figure 5 compares the computed results and measured data in terms 
of the effect on skin friction of the ratio of 6/a. Four sets of data are utilized (Refs. 24-27) to cover 
a sizable <5/a range. The computational results are shown as a band because the ordinate employed does not 
collapse all of the Reynolds number dependence. The computations with the unchanged RSE model represent the 
trends of the data well up to a value of 6/a = 10, where the Cf is 30% higher than that on a flat plate. 
Beyond this, a significant departure occurs from the data of Willmarth et al. (Ref. 27) where the measured 
Cf is increased to more than twice that of a flat plate. Apparently, the RSE model in its present form fails 
to fully account for changes in the wake character of the boundary layer over a body with an extremely small 
transverse radius. 

The next example to be treated deals with the topic of streamwise curvature, the importance of which was 
first recognized by Bradshaw (Ref. 28). The Reynolds-stress equations were applied to this problem directly 
through the conversion of the coordinates from Cartesian to curvalinear, with one axis tangent to the surface, 
s, and the other normal to the surface, n. The two-equation model, however, required reinterpretation of the 
meaning of the symbol e, treated as the kinetic energy earlier. Details of these transformations are given 
in Ref. 11. 

For flow over a streamwise curved surface, the s, or curvilinear coordinate system, introduces terms in 
the Reynolds stress equations analogous to centrifugal and Coriolis forces in the momentum equations. When 
the normal stresses are added together, however, most of these additional terms cancel, resulting in an energy 
equation that is essentially the same as on a flat surface; the only change is in the production term where the 
mean-velocity gradient 8u/ay is replaced by (au/8r) - (u/R). The specific energy-dissipation-rate equation 
is also changed in the same way. Thus, a direct application of the two-equation model as given earlier would 
not show streamline curvature effects of the magnitude indicated by a Reynolds stress model or by the experi- 
mental data (e.g., Ref. 29). This deficiency was corrected by (1) observing that the Reynolds shear stress 
and v'2 equations in the RSE model in s, n coordinates added similar terms because of the streamwise 
curvature and (2) identifying e with a "mixing energy" rather than a "kinetic energy." The symbol e then 
is redefined as 

e = +!^=-!Tnn <47> 

which follows from the basic model in a homogeneous shear flow where the turbulence production and dissipation 
are in balance. With Eq. (47) and the Reynolds stress equation for v'2 and u'v' as guides, the e equation 
for use with the two-equation model only is written in an ad hoc manner as 

ue,s + ve,n + | £T = r(u,n - |)- g*ew + [v + a*e)e,n],n (48) 

with 

<% - *) (49) 

and, where e follows from Eq. (27); all the modelling coefficients and relationships employed in the two- 
equation model introduced earlier are retained. The third term on the left side of Eq. (48) represents the 
principal extra rate of turbulence production introduced by the longitudinal surface curvature. 

Calculations based on these model modifications for streamline surface curvature are compared in Fig. 6 
with data obtained by So and Mellor (Ref. 29) for a boundary layer on a convex wall with an adverse pressure 
gradient. The data represent the surface skin-friction coefficient and shape factor along the surface. The 
computations include the RSE and two-equation models, both with and without the corrections for longitudinal 
surface curvature. The computed results were matched to the first station by assuming the flow upstream of 
the station to be on a flat plate of a length to yield the correct skin friction there. The calculations 
with the RSE or two-equation model unmodified for streamwise curvature show little of the drop in skin- 
friction coefficient experienced in the experiment. The modified models, on the other hand, give an excellent 
representation of the skin-friction behavior. This is rather remarkable for the two-equation model, when 
its ad hoc formulation is considered. Finally, both modified models represent the form factor data also 
quite well. 

It may seem to be illogical in the test of the universality of a turbulence model to make the modifica- 
tions indicated for introducing the effects of streamwise curvature. For the RSE model, the modifications 
were purely geometric and were introduced by selecting the appropriate coordinates for the problem considered. 
No physical modelling changes were made. The original two-equation model, on the other hand, was insensitive 
to changes in the coordinate system and an extra production term had to be added to the e equation. One 
can view the need for the change as an indication of the inherent weakness of the original two-equation model, 
or the view of the final e equation as the basic boundary-layer model that then is simplified geometrically 
for planar surfaces. 

The remainder of the two-dimensional boundary layers considered here involve compressible flows. As 
noted earlier, the extension to compressible flows is achieved by adopting dependent variables that are Favre 
mass-weighted averages. In these variables, the conservation equations take forms that avoid terms that are 
explicitly dependent on the turbulent density fluctuations. Term-by-term, the equations are comparable to 
their incompressible counterparts, with the compressibility entering only through the mean density variations. 
Although Favre averaged-model equations are, in the main, parallel term-by-term to their incompressible 
counterparts, they have additional terms explicitly dependent on density fluctuations that require additional 
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modelling (Refs. 30,31). In practice, however, it was found that these additional terms could be ignored, 
even under conditions involving large pressure gradients where the terms are their largest (Ref. 32). 
Reflecting this, the models presented here neglect these additional terms. 

These models were applied to the calculation of skin friction on a cooled flat plate in airflow at a 
Mach number of 5. The results of these calculations based on the two models are compared with values given 
by the van Driest II formulas in Fig. 7. These formulas have been shown (Ref. 33) to represent the bulk of 
existing data under these conditions to about ±10%. The agreement between all the methods is excellent, 
but this is not surprising in view of the similarity of the density scaling in Favre averaging (Ref. 11) and 
that which is inherent in the van Driest formulation. 

Compressible turbulent boundary layers experiencing severe pressure gradients are cases where the models 
are tested more severely. The first example of such a flow is the experiment conducted by Lewis et al. 
(Ref. 34) at a Mach number of four. In that experiment, an axisymmetric turbulent boundary layer on the 
adiabatic interior wall of a circular cylinder was subjected to an adverse pressure gradient followed by a 
favorable pressure gradient. The pressure gradients were achieved by means of a shaped center-body; a pres- 
sure rise of 9 times the upstream pressure was attained before pressure relaxation occurred. Figure 8 shows 
the distribution of the surface skin-friction coefficient within the test zone. The coefficient shown is 
defined in terms of the upstream boundary-layer edge conditions, not the local, and is therefore proportional 
to the surface shear. The Reynolds number at the initial station was about 7 x 106. Along with the computed 
results based on the models presented here, computations based on the Marvin Shaeffer code (Ref. 35), which 
has been extended to contain a classic mixing-length model essentially identical to that of Cebeci (Ref. 4), 
are given for comparison. The mixing-length model fails to capture the full rise of the skin friction 
caused by the adverse pressure gradient. On the other hand, it follows the data in the region of favorable 
pressure gradient quite well. The second-order closure models demonstrate a much better prediction of the 
rise in skin friction in the adverse pressure gradient region; however, in the following favorable pressure 
gradient region they show somewhat too large a drop in the skin friction. The two second-order models yield 
essentially equivalent results. 

Figure 9 shows data from a similar experiment conducted by Horstman et al. (Ref. 36) at an initial Mach 
number of 2.3 and over a large range of Reynolds numbers. In addition to computations based on the two models 
considered here, computed results from two versions of a mixing-length model and another two-equation model 
are also shown here. At this Mach number, M = 2.3, the onset of an adverse pressure gradient first reduces 
the skin friction before a rise similar to that which occurred in Fig. 8 also occurs. Generally, the com- 
puted values of skin friction from all the models conform to the trends in the data caused by the change in 
Reynolds,number and the effective pressure gradient. One exception is the behavior of the mixing-length 
model unmodified for pressure gradient which indicates separation at the lowest Reynolds number. At the higher 
Reynolds numbers, the difference between the modified and unmodified mixing-length model become very small. 
From this figure, conclusions regarding the relative merits of the different models would be indecisive. In 
Fig. 10, when the adverse pressure gradient is applied over a greater distance, the models behave in a somewhat 
different manner. At the lowest Reynolds number, the unmodified mixing-length model no longer indicates 
separation. Also, at the lower Reynolds numbers, the second-order closure models are in much better agreement 
with the data. Omission of the explicit density fluctuation terms resulting in the model equations after 
Favre averaging is justified by these examples. Incidentally, the computed results labeled Aeronautical 
Research Associates of Princeton (ARAP) are based on a Reynolds stress model utilizing primitive dependent 
variables including the whole gamut of fluctuating density terms (Ref. 37). 

The remaining examples of two-dimensional boundary layer and near-wake flows were computed with the 
compressible Navier-Stokes equations to account for strong interactions between the shear layers and the 
inviscid flow. Because these codes are costly to operate they have been limited, at least to date, to con- 
tain models of turbulence of the two-equation kind or simpler. Therefore, the RSE model will not appear in 
these examples. 

Figure 11 shows calculations of the surface pressure and skin-friction distributions compared with data 
in the region of the interaction of a normal shock wave with a fully established turbulent boundary layer 
(Ref. 38). The schematic diagram shows that the flow field was developed on the surface of a tube within a 
slightly supersonic main flow. A normal shock wave was generated and positioned along the test section with 
a variable blockage device at the downstream end of the test section. The figure at the left shows that the 
computational results based on the two-equation model generally agree well with the measured surface pressure 
distributions at the five Mach numbers tested. The departures that exist from the data are small and incon- 
sistent enough to hide any systematic deficiencies in the computational model. The computed skin-friction 
coefficients again conform to the main features of the data. The calculations show a downstream movement of 
the minimum in skin-friction coefficient with increasing Mach number. If the extreme Mach number cases are 
emphasized, a similar movement is seen in the data, although of larger extent. The inaccuracies inherent in 
skin-friction measurements can possibly exaggerate the movement of the minimum skin-friction coefficient and 
could be the source of these differences. 

An example of a strong interaction between a boundary layer and a shock wave at higher Mach number is the 
experiment of Settles et al. (Ref. 39) with a turbulent boundary layer traversing a compression corner. The 
computations used for comparison with the data are from Ref. 40. Figure 12 shows computations and measure- 
ments of surface pressure and surface skin friction for two deflection angles of the compression corner, 
a = 20° and 24°. Besides the two-equation model under consideration, three other models have been used in 
these computations. Models not shown in any of the earlier examples are a kinetic energy model with an 
algebraic length scale (Ref. 31) and the Jones-Launder two-equation model (Ref. 13). A general observation 
is that both two-equation models yield essentially the same results, except for the level of skin friction in 
the reversed region. This suggests the kinds of measurement needed to distinguish between models. Comparison 
of the experimental data with the computations reveals that the two-equation models permitted the location of 
the onset of the increased surface pressure ahead of the compression corner to be computed quite well. For 
a  = 20°, these models yield excellent pressure distributions over the separated zone and on the deflected 
surface beyond reattachment. For a  = 24°, the calculated pressure in the separated zone is somewhat high, 
although ahead of separation and after reattachment the pressure is again evaluated quite well. 
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The zero-equation and one-equation models show late onsets of pressure rise, then overshoot the data, 
and then blend with the data far downstream. The comparison with the skin-friction data do not show all the 
same trends in the computations with the different models. The two-equation models define the position of 
the onset of the fall-off of skin friction, and the other models again lag this. The fall-off of the skin 
friction given by the two-equation models is faster than the data show, so that the points of separation are 
predicted upstream of where they actually are. The two-equation models also yield too long a separated 
region so that reattachment is calculated to be downstream of the experimental results. The comparison is 
inconclusive, regarding which of the models best fits the downstream data, except that the algebraic model 
yields results that consistently fall lower than the data. 

Figure 13 compares the computations and measurements of the effect of Reynolds number on the extent of 
the upstream pressure influence ahead of the compression corner. The distances considered are shown schemat- 
ically in the left-hand sketch in Fig. 13. Two deflection angles are considered: a = 16° and a = 20°. 
It is seen that the observation made earlier that the two-equation models evaluate the position of the onset 
of the pressure rise best is borne out in the figure over the entire range of Reynolds number covered in 
the experiment. 

Another example in which computations with the two-equation model have been compared with experimental 
data is the work by Viswanath et al. (Ref. 40). The experiment was conducted at the trailing edge of a 
flat-plate test model that terminated with a 12.5° total included angle wedge. In the example cited here, 
the model and wedge trailing edge were both kept at zero angle of attack to an airstream at M = 0.7. 
Figure 14 compares measurements of the mean-velocity profiles just upstream and downstream of the trailing 
edge with computations employing the two-equation model and an algebraic model (Ref. 4) in both Navier-Stokes 
and boundary-!ayer equation. The high chord Reynolds number of 40 x 106 ensured a fully turbulent boundary 
layer well ahead of the trailing edge. In this figure, e0 represents the momentum thickness of the boundary 
layer 0.4 cm upstream of the trailing edge; it is equal to 0.2 cm. The computations employing either model 
in the Navier-Stokes equations agree better with the data than the same models in the boundary-layer computa- 
tions. Under these conditions, either on the wedge or just beyond the trailing edge, the flow is more sensi- 
tive to the interaction between the shear flow and the inviscid flow regions than to the particular turbulence 
model. Apparently the rate of change of the mean motion, even this close to the trailing edge, is sufficiently 
slow for either an equilibrium-model or a two-equation model to still apply. Farther downstream in the wake, 
both models and both computation techniques yield essentially the same results. It is important to note that 
the sudden removal of a surface downstream of the trailing edge did not cause any difficulties with the near- 
wall modifications represented by Eqs. (31), as they blended smoothly toward their asymptotic values farther 
in the wake. 

The final example cited here is the response of a turbulent boundary layer to a sudden application of 
transverse shear, as studied experimentally on an axisymmetric rotating body in Refs, 25 and 26. A sketch of 
the model configuration is given in Fig. 15. The free-stream velocities in these experiments ranged from 
10 to 19 m/sec. A comparison of the data from the two experiments with a mixing-length model (Ref. 42) modi- 
fied with Eq. (45), the two-equation and RSE models, and the ARAP model (Ref. 37) has been represented in 
Ref. 43. In the computations with either of the eddy-viscosity models, it was necessary to introduce an 
additional assumption regarding the ratio of the eddy diffusivity corresponding to the transverse flow to 
that of the longitudinal flow. The need for assuming some value for the ratio is an inherent problem in the 
application of any scalar eddy-viscosity model to a three-dimensional boundary layer. In the computations 
with the two-equation model, this ratio was set equal to unity, as it was for the mixing-length model in 
Ref. 42. It was found in Ref. 43 that computations based on the simple mixing-length model yielded results 
in general agreement with the measurements of the mean flow. The two-equation and RSE models showed compari- 
sons that were only somewhat better than the simpler model. The improvement achieved by the second-order 
closure models seemed to be limited by too rapid a response to the transverse shear. The relative agreement 
between the RSE model and the scalar eddy-viscosity models can be explained by reference to Fig. 15 where the 
ratio of the eddy viscosities calculated from the RSE model are compared to the data from the two experiments. 
First, it is observed that the two similar experiments result in data in serious disagreement. The appro- 
priate ratio cannot be established experimentally. The RSE model, with or without the effects introduced by 
transverse curvature, shows that the ratio of eddy viscosities remains within ±10% of unity over most of the 
transverse boundary layer, as assumed in the eddy-viscosity models. Near the outermost edge of the transverse 
boundary layer, in the vicinity of the onset of the transverse shear, the ratio drops to a smaller number. 
As there is little momentum change near the boundary-!ayer edge, differences in eddy viscosity such as these 
have negligible effect on the transverse-velocity profiles. Thus, the choice of the eddy viscosity ratio of 
unity in the simpler models is not inconsistent with the evaluation of the RSE model. 

Concluding Remarks Regarding Statistical Modelling 

From the foregoing set of comparisons of experimental data and computations employing a pair of fixed 
second-order closure models, and with other models as well, it is observed that the second-order closure 
models generally have a broader range of application than do the algebraic closure models. The two-equation 
eddy-viscosity model is accurate over a large range of Reynolds numbers for attached two-dimensional incom- 
pressible or compressible boundary layers on impervious surfaces, even those with small zones of separation. 
The Reynolds stress model, in addition, has advantages when sudden changes in the mean flow occur, for surfaces 
with streamwise curvature, and in three-dimensional boundary layers. Both models show the Favre mass-weighted 
dependent variables account well for compressibility, even with rather large sp/sx, and also can account for 
modest effects of transverse curvature. 

These models still require adjustments to increase their breadth of application. For example, the two- 
equation model needs an.extra rate of strain added to the mixing-energy equation to account for the effect of 
streamwise curvature on a boundary layer. This ad hoc correction is very successful, practically, for 
boundary-layer calculations. In the Navier-Stokes form of the model, however, it has not yet been made to 
account for rapid turning within a flow. Nevertheless, the trailing-edge example cited did not seem to need 
this correction. Both models are unable to completely relaminarize an incompressible boundary layer in strong 
favorable pressure gradient. This is not a general failure of second-order models; another second-order 
closure model (Ref. 13) has been somewhat more successful in accounting for relaminarization than the models 
given here. Both models also require major changes in their surface boundary conditions to account for sur- 
face mass transfer or roughness. Finally, second-order models still require special treatment in regions 
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approaching irrotational flow. In conclusion, then, although the second-order closure models have shown a 
broader range of application than simple mixing-length methods, they are not universal and need further 
development to broaden their range of application, especially for boundary-layer flows that interact 
strongly with the surrounding irrotational flow. 

LARGE EDDY SIMULATION OF HOMOGENEOUS TURBULENCE 

The background and status of the techniques of large eddy simulation were recently reviewed by Ferziger 
and Leslie (Ref.,44). They gave particular attention to the methods for modelling the subgrid stresses 
expressed as <uiuj> in Eq. (14). To demonstrate the realism attained with the technique, the results of 
channel-flow computations were compared with data for mean-velocity profiles, Uj in Eq. (13), and mean 
moments, such as the pressure strain correlations. A more complete analysis of the simulation of channel 
flow appears in the Kim and Moin paper of this conference (Ref. 45). To supplement those papers and to 
demonstrate the value of turbulence simulation to statistical turbulence modelling, this author will examine 
what can be learned regarding statistical Reynolds stress modelling from large eddy simulations of localized 
flow situations. 

The author is indebted to his colleague Dr. Robert Rogallo, who generously provided the results of com- 
putations he is performing on homogeneous turbulence that is experiencing decay, normal straining, or uniform 
shear straining. The Rogallo code has been described in Ref. 46, but has since been modified to accept uni- 
form shearing. The code has certain unique features. The turbulence is computed in a volume of fluid that is 
followed in time and is defined by coordinates that move with the assigned mean velocity. In this moving 
frame of reference, the turbulence is spatially homogeneous. The boundary conditions on the computational 
volume are treated as periodic in space, which permits use of full spectral methods in the computations. 
The code is efficient and accurate because particular care has been exercised to conserve energy and minimize 
aliasing. All variables are expressed in dimensionless form and related to physical quantities (subscript e) 
with scaling coefficients a  and ß as follows: 

Wave number or length 

Energy 

Kinematic viscosity 

Time 

ßk 

ve = a"
1/2ß"1v 

te = al/H'lt 

e-H. 

(50) 

It should be noted that the kinematic viscosity is treated as constant. 

In operating the Rogallo code, the turbulence is initially assigned an overall intensity with an arbi- 
trarily assigned three-dimensional spectral distribution. In addition, the mean strain rate and kinematic 
viscosity are also assigned. The turbulence is then oriented in phase space randomly while conserving mass. 
Because of the use of random phase, the components of turbulence velocity in each direction are uncorrelated 
so that no shear stress exists at time = 0. In the presence of a mean shear, the shear stresses develop in 
a short time and the computed results become independent of the particular random phase distribution that was 
used to start the calculations. The initially assigned spectrum also readjusts to be consistent with the 
assigned strain rate and kinematic viscosity, and the instantaneous turbulence intensity. 

The spectral range used in the calculations shown here has a ratio of the maximum to minimum wave number 
equal to 31. This ratio is established by (1) the storage capacity of the ILLIAC IV computer, which permits 
computations over volumes in phase space having 64 mesh points in each of three directions; and (2) the need 
for using two mesh spacings to define the minimum resolvable wavelength. Although this represents a very 
large number of computational mesh points, this spectral range is still inadequate to capture the range of 
wave numbers that is significant in a real turbulent flow, except for one  at very  small turbulence Reynolds 
numbers. Capturing the bulk of the significant eddy sizes and avoiding the use of a subgrid model is called 
an "honest" calculation. The Reynolds number appropriate to an "honest" calculation is an order of magnitude 
or more smaller than exists even in small scale laboratory experiments. If an "honest" calculation was to be 
compared with a low Reynolds number experiment, the physical output of the computations would be found from 
the calculations through Eqs. (50) after establishing a  and ß from the values of v and E used in the 
calculations and the ve and Ee of the experiment. An alternative interpretation of these "honest" calcula- 
tions is to consider v used in the computations as an effective viscosity, which from Eqs. (13) and (14) is 
equivalent to the use of a constant eddy-viscosity subgrid model 

<uiy = (veff (ui,j + Qi,j; (51) 

Emphasis is placed on the computation of the largest eddies in the flow, with the larger effective viscosity 
and a higher than real spectrum at the upper end of the wave numbers used to account for the dissipation that 
actually takes place at the wave numbers well beyond those in the computation. This approach presumes that 
the distorted spectrum at the upper end of computed wave numbers does not significantly alter the cascade of 
energy out of the energy-containing eddies at the low-wave-number end of the spectrum. In this approach, 
the scaling parameters a  and ß in Eqs. (5) can be established from comparing the calculated large eddy 
characteristics and corresponding quantities found in an experiment. 

To test the validity of this alternative interpretation of Rogallo's calculations, the computed results 
from several cases were compared with data obtained in the experiment by Harris et al. (Ref. 47) in which a 
rather complete set of turbulence measurements was made in a nearly homogeneous shear flow. When the com- 
puted macroscales and turbulence kinetic energy were matched to the corresponding experimental quantities in 
the region where the experiment reached an asymptotic behavior, the a and ß needed to utilize Eqs. (50) 
were established. 

It was found that the best agreement between computation and experiment occurred when the effective 
viscosity in the computation was 15 times the molecular kinematic viscosity. A comparison of several computed 
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and measured statistical properties is presented in Table 1. The computations show a kinetic energy dissipa- 
tion rate that is about 20% higher than the rate inferred from the measurements. This difference may not be 
significant however, because the energy dissipation rate is difficult to measure accurately. It is made up 
of direct measurements plus inferences regarding local isotropy of the small dissipative wave numbers. The 
excellent agreement of the mean velocity gradients indicates the large turbulence structure is properly 
related to the mean flow in the computation. The remaining excellent comparisons between the Reynolds stress 
quantities is strong evidence that the computation is capturing the larger eddy structure that is principally 
responsible for these quantities. This conclusion is further supported by the comparison of the computed and 
measured two-point correlation coefficients for u, in the three Cartesian directions that are shown in 
Fig. 16. The general character of the experimental curves in each direction is represented very well by the 
calculations. Some of the weaknesses of the calculations are also demonstrated in this figure. The curve of 
Rn(r,o,o) is higher than that plotted from the data for the smaller separation distances. This is an indi- 
cation that the smaller eddies or high-wave-number eddies in the experiment are not well represented by the 
computations. This was expected in a computation with limited resolution, and one in which emphasis is on 
accurately computing the larger eddies. In addition, it is noted that Rn(r,o,o) has not vanished at 
rj/Lj = 4.9, which corresponds to 1/2 the length of each side of the computational volume. This suggests the 
computational volume used may have been too small and that the largest eddies could be sensitive to the 
periodic boundary conditions that were imposed. Even with these shortcomings, the remarkably good agreement 
between the experimental data and the computations encouraged the author to utilize the computations as a data 
base to examine some of the assumptions employed in statistical Reynolds stress modelling. 

For a uniform homogeneous turbulent shear flow, the Reynolds stresses are given by 

Du^2 

and 

Dt 

Du2
2 

Dt 

Duxu2 
~Dt~ 

-2uxu2 U1>2 + 2pulfl - 2v[(ulfl)2 + (u1>2)2 + (u1>3)2] (52) 

+ 2pu2j2 - 2v[(u2>1)2 + (u2)2)2 + (u2)3)2] (53) 

+2pu3j3- 2v[(u3)1)
2+(u3)2)

2+(u3)3)
2] (54) 

•¥lyi>2  +  P<U1,2  +  U2,l)   "   2^U1,1U2,1   +  U1,2U2,2  +  U1,3U2,3] (55) 

Closure of these equations requires expressing the correlation of pressure and rate of strain and the dissi- 
pation terms containing v in terms of the Reynolds stresses, themselves, and the mean flow. The pressure 
rate-of-strain model to be evaluated here is represented by Eqs. (36) and (37). The dissipation terms in 
Eqs. (51) through (54) are usually replaced by the symbols EH, e22> S33> and E12. In terms of these quan- 
tities, the dissipation of the turbulence kinetic energy is given by 

e = i (£n + e22 + "33) {56) 

It is usually assumed in modelling that the dissipation takes place at the smallest eddies and is, therefore, 
an isotropic phenomenon represented mathematically as 

e. . = § ss.j (57) 

To learn if the computations are consistent with the assumption of isotropic dissipation in a shear 
flow, the computed values of e-jj corresponding to each Reynolds stress are plotted against a measure of the 
anisotropy, u-juj/e - 2/3 6-jj, in Fig 17. The values corresponding to the different Reynolds stresses for a 
range of turbulence Reynolds numbers generally lie along a straight line with a slope of about 0.7. If the 
dissipation had been isotropic, in the coordinates of the figure, these points would have been located on the 
axis or at an ordinate equal to zero. The computations show the dissipation to be anisotropic and require 
that Eq. (57) be modified to 

Eio=fe6ij +0-7Hr-!5ij)£ (58> 
for the shear flow. What is normally termed dissipation in a large eddy simulation actually represents the 
component energies that are cascaded toward the high wave number end of the calculation to be then drained 
from the calculation by the subgrid model. It is no surprise then that the cascade process reflects the 
anisotropy of the larger eddies. The emphasis on the behavior of the large eddies possibly is an advantage: 
it may be just what is required in Reynolds stress modelling, which also addresses the behavior of the 
larger eddies. 

Figure 18 shows the components of dissipation as functions of anisotropy for the case of a turbulent 
flow relaxing after it had been instantaneously distorted with normal strains in the x2 and x3 directions. 
In this case, the computed results generally lie along the coordinate axis and the dissipation is approxi- 
mately isotropic even though the flow itself is still anisotropic. 

The homogeneous flow relaxing after instantaneous distortion by normal strains is also an excellent 
case for examining the first term in the pressure rate of strain relationship represented by Eq. (36). The 
terms in Eq. (36) preceded by S, 3, and y are identically zero in the absence of continuing mean strain. 
The Cj were evaluated from the computed turbulence moments for a case distorted in all three directions. 
It was found that Ci was reasonably insensitive to the direction of the component considered. The Cx 
(based on U2) is plotted as a function of the turbulence Reynolds number e2/eveff in Fig. 19. The numbers 
adjacent to the symbols represent the magnitude of the largest anisotropy in the three components. Three 
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different values of veff were used in the calculations to extend the range of the turbulent Reynolds number. 
It is observed that if the largest component of anisotropy is less than 0.25, that is, if 

u2
2  ? 

— -f'U < 0-25 (59) 

the values of Cx collapse onto a single curve. For those values of isotropy where the points depart from 
a single curve, the linear form of the Rotta term expressed in anisotropy can be considered to have failed. 
It is also noted that for values of anisotropy satisfying (59), the so-called "constant" Cx still has a 
strong Reynolds number dependence. 

The value of Cx was also evaluated from the homogeneous shear flow computation of the pressure rate- 
of-strain correlation and Eqs. (36) and (37). To do this most simply, the interrelationships between a, 
3, and y    derived by Launder et al. (Ref. 14) following Rotta's suggestion (Ref. 8) were utilized. The Cj 
formed from these computations is plotted as a function of turbulence Reynolds number in Fig. 20. Again, 
the maximum anisotropy is indicated at the plotted points. For comparison, the Ci from the normally 
strained flow, with the value of maximum anisotropy characteristic of shear flow, are also plotted on the 
figure. Shearing the flow tends to increase the turbulence Reynolds number so that the regions of the two 
flows do not overlap. The same magnitude of anisotropy is used for both flows to account for a similar 
departure from the linear Rotta form in each. It is observed that the line segments associated with the 
different types of flow fields do not appear to form a common curve. This would imply that the pressure 
rate-of-strain model represented by Eqs. (36) and (37) is not as universal as is suggested by its tensor 
form. It is most interesting, however, to note that if the C1    is considered to be the coefficient of the 
sum of the pressure rate-of-strain correlation and the anisotropic dissipation, the dashed curves on Fig. 20, 
the two flow fields tend to produce a common curve. It appears that only the sum of the dissipation and 
pressure rate-of-strain can be modelled universally. This observation is consistent with the theoretical 
approach adopted by Lumley and Newman (Ref. 48). It should be noted, again, that the anisotropy on the 
figure is outside the region of applicability of the Rotta relationship and that shear flows with lesser 
anisotropy would require larger values of Ci for the pressure rate of strain contribution. 

The values of Cl5 a, 3. and y   that conform to the high end of the turbulence Reynolds number in these 
calculations are shown in Table 2 along with those used in the Launder et al. (Ref. 14) model and the RSE 
model described here. The agreement between the computations of Launder et al. and those of Rogallo is 
excellent and is primarily due to the ability of the computations to yield good values of the Reynolds 
stresses in equilibrium shear flow (Table 1). The requirement of a -  3 in the RSE model apparently requires 
considerable compensation in all the other terms to result in the proper Reynolds stress ratios for uniform 
shear flows. 

Concluding Remarks Regarding Large Eddy Simulations 

Although this demonstration of the use of large-eddy simulations for guiding Reynolds stress modelling 
has been limited to homogeneous flows, its utility as a research tool shows great promise. Although the 
procedure is quite costly in terms of computer time (the calculations shown here require about 1.5 hr 
ILLIAC IV time per test case), the potential gains in computer technology (Ref. 1) should make large eddy 
simulations a research tool that will be available to most research laboratories in a decade or so. It is 
this author's belief that research activities involving coordinated theory, experimentation, and computer 
simulations will in the reasonably near future not only bring about a much clearer understanding of the 
physics of turbulence, but may even permit the development of predictive engineering methods for flow fields 
of technological interest. 
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TABLE 1. COMPARISON OF ROGALLO'S SHEAR FLOW CALCULATIONS 
WITH THE EXPERIMENTAL DATA OF HARRIS, GRAHAM, AND C0RRSINa 

Quantity Experiment Computation 

Dissipation rate, cm2 sec-3 3.28E+04 3.92E+04 
Mean-velocity gradient, Uj 2 sec-1 44.0 45.3 
Angle of principal stresses, deg -22.3 -22.6 
Ratio of principal stresses 4.06 5.24 
UjUj/e 1.00 1.01 
u2u2/e 0.40 0.36 
u3u3/e 0.60 0.63 
-U!U2/e 0.30 0.33 

aScaling established by matching turbulence kinetic energy 
and streamwise macroscales. Turbulence model v„ff/v =15. 

TABLE 2. PRESSURE RATE OF STRAIN CORRELATION 
MODELLING COEFFICIENTS 

Launder, Reece, and  Wilcox and    Rogallo's 
Rodi model     Rubesin model  computations 

Ci 1.5a 4.5a 1.5a 

a 0.76 0.5 0.78 
e 0.11 0.5 0.23 
Y 0.36 1.33 0.55 

aIncludes effects of anisotropic dissipation. 
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A NAVIER-STOKES FAST SOLVER FOR TURBULENCE MODELING APPLICATIONS 

J. D. Murphy and M. W. Rubesin 
Ames Research Center, NASA, Moffett Field, California, U.S.A. 

SUMMARY 

A computer program for the solution of the steady Reynolds averaged incompressible Navier-Stokes equa- 
tions that can accept a variety of turbulence closure models is described.    The program is sufficiently 
accurate and economical to permit extensive comparisons with mean moment data from experiment.    Such a com- 
puter program should provide a useful tool to the turbulence modeler because of the generality of the models 
which can be considered and the economy with which solutions can be obtained. 

In the present study 0-, 1-, and 2-equation closure models are considered and the computed results com- 
pared with experiment and with results of boundary-layer calculation using the same models.    From these com- 
parisons one may conclude that flow parameters which are sufficiently severe to provide strong tests of 
higher order closure models are also sufficiently severe as to cast doubt on the results based on classical 
boundary-layer calculations.    To demonstrate the accuracy and speed of the program parametric studies are 
presented which show the effects of both purely numerical considerations, such as mesh size, convergence 
criteria, boundary location, etc., and physical consideration such as boundary conditions, etc. 

It is believed that the present computer code is more general than previously available fast solvers. 
No near-wall equilibrium assumptions have to be made, as both the mean flow and turbulence closure relations 
are integrated all the way to the wall. 

INTRODUCTION 

A realistic assessment of the probable advances in both computer design and algorithm development indi- 
cates that for the prediction of turbulent flows the Reynolds averaged equations of motion solved over rela- 
tively coarse grids will likely be the most sophisticated computational design tool generally available to 
engineers over the next decade.    This places a major burden of improving our predictive capability on improved 
turbulence modeling.    Because of the inherent empiricism of such models, this improvement requires a large 
data base from detailed and reliable experiments.    In addition, a tool must be available that can make accu- 
rate and economical comparisons between these data and proposed models.    One such tool is the subject of this 
paper.    We propose a fast-solver for the Navier-Stokes equations capable of incorporating various first- and 
second-order closure models. 

The so-called first-order closure models, in which the Reynolds stresses are assumed to be unique func- 
tions of the mean-velocity field, have been developed over the past 40 years to the point where they have 
minimal  further potential and are still inadequate to treat flows undergoing rapid changes in boundary con- 
ditions.    The next logical step is that of second-order closure, in which the Reynolds stresses are related 
to one or more properties of the turbulence itself, through differential equations.    Although the second- 
order closure concept was proposed more than 30 years ago, it has only during the past decade been seriously 
considered as a predictive tool for engineering applications. 

The case for second-order closure may be put in better perspective by considering its advantages and 
disadvantages vis-a-vis simpler modeling.    First, in contrast to mixing length theory, for example, there 
exists a potential in second-order modeling for relatively broad application as the modeling forms themselves 
have been drawn from more than shear flows.    Thus, they may be able to treat flow fields containing different 
classes of flows, for example, attached boundary layers, separation bubbles, vortex motions, and local jets. 
Because the models have drawn upon data from different types of flows, these models often have the disadvan- 
tage of being less accurate for a specific flow than are the more empirical first-order closure models. 
Second, as a result of the above, the computer logic for treating complex flows need not keep track of sepa- 
rate zones and need not switch either models or constants on and off.    The modeling equations themselves, 
however, are much more complicated and due to a large range of eigenvalues, that is, stiffness, are less 
tolerant of breaches of mathematical etiquette, and hence are computationally more costly.    Finally, second- 
order closure may provide a predictive capability in the sense that once confidence can be established in a 
model it may be reliable outside the range of experimental verification. 

From the above it is clear that the potential  advantages of second-order closure methods warrant their 
further development.    In this paper we describe a computer code for the evaluation and/or optimization of the 
predictive potential of second-order turbulent closure models in simple two-dimensional flow configurations. 

The bulk of this paper is made up of the description of a procedure for the numerical solution of the 
steady constant property Navier-Stokes equations together with algebraic, and one- and two-differential equa- 
tion turbulence closure models.    Since we consider only the steady equations, a relaxation procedure is used 
and a first guess of all variables over the whole field is required.    This first guess is generated within 
the program as the solution to the boundary-layer equations.    The advantages of this technique are twofold: 
first, boundary-layer solutions are obtained as a by-product of the Navier-Stokes solutions permitting an 
evaluation of boundary-layer theory for a particular flow, and second, a generally very good first guess is 
obtained leading to rapid convergence and hence low computation costs. 

In order to illustrate the potential of the present method we present comparisons of four different tur- 
bulence models with several sets of experimental data.    In addition, parametric studies of the effects of 
initial conditions and boundary conditions, are described.    The effects of purely numerical parameters, such 
as mesh size, boundary locations, and convergence criteria are presented in an appendix. 

Finally a table of computation time for all the results presented is provided to demonstrate the utility 
of the present method even under the constraint of a relatively modest computational budget. 
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ANALYSIS: THE MEAN FLOW EQUATIONS 

The equations of motion for a constant property steady flow in Reynolds averaged form may be written as: 

0 (1) 
3U   3V 
3x  ay 

3X     3y     P 3X     \3X2   9y2/    3X     3y 

+ v|v = .l|£+ v/^v+3!v\ 
V P ?y        W     3y2/ 

3V_ 

3X 3X ay 

(2) 

(3) 

which provides three equations in the six unknowns    u, v, p, TXX, tXy, and Tyy.    Here, TXX and xyy   are the 
Reynolds normal stresses and    xXy   is the Reynolds shear stress.    In the present study the system of equations 
is closed by introduction of a generalized scalar eddy-viscosity via the constitutive relation. 

ij 3 e5ij + 2e i fc. + !üL\ 
2Vxj   3V •uiuj 

Evaluating the Reynolds normal stresses from (4) and substituting in (2) and (3) we obtain: 
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Txy     e\3y     3x/ 

_3_     jiu_ 
3X  E   3X 

3T xy_ 
ay 

,      r,        3 3V 
+ 2iyEw 

(4) 

(5) 

(6) 

(7) 

(8) 

We note that the substitution of the Reynolds normal stress relations from (4) while the Reynolds shear 
stress in (6) and (7) and its defining relation (8) are retained, is somewhat arbitrary.    This condition is 
an artifact of the development of the numerical solution procedure.    It permits the imposition of continuity 
conditions on the Reynolds shear stress, which in turn facilitates convergence while keeping the matrix 
block size at 8 x 8.    Equivalent treatment of the Reynolds normal  stress would increase the block size to 
12 x 12. 

The variables are normalized as    ü = u/U0, v = v/Re/U0, x 
stream-function and vorticity are introduced, such that 

x/L, and y = y/Re/L   and the dimensionless 

§ = "  and ax 

on we obtain 
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(10) 

(11) 

Equations (9)-(11) are solved with the boundary conditions; at 

y = o    *=f*=o 

y = y. max 
it 
ay 

ue(x) 

<Kx0,y) w = io(x0,y) 

x = x„ max Eqs. (9)-(ll) with 
1/Re set to zero 

(12) 

These relations together with one or more relations defining the eddy viscosity form the system considered 
here. The equations are solved on a reduced computational domain shown schematically below. Since the 
relation(s) used for eddy viscosity vary from model to model they will be discussed under the heading of 
the appropriate model. 
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The numerical procedure used to solve Eqs. (9)-(11) given e/v is a generalized Galerkin method closely 
paralleling that of Ref. 1. In brief, Eqs. (9) and (10) are integrated over the interval y. to y.+ . 

The Taylors series expansions 
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Ayl wij+i = uij + uijAy + uij "21 

U Ay 

"Tij+i = ?ij + "TijA* + ?ij ^ 

= lU±L 
u Ay 

Ji 

(13) 

impose continuity of value and derivatives. This procedure, the integration and incorporation of Taylors 
series expansions, provides a system of ordinary differential equations in "X" in which the values and "Y" 
derivatives of stream function and vorticity appear as dependent variables. Readers interested in more detail 
on the discretization process should consult Ref. 1, 

The integrals of Eqs. (9) and (10) with Eqs. (11) and (13) provide a system of 8N-6 ordinary differential 
equations in the 8N unknowns for j = 1,N. The boundary conditions (10) with the additional conditions; 

at  y = 0 U.  = ill 

at 'max *1N  Re 3x2 

provide a closed mathematical system.    These latter two conditions are required by the higher order differ- 
encing in   y   and are simply special forms of the definition of vorticity appropriate_to the boundaries.    The 
x   dependence is treated by second-order-accurate implicit finite differences.    The   x   dependence of the 
convective terms is represented by three-point backward differences and the diffusion teams by three-point 
central differences.    This results in a system of 8N algebraic equations in 8N unknowns at each   x station. 

Although the discretization outlined above differs markedly from the usual, it is related to the compact 
approximation schemes that are now gaining attention.    It can be shown to be fourth-order accurate in velocity 
and has the advantage of the direct specification of derivative boundary conditions without special treatment. 
Due to the high accuracy in   y, a relatively sparse nodal array may be used while retaining reasonable 
accuracy. 

The system of algebraic equations is solved by a Newton-Raphson iteration that is equivalent, in this 
case, to a line relaxation method with unity relaxation factor.    The resulting 8x8 block tridiagonal matrix 
is solved by L-U decomposition (Ref. 2).    This latter procedure for laminar flow provides about an order of 
magnitude speed as compared with the scheme of Ref. 1/ 
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TURBULENCE MODEL EQUATIONS 

The above mathematical formulation has been carried out under the tacit assumption that the nondimen- 
sional eddy viscosity 5 would be available as required by mean-flow calculation scheme. With the exception 
of Eq. (11), all of the relations describing the turbulence parameters are isolated in subroutines, each of 
which define a single model. 

For those models_that require the solution of a partial differential equation, the discretizations are 
carried out in both x and y by standard three-point second-order accurate implicit finite differences. 
This technique was used instead of the splined Galerkin scheme of the mean flow equations because the ease of 
both analysis and programming of these techniques, relative to the Galerkin procedure, permits a rapid assess- 
ment of a particular model without the investment of a great deal of effort. In addition, the demonstration 
that the numerics of the turbulence equation solution need not be identical with the mean flow equations would 
permit users unfamiliar with splined Galerkin techniques to produce alternative turbulence model subroutines 
using standard techniques. In order to retain a consistent level of accuracy between the fourth-order mean 
flow solution and the second-order turbulence model equations, the latter have been solved on a finer mesh. 
Typically, three or four mesh intervals of the turbulence model equations constitute one mesh interval in the 
mean flow equations. Although this decoupling reduces the computational speed of the overall scheme, the 
authors believe that the additional flexibility introduced warrants the sacrifice. The solution procedure for 
the turbulence equations, once discretized, parallels the iterative method of the mean flow equation. The 
linearization used lags the mean flow and eddy viscosity by one iteration, in the solution of the turbulence 
equations. 

Before we consider individual models it is useful to digress for a moment to consider certain conceptual 
problems that arise when turbulence models, developed within the framework of a boundary-layer theory, are used 
in conjunction with the Navier-Stokes equations. The fundamental problem arises from the fact that y 
approaches S,  to the boundary layer approximation, the strain and the vorticity are identical while for the 
Navier-Stokes io = (au-j/axj)- (suj/axi), while S-jj = (au-j/axj) + (auj/sx-j). The boundary condition of zero 
vorticity applied to the Navier-Stokes equations does not necessarily imply zero strain, and from this fact a 
whole host of problems arise. In particular we lose an unambiguous definition of the boundary-layer thickness 
and concommitantly of the edge velocity and boundary-layer integral parameters. This may not seem important 
until one realizes that the turbulence length scale for algebraic and one-equation models is generally a func- 
tion of s  or & .    In addition, for the two-equation models, finite strain for y > S   gives rise to nontrivial 
turbulence production in the outer flow which can, for some boundary conditions, produce completely irrational 
solutions. 

In order to circumvent these difficulties we have adopted the following ad-hoc procedure. We define 
the boundary-layer thickness as the smallest value of y for which (u/ue) > 0.9 and $" <  10-It ^'ax and 
for y > 6 we define the eddy viscosity as I = E exp[(y - &)/$].    Clearly, other procedures are possible for 
the definition of s,  for example, that used by Lomax and Baldwin (Ref. 3), but all of those familiar to the 
authors invoke some kind of equilibrium assumptions. 

Zero-Equation Model 

The zero-equation model considered in the present study is the two-layer Cebeci-Smith model (ref. 4) 
written as: 

where 

i = : min |   1 

l5o 

I,. = I (0.4yD)2|l# 
l ay 

So = 0 0168 Re.* 
0 

D = (1  - • e-^/A+) 

and 

A+ = 26(1 - 11.8p+)-!/2 

V PUT3 ax 

Although many other mixing length based models have been proposed, this model works quite well for equilibrium 
flows and is in reasonably general use. It can, therefore, serve as a useful standard of comparison for 
higher order closure models. 

For attached flow, no special numerical techniques are required. Near the separation point, however, 
large percentage changes can occur in e near the wall from iteration to iteration; the changes result from 
relatively small absolute changes in au/3y. To surmount this difficulty, in the neighborhood of separation, 
we under-relax the eddy viscosity, that is, 

-m+i  _m , „/-m+i  _m\ 

where m is the iteration number and ß the relaxation factor. 

Solutions have been obtained for ß = 0.1, 0.2, and 0.4, which are independent of e. For ß = 0.6 
no convergence was obtained. 
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One-Equation Model 

The simplest of the second-order closure models requires the solution of an additional nonlinear partial 
differential equation. For this study we chose the Glushko Model (Ref. 5) as extended by Rubesin (Ref. 6). 
This model was selected over that of Bradshaw et al. (Ref. 7) because of mathematical convenience, because 
the constitutive relation for stress as a function of strain is the same as for the two-equation models, and 
because of a more rational extension to elliptic flows than is yet available for the Bradshaw model. 

The equations describing this model for incompressible flow may be written (Ref. 6) as: 

au 
»tf+v§ = ^l+-EUr)33y 

ae     va 
ax 

11  ' "( r)]  "v ' v5sij a*1" Cv[1 + £(xr)] jz 
ae_ 
ax 

where 

e- ~u' 
2  +  v'2  + W'2 

c 2 

e 
e = — 

V 

s.. =1 
/au.     auA 

5ij      2 I ax.     ax. j 

the turbulence kinetic energy 

the dimensionless turbulent viscosity 

the mean strain rate 

and    %   is the turbulence length scale.    To complete the model, the Glushko relations 

E = H(r)ar 

/    V, 

H(r) -ft-..*)' 

0 < j-< 0.75 
o 

0.75 < y- < 1.25 
0 

1.25 < 

and 

1 
& 

|=   (f+ 0.37)l2.61 

U.48 - •H/2.42 

a = 0.2 

r. = no 

0 < I < 0.23 

0.23 s I < 0.57 

0.57 < ^ < 1.48 

C = 3.93 

X  = 0.4 

were suggested by the author (Ref. 5). He also proposed the boundary conditions 

y = 0     e = 0 

y = y max e = 0 

This latter condition is required by the form of the equations for large   y. 

Two-Equation Models 

Two two-equation models are considered here.    The first, due to Jones and Launder (Ref. 8), was chosen 
because it is a well-known model and is in relatively general use.    The second, due to Wilcox and Rubesin 
(Ref.  9), was chosen because of its familiarity to the authors and because it is an extension of the promis- 
ing Saffman model   (Ref.  10). 
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The Jones-Launder model with low Reynolds number corrections may be written 

H.2-1 

J Jo y  V8XJ 

uj 3Xj " ci k *ij ax.     9Xj   ^     aE   3Xjj " 

pe + 2y 
ik1/2 

8Xij 
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where 

vT = Cupk2/e 

Cp = 0.09 exp[-2.5/(l + RT/50)] 

Cj = 1.45 

C, = 2[1  - 0.3 exp(-R2)] 

°k = 1 

ae = 1.3 

RT = _ p ki 
VIE 

In the above, consistent with the notation of Ref. 8, k    is the kinetic energy of turbulence, e    the energy 
dissipation rate, Rj   is a turbulence Reynolds number, a|< and aE    Prandtl numbers, and   uj   the eddy viscosity. 

The Wilcox-Rubesin model may be written as 
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J J J 
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[1  -  (1  - A2)exp(ReT/Re)] 

YJI  -  (1  - X2)exp(-ReT/R[ü)] 

-g- .    A = TT>   Re = l,   Ru = 2 

ReT = i^^ T u ,    i = ei/2/u, ,    Y* = 1 

In the above, e    is the kinetic energy of turbulence, u   the dissipation rate per unit energy, Rex   is a 
Reynolds number of turbulence, and   a* and a   are reciprocal Prandtl numbers. 

The outer boundary conditions imposed on both two-equation models are that all derivatives with respect 
to "y" vanish.    On the inner boundary, the turbulence kinetic energy is zero while, for the Jones-Launder 
model, e = 0    at   y = 0    and, for the Wilcox-Rubesin model, to = 20v/ßy2    as 0. 

For both two-equation models, under-relaxation of the iterative process is required.    Initially, a 
relaxation factor of 0.1 is required; it can be increased to 0.5 as the calculation progresses.    Note that 
all  three of the second-order closure models have a mesh Reynolds number limitation, Re^y = vAy/v < 2. 
Violation of this condition gives rise to large point-to-point oscillations which occur first near the 
boundary-layer edge. 

PARAMETRIC STUDIES 

One of the disadvantages of second-order closure from the computational viewpoint is the need to specify 
additional  in-flow boundary conditions for. the intensity and scale of turbulence.    Recently, one is more 
likely to find that the experimenter has measured turbulence energy profiles; however, the distribution of 
dissipation is usually lacking, being a quantity that cannot be measured directly and that requires arguments 
regarding the isotropic character of dissipation to be evaluated.    In order to generate these distributions 
the following procedure was used.    Using the boundary-layer code of Wilcox (Ref.  11), for    3p/3x = 0    and 
some small  level of turbulence energy, the program was run through a simulated transition until the predicted 
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momentum thickness corresponded to the experimental momentum thickness at the first measurement station. The 
values of turbulence kinetic energy and dissipation were then transformed and used as the in-flow boundary 
condition on the present method for the Wilcox-Rubesin model. For the Jones-Launder model the same energy 
profile was used and the dissipation profile was generated by assuming the eddy viscosity to be the same for 
the two methods, yielding the relation 

e = C^kco/Y* 

The utility of comparisons of second-order closure models with experiment hinges then on the sensitivity of 
the solution to these upstream boundary conditions and the rate at which the effects of these conditions 
washout in the downstream direction. 

The effects of variations in the initial conditions were checked under the flow conditions of experi- 
ments chosen to be used as standards of comparison in the work that follows. These experiments are as 
follows: the Wieghardt flat plate case (Ref. 12), the Samuel and Joubert increasingly adverse pressure 
gradient case (Ref. 13), and the adverse pressure cases of Strickland and Simpson (Ref. 14), and of Simpson 
et al. (Refs. 14 and 15), and of Schubauer and Klebanoff (Ref. 16). 

For the Wieghardt flat plat case (Ref. 12), the Glushko model was run twice with the initial energy 
profile multiplied by 0.9 and by 1.1, respectively. By the third streamwise station, a distance normalized 
by the upstream B.L. thickness of x/60 

= 25, the energy profiles of both solutions had equilibrated to 
within about 1% of the original. Similar variations were imposed on the Wilcox-Rubesin model. With the 
initial dissipation profile fixed, the initial energy profiles were multiplied by 0.9 and 1.1; and with the 
initial energy profile fixed the dissipation profile was multiplied by 0.9 and 1.1. A comparison of these 
four solutions showed behavior similar to that of the Glushko model for the ±10% variations in the initial 
energy distribution, and only a slightly stronger sensitivity to similar variations in the initial dissipation 
distribution. Exactly parallel calculations were carried out for the data of Samuel and Joubert (Ref. 13) 
with similar results. 

Some difficulties with initial conditions were encountered with both the flows of Refs. 14-16. These 
problems will be discussed in the next section in connection with the description of calculations for the 
flows in question. 

These experiments were chosen for comparison because, with the exception of the Wieghardt flow, they 
represent a class of flows, that is, flows with strong adverse pressure gradients, that severely strain our 
present predictive capability. 

RESULTS AND DISCUSSION 

In keeping with the expressed goals of the present study, the principal result is that the computer code, 
satisfying the specifications of efficiency and flexibility in accepting different turbulence models, is 
complete and operational. The efficiency of the code is demonstrated by the execution time required, on a 
CDC 7600, for 15 different calculations (shown in Table 1). One should note that the times cited include 
solution to both the boundary-layer and Navier-Stokes equations. Typical run times can be seen to be less 
than 1 min, which brings the use of the present code well within the reach of all but the most stringent com- 
putational budgets. The flexibility of the code will be demonstrated by the specific results of applying four 
different turbulence models to four flow configurations. These results in the form of skin friction distri- 
butions, are presented in the following pages. It should be noted again that the intent of these figures is 
to demonstrate the performance of the basic method and not to provide definitive comparisons of the various 
models. 

In Fig. 1 we compare the distribution of skin-friction coefficient as obtained from each of the four 
closure models with the data of Wieghardt (Ref. 11). This experiment was chosen to provide a baseline com- 
parison for all the models under equilibrium flow conditions. Note that once the starting transient has 
damped, the Glushko model predicts a Cf about 10% too high, and the Wilcox-Rubesin model one about 5% too 
low; the Cebed-Smith and Jones-Launder models are probably within the experimental error band. Modification 
of the modeling constants within the Glushko and Wilcox-Rubesin models could substantially improve their 
agreement with these data (cf. Ref. 17). In the present study, however, we have elected to use the modeling 
parameters proposed by the originating authors. 

Figure 2 shows the streamwise distribution of free-stream velocity for the experiment of Samuel and 
Joubert (Ref. 13) for an increasingly adverse pressure distribution. The experiment was carried out over 
an extended period with the tunnel adjusted to provide Cp(x) and entry Reynolds number invariant with time. 
The velocities plotted in Fig. 2 are provided for reference. 

Figure 3(a) compares the boundary-layer and Navier-Stokes solutions for skin-friction coefficient using 
the Cebeci-Smith model with the data of Samuel and Joubert. The difference between boundary-layer and" 
Navier-Stokes calculations for this case is due to some extent to the aforementioned difficulty in defining 
s  and s*    for the Navier-Stokes calculations. This hypothesis was verified by rerunning the calculation using 
the 6(x) and 6*(x) computed in the boundary layer solution as the mixing length scaling factors in the 
Navier-Stokes solution. These results are presented in Fig. 3(b). It can be seen that roughly half the 
discrepancy between boundary-layer and Navier-Stokes solutions, for this case, is attributable to the uncer- 
tainties in defining &  and s*   in the Navier-Stokes calculations. 

Figure 3(c) presents similar results using the Glushko closure model. The behavior of the Glushko model 
here parallels that shown in Fig. 1. That is, the predicted skin friction rises sharply initially and then 
predicts values which are 15% to 20% too high compared with the data. As in the case of the Cebeci-Smith 
model the agreement worsens as the pressure gradient increases. 

Figures 3(d) and 3(e) provide similar comparisons for the Jones-Launder and Wilcox-Rubesin closure 
models. The initial excursions in Cf are apparently associated with inconsistencies between the energy 
and dissipation profiles and the mean flow profiles at the in-flow boundary. The relatively poor performance 



of the Jones-Launder model in the region 0.84 <,  x < 2.4 is almost certainly associated with the choice of 
in-flow boundary conditions. For x > 2.4, however, the Wilcox-Rubesin model appears to follow the trend of 
the experiment more closely. These latter two figures demonstrate the sensitivity of the two-equation models 
to in-flow boundary conditions on the turbulence properties and to the inadequacy of the present procedure 
for determining them in general. However, because the optimum procedure for determining these conditions 
will almost certainly vary from model to model, it was not considered to be fundamental to the present study; 
therefore, it could be deferred to a subsequent effort or left to the modelers to devise. 

The next flow to be considered is that of Strickland and Simpson (Ref. 14) and of Simpson, Strickland, 
and Barr (Ref. 15). The most interesting point about these experiments, in addition to their complete 
documentation, is the fact that the imposed pressure distribution leads to separation. The free-stream 
velocity distribution is shown in Fig. 4. It is unfortunate that these data, insofar as they were reported 
in Refs. 14 and 15, were obtained at relatively large streamwise intervals in the region of adverse pressure 
gradient because it introduces, with the redundancy of measurement techniques (laser anemometer, pitot, and 
slant and normal hot films), a degree of arbitrariness into the edge velocity to be matched in the calcula- 
tion. The fairing used provides the largest velocity gradient that can be inferred from the data. Figure 5(a) 
compares the predicted skin-friction distribution, from boundary-layer and Navier-Stokes solutions using the 
Cebeci-Smith model, with the data of Refs. 14 and 15. Consistent with their behavior in laminar flow 
(cf. Refs. 1 and 17), the boundary-layer equations tend to predict a "too early" occurrence of separation, as 
compared to the Navier-Stokes equations. In fact, for this case the Navier-Stokes equations do not predict 
separation to occur at all. Similar results are shown in Fig. 5(b) for the Glushko model. In agreement with 
previous results, the Glushko model predicts a Cf distribution somewhat higher in value than does the 
Cebeci-Smith model. 

The experimental behavior of turbulent separation, noted by Simpson et al. is that the streamwise pres- 
sure distribution appears to relax immediately downstream of the intermittent separation point. This is in 
sharp contrast to the laminar flow cases cited above, and to the turbulent flow case to be discussed, for 
which we find that the strong adverse pressure gradient must be maintained well past the computed separation 
point in order for the flow to separate. This is apparently the result of strong streamwise ellipticity in 
the neighborhood of the separation point. The fact that the physical flow does not exhibit this behavior 
argues for some different, or at least additional, mechanism to be active in the turbulent flow case. A 
logical candidate for this additional mechanism, noted in Refs. 14 and 15, and consistent with the data of 
Ref. 18, is a strong augmentation of the Reynolds normal stresses approaching separation. In order to 
accommodate this behavior, it would be necessary to employ more complicated models than those considered 
here. The authors were recently informed that Launder is currently incorporating an augmented normal stress 
within a new two-equation model. 

Pletcher (Ref. 19), using an inverse boundary-layer procedure specifies the experimentally observed 
distribution of displacement thickness, was able to predict the separation point for this flow using what 
might be called a half-equation model. He uses an ordinary differential equation for mixing length in the 
outer flow. It is interesting to note, however, that the edge-velocity distribution predicted using this 
method displays a velocity gradient ahead of separation that is roughly twice as large as that observed 
experimentally. This implies that if a method such as that proposed in Ref. 20, an inverse boundary-layer 
method driven to produce an imposed velocity distribution, were used the results might well be more consis- 
tent with Navier-Stokes solutions presented here. 

Simpson and Collins (Ref. 21), have also predicted the separation point in this flow using a modified 
version of Bradshaw's model. The modification consists of the addition of Reynolds normal stress terms to 
both the mean flow momentum and turbulence energy equations in an ad hoc fashion. It is noteworthy that 
both of these techniques produce the desired results, that is, separation, but based on totally different 
physical hypotheses. The Simpson-Collins approach was apparently guided by the experimental measurement of 
Reynolds normal stresses and further emphasizes the need for good communication between the experimenter, 
the modeler, and the computational workers. 

The in-flow boundary conditions on the mean flow, that is, u(x0,y) and Cf(x0), for the calculations 
presented up to this point, were deduced from the experimental measurements. For the Strickland, Simpson, 
and Barr flows we were unable to obtain initial conditions on the energy and dissipation, using the previously 
described procedure, which were sufficiently consistent with the experimental mean flow conditions to permit 
the calculation to proceed. To circumvent this problem we used the Wilcox code (Ref. 11), starting near 
x = 0 with a laminar flow, and allowing the flow to develop, through a simulated transition, under the 
effects of the experimental pressure distribution. The in-flow boundary conditions at x = 2.63 m were 
taken entirely from this calculation. The skin-friction coefficient was about 15% higher than that observed 
experimentally and velocity profile was somewhat fuller in the near-wall region. 

The Cebeci-Smith and Glushko models are shown in Figs. 6(a) and 6(b). The large differences between the 
results presented in Figs. 5(a) and 6(a) are attributable solely to the differences in mean flow conditions 
on the inflow boundary. Similarly, the differences between Figs. 5(b) and 6(b) can be attributed primarily 
to the effects of mean flow initial conditions. Although some increment of this difference is associated with 
differences in energy profiles at the inflow boundary, our experience cited earlier indicates that this is 
small and damps rapidly. 

Figures 6(c) and 6(d) present similar results using the Jones-Launder and Wilcox-Rubesin models. The 
poor agreement of both two-equation models for this case is attributed to the inadequacy of our procedure for 
obtaining initial conditions. 

The final flow considered in the present study was that of Schubauer and Klebanoff (Ref. 16). Because 
we wished to present at least one set of calculations that included a prediction of separation and reattach- 
ment, we took some liberties with the edge-velocity distribution downstream of the location x = 7.0 m 
(x = 23 ft). To demonstrate the capability of the present method to predict a region of recirculating flow, 
we extended the region of constant adverse velocity gradient to about 8.4 m and added a region of accelerating 
flow for 8.9 < x < 9.8 m to force reattachment within the computational domain. The experimental velocity 
distribution together with that used in the computation are shown in Fig. 7. 
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Figures 8(a) and 8(b) show the results of applying the Cebeci-Smith and Glushko closure models, respec- 
tively, to this flow using the experimental mean flow parameters as in-flow boundary conditions. The experi- 
mental skin friction is plotted only over the region for which the experimental and computational boundary 
conditions, ue(x), correspond. Again, the Glushko model produces a somewhat higher skin-friction coefficient 
in the attached flow region than does the Cebeci-Smith model. The separation bubble predicted using the 
Glushko model is somewhat larger than that predicted by the Cebeci-Smith model but in light of the uncer- 
tainty in initial conditions the authors are hesitant to interpret this as being meaningful. The mesh con- 
figuration for this flow was such that the streamwise extent of the bubble encompassed 8 nodes and the 
stream-normal region of negative velocity from 1 to 8 nodes. 

We experienced the same difficulty with the two-equation models with this flow as was described in con- 
nection with the flows of Strickland, Simpson, and Barr. A parallel starting procedure was followed and the 
results for the four closure models are presented in Figs. 9(a) through 9(d). 

The interesting points to be deduced from these figures, which have not already been made, are that they 
verify the authors' hypotheses that in order to obtain significant discrimination between turbulence models 
they must be used to predict flows with rapidly varying boundary conditions, and that the introduction of 
different turbulence models into any mean-flow-solution procedures cannot be considered a routine task, our 
inability to obtain a converged solution in the Navier-Stokes mode for the Wilcox-Rubesin model being a case 
in point. The investigator wishing to consider higher order closure models should be prepared to face sub- 
stantial numerical difficulties in the development of reliable algorithms for these methods. 

We turn our attention now to some observations that can be made from the collective results to date, and 
from the results of other studies. Viegas, Coakley, and Horstmann, in a series of studies (Refs. 22-24) have 
applied slightly modified versions of the models considered here to transonic, supersonic, and hypersonic 
Shockwave boundary-layer interactions using a Navier-Stokes code based on the MacCormack fast solver (Ref. 25). 
Although it is impossible to make rigorous comparisons of the present results with those cited above, the 
relative values of Cf from model to model appear to be consistent. 

The difficulties faced by the present authors in the numerical solution of the two-equation models do not 
appear to be unique to the present study. Coakley and Viegas (Ref. 22), for example, were forced to introduce 
special bounding functions on the energy and length scale to prevent solution divergence. 

We believe that the present method has certain advantages as a model test vehicle over that used in 
Refs. 22-24, despite its restriction to incompressible flow. These advantages are the economy of calculation 
and the innate high accuracy on a sparse mesh. Despite the fact that the restricted computational domain 
requires the explicit specification of the in-flow boundary conditions on turbulence properties, it is con- 
sidered to provide significant advantages in a model test vehicle. First, it requires the user to be aware of 
the approximations involved in the generation of these conditions. Second, it permits the numerical evaluation 
of discrete regions of the flow field in relatively fine detail without exhorbitant demands on either computer 
time or storage. Finally it permits the imposition of the experimentally observed free-stream velocity dis- 
tribution on the calculations so that differences between the predicted and experimental values of other 
parameters, for example, Cf(x), can be attributed directly to the model in use, and should facilitate rational 
model optimization. 

Although the present algorithm is well suited to vector processing no advantage has been taken of the 
7600 vector software so that the code can be used on other machines with only minor modifications. 

Among the advantages of the present method relative to other incompressible Navier-Stokes solution algo- 
rithms is the fact that it is fourth-order accurate in y on an arbitrary mesh and second-order accurate in 
x on a uniform mesh. Since equal x-mesh size is used throughout, the lead-truncation-error term is of odd 
order and numerical viscosity, which frequently clouds the results of other methods, is practically non- 
existent. In addition, the solution is carried out over the whole mesh 0 < y < ymax and no near-wall 
approximations are made. 

CONCLUDING REMARKS 

Substantial progress has been made toward the basic goal of the present study, which is to develop an 
efficient and accurate test vehicle for turbulence models that can treat flows with recirculation. In addi- 
tion, we have made a substantial effort to point out some of the problems that arise when higher order models 
are used and particularly when they are used in conjunction with the Navier-Stokes equations. 

Although the specific comparisons of the several models with each other and with experiment are not to 
be considered definitive, because of difficulties in obtaining consistent in-flow boundary conditions, the 
trends appear to agree with those of other investigations. 

Finally, although the authors substantially concur with Liepman (Ref. 26) regarding the uncertainty of 
the meaning of the Reynolds-averaged equations and the difficulty in assessing the utility of various models, 
we believe that from the practical engineering point of view, modeling of turbulence within the Reynolds 
averaged equations constitutes an upper bound on admissible complexity for at least the next decade. It is 
to be hoped that methods like the present will ease the path of those engaged in modeling to the extent that 
the designer might ultimately have, if not a universal model, at least a family of models applicable to 
various types of flows and ranges of parameters. 
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APPENDIX 

NUMERICAL PARAMETRIC STUDIES 

In the simulation of a physical event by means of a numerical calculation scheme there are, associated 
with the scheme, parameters having no physical analog. As a result, the selection of values for these 
parameters must be based on experience with the particular calculation scheme in question and the propriety 
of the selection must be checked post-hoc. 

The purely numerical parameters of the present method are AX, the streamwise step size common to both 
the mean flow equations and the turbulence equations; AY, the stream-normal step size in the mean flow equa- 
tions; AYT, the stream normal step size in the turbulence equations; C0NVER, the convergence criterion for 
the mean flow equations; C0NVERT, the convergence criterion for the turbulence equations; YMAX, the upper 
boundary of the computational domain; and XMAX, the downstream boundary of the computational domain. 

EFFECTS OF X STEP SIZE 

The effects of the X step size were examined by applying the present method, using the Wilcox-Rubesin 
model, to the flow conditions of the Wieghardt flat plate. These flow conditions were used to isolate the 
effects of AX in the calculation from the effects of the streamwise definition of the boundary conditions. 

Six sets of calculations were carried out with AX ranging from 0.5 S0 to 16 <50. Except for the region 
of the starting transient near the left-hand boundary, the skin-friction distribution changed by the order of 
]%  between the smallest and largest X step size. 

EFFECTS OF Y STEP SIZE 

The discussion of the effects of Y step size is complicated by the fact that a strongly non-uniform 
Y-mesh is used. In contrast to the usual finite difference procedure, the accuracy of the present method is 
insensitive to the rate of growth of the Y-mesh, but like finite difference methods, it is sensitive to both 
the size of the largest AY and to the distribution of points in Y. 

Three different distributions of Y points and three different Ymin were considered in conjunction 
with the Wilcox-Rubesin model and the flow conditions of Samuel and Joubert. The array of Y points finally 
selected was distributed, on the basis of the initial velocity profile, as follows. 

1. 5 to 6 points for 0 < y+ < 10 
2. 15 to 16 points for 10 < y+ < 200 
3. 8 to 10 points for 200 < y+ < yjjjax 

The use of additional points in "y" produced results that were indistinguishable to three significant figures; 
using only every other point in the above distribution produced a change of Cf at the downstream boundary 
of about +6%. 

The use of the mean flow mesh cited above in the turbulence equations, contrary to our expectations, 
provides adequate resolution. This was verified by solving the turbulence equation with 2 and 3 times the 
point density without significant change in the eddy-viscosity distribution. This is due, at least in part, 
to the fact that the eddy viscosity is the ratio of two computed parameters so that small errors of the 
same sign in both parameters will tend to compensate. 

EFFECT OF CONVERGENCE CRITERIA 

Because of the desire for easy interchange of turbulence equations two separate iteration loops with 
independent convergence criteria are used. The error in each equation solved is defined as the left-hand 
side minus the right-hand side. 

We iterate in the inner loop for the turbulence equations until the largest error, for all Y at any 
X, is less than 0.1. At that point the eddy viscosity is sent to the mean flow equations for a single 
iteration, and the entire cycle is repeated until the largest error in the mean flow equations is less than 
0.001. This latter criterion is dominant and the inner loop is required only to prevent poor initial condi- 
tions in the turbulence properties from driving the entire solution procedure into large oscillations. For 
typical attached flow cases, the 0.001 convergence bound implies convergence in all variables to three 
significant figures. If less accuracy, and more economy, is required this value may be increased. 

EFFECT OF YMAX 

The proper choice of the location of the upper computational boundary is substantially more case- 
dependent than are the other numerical parameters. In general, one must choose YMAX to be large enough so 
that 3u/3y is small there. The requirement arises from the fact that the velocity along this line is 
specified as a boundary condition, and if 8u/8y is not small, then ue = ue(x,y) f  ue(x) and the solution 
varies with YMAX. 

For the solutions presented in the body of the paper we required that a 25% increase in YMAX must not 
affect the skin-friction coefficient by more than VL 

EFFECT OF XMAX 

For the majority of the cases considered here, boundary-layer-type flows, the solutions show negligible 
sensitivity to the downstream boundary location. For a flow with separation, the downstream boundary must 
be sufficiently far downstream of reattachment so that the flow has recovered its boundary layer character. 
This requirement is imposed by the fact that the boundary conditions at XMAX are the boundary layer equations. 
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Table 1. Execution Time on CDC 7600. 

Flow conditions and Execution time, 
turbulence model I'IAIH CPU-sec 

Wieghardt F.P. 
Cebeci-Smith 20 X 25 4.45 
Glushko 20 X 25 7.55 
Jones-Launder 20 X 25 13.39 
Wilcox-Rubesin 20 X 25 27.73 

Samuel  and Joubert 
Cebeci-Smith 22 X 31 26.3 
Glushko 22 X 31 22.3 
Jones-Launder 22 X 31 26.3 
Wilcox-Rubesin 22 X 31 29.9 

Strickland and Simpson 
Cebeci-Smith 15 X 33 19.9 
Glushko 15 X 33 14.6 
Jones-Launder 15 X 33 27.5 
Wilcox-Rubesin 15 X 33 41.8 

Modified Schubauer and 
Klebanoff 

Cebeci-Smith 29 X 28 69 
Glushko 29 X 28 88.9 
Jones-Launder 29 X 28 179 
Wilcox-Rubesin 29 X 28 — 
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Fig.  1    Comparison of experimental skin friction on a flat plate with predictions using four closure models. 
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Fig.  2    Free-stream velocity distribution for Samuel  and Joubert flow (ref.  13). 
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Fig.  3   Comparison of experimental skin friction in an increasingly adverse pressure gradient with boundary 
layer and Navier-Stokes solutions. 
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Fig. 7 Modified velocity distribution to produce separation. 
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Fig. 8   Skin-friction distribution for modified Schubauer and Klebanoff velocity distribution:    experimental 
velocity distribution at in-flow boundary. 
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REYNOLDS STRESS CLOSURES - STATUS AND PROSPECTS 
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Summary 

Although conventional single-point closures have allowed the successful calculation of 
many types of turbulent shear flow, there has been a steady accumulation of turbulent flow 
phenomena that are found to be inadequately simulated by available schemes. Partly arising 
from these failures a number of workers have questioned the usefulness of the statistical 
approach to turbulence, based upon Reynolds averaging. 

The present contribution addresses two themes arising from this situation. The first is 
that second-order closures (those based on conventionally averaged momentum equations and a 
closed set of Reynolds stress transport equations) appear in principal suitable for the 
analysis of the vast majority of furbulent shear flows. In particular it is shown that a 
single form of the Reynolds stress transport equations has been used to predict shear flows 
that appear to be "dominated" by large scale structures of different types. Examples are: the 
"natural convection" limit in the atmospheric boundary layer, the turbulent boundary layer on a 
concave surface and various free turbulent shear flows. In all these cases turbulent mixing 
rates are appreciably higher than found, say, in a turbulent shear flow between parallel walls 
where large scale structures are not dominant - and in which the Reynolds stresses are also 
well described by the same form of rate equation. 

The inference drawn is that for many purposes the large scale structures can be regarded 
as nature's mechanism for providing enhanced transport rates when these are demanded by the 
imposed strain field, force field or boundary conditions. Since the Reynolds stress transport 
equations contain the "signal" of influences in the stress generation terms it is reasonable 
that the stress levels should respond in accord with observations in the various shear flows, 
cited. 

The second theme is that, although second order closures as a class thus appear capable of 
achieving a wide range of applicability, current schemes contain highly simplistic ideas that 
can and must be removed for the closures to achieve the potential of which they are capable. 
Perhaps the most serious weakness is the use of just a single time scale to characterize the 
rates of progress of all the various turbulence interactions that need approximating. The 
writer and his colleagues have devised a more general approach that provides independent time 
scales for the large-scale and medium-scale motions. The model is developed and applications 
are shown to various shear flows including turbulent boundary layers close to separation. Use 
of the multiple time scales brings much improved predictions over an encouragingly wide range 
of conditions. 

Introduction 

Turbulence, as befits its nature, has inspired vastly different approaches towards bringing it to 
order. One that has appeared increasingly attractive to computationalists over the past decade is the 
second-order, or - as we shall term it here - the Reynolds-stress closure. For the experimentalist, in 
the same period, there has been perhaps even greater interest in the search for and documentation of 
embedded orderliness in the turbulence signal - a coherence in structure made visible by appropriate 
filtering of or discrimination in the measurements. 

These two schools of work - the one computational, the other experimental - have so far had little, 
if any, impact on one another. Indeed, the posture of the groups to each other may be said to have been 
"stand-offish". The Organizing Committee of the present symposium, however, has made at least some 
attempt at dialogue by requesting that approaches to "theory and modelling" should either incorporate 
modern experimental knowledge of the ["organized"] structure of the turbulent boundary layer or provide 
a justification for its omission. 

The present contribution is provided as a response to that request. It has been written chiefly for 
those who are not practioners in Reynolds stress closures, though, for the turbulence modeller, at .least 
one new suggestion has been added on how the breadth of current closures may be extended. First we 
summarize the basic pattern of Reynolds closures and the reason they look an attractive type of model 
for practical shear flow calculations. Here will be discussed, also, the writer's view of the 
relationship between the 'organized structures' and Reynolds stress closures. In Section 3, drawing 
principally on the work of the writer's group, an outline will be given of fundamental developments that 
are being introduced to extend the admittedly modest current reliability of Reynolds stress closures. 
Chief of these is the introduction of two or more independent time scales to characterize different 
turbulent interactions (other current schemes employ just a single scale). More far reaching, though 
still at the conjectural level, is the partitioning of the Reynolds stress field in wave number space 
with a different set of transport equations (with their attendant closure hypotheses) for each slice. 
Such an approach would dovetail nicely with the sub-grid-scale closures that those with unlimited 
computer budgets are now beginning to apply to simple shear flows. It is, however, a too complex 
closure level for practically interesting "difficult" flows - at any rate for the next five years or so 
until computer speeds and the general availability of powerful computers have advanced to the point 
where solving the additional sets of transport equations cease to be a significant deterrent. 
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2.  Reynolds Stress Closures: Methodology and Potential 

2.1 The Exact Stress Transport Equation and Some Inferences from the Generation Term 

The 1968 Stanford Conference marked, in all probability, the first occasion at which an audience 
concerned with the computation of turbulent boundary layers was encouraged to obtain the unknown 
Reynolds stresses, u^uj, by solving a set of closed transport equations for the non-zero elements of 
the Reynolds-stress tensor [1]. With the exception of Bradshaw [2] (who had determined the turbulent 
shear stress from a rate equation for kinetic energy) all those who had applied differential field 
methods to the calculation of the various test cases posed by the organizers of the Stanford meeting had 
represented the turbulent stresses by way of the relation: 

u.u . 
i J 

(1) 

where    Vt     is     an    effective     (scalar)     kinematic    viscosity    and     (SU^/SXJ     +     SUj/3xf)     is     the    mean 
strain    rate.       At     the    Reynolds-stress     closure    level     that    Donaldson     [1]     advocated,     however,     the 
correlations      between     fluctuating     velocities     would     instead     be     obtained 
Reynolds-stress   transport equations. 

from     solutions      to     the 

An exact equation for the transport of u£Uj is easily obtained by multiplying the Navier-Stokes 
equations by the fluctuating velocity and time- or ensemble averaging. The resultant expression for a 
stationary,   quasi-incompressible flow    field in which molecular   transport  is  negligible may be written: 

Du.u. 
i   J 

Dt 

r   3U.         3U. -j 

3    /  
(2) 

where p and p' denote respectively the mean density and fluctuations about this mean, g^ is the 
gravitational acceleration vector and p stands for the fluctuations in pressure. Although gravitational 
terms are hardly ever important in aeronautical fluid mechanics they have here been retained partly 
because of the well-known analogy between the effects of streamline curvature and buoyancy on turbulence 
and partly to illustrate the width of flow phenomena that may already be adequately characterized by a 
single set of equations. In words the equation expresses the fact that the rate of increase of üJuT 
of a small fluid package arises from a net excess of direct rates of generation (Pfi and Gjj) due to 
interaction with the mean-strain and gravitational fields over the combined loss rate due to direct 
viscous dissipation (e^;), pressure interactions ($i.i) an<i diffusive transport (V^i) + . Although 
expressible through tensor notation as a single equation, any use of a closed form of (Z) requires, of 
course, solution of separate transport equations for the individual Reynolds stress elements. Equation 
(2), together with a clear, elementary appraisal of some of its implications, has been available in 
textbook form for at least 20 years [31. The equation provides such insight into the character of the 
Reynolds stresses that it is hard to understand why such a small proportion of graduate majors in fluid 
mechanics have an familiarity with it. 

The last three groups of terms in Eq. (2) are not directly knowable. To achieve closure at the 
Reynolds-stress level these correlations must be approximated in terms of the Reynolds stresses, the 
mean strain field and a characteristic time scale (or scales) of the turbulent interactions. What makes 
the Reynolds stress closure level a particularly interesting and effective one to work at, however, is 
that the generation terms in (2) may be regarded as known. Generation agencies form a major term in the 
Reynolds stress budget in turbulent boundary layers (except in conditions of turbulence collapse due, 
for example, to severe accelerations); thus, one might regard the problem of closure as being half-way 
dealt with without having to make approximations. One may liken the task of providing a model for the 
Reynolds stresses to that of assessing the wealth of an individual. With no knowledge of the 
individual's economics, the task is an impossible one. State specifically his income, however, and the 
problem of constructing an economic model begins to appear manageable. It remains, of course, to 
prescribe a model for his expenditures (the dissipation term), his taxes (the pressure-velocity 
interactions) and the checks mailed to his kids at university (diffusion). Our everyday experience 
tells us, however, that these other elements in a person's economic budget are strongly linked to the 
income itself. 

Density fluctuations are retained only in the gravitational term 
approximation" 

the so-called "Boussinesq 

In this description the terms "generation" and "loss" are used rather freely: the buoyant generation 
may be either positive or negative according to whether the stratification is unstable or stable; 
the pressure interactions will produce an energy gain in some components and a loss in others (as 
may be inferred by noting that the trace of O^j is zero) while diffusive transport will act to 
raise u^U4 in some regions and to diminish it in others. 
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Let us proceed to some examples which emphasize the extent to which knowledge of the generative 
agencies allows at least qualitative inferences to be drawn about how turbulence will react to various 
strain and force fields. We start with the case of a plane, parallel flow, U^(x2) in the absence of 
gravitational effects cited by Hinze [3]. In this case evaluation of the generation term in Eq. (2) for 
each component of normal stress shows that only the streamwise fluctuations (uf) receive energy from 
the mean flow (at a rate equal to - 2 u^U2dU^/dx2); the normal stress levels in the plane 
perpendicular to the mean velocity owe their sustenance to pressure interactions deflecting energy from 
streamwise fluctuations. We may thus reasonably infer that the x^-direction fluctuations will be 
larger than those in any other direction - a circumstance that experiments amply confirm. Lest we 
dismiss too lightly the capacity of Eq. (2) for getting such a simple feature of turbulence correct, it 
is well to note that Eq. (1), which is still the most widely used stress-strain relation in practical 
calculations,  gets  it lamentably wrong! 

Streamline curvature is well known to have marked effects on the development of turbulent boundary 
layers. If we orient our axes so that x^ points in the mean flow direction, we can regard the 
importance of the curvature term to the flow's development as given by (Su^/Sx^)/(3U^/3x2). 
Bradshaw [4] was among the first to note that small amounts of 3ü2/3xx had a large effect on the 
boundary layer growth - indeed, inexplicably large if one's views on turbulent transport are blinkered 
by the effective viscosity relation, Eq. (1). The reason for the flow's sensitivity to the small 
additional strain due to curvature is, however, immediately apparent from the generation term in Eq. 

The generation rate of the shear stress u^U2 by mean strain is 
J2 SUl/3^2 + u^ 3U2/8x]) . Now,       in      a      boundary      layer      flow      on      a      flat      plate      u^      is 

typically between two and five times larger than u2. depending upon the position in the shear flow. 
Moreover, in the transport equation for u\ a direct generation due to curvature of 
- 2 uxU2 8U2/3x^ now arises and this term further amplifies the increase or decrease of shear 
stress brought about by the curvature of the mean streamlines. Indeed the study of Irwin and Arnot 
Smith [26] suggests that when direct and indirect effects are all included the flow will be 15 times 
more sensitive to curvature than if turbulence acted purely as an amplified laminar viscosity as Eq. (1) 
implies. 

Historically, nearly all approaches to calculating buoyancy-affected flows arising in engineering 
contexts have employed effective viscosity transport relations for the turbulent fluxes of momentum and 
heat. Workers have attempted to account for effects of buoyancy on the transport coefficients through 
empirical functions whose argument has been the local or averaged Froude, Rayleigh or Richardson 
numbers, (dimensionless groups involving ratios of different characteristics of the dynamic and buoyant 
fields). When a Reynolds-stress closure is used, however, the direct effects of buoyancy appear exactly 
in the stress transport equations. Now, of course, transport equations for the density-velocity 
correlations must be solved as well and these equations, similar in structure to Eq. (2), will require 
closure approximations for the different unknown correlations contained therein. Again, however the 
generation terms due to mean strain, mean density gradients and buoyancy can be regarded as known 
provided a further equation is provided for the mean square density fluctuations . Figure 1 shows the 
extensive interconnections that result among the Reynolds stresses and density fluxes for the case of a 
thin shear flow where x^ (the flow direction) is horizontal and X2 (the direction of velocity and 
density gradient) is vertical. Note first that in the absence of buoyancy, U2 interacts with the mean 
strain to sustain the shear stress u^U2 which, in turn, acts as the source for u^[ some of whose 
energy is deflected via pressure fluctuations to maintain uj- The vertical density flux, U2P', is 
_pivotal in the effects of buoyancy on the Reynolds stresses: it provides a direct source or sink in the 
1^ equation and acts indirectly on uiU9 both through the dependence of this component on U2 and 
via the horizontal density flux, u^P'. There is direct "talk back" to the vertical density flux from 
both U2 and p'2 since these correlations appear in the generation terms of the u2p' equation. The 
inference that I suggest be drawn from this is that the interactions among the various components of the 
turbulent stresses and density fluxes are too numerous and intricate to hold out any hope of correlating 
their effects by adjoining empirical functions to expressions for the effective viscosity. As we shall 
see later in the section, however, the equations for the second-rank moments extrapolate well from 
neutral  flows  to account for transport effects under highly stratified  situations. 

2.2  Current  Closure Methodology 

In the foregoing section we have advanced the view that its exact treatment of the stress-generation 
agencies gives the Reynolds stress transport closure decisive potential superiority over any simpler 
scheme. While, however, one can extract a great deal of qualitative information about the character of 
a turbulent shear flow from analyzing the generation terms alone, Eq. (2) becomes useful for calculation 
purposes only if adequate closure approximations can be made of the unknown correlations appearing 
therein. The following paragraphs provide a brief account of current closure practices. More extensive 
reviews  and more detailed discussion are provided in references   [4-9]. 

For boundary layer flows, the most important of the unknown terms in (2) is the pressure 
redistribution term, $£•;. Examination of the Poisson equation for p shows that pressure fluctuations 
are attributable to three agencies [9]: purely fluctuating velocity interactions, ^ij 1, an additional 
effect due to the superposition of a fluctuating velocity field onto a mean-field deformation, <f>ij 2 
and thirdly, in stratified media, a contribution from perturbations in potential energy, <l>-n 3. The 
majority of workers now active in Reynolds stress closures devise separate approximations for each of 
these effects. For the contribution arising from purely turbulence interactions most workers adopt 
Rotta's  [10]  linear return-to-isotropy model: 

*       If    density    fluctuations    may    be    considered    to    arise    purely    from    temperature    fluctuations     the 
correlations  between velocity  and  temperature  fluctuations may be  solved instead. 

+       The  buoyant  generation rate  in  the  equation for p'u-j_  is  equal   to p     g;/p. 



13-4 

'ij.l -cl(uiuj-f 6ijk)/T* (3) 

where k stands for the turbulence kinetic energy, uf/2 and TA is a time scale of the interaction. If, 
as is usually the case, TA is taken as the turnover time of the energy-containing motions, k/e (e being 
the local dissipation rate of turbulence energy) the optimum value for the coefficient c^ is about 
1.8. There are some indications that cj should in fact be an increasing function of the turbulence 
ahisotropy, Lumley & Newman [11], though for boundary layers this effect is overshadowed by that due to 
the wall's  proximity,   to be  discussed below. 

Mean strain contributions to §44 seem likely to be particularly important for predicting 
three-dimensional boundary layers and other flows with complex strain fields. Overall, the most 
successful  of  current models   is  also  one  of   the  simplest: 

ij.2 / P. .   -ip,,   «..) (4) 2\   ij       3     kk    IJ / 

The idea expressed by Eq. (4) is that pressure fluctuations will tend to isotropize the shear 
production: that is to say a fraction C2 of the shear stress generation (and the excess of the 
normal-stress production over the mean) will be obliterated. Clearly the coefficient C2 must lie 
between zero and unity. In isotropic turbulence (u£u; = 2/3 \i k) it is readily demonstrated 
that C2 = 0.6; this value seems appropriate also for many shear flows which is an encouraging result. 
Although more elaborate formulations have given better results for a number of test cases these may 
sometimes lead to serious errors when applied in complex strain fields. For example, the 
quasi-isotropic model of references [6] and [12] predicts that, contrary to experiment, the addition of 
swirl to an axisymmetric jet reduces its rate of spread, a deficiency which Launder and Morse [13] 
identify with  the model   for   <p-Li   2- 

Buoyant    effects    on     $j4    appear,     to    a    first    approximation,     to    be    accounted    for    with    a    model 
identical   in  form  to  that   suggested  for   <f^:   2,   i.e. 

1J> 
,(G. .   -  \  G. .    &. .*) (5) 
IV   ij       3    kk    ij/ 

Within the accuracy of current experimental data it appears that 03 can be taken equal to C2- 

In dealing with flows along walls one needs, unfortunately, to account for the effects of pressure 
reflections from the boundary which diminish the intensity of fluctuations normal to the wall. For a 
plane surface the strength of this effect seems to be proportional to the ratio of a local turbulent 
length scale to the normal distance from the wall. Specific corrections have been proposed in 
references [6] and [8], the latter being better adapted for use with Eq. (4). Some groups, notably 
those associated with Donaldson and Mellor, include no account of pressure reflections; instead the 
coefficients in their basic closure scheme are tuned specifically to give an adequate account of, say, 
the flat plate boundary layer. This approach is justified provided one confines attention solely to 
boundary layers on a plane wall. Poor predictions inevitably result, however, if one attempts to 
calculate, with a single set of equations, the flow around an airfoil and the wake downstream 
therefrom. 

Diffusive transport is usually of relatively small importance in attached boundary layers in 
aeronautical applications. There is thus no justification for retaining transport equations for the 
third moments as Andre and his colleagues [14] do for their simulations of the atmospheric boundary 
layer. Some groups have attempted to model the transport by velocity and pressure fluctuations 
separately, the most complete studies to date being contributed by Lumley and his co-workers (e.g. Zeman 
and Lumley [15]).  For unstratified flows, however, the simple form: 

3 3u.u. 
V.. =  c  *     ^ITuT^i-J (6) 
xj   s dx  e k I    3x. 

has been found to give generally satisfactory behavior in a variety of free shear flows and boundary 
layers when the coefficient cs is taken as 0.22, references [6] and [13]. 

The dissipation tensor £44 is represented by most workers in terms of the dissipation rate of the 
turbulence energy, £ by assuming isotropy of the fine scale motion: 

e.. = I 6.. e (7) 

Recently, however, Lin & Wolfshtein [16] and Mjolsness [17] have queried the basis for this assumption. 
There does seem to be a good deal of uncertainty as to whether Eq. (7) is justified in the inner region 
of the boundary layer, for y+ less than 200, say; the question can only be resolved in due course by 
definitive experimental data. The matter, while certainly of fundamental interest, may turn out to be 
somewhat academic for computational purposes since working calculation schemes will, unwittingly, have 
absorbed effects attributable to departures from local isotropy into their approximation of pressure 
interactions. 

Equation (7) will be recognized as just one step towards obtaining ££4; a path is still needed for 
determining £.  The form used by most workers may be written 
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De      e2/ 
ei _^ "  ce2 

+ ce3 
A 
) (8) 

where  the  turbulence  anisotropy is  defined  as: 

A  = a. .   a. . where a. .   -( u.u.   - -TT   °. .  k )/k 
ij    \i J    3   ij   y 

The c's are coefficients to be determined experimentally. Table 1 gives the values recommended by two 
groups. We note that Pkfc/e varies across a shear flow in a rather similar way to A; the absence of 
any effect of anisotropy in the proposal of reference [ 6 ] is accordingly accompanied by a larger value 
of the coefficient ce^ than that proposed in reference [15] . The diffusive transport of e has been 
approximated in [6] by: 

v°-»^(!v*^) 

Authors cel ce2 ce3 

Launder, Reece, and 
Rodi [6] 

0.72 1.90 0 

Zeman and Lumley [16] 0.47 1.90 3.5 

Table 1 - Coefficients in the Dissipation Rate Equation 

Equation (8) should be regarded as intuitively formulated with coefficients calibrated to give tolerable 
agreement with experiment over a number of free and wall flows"1". 

The form of the equation is too simple to expect it to achieve a very wide degree of applicability. 
Recently Pope [18] and Hanjalic and Launder [19] have shown that, by including further terms involving 
the mean vorticity, the level of £ can be made rather sensitive to secondary strains. In the cases 
examined by these workers significant improvements were achieved in the calculated development of the 
axisymmetric jet - a notoriously difficult flow to predict - and, in reference [19], of several other 
flows as well. While these developments are encouraging and suggest that more widely valid forms of the 
dissipation rate equation can be devised, the proposed amendments ought for the present to be used with 
caution: by making the e-equation highly sensitive to secondary strains there is the risk that a major 
improvement for one case may be offset by a serious worsening for some other, as yet uncalculated shear 
flow. 

2.4 Remarks on the Applicability of Reynolds Stress Closures to Flows with Organized Structures 

The above remarks lead us naturally to the question of what degree of universality can ultimately be 
expected at the Reynolds-stress level. The question is not one that admits a precise answer - at least, 
not yet. Nevertheless a few general observations can perhaps usefully be made. What I should first 
like to emphasize is that closure at the Reynolds stress level is a drastic simplification from the 
Navier-Stokes equations which actually describe the dynamics of a turbulent flow. It would be 
unreasonably optimistic, therefore, to expect to devise a genuinely universal set of equations for 
mimicking the development of the Reynolds stresses. The best one can hope for is to evolve a system of 
equations and functions that give a fairly faithful representation over a moderate range of conditions. 
Whether that "moderate" range can be made broad enough to encompass, say, all the stationary thin shear 
flows encountered in aeronautics is doubtful, particularly as answers are needed to a higher degree of 
precision than in many other branches of engineering. 

Having made these intentionally cautionary remarks, however, I wish now to underline the 
capabilities of this class of turbulence model for it is my impression that these are generally 
underestimated by fluid mechanicists not actually involved in model development. One frequently hears 
the view that the turbulent mixing layer, dominated by large-scale, quasi-periodic eddy structures, is 
unlikely to be adequately resolved by an analysis based on a purely statistical treatment. Yet, as may 
be seen from references [20] and [21] , even a model utilizing the Boussinesq effective-viscosity 
relation predicts correctly the effect on the spreading rate of varying the velocity ratio of the two 

+ Attempts at giving the equation a more elevated status by purporting to model unknown correlations 
in the exact equation for e are, in the writer's opinion, well intentioned but misguided considering 
that none of these correlations has yet been measured in a turbulent shear flow. 
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streams. The same set of empirical constants is used that serves for the calculation of the plane jet 
or the development of a boundary layer along a wall. The observed effect of varying Mach number in this 
flow is not well accounted for at present but here it may be said that serious consideration of 
compressibility effects on the fluctuating velocity field is only just beginning. 

Stratification effects are likewise held not to be amenable to conventional turbulence modelling 
because, in highly unstable conditions, transport above a horizontal surface appears to be dominated by 
long funnels of less dense fluid rising up through gradually descending cooler layers. At the other 
extreme strongly stable stratification is sometimes regarded as unsuitable for conventional closures 
because the structure decomposes into disturbances, which, though random, exhibit a wave-like 
character. 

While predictors at the Reynolds-stress closure level should certainly take note of any such 
structural changes between one turbulent flow and another, there is no reason to presuppose that the 
closure will be unable to describe the statistically averaged properties of each of them. To reiterate, 
a Reynolds stress model accounts for generation processes without recourse to closure approximation: no 
particular mechanism is postulated or implied. In a sense it is up to Nature to work out what 
particular kinds of mechanism it needs to produce just the right amount of transport. It appears to be 
the case that when large stress generation rates are demanded (referenced with respect to the local 
dissipation rate) large-scale coherent structures are especially likely to be present. This is the case 
for the plane mixing layer where the mean level of turbulence energy production is some 20% higher than 
the dissipation rate; for a horizontal flow under intensely unstable conditions where the principal 
input to the turbulence energy is from buoyant generation; and for a turbulent boundary layer developing 
along a concave wall where, as seen in Section 2.1, the effects of secondary-strain generation are large 
due mainly to the much larger turbulence intensities parallel than normal to the surface. 

An impression of the state-of-the-art of Reynolds stress closures may perhaps be conveyed by the 
examples presented in figures 2-5. Except as noted the closure approximations are those of the 
(simpler) model of Launder, Reece, and Rodi [6], extended for buoyant flows in [8] and [9]. Two 
properties of atmospheric turbulence under unstable conditions are shown in figures 2 and 3. In figure 
2 the calculated variation of the rms vertical velocity fluctuations+ (normalized by the friction 
velocity) is compared with the measurements of Wyngaard et al. [22]. The calculated levels are about 
20% below experiments due apparently to too small measured values of wall shear stress (the same study 
reported values of the von Karman constant of 0.35 compared with more usually reported values of about 
0.41). There is excellent correspondence, however, in the trend of the variation with increasing 
instability (L denotes the Monin-Oboukhov length scale) including the 1/3-power dependence for values of 
(-X3/L) greater than 2.0 implied in the 'natural convection' limit where wind shear is negligible. 
The corresponding variation of the vertical heat-flux correlation coefficient is shown in figure 3. For 
increasing instability the vertical velocity and density fluctuations become better correlated which is 
generally in agreement with reported experimental data; it also conforms with the idea that the 
turbulence should exhibit progressively greater coherency with increasing instability. 

The atmospheric boundary layer is strongly affected by pressure reflections from the ground. Such 
effects are absent, however, in a free shear flow considered for the case of stable stratificiation in 
figure 4a. As stability increases (exemplified by an increase of gradient Richardson number, Ri) the 
intensity of vertical fluctuations falls substantially with respect to horizontal ones. The calculated 
variation reported by Gibson and Launder [8] agrees well with the measurements of Young [23] in a 
quasi-homogeneous horizontal free shear flow. Such a damping of vertical fluctuations will generally 
have a dramatic effect on the way a shear flow developes. Figure 4b shows, for example, for a case of a 
warm, 2-dimensional jet discharged on the surface of a body of cool, stationary water, how the stable 
stratification impairs entrainment of the denser fluid into the shear flow. The calculations, by Gibson 
and Launder [24] show a similar rate of damping to the experimental data of Ellison and Turner [25]; 
evidently when the mean gradient Richardson number across the jet reaches values of about 0.8 
entrainment of new fluid into the jet is essentially cutoff. 

Irwin and Arnot Smith [26] have made an interesting computational study of the effect of streamline 
curvature on the development of wall jets and boundary layers. Since, over most of a wall jet, the mean 
velocity decreases with distance from the wall it is the case of eonvex curvature that gives rise to 
augmentation in mixing where we expect strong influence of organized structures. Their turbulence model 
was based on the more elaborate of the two closures of reference [6] rather than the simpler version 
outlined here but we may expect that the latter model would lead to similar results. Figure 5 shows the 
computed ratio of the half width (y0) of a wall jet developed around a circular cylinder to the 
distance from discharge, x, plotted as function of y0/R, R being the cylinder radius. The 
experimental data of Fekete [27] and Guitton [28] show a strong increase of normalized half width with 
increasing y0/R (corresponding to stronger influences of streamline curvature) a variation that the 
computations of Irwin and Arnot Smith [26] closely reproduce for values of (y0/R) up to 0.3. (Beyond 
this the mathematical simplifications in their finite difference calculations prevent definite 
conclusions from being drawn.) We note that if all the secondary strain terms in the model are 
suppressed (y0/x) becomes essentially independent of curvature, which firmly identifies the success of 
the computations with the sensitivity of the Reynolds stress closure to small secondary strains. It may 
be mentioned that the same authors computed the development of Meroney's [29] study of flow in a curved 
channel predicting the mean levels of shear stress on the concave and convex surfaces within about 7%. 

3.  Further Development of Reynolds Stress Closures 

In this section an outline is provided of some extensions in the closure schemes discussed in 
Section 2 that are either under development or in the planning stages. 

+  In conformity with meteorological terminology X3 here denotes the vertical direction. 
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Perhaps the most serious defect of the closure approaches discussed in Section 2 is their reliance 
on a single turbulence time scale to characterize rate processes in high Reynolds number turbulence. 
Because the response mechanisms of the large-scale and small-scale motions are so very different, we 
must expect that any tolerably general model would need independently calculated time scales for these 
different parts of the spectrum. Preliminary work on developing a scheme of this kind has been 
undertaken by Dr. K. Hanjalic, Dr. R. Schiestel and the writer (references [30]-[32]); the present 
discussion, which is abridged from reference [32] is based upon two independent (though intricately 
coupled) rates of energy transfer across different parts of the energy spectrum as indicated in Figure 
6. The quantity Kj denotes the wave number above which no significant mean-strain production occurs 
while <2 i-s tne largest wave number at which viscous dissipation of turbulence energy is unimportant. 
Energy leaves the first region (the "production" region) at a rate £p and enters the high-wave-number 
or "dissipation" region at a rate e. Between these two zones, occupying an intermediate range of wave 
numbers is the "transfer" region, across which we imagine a representative spectral energy transfer rate 
to be ET. 

The total turbulent energy, k, is assumed to be divided between the production range (kp) and the 
transfer range (k-p). At high Reynolds numbers there is negligible kinetic energy in the dissipation 
range.  In a homogeneous flow the levels of kp and kj are controlled by the transport equations: 

Dt 
(9) 

(10) 

where  P^   denotes   the   production   rate   of   turbulence   energy  by mean   shear  which,   as   remarked   above,   is 
assumed to be  entirely contained in wave numbers  less  than  K^. 

The dynamic response of (9) and (10) depends on the levels of the energy transfer rates £p and 
£•[. The main task is thus to devise a pair of transport equations which adequately characterize the 
evolution of these transfer rates. We are guided in this by the "dissipation rate" equation (Eq. (8)) 
presented in  Section  2. 

Now, despite its nominal role as a dissipation rate equation, Eq. (8) does not make sense as such; 
for it makes the local rate of change of £ dependent on the local mean strain rate and the anisotropy of 
the stress field, neither of which, under conditions of local isotropy, can directly affect the 
dissipation rate. Several workers have remarked that the subject of (8) should correctly be regarded as 
a spectral energy transfer rate associated with large-scale interactions; that is, in terms of our 
multiple-time-scale formulation,   Ep.     Accordingly,   the  initial   form chosen for  the   £p  equation was: 

"DT "  Si  Pk kj "  CP2 ^ +   PBP <"> 

where the partitioned energy kp replaces the total energy giving, as characteristic time scale, the 
energy turnover time of the large-scale motions. 

In choosing the form of the corresponding equation for £j certain basic requirements were 
evident. First, the equation should contain both source and sink terms since, in the decay of grid 
turbulence, the level of ej must decrease downstream while, if the turbulence energy is raised, e^> 
must, in due course, rise as a precursor to an increase in dissipation rate. It would, however, be 
contrary to established views of the spectrum to make &j respond directly to an applied mean strain. 
Now, the factor that is instrumental in raising £j is an increase in the energy flow rate from the 
production range into the transfer range. Accordingly, being guided by Eq. (11), the form adopted for 
the ef transport equation is: 

D£ £  £ £ 

DT " CT1 "^7 - CT2 k^ + P£T (12) 

In a flow where the turbulence energy generation is suddenly switched off, there is no necessity for 
£p (or £) immediately to decrease since £p does not fall to zero. Thus the energy dissipation rate 
now responds only slowly to the applied mean strain. This feature makes the present form better able to 
represent rapidly changing turbulence fields than Eq. (8). 

Initially it was planned to provide a transport equation for e which, in structure, was similar to 
(but simpler than) Eqs. (11) and (12). To keep the mathematical framework as simple as possible, 
however, spectral equilibrium between the transfer and the dissipation regions is assumed: 

E = £T (13) 

This assumption can of course be relaxed later. 

In making preliminary predictions of variously strained flows, it became clear that the generation 
term in (11) did not possess much width of applicability. For example, to reproduce the development of 
turbulence in an axisymmetric contraction a coefficient nearly twice as large was needed as for a simple 
shear flow.  In the former flows energy generation is by irrotationat  straining.  The implication seemed 
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to be that this kind of deformation proved more effective in transferring energy across the spectrum 
than rotational shears. Such a preferential transfer may be introduced to the mathematical model by the 
addition  to  (5)  of   the  following term  containing the mean vorticity: 

n,     ,        Sty     3U. .... 
8x       3x.   Tmk fcijk 

m j 
"PI  *P 

where ££mk is the alternating third order tensor. The term vanishes in an irrotational flow and 
(apart from the sign of the coefficient) is non-negative in a rotational strain. The coefficient Cp^ 
thus needs  to be negative to produce higher overall  energy transfer rates  in an irrotational  strain. 

It remains to assign the various coefficients in Eqs. (11), (12), and (14). The coefficients in Eq. 
(8), the single-scale e equation have usually been set to constant values and the initial impulse is to 
do likewise in the multiple-scale model. There are, however, two reasons for not doing so. First, 
research on the much more elaborate spectral or "two-point" closures has shown the necessity of letting 
the middle range eddies "talk back" to the larger scales. If both C^p and C^? are taken as 
constants the equation for Ep is virtually independent of the medium scale motion since neither kj 
nor £j appear in Eq. (11). Secondly, the adoption of constant coefficients in Eq. (8) was at least 
partly due to the absence of a suitable parameter of which to make them arguments. Now that the energy 
spectrum is divided into two parts, two parameters are available, kp/k-p and Sp/e^,. The first 
characterizes the shape of the energy spectrum, the second the degree of spectral imbalance. Reference 
[32] argues that Ep should be independent of E-j while ef should in turn not be directly affected 
by kp. At present only one term in each of the transfer equations has been allowed to depend on these 
energy or transfer-rate ratios; this limitation was imposed to keep the task of optimization within 
bounds. 

The following is the form for the coefficients, that led to best overall agreement with the test 
flows  considered in   [32]: 

CJ,  -  1.08 e/e       .     c      =  1.15     :     (!„,  = 2.2 
Tl P    T     '       T2 '       PI 

C'    = -1.0     ;     C„„ = 1.8  - 0.3 I   ~ - l]/( ~ +  1 PI ' '        P2 * '      UT       J V  kT 

The suggested dependence of Cp2 on kp/k>j ensures that the energy transfer rate from the large 
scale motion will be larger in a shear flow than in grid turbulence. The influence of (kp/kj) is 
more significant than may be supposed for, while Cp2 is rarely altered by more than 10% from its 
asymptotic value,   this is  of itself sufficient to change the rate of spread of  a jet by some 40%. 

A fundamental question in fixing the above coefficients is where the division between the production 
and transfer region should be placed. If the partition is moved to too high wave numbers, such a small 
proportion of the total energy will be contained in kj that the time for energy to cross the transfer 
region will be negligible. In this case E^ - ep and the calculated flow behavior would be 
negligibly different from that of a single scale model. If, however, the division is made at too low a 
wave number, the assumption of zero energy production in the kj equation becomes untenable. Provided 
due recognition is taken of these two limiting constraints, our experience is that the precise 
partitioning point does not significantly affect the predictions, provided coefficients have been 
appropriately tuned. The above coefficients are chosen so that in turbulence decay behind a grid the 
energy is  divided equally between the  two regions. 

In [32] the diffusion terms in both the partitioned energy and transfer-rate equations have been 
uniformly represented as: 

VA   =  0.22 ^_(uu,   ,.r    .'     ) (15) 
8xk 

/  *p   3*\ 

where  <j> stands  for kp,  k^, Ep, Ej. 

The multiple-time-scale approach outlined above can be used in conjunction with different levels of 
closure. When a Reynolds-stress model is adopted the closure discussed in Section 2 may be applied 
except that (kp/Ep) would replace (k/E) in both the return-to-isotropy and diffusion models, i.e., 
Eqs. (3) and (6), with minor adjustments to the coefficients. Reference [32] presents computations for 
a number of free shear flows and boundary layers which exhibit uniformly better agreement with 
experiment than with the corresponding single scale model. The potential of the approach is, however, 
best illustrated from the calculations of grid turbulence passed through a 4:1 axisymmetric contraction 
in cross-sectional area. In the calculations, Eqs. (9), (10), (11) (with (14)) and (12) have been 
solved for homogeneous conditions by forward integration, supplying from experiment values of the mean 
velocity and P^. In this way the development of the turbulence energies could be calculated without 
recourse to any closure relationship between stress and strain. The initial partitioniong of energy 
between production and transfer ranges was taken as the equilibrium levels for decaying grid 
turbulence. The energy levels in figure 7 show that much better agreement with measurements is obtained 
with the multiple-scale treatment than with the single-scale e equation of reference [6]. The latter 
displays a too weak rise in energy through the contraction and a too slow decay downstream therefrom, in 
contrast to the virtually complete agreement shown with the present formulation. The reason for the 
differing behaviour may be inferred from the distributions of energy transfer rates in figure 8. The 
quantity Ep exhibits a sharp rise on entering the contraction due to the action of the source term 
containing P^. The dissipation rate of the single-scale scheme does likewise. The inertial transfer 
rate, Ej, responds only sluggishly to the acceleration and, in fact, does not reach its maximum value 
until some distance downstream of the end of the acceleration. This is why, with the multiple-scale 
approximation, the calculated energy grows more rapidly through the acceleration yet falls off more 
steeply once the pressure  gradient  becomes  zero. 
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The multi-scale approach outlined in the preceding paragraphs already shows promise of extending the 
width of applicability of Reynolds-stress closures. There is, however, still plenty of scope for model 
refinement. Here we mention the currently unpublished work led by D. Jeandel at the Laboratoire des 
Mecanique des Fluides of the ECL, Ecully. His group is evolving, for homogeneous flow, a complete 
spectral closure. It is recognized that such a formulation is too elaborate for practical calculations, 
however, so he plans to integrate the spectral equations to some intermediate point in the spectrum 
thereby simplifying the calculation to essentially the form of the multi-scale treatment discussed 
above. This path may well contribute significantly to improving the modelling of the £p and eT 

equations. 

A major question that several groups around the world are currently pondering is whether sufficient 
information about the tensorial character of turbulence is carried by the Reynolds stresses themselves. 
Granted, it is only the Reynolds stresses one needs as an output from one's turbulence model; possibly, 
however, there may be decisive advantages to computing some other second-rank tensor that could appear 
in the transport equations for the Reynolds stresses. Such a closure would need to carry a dozen or so 
turbulent transport equations and this is an inconveniently large number at present. It might be a 
practical closure level in five years time, however, if one could rely on the computations. It is thus 
perhaps not too soon to precipitate a debate on what looks the best way to add a further second-rank 
tensor to the equation set. Donaldson and his group, in work which remains for the present 
undocumented, have been experimenting with tensorial length scales. At present, however, the length 
scales are uniquely linked via an algebraic equation to the Reynolds-stress tensor (thus, like other 
Reynolds stress closures, all the tensorial information is carried in the u£u7). The different 
length scales are used to provide non-isotropic transport coefficients in modelling diffusive 
processes. A different approach has been recommended by Lin and Wolfshtein [16] who outline the form of 
a set of equations for a variable proportional to e£j, the viscous dissipation rate of u{u;. Use 
of such a system of equations  allows  the  assumption of local isotropy  (Eq.   (7))  to be  abandoned. 

The writer's current view is that provision of a set of individual length scale equations may be an 
effective way of extending the applicability of Reynolds stress closures. It is, however, chiefly 
through its ability to improve the modelling of the pressure-interaction terms (rather than the 
stress-diffusion processes) that I believe its potential strength lies; approximation of wall-reflection 
effects may especially benefit from such a treatment. The addition of transport equations for the 
components of E-ji seems, in contrast, an unwarranted step to take at present since, on the one hand, 
local isotropy appears an adequate approximation in most high-Reynolds-number, self-sustaining shear 
flows  and on the other,  no experimental data are available on the  processes  to be  approximated. 

Concerning the writer's personal explorations in introducing a second second-rank tensor to the 
system of turbulence transport equations, his inclination is to generalize the multi-scale approach 
outlined earlier. Implicit in that closure is the assumption that the Reynolds-stresses of the medium 
scale motion are isotropic, i.e., u£Uij = 2/3 <$£i kj. The validity of this assumption is much 
narrower than that of local isotropy and it may turn out to be the main limitation on the multi-scale 
scheme. The next degree of elaboration is straightforward, however. In place of a single set of 
equations for u^uj and kf (or kp) one would provide transport equations for uiujp and 
uiuiT" ^ne former would, in practice, be similar to the current U{UJ equations except that 
spectral transfer terms will replace dissipative ones. The equations for uiujf could probably be of 
fairly simple form since departures of the transfer range from isotropy will be fairly small. For 
example, mean-strain, contributions to pressure-interactions might be represented by the isotropic form: 
^ii 2 = 0.4 kf (3Ui/3xj + 3Uj/3xi). One outcome of the closure at this level would be that 
it facilitated a linkage with sub-grid-scale closures, the U£UJT being roughly equivalent to the 
sub-grid-scale  stresses  for which  current  schemes make  very rudimentary approximations. 

The above paragraphs have provided a few suggestions for how current Reynolds stress cloures may 
evolve in the 1980's. No one can be sure at present just what will prove to be the most fruitful line 
of attack. One thing that is sure, however, is that progress in computational modelling can only be 
made with a strong supporting program of measurements. Moreover, the experimental data that will be 
needed are of a different kind from those which most experiments are currently providing. 
Experimentalists are naturally sensitive to the suggestion that their role should be (merely) that of 
advancing, or discriminating between, current closure ideas. Nevertheless, stronger interactions than 
at present between computationalists  and experimentalists  are surely desirable. 
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Coupling due to buoyancy 

Coupling  due to mean field gradients 

Indirect coupling due to pressure fluctuations 

Figure 1 - Intercoupling among second-moment equations in density stratified flows. 
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Figure 2 - Measured and predicted rms vertical velocity fluctuations under unstable 
conditions.  Atmospheric-boundary-layer data from Wyngaard et al. [22], 
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Vertical density-flux 
correlation coefficient 
in atmospheric boundary 
layer under unstable 
stratification.  Symbols 
denote experimental data, 
the line predictions. 

Figure 4a - Ratio of vertical streamwise 
normal stresses in horizontal, 
nominally homogeneous full 
shear flow.  From Gibson and 
Launder [8]. 
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LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW - 
ILLIAC IV CALCULATION 

John Kim* and Parviz Moin* 
Ames Research Center, NASA, Moffett Field, California 94035, U.S.A. 

SUMMARY 

The three-dimensional time-dependent equations of motion have been numerically integrated for fully- 
developed turbulent channel flow. The large-scale flow field is obtained directly from the solution of 
these equations, and the small-scale field motions are simulated through an eddy viscosity model. The calcu- 
lations are carried out on the ILLIAC IV computer with 64 * 64 * 64 grid points. 

The computed flow patterns show that the wall layer consists of coherent structures of low-speed and 
high-speed streaks alternating in the spanwise direction. These structures were absent in the regions away 
from the wall. Hot spots, small localized regions of very large turbulent shear stress, are frequently 
observed. Very close to the wall, these hot spots are associated with ü" > 0 and v < 0 (sweep); away from 
the wall, they are due to ü" < 0 and v > 0 (burst). The profiles of the pressure velocity-gradient correla- 
tions show a significant transfer of energy from the normal to the spanwise component of turbulent kinetic 
energy in the immediate neighborhood of the wall ("the splatting effect"). 

NOMENCLATURE 

The overbar (") denotes the filtered component 

C      Smagorinsky's constant 

G(x - x.') filter function 

h. 
i 

h. 
l 

k. 
i 

mesh size in the i-direction 

h,u 
IT 

wave number H AXZ + k3
2 

wave number in the i-direction 

length of the computational box in the 
x-direction 

and the prime (') denotes subgrid scale (SGS) component, 
ü" 

ui 

v 

w 

x, xa 

= u - <u> 

velocity in the i-direction 

Fourier transform of u 

shear velocity T/P 

velocity in the vertical direction 

velocity in the spanwise direction 

streamwise coordinate 

coordinate in the i-direction 

length of the computational box in the 
z-direction 

SGS length scale 

number of mesh points in the y-direction 

pressure 

x, x' coordinate vector 

y, x2 coordinate in the direction normal to the walls 

v   distance to the nearest wall Jw 
v u 

P 

q 

Re 

Re 

Rij 

t 

u 

_ P , Rkk 

- P . 1 =-=- .  Rkk 
= — + o" U .U . + ^5— P  2 VJ   3 

Fourier transform of p 

root-mean-square velocity 

Reynolds number based on channel half- 
width and the centerline velocity 

Reynolds number based on channel half- 
width and shear velocity 

z, x3 spanwise coordinate 

U.'Uj    +u.  u.  +u.Ui 

1 rui      dui\ = 2 lg^- + -gyM strain rate tensor 

dimension!ess time 

streamwise velocity 

Mjk 

Xi 

10 

Tw 

At 

the completely antisymmetric tensor of rank 3 

mean streak spacing 

mean spacing of the turbulent structures in the 
i-direct!on 

x.u 
1     T 
V 

AU 
T 

V 

jth meshpoint in the vertical direction of the 
transformed (uniform mesh) space 

density 

Rij   3 

mean wall shear stress 

dimensionless time step 

*NRC Research Associate 
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6ij 

kinematic viscosity 

eddy viscosity 

vorticity in the i-direction 

vorticity in the x-direction 

10  i7j 

< >  horizontal average (x-z plane) 

< >  time average 

Subscripts 

w   wall value 

SGS  subgrid scale 

Superscript 

n   time step 

1. INTRODUCTION 

The technique of large eddy simulation (LES) is a relatively new method for computing turbulent flows. 
The primary motivation for its undertaking is that the large eddy turbulence structures are clearly flow- 
dependent (e.g., jets vs boundary layers) and hence they are difficult if not impossible to model. On the 
other hand, there is experimental evidence (e.g., Ref. 1) that small eddies are universal in character, and 
consequently much more amenable to general modeling. 

In LES, the large-scale motions are computed directly using three-dimensional time-dependent computa- 
tion, and the small-scale motions are modeled. The dynamical equations for the large-scale field are 
derived by averaging the Nevier-Scokes equations over volumes in space that are small compared to the overall 
dimensions of the flow field. This averaging is to provide sufficient smoothing of the flow variables, so 
they can be represented on a relatively coarse mesh. The resulting equations for the large eddies contain 
terms that involve small-scale turbulence. These terms are replaced by models that are to represent the 
interaction between the resolved and unresolved (subgrid scale, SGS) field motions. 

One of the most extensive applications of LES has been to the problem of decay of homogeneous isotropic 
turbulence (see Refs. 2-4). A variety of numerical methods and subgrid-scale turbulence models was incorpo- 
rated to compute this flow. Both the pressure-velocity and the vorticity-stream function formulations of 
the dynamical equations were used. These studies have shown that homogeneous turbulent flows can be reason- 
ably simulated using simple eddy-viscosity models. 

The first application of LES was made by Deardorff (Ref. 5), who simulated a fully developed turbulent 
channel flow at a very large Reynolds number. Utilizing a modest number of grid points (6,720), he showed 
that three-dimensional numerical simulation of turbulence (at least for simple flows) is feasible. His 
calculations predicted some of the features of turbulent channel flow with reasonable success and demon- 
strated the potential of LES for prediction and analysis of turbulent flows. 

Schumann (Ref. 6) has also performed numerical simulation of turbulent channel flow. In addition, he 
has applied LES to cylindrical geometries (annuli). He used up to 10 times more grid points than Deardorff 
and a much more complex subgrid-scale model. In that model, an additional equation for SGS turbulent kinetic 
energy was integrated. However, the results showed no significant improvement over the case in which eddy- 
viscosity models were used (Ref. 6). 

In the calculations of channel flow described above, no attempt was made to compute the flow in the 
vicinity of the walls. A great portion of turbulent kinetic energy production takes place in this region 
(see Ref. 7). Therefore, by using artificial velocity boundary conditions well beyond the viscous sublayer 
and buffer layer, a significant fraction of the dynamics of turbulence in the entire flow was effectively 
modeled. In addition, it should be noted that the boundary conditions used in the latter calculations 
assume that in the. log layer, the velocity fluctuations are in phase with the wall shear stress fluctuations. 
This assumption is not supported by experimental measurements (Ref. 8). 

Moin et al. (Ref. 9) simulated the channel flow, including the viscous region near the wall. The exact 
no-slip boundary conditions were used at the walls. In their computations, only 16 uniformly spaced grid 
points were used in each of the streamwise (x) and spanwise (z) directions and 65 nonuniformly spaced mesh 
points were used in the y-direction. The grid resolution was especially inadequate in the z-direction to 
resolve the now well-known streaky structures in the vicinity of the wall. In spite of this, computations 
did display some of the well-established features of the wall region. In particular, the results showed 
coherent structures of low-speed and high-speed fluid alternating in the viscous region near the wall, though 
not at their proper scale. The overall agreement of the computed mean-velocity profile and turbulent statis- 
tics with experimental data was satisfactory. 

Encouraged by the results of the above coarse calculation, the present numerical simulation of channel 
flow with 262,144 grid points (64 x 64 x 64) was undertaken. The ILLIAC IV computer, a parallel processor, 
was chosen for this purpose. Although the grid resolution in the spanwise direction is still not sufficient 
for an adequate representation of the wall-layer streaks, it is a significant improvement over the earlier 
calculation. This, in turn, allows a more realistic and comprehensive study of the structure and mechanics 
of this flow. 

This paper is the result of a work that is now in progress and is essentially intended to demonstrate 
some of the capabilities of LES in the prediction and analyses of wall-bounded turbulent shear flows. In 
Sec. 2, the dynamical equations for large-scale field motions are derived. The subgrid model that was used 
is described in Sec. 3; Section 4 describes the computational grid network and its relation to the observed 
physical length scales in the flow. The numerical method is briefly outlined in Sec. 5; the data management 
process is taken up in Sec. 6; and in Sec. 7, we examine some aspects of the mechanics and structure of the 
flow, both in the vicinity of the wall and in regions away from the wall, and an attempt is made to correlate 
numerical results with laboratory observations. In Sec. 8, we present the computed flow statistics, which 
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include the mean-velocity profile, turbulent intensities, and turbulence shear stress. In that section, we 
will point out some of the deficiencies of the subgrid-scale model used and suggest improvements. Finally, 
conclusions are presented in Sec. 9. 

2. GOVERNING EQUATIONS FOR THE LARGE-SCALE FIELD 

The first step in LES is the definition of the large-scale field. Each flow variable f is decomposed 
as follows: 

f = f + f' (1) 

Here, the overbar denotes the large-scale or "filtered" field and the prime indicates the residual or "sub- 
grid" field.    Following Leonard (Ref.  10) we define the large-scale field as: 

f(x) =  f G(x,x')f(x')dx' (2) 
«'n 'D 

where G is the filter function and the integral is extended over the whole flow field. In the horizontal 
planes (x-z), several possible choices for the filter function are available. Unless otherwise stated, most 
of the calculations reported here were carried out using a Gaussian filter, G(x-x',z-z'). The width of the 
Gaussian function characterizes the smallest scales of motion retained in the filtered field (the largest 
scales in the residual field). We assume that the filtering in the planes parallel to the walls provides 
sufficient smoothing in the vertical directions as well; our computations support this assumption. In addi- 
tion, it should be noted that we use second-order finite difference schemes to approximate partial derivatives 
in the x2-direction and such schemes have an implicit filtering effect associated with them. For further 
details see Moin et al. (Ref. 9). 

After applying the filtering operation (Eq. (2)) to the incompressible Navier-Stokes and the continuity 
equations, the governing equations for the filtered field may be written 

3"i —=-        3p* 3 1       32"i 
aT" eijk ujMk = -^xT+ 6ii " 3x7 Tij + *T 3x^7 (3) 

3ÜL 

3x7=° ^ 

where we have decomposed u. as in (1) and 

\  ~   Epqk 3Xp 

R. , S. . 
T.. = R.. . JckiJL 

R. . = u.'u,' + u.'ui + u.u,' 

Here, the variables are nondimensional using the channel half-width s    and the shear velocity uT = Aw/p. 
The calculations will be carried out for a fixed streamwise mean-pressure gradient which is accounted for 
by the 6-jx term in the momentum Eq. (3). 

3. RESIDUAL STRESS MODEL 

The remaining unknown quantity in Eq. (3) is .T-JJ. This term represents the subgrid-scale stresses anc 
must be modeled. In the present calculations we have used an eddy viscosity model, 

x.. = -2,TS.. (5a) 

where 

l ßüA      3Ü,\ 
(5b) 

The small-scale eddy viscosity vj represents the action of the unresolved scales of motion on the 
resolved scales. Hence, as the resolution gets better, vj should get smaller. This suggests that vT 
should scale on a length scale i   which is directly related to the computational resolution. The model 
most commonly used for vj and the one we use here is the Smagorinsky model, 

vT = (V)2/S77s77 (6) 

where Cs = 0.1 (Ref. 5) is a dimensionless constant and i    is a dimensionless representative of the grid 
resolution, here assumed to be (Ref. 5): 

i  = (hi • h2(y) • h3)!/
3 (7) 
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This expression for I    is probably appropriate only for cases in which there is no significant grid 
anisotropy (Ref. 6). In the present calculation, the computational grid is very elongated (hl5h3 » h2) in 
the vicinity of the walls, and hence use of Eq. (7) is not strictly justified. However, to gain a better 
insight into the role of i    and to help guide its selection in future calculations, we have used Eq. (7) 
with a modification described below. 

Near the walls, the subgrid-scale turbulence Reynolds number, defined as 

RSGS =    v (8) 

is very small, and hence one expects the value of the eddy viscosity coefficient to be very small. In our 
calculations, we have found that the damping provided by the presence of (h2(y))

1/3 in Eq. (7) is not suffi- 
cient, and excessively large subgrid-scale stresses are formed near the wall. Therefore, in+the present 
calculations we have multiplied a    (Eq. (7)) by an exponential damping function 1 - exp(-y /50). 

The eddy-viscosity model used here is best rationalized for isotropic turbulence at the scale of the 
computational grid. The fundamental assumption behind this model is that the resolution scale lies within 
an inertia! range with the -5/3 power spectrum (Ref. 11). It is clear that for the moderate Reynolds number 
(ReT = 640) that we are considering and the nature of the grid volumes used, the above assumptions are not 
satisfied. This is particularly true in the highly viscous region in the vicinity of the walls. Thus, the 
present simulation is viewed as a challenge to the eddy-viscosity model used. 

A critical test for the large eddy simulation technique is the prediction of the logarithmic layer 
and the von Karman "constant." This is one of the reasons for not utilizing the mixing-length model in the 
present calculations to account for inhomogeneity due to the mean shear (Ref. 6). Such a model is known to 
"postdict" the correct mean-velocity profile. 

4. THE COMPUTATIONAL GRID 

The availability of computer resources restricts the size of calculations possible. For a given number 
of grid points N, we have to choose the grid size(s) based on the known physical properties of turbulent 
channel flow under consideration. 

In the vertical direction (-1 <y < 1), a nonuniform grid spacing is used. The following transformation 
gives the location of grid points in the vertical direction (Ref. 9): 

y.  = jtanh [^ tanh_1(a)] (9) 

where 

5j = 1 + 2(j - 1)/(N - 2) (10) 

j = 1,2, .... N 

N is the total number of grid points in the y direction, and the adjustable parameter of transformation is a 
(0 < a < 1). We used a = 0.98346, N = 64. This value of a was selected so that the above grid distribu- 
tion in the y-direction is sufficient to resolve the viscous sublayer (y+ < 5). 

The length Lx and Lz of the computational box in the streamwise (x) and spanwise (z) direction, in 
which periodic boundary conditions are used, should be long enough to include the important large eddies 
(Refs. 6, 12). Based on the two-point correlation measurements of Comte-Bellot (Ref. 13), we used Lx = 2TT, 
and Lz = 4ir/3. We have used 64 uniformly spaced grid points in each of the streamwise and spanwise direc- 
tions. With the above choices for Lx and Lz» the nondimensional grid spacings in the horizontal directions 
expressed in the wall units are: 

h/ = 63 

h3
+ = 42 

In the wall region, the important large eddies are the "streaks" (Ref. 14). These have a mean spanwise 
spacing corresponding to \3

+  = 100. It is clear that our grid resolution in the spanwise direction is not 
quite sufficient to resolve the streaks. This is especially true when we note that the above value for A3

+ 

is based on an ensemble of measurements, and at a given instant streaks with a finer spacing than \3
+    can 

be formed. As we shall see, however, calculations did reveal these structures, though not at their proper 
scale. 

With relatively minor modifications to the present computer program, we are able to perform calculations 
with 64 x 64 x 128 grid points in the x, y, and z directions, respectively. It is expected that in this 
simulation the spacing of the wall-layer streaks will be more in line with the laboratory observations. 

5. NUMERICAL METHOD 

A complete description of the numerical method used is given in Ref. 15. Here, we give a brief outline 
of the method and minor modifications that were made to enhance the data management process. The partial 
derivatives in the x2 direction were approximated by second-order central difference formulae. In the 
Xj and x3 directions, partial derivatives were evaluated pseudospectrally (Ref. 16). With a given number of 
grid points, the use of the pseudospectral method in any given direction gives us the best possible resolution 
in that direction. This is particularly useful in the x3 direction where we face a lack of grid resolution 
(Sec. 4). 



14-5 

Time advancement is made using a semi-.implicit method. Pressure, viscous terms, and part of the subgrid- 
scale model are treated implicitly, whereas explicit time advancement is used for the remaining nonlinear 
terms. The equation of continuity is solved directly. Second-order Adams Bashforth (Ref. 17) and 
Crank-Nicolson (Ref. 18) methods are used for explicit and implicit time advancement, respectively. 

Next, we Fourier transform the resulting equations in xx and x3 directions. This converts the above 
set of partial differential equations to the following set of ordinary differential equations for the variables 
at time step n + 1, for every pair of Fourier wave-numbers kx and k3, with y = x2 as the independent 
variable. 

3^+1 

ay2 

,   / ,)i-n+i      .,   „    At ~n+i      ^ n ,nn   , 
+ (ßj - k2)ux      + lMi -7T P       = Qi (11a) 

^2+1      - -..„« Atap^=Q2
n 

ay2 
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1"* = Q3" (lie) 

n+i 
i 

ikjüf1 +^T-+ ik3ui
+1 = 0 (lid) 

Here, ß-j (i = 1,2,3) are known functions of ReT and «Cvy'V, and Q-j  represent the terms involving the 
velocity and pressure field at time-step n and n - 1 (see Ref. 15). 

In addition to the use of implicit time advancement for all the viscous terms, the algorithm used in the 
present study is different in one other respect from the one described in Ref. 15. For reasons that will be 
explained in the next section, Eqs. (11a) and (lie) were multiplied^by^ ikx and ik3, respectively. ,Jhus, 
the dependent variables for the time-advancement equations are ikxü, v, and ik3w rather than u, v, and w. 

The remaining steps in the solution procedure are as follows. Finite difference operators (described 
above) are used to approximate 3/ay and 32/3y2. This gives a set of linear algebraic equations for the 
Fourier transform of dependent variables. This system is of block tridiagonal form and can be solved very 
efficiently. No-slip boundary conditions are used at the solid boundaries. Finally, inversion of the 
Fourier transform gives the velocity and pressure field at time-step n + 1. 

The initial velocity field was the same as the one used in Ref. 9 interpolated on the finer grid used 
here. 

6. DATA MANAGEMENT 

In large simulations, the high-speed random-access memory of the computer on hand may not hold the 
entire data base of the problem being considered. In the present case, the core memory of the ILLIAC IV is 
large enough to hold only a few planes of velocity pressure field. Therefore, it is essential to manage the 
flow of data efficiently between the core memory and the disk memory where the entire data base resides. In 
general, separate passes over the data base are required for each time step and the task is to minimize the 
required number of such passes. The following describes a data management process employed in the present 
c -j mti 1 a + -j np 

The system of Eq. (11) must be solved for both real and imaginary parts of the dependent variables. 
This necessarily means that two^passes through the data base are required: one for real parts of u1  and u3 
and imaginary parts of u2 and p, and the other for imaginary parts of ux and u3 and real parts of u2 and p. 

To avoid an extra pass through the data base, we multiply Eqs. (11a) and (lie) by ikj and ik3, respec- 
tively (Ref. 19). (These multiplications in Fourier space amount to differentiations in real space.) 

,-n+i 32u" 

ay2 
•;n+i  i, 2» At-n+i _ s n + (Pl - k2)ür - k^f p• = Q!n (12a) 

,2,~,n+i 
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2)ün2
+1 + ß2f4^=Q2" (12b) 
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a2ü'n+1 1  + (ß3 - k2)ütl  - k3
2ß3f pn+1 = Q3

n (12c) 
ay 

~n+i 
fln+1 + !^_ + ün+1 = 0 {12d) 

where ü1  = ikjU^; u2 =  ü2; ü3 = ik3u3; Qx
n = ikjQj"; Q2 = Q2

n; and Q3
n = ik3Q3

n. The above system of 
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equations can be solved with one pass through the data base, but two extra integrations in the Fourier space 
are required to obtain ul  and u3 in physical space. It should be noted, however, that such integrations cost 
far less than an I/O pass. In addition, to avoid the loss of information, upon differentiation, the Fourier 
mode associated with a null wave number is simply not multiplied by its wave number (i.e., zero) and, 
similarly, it is not divided by its wave number upon integration. This implies that Qj, u2, and u3 in 
Eqs. 12 should be understood as 

üi(0,y,k3); ik1ü1(k1,y,k3),kl f  0 

u2(ki,y»k3) 

Mki.y.O); ik3ü3(k1,y,k3),k3 t  0 

The system of Eqs. (12) is.solved by two separate passes through the data base. In PASS 1, the right- 
hand sides of these equations, Q-j (i = 1,2,3), are evaluated and in PASS 2, the block tridiagonal system is 
solved. To compute the right-hand side vector in PASS 1, differentiations in all spatial directions are 
required. Since the pseudospectral method is used in the horizontal directions (x and z) and a finite- 
difference scheme is used in the normal direction (central difference), all the data in an (x - z) plane are 
needed for operators in these directions and the data for at least three adjacent planes are needed for finite 
difference operators in the y direction. Therefore, in PASS 1, two (x - z) planes are brought into the core 
to be handled by a double buffer scheme. One complete pass through the data base is required to complete 
PASS 1. 

In PASS 2, the block tridiagonal system must be solved for each kx and k3. In this pass, two (y - k3) 
planes are brought into the core. A special algorithm had to be developed to solve the block tridiagonal 
matrix because of the limitation on the core size. In a conventional-block tridiagonal solver, all the 
results of forward sweep are stored to be used in backward sweep. For the present simulation, this would 
require half of the total core size (i.e., 16 x 64 x 64) which is not feasible. Hence, a special algorithm* 
was developed so that only a part of the results of the forward sweep is stored in the memory and the rest is 
recomputed as necessary in the backward sweep. Although this requires extra computations in the backward 
sweep, this method is much more efficient than performing the extra I/O passes that would otherwise have 
been necessary. 

The computation described here was carried out on the ILLIAC IV computer at Ames Research Center. The 
dimensionless time step, during most of the calculations, was set at At = 0.001. The computer time per 
time-step (CPU and I/O time) was about 22 sec. This computational speed has been achieved with a full use 
of the parallel processing capabilities of the ILLIAC IV and the data management process just described. 

7. DETAILED FLOW STRUCTURES 

In this section, we investigate the detailed flow patterns by examining contour plots of typical 
instantaneous velocity and vorticity fields in x-z, x-y, and y-z planes. In all these plots positive 
values are contoured by solid lines and negative values are contoured by dashed lines. In addition, all 
the plots are obtained at a given dimensionless time (t = 1.4). 

Figure 1 shows patterns of ü" in an x-z plane wery  close to the lower wall (y' = 16.1). The striking 
feature of this figure is the existence of highly elongated (in the x-direction) regions of high-speed 
fluid located adjacent to low-speed ones. This picture of the flow pattern in the vicinity of the wall is 
in agreement with experimental observations (Refs. 20, 21) that the wall layer consists of relatively coherent 
structures of low-speed and high-speed streaks alternating in the spanwise direction. Examination of the 
typical spanwise spacing of these structures shows significant improvement over the earlier simulation 
(Ref. 9) where only 16 uniform grid points were used in each of the spanwise and streamwise directions. How- 
ever, the typical spacing of these streaks is still about 3 times larger than the experimentally observed 
mean value of \3

+ <* 100. This is expected, since our computational grid size in the spanwise direction is 
too large to resolve the wall layer streaks in their proper scale (Sec. 4). 

Figure 2 shows patterns of D" in an x-z plane far away from the wall (y/5 = 0.73). It is clear 
that the ü" patterns in the regions away from the wall do not show the coherent streaky structures that are 
characteristic of wall-layer turbulence. This is also in agreement with the experimental observations 
(Ref. 20). In fact, it is difficult to associate a definite structural pattern to u" in the regions away 
from the wall. 

Since turbulent energy production is directly proportional to -<uv>t, it is important to study the 
instantaneous map of ü"v. Figure 3 shows the patterns of ü"v in the same x-z plane as in Fig. 1; 
that is, very close to the wall (y+ = 16.1). Examination of this figure reveals several points related to 
the dynamics of wall-layer turbulence that deserve attention. First, it can be seen that the regions with 
negative ü"v, which have a positive contribution to the production of average turbulent kinetic energy, 
constitute the overwhelming majority of the entire plane. Second, pronounced streamwise elongation, the 
characteristic of the wall layer ü" eddies, is absent in ü"v patterns. This indicates that in contrast 
to Ü" eddies, v eddies are not significantly elongated in the x-direction. Third, there are several 
small regions (hot spots), that are associated with very large values (large concentrations of dashed lines) 
of -G"v. These regions are highly localized in space. Overlaying Fig. 3 on Fig. 1 reveals that the great 
majority of the "hot spots" are associated with Ü" > 0 (hence, v < 0). Thus, it appears that in the close 
vicinity of the wall most of the regions with very large values of (-ü"v) are associated with high-speed 
fluid approaching the wall (sweeps) rather than low-speed fluid being ejected from the wall (bursts). With 
combined visual and hot-wire measurements, Falco (Ref. 22) has identified a new flow module in the vicinity 
of the wall. These relatively small but energetic structures (called pockets) appear to be footprints of 
high-speed fluid moving toward the wall. It is possible that the hot spots identified here may be related 

*The original concept was suggested to us by Marshall Merriam, Ames Research Center. 
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to pockets. Figure 4 shows the contour ^lots of ü"v in the x-z plane located at y+ = 90. Examination 
of this figure and the corresponding ü" plot (not shown here) shows that in contrast to the near-wall 
region most of the hot spots that can be identified in this plane are associated with ü" < 0 and v > 0, 
that is, with bursts. With quadrant analysis of uv, Brodkey et al. (Ref. 23) have found that most of the 
contribution to -<uv>t in the wall region comes from sweeps, and that in the regions away from the wall it 
comes from ejections. This is consistent with what is observed here in relation to Figs. 3 and 4. There 
are two other features in Fig. 4 that deserve attention. First, similar to Fig. 1, the regions with negative 
ü"v constitute the overwhelming majority of the entire plane. Although there are regions with very large 
positive ü"v, they are highly localized in space. Second, the maximum value of (-ü"v) in this plane is 
17.81. This is about 20 times the expected <-uv>t at this plane. Such large excursions of ü"v from its 
expected mean value have been a frequent observation in the laboratory (e.g., see Ref. 24). 

Figure 5 shows contour plots of ü"v in an x-z plane far away from the lower wall (y/S = 0.73). In 
contrast to planes located close to the lower wall (Figs. 3, 4), where the regions with negative_ ü"v domi- 
nated the entire planes, a significant portion of this plane_is associated with large positive ü"v as well 
as negative ü"v. The regions with the largest positive ü"v are associated with high-speed fluid moving 
toward the upper wall, and the regions with the largest -ü"v seem to be evenly distributed among high-speed 
fluid moving toward the lower wall or low-speed fluid moving away from the lower wall. Finally, examination 
of the ü"v patterns in the midplane (not shown here) reveals that in contrast to the plane just described 
(y/6 = 0.73), the regions with the largest ü"v are associated with bursts originating in the upper half of 
the channel, whereas the regions with the largest -ü"v correspond to bursts originating in the lower half 
of the channel. 

Among the conceptual models of the inner region of turbulent boundary layers is the streamwise vorticity 
model. This model portrays the inner region as being composed of pairs of long counter-rotating streamwise 
vortices located adjacent to each other. These long vortical structures, in turn, create low-speed and high- 
speed streaks alternating in the spanwise direction. Figure 6 shows the streamwise vorticity patterns in 
the same x-z plane as in Fig. 1 (y+ = 16). These patterns do not show elongated regions of positive and 
negative Sx alternating in the spanwise direction. Moreover, no definite relationship appears to exist 
between the streak patterns shown in Fig. 1 and üx patterns shown in Fig. 6. Therefore, the present simu- 
lation tends to dispute the validity of the vorticity model. 

Figures 7 and 8 show patterns of ü" and üz in an x-y plane, z = 15h3. For clarity, we have expanded 
the region 0 < y/S < 0.5. A pronounced feature of Fig. 7 is the two regions of high-speed fluid (with res- 
pect to the local mean velocity) that are inclined at oblique angles with respect to the wall. These struc- 
tures are apparently associated with intense shear layers that are also inclined with respect to the wall 
(Fig. 8). Similar large-scale structures have also been observed in the laboratory. From measurements of 
space-time correlation of wall shear stress and velocity fluctuations in a turbulent duct flow, Rajagopalon 
and Antonia (Ref. 8) have identified large-scale structures that are inclined at a mean angle of about 13° 
to the wall. At this time, we have not scanned a sufficient number of x-y planes at widely spaced times 
to obtain the mean inclination angle of these structures. 

In Figs. 9 through 14, contour plots of the velocities and the streamwise vorticity in a y-z plane 
(x = 0) are shown. The contour plots in this plane reveal the existence of surprisingly well-organized 
structures in the wall region. Figure 9 shows a contour plot of the streamwise velocity ü". Note that the 
figure is stretched 4 times in the vertical direction and that the contour line patterns are thus distorted 
in that direction. Two important features can be observed in this figure. First, away from the wall — for 
example, y/s > 0.4 — no definite structure is discernible. Near the wall, however, an alternating array of 
low-speed and high-speed fluid is noticeable. This array has a long streaky structure in the streamwise 
direction, as was shown in Fig. 1. Second, as we approach the wall, the size of the eddies decreases 
gradually. Figure 10 is a magnified version of Fig. 9 close to the wall, 0 < y+ < 46. Again, the figure is 
highly stretched in the y direction so that the shapes of the flow structures are distorted. The array of 
low-speed and high-speed fluid is clearly discernible in this figure. This strikingly well-organized flow 
structure in the wall region is consistent with the previous experimental observations (Ref. 20), although 
the typical spacing between the streaks is not correct because of the insufficient spanwise grid spacings 
mentioned earlier. In addition to the well-organized structure in the wall region, there exists a very 
intense shear layer in the vertical plane where the low-speed and high-speed fluids come close together. 
This could cause free-shear-layer-type instabilities in this plane; such instabilities might be related to 
the experimental observations that the lifted streaks oscillate not only in the vertical direction but also 
in the horizontal planes. 

Figure 11 shows a contour plot of the normal velocity v in the same plane as in Fig^ 10. Here, a 
positive v (the solid lines) represents fluid moving away from the wall, and a negative v (the dashed 
lines) represents fluid moving toward the wall. In this figure we notice an array of fluid moving away.and 
toward the wall. If we align Fig. 10 with Fig. 11, we notice that, generally, there exists a negative corre- 
lation between ü" and v. Note that in the vicinity of the wall, the low-speed fluid elements (ü" <  0) are 
generally being ejected away from the wall (v > 0), while high-speed fluid elements are moving toward the 
wall. Clearly, the fluid motions just described have a positive contribution to the production of averaged 
turbulent kinetic energy. 

Figure 12 shows a contour plot of the spanwise velocity w. A positive w (solid lines) represents 
fluid moving to the right and a negative w (dashed line) represents fluid moving to the left. Note also 
that a significantly large spanwise velocity gradient in y — that is, 3w/8y — exists due to the no-slip 
boundary conditions at the wall. This results in substantial streamwise vorticity near the wall, although 
flow is not actually revolving in this region. We will come back to this later. If we now align the con- 
tour plot of w with that of v, we can identify a definite flow pattern that exists in the wall region. 
A schematic illustration of this flow pattern is given in Fig. 15. This simplified illustration shows how 
low-speed streaks are being formed and lifted away from the wall. It is interesting to note that the rota- 
tion of the streamwise vorticity is in the opposite direction to the conventional vorticity model (Ref. 25) 
(see also Fig. 15b). 
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Figure 13 shows a contour plot of üx in the y-z plane at x = 0. It can be seen that 5X is 
concentrated only in the wall region. Away from the wall, the strength of the vorticity becomes very weak 
and no organized structure is discernible. Near the wall, highly localized concentrations of 5X appear, 
sometimes in pairs of opposite sign. Figure 14 is a close-up of the wall region for y+ < 46. Again, the 
figure is highly stretched in_the vertical direction so that the patterns are distorted. By comparing these 
contour plots with those of v and w, we can distinguish the streamwise vorticity associated with the revolv- 
ing fluid motion from the one associated with the velocity gradients. Recall that the existence of wx does 
not guarantee large-scale revolving fluid motion. In fact, most 5X very  close to the wall, say y+< 10, 
is due to 3w/ay and is not related to the revolving motion. Some of tox away from the wall, however, (e.g., 
the one in the center in Fig. 14) is associated with a large-scale revolving motion. This is in agreement 
with the experimental observations by flow visualization techniques (Ref. 7) where strong revolving motions 
are observed away from the wall (y+ > 10) and not very close to it. It should also be noted that although 
the strong vortical revolving fluid motion appears outside the sublayer, in the present simulation, the root- 
mean-square value of Sx, <üx

2>1/2 always attains its maximum at the wall [note that öix| ,, = (aw/3y) |wall]. 

8. MEAN VELOCITY PROFILE AND TURBULENCE STATISTICS 

Figure 16 shows the mean-velocity profile <ü> that has developed after two dimensionless time units. 
(One nondimensional time unit corresponds approximately to the time in which a particle moving with center- 
line velocity travels 226.) Note that in the present study horizontal-average values are approximately 
ergodic. The calculated velocity profile shows a distinct logarithmic region over an appreciable portion of 
the channel width. For comparison, we have also included some of the available experimental data in this 
figure. The agreement of the computed mean-velocity profile with experimental data in most of the channel 
is satisfactory. In the vicinity of the wall, however, the values of the computed mean-velocity profile are 
rather low. This is due to the presence of an excessively large eddy viscosity coefficient near the wall. 
To verify this observation, we carried out a set of calculations (starting from t = 1.0) where instead of 
the eddy viscosity model, we used a subgrid scale model similar to the one used by Fornberg (Ref. 26; 
in our numerical experiment, small-scale turbulence is removed by a sharp cutoff filter at each time step). 
Although this model is rather inadequate for proper representation of the interaction between the subgrid- 
scale and resolvable scale motions, it suffices for our present purpose, especially if the total time of 
integration is not large. Figure 17 shows the resulting <ü> profile at t = 1.5. It is clear that the 
profile of <ü> has attained the proper values in the vicinity of the wall. In addition, the logarithmic 
layer is once again evident. Figure 18 shows the profiles of resolvable normal turbulent intensities, 
<ü"2>i/2) <y2>i/2; ancj <w2>r/2 at the same time ag -jn Fig. 16. It can be seen that in agreement with 
experimental measurements, generally, <ü"2>1''2 > <w2>1//2 > <v2>1/'2 throughout the channel. In addition, 
<uii2>i/2 ancj <w2>i/2 attain their maximum values near the wall. Figure 19 shows the profile of the resolv- 
able turbulent shear stress, <üv>. It can be seen that in the regions away from the walls the profile of 
<üv> does not follow the theoretical line. This indicates that the statistically stationary state has not 
been reached completely. Note that near the wall viscous stresses are important, and the total shear stress 
must balance the gross pressure gradient. Moreover, in the present calculations, the subgrid-scale shear 
stresses are significant only very near the wall (y+ < 10). In Fig. 20, profiles of the intensities are com- 
pared with some of the available experimental data in the vicinity of the wall. The agreement of the computed 
<ü"2>1/2 and <w2>1/2 with the data is satisfactory. However, as was also the case in Ref. 9, near the wall, 
a significant portion of <v2>1/2 seems to reside in subgrid-scale motions. This is consistent with our 
previous observation that vT is still excessively large near the walls. 

_Figure 21 shows_the resolvable portions of the pressure velocity-gradient correlations, <p(3Ü/3x)>, 
<p(3v/3y)>, and <p(3w/3z)> in the vicinity of the wall (y+ < 100, t = 2.0). These terms are responsible for 
the exchange of energy between the three components of resolvable turbulence kinetic energy; they are of 
particular interest to turbulence modelers. Examination of these profiles reveals that except in the imme- 
diate neighborhood of the wall_(y+ < 20), as expected, energy is transferred from <ü"2> to <v2> and <w2>; 
that is, <p(3Ü/3x)> < 0, and <p(3v/3y)>, <p(3w/3z)> > 0. On the other hand, as we approach the wall, a sig- 
nificantly different behavior can be noticed. Specifically, there is a relatively large rate of energy 
transfer from <v2>, whereas there is a large energy transfer to <wz>. This rather unexpected result is 
consistent nonetheless with our previous discussions of the fluid motions very close to the wall (Sec. 7). 
For example, Fig. 15a shows high-speed fluid approaching the wall and spreading laterally, resulting in 
relatively large energy transfer from <v2> to <w2>. On the other hand, the momentum transfer from the 
lateral to the normal directions, which results in ejection of fluid elements away from the wall, involves 
the nonenergetic_(slow moving) fluid in the immediate neighborhood of the wall. Thus, there is a net energy 
transfer from <v2> to <w2>, as shown in Fig. 21. 

It should be mentioned that, in general, the values of the pressure velocity-gradient correlations 
computed in the present study are significantly higher than the earlier results using a much coarser grid 
(Ref. 9). This may indicate that a substantial portion of the pressure-strain correlation is due to small- 
to-medium turbulence scales. To confirm this observation, several computations were carried out with differ- 
ent filter widths. The results of the calculations tend to support this observation. Thus, at present, 
and in the absence of a better subgrid-scale turbulence theory, the computed pressure-strain correlations 
should be interpreted qualitatively. It should be mentioned, however, that the large-scale flow structures 
presented in the previous section are rather insensitive (qualitatively) to the different filter widths and 
subgrid-scale models used. 

Before concluding this section, we turn our attention again to the subgrid-scale model used in the 
present study. To better resolve the relatively small turbulence scales in the vicinity of the walls, the 
present calculations were carried out for the case of a relatively low Reynolds number turbulent channel 
flow (ReT = 640, Re = 13,800). Therefore, the subgrid-scale turbulence Reynolds number defined in Sec. 3 is 
considered to be low in the regions away from the wall and very low in the vicinity of the walls. As was 
mentioned in Sec. 3, the arguments used in constructing this model are valid only at a very  high Reynolds 
number. Numerical results of McMillan and Ferziger (Ref. 30) also show that Smagorinsky's model is more 
appropriate at high Reynolds numbers. Thus, a low Reynolds number correction seems to be necessary. Note 
that because of the use of a much finer grid in this simulation than that used in Ref. 9, the effective 
subgrid-scale turbulence Reynolds number is lower than that in Ref. 9. In addition, because of the quasi- 
cyclic nature of turbulent channel flow (bursts, sweeps, etc.) the present calculations seem to indicate 
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that a subgrid-scale model that has a better response to the time history of the flow (a dynamic model) than 
the simple eddy viscosity model used here may be necessary. This is necessary for a proper long-time inte- 
gration of the governing equations. Integrating an additional equation for subgrid-scale turbulence energy 
is an attractive possibility. In the interim, however, we have found that selective filtering of the excess 
small-scale turbulence may be adequate. 

9. CONCLUSIONS 

In this study, the three-dimensional time-dependent equations of motion have been numerically integrated 
for the case of fully-developed turbulent channel flow. The calculations were carried out on the ILLIAC IV 
computer with 64 mesh points in each of the spatial directions. Detailed flow patterns were studied by 
examining contour plots of typical instantaneous velocity and vorticity fields. In summary: 

1. The wall layer consisted of coherent structures of low-speed and high-speed streaks alternating in 
the spanwise direction. These structures are absent in the regions away from the wall. In addition, contour 
plots of velocities in a typical y-z plane revealed the existence of well-organized flow patterns in the 
wall region. 

2. Hot spots, small localized regions of very large values of turbulent shear stress, G"v, were fre- 
quently observed. Very close to the wall, these hot spots were associated with Q" > 0 and v < 0 (sweep); 
away from the wall, they were due to D" < 0 and v > 0 (burst). In the central regions of the channel, 
bursts from both halves of the channel were the sources of the hot spots. 

3. No evidence of a direct relationship between streaks and streamwise vorticity öix was observed 
in the present simulation; very close to the wall, Sx was not the result of large-scale revolving fluid 
motions but was rather due to the spanwise velocity gradient, (aw/ay). Though strong vortical regions were 
observed away from the wall (y+ ~ 30), <üx

z>1/2 attained its maximum value at the wall. 

4. The profiles of the pressure velocity-gradient correlation showed a significant transfer of energy 
from the normal to the spanwise component of turbulent kinetic energy in the immediate neighborhood of the 
wall (the "splatting" effect). A large portion of the pressure-strain correlations appears to be due to 
small to medium scales of turbulent motions. 

The work presented here is still in progress and much more remains to be done. In particular, a more 
refined model that depicts the dynamic nature of the subgrid-scale motion may become necessary. Also, more 
mesh points, especially in the spanwise direction, are required in order to resolve the streaks at their 
proper scale. A computation with twice as many grid points as in the present calculation (64 x 64 x 128) 
will be carried out in the near future. 

It is hoped that this paper has demonstrated some of the capabilities of LES as a research tool for 
studying the mechanics and structure of turbulent boundary layers. The authors believe that LES will make 
important contributions to the study of turbulent flows by supplementing the experimental data. 
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Fig. 1. Contours of ü" in the x-z plane at y+ = 16. 

•+• x 

Fig. 2. Contours of ü  in the x-z plane at y/6 = 0.73. 
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Fig. 3.    Contour plot of   ü v   in the   x-z   plane at   y+ = 16. 
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Fig. 4. Contour plot of ü v in the x-z plane at y+ = 90. 
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Fig.  5.    Contour plot of   D"v   in the    x-z    plane at   y/5 = 0.73. 

Fig. 6. Contours of the streamwise vorticity üx in the x-z plane at y+ = 16. Note that the Sx 
patterns do not exhibit elongated structures in the x-direction. 
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Fig.  7.    Contours of   ü"    in the    x-y    plane (0 < y/<5 < 0.5) at    z = 15h, 

y/S = 0.5 
y+ = 319 

Fig. 8. Contours of spanwise vorticity Sz in the x-y (0 < y/s < 0.5) plane at z = 15hc 

Fig. 9. Contour plot of ü" in the y-z plane (0 < y/S < 0.5) at x = 0. 
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Fig. 10. Contour plot of ü" in the y-z plane (0 < y+ < 46) at x = 0. 
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Fig. 11. Contour plot of v in the y-z plane (0 < y+ < 46) at x = 0. 
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Fig. 12. Contours of w in the y-z plane (0 < y+ < 46) at x = 0. 
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Fig.  13.    Contour plot of the streamwise vorticity in the   y-z    plane (0 < y/S < 0.5) at    x = 0. 
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Fig. 14. Contours of the streamwise vorticity in the y-z plane (0 < y+ < 46) at x = 0. 
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DYE INJECTED AT THE WALL WILL BE COLLECTED HERE AND 
LIFTED UPWARD 

(a) Cross-sectional  view of spanwise velocity in 
y-z    plane. 

Fig.  17.    Mean-velocity profile obtained with the 
sharp cutoff model   (Ref.  26). 

(b) Streamwise vorticity according to (a). 

Fig.  15.    Schematic diagram of the flow patterns in 
the immediate neighborhood of the wall. 

Fig.  18.    Profiles of horizontally averaged resolv- 
able turbulence intensities. 
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Fig.   16.    Mean-velocity profile. 
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Fig. 19. Vertical profile of horizontally averaged 
resolvable turbulent shear stress. 
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 CLARK (REF. 29) Re = 15200 

 HUSSAIN AND REYNOLDS (REF. 271 RB = 13B00 
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Fig. 20. Comparison of the horizontally averaged resolvable turbulence intensities with experimental data. 
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Fig. 21. Vertical profiles of horizontally averaged resolvable pressure velocity gradient correlations in 
the vicinity of the wall (y+ < 100). 
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equation for the transport of probability density of velocity reads: 

3 f(v,x,t)      3 f(v,x,t) 
  + v ,  = 

J 3t jx. 
J 

._LJL   J   i 
ATT  3v£ lx,v, 3x. 

_3 3_ 

3x' 3x' 
—' -I m   n 

(v'v'fCv,x,v!xjt) dx'dv' 
m n  —' — (1) 

3v. 
dim 

i L | x ' -x |-»-o 

   Jvi f (v.x.vJxJOdv' 
3x!z  V 

In the above equation, f(v,x,t) represents the probability density of ocurrence 
of velocity v at location x and time t; f(v,x,v;x!t) represents the probability density of 
simultaneous ocurrence of velocities v and vx at locations x and xj respectively. 

Eq.(l) represents the conditions implied by continuity and Navier-Stokes equat 
ions over the one-point probability density of velocity. The first term on the LHS represents 
the time dependence of the one-point probability density; for a steady flow (in the sense 
that the statistical properties are not time-dependent), it will be zero. The second term 
on the LHS is a result of a convective term in the Navier-Stokes equations,  where    the 
velocity appears substituted by the independent variable v. The first term   on  the  RHS 
represents the influence of the pressure field over the one-point probability density of 
velocity; it involves the two-point density function, therefore the pressure links the local 
behaviour with a finite region surrounding the point. The second term on the RHS represents 
the effect of the viscous field; its influence is determined by the behaviour of the two- 
-point joint probability density, fCv.x.yJxJt) in the immediate neighbourhood of the point. 

The equation involves two unknowns: f(v,x,t) and f(v,x,vJxJt); there is  one 
more unknown than the number of equations. An equation for f(v,x,v|xjt) is therefore 
necessary, and it can be derived in a similar way as for f(v,x,t) (see Lundgren HI).   How- 
ever, this equation will introduce the three-point joint probability density of velocity 
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through the pressure and viscous terms, and no matter how many transport equations  are 
written, each equation will introduce a new unknown. The set is, therefore, not closed. 

Some of the properties of the probability density functions, which will be 
used in the subsequent text, are listed below; their derivation can be found in Lundgren 
HI . 

a) Reduction property 

f f(v,x,t)dv = 1 

V 

f f(y.>2£>;v.!x.!t0dy_' = f(v,x,t) 

(2) 

(3) 

b) Separation property 

Aim       f (v.x.v'.xjt) = f (v,x,t) x f (vjxjt) 
I v'-v I ->co 

(4) 
I X ' - X | -M° 

c) Coincidence property 

Aim       f (v.x.vjxjt) = f (v,x,t) x S(v'-v) 
ix'-xl+o   "" "         "        "  

(5) 

The quantity S(v'-v) is the three-dimensional Dirac delta function defined as: 

6(v'-v) for 4 v 

f F(v') x 6(v'-v)dv' = F(v) 

V 

d) Divergence property 

For an incompressible fluid, it is: 

    j vi f(v,x,t)dv  = o (6) 
3x.   V 

l  — 

and 

3x.   V 
l  — 

J v^^ f (v.x.vjxj t)dv (7) 

The first three properties are formal, and the last is 
the continuity equation. 

a result implied by 

2. A proposal for a closure on the transport equation for the one-point probability 
density of velocity 

The relative spread and success of one-point closures, together with the 
tendency to bring the level of closure to higher orders, suggests that a one-point closure 
on the transport equation for the probability density of velocity should be attempted. Such 
a closure will contain any closure based on the one-point velocity correlations. Alternat 
ively it allows a different type of approach to solving the equations for the time-averag- 
ed one-point correlations: the one-point probability density of velocity can be represent- 
ed to any order of its moments (svelocity correlations) by its Gram-Charlier approximation 
and this allows that an equation in velocity space can be transformed into a number  of 
transport equations for the coefficients of the approximation. 

Eq.(l) can be rewritten in the form: 
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J   v£   f (v,x,v;x;t)dv' 

The analysis of the above equation shows that the two-point probability 
function only appears in integral forms of the type: 

N ' f (v.x.vjxjt)dv n   —•—•-•— 
(9) 

J   = J v'v' f (v,x,v!x;t)dv' mn   '  , m n   —'—'—'—'   — 
(10) 

Since a one-point closure is to 
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modelling, this assumption will be retained: 
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f (v* ,r) = f(* •,v -r) (11) 

where v*=v - U, and U is the mean velocity vector, defined as U £ = j vi f(v,x)dv 

In the remainder of this section, a closure based on a multilinear form for 
the unknown quantities is presented. The implications of homogeneity are examined  with 
respect to the pressure and viscous terms, followed by an analysis of the restrictions 
imposed by the same condition on the applicability of the model in 2.1. In 2.2 a multi- 
linear relationship of known local quantities, linked with the unknown quantities,    is 
formulated; this relationship is then made to satisfy the boundary conditions, continuity 
and homogeneity. The resulting expression is input to the pressure and viscous terms, 
yelding their final modelled forms. This is followed by a physical interpretation of the 
results which includes the version of the model for the Reynolds stress transport equations, 

2.1 Implications and validity of the homogeneity assumption 

In order to examine the implications of the homogeneity over the pressure and 
viscous contributions to the transport of the probability density of velocity, it is 
convenient to express these contributions (on the RHS of Eq.(8)) in terms of the joint 
probability density of fluctuating velocity at locations x and x', f(v*,v'*). 

The following identities will be used: 

i) —  J v'v' f(v,x,v;X')dv' 
3v.  V m n ~ 

l — 

/ (v'*+U')(v'*+U') f(v*.v'*)dv'* 
3v* V* m  m  n   n   ~ ~ 

l — 

i=  u'u' 
m n 

3 f (v*) 

3v* 
l 

  + U* -2- I v'A f(v*,v'*)dv' 
*     m „ .v ;, w. n    —  —    — 

+ Ü' -i-  /   v 
3v*  V'A 

3v* V* 

'* f (v*,v'*)dv'* + -t-  j        v'*v 
3vv V'* 

(12) 

'* f (v*,v'*)dv'' 
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ii) — J  v! f (v.x.vJx'Hv1 = 
3v. V 

l — 

U! 
l 

3 f(v*) 

3v* 
l 

3v* V 
l — 

j  v!* f(v*,v'*)dv'* (13) 

3 f(v*)  3 f(v) 

iii) 3v*      3v. 
l        l 

(14) 

In addition, the contribution by the pressure forces will be split into the contribution 
by the mean and fluctuating pressure. It may be noticed that the mean pressure, P,  is 
related to the spatial distribution of mean velocity and Reynolds stresses through   the 
following equation (e.g., Townsend /8/, p.43-r44): 

iv) P(x) = -J-  I 
4ir 

3U' 3U* m  n 

L3: :' 3x' n   m 

(15) 

The preceeding four relationships are next used to analyse the implications of homogeneity 
on the generality of the unknown terms appearing in  Eq.(8). 

2.1.1 The viscous contribution 

The contribution of the viscous forces is represented by the second term on 
the RHS of Eq.(8). This term will be referred to as T . The use of relations (13) and (14) 
yields : 

T =   -   V 
3 Aim _^_ ( 

3v* n r_->-0 3r* m V 

32U n 3 f(v*) 

3x: 3v* 

/. < '* f(v*,v'*,r)dv'* , j.  n    — '—  ' — — 

(16) 

The assumption of homogeneity does not restrict the generality of this term, since it only 
depends on the immediate neighbourhood of x. Obviously, the quantity 

3ZU   3 f(v*) 

3xk 3v* n 

appearing on the RHS of relationship (16) , is zero in a homogeneous flow. It represents 
the effect of mean viscous diffusion; its contribution to the transpart of  probability 
density is negligible, except in cases of severe curvature of mean velocity profiles. 
Since the mean viscous diffusion does not introduce any further unknows, and therefore it 
does not need to be modelled, this term will be retained in the final modelled form of the 
transport equation. 

2.1.2 The pressure contribution 

The contribution of the pressure forces is represented by the first term on 
the RHS of Eq.(8). This term will be referred to as T . using relations (12) and (14), T 
may be rewritten as: " 

_5__L.     J 
4TT  3V*  X' 

K   \   — 
3x  x'-> 

K '—  - 

3U'  3U' 

3x'  3x' 
f(v*)dx! + 

•»J 
3x  x'-x 

K '—  — ' 

3U' 

3x'  3x' L V* n    m  — 

I   v '* f (v*,v'*)dv'! dx' + (17) 

•f 3 

3x, 3x' 3x' 
m   n 

V ' * 
v'*v'* f(v*,v'*)dv'' dx' 
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Relation (15) may be used in order to separate the contributions by the mean 
and fluctuating pressures: 

p   4ir 3v* {   X' 

3    1 
au1 au*      a^ü^r  m  n      m n 

3x  Ix'-xl   3x' 3x'   3x' 3x' n   m     n   m 

f(v*)dx' + 

..J 
X' 

3    1 

3x   x'-x| 

3U 
JjH-l-l 
3x' 3x' \V* n   m ' — 

v
n* 

f (v*,v'*)dv'* dx'. + (18) 

• ir 3_   1 

L'L**K   |x'-x| 
I    <» 

3x' 3x'  V* m  n  — 

,*v'*-'u~ru~r) f (v*,v'*)dv'*dx' 
m  n   m n —   — 

i) The first term on the RHS of this equation will be referred to as T . and is 
exactly: 

Pi 

3 f (v*) 

3v* 

3P 

3x
K 

3 f (v) x 3P (19) 

Again, for homogeneous flow, there is no contribution to the mean pressure 
by the spatial distribution of Reynolds stresses. However, since the mean pressure does 
not introduce further unknowns, the quantity (19) will be retained in the final modelled 
form of the transport equation. In any case the contribution to the mean pressure of the 
second derivatives of the Reynolds stresses is much smaller than that of the derivatives 
of the mean velocity distribution. 

ii) The last term on the RHS, that is referred to as T ., can be shown, under homo- 
geneity, to be identically zero: homogeneity allows the dependence on x or x' to be 
expressed in terms of r_ = x'-x; this yields: 

p3 
1 

4ir 3v* 
K 

\ 
3r  3r m   n 

I 
V' * 

(v'*v'*-'u"Tirr) f (v*,v,*)dvI* dr (20) 

Due to the reflexional property of f(v*,v'*), the integral over V1* space i 
symmetric around r, and so is its second derivative, 3z/3 r r . Then the integrand of T 

becomes the product of a symmetric and an antisymmetric function (r /r3), which is anti- 
symmetric; the integral over R is therefore zero. 

It can be objected that the quantity 

P3 

3r  3r m   n 

(uV), m n 

which gives no contribution in homogeneous flow, is kept inside the integrand in Eq.(20). 
This quantity is left there in order to emphasize that no contribution of T 3 is associated 
to the deviation of the value vIJ1

ftvn*  around its mean, rather than around zero. 

iii) There remains the second term, Tp2, that under homogeneity becomes: 

p2 

au 
1   m 

2TT 3x 3v* 

-_£ _3_ 

:3 3r V' * 
v'* f(v*,v'*)dv'* dr (21) 

The unknown quantity is the derivative of the integral over V'* of a function 
that involves the two-point distribution. However, by virtue of the separation and coinci- 
dence properties of the probability density, the integral over V'* satisfy the following 
conditions: 

j   v'* f(v*,v'*)dv'* = v* f(v*) 
V' *     n n   — 

for r = 0 (22) 

u' f (v*) = 0    for r = «• n   — (23) 
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In physical terms, this quantity tends to zero with the inverse of the 
distance between the two points x and x', at a rate that is dependent on the size of the 
macro-length scale associated with the two-point velocity correlations. As in Eq.(21) only 
its spatial derivative is used, and as it is expected a monotonic behaviour for the 
integral over V'* on R, the integrand of Eq.(21) must tend to zero at a faster rate than 
the RHS of Eq.(23). Therefore, the validity of homogeneity assumption is dependent on the 
size of the region where the spatial rate of variation of the two-point velocity correlat 
ions affects the value of Eq.(21). In flow regions remote from solid boundaries it is 
expected that the assumption is not too restrictive. 

2.2 Proposal for the closure model 

The analysis of the unknown viscous and pressure contributions (Eq. (16) and 
(21)) to the transport equation for the probability density shows the need to relate the 
quantity Q , defined as: 

= j  v'* f (v*,v'*)dv'* , 11   v* 
(24) 

with the known local properties of the flow field. Qn is  obviously a function of r_ = x'-x; 
and, as Eq.(22) and (23) indicate, it is also expected to depend on v* and f(vft). Another 
quantity that is expected to influence the value of Qn is the gradient of f(v*)in velocity 
space: a one-point distribution with a very narrow spread (high v-gradient) is associated 
with a high rate of spatial variation of the quantity Q . Based on these dependencies, a 
tensorial expression satisfying the dimensionality of Qn can be written: 

3 f(v*) 
Q  = a „ v* f(v*) + ß    v*v*   (25) Hn    n£ I       —      npqr  q r   „ A 

VP 

In this equation, a . and ßnpqr are only functions of the separation vector 
r_; furthermore, the inter changeability of q and r implies that ßnpqr 

= ^nprq ' T*1*-8 yields 
the following general form for the two tensors: 

A 
a „ =  - r r„ + A 6 „ (26) nil     2     n   I 2   nl v*«/ 

r 

and: 
A A A 

ß     =  3-  r r r r  +  *• r r <5   +  *•  r r 6        + 
npqr    r i,  n p q r    ^2     n p qr    r 2  q r np 

A A 
+  (r r 6   + r r S     ) + —- (r r 6   +rr<5  )+ (27) 

r2   p q nr    p r nq     ^2        n q pr    n r pq 

+ A(6  6   +65)+A966   , 
8  nr pq    nq pr     " up qr ' 

where the coefficients A^ are even functions of r = |rj. Relations (25), (26) and (27) 
define the general form of the model, and, so far have not been subjected to the physical 
constraints. This is done next: 

i) Boundary conditions. These are expressed through the coincidence and separation 
properties of Q . 

A2= 1;  Ai = 0       for r=0 and i 5s 2 (28) 

Ai = 0 for r -*- °° (29) 

Furthermore, as the A|s are even functions of r, all their odd derivatives at the origin 
will be zero; in particular: 

dA. 
  = 0 for r = 0 (30) 
dr 

At infinity, the separation property also ensures that all the derivatives are  zer o I 
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d"A. 
l 

dr 
= 0 for r •+ => and for any integer n (31) 

ii) Continuity. This condition can be applied to Qn under the form of Eq.(7). After 
differentiation of Eq.(25) with respect to rn, followed by the condition that  the 
result is independent of the values of £,v*,f(vft) or 3 f (v*)/3 v* , the following set 
of relations between the A! s emerges: 

£ <Ai+A2> " -2 dr 
(-A3+A5+2A6) = 4- (-A3+A,-2A6) 

(32) 

TdT <A7+Ae> 
i(A5+A6+2A7) ; ±   (A,+A9) = 4" (A,,+As) 

iii) Homogeneity. This condition is introduced through its implication over the two- 
-point velocity correlation tensor, R..; under this assumption: 

R. . = u.u. (r) = u. (-r)u . = u. (r)u . = R. . 
ij    i J -     i  -  3    1-3    31 

Using the identity: 

R. . =   I  v* Q. dv* 
13    ,*  i H3  - V* 

to  express     the above results in terms of Q and substituing Q  by its modelled form, 
the following relation between the Als emerges: 

A,- 2(A3+A1)+A5 + 5A7) (33) 

Eqs.(28) to (33) represent the constraints to be satisfied by the coefficients 
A^ in order to obey coincidence, separation, continuity and homogeneity. These equations 
will be used in the algebraic manipulation as a means to obtain the final reduced forms of 
the pressure and viscous terms. 

2 . 3 The pressure term 

The modelled form of the pressure term can now be obtained; when the integral 
over V'* in Eq. (21) is substituted by its approximation, represented by Eq. (25), the 
pressure influence becomes: 

p2 
1   m  8 

2TT 3X  3v* 
n   K 

f ( 
C  r  3a „       3 f (v*)       r     r  3 6 

v*)v*  J   2£ dr +   v*v*  I   pqr dr 
R  r 3v* 

P 
R  r; 3 r 

(34) 

Substitution of the tensors a . and ßnpqr by their expressions (26) and (27) 
followed by the^use of the conditions implied by separation, coincidence, continuity and 
homogeneity yields: 

3U  f      3Z f(v*) c      = _EJ V*V* Z_ 
P 3x \     K   K   3v* 3v* 

n *•       m   n 

+ v*V* 
K  m 

+ v*V* 

+ v* Vft 

m n 

32 f(v*) 

3v* 3v* 
K   n 

32 f(v*) 

3v* 3v* 
K   m 

3Z f(v*) 

3v* 3v* 
K    K 

3 A i        3 

dr + -g- 

24 f  Aädr    X 

64 f ±3 
35 I    r 

35 £ r 

24 ( ^ iT J T dr " 

(35) 

35 ^    r 

3 f (v*) 

3 v* 

224 
35 

f A I — dr + 2) + v* 
n 

3 f (v*) 

3 v* 

56 f JS 
35   r 

dr - 2 
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Eq.(35) represents the modelled form of the pressure term. The equation shows 
only one parameter, that is associated with a macro-length scale that characterizes the 
size of the spatial region where the velocities are correlated; the parameter is, there- 
fore, expected to be associated with the low wave-number region of the spectrum of energy 
of the velocity fluctuations. For simplicity of notation, the parameter will be represent 
ed henceforward by C„: 

i      (    A 

35 i r dr (36) 

It is appropriate, now, to derive the equivalent form of the result expressed 
through Eq.(35) for the transport equation of Reynolds stress tensor; this can be obtained 
by multiplying Eq.(35) by v*v$ and integrating over V: 

'   v*v* T „ dv 
;  i J  p2 - 

24C, 

3U 

3xr 
ij 

64C, (37) 

3U. 3U. 
+ I u . u   —   +   u . u   

3x 3x 
K K 

— Vu£ 
3U 

3x, 
6. . 
ij 

!C2 + 
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,26), and represented by $ £ • (jc) ; in an homogeneous flow, 
dients, $•_• satisfies the following relationship 

3 $. . (£) 
 1  = T..(K)+ H..(K)-2VK K O..(K) 

lj v-'   IJ v-     mm IJ 
v- 

3t 
(38) 

and 11^' represent the contributions to by inertia and pressure forces; 
.   . x j . '    . ij.. 

V is the kinematic viscosity, K is the wave number vector and t is time. It can be shown 
(Batchelor 111,    p.90) that T. . and II.. must satisfy the following relationship: 

K K n.. m m i j 
Kir*j + Vul (39) 

In the inertial subrange, K is finite and r • is zero, therefore IIJJ is zero. 
Since it is difficult to imagine a physTcal mechanism involving only eddy interactions 
which is exclusive of the lower end of the wave number space, it is plausible to expect 
that there is no significant redistribution driven solely by eddy interactions. The weak 
tendency towards isotropy exhibited in the measurements of Comte-Bellot and Corrsin quot- 
ed by Townsend (/8/,  p.67v68),Imay be explained by a non-iso tropic dissipation; in section 
2.4, this subject will be discussed, 

2.4 The viscous term 

When the unknown part of the viscous contribution (Eq.(16) is expressed in 
terms of the model, Eq.(25), the following result emerges: 

~v2 
3v* 

v* f(v*) Aim 
k    n 111 

+ V*V* 
rl+o  3r?     q r 

3 f (v*) 

3v* 
P 

32 e 
Aim 

I r I +o 

npqr (40) 
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After calculation of the derivatives of the two tensors, ann and 0    , Eq. 
(40) can be reduced through the use of the conditions implied by separation, coincidence, 
continuity and homogeneity to yield: 

T , = 10 V (A" + A" + 5A") — (v* f(v*))  + 
vl * 5 7  8vA \ K     / 

K 

»  ,      3f(v*)i 
+ V (5A" - A" + 3A") -2- ( v*v*   )• 

"    5     6  a„* V J J   g *   / 
K 

3f(v*)v 
-  v*v*  ) 
A  3    <   ^„*  / 

3v* 

(41) 

+ V (3A" + A" + 10A") 
5      6 7 dv* 

K 
3v* 

3 

where, for simplicity of notation: 

d^A. 
A'.' = Aim 
l 

r+o dr' 

(42) 

Eq.(41) shows  the occurence of three parameters, expressed as linear combinat 
ions of the second derivatives of the A!s at the origin. 

The physical interpretation of the result expressed in Eq.(41) is considered 
next, by recurrence to its form in the transport equation for the Reynolds stress tensor. 
When that equation is multiplied by v*v* and integrated over the velocity space, it yields 
the following contribution, due to the viscous forces, in the transport equation for  the 
Reynolds stress tensor: 

v*v* T „ dv = V(6A" + 22A") (u.u. 
l j  v2  -        5       6'    1 j 

-i- u u <5. . ) + 
3   K K IJ 

(43) 
+ V

(
3OA

;' 
+ 4OA

'6') — uKuK6ij 

The first term on the RHS of Eq.(43) contracts to zero: therefore the term 
redistributes energy between the components of the Reynolds stress tensor without altering 
the total level of energy. It will be shown next that the second term on the RHS of Eq.(43) 
represents the dissipation of the stress if the field were isotropic. This will be achiev- 
ed through the use of some standard results of the theory of isotropic turbulence: In this 
theory, it is a well known result (e.g. Panchev, /9/) that there is a relationship between 
the viscous dissipation of turbulent kinetic energy, e, and the Taylor microscaie, A: 

5V   
e =   u u 

,2   K K 
(44) 

The microscaie A is defined through the behaviour of the two-point velocity 
correlation tensor near the origin, as: 

R. . = -=- u u 
ij    3   K K 

2A 
7Vj + ('-- I*- x2; XJ. 

(45) 

On the other hand, R^i   can be expressed in terms of the proposed model, i.e.: 

3 f (v*) 
v*v*v* 

3   q r 
V* 

f 3 f( R.. = a.. I  v*v* f(v*)dv* + ß.    [  v*v*v*   
1J    J*. ^      i I      *•-       - Mipqr J   j q r   3v 

dv* (46) 

    After integration and upon substitution of the Reynolds stress by its isotropic 
value (u.u. = '/J u u 6. . ) , Eq.(46) becomes: 

ij        KK1J 

Rij " -T W (-4V V 3V "V + (A*~ As~ 2Ae" XOAB- 5Ae)6i: (47) 

Since the region of interest is the immediate neighbourhood of the origin,the 
above equation can  be rewritten with the help of a Taylor expansion around r=0: 
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<--*- K  - 2A'e' )r.r. +f: 
i .1  L 1 + rz (3A" + 4A ")]o\ • 

6 J ij 
(48) 

which, when identified with Eq.(45) yields: 

3 A',; + 4A'6' (49) 

and, through Eq.(44) 

3A" + 4A" =   -   -ß-  —— 
5V 

(50) 

Substituting this result in Eq.(43), 

T „ dv = v(6A" + 22A") (u.u. 
v2   — 5       6      1 J 

eS. . (51) 

Before commenting upon the physical meaning of Eq„(51), an analysis of the 
parametric coefficient affecting its redistributive term is necessary. The second deriva- 
tives of the Ajs at the origin are associated with the small scales  of  the turbulent 
motion, as opposed to their integrals over the R space, that are linked with macroscales; 
therefore, the A^'s are expected to be the same order of magnitude: 

0 {V (6A" + 22A")} 5 6 o {v (30A1,; + 40A")} 

o {- e/k} 

(52) 

(k represents the turbulent kinetic energy, defined as k = It   u u  i.< 

V(6A'5' + 22A'6') - -ClT- (53) 

and C-, of order 1. Therefore, Eq.(51) can now be rewritten as: 

{  v*v*   T   ,   dv   =   - C1 -£-   (u.u.   -  ~ kfi. .)   -  -|~  e<5. . Jijv2~ 1   k l   J 3 IJ 3 IJ 
(54) 

This equation shows two different types of viscous contributions: 
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ii) The other term on the RHS of Eq.(54) represents the contribution to the dissipat- 
ion of the stress that would occur in an isotropic flow field with the same turbulent 
intens ity. 

The above comments suggest that Eq.(41) may be rewritten in terms    of  the 
dissipation of turbulent kinetic energy and of two non-dimensional coefficients, C^ and C3; 
C^ is defined by Eq.(53) and C3 is defined by: 

C, = - V — (30A" - 40A" + 150A") 3 £5        6 l' (55) 

With these definitions, Eq.(41) becomes: 

v2 
e 
3k (1 + C3) -2- I v* f (v*) 

8VK 

+ - (1-cl> 
3v* L 

K 
J  J 

3 f(v*) 

3v* 
(56) 
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3v* 
K 

K J 

3 f(v*) 

3v* 
3 

The constant C3 makes its appearance for the first time. It can be seen that 
this constant does not appear in the transport equations for the velocity correlation 
tensors of order lower than the third; therefore it  does not affect closures    at  the 
Reynolds stress level. 

3. Final form of the set of equations. Determination of the constants 

When, in Eq.(8), the unknown terms are  substituted by their modelled forms 
(Eq.(35) and (56)), the following  equation emerges: 

3 f(v) 

3t 

3 f(v) 

3x. 
J 

P 3J 

3 f (v)     32U.  3 f (v) 
• v  -    + 

3v.      3x.   3v. 

3u. r 3Z f(v) 

3v. 3v . 
1   J 

(-24C, -i_) + v*v* 
5      K 1 

32 f(v) 

3v  3v. 
(64C2+ -J-) + 

+ v*v£ 

+ v$ 
1 

32 f(v) 

3v  3v. 
K   1 

3 f (v) 

(   8C, ) + v*v* 
1 i 

(224C2 + 2 ) + v* 

3Z f(v) 

3v  3v 
K        K 

3 f (v) 

(-24C2 --t-)   + 

(-56C2- 2 ) 

(57) 

1  e 
"ff"  (1 + C3> ~    K  f<i> 3vK L 

3 f (v) 

3v. J K 

3 f (v) 

3v. -I 
J 

The model introduced three parameters, assumed to be constants,   and  the 
dissipation of turbulent kinetic energy; the occurence of the latter implies that a closed 
set of equations can only be obtained after a constitutive relationship or a modelled 
transport equation is envolved for the dissipation of turbulent kinetic energy. This has 
been done by Hanjalic and Launder /10/, who developed and used the following transport 
equation for e: 

Ü. ^£- 
J 3x. 

J 

c   u . u 
El   J K 

(58) 

The terms on the RHS are, respectively, modelled forms of the diffusion, 
generation and destruction of the dissipation of turbulent kinetic energy. Launder, Reece 
and Rodi /4/, used the following values for the constants appearing in Eq.(58): 
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Analyses of Eq.(58) may be found in Pope /ll/ and Ribeiro /3/. 

The use of Eq.(58) in conjunction with Eq.(57) yields a closed set of equat- 
or the transport of probability density distribution of velocity. There remains the 
m of assigning values to the constants, C^, C2, and C3 appearing in Eq.(57);   the 
of the Reynolds stress tensor occurring in homogeneous turbulence (see Champagne, 
and Corrsin /12), yield a value of 1.5 for C]_ and -.0045 for C2; the determination 

requires the knowledge of the levels of the fourth-order velocity correlation tensor, 
in homogeneous flow, the third-order tensor is identically zero; however, the formal 
rity between the terms in Cj and C3 suggests that C3 might take a value around 1.5. 

This concludes the objective of finding a phenomenological closure of the 
ort equation for the one-point probability density distributions. This was achieved 
ating the behaviour of one quantity, involving the two-point probability density 
oclty, to local properties of the flow field. This quantity affected the transport 
on for the probability density distribution both through its rate of change in the 
ourhood of the point and through an integral behaviour; therefore, the model had to 
t these two types of effect,each of them demanding a separate physical interpretation. 
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A. Final remarks 

The proposed closure for the equatio 
point probability density distribution of velocity 
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series (see Lumley /13/); the terms of this series 
is that at any order, the number of moments that 
influence of each term can be quantified as today 
one-point probability density of velocity to be d 
accuracy (see Ribeiro and Whitelaw /14/) , thus all 
best represent the probability density of velocit 
the one equation in velocity space reverts to a di 
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SUMMARY 

The paper demonstrates, by comparison between calculations and measurements, that turbulent flows 
around a range of geometric configurations of relevance to aircraft and missile design can be represented 
by time-averaged boundary-layer equations with an algebraic eddy-viscosity hypothesis.    The use of higher- 
order models is difficult to justify and the existence of possible "coherent" structures does not influence 
this conclusion. 

1.  INTRODUCTION 

A major purpose of this paper is to consider and evaluate the merits of turbulence models for the cal- 
culation of the flow around geometric configurations of relevance to airplane and missile design. To 
achieve this, calculated results obtained with three turbulence models are compared to each other and to the 
boundary-layer measurements selected for use at the 1968 Stanford Conference (ref. 1); and calculations 
presented, and where possible compared with measurements, for several three-dimensional flows. 

As can be seen from references 2 and 3, for example, considerable efforts have been devoted to the 
investigation of turbulence models and coherent structures in recent years. In the former case, the alge- 
braic eddy-viscosity hypotheses have been replaced, from a research standpoint, by higher-order models 
ranging from eddy-viscosity models based on turbulence energy and dissipation rate obtained from differential 
equations, to second-order closures involving more than one length scale. In the latter, the large eddies 
associated with some wake flows and "bursts" observed in near-wall flows by flow visualization and condi- 
tional sampling of hot-wire signals have emphasized the need for experimental verification of calculated 
results for turbulent flows obtained from the solution of time-averaged equations. Of course, in many of 
the flows considered previously, and also in references 2 and 3, calculations based on time-averaged equa- 
tions and different turbulence models have been compared with measurements and some have been shown to be 
within the measurement precision. It is useful, however, to determine the need for higher-order models and 
the need to represent possible coherent structures for the calculation of the boundary layers around aircraft- 
related components. 

The following section presents a brief introduction to the reduced forms of the Navier-Stokes equations 
considered in Sections 3 and 4 and of the turbulence models used. Section 3 presents calculations obtained 
with time-averaged, two-dimensional, boundary-layer equations and three turbulence models corresponding to 
the algebraic eddy-viscosity hypothesis of Cebeci and Smith (ref. 4), the Reynolds stress method of Bradshaw 
Ferriss and Atwell (ref. 5) and the two-equation, eddy-viscosity approach of Jones and Launder (ref. 6). 
Calculations have been performed for the data of reference 1 and the sample presented corresponds to the 
stronger pressure-gradient cases where the algebraic assumption might be expected to be less successful. 
Calculations, with the model of reference 4, are then compared with measurements of a separating boundary 
layer and of a near wake in order to allow better assessment of the outer-region component of the model of 
reference 4. 

Three-dimensional boundary-layer equations have been solved and the results are presented in Section 4. 
The infinite swept-wing of reference 7 is considered first and allows comparison between the models of ref- 
erences 4 and 5 for a comparatively simple flow. Calculations for a second swept wing are then presented and 
the more complex rectangular duct flow of Vermeulen (ref. 8) considered and used to compare the capabilities 
of the models of references 4 and 6. As in the case of the two-dimensional flows, the calculations with each 
model lead to similar results. The calculations are then extended to three-dimensional wing flows where it 
is shown that the Cebeci-Smith model provides results adequate for many design purposes. The limiting factor 
in the calculation of the flow around wings, and also around bodies of revolution, is not necessarily the 
turbulence model and the discussion of Section 4 and conclusions of Section 5 emphasize this important fact. 

In general, it may be concluded from the comparisons of Sections 3 and 4 that, at least for the flow 
around aircraft components, it is difficult to justify the use of turbulence models more complicated than 
the algebraic eddy-viscosity formulation of reference 4. The results also suggest that the existence of 
"coherent structures" is of no significance. In contrast, numerical uncertainties associated with the 
viscid-inviscid interaction and the determination of boundary conditions and transition can introduce 
significant uncertainties and, together with numerical requirements, make it even more difficult to justify 
the use of higher-order models. 
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2.  EQUATIONS, MODELS AND SOLUTION PROCEDURES 

This section deals with the equations, turbulence models and the solution procedures used to obtain 
the results of Section 3. To conserve space, the discussion is restricted to two-dimensional forms; the 
reader is referred to Cebeci and Bradshaw (ref. 9) for details of three-dimensional equations, model and 
numerical schemes. 

2.1 Equations for Two-Dimensional Flows 

For two-dimensional steady flows, the continuity and momentum equations are: 

3u + av _ n 
ax  ay (1) 

u M+ VM= u Ji + iL 
ax   ay ue dx  ay (2) 

Here 

3u 
ay 

(3) 

and we recall that u',v' are zero in laminar flow, and v(au/ay) is negligible outside the viscous sub- 
layer in a turbulent flow. These equations are subject to the usual boundary conditions which, in the case 
of boundary layers, are 

y = 0, 0; u + ue(x) (4) 

The presence of the Reynolds stress term, -pu'v', introduces an additional unknown to the system given by 
Eqs. (1) to (4) and in this paper we present calculations obtained with the three turbulence models. The 
first is the algebraic eddy-viscosity formulation developed by Cebeci and Smith (CS), the second the trans- 
port equation model developed by Bradshaw, Ferriss and Atwell (BF) and the third the two-equation, eddy- 
viscosity appraoch of Jones and Launder (JL). In the CS model, we write Eq. (3) as 

with two separate formulas for em. 
as 

v   nr ay 

In the so-called inner region of the boundary layer, (e- m'i 

(5) 

is defined 

(Em>i = L' (6) 

where 

L = 0.4y[l -exp(-y/A)], A = 26vu^[l - 11.8p+]" 

vu„ du„ e  e 
,3 dx 

(7a) 

(7b) 

In the outer region, e  is defined by 

l*Jo 

00 

/ 
0.0168 / (u - u)dy (8) 

The inner and outer regions are established by the continuity of the eddy-viscosity formulas. 

In the BF model, which is solved only outside the viscous sublayer, we assume T =-u'v' and write a 
single first-order partial differential equation for it. The equation was originally developed from the 
turbulent energy equation but can be equally well regarded as an empirical closure of the exact shear-stress 
transport equation. It is 

u a^+ v ay"-2alTW""a7(xVT) 
2a 

3/2 

1 L (9) 

Here ai is a dimensionless quantity, vT is a velocity and L is the dissipation length parameter 
specified algebraically as L/6 = f(n), with n = y/6 and f(n) given as an analytic fit to an empirical 
curve, by 

0.4n 

f(n) 

n < 0.18 

0.18 < n < 1.1 < 0.095 - 0.055(2n - 1) 

/ 0.016 exp[-10(n-1.1)] n>l.l 

(10) 

7^\ The turbulent transport velocity vT, nominally (pV + uV'Vu'v' is proportional to a velocity scale 
of the large eddies and is chosen to be 
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VT = 29l -^g(n) (ii) 

where   g(n)    is 

33.3TI (0.184 + 0.832n) n < 0.5 

g = { 33.3n3{0.368 + 2.496n3)      0.5 < n < 1.0 

18.7n + 14.60 n > 1.0 

(12) 

In the BF model equations, the inner boundary conditions for (1), (2) and (9) are applied outside the 
viscous sublayer, usually at   y-] = 50v/uT.    In the steady-flow study reported by Cebeci, Chang and Bradshaw 
(ref. 10), these boundary conditions are: 

,1       ylUT u-,  = u    (- In —!—- + 5.2) 
(13) 

vl = 
Vl    <K 
~ü     dx- 

T 
(14) 

and 

+ ld£ 
Ll      lw     p dx y1 y, + a* iryi (15) 

Here    a*    is given by 

+\2 
a* = j [K1Ony1)'

: + 10,(1 nyj) + K3 + yyj] (16) 

where   y-,  = y\\\J\>,    Ki  = 5.94884,    K2 = 13.4682,    K3 = 15.5718    and    K4 = -698.304.    Reference 11  describes 
the extension of Eqs.  (1),  (2), (3)  "•'        '   '"'   ' 3) through (16) to unsteady flows. 

In the JL model, which also assumes an eddy viscosity,    em    in Eq.  (5) is defined by 

Em= 0.09k2/* (17) 

and two partial-differential equations based on turbulent energy    (k)    and dissipation rate    (<|>)    are solved 
to determine    em.    They are: 

uli +       3k =  8_ 
3x 3y     3y 

u M+ v M. = i_ 
3x 9y     3y 

(v + em) ay 

(v + Jn.) |± 
* 1.3'   3V 

+ eJÜf) "irr ay' 

+ 1-55fEmf)2-2f2 

(18) 

(19) 

In this model, boundary conditions are applied at the wall    y = 0    (see ref. 12, for example) or outside 
the viscous sublayer.    In our study, we have taken the second approach and used Eqs.  (13), (14) for   ui, v-|. 
The third "wall" boundary condition was taken as 

/•.)   = 0.55 -i- vsy 1 *y (20) 

and comes from the experimentally determined relationship between the shear and turbulent energy and the 
definition of turbulent viscosity. 

The edge boundary conditions for u, k and <f> are much easier to formulate. The most obvious of 
these is 

y -»• 6 u •*• u„ (21) 

However, the value of k and certainly $, are not usually measured and reported for experimental tests. 
Therefore, we must rely upon our model to make the edge values consistent. Writing the limiting values of 
Eqs. (18) and (19) at the boundary-layer edge, where all y-gradients are zero, yields 

dke 
ue dx~=^e' Je dF 

(22) 

These equations can be solved in finite-difference form along with the solutions of Eqs.  (1),  (2),  (18) and 
(19), but they also have an analytic solution given by 
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1  + 
k      x 

12. f 2* 
i-i 

1 + 
f£  /"dx (23) 

where the subscript zero refers to the initial data station. 

2.2    Initial Conditions 

For the parabolic problem posed by the above model equations, initial data must be provided at the 
first station for the solution to proceed.    In most cases, the experimental data require interpolation 
and smoothing to provide information at finite-difference grid points and, rather than attempting this for 
the large number of cases considered here, we have chosen to use the measured values of boundary-layer prop- 
erties as input to an empirical formula which .fits measured data over a large range of flows. 

Coles'  law-of-the-wall/law-of-the-wake formula, modified to give a zero gradient at the edge of the 
boundary layer, is (ref. 3) 

ln(^) + c + n(l-cosf) + (£)2 (24) 

As shown in Cebeci and Bradshaw (ref. 9), this expression can be used along with expressions for S* and 
e to form a set of three relations for the five unknowns Cf, Rg*, R9, 6 and n. Supplying cf and R 
from experiment allows the solution for the other two, and specifies the velocity profile by (24). 

Since we are dealing with transport models, in addition to the velocity profiles, initial profiles are 
also necessary for x,k and <j>. At first it would appear that one might use an algebraic eddy viscosity 
and a velocity profile expression to obtain the T (or k) profile. Since em is discontinuous at the 
match point, an alternate method, suggested in Cebeci and Smith, is used to integrate Eq. (9), including 
the pressure-gradient term, to get T. Once T and u have been generated, the definition of turbulence 
dissipation can be used to get the initial profile for $, i.e. 

3u (25) 

2.3 Solution Procedure 

The governing equations, employing three turbulence models, are solved by using Keller's Box method, 
which is an efficient second-order finite-difference method extensively used by Cebeci and his associates'. 
The application of this method to the CS model is described in detail in several references, see for example 
Cebeci and Bradshaw. Its application to BF model is described in Cebeci, Chang and Bradshaw (ref. 10) for 
two-dimensional steady flows and in Cebeci, Carr and Bradshaw (ref. 11) for unsteady flows. In each case, 
whether we use the CS model or the BF model, we solve a system of three first-order equations. 

In the case of JL model, we solve the system given by Eqs. (1), (2), (18), (19), (13) to (16) and (20) 
to (23). With the Box method, this is a system of seven first-order equations with nonlinear boundary con- 
ditions. As in the solution of governing equations containing the CS model or the BF model, Newton's 
method is used to linearize the nonlinear finite-difference equations and the resulting system is solved 
by using the block elimination method described in Cebeci and Bradshaw. 

3.  COMPARISON OF TURBULENCE MODELS FOR TWO-DIMENSIONAL FLOWS 

The three separate computer programs, incorporating the CS, BF and JL models and using the Box method, 
were tested for several wall boundary-layer flows documented in the 1968 Stanford Conference. No numerical 
difficulties were observed with the three models for zero and favorable pressure-gradient flows. For some 
adverse pressure-gradient flows, especially in those which contain flow separation, the use of the JL model 
involved considerable numerical difficulties even far upstream of the separation point. The CS model 
involved no numerical difficulties for all adverse pressure-gradient flows; the BF model had some diffi- 
culties but only in strong adverse pressure-gradient flows and allowed calculations close to the separa- 
tion point. The solutions obtained with the JL model also revealed unacceptable oscillations near the edge 
of the boundary layer with changing pressure gradient, say from favorable to zero and then to adverse pres- 
sure gradient, as in test case 2100, which led to the breakdown of the calculation. 

The results presented in Figures 1 to 7 correspond to Cases 1300, 2500 and 3500; the first has a favor- 
able pressure gradient and the others adverse gradients of increasing severity. Before comparing the pre- 
dictions of the three models with the experimental data, it is useful to discuss the sensitivity of each 
model to initial conditions as well as to the procedure used to perform the calculations. 

Figure 1 shows predictions with the BF model for case 2500 with different initial shear stress profiles, 
As was discussed in Section 2, we use Eq. (24) to generate the streamwise velocity profile and Eq, (4,4,39) 
with pressure gradient from Cebeci and Smith to generate the initial shear stress profile x. Whether we 
include the pressure gradient term in the T profile strongly affects the solutions, although at some down- 
stream' location (close to where the experimental data ends!) the effect of the initial profiles vanishes. 
The use of Eq. (24) with a mixing length, as was done by Bradshaw, yields nearly the same results as those 
obtained with the T profile generated according to Eq. (4.4.39) with no pressure gradient effect; possibly 
they are slightly worse! In more than ten adverse pressure gradient flows tested with the BF model, we 
observed the same effect; the shear-stress profiles generated according to Eq. (4.4.39) with pressure 
gradient yield much better agreement with experiment than those generated with a T-profile which does not 
contain the pressure-gradient term. In some cases, like case 3500, noninclusion of the gradient term in 
the initial T-profile caused the solutions to break down after a few stations. 

Figure 2 shows the effect of the initial shear-stress profile to the predictions of the JL model for 
case 2500. As can be seen, we observe the same effect as in the BF model. 
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/(due/dx)0 = -8.8 
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Fig. 1. Effect of initial shear-stress profile on 
the predictions of the BF model for case 2500. 

Fig. 2. Effect of initial shear-stress profile on 
the predictions of the JL model for case 2500. 

The solution of the CS model can be obtained by solving Eqs. (1) and (2), subject to the no-slip 
boundary conditions given by Eqs. (13), (14), (15) and (16). The use of either one of these boundary con- 
ditions yields results in which the computed local skin-friction values differ from each other as shown in 
Figure 3 for case 3500. 

In the solution of the governing equations for each model we need to specify the external velocity 
distribution ue(x). Since the solutions also require the velocity gradient, due/dx, it is useful to 
examine whether the procedure used to compute due/dx affects the solutions. Figure 4 shows the local 
skin-friction values for case 3500. Here the results are obtained with either the distribution of due/dx 
supplied in the Stanford Conference or by computing it from the input ue(x) distribution, using a three- 
point Lagrange interpolation formula as described by Cebeci and Bradshaw (p. 261). As is seen, the results 
are sensitive to the procedure used to compute due/dx. What is even more important is that, for case 3500 
and with due/dx computed from the ue(x) distribution, the calculated cf-values level off near separation 
rather than monotonically decreasing and going to zero as those obtained by inputting more accurate due/dx 
values. 

_ 2.Or 

1.0 

experimental data     ~~\.^ 
law-of-wall boundary conditions' 5" 

 no-slip boundary conditions 
J 0 

experimental data" 0 
due/dx input, based on 
Stanford tabulated data 
due/dx calculated from 
ue distribution 

2.0 3.0 
x (ft) 

4,0 5.0 2.0 3.0 
X (ft) 4.0 5,0 

Fig. 3. Effect of different "wall" boundary condi- 
tions to the predictions of the CS model for case 
3500. 

Figures 5, 6 and 7 allow comparison between the 
predictions of the three turbulence models with the 
experimental data for cases 1300, 2500, 3500. Here 
the predictions of the CS model, as of the BF and JL 
models, are obtained by using the law-of-the-wall 
boundary conditions rather than the no-slip boundary 
conditions. The general conclusion that all models 
yield sensibly the same results (although the pre- 
dictions of the BF model are slightly better than the 
CS and JL models) is inescapable and indicates that, 
at least for attached two-dimensional boundary layers 
with pressure gradients of the order of those of the 
test cases, the predictions of the CS model and the 
BF model are satisfactory and, indeed, are to be 
preferred since the JL model is more costly to use 
and requires the prescription of additional boundary 
conditions. 

It is also relevant to ask if the same conclu-    7 
sion applies to two-dimensional separating boundary    ° 
layers and wakes. After all, the turbulence models     >< 
have been tested for flows in which the boundary-       ^ 
layer behavior is dominated by the inner layer (except  cc 

near separation) and, therefore, the outer layer tur- 
bulence model is not too strongly tested. The tur- 
bulence model is likely to be more severely tested in 
free shear layers but, of course, there are far fewer Fig. 5. 
data (and the data are less reliable) for free shear 

Fig. 4. Effect of due/dx on the computed local 
skin-friction values for case 35ÖÖ, with the CS model. 
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Fig. 6. Predictions with the three turbulence 
models for case 2500. 
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Fig. 7. Predictions with the three turbulence 
models for case 3500. 

layers than for wall boundary layers. It should be noted that separated flows (with and without attachment) 
can be regarded as shear layers exposed to strong extra rates of strain and in most cases to considerable 
flow unsteadiness and, therefore, constitute a more serious problem. 

Data in separated and reattaching flows are again rare and unreliable because the hot-wire is less pre- 
cise in highly turbulent flows and laser anemometry is still relativelyunquantified, although one or two 
groups, for example, Simpson, Strickland and Barr (ref. 13), Durao and Whitelaw (ref. 14), and Durst and 
Rastogi (ref. 15) have obtained very impressive results for separated flows.  Therefore, progress in 
turbulence modelling is effectively held up for the present. 

In order to investigate the predictions of the present turbulence models, Cebeci, Khalil and Whitelaw 
(ref. 16) considered the separating flow data of Simpson, Strickland and Barr. In their study, calculations 
were made by using the same boundary-layer procedure and the CS model as described above. The first calcu- 
lation, with the measured distribution of freestream velocity as boundary condition, proceeded to the end of 
the experimental data without indicating reverse flow. The calculation was repeated using an inverse 
boundary-layer method; in addition to the boundary conditions given by eq.(4), the experimental displacement 
thickness was also specified. The calculations then indicated flow separation at the same location as the 
measurement. It is interesting to note that when related calculations were performed with two-dimensional 
elliptic equations and the JL model, separation was correctly detected but the downstream profiles, due at 
least in part to numerical uncertainties, were rather further from the measurements than those obtained with 
the parabolic equations and CS model. 

Figure 8 shows the predictions of the CS model. We observe from the computed velocity profiles, 
Fig. 8a, that at first the agreement with experiment is quite good; it slowly deteriorates, however, as the 
pressure gradient becomes stronger and the flow approaches separation. The differences indicated in com- 
puted and experimental external velocity distributions shown in Fig. 8b may be due in part, to either the 
boundary-layer equations, the CS model, the wall functions or the measurements and it is impossible to 
determine which on the basis of the present evidence. The CS model, with its viscous sublayer model, is 
adequate only for attached flows. The inverse boundary-layer procedure is a very useful vehicle with which 
to examine alternative procedures, including the need to consider the influence of normal stresses as 
suggested by the data of Simpson et al. 

Figure 9 shows the results for an asymmetric near wake behind a flat plate. The experimental data is 
due to Andreopoulos and Bradshaw (ref. 17). The numerical calculations were made with the CS model modi- 
fied, following the ideas set forth by Bradshaw (ref. 18) and by Townsend (ref. 19). We denote the wake 
centerline by y = 0, and subdivide the inner region of the eddy-viscosity formula into two parts. When 
0 < y < y2 we define 

ew = °-4(UTix"yc C26) 

Here y is taken to be 

yc = 

"0.0168U S*     ' e 

0.4(u )    „105 x'max 

ix - x T.E.' 
T.E. 

which essentially assumes that the near wake effect vanishes at lOfij.E. from the trailing edge. When 
y2 * y < yi> we use eq. (6) without the van Driest modification. In the outer region of the flow, we 
again use eq. (8). Note that, according to eqs. (8) and (26), the magnitude of e  may exceed that of e 
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Fig. 9. Comparison between near-wake measurements of 
Andreopoulos and Bradshaw (ref. 17) and the calcula- 
tions with the modified CS model. 

at large enough distances from the trailing edge. In 
order to prevent this unacceptable property, we intro- 
duce the additional requirement that once e0 = ew, 
the eddy viscosity for larger values of x is taken 
to be constant across the wake and equal to e0. 

4.  COMPARISON OF TURBULENCE MODELS FOR THREE- 
DIMENSIONAL FLOWS 

The two-dimensional flows of the previous section 
provide information of the relative merits of the three 
turbulence models but the engineering problems of inter- 
est, namely those concerned with wings and bodies of 
revolution directly related to aircraft components are 
described by three-dimensional equations. After brief 
consideration of the swept wing of reference 7, for 
which calculations have been performed with the CS and 
BF models, and the swept wing of reference 21 which 
allows appraisal of Rotta's nonisotropic eddy- 
viscosity formulation, this section is concerned with 
the flow in a 60° curved duct and on a finite wing. 
The duct flow is considered ..because results have pre- 

viously been obtained by Rastogi and Rodi (ref. 20) with the OL model and, together with present results 
with the CS model, allow a comparison of the two models in a three-dimensional flow. The calculations with 
the wing were obtained with the CS model only since, as may be surmised from the results of the previous 
section and confirmed by the bend flow, the use of models more complex than CS cannot easily be justified 
for two-dimensional flows, far less than the more complicated three-dimensional flows. 

Fig. 8. Comparison between measurements of ref. 13 
and the calculations with the CS model. 

Figure 10 shows a comparison between the predictions of the CS and BF models for the 45 "infinite" 
swept wing measured by Bradshaw and Terrell (ref. 7). This experiment was set up especially to test the 
outer-layer assumptions made in extending the BF model from two dimensions to three. Measurements were 
made only on the rear of the wing in a region of nominally zero pressure gradient and decaying crossflow 
(see Fig. 10a). Spanwise and chordwise components of mean velocity and shear stress and all three compon- 
ents of turbulence intensity, were measured at locations corresponding to x' = 0, 4, 16 and 20 in. from 
the start of the flat portion of the wing (see Fig. 10). The surface shear stress, measured with a Preston 
tube, was constant along a generator at the start of the flat part of the wing. In general, Figure 10 shows 
that the calculated results obtained with CS and BF models agree well with the experimental data and that 
there is little to choose between them. 

A major question of particular importance to the aerospace industry concerns the structure of three- 
dimensional boundary layers with strong crossflow. An excellent series of experiments at the NLR (ref. 21) 
showed, on pomparison with current calculation methods, that considerable changes in turbulent structure 
could occur. For example, the spanwise component of eddy viscosity in a three-dimensional boundary layer 
proved to* be considerably less than the streamwise component, leading to the possibility of significant 
inaccuracy in predictions made by methods which assume an isotropic eddy viscosity. It appears that even 
transport equations seriously underpredict the nonisotropy of eddy viscosity in this case. 

Figure 11 shows the results for the NLR data. The calculations were made by using the version of the 
CS model for three-dimensional flows and by using Rotta's (ref. 22) modification to mixing length to account 
for the nonisotropy of the eddy viscosity. For three-dimensional flows, the CS eddy-viscosity formulas for 
inner and outer regions are: 

= L' 
2    2 

(la.) + (ist) 
Lvay'   sy J (27) 

e = 0.0168 0 / <uRe ~ uR)dy (28) 

Here L is given by (7a) and (7b) except that now the friction velocity u  is given by 
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Fig. 10. Results for the relaxing flow of Bradshaw 
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Fig.  11.    Comparison of calculations and measurements 
for the infinite swept wing of ref. 21.    (a) Total 
velocity profiles and total skin-friction coefficient 
distributions,  (b) Crossflow angle distributions. 

(29) 

where -3uN 

3y V3V' J w        y vi- 

and  the dimensionless pressure-gradient parameter p 
is given by 

+  vus dus 

T 
2  2 

Also uR in the outer region eddy-viscosity formula is a resultant velocity defined by (u + w ) 

Rotta suggested that the mixing length formulation, eq.(27), be modified to 

0 0 1 -* r   Z c. Z 
/3U\  . /3WN  , fT       ,W|, 8U    3W\ , 2 

ay ay (30) 

where T is a "constant" chosen to fit the experimental data. One can take L = 0.4y[l - exp(-y/A)J in 
the inner region and L = 0.0856 in the outer region. Equation (30) can also be used for the inner region 
with eq. (28) for the outer region. In our study both choices were examined and produced nearly the same 
results. 

The computed results of Figure 11 show that the predictions of both models, though initially very good 
(weak adverse pressure gradient), deteriorate quickly with increasing pressure gradient. The unmodified CS 
model does not predict flow separation and, although the modified model does predict flow separation with 
T = 0.5, the predicted velocity profiles and crossflow angles do not differ from those computed with the 
unmodified model. The modified model only affects the skin friction; by making it decrease, it causes 
the flow to separate. 
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To further test the model for "fully" three-dimensional flows, we have considered the experimental data 
taken in a 60° curved duct of rectangular cross section. Figure 12 shows a sketch of the flow geometry: the 
experimental data is due to Vermeulen (ref. 8). A comparison of calculated and experimental values of 
streamwise momentum thickness, en, shape factor, 
Hi], skin-friction coefficient Cf and the limiting 
crossflow angle, ßw, is shown in Figures 13, 14, v^-  
15 and 16, respectively along the lines B, C, D, E. S\<t^^*>    ! JJ !> ._   INITIAL 
Figure 17 presents a comparison of calculated and 
experimental total velocity profile along the lines 
C and E. In all cases, the calculations were made 
by using the Cs model with and without Rotta's modif- 
ication. Overall the agreement with experiment is 
quite good and the results obtained with Rotta's mod- 
ification are not too different from those obtained 
by the unmodified CS model. Rastogi and Rodi (ref. 
20) have repeated calculations of this flow with the 
JL model; inspection of their results and comparison 
with the present results, indicates that the turbu- 
lence model has negligible influence. 

In recent years several methods have been 
developed for computing three-dimensional laminar and curved''duct 
turbulent boundary layers on finite wings. That of 

CONDITIONS 

INITIAL CONDITIONS 

MEASURING LOCATIONS 

Fig. 12. Coordinate system and notation for the 
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Fig. 13. Comparison of computed momentum thickness  Fig. 14. Comparison of computed shape factor with 
with Vermeulen's data. Vermeulen's data. 

1.5        2.0 
x(n) 

Fig. 15.    Comparison of computed skin friction 
coefficient with Vermeulen's data. 

1.5  2.0 
x(m) 

Fig. 16. Comparison of computed limiting crossflow 
angle with Vermeulen's data. 

Cebeci, Kaups and Ramsey (ref. 23) uses a geometry package to represent the wing analytically, a novel 
numerical procedure to solve the governing equations for a nonorthogonal coordinate system, and an algebraic 
eddy-viscosity model similar to that given by eq. (27) to (29). It has recently been coupled to subsonic 
and transonic inviscid flow methods to account for the influence of the viscous forces on the pressure dis- 
tribution. Two separate procedures were investigated. In one, the displacement surface was computed for a 
given inviscid pressure distribution and the potential flow computed about this modified shape; the itera- 
tion was continued until the convergence criterion was satisfied. In the other, the viscous effects were 
simulated by distributed sources of a blowing velocity on the body. 

Figure 18 shows results for a swept wing with leading edge swept back at 48.54°, an aspect ratio of 
3.0 and a taper ratio of 0.5. The wing has no twist and the sections conform to NACA 64A010 in planes 
inclined at 45° to the plane of symmetry. The data is due to Kolbe and Boltz (ref. 24). 

The results of Figure 18 show that the "blowing" approach yields results which are in good agreement 
with the measurements. In contrast, the "displacement thickness" results do not agree well and it is 
impossible, on the basis of present evidence to isolate the reason. It should be appreciated, however, 
that the "marriage"of an accurate potential-flow method with an accurate boundary-!ayer method will not 
necessarily lead to accurate calculations. A major reason for this stems from the curved downstream wake 
which, with its viscous flow, can strongly influence the potential flow around the wing (or body of revolu- 
tion). It is clear from the two-dimensional results of Section 3, that the use of incorrect boundary 
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Fig. 17.    Comparison of computed total velocity profiles with Vermeulen's data. 
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conditions can lead to significant errors and the 
incorrect representation of the wake has a related 
effect. The calculation of the wake and its influence 
on the potential and boundary layers around the surf- 
ace has not been carefully determined and should be 
incorporated into numerical calculation methods before 
further detailed consideration of turbulence models. 

The influence of initial conditions, also demon- 
strated in Section 3, can also be important and can 
arise in two ways. First, and as in Section 2, mean- 
velocity measurements may be available, but with an 
inappropriate procedure for the determination of, for 
example, the shear-stress distribution, can lead to 
errors. Secondly, and as ably demonstrated by Meier 
and Kreplin (ref. 25), transition on wings and bodies 
of revolution can exist over a large region of a body; 

;. Calculated and experimental results for the the details of the flow in such circumstances, are 
wing of ref. 24. Rec = 18 x 10

6. essentially unknown and cannot readily be determined. 
Even when a transition correlation is known, in terms 

measurements, appropriate details of the profiles are usually unknown with corresponding uncer- 
in initial values and calculated downstream results. 

369 
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5.  DISCUSSION AND CONCLUDING REMARKS 

The results of the preceeding two sections show that the three turbulence models can result in differ- 
ent calculated results and that the differences may not be of major significance when considered in relation 
to other sources of uncertainty. In particular, boundary and initial-condition effects demonstrated here in 
relation to two-dimensional flows, can be greater than those of the turbulence models and this situation may 
be expected to be at least as important in three-dimensional flows. Similarly, and although ad hoc modifica- 
tions to turbulence models such as that proposed by Rotta, may work well for a limited range of flows and 
flow properties, they can lead to important discrepancies in other flows and properties. 

An additional, and more important problem, for the calculation of the flow around the external surface 
of aircraft and missiles is the correct representation of the interaction between the inviscid and viscid 
flows from the leading edge and into the downstream wake. The calculation of important overall quantities, 
such as lift and drag, and of local flow properties cannot be achieved without the extension of the calcula- 
tion method into the downstream flow. Thus, the three-dimensional procedure of Cebeci, Kaups and Ramsey 
(ref. 23) is unsatisfactory in that, as yet, it does not allow calculations downstream of the trailing-edge 
of a wing and is, as a result, likely to give erroneous results in the trailing-edge region which will 
increase in magnitude and importance as the angle of attack, and consequent wake thickness and curvature, 
increase. The error is also likely to be more important with asymmetric and particularly supercritical 
airfoil shapes. The same criticism, and others, can be levied at the wing-related calculations of others, 
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including those of Kordulla (ref. 26), McLean (ref. 27) and Humphreys (ref. 28), where no attempt has been 
made to represent the influence of the wake. The recent work of Cebeci, Thiele, Williams and Stewartson 
(ref. 29) provides a basis for this necessary extension which, for practical flows, is always likely to be 
of greater importance than the differences between the turbulence models considered here. 

As a consequence of the above, it is difficult to draw positive conclusions about turbulence models and 
of the extent to which they represent the observed features of thin shear-layer flows including spots, bursts 
and other 'coherent eddies." We could, for example, conclude that the present models do not represent suf- 
ficient aspects of turbulent flows and that, as a consequence, we should proceed more rapidly toward stress 
models, stress models with more than one dissipation equation, spectral methods, large-eddy simulation 
methods, etc. These might conceivably be developed to take some account of the observed structures. Alter- 
natively, it can be concluded that two- and three-dimensional wall boundary layers are not strongly influ- 
enced by these "structures" and that the simpler models are to be preferred in their present state. 
Neither conclusion is satisfactory although the latter seems closer to the truth than the former. 

It is clear that experimental evidence is insufficient in quantity and precision to provide tests which 
are completely adequate. However, even if greater quantities of data were available, it is unlikely that 
the precision would be adequate to prevent the uncertainties of the type shown here in connection with two- 
dimensional flows. Thus, the designer is unlikely to be presented with a calculation method which allows 
a priori predictions of flow properties with accuracy sufficient for the design of wings and bodies of revo- 
lution associated with aircraft components. Particularly with the algebraic eddy-viscosity form of 
turbulence models, however, he can be presented with calculation methods which are cheap to run, convenient 
to use and which provide precision more than adequate for comparative calculations. There is no doubt that 
in this way, the design function can benefit from calculations now. 
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Abstract. 

A short review of previous attempts to establish a proper phenomenological relation 
for turbulent flows is followed by a suggested approach to the problem in the case of a tur- 
bulent boundary layer.  An attempt is made at showing the extreme flexibility that such a 
relation must exhibit if it is to account for effects of outside conditions and pre-his- 
tory of the flow.  By selecting proper "inner variables" as parameters and properly cha- 
racterizing the outer flow it is shown how a sufficiently general phenomenological rela- 
tion can be established and how the closure problem may thus be considered in a different 
perspective. 

List of symbols, 

u     •> mean velocity components in the 

v     * boundary layer 

p pressure 

x independent variable along the wall 

y independent variable normal to the wall 

T shear stress 

T shear stress at the wall w 

v^ shear velocity 

v viscosity 

p       density 

v<   f velocity fluctuations 

U(x) outside flow velocity parallel to the wall, general case 

U outside flow velocity parallel to the wall, flat plate 

'. } non-dimensional variables in the boundary layer 

+ 
u non-dimensional velocity parallel to the wall 

+ + + 
wra      constant, limiting value of « as y     •+ <» 

+ 

} coordinates indicating the joining point between the wall- and the wake region 
2/1 

y~ value of y     at the departure from (or arrival at) the flat plate locus 

6 and y    boundary layer thickness 

I Prandtl's mixing length 
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5        limiting value of u     as y  -+ 

y limiting value of y     as y  -+ 
"inner variables' 

+ ^       \ +       (       initial values of £,;/ 
y      .   ) 'J o 

A, Kja    constants 

Se       entry Reynolds number 

1.  Introduction. 

Ever since REYNOLDS  [i]   established the equations for the mean motion in turbu- 
lent flows, major efforts have been made to relate the Reynolds apparent stresses in some 
way to the mean flow field.  The necessary relation is of a phenomenological character, 
i.e. it will either have to express an experimentally established fact or it will have to 
be introduced as a hypothesis.  Such a hypothesis will however have to render results which 
are reasonably well supported by experimental evidence if it is to have more than accade- 
mic interest.  The phenomenological relationship is thus a piece of experimental infor- 
mation and the well known relation between the stress field and the deformation field in 
an elastic medium as well as the Stokes' hypothesis for a Newtonian fluid are examples 
of such relations. 

The earliest attempts at establishing phenomenological relations for the Reynolds' 
apparent stresses followed more or less as analogies to the Stokes' hypothesis for a New- 
tonian fluid.  Boussinesque's suggestion was followed by a more sophisticated approach 
whereby a mixing length was introduced.  The concept of a mixing length was based on as- 
sumptions on what might be the important feature of turbulent flows.  L. PRANDTL [2] 
introduced his mixing length through "a momentum transport theory" whereas G.I. TAYLOR 
[3]   arrived at his formulation of a mixing length through a "vorticity transport the- 

ory".  In this way they left a "legacy" to their successors in the sense that they intro- 
duced the "structure of turbulence" as a key to the understanding of turbulent flows. 
From such a structure of turbulence the answers to problems in turbulent flow would be 
deducible. 

The nature of the Reynolds stresses differs from that of the stresses in the Stokes1 

hypothesis in that they are not related to the flow field through a property (i.e. vis- 
cosity) of the fluid.  Thus one is faced with the problem of identifying the proper para- 
meters through which the phenomenological relation(s) necessary for the closure of the 
probelm should be expressed.  A great step forward was taken when KOLMOGOROV [4] in- 
troduced the energy in the turbulent fluctuations as one such parameter.  In addition he 
also introduced a second parameter without however specifying its physical interpretation. 
He presented transport equations for both these parameters and gave equations whereby the 
Reynolds stresses could be deduced once the two parameters were known.  The equations con- 
tain contants to be determined from experiments, and these are supposed to be universally 
valid for all flows. In this way the closure problem appears to be solved. 

PRANDTL  [5]   improved this in the sense that he based his deductions on the mech- 
anical  energy equation for the turbulent fluctuations.  He formulates this equation such 
that it contains two terms caused by the viscous forces; one term which expresses the to- 
tal work done by these forces on an element as it moves and deforms from which he sub- 
tracs a second term which represents that part of the total work done which Is converted 
into heat.  In this way the second parameter, the dissipation of turbulent energy, is in- 
troduced.  This procedure is however marred by the fact that due to the non-linearity of 
the basic equations the transport equations deduced from them for say the Reynolds stres- 
ses will contain the one-point trippelcorrelations.  Thus one will always end up with 
fewer equations than unknowns.  The closure of the system, is achieved through a number of 
estimates of the different terms in the mechanical energy equation for the fluctuations. 
In these estimates several numerical constants appear and these are determined through 
information obtained from experiments.  These constants should again be of universal cha- 
racter, but unfortunately they are not. 

Most of the later theories for turbulent flow follow in the paths set by these 
earlier attempts, and consequently they also suffer from the necessity of forcing a clo- 
sure of the problem through som type of hypothesis whereby difficult terms in the equa- 
tions are estimated.  The fact that a closure problem exists makes it questionable if 
the right parameters are found through which the necessary phenomenological relation(s) 
can be expressed. 

BRADSHAW  [6]   presents a model for the turbulent boundary layer in which empiri- 
cal functions are introduced instead of only empirical constants.  His main point is 
well taken and t^iay perhaps be expressed through the following statement:  For boundary 
layer flow with arbitrary pressure gradients the upstream history of the boundary layer 
cannot be ignored and must somehow be accounted for through a proper phenomenological re- 
lation.  This may mean that one must search for a relation that goes beyond whatever can 
be deduced from an eventual "structure of turbulence". 
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This rather brief and sketchy account of the development serves as a background for 
suggesting a somewhat different approach that seems to work well in the case of two- 
dimensional boundary layer flow.  It can be looked upon as a continuation of the line 
of reasoning that may have led Bradshaw in his efforts, but it goes beyond that in the 
sense that contrary to the Bradshaw approach, no term in the basic equations needs to be 
estimated from models of a certain structure of turbulence. 

2.  The two-dimensional boundary layer. 

The basic equations governing the mean flow in turbulent boundary layers are the 
equation  of  continuity: 

V^ +   V1 =   0 (2.1) 
3a;   dy 

and the equavion  of  steady  motion: 

1 &. + 1  Ax 3u    , —-   3u • • ,-,, .,. 
UT— + V -r— =   -  — -f-  +  —  — (2.2) 

3a;     Sy p   ax       p 3j/ 

where the total shear stress T is given as the sum of the Reynolds stress and the viscous 
shear stress due to the mean motion 

3» 
T =  v  ir~ -   pu'v' (2.3) dy 

The usual notation has been used and it is stressed that the pressure gradient is given 
by the known outside flow U(x): 

_ 1    |£ = udV (2>4) 

p ax ax 

This set of basic equations is indeterminate in the sense that it contains one unknown 
more than the number of equations.  The missing link is some kind of phenomenological 
relation which will close the system. 

The specific form of (2.1), (2.2) and (2.4) is such that v  may be eliminated: 

— 3«   3M H   3M ,    „ dU   ,    1   3T ,~ J-> 
u  —  - — j— du = {/-?--'- — -re (2.5) 

3a;   dy   '    dx     a dx        p3w 

This equation may be formally integrated: 

T(— -   V   -   2   Ju  — dy   -  u   Ij^dy  -   U -^ y (2.6) 
w o o 

where T  is the shear stress at the wall. w 

The non-dimensional variables usually introduced to describe turbulent boundary 
layer flow are 

(2.7) 

where x     an arbitrary position along the wall and where the shear velocity v„, is defined 
as a function of a; through 

•f 
u = 

u 

+ 
y = 

y v* 
V 

+ 
X = 

X 

j ^1 
X     v 

0 

>.=v T„/P (2.8) w 

Because of their importance in the later deductions specific attention is drawn to the 
limiting values of u+  and y+  at the outer edge of the boundary layer 

u  •+ U(x)        as y   •+   S •, 

*   , \ (2'9) 

u     -> — = £  as y     + -j— - yQ 

It is seen that the assumed asymptotic character of a as a function of y     at the outer 
edge of the boundary layer is replaced by the assymption that u+  •*•  5 for a finite value 
of y+  - y +.      This is however a simplification of minor consequence and may even under cer- 
tain circumstances be regarded as an improvement. 
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The velocity u  as a function of x  and y   is now replaced by the non-dimensional 
velocity u+  as a function of the independent variables x+  and y     with no loss of genera- 
lity.  The basic equation of the turbulent boundary layer (2.6) will then upon some 
lengthy but rather straight forward algebra be brought in the form 

-/- + 

 1   =   2}u     — dy     -  u   \—+dy     - - -f-+\ (u  )zdy     + 
xw o        3x o%x K   dx  o 

+ 

)(u+)*dy+  - E2.V + ] 2 42. 
+   V   dx+ 

(2.10) 

This final form of the basic equation contains three unknown functions, T,U     and 5, 
of which the first two depend on x+  and y+  whereas the last one depends on x+only.  Its 
similarity to the von Karman's integral momentum equation is obvious but it is stressed 
that it is not an integral equation in the sense that one of the variables has been elimi- 
nated through integration.  It must be supplemented with a proper phenomenological rela- 
tion before it can be regareded as a besic equation for turbulent boundary layer flow. 
The subsequent presentation will be concerned with the nature of such a relation. 

3.  The nature of the phenomenological relation. 

In contemplating the nature of phenomenological relation it should be realized that 
such a relation does not recessarily have to relate the Reynolds stresses to the flow- 
field directly.  Any experimentally supported relation of universal character which con- 
tains sufficient information for the closure of the problem will do. KESTIN and PERSEN 
[7] showed how the law of the wall could be considered as such an information and this 
was elaborated on by BRAND and PERSEN [8].  PERSEN [9] showed how A corresponding idea 
solved the transfer of heat through turbulent boundary layers and ^rtiat might have been 
considered a coherent approach to the diffusion of heat as well as momentum in turbulent 
boundary layers was established.  Although this approach suffers both from the lack of 
general applicability as well as from neglected details of the non-dimensional velocity 
profiles, its extreme simplicity and its relevance to the subsequent deductions warrant 
a short recapitulation. 

The law of the wall states that the non-dimensional velocity u is a function of 
y only, and that no explicit x-dependence is present in this relation. It can be ex- 
pressed by 

y+  = f(u) (3.1) 

and SPALDING [10] gave the following empirical specification of it: 

f(u)   =   u     +  A[eKU     -   1   -   KU
+

   -   (KU
+
)
2
/2   -   (KU

+
)
3
/6   -   (KU

+
)

1,
/24] (3.2) 

At this point a few comments on phenomenological relationships in general may be 
appropriate.  The phenomenological relationhip for a linear elastic material is expressed 
through two constants only.  The simplicity of this relationship is extreme.  For any 
type of nonlinearity of the phenomenological relationship a functional expression for 
this relationship must be given.  This functional expression is experimentally established 
and is empirical in natur.  Thus its mathematical formulation will always appear as a re- 
sult of a best fit procedure.  Spalding's formulation (3.2) is just that. 

The formulation (3.2) is valid from the wall and satisfies the right conditions at 
the wall.  Fig.l shows a comparison between Spalding's function with A=0.110 8   and K=0.4 
and the data obtained on a flat plate by WIEGHARDT and TILLMANN [11] as described by 
COLES [12].  It is noticed that the function gives a curve that goes fairly well through 
the data points without however describing the detailed trace of the data points from 
each station.  If one is satisfied with such an approximate phenomenological relation as 
the one given in (3.1), the solution to the problem in the case of a flat plate follows 
immediately by realizing that (2.10) is then reduced to 

+ 

f- " 1   =  ~  T —T ? (u+)*dy+ (3.3) 
w dx     o 
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The fact that the law of 
the wall is assumed uni- 
versally valid implies 
that the limiting values 
5,; at the outer edge of 
the boundary layer also 
satisfy (3.1) : 

f(V (3.4) 

Now, (3.3) is also valid 
at the outer edge of the 
boundary layer where pre- 
sumably i=0,   i.e. 

10* 10J 

Fig.l   Comparison  between  experimental   data  obtained by   WTEGHARDT/ 
TILLMANN   [11]   on  a  flat plate   and SPALDING's   formulation [10] 
of  the   law   of  the  wall 

-^ / (u   )ldy 
dx     o 

(3.5) 

One has here obtained a first order differential equation for £ as a function of x   , and 
all other pertinent quantities can then be found.  The solution from first principles has 
been established, and it is realized that the phenomenological relationship used in this 
case lies first in the experimentally supported fact that one has a universally valid 
similarity law in (3.1) and secondly that the parameters l,y+

0   satisfy this law. 

This approach works rather well when it is used to compute the shear stress at the 
wall for a flat plate.  The reason for this is found in the fact that the end values l,y+ 
fox  each profile satisfy (3.4) rather well.  Realizing this WHITE and CHRISTOPH [13] 
extended this procedure to incorporate a number of different cases of boundary layer 
flows.  From a basic point of view, however, a proper phenomenological relation which ac- 
counts for details in our knowledge for turbulent boundary layer flow is not incorpor- 
ated in their approach. 

This survey has shown one possible type of phenomenological relation which when 
used to supplement the basic equation (2.10) permits a solution to be found. It is based 
on experimental evidence but its formulation is too simple . The main objection to it is 
that it neither reflects the influence of outside manipulation nor the history of the 
flow. A proper phenomenological relation will have to exhibit an influence of these con- 
ditions whereby the outside manipulation mainly may be taken to be caused by the pressure 
gradient. 

4.  The two regions of a turbulent boundary layer. 

A scrutiny of the experimental results compliled in the Proceedings of the Stanford 
Conference 1968 performed by PERSEN [14] reveals that the non-dimensional velocity pro- 
file u+  versus y*  exhibits a similarity type behaviour which is different in the two reg- 
ions into which' the boundary layer may be divided.  In the inner "wall region" the profile 
is expressed by the law of the wall (3.1) for which Spalding's formulation (3.21 can be 
used with the constants A  and < changed as follows: 

A   =   0. 015 0.S3227 (4.1) 

In agreement with COLES' [12] presentation of the Stanford data, and with PERRY, BELL and 
JOUBERT [15], this inner law is not influenced by any type of pressure gradient one may 
apply.  In the outer "wake region" the profile can be expressed by: 

+ + 
u     -  u 

%,  - u 

exp 1   ,   + +,2 —T(y„ - y i az o        J (4.2) 
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where the constant a is given by 

Al M/.-u   ' 

(4.3) 

4- I        - |- - -i- -I -^ 

-24 Eq. (4 2)/ 

-22 y ^r- 
-20 

#"      i 
+ -18 

- -16 

-14 /Eq. (3.1) , _ 

-12 / 
-+                      1 

y             '   - 

/   , ..?....? ..-,...Y  [ 
yD 

The profile will then appear as shown in 
Fig. 2 where u*}y*  give the point where the 
two regions meet.  At the point u+=  E,,y+=  y 
the profile exhibits a horizontal tangent. '' 
If this point is known, the point u\,   y+.   is 
found by claiming that the expressions for 
the profile in the two regions go through this 
point with a common tangent.  The parameter 
u+  is a constant in most cases and gives the 
limiting value of u+  as y     -> °°.  (The only 
cases where u*  is depending on x+  may occur 
in transient flows). 

The profile is thus completely deter- 
mined once Cj y+  and w£ are specified. 

Fig.   2 Plot of the law of the wall and the law of the 
wake with  (u'i,yl) giving the voint at which the 
two laws join. 

5.  The phenomenological relation. 

At this point it is possible to conceive of a phenomenological relation expressed 
through what may be called the "inner variables" £,,y+. It takes the form of a relation 
between the two which is characteristic of the situation and which may be expressed as 

xo(V (5.1) 

Such a phenomenological relation cannot be unique in the sense that it remains unchanged 
by whatever manipulations the boundary layer undergoes or has undergone.  Brandshaw's 
contention that the history of the boundary layer must be accounted for by the phenomeno- 
logical relation it met through specification of the initial values of this relation. 
The relation must reflect outside influence exerted on the boundary layer (pressure gra- 
dients etc.) but it must also exhibit some sort of uniqueness for each class of flow. 
Equation (5.1) represents a curve in Pig. 2 which will give the "locus of £".  It is rea- 
lized that one should expect som explicit ^-dependence to appear in the expression for 
the locus.  This point will be taken up in the subsequent discussion.  For the moment it 
suffices to assume that a relation like (5.1) exists. 

Since the boundary layer now is divided into two regions, the basic equation (2.10) 
will have to be reformulated by introduction of the similarity profiles (3.1) and (4.2) 
in the two regions respectively. 

In the  wall  vegion  the function G(u  )   is defined as 

+ 
VL 

G(u+)   =   l(u+)zf'(u+)du+ (5.2) 

where f(u  )   is defined in (3.1).  Equation (2.10) is then easily seen to simplify to: 

r  % G(u+) 
* dx 

I dU 

dx •A 
^f(u) G(u) (5.3) 

In the  wake   region  the situation is somewhat more complicated.  To simplify the expres- 
sions the following abbreviations are introduced: 

dyi dui 
— - /'r«T;— 
dx dx 

(5.4) 
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du\ 

dx dx 
(5.5) 

where 

K,( 

;ax dx 

3 u „   ,       + > d g 
—T = x3^»!/  )-*-+ 
3 a; da; 

c^ru - 2f(u+
1)0ii £-) 

&l(V 

vg   -   u 

r +   + -^—+}(y-y\) ~ f (ui) 
<•  +) U\-U    ' 

€-W Ui-W 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

u  -u 
K5(Z,y+)  =  ~ -   (u-uj\^(V(y+-/)'1 + ?-(y+-y + )K<(z)\ 

g-M ^ a2 J 
(5.10) 

Finally then (2.10) transforms into: 

Tw £  da; 
I  25   J   ü  K3(gjy   ) dy     -   u   g   )K-i(B,3y   ) dy     -   Giu^i 

v + + 
y\ y\ 

+ 

-   j   (u  )ldy   >  -T, —x  gzz/     -   fff«i^   -   j    (u   )ldy 
+ J      u   dx   L + J 

(5.11) 

In this equation T appears as a function of g.a;  and y   .     One may thus conclude that in 
addition to the specified universal profile u    versus y+  a functional relationship between 
g and y+   (the locus of g) is all that is needed as a proper phenomenological relation that 
neither°gives redundant information nor leaves a closure problem.  First the influence of 
the outer conditions on the locus of g will be nearer explored. 

Characterization of the outside flow.  The locus of g, 

It has been emphasized that the phenomenological relation must be expected to be in- 
fluenced by the outside conditons, and as a main source of such influence the pressure 
gradient enters the picture.  It is however not sufficient to characterize this gradient 
verbally as "mild, moderate or strong".  One must find a way to characterize the outside 
flow quantitatively whereby the appraoch should be kept as general as possible. 

First the   flat plate   situation (3p/3x = 0)   is considered.  This simple case does 
not impose any explicit a;-dependence from the outside flow, and a dimensional analysis 
then indicates that the locus of g expressed through (5.1) is adequate.  Experimental evi- 
dence is used to establish the following flat plate locus: [PERSEN (16)]. 

t   =   Z. 83649   ln(y   /0. 216) (6.1) 

The locus is shown in Fig. 3 as a straight dashed line, and is in complete agreement with 
the result obtained by MILLIKAN [17]. It represents the only input necessary for solving 
the case of a turbulent boundary layer on a flat plate with none of the flaws in it which 
characterize the approach in Sec. 3. 
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When the boundary layer is subjected 
to an adverse  pressure  gradient,   the 
outside flow can usually with good 
accuracy be approximated in either 
of two ways: 

Case I, dp/dx  >   0,     d2p/dxz   <   0: 

Vf   V6 

Fig.   3 Plot of an arbitrary Profile u    versus y    with the 
flat vlate locus and the loous of Z,,  case I,  indicated. 

U/U„ =   (1   +  x/x   )~l    (6.2) 
& o 

Case II, dp/dx   >   0,   d2p/dxz   >   0: 

u/uE = 1 

where (1   + - )\ x 
o 

(6.3) 

(6.4) 

In these expressions x  , B and U    are constants determined through a best fit procedure 
to the outside velocity which must be known.  It should be mentioned that all cases with 
adverse pressure gradients gathered in the Prodeedings of the Standford Conference, 
COLES [12],can be represented in either of the two ways.  The way in which the outside 
flow varies will determine a length scale x     (Case I) and x  /ß (Case II) and an "entry" 
velocity Up,   thus permitting an "entry" Reynolds number Re„°to  be formed 

'E 

Case I:   Re, 

Case II:  fle, 

E   o 

UExo/t (6.5) 

The two cases of adverse pressure gradients will both lead to separation.  However, 
Case I starts out with a large gradient that decreases downstrean whereas Case II starts 
out with a small gradient that steadily increases downstream.  In the latter case the 
tendency towards separation becomes stronger as one proceedes downstream and separation 
usually takes place before the pressure gradient has reached its maximum value.  In the 
first case one might say that the tendency towards separation diminishes downstream. 
One may therefore perhaps expect the locus of t; to be influenced by this fact as will be 
shown subsequently. 

Contemplating the variables that might possibly influence the locus of 5, one will 
find it natural that (5.1) be replaced by a relation like: 

v* = m,s.V ,,x) (6.6) 

where K-,y      •   represent the initial condition for the locus of £ and thus account for the 
influence of the history of the boundary layer.  Experimental evidence seems however to 
indicate that no explicit ^-dependence occur in either of the two cases considered here. 
The expected x-dependence may be replaced by a dependence on the Reynolds number Reg  cha- 
racterizing the outside flow. If the history of the boundary layer is such that it starts 
out from a flat plate situation, £. and y+   .   can also be expressed through Re„.     Thus (6.6) 
will under those conditions reducü to   °'% 

>o  = p(Z,ReE) (6.7) 

which corresponds to (5.1) .  The actual formulation of the locus of B,   in Case I is as 
follows: 

y+   =   0.00534  Re°E-
80" 

5  - 2.8365   lny+
Q   +   4.347   +   47. 236[ln(y+/y]p ]2 

(6.8) 

(6.9) 
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Here y+
f  is the point on the flat plate locus from which the locus of £ departs as 

shown in Fig\ 3.  The locus itself is modelled as a parabola of the same shape irrespec- 
tive of its position and is thus a similarity curve.  Experimental results indicate that 
this is true also when the situation is such that the locus does not start out from the 
flat plate situation but experimental evidence is insufficient to be conclusive in this 

case. 

Separation occurs when the locus of £ in 
Fig. 3 exhibits a vertical tangent.  Because 
of the parabolic shape chosen for the locus 
of £ in Case I, separation will not be pre- 
dicted.  This is done deliberately because 
experimental evidence is vague on when sepa- 
ration occurs.  In Case II, however, separa- 
tion most definitely will occur very rapidly 
and the locus will have to exhibit this. 
Fig. 4 shows how an ellipse is used to model 
the locus of C in this case.  The separation 
point is given by (ut}   y+)   and the point of 
departure from the flat plate locus is given 
through y*.     These three parameters are all 
given through the entry Reynolds number Re.: 

*lny£ 

Fig.   4 Sketah of the loeus of % for Case II of flow 
with an adverse pressure gradient. 

yf  =   200.98   ln(ReE)   -   1765 

ln(y+
m/y

+J   =   0.300   ln(Reg)   -   4.21 (6.10) 

u+   -   ut =   9.374   ln(ReJ   -   139.71 m j t, 

The locus of £ is given as 

? = 2.8365   ln(y+
o/0.216)   +   (u^-u*) I ln(y  /y ~ 

ln(ym/y „ 
(6.11) 

Perhaps the most striking example on how the history of the boundary layer influences 
the locus of 5 is given by the socalled relaxing flow. In this case the boundary layer is 
manipulated in such a way that it is brought close to separation and is then relaxed with 

zero pressure gradient. The locus of ? yill 
then be a curve that starts out at (l^V0 ±) 

S and joins the flat plate locus at 
y+  =  y     as shown in Fig. 5.  The curve will 
be given by: 

T 

Cflnyf-lnyjj)* 

C(ln yf-lny+): 

IrTy?^: 
In yf 

\\£W m \oQ^ 

•In yj 

£   =   2.8365   lny+   +   4.347   +   17.0[ln(y Jy+) V o jo 

(6.12) 
where 

+ 
'f ' o.% 

exp V U^0)/17 (6.13) 

fig.   5 The  loeus of  £ for relaxing flows. 

The locus of E; for cases with a favourable 
•pressure   gradient  is not given explicitly here. 
The locus will be found in the region in Fig. 
3 bounded by the flat plate locus and the ex- 
tention beyond y\  of the law of the wall. 
All data points available from the Stanford 
Conference 1968 for this case fall in this 
region and seem to indicate a straight line 
locus falling within this region.  This case 
as well as the case of equilibrium  flows   fall 
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within the framework of the present investigation but will be excluded here.  The main 
point has been made plausible: "The locus of 5 has been shown to exhibit a general cha- 
racter for each type of flow considered.  It reflects the history as well as the influence 
of the outside pressure gradient.  It thus serves well as the additional piece of ex- 
perimental information necessary in addition to the universal profile to form the pheno- 
menological relation. 

7.  The solution. 

(7.1) 

The final solution to the problem of turbulent boundary layer flow follows immedi- 
ately from the basic equation (5.11) once the idea of the locus of £ has been substan- 
tiated.  One observes that this equation must be valid also at the outer edge of the 
boundary layer (u  =   £,,y     -   y   )   where presumably \=0,   i.e. 

+ ° + 
y y 

0  =  1   + j  ^MsS / u+(y + )K3(^y + )dy +  - 5Z / K3(S,y+)dy+ 

*   dx   y + + 
y\ y\ 

+ + 
y 0 y 0 

-   G(u\)   - / (u+)Zdy + )   -| ^x ?V - G(u\)   -   / (u+)*dy + 

+ J U   dx   L   ° + 
y\ 2/i 

In this equation dll/Udx     appears as a known function.  For the different cases the 
following expressions are obtained: 

Plat plate: dU/dx+  -   0, 

4 ^T = TT ¥• =  dt,/d(Re   )     ,        Re     = -2- (7.2) £,    -,  +        U     dx x x \> dx o 

Adverse pressure gradient, Case I: 

1   dU     _     £     1   dE,     _     1     dz, 
U   dx+       ReE  '      5 dx+   ~  ReE   dX> 

? = x/x 

~3-;(i+z) 

(7.3) 

Adverse pressure gradient, Case II: 

1 dU_ £_.  2?       1 H_  -     1     dl.        9)_i 
U  dx+  '     ReE     (1-^)1   '      5 dx+  ~  ReE  dz 

(i-c2)- 

(7.4) 

C = (1  +  7H1 

Favourable pressure gradient: U =  U„(l+—) 
o 

U   dx+        ReE ? dx+        ReE   dX> 
:7.5) 

In this survey also the case of a favourable pressure gradient has been listed 
under the assumption that most such cases can be approximated by a linear increase in the 
outside velocity U(x)   with increasing distance x  along the wall. 

For the sake of brevity the following notation is introduced: 

+ + 

Kk(ZJy + )   =  21   J   uKz(Z,,y + )dy + -   u\   J   £3   (l,y + )dy + 

+ + 
2/1        + 2/1 

y ( (7.6) 

-G(u\)   -   I   (u+)^dy+ 

+ 
y\ 
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u'y+) = ik\^y+ " G(u+i) ~  h(u+)2dy 
y 

2/1 

/l (7.6) 

Thus one will find that in the different cases the differential equation for g as a func- 
tion of the non-dimensional distance along the wall may be expressed as follows: 

The flat plate: 

-d(Re)   =  dWh(z,,y+) (7.7) 

Adverse pressure gradient; Case I: 

d,    _   -*»(z>v0)te 
^ [l+K5(Z,y+

o)]Rei 

Adverse pressure gradient; Case II: 

(7.8) 

ax 
dr, 

(IS2)   + j^K5(Z,y+
0) 

(7.9) 

K*(£,,y+
o)/ReE 

Favourable pressure gradient: 

(1 + z.)   - (l + K)~lK5(Z,>y+) 
dX 
dr, 

^(ZiVJ/R*,, 

(7.10) 

The differential equations in this list are easily solved once the locus of Z   is known 
(whereby y +  as a function of 5 is given).  One may then proceede to calculate measured 
quantities°for comparison.  This has been done by PERSEN [14] and only a few additional 
remarks will be made here. 

8.  Some numerical results. 

Previous attempts at establishing a proper phenomenological relationship may now 
be examined in view of the present appraoch.  Formost among those is Prandti!s mixing 
length theory. The mixing length I  is defined through the shear stress 

plz(~)2 (8.1) 

Fig. 6 Prandti's mixing length I plotted as a function of y/S. 
   flat plate at different locations R 
    adverse pressure gradient,  case T,    at different 

locations  (given by V 
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In the present notation this equation may easily be reformulated as 

iH2( 
3u_ 

3y^ 

U2 

(8.2) 

Fig. 7 Detail of Fig. 6 
for small values 
of  u/&. 

n=,{Z^Z (8.3) 
w   dy 

All quantities on the righthand side of this equation may 
easily be calculated from the results of the preceding sec- 
tion.  Fig. 6 shows the results.  It is seen that at a giv- 
en location, either given by a; or by 5, the mixing length 
appears to vary linearly with y   in the Region 1.  To some 
extent this applies also to Region 2 where however the mix- 
ing length might be conceived of as a constant across the 
boundary thickness.  Prandtl's origonal contentions that I 
is proportional to y   in the boundary layer and a constant ac- 
cross a wake or a jet are thus shown to have been good guesses 
in view of the fact that the outer part of the boundary 
layer (Region 2) is here modelled on its analogy to jet flow. 
Fig. 7 shows however the detailed variation of I  across the 
laminar sublayer where Prandtl's original guess is not ap- 
plicable. 

BAKER and 
ness y on a fla 
data which are r 
data are seen to 
line is given as 
spective. Fig 
adverse pressure 
influenced by th 
as I  c*  0 . 61y . 

LAUNDER [18] measured the mixing length I  over the boundary layer thick- 
t plate and using y„  to non-dimensionalize the results, they obtained 
eplotted in Fig. 8.  Irrespective of the position along the plate these 
coalesce into one straight line within the wall region.  This straight 
I  c* 0.4ZSy.     One may use the present approach to put this result in per- 

9 shows computed points for both a flat plate and for a special case of 
gradient.  These points do indeed coalesce, but the straight line is 

e pressure gradient.  Thus the straight line for the flat plate is given 

The result obtained for the flat plate seems to indicate a connection with the von 
Kärmän's constant K.  This constant is given as 

3z/ z   Tw dy 
(8.4) 

and is easily computed using the present approach.  The result is exhibited in Fig. 10 
for the inner region. 

'/Vg 

1 

 .10 
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Fig.    8  Re-plot  of  the   results   of BAKER 
and  LAUNDER   [18]. 

Fig.   9   1/&  plotted as  function  of y/S. 
Points   are   oomputed and straight 
lines  are   fitted  to   these   data. 
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Fig- 10  Distribution  of von  Kärmän's   constant   K  over  the   inner   (watt) 
region.      (^Ldenotes   the   outer  edge   of  the   inner  region). 

The von Kärmän's constant is defined through the second derivative of the curve u     versus 
y   .     Since this curve exhibits an inflection point in the outer region, 
not computed in this region. 

the value of K is 

Fig. 10 shows that K is indeed constant over the major portion of the inner region 
(the laminar sublayer excluded), but that the value of this constant change with the 
pressure gradient, and to some extent also with position.  In general the results seem 
to indicate that both the concept of a mixing length and the concepts of local similarity 
underlying the von Kärmän's consept are too simple to account for the rather complex beha- 
viour of a turbulent boundary layer being encompassed by the present approach. 

Summary. 

This investigation may be summed up as follows: 

The non-dimensional profile u     versus y     in a turbulent boundary layer is usually 
assumed to exhibit an assymptotic behaviour at the outer edge of the boundary layer 
where u+ •*  ? as y+ •+  <=.  No error of partical importance is involved in replacing 
this assymption by assuming this value to be reached at a finite value of y +,   say y   , 
Thus the two inner variables g and y+  are defiend. a o 

It has been demonstrated for different types of boundary layer flow that the non-dim- 
ensional profile can be considered built up of two parts; the inner region governed 
by the law of the wall and the outer region governed by the law of the wake.  Improved 
mathematical expressions for the profile in these two regions are given, and as far 
as can be judged from available experimental evidence a "universal" validity of these 
may be assumed. 

The investigation reveals that the point £, y+  of the 
ated on a curve called "the locus of 5" whicfi can be 
nal piece of information to conclude the phenomenolog 
solution of the problem.  The locus of E characterize 
ced by the initial- and boundary conditions thus repr 
immediate history of the flow as well as of the press 
tention is that although the shape of the locus is de 
parameters of the outside flow, the locus exhibits a 
type of flow. 

non-dimensional profile is loc- 
considered as the only additio- 
ical relation necessary for the 
s the flow.  It will be influen- 
esenting the influence of the 
ure gradient.  However, the con- 
fined through characteristic 
universal" character for each 

Such "universal" loci are given for cases with adverse pressure gradients (Case I and 
II), for the flat plate and for relaxing flow.  In the last case the pre-history of 
the flow is specified through the initial values K^,yt  i•  In the first cases the pre- 
history of the flow is supposed to be a flat plate situation.  For favourable gra- 
dients as well as for equilibrium flows the proper loci are presently being investi- 
gated. 

The mathematical deductions are carried out to a point where the fundamental equation 
becomes a first order differential equation for I,   as a function of the non-dimensio- 
nal distance along the wall.  Since a number of numerical schemes are available for 
a numerical solution of such equations, this is considered to be the solution to the 
problem.  The author will upon request supply information on the computer programs 
built upon this approach whereby separation among several other features in the case 
of adverse pressure gradients will be predictable. 
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In this investigation the closure problem of turbulent flow was intended illuminated 
by at direct  approach to the problem in the simple case of boundary layer flow.  By 
selecting 5)jt as the key "inner variables" and expressing the necessary phenomenolo- 
gical relation through these, it is possible to show how outside conditions like pre- 
history of the flow and the pressure gradient influence this relation.  Such an in- 
fluence is an expected one and it is difficult to perceive how it could be deduced 
from a concept of a local "structure of turbulence" alone.  It is also stressed that 
the suggested phenomenological relation is based exclusively on experimental evidence 
and that no estimate of any kind based on concepts on the importance of any term is 
needed.  No claim is made that the chosen expressions for the loci of 5 (including 
the numerical values of the constants) are the best possible.  The many digits of the 
constants reflect the accuracy of the scheme used to compare experimental evidence 
and is not indicative of the accuracy of the results.  The experimental evidence used 
for this investigation is almost exclusively taken from the Stanford Conference Data, 
COLES and HIRST [12]. 

Fianlly it may be mentioned that quantities such as the production of turbulent ener- 
gy etc. may be computed as functions of space in all cases mentioned and that the fa- 
mous measurements of KLEBANOFF [19] are reproduced with astonishing accuracy.  It 
should perhaps also be mentioned that separation, which is predicted in Case II, can 
by  means of a slight adjustment of the locus of £ also be predicted in Case I, how- 
ever a lesser degree of accuracy may then be expected due to lack of conclusive ex- 
perimental evidence. 
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BOUNDARY LAYER MEASUREMENTS ON A TWO-DIMENSIONAL WING WITH FLAP 

AND A COMPARISON WITH CALCULATIONS 

BY 

B. van den Berg and B. Oskam 

NATIONAL AEROSPACE LABORATORY NLR 

THE NETHERLANDS 

SUMMARY 

Measurements were performed on a wing flap configuration, which was so designed that flow separations 

occur nowhere, apart from a small laminar separation bubble on the wing nose. The measurements comprise 

surface pressure measurements, boundary layer and wake traverses at 16 stations, and flow visualization 

tests to establish the presence of separation bubbles and boundary layer transition regions. The data 

resolve the various flow phenomena sufficiently well to provide a significant test case for calculation 

methods for the flow around multi-element airfoils. Comparison with such a calculation method showed 

satisfactory agreement in many respects. A need for improved modelling was found to exist in some regions, 

particularly for the wing wake above the flap. 

The investigation has been performed under contract with the National Agency for Aerospace Programs 

(NIVR, contract numbers 1738 and 1812). 

LIST OF SYMBOLS 

c basic-airfoil chord 

C. drag coefficient 

Cf local wall shear stress coefficient 

C. 1 i f t coefficient 

Cp pressure coefficient 

H boundary layer shape parameter 

n distance from surface 

s streamwise distance along wing contour, measured from stagnation point 

U velocity magnitude 

U potential flow velocity at measured local static pressure 

x chordwise distance, measured from leading edge 

a angle of attack 

6 boundary layer momentum thickness 

SUBSCRIPTS 

w value at the wal1 

oo free-stream value 

1.  INTRODUCTION 

Extensive boundary layer measurements have been carried out on a two-dimensional wing with flap in 

a low-speed wind tunnel. A practical wing flap configuration was chosen with a highly loaded wing and 

flap. In such a case the boundary layers and the wing wake, are subjected to severe pressure gradients, 

resulting in a significant interaction between these shear layers and the inviscid flow. The principle 

aim of the experiment is to provide a test case for calculation methods for the viscous/inviscid flow 

around multi-element airfoils. 

Boundary layer studies on multi-element airfoils have been reported earlier (ref. 1 to 5). These 
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earlier data are affected by flow separation near the wing shroud, however. With such a separation 

region the calculation of the viscous/inviscid flow interaction becomes much more difficult. Although 

local separation in the shroud region occurs on most practical wing flap configurations, it should be 

avoided preferably in a simple test case. In the present experiment a wing flap configuration has been 

chosen with a shroud designed in such a way, that no flow separat ion occurs. 

In the experiment care was taken to ensure that the test data resolve the various viscous flow phe- 

nomena sufficiently well to make detail comparison possible with calculation results. Extensive measure- 

ments have been done at three angles of attack, the largest angle being just below the stalling angle. 

Two widths of the gap between wing and flap were applied. With the larger gap no merging of the wing 

wake and the flap upper surface boundary layer takes place; with the smaller gap merging does occur. In 

the present paper only the results of the configuration with the larger gap at two angles of attack will 

be presented. Full data, including those on wake boundary layer merging, are given in ref. 6. 

Comparisons with calculation results have been made mainly with a calculation method developed at 

NLR (ref. 8), which computes the full flow, using iterativeiy coupled potential flow and viscous shear 

layer analyses. These viscous/inviscid flow calculations are supplemented by turbulent boundary layer 

calculations, based on the measured surface pressure distribution. In these calculations empirical 

assumptions have to be made about the turbulence characteristics of the shear layers and on the transition 

from laminar to turbulent shear flow. From the comparisons with the test data conclusions will be drawn 

about the areas, where improved modelling is most needed. 

2.  EXPERIMENT 

2.1. Model and experimental techniques 

A sketch of the wing with flap is given in Figure 1. The basic airfoil section is an early super- 

critical section: NLR 7301. The shape of the wing shroud, between 60% chord and the trailing edge, was 

designed on the basis of preliminary wind tunnel tests such that no flow separations occur. It should be 

noted that the resultant shroud shape does not permit the flap to be actually retracted. A flap of 11% 

chord was used at a deflection angle 6f = 20 . This angle is near the highest angle possible without 

incurring boundary layer separation on the flap or flow reversal in the wing wake above the flap. The 

width of the gap between the wing and the flap has been varied, but only the results obtained with a 

flap gap of 2.6% chord will be considered here. 

In Figure 1 the positions of the static pressure holes in the model and of the boundary layer 

measuring stations are indicated. Figure 2 shows a photograph of the model in the NLR 3x2m low speed 

wind tunnel. The rig used for the boundary layer traverses is also visible on the photograph. It may be 

noted that the boundary layer measuring plane is not at mid-span, but closer to the tunnel floor. This 

has been done to achieve large stiffness of the rig and yet little aerodynamic interference. Check 

measurements were performed to assure that the flow was two-dimensional. To achieve two-dimensional flow 

up to maximum lift, boundary layer control by blowing was applied at the model tunnel wall junctions. 

Without boundary layer control early flow separations occur at these junctions, severely affecting the 

test results even at mid-span, as will be illustrated later (see also ref. 9). 

For the boundary layer and wake traverses a total-head tube of 0.3mm outer diameter and a static 

pressure tube of 1.1mm diameter were used as a rule. A 0.2mm total-head tube and a hot wire have been 

used as well at some stations. Wake traverses have also been made with a total-head tube rake located at 

about one chord behind the trailing edge. The latter wake traverses were used to derive the total drag 

of wing and flap. 

Wall shear stress data were obtained with the razor-blade technique as introduced by East (ref. 10). 

This technique is based on the assumption that the law of the wail holds in a flow region near the wall. 

The height of the razor-blade cutting edge above the surface is 0.125mm. In the present test conditions 

this means that the reliability of the razor-blade technique depends on the validity of the law of the 

wall in the viscous sub-layer and the so-called buffer layer. Additional data may be obtained from the 

boundary layer traverses made with the total-head tube. When the total-head tube touches the surface, it 

may be regarded as a Preston tube, which can also be used for a wall shear stress determination (ref. 12). 

The Preston tube extends into the log law region in some of the present cases. From the velocity data in 

the log law region, wail shear stress data may be derived as weil by making so-called Clauser plots 
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(ref. 13). 

Oil flow and sublimation technique were applied to determine the position and extent of separation' 

bubbles and transition regions. All measurements were carried out at a Reynolds number, based on the 

basic-airfoil chord c = 0.57m, Re = 2.51 x 10 and a free stream Mach number of Ma = 0.185. 

2.2.  Experimental results 

The lift, obtained from an integration of the measured model surface pressures, is plotted versus 

angle of attack in Figure 3- The graph also contains three data points of the drag, derived from wake 

traverses far downstream of the model. The two angles of attack, a  = 6.0 and 13.1 , which have been 

selected for detail comparisons between boundary layer measurements and calculations, are indicated in 

the figure. The test data given here, and further in the paper, were all obtained with boundary layer 

control applied at the model tunnel wall junctions to keep the flow two-dimensional. To illustrate the 

importance of it, the measured lift curve without boundary layer control is shown also. It is evident 

that at the larger angles of attack the lift is low without boundary layer control due to early flow 

separations near the walls. 

The measured surface pressure distributions on the wing and the flap at a = 6.0 and 13.1 have 

been plotted in Figure h.   Relatively high suction peaks are seen to occur on the wing nose upper surface. 

Shortly downstream of the suction peak transition from laminar to turbulent boundary layer flow occurs 

via a small separation bubble. The position and extent of this bubble, as observed with the oil flow 

technique, is indicated in the graph. On the wing lower surface and the flap upper surface transition to 

turbulent boundary layer flow occurs much more downstream without laminar separation. Transition was ob- 

served with the sublimation technique. A transition region is indicated, which is defined here as the 

region between the first visiible transition line and the line observed just before full sublimation took 

place. The boundary layer on the flap lower surface was laminar up to the trailing edge. 

Some typical boundary layer velocity profiles are shown in Figure 5. Figure 5a gives some experi- 

mental results obtained on the wing upper surface at a = 6.0 . At station 1, close behind the laminar 

separation bubble,,the boundary layer is only about 1mm thick. Consequently the data, which were obtained 

with a 0.3mm diameter probe, will not be very accurate at this station. The boundary layer is seen to 

grow fast up to a thickness of more than 15mm at the wing trailing edge. Some results obtained on the 

wing lower surface are shown in Figure 5b. Station 9 is situated upstream of the observed transition 

region, the velocity profile being typical for a laminar boundary layer. At station 10, downstream of 

the transition region, a typical turbulent boundary layer velocity profile is found. The shape of the 

velocity profile at station 11 is rather unusual. Before discussing the results at station 11, attention 

should be drawn to the dashed line shown in the graph. This dashed line represents the variation of the 

potential velocity, U , which is derived from the measured local static pressure, while assuming the 

total pressure to be equal to the value in the outer potential flow. !f there, is no static pressure 

variation, this velocity will be constant across the shear layer. If the static pressure in the 

shear layer is not constant, as at station 11, U will vary with distance from the wall. From the dis- 
P 

tance between the dashed line and the full line in the graph one obtains an impression of the velocity 

defect in the boundary layer. The graph shows that at station 11 there is an extensive outer region with 

a small velocity defect and a thin region close to the wall, where the velocity decreases to zero at the 

wall. At this station, which is situated in the gap between wing and flap, a very large negative pressure 

gradient exists. Laminarization of a turbulent boundary layer may occur in these circumstances. The 

parameter most often used to deduce the likelyhood of laminarization is K = (v /U ) (dU /ds). On the 
w p    p 

basis of the surface static pressure measurements (see Fig. h)  only a crude guess of the pressure 

gradient, and consequently of the velocity gradient, can be made for station 11. On this basis it was 

found that K " 3 x 10 . According to Launder and Jones (ref. 11) laminarization begins when K exceeds 
-6 

about 2 x 10 . The shape of the velocity profile at station 11 suggests that the small velocity defect 

in the outer region represents the remains of the upstream turbulent boundary layer and that below that 

region a new laminar boundary layer is developing. 

In'Figure 5c the measured velocity variation in the wing wake above the flap is depicted. The 

static pressure varies considerably across the wing wake and so does the velocity U , as indicated by 

the dashed lines. The velocity defect in the wake is seen to be large at station 12 and to remain large 

further downstream. The effect of such a large wake on the flow over the flap may be expected to be 

substantial. This subject will be emphasized later. Figure 5c further shows that up to station 14, i.e. 
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up to the flap trailing edge, no merging of wing wake and flap boundary layer has taken place for this 

wing flap configuration. At station 16 at 10% chord behind the flap trailing edge the wing wake and the 

flap wake just merge. 

Figure 6 gives some wall shear stress data obtained on the wing upper surface. Besides the data ob- 

tained with the razor-blade technique, the graph contains also the Preston tube and Clauser plot data 

derived from the total-head tube measurements in the boundary layer. It appears, that a satisfactory 

agreement exists between the wall shear stress data obtained with the various techniques, especially in 

view of the fact that the scatter is generally rather large with this type of measurements. The data ob- 

tained with the razor-blade technique are considered to be the more reliable, and will be employed for 

comparisons with calculation results. The test results show that the wall shear stress is large close 

behind the laminar separation bubble, decreases downstream of the bubble, is approximately constant over 

the centre part of the wing, and decreases further over the rearward part. The wall shear stress is 

close to zero near the trailing edge at a = 13.1 . 

A full set of test data is given in ref. 6. Ref. 7 contains the results of some additional measure- 

ments, which were carried out after comparisons with calculation results were made. These include hot- 

wire data, which will be discussed in section 4.3. The data given in ref. 6 and 7 define the wing and 

flap and the flow around them in detail, so that comparisons with calculation results can readily be made. 

3.  CALCULATION METHOD 

3.1. General 

The present calculation method handles the viscous flow around multi-component airfoils by solving 

incompressible potential flow and shear layer problems iteratively. The incompressible potential flow 

problem is solved by a revised version of the 2-D NLR panel method, being a direct extension of earlier 

work on multi-component airfoils by Labrujere et.al. (Ref. 14). This revised version has the capability 

of providing incompressible potential flow solutions with sufficient accuracy to justify the incorporation 

of viscous effects. The presence of these viscous shear layers is modelled in the inviscid, flow by an 

outflow boundary condition on the airfoil surface and the wake centre-line as discussed in detail by 

Oskam (ref. 8). 

The various viscous flow calculation procedures have been chosen with the aim of balancing the 

total effort required against the overall accuracy obtained. For the present purposes we will list the 

shear layer methods used in the present calculations. 

- Laminar boundary layer is calculated by Thwaites1 integral method (ref. 15). 

- Natural transition' is predicted by the Granville method (ref. 16). 

- The calculation of laminar separation bubbles is based on the work of Van Ingen (ref. 17). 

- Turbulent shear layer analysis is based on the shear stress transport equation of Bradshaw, Ferriss 

.-i,,and Atwell (ref. 18) . 

Since comparisons with experimental data will be focussed on the turbulent shear layers, the physical 

content of the analysis will be described in some detail. 

3.2. Turbulent shear layer analysis 

The model transport equation of Reynolds stress, x, may be written as 

3/2 

DtV  za[p 3n  LV  J  anVNV 
where the constant a, and the functions L and v have been determined by data correlation procedures, 

see Bradshaw et.al. (ref. 18). 

This turbulence model, which has been applied to a large variety of boundary layer problems, may be 

regarded as a one-transport-equation model for the turbulent velocity scale, (T/P)
J
, combined with an 

algebraic equation for the dissipation length scale L, relating this length scale directly to the local 

shear layer thickness. An improvement of this universal-length-scale concept is the allowance for the 

effect of extra rates of strain or body forces on the turbulence structure. One such effect considered 

here is streamline curvature. Bradshaw (ref. 19) proposed to allow for this effect by modifying the 

length scale L according to 

L/L  , = 1 + SRi, for convex walIs. Ri > 0 
mod 
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where Fti = 2 -.—r-rr r, S; 7.  and R = radius of curvature. 
(T/P)I R 

Bradshaw's model transport equation is not valid near the wall (or in the neighbourhood of laminar- 

ization). Consequently the wall boundary conditions are applied by fitting the turbulent flow computa- 

tions to asymptotic relationships known to apply at some distance from the wall, such as the law of the 

wall. At NLR considerable attention has been paid to these boundary treatments (see ref. 8). 

The basic calculation method has been extended to treat symmetric half wakes. Replacing the wall 

boundary conditions by symmetry conditions on the wake centre-line and taking the dissipation length L 

to be constant across the wake, one may calculate a turbulent symmetric half wake in a pressure gradient, 

see also Bradshaw (ref. 20) and Morel £ Torda (ref. 21). 

To start the turbulent shear layer calculation method it is necessary to initialize U andT profiles 

in the turbulent flow region. The Coles wall-wake law is employed as a two parameter family of velocity 

profiles. One parameter follows from the continuity of the momentum thickness, being known from the 

laminar boundary layer or laminar separation bubble calculation. The second parameter is obtained by 

assuming that the turbulent boundary layer at the inital station is in equilibrium (ref. 22). The initial 

stress profile follows from the mixing length formula. 

4.  COMPARISON OF COMPUTED AND EXPERIMENTAL DATA 

4.1. General 

Comparisons have been made chiefly with the viscous/inviscid flow calculation method, described in 

the preceding section. The main goal of this calculation method is to predict quantities like resultant 

lift and drag of the wing flap configuration. The agreement obtained was satisfactorily with some ex- 

ceptions. These results a.re discussed in ref. 8. In the present paper comparisons will be focussed on 

the viscous shear layer development. 

4.2. Wing upper surface 

Figure 7 shows some test data on the wing upper surface for a = 6.0 and calculation results obtained 

with the viscous/inviscid flow calculation method. The data have been plotted against the streamwise 

distance along the wing contour, s, measured from the calculated stagnation point. The experimental 

velocity data, U , plotted in Figure 7a, were derived from the measured surface static pressures and 

the potential flow total pressure. The agreement with the corresponding calculated surface velocity 

distribution is seen to be good. The slight deviations apparent near the suction peak are very probably 

due to compressibility effects, which are not accounted for in the calculations. Compressibility effects 

may be significant particularly in the wing nose region, where the local Mach number exceeds Ma = 0.5. 

The laminar separation bubble is computed to be situated slightly more downstream than found in the 

experiment. The development of the momentum thickness, 6, of the turbulent boundary layer downstream of 

the bubble is shown also. The agreement between the calculations using Bradshaw's turbulence model and 

the test data is good. However, when looking in more detail, see Figure 7b, deviations become apparent. 

The turbulent boundary layer shape parameter, H, is underprediicted over the full wing length. The cal- 

culated wall shear stress coefficient, Cf> appears to be small initially and large further downstream. 

The initial wall shear stress has been taken equal to the value for an equilibrium turbulent boundary 

layer in the calculations (see section 3.2). Figure 7b suggests that this value is low. Calculations 

were also performed with an increased initial wall shear stress, but the effect on the calculation 

results appeared to be negligible shortly downstream of the initial station. 

Further comparisons between boundary layer calculations and measurements on the wing upper surface 

have been made using a compressible flow version of Bradshaw's turbulent boundary layer calculation 

method and the measured surface pressure distribution. The results are shown in Figure 8 (see ref. 23 

for detail results of these calculations). The momentum thickness and the wall shear stress coefficient 

for a = 6.0 are plotted in Figure 8a against chordwise distance, x. The calculations have been started 

at measurement station 1 with the measured momentum thickness and wall shear stress. The deviations 

between measured and calculated wall shear stresses are distinctly smaller than they were In the earlier 

calculations. The figure also shows the results of a calculation, which takes into account the effect of 

curvature on the turbulent shear stress. Although surface curvature radii are large in the region con- 

sidered, the effect may not be negligible because of the relatively large boundary layer thickness. 
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Allowance for curvature effects on the turbulent shear stress was made as proposed by Bradshaw (see 

section 3.2). Good agreement with test data is seen to exist downstream of station 3 now. 

The wall shear stress development between station 1 and 3 deserves further discussion. At station 1 

the wall shear stress has been taken equal in calculation and experiment. In the calculation, however, 

the wall shear stress value falls down fast and levels off at a much lower value, while in experiment 

the wall shear stress approaches that lower value only slowly . The measured values exceed the calcu- 

lated ones with-25% or more at station 2 and station 2a (between station 2 and 3). The present razor- 

blade measurements fall within the T>%  accuracy limits for pressure gradient and probe size given by 

Patel (ref, 12). The difference found is believed, therefore, to be too large to be attributable to 

experimental uncertainties only. Generally speaking the wall shear stress measurements are invalidated 

when the law of wall does not hold in a region close to the wall (see section 2.1). This would, however, 

simultaneously invalidate the present turbulent boundary layer calculation'method, since it employs the 

law of the wall. Apparent discrepancies should be attributed then to both theory and experiment. 

One possible reason for the found discrepancy is the low Reynolds number of the boundary layer, 

which varies from Ree = 720 to 4000 between station 1 and 3. Low Reynolds number effects have not been 

taken into account in the calculations made. It is known the effect may be appreciable in this Reynolds 

number range (see e.g. ref. 16). Turbulence history effects may well play a role also. Station 1 is 

situated closely behind the laminar separation bubble. This means that transition to turbulence and 

reattachment has taken place slightly upstream of the region considered here. Consequently the turbulence 

structure may be very different from that in a turbulent boundary layer in near-equilibrium condition. 

Return to the equilibrium condition covers a considerable streamwise distance (see e.g. ref. 30). It 

seems likely that both low Reynolds number and history effects play a role in this region downstream of . 

the laminar separation bubble. 

In Figure 8b the results of the turbulent boundary layer calculations and experiment are compared 

for a = 13.1 . The calculations have been started again with the test data at station 1. Curvature 

effects were taken into account. Agreement with measurements is seen to be not very satisfactory in this 

case. The momentum thickness growth seems to be overestimated and the wall shear stress underestimated. 

In the calculation boundary layer separation near the wing trailing edge is predicted in contrast with 

experimental observations. Calculations have been repeated with the initial momentum thickness reduced 

with 25%. Agreement with experiment appears to be much improved then and no separation is predicted. 

From this result the important conclusion must be drawn, that the turbulent boundary layer development 

on the wing upper surface depends strongly on the inital conditions. The initial conditions for the tur- 

bulent boundary layer calculation have to be supplied by a laminar separation bubble calculation. Con- 

sequently high demands on the reliability of the laminar separation bubble calculation method are made. 

One may further conclude that the accuracy of the measured momentum thickness at station 1 is poor. It 

has been mentioned in section 2 that this may be indeed the case, as the boundary layer is very thin 

there. Though agreement between experiment and calculations is much improved by reducing the initial mo- 

mentum thickness, a distinct discrepancy still exists for the wall shear stress between station 1 and 3, 

as at a = 6.0 . It should be noted that consequently the calculated momentum thickness growth between 

station 1 and 3 may be in error as well. 

4.3- Wing lower and flap upper surface 

Figure 9 shows the calculated velocity and momentum thickness variation on the wing lower surface 

for a = 6.0 , employing the viscous/inviscid flow calculation method. The calculated and measured vel- 

ocity variation are seen to correspond well. The calculation gives laminar separation at s/c = 59.2?. A 

laminar separation bubble of k.h%  chord is predicted. Downstream of reattachment the boundary layer 

grows fast. In the slot between wing and flap the pressure gradient changes from mildly positive to 

large negative and the boundary layer thickness decreases again. The boundary layer is laminarizing 

there, as discussed in section 2.2. Laminarization is not considered in Bradshaw's turbulence model. Yet 

the momentum thickness decrease found in experiment is predicted for a large part by the calculations. 

This is not surprising as accurate turbulence modelling is not very important in regions with large 

negative pressure gradients. 

The calculations predict laminar separation at s/c = 59.2%, while experiment indicates no separation, 

but transition to turbulent flow between s/c = 62.21 and 65.21, which is a substantial distance downstream 

of the calculated separation position. Thwaites1 integral method was used for the laminar boundary layer 
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calculations. Supplementary laminar boundary layer calculations were made with a,finite difference 

method, which solves the exact laminar boundary layer equations (ref. 2k).   No significant difference 

in separation position was found. It must be noted that siight differences in pressure distribution do 

lead to large differences in predicted separation position and that only by suitable interactive cal- 

culation methods (e.g. ref. 25) accurate predictions can be obtained. However, further measurements, 

which will be discussed hereafter, yielded a more likely reason for the found discrepancy between cal- 

culation results and experiments. 

Detail measurements were carried out with a hot wire at station 9, which is situated just upstream 

of the calculated separation point and well upstream of the observed transition region. The results are 

depicted in Figure 10. The shape of the measured velocity profile is typical for a laminar flow. Simul- 

taneously velocity fluctuations of the order of magnitude typical for turbulent boundary layers appear 

to occur. Figure 10 includes some hot-wire signal traces. These show that, though the fluctuations are 

not really regular, a dominant frequency is evident. This frequency (about 1000 Hz) corresponds well 

with the frequency of the most unstable Tollmien-Schlichting waves, predicted by linear stability theory 

for this boundary-layer (ref. 26). Apparently the boundary layer at .station 9 is in an advanced state of 

the transition process. A significant additional shear stress may be expected to occur, when velocity 

fluctuations of the order of 5%  exist. Probably separation does not occur downstream of station 9 due to 

these additional shear stresses. The fluctuation level near the wall is small, so that the sublimation 

technique, which was used for transition detection in experiment, will indicate transition only further 

downstream. 

Figure 11 shows calculated and measured velocities and momentum thicknesses on the flap upper 

surface for a = 6.0-. Agreement is seen to be satisfactory in general, but again laminar separation is 

predicted well upstream of the transition region found in experiment. It is beiieved'that also in this 

case there is an extensive region, where the boundary layer is in a transitional state as described 

before. Laminar separation upstream of the observed transition position was calculated earlier at NLR on 

the lower surface of a swept wing (ref. 27). Cousteix et.al. of ONERA recently published simular results 

(ref. 28). Apparently transitional boundary layers of the type discussed here occur rather frequently. 

k.k.    Wing wake 

A typical characteristic of multi-element airfoils is the presence of a wake from an upstream 

element near a downstream element. If the upstream element is highly loaded, which is the case here, a 

thick boundary layer is created and consequently the wake is wide and its effect on the flow over the 

downstream element is substantial. This is illustrated in Figure 12, which shows the measured surface 

pressure distribution on the flap at a = 6.0 and 13.1 and the calculated inviscid flow pressure distri- 

bution. The difference is seen to be large, particularly at a = 13.1 . In the viscous/inviscid flow cal- 

culation method described in section 3, the wake is calculated with an extension of Bradshaw's turbulent 

boundary layer calculation method. The wake originating from the upper surface boundary layer and from 

the lower surface boundary layer are treated there separately, however, neglecting mixing of both wake 

parts. Good results were yet obtained for a = 6.0 as shown in Figure 12, but at «= 13.1  reverse flow 

in the wing wake was computed in contrast with experimental findings. It is probable that reverse flow 

was computed because mixing of the thick wake from the wing upper surface with the thin wake of the wing 

lower surface was neglected. It may be concluded that an accurate calculation of asymmetric wakes in 

strong adverse pressure gradients is a necessary part of a viscous/inviscid flow calculation method for 

multi-element airfoils. 

An accurate prediction of the total drag is best obtained from a calculation of the flow momentum 

defect far downstream (see e.g. ref. 29). For this reason also it is necessary to predict with sufficient 

accuracy the viscous wake development..A complicating factor in the computation of these wakes is that 

the thin shear layer approximation is generally not valid, since the static pressure variation across 

the wake is not negligible (as demonstrated by the U -variation shown in Figure 5c). Further problems to 

be anticipated are merging of the wing wake with the flap boundary layer and/or wake. 

5. CONCLUDING REMARKS 

The experimental data, obtained on a wing flap configuration with a higly loaded wing and flap, 



resolve the various  flow phenomena   in sufficient  detail   to provide a  significant  test case for calculation 

methods  for multi-element airfoils.   Comparison with such a calculation method showed satisfactory agree- 

ment   in many respects.    A need for  improved modelling was particularly evident  for asymmetric wakes   in 

large adverse pressure gradients,  which merge with other shear  layers.   It was  found that an accurate 

prediction of the flow  in  laminar separation bubbles   is   important  for highly  loaded wings.  The modelling 

of the turbulent boundary  layer just downstream of these bubbles deserves attention.  More effort might 

further be directed to the modelling of transitional   boundary  layers,  which were  found to occur  in 

several   regions. 
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Fig. 1    Airfoil and flap section with the positions of the 
static pressure holes in the surface and the 
boundary layer measurement stations 
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Fig. 2    Photograph of the model with boundary layer survey 
apparatus in the wind tunnel 
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Fig. 5a   Typical  measured velocity profiles of boundary 

layer on wing upper surface,  a = 6° 
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thickness variation on the wing upper surface. a=6° 

xlO- 

5 
STA . 1 2 3 4 5 6 7 8 

n 1 1 1 1 1 

4 
 VISC./INVIS 

FLOW CALC 
O-AEXPERIMEN 

— 

**- -*- — _H 
T ^A' 

3 

  —-- -* •""" 

1 \ 

1 
1 
1 

\ 
s 

•N^ 

2 
1 
1 
1 
1 
I 

""•°^. 
^0,. 

-H 

L.E 
1 

1 
1 
1 
1 
i 

a 6° 
T.'E. 

1 

2.0 

1.7 

1.1 

0.2 0.4 
s/c 

0.6 1.0 

Fig. 7b   Comparison between calculated and measured wall shear stress and shape 
factor variation on the wing upper surface.   a = 6° 

6/c 

xlO3' 

Fig. 8a Comparison with compressible turbulent boundary layer calculations, using 

the measured pressure distribution on the wing upper surface and the initial 

data at station 1. a- 6° 



18-13 

STA. 1 2 

xlO3 

Fig. 8b   Comparison with compressible turbulent boundary layer calculations, 

using the measured pressure distribution on the wing upper surface 

and the initial data at station 1. a: = 13.1° 
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COUCHE LIMITE TURBULENTE TRIDIMENSIONNELLEiRESTRUCTURATION D'UN ECOULEMENT 

AXISYMETRiqUE SOUMIS A DNE DISCONTINUITE DE LA VITESSE DE PAROI. 

par 
E. ARZOUMANIAN et  L.  FULACHIER 

Institut de Mecanique Statistique de la Turbulence (IMST) 
13003 Marseille,  France 

Jean COUSTEIX et Bertrand AUPOiX 
Office National d'Etudes et de Recherches Aerospatiales (ONERA) 

CERT,   Toulouse,  France. 

RESUME 

Une couche limite turbulente bidimensionnelle 
se developpe sur un cylindre ciculaire d'axe paral- 
lele ä 1'ecoulement. Tans la partie aval oü la cou- 
che limite est pleinement developpee, le cylindre 
est mis en rotation autour de son axe. On se place 
dans un cas oü la vitesse peripherique ä la paroi 
est pratiquement egale ä la vitesse exterieure. On 
etudiel'influence de cette rotation sur la re- 
structuration de la couche limite tridimensionnelle 
qui a pris naissance, en s'appuyant principalement 
ici sur 1'analyse du champ de vitesse moyenne. 

Cette investigation a ete menee parallelement 
des points de vue experimental et numerique. En ce 
qui concerne le calcul, on a utilise un modele de 
type {£-£ dans lequel on peut tenir compte even- 
tuellement d'une deviation de la direction de la 
force de cisaillement turbulent par rapport ä celle 
du gradient de vitesse. En ce qui concerne les me- 
sures, 1'effort a ete axe notamment sur 1'etude de 
la region tampon ("buffer layer") jusque dans la 
sous-couche visqueuse. Elles revelent que la col- 
lateral! te de 1'ecoulement s'etablit d'abord dans 
une region tres limitee pres de la paroi et il sem- 
blerait qu'elle s ' etende progressivement dans la 
couche limite. Le calcul en revanche indique que 
l'hodographe possede une partie lineaire beaucoup 
plus etendue. 

THREEDIMENSIONAL TURBULENT BOUNDARY LAYER : RESTRUC- 
TURATION OF AN AXISYMETRIC FLOW SUBJECTED TO A DIS- 
CONTINUITY OF THE WALL PERIPHERAL VELOCITY. 

SUMMARY 

A threedimensional turbulent boundary layer 
is developing on a circular cylinder the axis of 
which is parallel to the flow. In the downstream 
region the boundary layer is fully developed and 
the rear part of the cylinder rotates about its 
axis. 

The peripheral velocity at the wall is prac- 
tically equal to the external velocity. We study 
the influence of the rotation on the restructura- 
tion of the developing threedimensional boundary 
layer essentially by using the analysis of the 
mean velocity field. 

This investigation has been carried out ex- 
perimentally and numerically. As concerns the cal- 
culations, we have used a model of -fe-£ type in 
which we can account for the inequality of the 
turbulent shear stress direction and the velocity 
gradient direction. As concerns the measurements, 
emphasis has been placed on the study of the buffer 
layer down to the viscous sublayer. They reveal 
that the collaterality of the flow is first obtai- 
ned in a very thin region near the wall and then 
seems to extend progressively in the boundary layer. 
In contrast, the calculations indicate a more ex- 
tended linear portion of the hodograph. 

NOTATIONS 

a     rayon du cylindre 

coefficient de frottement suivant x 
% i—) 
% 

H 

k 

P 

-*» 
q 

r 

coefficient de frottement suivant z 

parametre de forme   0      H - ax / WK 

energie cinetique de turbulence 

k = (u^ + V^ + ~^)I2 

(u,w) 
pression statxque 

vecteur vitesse moyenne    ^ 

distance ä l'axe du cylindre 

nombre de Reynolds   "Cß. -   "e. <-- / V 

u,v,w,  composantes suivant x, y, z de la vitesse 
moyenne absolue 

U- V VJ composantes de la vitesse moyenne relative 
(repere lie au cylindre tournant) 

CL. 

üe 

Wn 

ur= u  vrr v 

vitesse axiale exterieure 

vitesse de frottement   U^   s ('Sp/^) 

vitesse peripherique de la paroi. 

u'v'w'  fluctuations de vitesses 

U 

£ 

u instantane 
v'  = v instantane -V 

w'  = w .  ,  ,  ^ - W 
instantane 

distance axiale, comptee ä partir de la 
partie tournante 

coordonnees axiale et peripherique 

distance normale ä la paroi 

angle de la vitesse absolue par rapport 
ä l'axe du cylindre (fig.9) 

angles definis par la figure 3 

taux de dissipation de 1'energie cinetique 
de turbulence 

viscosite cinematique 



19-2 

r 
s 

C = 

&, = 

'>? 

frottement de paroi 

angle de la vitesse absolue par rapport 
ä la sonde 

epaisseur de couche limite äU/Ue 
= 0,99 

•'e w0 

Indices 

0      relatif ä X = 0 

e      ä l'exterieur de la couche limite 

1 INTRODUCTION 

La plupart des methodes  de prevision des  cou- 
ches  limites tridimensionnelles sont des  extensions 
souvent tres directes de celles mises  au point et 
appliquees en bidimensionnel.  Or,  il apparait qu'un 
facteur nouveau est  introduit par la tridimension- 
nalite de  1'ecoulement.  En effet,   la torsion du 
profil des vitesses  implique que les  directions  de 
la vitesse et de sa derivee  suivant la normale  ä 
la paroi ne  sont pas confondues.   II  en resulte une 
situation a priori plus  complexe  qu'en bidimension- 
nel,  pour laquelle il peut devenir important de te- 
nir compte d'une difference  d'orientation tension/ 
gradient tres significative.   (Dans  toute la suite 
nous  utiliserons un langage abusif   :   le mot 
"tension"  est utilise pour representer un vecteur 
de  composantes  («Pu'v1,  -pw'v')   et  le mot .    . 
"gradient" pour le vecteur de  composantes ( S~ , r— \ 

II convient done d'approfondir 1'analyse de 
tels ecoulements.  Dans 1'etude envisagee,   qui est 
menee ä la fois  experimentalement et numeriquement, 
nous avons choisi de  creer une  couche  limite  tri- 
dimensionnelle en imposant une discontinuite de 
condition limite.  une couche  limite  turbulente bi- 
dimensionnel. le se developpe  sur un cylindre circu- 
laire  d'axe parallele ä 1'ecoulement et dans la 
partie aval oü eile est pleinement  developpee,   le 
cylindre est mis  en rotation autour de  son axe. 
On peut penser qu'au bout  d'une distance süffisante, 
en 1'absence de gradient  de pression,  la couche 
limite deviendrait collaterale  ;  on obtiendrait 
alors  une  couche  limite bidimensionnelle  dans   le 
Systeme d'axes relatif  lie ä la paroi du cylindre 
en rotation.  Mais  il  est   certain que  dans   la  pha- 
se  initiale  oü  la  rotation  impose  une reorgani- 
sation  de  la  zone  interne  de  la couche  limite, 
celle-ci  presente  une  structure  tridimensionnelle 
en rapide  evolution.   Afin de  creer  un  frottement 
peripherique  de  l'ordre du frottement  longitudinal, 
la  vitesse  de  la paroi  a ete  choisie voisine  de 
la vitesse  exterieure. 

Les  documents  experimentaux disponibles  con- 
cernent les  regions externes de la couche limite 
/REF.   1,2/.  Nous avons done porte plus particu- 
lierement notre effort sur 1'etude de la region 
tampon ("buffer layer")  jusque dans  la  sous-couche 
visqueuse  /REF.   3,   4,   5/. 

Parallelement,  des methodes  de  calcul  des 
couches  limites turbulentes  tridimensionnelles 
ont  ete  etudiees.   Elles  utilisent  des   equations  de 
transport  destinees ä calculer 1'evolution de quan- 

tites turbulentes.   Bien qu'une hierarchie de modu- 
les de turbulence,   allant d'un modele de longueur 
de melange ä un modele ä quatre equations  de  trans- 
port,  ait  ete testee sur d'autres  cas experimen- 
taux /REF.   6/,  nous n'avons    retenu ici  qu'un mode- 
le ä deux equations  de type R-£ .  Dans une  teile 
methode,  la force de  cisaillement  turbulent est 
reliee au gradient de vitesse par une viscosite 
tourbillonnaire et dans les modeles "classiques" 
on suppose que celle-ci est  isotrope.  En fait,   des 
calculs  anterieurs   /REF. 6/  ont montre que meme 
dans  les modeles  oü la tension  est  calculee ä  1'ai- 
de d'equations   de  transport,   on atteint  rapidement 
un   etat  d'equilibre pour  lequel   les  forces  de 

cisaillement  turbulent  et  visqueux  sont   alignees. 
Pour tenir compte  du non-alignement de ces   forces, 
nous  avons  repris  une  idee developpee par  ROTTA 
/REF.   7/  et nous  avons reexamine le terme de cor- 
relation pression-vitesse qui  joue  un  role majeur 
dans  l'equation aux  tensions   de Reynolds. 

Les hypotheses  introduites dans  cette methode 
de calcul sont testees  en comparant les  resultats 
obtenus  ä ceux de l'experience.   En particulier, 
on analyse comment  se developpe 1'effet  de la ro- 
tation ä l'interieur de la couche limite initialen 
ment bidimensionnelle. 

2 -  DISPOSITIF  EXPERIMENTAL.   METHODES DE MESURES 

2.1.  - Dispositif experimental 

Les mesures  ont ete effectuees  dans  la veine 
d'experience  de  la  soufflefie  SI   de  l'IMST,   dont 
les caracteristiques  geometriques ont  dejä ete don- 
nees par GAVIGLIO  /REF.8/.   II  s'agit d'une veine 
de  section carrSe   (800 mm x 800 mm)   dont   les  angles 
sont munis  de  pans   coupes   ajustes  de teile   Sorte 
que,  en l'absence de maquette,   le gradient longi- 
tudinal  de pression statique  soit nul.  Les para- 
metres  aerodynamiques de 1'ecoulement sont Studies 
de maniere ä minimiser les  effets parasites notam- 
ment en ce qui  concerne  les perturbations  en enver- 
gure  des vitesses moyennes.   Ces perturbations  in- 
duiraient  dans  la presente experience  des defauts 
d'axisymStrie.  L'intensite de pre-turbulence rela- 
tive  ä la composante  longitudinale  de  la  vitesse 
ä 1'entree de la veine est  tres  faibleuu'O   */UjSf 

La maquette   /REF.   3/  est  representee  schema- 
tiquement  sur  la  figure   1.   Elle  est constituee 
d'un  corps  cylindrique  de  revolution  de  diametre 
2a =  197 mm,  dont une partie   (c)  peut etre mise 
en rotation.  La section droite  de ce  cylindre ne 
represente que  5%  de  celle de la veine  d'experience 
La precision imposee  ä l'usinage  et  ä 1'installa- 
tion de  cette maquette  a permis de reduire  au mini- 
mum les defauts  geometriques   (faux rond inferieur 
ä 0,01   mm)   et  les vibrations mecaniques   en  regime 
de  rotation  ;   ainsi  dans   les mesures   au  fil  chaud 
on a pu  s'approcher  jusqu'a 0,06 mm de la paroi, 
dans  la gamme des vitesses utilisees.  Une etude 
particuliere du bord d'attaque a ete  effectuee 
pour obtenir notamment une  axisymetrie optimale 
de 1'ecoulement et  eviter  les decollements.  A cet 
effet,  le profil de 1'ogive a ete ajuste  ä une  ligne 
de courant determinee en considerant  la  superposi- 
tion d'une source ponctuelle et d'un ecoulement 
uniforme ä  l'infini  amont  /REF.   5/.   L'allongement 
1/a choisi est 3;  dans ces  conditions,   1'effet de 
perturbation    introduit par  cette ogive devient 
negligeable dans  la zone de mesure.  Dans le but 
de  declencher  la  turbulence  et  de  fixer la transi- 
tion,des  stries   (St)   ont   ete gravees,   un fil  de 
transition (f)   et  des rugosites   (r)  ont  ete dispo- 
ses  comme  l'indique   la  figure   1.   Le  carenage  et  la 
geometrie  des   supports  ont  ete  egalement  Studies 
pour reduire  au minimum les   effets  de  sillage sur 
le  phenomene  etudie.   Dans   ce meme but   des   filins  en 
acier  (e)   (diametre 0,5 mm)  ont  ete utilises pour 
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FIG. 1 :  Dispositif experimental. 
St : stries 
f : fil  de  transition 
r : rugosites 
e : filin  support 
C : cylindre tournant 
L : dimension  du  cylindre  tournant, 

les  dimensions   sont  en mm. 

maintenir  lateralement  le  cylindre.   Le bord de fuite 
a ete  egalement  convenablement profile. 

En  definitive,   les   dimensions  de  la maquette 
ont  ete  choisies  de  teile   sorte  que  d'une part  la 
couche  limite  turbulente  soit pleinement  developpee 
au debut   de  la  paroi  tournante   et  que  d'autre  part, 
ä  la   fin  de  celle-ci,   la  restructuEation  soit  dans 
une phase  bien avancee. 

2.2.   - Conditions  experimentales. 

Juste  en  amont  de  la partie  tournante 
(X/ %a   = _1,1)   les  conditions  experimentales,   avec 
et  sans  rotation,   sont  les  suivantes   : 

Ue =  12,34 m s"' 

&o(   Vl°e,   = 0,99)   =   22,5mm     (i>0^ 28mm pourU/Ue=   l) 

=   19  000 % 
A  la  station de mesure  generalement  adoptee 

(X/  S0    =  28),   avec  ou  sans   rotation  on  a   : 

Ue  =   12,38 ms~ 

& (  U/Ug, =  0,99)  =   28,3mm  (&Sr34mm pourU|Uft =   1) 

Le  gradient  longitudinal  de pression  statique 
est  faiblement  negatif( Avec  ou  sans  rotation on a   : 

FüfTT a*    - 
et  la valeur  absolue  du parametre de CIAUSER  est pe- 

tite(7t=   JZ   4^ --.0,02.6). 

Lorsque    Wo  = 0  la vitesse  de  frottement  est   : 

La vitesse peripherique  de la paroi   a ete 
choisie pratiquement  egale  ä la vitesse  exterieure 

Wo   =   10,92 mS_1 

En X/80 = 28 on a ainsi W0/Ue Oi    0,887 

Par ailleurs, la distribution azimuthale de 
la vitesse moyenne longitudinale a ete controlee 
tout au long de la partie tournante. La figure 2 
donne un exemple des profils obtenus ä X/&0 = 18,8 
pour differentes distances ä la paroi. On verifie 
ainsi que 1'axisymetrie de la couche limite turbu- 
lente est satisfaisante, particulierement dans la 
zone comprise entre  £0 = -30° et £0 =  + 30° 
situee autour de la position de mesure 6J = 0. 

eu=o 

FIG.   2 Distribution azimuthale  de  la vitesse 
moyenne  longitudinale. 
X/S>0   =   1* •Dy  =   1,1   umOy  =   7,3  mm 

2.3. 

X y =   17,7 mm   A   y =  40 mm 

Methodes   de mesures. 

Les  mesures  de vitesse moyenne ont   ete effec- 
tuees   ä  l'aide  de  sondes  de pression et de  fil   chaud. 
Divers   types  de difficultes  ont  du etre  surmontees 
notamment  pour  1'exploration des   regions  tres pro- 

ches  de la paroi (MU#/T?    ^2-")- 

2.3.1.   Sondes_de_2ression^ 

En ce  qui  concerne  la mesure  de  la pression 
totale,   un  tube  aplati  de  0,34  mm   x I,2 mm a ete 
utilise.   Ceci  a permis  de mesurer  la vitesse moyenne 
jusqu'ä une  distance  de  0,17  mm de  la paroi(ltU»/i)2t) 

Quant  ä la mesure de  la pression statique,   une  sonde 
a ete  placee  ä l'exterieur  de  la  couehe  limite  dans 
la  section de mesure. 

En  1'absence  de rotation,   une  correction due 
au gradient de vitesse et ä la proximite de paroi 
a ete  introduite  ä partir des   abaques de Mac MILLAN 
/REF.   9/   ;   de  plus,   une  correction  de  l'effet  de 
turbulence a  ete prise  en  compte   /REF.   10/. 

Avec rotation,   ä proximite  immediate  de  la 
paroi,  les vitesses   sont fortes et aucune correc- 
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ticm n'a ete  appliquee,   ce  qui a  conduit ä  des  re- 
sultats  coherents avec les  conditions  aux limites 
(fig.   6,   7,  8). 

Pour  ee  qui  est  de_la  pression  statique,   on 
a montre,   ä partir  de  1'equation de  quantite  de 
mouvement  relative ä  la  composante  de  la vitesse 
normale  ä la paroi,  que  si  l'on prend la valeur ä 
l'exterieur  de  la couche  limite  on ne  commet  qu'une 
erreur de 0,7%  au maximum pour  le  point  le plus 
proche  de  la paroi 

(1) 

h est la 

A?» 

$t* 

U 

S 
pression totale et    AP     =   ft " Pe. 

En fait,   avec  rotation,   la mesure  de  la vites- 
se est  effectuee  apres   la  determination de la direc- 
tion   A du vecteur  vitesse.   Pour  cela,   la prise  de 
pression  totale  elle-meme  est utilisee comme  clino- 

metre   :   la  difference  de  pression      A^>ftNfiS   est  tra- 
duite  sous   forme de  tension  electrique  e  qui  est 
une  fonction de  1'angle    *f     (    *f   est  l'angle  de  la 
vitesse absolue par rapport  ä la sonde).   Cette fonc- 
tion   £ ("P)    passe par  un maximum lorsque  la   sonde 
est  dans  la  direction du vecteur vitesse moyenne. 
L'angle    ß>    est alors  determine par l'ecart entre 
les angles  correspondant aux maxima de   6(^f) obte- 
nus  respectivement  ä l'exterieur  et  dans  la couche 
limite.   Les  resultats  ainsi  obtenus  sont  en bon 
accord   (fig.   5  a   10)   avec  ceux donnes  par  le fil 
chaud. 

2.3.2.   Sondes_a_fil_chaud. 

Les fils chauds utilises sont en Pt - Rh 
Ils ont 5 Un\ de diametre et un allongement 1/d de 
320. Les mesures ont ete effectuees ä temperature 
constante et sans linearisation. Avec ces sondes, 
les mesures ont pu etre effectuees jusqu'ä 0,06 mm 
de la paroi, meme lorsque le cylindre est en rota- 
tion. 

En  1'absence  de  rotation,   dans   les  regions 
de  tres proche paroi  (y    ^    1  mm),   la vitesse 
etant  relativement  faible,   les  effets   de  conduction 
moleculaire  dus  ä  la  presence  de  la paroi modifient 
fortement  le regime  de convection autour du fil. 

Ces effets ont  ete pris  en compte selon une correc- 
tion  due ä  CHAOVE  /REF.   11/.   Les  resultats  ainsi 
obtenus sont tres voisins  de  ceux donnes par la 
methode  de WEISSBERG /REF.   12/. 

Lorsque le cylindre est  en rotation,  ä pro- 
ximite  immediate  de la paroi,   l'effet relatif  de 
conduction moleculaire  (du ä la presence de  la 
paroi)   ä la convection autour du fil  est tres fai- 
ble du fait  des fortes vitesses qui regnent dans 
cette  region.  Aussi,  aucune correction n'a ete 
apportee  dans  ce  cas.   Les  resultats  obtenus   sont, 
la encore,   coherents avec les  conditions  aux limi- 
tes   (fig..   5  ä  10). 

Avec  rotation,   on determine  d'abord l'angle  /*> 
la variation de  la  tension moyenne  aux bornes  du 
fil  chaud en fonction de l'angle   ^   etant analogue 
ä  celle  de la caracteristique    fiC-f)    du tube  de 
pression totale,  une methode identique est utilisge 
(voir  §  2.3.1.)   avec  le  fil chaud tournant. 

3   -  CALCUL DE LA COUCHE LIMITE. 

Afin de  calculer  de maniere detaillee  un  ecou- 
lement  turbulent,  les  techniques  les plus repandues 
actuellement  consistent  en une modelisation de la 
turbulence dans le but  essentiel de determiner 
1'evolution des  tensions  de Reynolds. 

-uV - A 

_ w'v' - vb 
"»3 

les  ces   techniques  conduisent  en general  ä  des  re- 
sultats tout ä fait  corrects.  En couche limite tri- 
dimensionnelle,   un probleme  specifique  est du  ä la 
difference d'orientation entre le vecteur vitesse 
moyenne    y       et  le vecteur  derivee     ^zT        .   Si l'on 

admet  que les  structures  turbulentes de grande 
echelle ont  tendance ä etre orientees  suivant  l'axe 
principal  du tenseur de deformation de maniere ä 
etre plus aptes  ä extraire de l'energie au mouve- 
ment moyen /REF.   13/,   et   si  l'on admet  aussi  qu'elles 
sont  approximativement  convectees  dans  la direction 
de la vitesse moyenne,on congoit  qu'il s'agit a prio- 
ri  d'une  situation tres  complexe.   II  en ressort en 
particulier,  comme cela a ete mis en evidence expe- 
rimentalement par  quelques  auteurs  /REF.   14/,   que 
la force de cisaillemeut turbulent    n'est pas ali- 
gnee avec le vecteur   Ü       ;  il faut cependant no- 

ter qu'on manque d'informations permettant de pre- 
ciser  les mecanismes  qui  regissent  ce phenomene   : 
ceci est  l'un des objectifs futurs de l'experience 
precedemment  decrite. 

La plupart  des  modeles  developpes jusqu'ä 
maintenant ne  tiennent pas compte de ces  effets 
purement  tridimensionnels.  Dans  les  modeles  de  type 
viscosite tourbillonnaire la colinearite  tension/ 
gradient  est explicitement   supposee  des  que  l'on 
ecrit  : 

(2) 

Dans  les  modeles oil les   tensions   sont  calcu- 
lees  ä l'aide  d'equations  de  transport,   on  constate 
que pour de nombreuses  situations  d'ecoulement une 
teile hypothese  est  en fait  implicitement  retenue. 
En  effet,   en  utilisant  un modele developpe  par 
LAUNDER et  al. /REF.   15/,   le  calcul nous  a montre 
qu'il  s'etablit  tres   rapidement  un  etat  pour  lequel 
les  termes  de  convection et  de diffusion  sont  petits 
/REF.   6/   ;   la modelisation adoptee pour les   termes 
de  correlation pression-vitesse impose  alors   la 
colinearite tension/gradient. 

Masque  en  ecoulement  bidimensionnel  ou  ces 
directions  sont  obligatoirement   confondues,   ce pro- 
bleme met  done  clairement  en  evidence  un  certain 
nombre  de  defauts  des modelisations   classiques. 

FANNEL0P-HUMPHREYS  /REF.   16/  ont  montre  par 
une  experience  numSrique,   que  les   rfesultats  du cal- 
cul   sont modifies   sensiblement  en  imposant  une vis- 
cosite  tourbillonnaire  dont   la valeur  n'est pas   la 
meme dans  la direction de  1'ecoulement  exterieur 
et  dans  la direction  qui  lui  est orthogonale.   Signa- 
Ions  aussi  que  des   remedes peu justifies ont  ete 
proposes  par  ELSENAAR  et  al./REF.   17/  pour  pallier 
ces   difficultes. 

En  fait,   il  semble que  le  probleme  reside 
dans   la modelisation  des  termes  de correlation 
pression-vitesse.R0TTA /REF.   7/     a repris  la mode- 
lisation de ces  termes en se limitant au cas  d'une 
couche limite  et  il  a montre  que  des  hypotheses 
nouvelles  doivent  etre  introduites  pour  prendre en 
compte  les  effets  tridimensionnels.   Nous   avons 
reconsidere  la modelisation de  ces  termes  en uti- 
lisant une methode d'analyse  differente  qui  aboutit 
dans   le  cas  des   couches  minces  aux memes  resultats 
que  ceux etablis  par R0TTA  /REF.     7/. 

Apres  avoir decrit la modelisation proposee 
et  les   Schemas  de  turbulence  qui  en resultent,   nous 
presenterons   les  resultats   auxquels  on  est  conduit 
dans   1'application au cas   experimental  precedemment 
decrit. 

Appliquees   aux couches   limites bidimensionnel- 
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3.1. - Equations de transport aux tensions de Rey- 
nolds : modelisation des correlations pres- 
sion-yitesse. 

Les equations aux valeurs moyennes de con- 
tinuity et de quantite de mouvement seront ecrites 
dans le repere relatif lie au cylindre en rotation, 
en coordonnees cylindriques. 
Pour un ecoulement axisymetrique, avec les hypotheses 
de couche limite, on a : 

(3) 
5* 2>v| r 

SJ 

(5) u^r*v/—f,-*^t\ ?vbk- isM'.ftfo+vAV,.» V-ftO*^ 

On peut  remarquer que  le   terme d'acceleration 
de CORIOLIS  doit  en fait  etre  neglige dans  l'approxi- 
mation de  couche  limite.   Notons   aussi  que  la  derivee 

^?      est   supposee  nulle  ;   ce probleme  a dejä ete 

discute au paragraphe 2.3.1.. 

En ce  qui  concerne  le  schema de  turbulence, 
on  devrait  en toute  rigueur  tenir  compte  des  effets 
de  courbure.   Cependant,   pour  une premiere approche, 
nous   les  avons  negliges. 

Le  schema de  turbulence propose  repose  sur 
la modelisation des   equations aux  tensions   de Rey- 
nolds  qui,   en negligeant  tout effet  de  courbure, 
s'ecrivent  : 

(6) 
3>t       c 

uKü. ;!ÜV2v^ ^i 
ax, :) bXK   b*K 

Le  terme  de  correlation pression-vitesse est 
exprime de facon classique /REF.   7  /   :   on ecrit 
d'abord  l'equation de  POISSON pour la pression,   ob- 
tenue  en prenant  la divergence  des  equations  de 
NAVIER-STOKES   ;   ensuite,  par  resolution  de  cette 
equation on peut  deduire  la  formulation suivante 
du terme  de  correlation pression-vitesse,   valable 
loin des parois   : 

<ki fa 

avec       ^ i   —  X0^ +    pi 

Les  integrales  sont  etendues  ä tout l'espace. 

«pn    a ete  separe en deux  termes  qui agissent 
separem&it dans  deux types  d'ecoulements simples 
differents   :      fiij,!    est  seul present dans le cas 
d'un Ecoulement homogene,   sans gradient de vitesse 
moyenne,   initialement  anisotrope et  qui tend vers 
l'etat isotrope  ;    Py',1 est preponderant dans les 
premieres phase de 1 evolution d'un ecoulement 
homogene,   initialement  isotrope  soumis brutalement 
ä 1'influence d'un gradient de vitesse. 

Les  termes fo< ^1,4    et    y>ji,z      sont  Studies 
separement et l'on suppose que la modelisation de 

chacun d'entre  eux reste valable quel que soitl'ecou- 
lement considere.  En fait,  nous  examinerons simple- 
ment  ici le terme     $ij,t   •  Quant  ä     ^-y', d      nous 
avons  conserve une moaelisation classique  /REF.   7 
et   15/. 

Une premiere approximation introduite dejä 
par ROTTA /REF. 7/ consiste a negliger l'inhomo- 
geneite du champ de viteses moyennes.  On peut alors 

),'• »      sous la forme. 
Ö'1 

ML 

evaluer 

(8) but 

<2-t 

Le probleme  consiste  ainsi ä  chercher  un mo- 
dele pour  exprimer le  tenseur    ^-a\ •   Quel  que 
soit  le modele-adoptsf aj^j   doit   satisfaire     trois 
conditions    /REF.   15 et  18/. 

Ml t'w *U 
(9a)   condition de  symetrie       &-Q •   =  Q-J):  =       Ji. 

\n'.        . «i 
(9b)   l'equation de  contmuite      "   V     impose ".«, r O 

(9c)   de l'identite (j'M u[   z  - i   f * U'jx') 0' i£ 

on deduit 00     -     •£ ^vn"t, 

L'hypothese  de modelisation la plus  simple 
consiste ä  supposer que    C*-^  est une forme  tensp- 
rielle isotrope dependant des correlations    U'c Ui 
Cependant une teile hypo these,   äquivalente ä cefle 
utilisee par  LAUNDER et al./REF.   15/,   conduit aux 
Schemas  de  turbulence classique  pour   lesquels  on 
retrouve  l'alignement   tension/gradient   si  l'on ne- 
glige les  termes  de convection et de diffusion. 

Nous  avons   done  cherche a  introduire  une hypo7 
these moins   restrictive.   Nous   avons  suppose  que  A^V" 
est  une  forme   tensorielle axisymetrique  autour  de   0 
la vitesse moyenne,   dependant  des  correlations   O^uj. 
II  est  equivalent   de  dire  que    G-A   est  une  forme 
tensorielle  isotrope dependant  des  tensions  de Rey- 
nolds   et  de  la vitesse moyenne.   L'idee physique 
sous-jacente     est  que  le  champ   turbulent  est   convec- 
te par   la  vitesse moyenne  /REF.   19/.   L'inconvenient 
majeur  d'une  teile  hypothese  est,   comme  l'a fait 
remarquer  ROTTA /REF.   20/,   la necessite de preciser 
le  Systeme  d'axes  dans   lequel  on  travaille   :   en  effet, 
la  direction de  la vitesse  n'est pas   la meme  dans  un 
repere en translation uniforme et  dans  un repere 
fixe.   Tant  que  l'on  s'interesse aux  couhhes  limites, 
il  semble maturel d'utiliser un Systeme d'axes  lie 
ä  la paroi  de l'obstacle  sur  lequel   se  developpe 
la couche  limite. 

Le tenseur  £L« ld 
est done de la forme 

(10) AJV =   $Ui^ , uL) 
ou      l/£     sont  les composantes  de la vitesse dans un 
repere lie ä la paroi. 

Pour simplifier la modelisation,   il  est inte- 
ressant, comme   l'a propose LUMLEY  /REF.   21/  de  supposer 
que  le  champ  turbulent  est faiblement   anisotrope, 
e'est ä dire que la quantite  : 

(11) a.;. 

est petite devant 1'unite. 

iH 
En remplagant V\0 a par a^-j ,   on peut 
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ecrire que CL „ !"   est de la forme 

(12) CX. :•= *V<H,-,*^O 

et comme aii est petit devant l'unite on peut effec- 
tuer uti developpement de JP par rapport ä aij, 
On se limitera en fait ici ä 1'expression de cjt' 
ä l'ordre zero par rapport ä a^4. 

En s'appuyant sur les theoremes de represen- 
tation invariante des fonctions tensorielles, uti- 
lisees de fagon systematique par LUMLEY /REF. 2X1 
on trouve que la forme la plus generale de c^^ 
est : *-b 

(13)    aj".1-    «-t,.  ^    +   *4NJ^+ iWij 

.+ | Ü-U- UnUf +   termes   Ofcy)+- 

oii  les  a,   b,   c,   d,   e,   f  sont  des   coefficients. 

En appliquant a  1'equation   (13)   les  conditions 
(9a)   (9b)   (9c),   le nombre de coefficients  indepen- 
dants  est  reduit  ä deux.   D'apres  l'equation  (8)   on 
en deduit  la forme de    0ij,2  ;   l'expression du terme 
0Ü.2     +    0ji,2 qui  intervient  dans   l'equation   (6) 
pour u'. u'-    devient  alors   : 

(14) hi+fa'-fti-^W* 

- (Mt+IE) UiLhUmUe/(UpU?fl   k ^k 
)        OX.* 

Dans  cette expression (14),   C et E peuvent even- 
tuellement  etre     fonctions  de k  et   UpUp. 

3.2.  - Modeles  resultant pour le  calcul  d'une couche 
limite. 

Dans  le  cadre  des  approximations  usuelles  de 
couche limite,   l'expression  (14)   de    0ij,2 + 0ji,2 
se simplifie.  En fait,  on s'interesse seulement 
aux equations  pour  -u'v'     et    -w'v'   dans   lesquelles 
apparaissent les  quantites   : 

(15a) 

(C+E) UbJr    bWr 

rs?,2   rn,i    *j[5   Ao   AQ     u^^/ay 

(£+E)UWr \o 

On peut encore regrouper ces termes avec les 
termes de production dans les equations pour 

-u'v' et -w'v', respectivement V'1 ^  et ? ^^ 

En supposant  V" ; £ ^1% les termes sources 

des equations pour -u'v'  et -w'v' sont : 

(,6a)  S^.-K^^ r    a?Kz   ^ 

(,6b)    Sw-y,,k(a^|   + <V^-) 

(17)   ^PXX= % —i r 1        Oh wr
l 

^P?? = 4s„ —  

ou dg et T  sont des coefficents fonctions de 
C et E. 

(18a) 

(18b) 

C, 

T 

.JL ,1C   +iLE 
-»5 

2 

^0 40 

3C + SE 

S   -ZK -HE 
Ainsi dans le cas des couches limites, on ob- 

tient une expression (16) des termes sources identi- 
que ä celle obtenus par ROTTA /REF.7/ en suivant une 
analyse diffgrente. 

Remarquons que le terme source (16a) de l'equa- 
tion pour u'v' ( resp .  16b pour w'v' ) fait intervenir 
une combinaison lineaire des derivees SU  et SWr; 

*3 
^ 

et non pas seulement la derivee ^i  (resp.    *~ ) 
"Sq 

comme les modeles"classiques" que 
faisant T = 1. 

'fon retrouve en 

Pour completer l'expression des  equations 
pour      -u'v'     et    -w'v',  nous  avons utilise  les mo- 
delisations  classiques de    0ij,1       +    0ji,l     et 
des  termes  de dissipation et   de  diffusion /REF.   7  et 
15/.  On aboutit ainsi ä  : 

(19a)^(-uV)-.   kfcp    N  ^4p JM)   + C,   £ JV 
•»} •i  k 

"5 H)h*) 

(19b) |t(-wvl- K(a^ . apw^) , C5ziwv- 

oü       Cj,    et    Sj    sont  des  constantes  et  apxx,   apxz 
apzx,  apzz  sont donnes par les formules   (17). 

Pour  les  applications  au calcul  d'une  couche 
limite,   ce jeu  d'equations  doit  etre  complete  d'une 
equation de transport pour 1'evolution de  l'energie 
cinetique de turbulence k    et d'une equation pour 
son taux de dissipation   C   . 
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Cependant, im modele plus simple peut etre ob- 
tenu en considerant que les termes de convection et 
de diffusion sont negligeables. On aboutit alors ä 
une expression analytique de  -u'v'  et -w'v1 : 

(20a) 

(20b) 

_ü'v'- Vi ( ^W ^U   a?** ^Wr 
V C, y 

_w'V ^b (  ap?x ^  ^1 i^l\ 

V-^ 
Ces expressions font apparaitre que la force 

de cisaillement turbulente n'est pas alignee avec 
äT  . On peut d'ailleurs verifier que les for- 

mules (20a) et (20b) conduisent ä /REF. 7/ : 

T - ^flfc-Y) (21) 

. YY Y   \ ^(h-v.    i ou 'i     J i   "'S     representent respectivement les 
directions  de la vitesse,   de      *bv        et  de  la force 

de cisaillement turbulente. 

Ce  schema  est  complete par  les  equations pour 
k et    £    qui sont en fait une extension de celles 
proposees  par JONES-LAUNDER  /REF.   22/  en bidimen- 
sionnel   : 

(22)^ 
3>t 

. ÄVf^iv 

(23) *5- if(l/L5v'^.wV'^)*fAel 

oü l'on a garde les memes valeurs qu'en bidimension- 
nel pour les differentes constantes : 

les  functions correctrices de faible nombre de 
Reynolds sont aussi les memes qu'en bidimensionnel : 

£ ^ - «o,!, e   fc 

4  - RESULTATS-C0MPARAI SONS   CALCUL-EXPERIENCE. 

Dans  le cas oü le cylindre est  en rotation, 
deux valeurs du parametre T ont  ete considerees 
dans  le  calcul   :   T =   1   correspondant  au modele   clas- 
sique  et  T =  0,5.   En  l'absence  de  rotation,   le meme 

modele a ete mis  en oeuvre mais  le parametre T n'in- 
tervient pas. 

Les evolutions longitudinales des äpaisseurs 
integrales de couche limite Sx 0X $^ 0xs 
ainsi  que  celles  du parametre  de  forme H et  des  coef- 

sont  donnees ficients  de frottement     C. h Ch 

des  coefficients  de frottement  sont  deduites  des 
equations  integrees  de quantite  de mouvement   /REF.   3/; 
dans  le  cas present,   ces  relations se reduisent  ä 
/REF.   5/   : 

(24) C, A 

(25) c t* 
2 Wo d&xg _ 6*2  fa 

donne 
A la station adoptee, X/b0 =  28,   l'expe erience 

% 
44,1   10 Q 39,7   10 

La comparaison calcul-experience  (Fig.  3  et  4) 
indique    un bon accord general   ;   cependant le calcul 
semble sous-estimer     C/'x      et  sur-estimer   CPg . 
II est ä noter aussi que les parametres  integraux 
ne paraissent pas etre sensibles  ä T. 

Les  resultats detailles presentes sur  les figu- 
res 5  ä  11  ont  ete obtenus  ä la station 
X =   28 S0 =  630 mm  ;   ä  cette  station  l'effet de la 
rotation de la paroi  sur 1'angle    A       se  fait  sentir 
jusqu'aux trois   quarts   environ de l'epais 
couche  limite. 

'epaisseur de la 

Sur  chacune de ces   figures  ont   ete portees 
les pentes     (K)   ä l'origine calculees ä partir des 
valeurs  experimentales  des frottements  obtenus par 
les equations  globales   (24)   et   (25) .  Ces pentes 
sont  en bon accord avec les points  de mesure  les plus 
proches  de la paroi. 

On peut  montrer  que  l'on a 

(26) *1\ - (^] -   CP   ^ 
Sj/o " \ &y '. M 

D'autre part les approximations de sous-couche 
visqueuse permettent d'ecrire : 

(27) 

^   '   4-(Utility}    S 

Dans   la proximite  immediate  de la paroi 
(    M  U^/V<2  )   cette  relation se  ramene ä   /REF.5/ a 
(28) 

^/  = 
u«  c 

MWo H 
La pente et  la courbure ä  l'origine  de  la cour- 

be     Ä   (y)   deduites  de  1'equation  (26)   s'ecrivent 
alors   : 

(29) M 
ty 

ffl--J*Lö 
2vV0 

A/Ut 

nviVo -%% 

sur les figures  3  et 4.  Les valeurs experimentales 

Les  valeurs  et  les   signes  obtenus  sont  en ac- 
cord  avec  les  resultats  experimentaux et numeriques 
(fig.   5).   II  est  ä noter que  le  calcul   semble  sur- 
estimer  1'angle  ft,  au voisinage  de  la  paroi. 

On remarque  que  la majeure  partie  de   l'inf 
fluence  de  la rotation se manifeste  dans  une  zone 
tres  restreinte  au voisinage   de  la  paroi.   On peut 
estimer que  celle-ci   s'etend jusqu'ä  la position 
correspondante  au maximum de  courbure  du profil 

ß> (y)   ;   l'angle    yj)   a alors   dejä varie d'environ 
60  degres.   L'epaisseur  de  cette zone,   d'environ 
0,02   %    (soit     <jÜ*  / t)   ^   15),   est  tres  faible par 
rapport    ä la distance 0,85  §>   oü      K    est  prati- 
quement  nul. 
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En ce qui concerne le profil du module de Vi- 
tesse ö (figure 6), le calcul est en tres bon 
accord avec 1'experience. Quant aux profils de w et 
u (figures 7 et 8) une difference assez notable est 
observee pres de la paroi surtout pour le profil de 
w : ces differences sont les consequences de celles 
dej ä    observees  pour le profil  de   A   . 

X/6ofr 

X(mm)£ 

FIG.   3   : 

Caracteristiques axiales de la couche 
limite. 
Mesures :0 W» = 0 • Wo = 10,98 ms"1 

Calcul = Wo = 0 T = 1 Wo = 10,98ms"1 

  T = 0,5 Wo = 10,98ms"1 

X/60^, 

X (mm) ^ 

FIG. 4 

Caracteristiques  peripheriques  de  la couche 
limite. 
Mesures   :» Wo =  10,98ms"1 

Calcul   : T =1      T =  0,5 

En fait,   pour  rendre  compte  notamment  de  l'effet 
de  tridimensionnalite de maniere  plus   significative, 
un  repere  relatif  lie  ä la paroi  en  rotation doit 

etre  adopte.   Les  directions  et les  modules  de vites- 
ses   dans   les  reperes  absolu  et  relatif  sont  parti- 
culierement  bien mis  en evidence  dans  le plan de 
l'hodographe   (figure   9).  Dans  cette  representation, 
la vitesse  exterieure  fait un angle     U)     avec  la 
direction axiale. 

La  figure   10  fait  apparaitre une  difference 
entre les  resultats  numeriques  et experimentaux 
dans  les regions  tres voisines  de la paroi 
(UL^/V  •< 10        U/t>e<0,4)   correspondant  ä  une rapide 

variation de  1'angle   A   d'environ 40  degres.   Notons 
que  les mesures   de  BISS0NNETTE-MELL0R  /REF.   1/,   no- 

y<mm) I 

exp. 

Y(mm) ^ 

FIG.   5 

Profil de deviation du vecteur vitesse 
absolue. 
X/ So   -  28     (X =  630mm)     Wo/Ue =     0,887 
Mesures   : •  Fil  chaud   A  sonde  de pression 
K  :  pente ä 1'origine (formule 

29 et valeur experimentale  de Cp^d'apres 
1'equation 24). 

Calcul   :  T  =   1       T = 0,5 

Y(mm) 4 

Ue 

q, 
Ue 

exp. 

Y(mm)^ 

FIG.   6  : 

Module de la vitesse absolue. 
X/%to= 28 (X = 630 mm) Wo/Ue =  0,887 
Mesures : ® Fil chaud A sonde de pression 
K : pente ä 1'origine (formule 

26 et valeur experimentale de Cp_ d'apres 
1'equation 25). 

Calcul 1 0,5 
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tamment,   n'interessaient  pas  ces   regions  et ne per- 
mettent pas  une  teile  comparaison.   Pour  que  les 
points  obtenus  par  1'experience et  le  calcul  coin- 
cident  dans   ces  regions   il   faudrait   supposer  que ft 
soit entache  d'une erreur d'environ 5 degres.        ' 

L'evolution de ces  profils polaires en func- 
tion de  la  distance  longitudinale est   donnee  sur  la 
figure  11.   Cette  figure met  en  evidence  de  quelle 
maniere l'epaisseur  de  la  zone  oü W est  different 
de  zero  tend  asymptotiquement vers  l'epaisseur  de 

y(mm) |> 

y 
Ue 

FIG.   7   : 

Composante axiale de la vitesse. 
X/%„ =  28   (X =  630 mm)   W0/Ue =   0,887 
Mesures   :   ®    Fil   chaud Äsonde  de pression 
K  :  pente ä l'origine (valeur 

experimentale  de   Cf„ d'apres   1'equation 

la  couche  limite.   Par  ailleurs,   si  l'on considere 
les regions  tres voisines  de  la paroi,   il   semble 
que  le  calcul  et  1'experience  sont  d'autant mieux 
en accord  que  l'on se  rapproche  de  la  restructuxa- 
tion,   c'est  ä dire que  l'on  s'eloigne  du debut  de 
la paroi mobile. 

L'angle    }      qui  est representatif  de  la  dis- 
torsion du profil  de vitesse  dans   la  couche  limite 
atteint  une valeur maximale  de  l'ordre de 8  degres 
ä la position de mesure     X/S0   =  28   (figure  12). 
En fait l'effet  tridimensionnel est  d'autant plus 
marque  que  l'on est  pres  du debut du cylindre tour- 
nant   (figure  11)   :       ä    X/°o = 0>67 la valeur ma- 
ximale de    If    est de 20 degres environ.  En ce qui 
concerne  le  calcul,  on constate  (figure   12)  que j 
est  sensible au parametre  T   :   une valeur de T  de 
l'ordre de 0,7  ou 0,8 conduirait ä un bon accord 
calcul^experience  ä  la  station       X/ *o    =   28, 
tout au moins  dans  toute la region exterieure de la 
couche  limite. 

24). 
Calcul •T = 1 0,5 

FIG. 9 : 

Definition des vitesses et des angles 
dans le plan de 1'hodographe. 

W 
W0 

20 "r6exp. 

FIG. 8 

Composante peripherique de la vitesse 
absolue. 
X/ So  =   28   (X =  630 mm)  Wo/Ue  =  0,887 
Mesures   : •   fil  chaud    ä.  sonde  de pression 
K  :  pente ä l'origine (valeur 

experimentale de Cpg d'apres   1'equation 
25).                                 * 

Calcul   :  T =   1        T  =  0,5 

FIG.   10   : 

Profil polaire. 
X/ So    = 28  (X =  630 mm)       W0/Ue -    0,887 
Mesures   :    •    fil  chaud    A sonde  de pression 
(Spa/Spx)K :  pente  ä l'origine 
(valeurs  experimentales  de Cf^etCfji 
d'apres  les  equations 24  et  25). 

Calcul   :   T =   1      T  = 0,5 
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FIG.   11   : 

Evolution des  profils  polaires. 
Mesures   :      ^     sonde de pression 
Calcul     :   T =  1 

visqueuse   (u/ue    <   0,2 y U* / V    ^   5)   ;   de 
plus  la determination experimentale des  composantes 
du coefficient de frottement parietal montre que 
la pente ä  l'origine des  profils polaires  est  pra- 
tiquement egale  ä    bl2       ( Y    =0,6 degres)  ce qui 

correspond  ä peu pres   ä la pente  limite  qu'on ob- 
tiendrait si la restructuiation de la couche limite 
etait  achevee.   Ceci  implique  d'ailleurs   1'existence 
d'un point  d'inflexion qui  interdit  d'extrapoler 
les profils polaires  depuis  des valeurs  trop  for- 
tes  de U/U^(de  l'ordre de 0,4  ou 0,5)   jusqu'ä 
l'origine    pour  determiner   le  rapport^A [Cfy. comme 

le preconisaient  BISS0NNETTE  et MELL0R  /RET?.   1/. 
Cette  situation est  coherente  avec  le   sens   de  la 
faible courbure  que  l'on  calcule  ä partir  4es 
equations  de  la  sous-couche  lorsque  l'on  tient 
compte du  faible  gradient  de pression negatif   : 

(30) 

Cette  formule  generalise au cas  d'une paroi 
convexe  1'expression donnee par  NASH-PATEL   /REF.   23/ 
dans   le  cas  d'une  paroi  plane.   En fait,   dans  notre 
configuration  le  premier  terme,   lie  ä  la  courbure 
de  la paroi,   est  negligeable  devant le  terme  de 
pression.   Bien que  tres   faible   (U*    <**W/ dVl2S |cn  ) 
cette courbure a  un  sens  qui n'est  pas  en contra- 
diction avec  1'existence  d'un point  d'inflexion 
plus   loin dans  l'hodographe. 

re: 

Y(mm)^ 

exp. 

FIG. 12 

Profil de 1'angle  o   (  j   est defini 
fig. 9). 
X/So = 28 (x = 63° •)  W„/Ue = 0,887 
Mesures : 9   fil chaud  & sonde de pression 
OK : valeur ä l'origine 
(valeurs experimentales de Cf^ et £pg 
d'apres les equations 24 et 25).   ' 
Calcul : T = 1    T = 0,5 

5 - DISCUSSION - CONCLUSION. 

Les differentes comparaisons entre ie calcul 
et 1'experience tendent ä montrer que 1'accord 
general est correct. Cependant il faut remarquer 
une nette difference dans 1'allure des profils po- 
laires (figures 10 et 11) dans les regions tres 
voisines de la paroi. En particulier, 1'experience 
indique que l'ecoulement ne peut etre collateral 
que dans une region tres mince, dans la sous-couehe 

Notons encore que la forme du profil palaire 
experimental est liee ä une diminution extremement 
rapide de  J  tres pres de la paroi (figure 12). 

Par opposition on observe que le calcul 
n'indique pas un tel comportement. L'hodographe 
calcule reste pratiquement lineaire jusque U/Ue=0i5 
c'est ä dire bien au-delä de la sous-couche vis- 
queuse. Les calculs effectues pour T =1 et T = 0,5 
conduisent ä des formes analogues des profils 
polaires. 

De plus, 1'analyse de l'evolution des profils 
polaires conduit ä une interpretation differente 
du processus de restructuration de la couche limite 
dans le calcul et dans 1'experience tout au moins 
dans sa phase initiale. II semblerait en effet, 
d'apres 1'experience, que le retour vers une couche 
limite collaterale s'etablisse d'abord beaucoup plus 
rapidement pres de la paroi et s'etende ensuite pro- 
gressivement dans la couche limite. En revanche, 
le calcul n'indique pas une tendance privilegiee 
de la region voisine de la paroi ä atteindre son 
etat limite : on constate en effet que le profil 
polaire tend vers sa forme lineaire limite dans 
son ensemble. 

Les calculs effectues avec differentes valeurs 
du parametre T conduisent ä des resultats tres 
voisins. La quantitela plus sensible est la devia- 
tion l     subie par le vecteur vitesse relative, 
ä l'interieur de la couche limite. Cependant, les 
ecarts  obtenus pour T = 1 et T = 0,5 paraissent 
trop faibles pour que 1'experience permette de fixer 
plus preoisement la valeur de T ä choisir. II fau- 
drait pour cela pousser encore plus loin la compa- 
raison entre le calcul et 1'experience et la faire 
porter sur les profils des tensions de Reynolds. 

La faible sensibilite des resultats de calcul 
au parametre T confirme des observations dejä fai- 
tes lors de comparaisons ä d'autres cas experimen- 
taux /REF, 6/. D'une facon generale, on peut dire 
que la deviation de la direction de la force de _•> 
eisaillement turbulent par rapport au vecteur JlY. 

peut jouer un role important lorsque la couche limi- 
te est soumise ä de forts gradients de pression 
conduisant ä son decollement. 
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Neammoins, il est bon de preciser que le mode- 
le de turbulence presente a priori plusieurs defauts. 
En particulier, la modelisation adoptee pour les 
regions voisines de la paroi parait grossiere. On 
peut penser aussi qu'une variation du parametre T 
dans l'epaisseur de la couche limite modifierait 
la forme de l'hodographe. Remarquons encore fina- 
lement que le schema de turbulence utilise ne tient 
pas compte du tout des effets de courbure alors 
qu'en fin de la zone d'etude le rapport hc<\<\   / *- 
est de l'ordre de 35%. 

Remerciements 

Les auteurs tiennent ä remercier plus particu- 
lierement Monsieur R. DUMAS pour tous les conseils 
qu'il leur a prodigues dans cette recherche. Sur le 
plan technique leurs remerciements vont aussi ä 
Monsieur ASTIER. 

19/ Mac MILLAN F.A. "Experiments on Pitot tubes in 
Shear Flows". Aero Res. Council, R.M. n° 3028, 
1956. 

/10/ MARCILLAT J. "Fonction de repartition des vi- 
tesses turbulentes dans une couche limite ; 
effets de la reponse de l'anemometre ä fil 
chaud" These, IMSI, Univ. Aix-Marseille, 1964. 

/Il/ CHAUVE M.P. "Determination directe du frotte- 
ment sur une paroi poreuse ä l'aide  'un ane- 
mometre". Proceedings of Euromech Colloquium 
70, Nancy, July 1977. 

/12/ WEISSBERG H.L. "Velocity profiles and friction 
factors for turbulent pipe flow with uniform 
wall suction". Physics Report K-1264 OAK Ridge 
Tennessee (1956). 

/13/ TENNEKES H. , 
turbulence". 

LUMLEY J.L."A first course in 
The MIT Press 1972. 

REFERENCES 

IM     BISSONNETTE L.R., MELLOR G.L., "Experiments 
on the behaviour of an axisymmetric turbulent 
boundary layer with a sudden circumferential 
strain" J.F.M., Vol. 63, 1974, pp 369-413. 

HI    LOHMANN R.P. "The response of developed tur- 
bulent boundary layer to local transverse sur- 
face motion" Ph. D. Thesis, Univ. Connecticut, 
1973. 

131    ARSLANIAN G. "Champ de vitesse moyenne d'une 
couche limite turbulente sur un cylindre en 
rotation dans un ecoulement axial" These, 
Sept. 1978, IMST Universite Aix-Marseille II. 

Ikl    ARSLANIAN G., DUMAS R. "Couche limite turbu- 
lente sur un cylindre en rotation dans un 
ecoulement axial. Champ de vitesse moyenne". 
Note interne IMST; Univ. Aix-Marseille II, 
Janvier 1979. 

15/     ARZOUMANIAN E., FULACHIER L., DUMAS R., 
"Experimental investigation of threedimensional 
turbulent boundary layer on an axially rota- 
ted cylinder", 2nd International Symposium 
on Turbulent Shear Flows, London, July 2-4, 
1979. 

16/    CODSTEIX J., AUPOIX B., "Comparison of various 
calculation methods for threedimensional tur- 
bulent boundary layer". 2nd Symposium on Tur- 
bulent Shear Flows, London, July 2-4, 1979. 

Ill    ROTTA J.C., "A family of turbulence models 
for threedimensional thin shear layers". 
Symposium on Turbulent Shear Flows, Pensylva- 
nia, April 18-20, 1977. 

18/     GAVIGLIO J. "Les caracteristiques des souf- 
fleries subsoniques de l'IMST" ONERA, Division 
Aerodynamique, Probleme 522-10 (1962). 

/14/ COUSTEIX J., "Progres dans les methodes de 
calcul des couches limites bi et tridimension- 
nelles" ONERA, N.T. n° 1976-15, (translated 
in English ESA TT-385). 

/15/ LAUNDER B.E., REECE G.J., RODI W. "Progress 
in the development of a Reynolds stress turbu- 
lence closure". J.F.M.  Vol. 8, Part. 3, 
pp. 537-566 (1975). 

/16/ FANNEL0P T.K., HUMPHREYS D.A. "The solution of 
the laminar and turbulent threedimensional 
boundary layer equations with a simple finite 
difference technique".FFA, Rep. 126 (1975). 

/17/ ELSENAAR A., Van den BERG B., EINDHOUT J.P.F., 
"Threedimensional separation of an incompres- 
sible turbulent boundary layer on an infinite 
swept wing". AGARD CP-168 "Flow Separation" 
(1975). 

/18/ ROTSA J.C. "Statistische Theorie Nichthomoge- 
ner Turbulenz". Z. Phys. 129 (1951). 

/19/ BATCHELOR G.K. "The theory of homogeneous tur- 
bulence". Cambridge University Press (1953). 

/20/ ROTTA J.C, "Eine theoretische Untersuchung 
über den Einflup der Druckscher korrelationen 
anf die Entwicklung dreidimensionaler turbu- 
lenter Grenzschichten". DFVLR, FB 79-05 (1979). 

/21/ LUMLEY J.L. "Prediction methods for turbulent 
flows" Introduction - VKI Lecture Series 76, 
March 3-7 (1975). 

1221  JONES W.P., LAUNDER B.E., "The prediction of 
laminarization with a two equation model of 
turbulence". Int. Journal of Heat and Mass 
Transfer, Vol. 15, n° 2 (1972). 

/23/ HEBBAR K.,MELNIK W.L., "Wall region of a rela- 
xing three-dimensional incompressible turbu- 
lent boundary layers" Journal of Fluid Mecha- 

nics, Vol. 85, part. 1, 1978, pp. 33-56. 



21-1 

Evidence for instability-waves in the velocity-field 
of a fully developed turbulent channel-flow 

by 

Michael Hofbauer 
Max-Planck-Institut für Strömungsforschung 

Bunsenstraße 10 
D - 3400   Göttingen 

Hot-film measurements and quantitative visual investigations were performed in the turbulent flow of the 
Göttingen Oil-Channel. This channel provides a fully developed turbulent flow at such a low Reynolds- 
number as Re = 8000  (based on the mean centreline velocity and the whole channel width). Because of the 
low Reynolds-number we get a high spatial resolution, which enables us to study coherent structures in 
the near-wall region. 

The apparatus used for the visual studies can be seen in figure 1.   The left part of figure 1 shows a 
cut through the Oil-Channel in the y-z-plane (plane perpendicular to the mean flow direction). A thin 
volume of the flow medium is illuminated through the transparent wall II of the channel using a 2 KW 
halogen light-source. The motion picture camera (Locam 16 mm High Speed Motion Picture Camera 
Model 50 - 0002), which records the paths of neutrally buoyant tracer-particles,  is positioned above the 
free surface of the oil. The film speed was mostly 51 and in some runs 32 frames per second. The di- 
mensions (in millimetres) of the illuminated volume are shown in the right part of figure 1. The extension 
of the volume into the  z-direction is very small compared with the extensions into the x- and y-direction 
and this means, that we practically study turbulence in a plane. For hot-film measurements an x-probe 
(TSI Model 1241 - 20 W combined with a Constant-Temperature-Anemometer TSI Model 1050 and a Line- 
arizer DISA Model 55D10), which measures the time-functions of both the u- and the v-component of 
the velocity, was placed in the middle of the channel (half-way between the bottom and the free surface 
of the oil); the distance from the wall was variable. From the measured time functions statistical pro- 
perties of turbulence were calculated by using a digital computer  (DEC PDP-15). 

The main result of the hot-film measurements is the power-spectrum of the v-component of the 
fluctuating-velocity. Figure 2  shows such a spectrum with high frequency-resolution. It should be noted, 
that the coordinates are linear. As can be seen from figure 2, the power-spectrum has regular maxima 
and minima. In contrast to this result is was believed up to now, that turbulence-spectra do not exhibit 
any characteristic peaks. In figure 3 the frequencies corresponding to the maxima of the power-spectrum 
are plotted as a function of the order n of the maxima. All points fall on a straight line through the origin. 
This means, that the frequencies of the maxima are the harmonics of a fundamental frequency, which 
from the slope of the straight line can be determined to be about 0.15 Hz.  This frequency was determined 
for different distances y+ from the wall (12 ^ y+ ^ 50)  and was found to be independent from y+.  The 
peaks, however,  of the power-spectrum could be observed best at about y+ = 12, where there is the 
maximum of the turbulence-production,  and became smaller with increasing distance from the wall. An 
estimation shows, that the fundamental frequency is of the same order of magnitude as the roughly cal- 
culated unstable Tollmien-Schlichting frequencies of the mean turbulent velocity-profile. We therefore 
interpret this fundamental frequency as the most excited frequency of Tollmien-Schlichting-like instability- 
waves. The harmonics we believe to be due to a nonlinear amplification of the primarily excited instability- 
waves. 

The main result of the visual studies in the evidence of regular oscillations in the near-wall region 
of the fully developed turbulent flow. A nice example of these oscillations can be seen in figure 4,   which 
is showing the path of one single tracer-particle in the x-y-plane.  (The motion usually is three-dimensio- 
nal, but the camera records only the x- and y-component. In spite of the three-dimensionality the oscilla- 
tions seem to be no vortices.) The drawn points mark the positions of the particle at different times. They 
are equidistant with respect to time and the time interval between two consecutive points is 0. 64 in di- 
mensionless units. The particle-path strongly reminds of a damped oscillation. The amplitude and the 
frequency of these regular oscillations seem to be simple functions of the distance from the wall,  as can 
be seen from figure 5.   Figure 5a shows, that the dimensionless amplitude a+ is approximately one half 
of the dimensionless distance from the wall y+, where we define the wall-distance of an oscillating struc- 
ture to be the arithmetic mean value of the maximum and the minimum distance of the particle-path. 
Figure 5b shows the dimensionless angular frequency as a function of y+. The solid curve is the derivative 
of the mean turbulent velocity-profile   9u+/ 3y+,   which is a locally defined frequency. Within a certain 
scatter, which is due to errors in determining the distance from the wall, the measured points fall on the 
solid curve. This last result provides a relation of the statistical properties of turbulence - in this case 
the mean turbulent velocity-profile - and the properties of the elementary structures, which constitute 
turbulence.  The oscillating structures described above correspond to the second phase of the burst-cycle 
reported by Kim, Kline and Reynolds [1].   Further investigation lead to the result, that the oscillations 
occur after low-speed fluid has migrated away from the wall (lifted up), but this lift-up occurs after the 
momentanous velocity-profile has had an inflection-point, whereas it is usually believed, that the lift-up 
itself generates an inflection-point. It should be noted, that the oscillating structures detected by visual 
means have nothing to do with the peaks of the power-spectrum. In the near-wall region their frequencies 
are roughly one order of magnitude above the fundamental frequency determined from the power-spectrum. 
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We therefore think,  that the oscillations are due to a new three-dimensional instability. 

From the results of the spectral measurements it can be assumed,  that there exist Tollmien-Schlich- 
ting-like instability-waves in fully developed turbulence.  On the other hand the visual studies show,  that 
there are also three-dimensional instability waves of much higher frequency.  These results are in agree- 
ment with Landahl' s theory [2],  who considers turbulence as a superposition of permanently existing 
Tollmien-Schlichting wave-groups and intermittently occuring secondary instability-waves (small-scale 
turbulence). 
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Fig.2    Power-spectrum of velocity-component normal to the wall at y+-position 12.1 
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Fig.3    Frequencies of maxima of the power-spectrum 
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Fig.4    Oscillating particle path 
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Fig.5(a)    Amplitude of the regular oscillations as a function of the distance from the wall 
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Fig.5(b)    Angular frequency of the regular oscillations as a function of the distance from the wall 
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RESULTATS EXPERIMENTAUX RELATIFS A L'INFLUENCE DES PROCESSUS 

DE TRANSITION SUR  LA STRUCTURE INITIALE 

D'UNE COUCHE LIMITE TURBULENTE 

par Daniel ARN AL et Jean-Claude JUILLEN 

Office National d'Etudes et de Recherches Ae'rospatiales (ONERA) 
CERT,   Toulouse,  France. 

RESUME 

On etudie  dans   quelle  mesure  la  structure  ini- 
tiale  de  la couche  limite  turbulente peut  etre   in- 
fluencee par  les  processus   de  transition.   Dans  le 
cas   d'un  ecoulement  exterieur uniforme,   le  passage 
du regime  laminaire  au regime   turbulent  est   carac- 
terise  par  le phenomene  d'intermittence   ;   1'analyse 
conditionnelle  du  signal   fil  chaud montre  que les 
spots  turbulents  ont  une  structure  analogue  ä celle 
d'une couche  limite  turbulente  classique.  Avec un 
faible  gradient  de pression positif,   il  devient   dif- 
ficile  de  qualifier  1'intermittence.   Lorsque   la 
transition  se  produit  en aval  d'un decollement  la- 
minaire,   le parametre  de  forme decroit,   mais   1'in- 
termittence n'apparait plus.   On observe  seulement 
une  deformation  des  ondes   d'instabilite   ;   ä la fin 
de  la  transition,   le  spectre  de  l'energie  turbu- 
lente  est  constitue  de  pointes  correspondant  aux 
harmoniques   des  ondes   d'instabilite. 

EXPERIMENTAL RESULTS  CONCERNING     THE  INFLUENCE   OF 
TRANSITION  PROCESSES  ON THE   INITIAL  STRUCTURE   OF 
A TURBULENT   BOUNDARY LAYER 

SUMMARY 

The purpose of this study is to specify hew 
the initial structure of the turbulent boundary 
layer can be influenced by the transition mechanism. 
In the case of zero pressure gradient the evolution 
from the laminar to the turbulent regime is charac- 
terized by the intermittency phenomenon ; the condi- 
tional sampling of the hot wire signal shows that 
the turbulent spots exhibit a structure similar to 
the classical turbulent boundary layer structure. 
With a mild positive pressure gradient, it becomes 
difficult to describe the intermittency. When the 
transition is beginning downstream the laminar 
separation point, the shape parameter is decreasing, 
but the intermittency appears no longer. We only 
observe a progressive deformation of the instabi- 
lity waves ; at the end of the transition, the spec- 
trum of the turbulent energy is composed by a series 
of peaks corresponding to harmonics of the instabi- 

lity waves. 

NOTATIONS 

X abscisse 

V ordonnee comptee ä partir de la paroi 

t t emp s 

U.(t) vitesse longitudinale instantanee 

L) vitesse moyenne longitudinale 

\-afvitesse de reference (experiences sur 
cylindre) 

UTO vitesse ä l'infini amont (experiences 
sur profils) 

<^,L)y} moyenne d'ensemble 

u-'.V fluctuations longitudinale et verticale 

U.'*V> moyennes quadratiques de u-   et O" 

-u)v' tension de Reynolds 

t<   demi-angle de divergence de la veine 
(experiences sur cylindre) 

$       viscosite cinematique 

<S   epaisseur physique de la couche limite 

o1  epaisseur de deplacement 01 s  M-ü-^dy 

0 epaisseur de quantite de mouvement 

\\ parametre de forme  H; ctf/Q 

Ru R_nombres de Reynolds formes avec x et 9 

OR« nombre de Reynolds d'etendue de transition 

C corde du profil 

P facteur de dissymetrie 

F facteur d'aplatissement 

p pression statique 

Ty duree d'un spot turbulent 

Indices 

T   debut de transition. 

Y turbulent. 

e   exterieur ä la couche limite. 
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1 INTRODUCTION 

La majorite  des methodes de calcul des   ecou- 
lements   cisailles  turbulents reposent sur  la resolu- 
tion de Schemas   de  turbulence  dont  la modelisation 
fait  appel  ä des proprietes bien connues  d'ecoule- 
ments   classiques   (  c'est  ainsi que  l'on suppose gene- 
ralement  un equilibre du spectre  de  turbulence).   On 
peut cependant se demander si ces  proprietes  sont 
valables  lorsque l'on considere une couche limite 
turbulente immediatement  en aval  de  la  transition 
qui lui  a donne naissance. 

Des  etudes experimentales  systematiques  effec- 
tuees  au Departement  d1 Aerothermodynamique de l'ONERA/ 
CERT sur  la   transition de  la  couche   limite ont mon- 
tre  que les  processus de transformation de  l'ecoule- 
ment laminaire en ecoulement  turbulent  sont  en fait 
tres  sensibles  ä l'intensite  du gradient  de pression 
longitudinal  et  que la turbulence n^apparait pas  du 
tout  de la meme facon selon que  la  transition s'ef- 
fectue en ecoulement uniforme ou apres  un decolle- 
ment  laminaire. 

Le but de cet  article est  de  decrire ces  di- 
vers mecanismes  d'apparition de la turbulence,   meca- 
nismes  dont  on peut parfois  retrouver  la trace  lors- 
que  la  transition est  terminee     (ou parait terminee 
si  l'on considere  seulement  certains parametres glo- 
baux). 

2 - CONFIGURATIONS  ETUDIEES. 

2.1.   Transition dans un gradient  de pression nul. 

La   transition de  la  couche  limite est etudiee 
sur un corps  cylindrique de 6  cm de  diametre,  precede 
d'une ogive  et place dans  l'axe  d'une v'eine  de  revolu- 
tion,   dont la conicite determine  la distribution de 
pression dans   1'ecoulement potentiel   ;   le  demi-angle «< 
de divergence  de  la veine est  ici voisin de 0,2°   (com- 
pensation de l'effet  de deplacement  des   couches  limites). 

La distribution de vitesse exterieure est  tra- 
cee sur  la  figure   1   sous  la forme   z-   (x)        oü   U«f 

ur«f 
est une vitesse de reference-mesuree au raccordement 
de  l'ogive et  du cylindre.   On a ici       U^f Oi  33 m/s. 
Pour    X   >    0,2 m,   cette  configuration correspond 
sensiblement au cas   de  1'ecoulement  uniforme   ;   en 
fait,   la divergence  de  la veine a  ete quelque peu 
surestimee,   si bien que l'on observe  une petite dece- 
leration vers  l'aval.   Le  gradient  de pression  longi- 
tudinal reste  cependant negligeable,  puisque,   comme 
on le verra au   § 4,   les    valeurs   du parametre de 
forme   H     en regime  laminaire sont  tres voisins  de 
la valeur  theorique du profil de Blasius. 

*dP/dx=0 

° ^P/J    ^0   (modere) 

^reF. *   dP/d    >°   (decollement) 

1 

0,9 

0,8 

^ 
••^. 

0 0.5 1        x(m) 

I3-- 

2.2. Transition dans un gradient de pression positi 
modere. 

On a conserve le meme montage experimental que 
dans   la configuration precedente,  mais  en modifiant 

«*     et   U^f     :   le  demi-angle <K     vaut maintenant 
0,7°   et  la vitesse      U^f     est  egale ä  28  m/s.   On a 
egalement  trace sur  la  figure   1   la distribution de 
vitesse    exterieure,   qui  correspond bien,   sur la 
majeure partie de la  zone  d'etude,   ä un ecoulement 
decelere. 

2.3. Transitions  au voisinage d'un decollement  lami- 
naire. 

Trois cas  de ce  type ont ete consideres   ;  pour 
chacun d'eux,   le debut  de  la  transition  (au sens  de 
debut  de  la decroissance  du parametre de  forme)   s'ef- 
fectue aussitot apres  le point de decollement  lami- 
naire. 

Le premier  de  ces  cas  a encore ete  Studie  dans 
la  soufflerie de  revolution precedemmetit  decrite, 
avec     °<     = 0,9°  et      Uvgf      =   12 m/s.   La  repartition 
de vitesse   (figure   1)   indique bien un gradient   de 
pression plus   intense que  dans   les deux premieres 
configurations. 

Les  resultats  experimentaux relatifs   au  second 
cas de transition avec decollement   sont  empruntes 
aux  travaux realises ä  l'ONERA/CERT par C0USTEIX et 
PAILHAS   /l/,   qui ont  etudie  le  developpement de  la 
couche limite sur un profil peaky  (profil   0NERA D) 
de 200    mm de  corde,   place ä  incidence nulle  dans 
une veine  de  section rectangulaire   (300 x 400 mm2) 
et  de   1,5 m de  long.   On a  trace sur  la  figure  2 la 
distribution de vitesse exterieure  ;  avec la valeur 
de    Uoo     choisie  (24 m/s),  le nombre de Reynolds 

U<fflC/X>     est voisin de  300 000. 

Le  troisieme  et  dernier cas  de   transition avec 
decollement a  ete obtenu sur  un profil   laminaire de 
90 mm de corde   (profil NACA 64 A010).   Ce profil a 
ete etudie ä  incidence nulle,   dans  une  petite vei- 
ne de  section rectangulaire   (80 x  100 mm2)   et de 
380 mm de long.   La repartition de vitesse,   repre- 
sentee  figure  2,   montre une zone acceleree jusqu'ä 
40 pour cent de  corde  environ,   puis   une zone  tres 
deceleree  jusqu'au bord  de  fuite.   La vitesse   UQQ 

est   ici egale  ä 56 m/s,   ce qui  donne un nombre 
de Reynolds de corde  tres  proche  de  celui des  ex- 
periences  realisees  sur  le  profil  0NERA D 
(330 000). 

^ONERA   D     \^ 

^ 

0,2      0,4      0,6 

U 

0,8 

CO 

FIG. 1   :   Distributions  de vitesses 
(Experiences   sur cylindre). FIG. 2 Distributions de vitesse 

(Experiences sur profils). 
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3 - MOYENS DE ME SURE. 

Lea mesures  sont effectuees ä  l'aide  d'a- 
nemometres  ä fil  chaud ä  temperature constante. 
Dans  certains  cas,   on a entrepris une  etude plus 
approfondie  de  la  fluctuation longitudinale   <*.' 
par  traitement   sur ordinateur du signal instan- 
tane numerisä.  La plus grande partie des  resul- 
tats   ainsi obtenus  provient  de numerisations ef- 
fectuees  pendant  6  secondes   ä la cadence  de 
10 000 points  par   seconde. 
De  cette facon on a pu calculer  les  moments d'oti 
dre  3   (facteur de dissymetrie)   et  de l'ordre  4 
(facteur d'aplatissement)   de la fluctuation,   et 
obtenir des   spectres  numeriques  grace ä un pro- 
gramme de  transformee de FOURIER rapide.   Enfin, 
l'etude  du phenomene d'intermittence  a fait 
appel  ä une  analyse conditionnelle    de la vi- 
tesse  instantanee.   On  trouvera  dans   /2/  et  /3/ 
des  details   complementaires relatifs ä  la  chai- 
ne d1 acquisition et ä  la  technique d'echantil- 
lonnage  conditionnel. 

4 - PASSAGE DU REGIME LAMINAIRE AU REGIME TURBULENT. 

On a trace   sur la figure 3   1'evolution du 
parametre de  forme en fonction de X     (experien- 
ces   sur cylindre)   ou de X/c     (experiences   sur 
profils).   En premiere  analyse,   on peut  consi- 
derer que  la  transition  se  declenche  lorsque H 
commence ä decroitre,   et  qu'elle s'acheve lors- 
que H    atteint  un niveau ä peu pres   constant. 
On remarquera done en premier  lieu que la fin 
de   transition n'est pas   reellement  atteinte 
dans   le  cas  de l'ecoulement uniforme et dans 
les  experiences  sur profil  ONERA D. 

L'appelation "gradient  de pression posi- 
tif modere"  trouve  ici   sa justification dans  la 
mesure ou le   H       en debut  de  transition est 
voisin de  2,8,  valeur peu  superieure  ä celle 
d'un profil   laminaire de plaque plane.   Les   trois 
cas  de  transition avec  decollement  laminaire 
montrent bien entendu des valeurs de H    beau- 
coup plus  elevees,   entre 3,6 et  4,8  ;   les traits 
verticaux portes   sur les   courbes   experimenta- 
les  indiquent  la position du decollement lami- 
naire,   obtenue par  un calcul  de  couche  limite. 

M lH 

2 

1 

A    . 
& &  A       A^ 

ÄA^A 
A > 

dp/ =0                       ÄA
Ä 

'dx                                            *iU 
J                  ......I.               1                       1 

NACA 

ONERA   D 

^^J7   .   i,nf-a 

Decollemenf 1   \ \ 

JVc 
q2 0,4        0,6        0,8 1 

1,5 

1,3 

1,1 

0,9 

07 

II  faut  enfin observer que,   dans  tous  les  cas,   les 
valeurs  du parametre de forme de  la couche  limite 
turbulente  qui  se developpe  en aval  de  la  transition 
restent voisines  de   1,5,   valeur     classique  en  tur- 
bulent pour un ecoulement uniforme  ;  en d'autres 
termes,   les  gradients   de  pression mis en jeu  sont 
importants  pour le  regime  laminaire,   mais  tres  fai~ 
bles  pour  le  regime  turbulent. 

Les  figures  4 et  5 portent  les evolutions  du 
nombre de Reynolds    Ra    en fonction du nombre de 
Reynolds   R«      pour les   divers   cas etudies.   Des 
fleches  indiquent   les points de debut  et  de  fin de 
transition,   definis  comme on vient de le dire ä 
partir de l'evolution du H     .   Le nombre  de Reynolds 

"^x      caracterisant l'etendue de la  transition 
est egalement   indique sur  ces  figures   ;   il  diminue 
tres   rapidement  lorsque   HT      augmente. i 

| 10"3R( 

dP/dx-° 

C' 

(esh'me 

AR,, a 860 000 

1 1.5 
10"SR, 

2,5 

fl0-3Rg F      ° 

1   °     - 
dP/dx>° ! 
(modere) °    I 

• 

D 

1 
0   I 

j 
o 1   "° 

3                        I 
o 

0     ° L^v 400 000    j 
o 

o 

0.5 

io" V 
1.5 

FIGj__4 ; Nombres de Reynolds caracteristiques 
de la couche limite (a). 
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FIG. 3 : Distributions du parametre de forme. 
FIG. 5 : Nombres de Reynolds caracteristiques 

de la couche limite (b)• 
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5  -  ETUDE DES   SPOTS TURBULENTS 
MENT UNIFORME. 

CAS DE L'ECOULE- 

L'etude  des  spots   turbulents  et  du phenomene 
d1 intermitten.ee  a fait  l'objet  de  precedentes publi- 
cations   (   ill  et  /3/  )   ;   e'est  pourquoi  nous  nous 
bornerons,   dans  ce  paragraphe,   ä en  rappeler  les 
resultats  essentiels. 

5.1. Etude qualitative. 

La  figure  6 montre quelques exemples   typiques 
d'enregistrement   du  signal    11 {£)      ä proximite  de 
la paroi,   pour  trois  stations  situees   au debut,   au 
milieu et  ä la fin de  la region de  transition.   II 
apparart  que le fil   chaud est  plonge  successivement 
dans  des  zones   turbulentes,   caracterisees par  des 
fluctuations ä haute frequence   ("spots")   et dans 
des   regions  laminaires plus ou moins   rectilignes   : 
e'est  le phenomene  d'intermittence.   Entre   X   = 0,87  m 
et A  = 0,94 m,   le  nombre  des spots   turbulents   s'est 
considerablement accru,   alors  qu'entre     X    = 0,94 tn 
et   A   =   1,07 m,   e'est   surtout  la duree  de  ces  spots 
qui a augmente.  Dans  les   zones  laminaires,   on  observe 
des  oscillations   de  faible amplitude,  mais   assez 
regulieres,   correspondant aux ondes d'instability, 
ou ondes  de Tollmien-Schlichting.Sans  entrer  dans 
les details,   on peut dire que  ces ondes  apparaissent 
dans   le  regime  laminaire,   s'amplifient  et   finiss"ent 
par  destabiliser  la  couche  limite  laminaire,   don~ 
nant naissance aux  spots  turbulents. 

Dans  nos  experiences,   out la transition est  na- 
turelle,   la naissance  des bouffees  turbulentes  est 
un phenomene  aleatoire,   ainsi qu'il   a ete  suggere par 
EMMONS   /4/.   Plusieurs auteurs,   tels  SCHUBÄUER - 
KLEBANOFF  /5/,   ELDER  /6/,   WYGNANSKI-SOKOLOV-FRIEDMAN 
111y   CANTWELL-COLES-DIMOTAKIS  /8/,   ont   etudie   la 
structure des   spots  turbulents en les   creant  arti- 

ficiellement  ä  l'aide  de  decharges  electriques. 

\) (m/s) 

FIG.   6   :   Exemples d'enregistrement  pres   de   la 
paroi   (dp/dx =0). 

n,4 

n,? 

n 
0,4        Q8        1,2 

f(KHz 
0,4        0,8       1;2 

FIG.   7   :   Exemples  d'enregistrement en milieu 
de  transition (clp/dx =0). 

On presente  sur  la  figure  7 deux  enregistre- 
ments  simultanes  de  la vitesse   U- (£}    ,   realises 
pres  de  la paroi   ( y -  0,4 mm)   et vers   le milieu 
de  l'epaisseur  de  la couche  limite,   ainsi que   les 
spectres  correspondants.   On  s'est place  ä l'abscisse 

X = 0,94 m,   e'est.ä-dire  en milieu de   transition. 
Cette  figure appelle les   remarques  suivantes   : 

.   pres  de  la paroi,   la vitesse moyenne  dans 
les  spots   turbulents   est  superieure ä  la  vitesse 
laminaire.   Lorsque  y    croit,   le phenomene   s'inverse, 

.   la forme  des  spots   evolue depuis  une   forme 
quasi-rectangulaire pres   de   la  paroi ä  une forme  en 
dent  de  scie,   tres  dissymetrique,   aux altitudes  su- 
perieures, 

.   aucun pic,   aucune  frequence privilegiee 
n'apparait  sur  les  spectres. 

Nous  avons represents ci-dessous  la forme 
schematique d'tni spot  teile que  l'on peut   la  dedui- 
re des visualisations  effectuees par  divers   auteurs. 
Le  front  avant  est  convecte ä une vitesse U^^ 0,3Üe 

le  front  arriere  ä une vitesse V% -   ^SU©   .   La  dif- 
ference des  vitesses   de  propagation des   fronts   avant 
et arriere  explique   le  developpement des   spots et 
leur coalescence  progressive en spots   de plus   en plus 
etendus,   mais   de moins en moins  nombreux. 

Front 
arriere 

5.2.   Etude  quantitative. 

L'analyse  conditionnelle  du phenomene d'inter- 
mictence    necessite  avant  tout  le choix d'un   signal 
de  detection,   permettant  de  distinguer  avec   le moins 
d'ambiguite possible     les  regions   laminaires  et 
turbulentes. 
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FIG.   8   :   Etude des  spots   turbulents  (dp/dx =o) . (a.) . 
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favorise  les hautes   frequences  des  structures  turbu- 
lentes.   On presente   sur la figure 8   le  profil   de 
vitesse moyenne  turbulente U^yUe,  que  l'on compare au 

profil de vitesse  moyenne "brut" obtenue  de  facon 
classique par une  mesure  sur un temps   theoriquement 
infini,   pratiquement  tres   long.  A la  station conside- 
red   ( X =  0,94 m,   milieu  de  la  transition),   le pro- 
fil brut a  un parametre de forme voisin de  2,   alors 
que  le    H    du profil   turbulent est   egal  ä  1,47,   va- 
leur classique pour une  couche limite  turbulente   eta- 
blie. 

Si  l'on considere maintenant   la  fluctuation 
turbulente   UL'L. = U(,t) - U|.      on s'aper9oit qu'au voi- 
sinage  de la paroi,   la densite de probabilite  de u.'). 
est voisine de  la  ioi gaussienne  (figure 8). 

Nous avons   egalement determine,   toujours pour_ 
l'abscisse   X   =0,94 m,   les profils  de  turbulence U.'? 
et  de  tension de Reynolds    -U.(.\Tf.     ;   ces profils 
sont  traces  sur la figure 9 et  compares  aux profils 
"bruts" de    U'*     et   .U.V   .  La forme de ces profils 
bruts  offre quelques particularity's   ;   c'est ainsi 
que le profil de    U?1   a deux maxima,   1' un pres   de la 

paroi,  l'autre vers le milieu de l'epaisseur de  la 
couche limite,   et  que le profil de    _U.'vr>   presente 
aux  faibles  altitudes  des valeurs  negatives.   Par 
contre,   les profils  de   fluctuation et de  tension de 
Reynolds mesures  dans  les   spots  turbulents ont  des 
formes correspondant  sensiblement ä celles  que'l'on 
peut rencontrer dans  une  couche  limite  turbulente 
pleinement etablie. 

II s'avere ainsi que  que l'on retrouve dans 
les  spots turbulents un certain nombre de proprietes 
classiques  des couches  limites turbulentes.  Ces 
spots apparaissent dans la couche limite dSs  le 
debut de la transition,   et  la  couche  limite  turbu- 
lente qui  s'etablit en aval resulte  de la coalescence 
de ces  grosses  structures. 

6 -  INFLUENCE D'UN GRADIENT DE PRESSION POSITIF 
MODERE.   C0MPARAIS0N AU CAS   SANS  GRADIENT. 

II  comporte avant  tout  de   se  souvenir  que le 
gradient de pression dit  "moderS" est d'une  intensite 
assez   faible en ce   sens   qu'au debut  de  la  transition 
la parametre de forme laminaire a une valeur tres voi- 
sine de celle  d'un profil   da plaque plane.   Cette in- 
tensite est  cependant assez   importante pour  donner 
un     Rx      de  debut de transition deux fois plus 
faible que  celui du cas   sans  gradient,   et pour con- 
duire  dans   la  zone  de  transition ä d'importantes 
differences qualitatives  et quantitatives.   Ce  sont 
ces  differences que nous  allons  examiner,  en res- 
treignant  cette etude  ä des   stations   situees en 
milieu- de transition. 

6.1.   Etude qualitative. 

On compare sur la  figure   10 des enregistre- 
ments du signal    U»(t) obtenus  dans  le  cas du gra- 
dient de pression positif modere et dans le cas  de 
l'ecoulement uniforme.   Les   stations  de  sondage sont 
situees  en milieu de transition,   les parametres  de 
forme ayant dans les  deux cas des valeurs tres voi- 
sines  :   les profils  de vitesse "globale"  traces  dans 
les coordonnees VJ/Ue et Y/Q   sont d'ailleurs con- 

fondus.  On compare pour chaque cas un enregistrement 
realise pres de la paroi   (Y/Q— 0,4)  et un enregis- 

trement  realise au milieu de l'epaisseur de  la cou- 
che limite  (y/g = 6). 

^ 8 

u'(m/s) 
\ 

h-6 

FIG. 10 : Influence d'un gradient de pression positif 
modere sur la forme du signal. 
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Dans   le  cas  sans  gradient de pression,   on re- 
trouve bien entendu  le phenomene d'intermittence, 
Cel  que l'on vient  de  le  decrire.   Ce phenomene appa- 
rait  encore avecdpA >0,  mais  de faeon beaucoup 

moins nette   :   pres de  la paroi   les spots   turbulents 
se  distinguent  assez  difficilement des   zones  lami- 
naires,   dans  lesquelles  les  ondes de Tollmien-Schlich- 
ting ont  des  amplitudes  considerables.   L'influence 
d'un gradient  de pression positif se manifeste  done 
par une amplification des  ondes d'instabilite bien 
plus   importante  que dans  le cas   d'un ecoulement '.uni- 
forme.   En V/§    =  6,   les   signaux sont appareminent 

plus   ressemblants.   II  semble  toutefois   que la forme 
en dent  de   scie   soit moins marquee  avec d^/^ > 0 
qu-'avec dö/<Jx =0. 

6.2. Etude quantitative. 

Ces  observations   sont   confirmees par 1'analyse 
conditionnelle  du  signal U^t)     >   qui  a. ete  effectuee 
dans  le cas  du  gradient  de pression modere  en  conser- 
vant  le meme   signal  de  detection que pour   le  cas  sans 
gradient.   On doit  cependant  signaler qu'au voisinage 
de la paroi,   la distinction entre zones   laminaires  et 
turbulentes devient beaucoup  plus  delicate  qu'en ecou- 
lement  uniforme,   puisque  les fluctuations  laminaires 
(ondes d'instabilite)  ont   ici des  amplitudes   compa- 
rables  ä celles  des  regions  turbulentes. 
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FIG.   11   :   Moyennes  d'ensemble des   spots   turbulents 

(pres  de  la paroi). 

On presente   sur les   figures   II   et   12  des moyen- 
nes  d'ensemble des  zones  turbulentes,   avec et  sans 
gradient.   Ces moyennes   d'ensemble   sont  calculees 
de la facon  suivante   :   si  T^.     represente  la duree 
d'une region turbulente et t     le  temps  mesure  depuis 
le debut de  cette  region,   on calcule pour  une valeur 
donnee de    t / "TV    la raoyenne  de   U-(b)     sur un grand 
nombre  de  zones  turbulentes,   dont  la duree  est com- 
prise  entre une valeur minimale   Tmin     et  une valeur 

maximale Tmax •   Une  teile moyenne  sera notee <CUj-> . 
En  faisant varier t/Tj. ,   on obtient un "portrait 

type"  des   structures   turbulentes. 

Les resultats   de  la  figure   11   sont  relatifs 
ä des  points voisins  de la paroi   (  correspondant  aux 
signaux enregistres  ä V/0     = 0,4   sur la figure  10). 

Chaque courbe est parametree  par le couple de va- 

leurs Ttnin       et Tma><        .   II  apparait essentielle- 
ment  que 1'amplitude  des  zones   turbulentes,   c'est-ä 
dire <U(.^max est une  fonction croissante  de T^. 
De  plus,   les  regions  turbulentes   de  grande  duree ont 
avec   <ito/^x ^> 0 des  fronts   avant et arriere beaucoup 

moins raides qu'en ecoulement  uniforme. 

En y/g =   6   (figure   12,   correspondant  aux si- 

gnaux presentes  au bas de la figure   10),   1'influence 
du gradient  de pression est assez  nette.   Dans   le  cas 
sans  gradient,   les  spots  dont   la  duree est  comprise 
entre 7   et  8 millisecondes  presentent   la forme en 
dent  de   scie dejä  signalee  au  §  5   ;   avec dwdx*^ 0» 

les  regions  turbulentes  de  duree comparable ont  cette 
meme  forme generale,   mais   il  apparait trois ou quatre 
pointes  assez nettes,   d'amplitude decroissante avec 
le temps.   Ces  pointes  correspondent  ä des  ondes  de 
Tollmien-Schlicting   (de Periode    £2 ms)   tres defor- 
mees,   qui ont  cependant  conserve leur individuality, 
contrairement  ä ce qui  se passe avec "V/cbc = 0.   Con- 

cernant  toujours  le cas  avec  gradient,   les   spots 
tels  que  3 ms^ T^<"4 ms  presentent  bien entendu 
deux pointes,   correspondant  ä deux periodes  des 
ondes  d'instabilite. 
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FIG. 12 : Moyennes d'ensemble des spots turbulents 

(milieu de la couche limite). 
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7  - TRANSITION AU VOISINAGE D'UN DECOLLMENT LAMINAIRE. 

7.1.   Etude  de  la  region de  transition. 

Nous presentons  sur  le  figure   13  deux enregis- 
trements  du  signal  instantane,  realises sur  le cylin- 
dre au milieu de  la region de transition,   ainsi  que 
les   spectres   de puissance correspondants.   D'impor- 
tantes   differences  sont   ä signaler par  rapport au 
cas   de   l'ecoulement uniforme   :   on ne voit plus ap- 
paraitre de grosses   structures   turbulentes bien in- 
dividualisees   (spots  turbulents),  mais plutot  des 
series de pics  diriges vers  les vitesses   superieu- 
res  au voisinage de la paroi,  vers  les  vitesses 
inferieures aux plus  grandes altitudes.   La carac- 
teristique la plus remarquable des  spectres est 
1'existence    d'un maximum pour  une  frequence voi- 
sine de  200 Hz,   c'est.ä.dire  pour  la  frequence des 
ondes de Tollmien-Schlichting.   Sur certains  pics 
se  superposent des   fluctuations  ä plus haute  fre- 
quence,   indiquant  un debut d'apparition de turbu- 
lence. 

0,4       0,8        1,2 0 
f(KHz)-*- 

0,4        0,8 1,2 

FIG.   13   :   Exemples  d'enregistrements  en milieu de 
transition, 
(experiences   sur cylindre ;   decollement). 

I..'absence de  spots  turbulents  dans  la zone 
de transition devient  encore plus   evidente  dans 
les  experiences  de C0USTEIX et  PAILH&S   sur profil 
0NERA D   ;   on montre sur   la figure  14 quelques 
exemples  de signaux   U.(fc}   ,   enregistres  vers   le 
milieu de  la couche  limite,   ä divers   stades   du 
processus de  transition.   Les  spectres de puis- 
sance correspondants  sont donnes  sur  la  figure   15. 
En X/c   = 0,825 etX/c   - 0,875,   on observe les  ondes 

d'instability,   de frequence voisine de   1000 Hz   ; 
leur  intensity est   tres   importante,   puisqu'en 
X/C     = 0,875,   eile atteint   11   pour  cent  de  la Vi- 

tesse  exterieure.   Des  phenomenes  non lineaires 
entrent alors   en jeu et  se traduisent  sur  les 
spectres par  l'apparition d'harmoniques.   En 

X/C    = 0,925,   le  signal   fondamental a   1000 Hz 

reste encore visible,  mais  il est perturbe  par une 
fluctuation de frequence plus  elevee   :   son allure 
est assez   comparable  ä celle  du  signal  obtenüe  sur 
la  cylindre  en    y/QÜ  3,8   (figure   13).   Plus  en aval, 

le  signal   s'enrichit    en harmoniques   supplementai- 
res   ,  mais on distingue une certaine regularity 
dans   sa  forme. 

Des  remarques analogues   peuvent etre  tirees 
de  l'examen des  enregistrements  realises   sur le 
profil NACA 64 A 010  dans  la region de transition 
(figure   16)   :   on y retrouve les  ondes de Tollmien- 
Schlichting   (leur  frequence est  voisine de  6000 Hz) 
qui   se  deforment  et  commencent   ä se"herisser"  de 
fluctuations   turbulentes   en  fin de  transition.   II 
n'apparait jamais  de spots   turbulents,   structures 
caracteristiques  d'une   transition sur plaque  plane, 
mais  dont  on a vu au  §  6  qu'un gradient de pression 
positif,  meme modere,   suffisait  pour  commencer  ä 
les  estomper.   Des visualisations  realisees  au  tunnel 
hydrodynamique par H.   WERLE   /9/ dans  le cas     d'un 
bulbe de decollement de bord  d1attaque montrent des 
"rouleaux"   transversaux,   d'abord  tres   rgguliers, 

qui  se  desorganisent  progressivement pour conduire 
ä un ecoulement  turbulent   :   de   telles  observations 
sont bien coherentes   avec  1'interpretation que l'on 
peut donner des   signaux pratiquement periodiques 
delivres  par le  fil  chaud. 

FIG.   14   :   Exemples  d'enregistrements   (profil  0NERA D) 
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FIG.   15   :     Spectre de  la  fluctuation longitudinale 
(profil 0NERA D). 
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FIG. ljp_ :  Exemples d'enregistrements 
(profil NACA 64 A 010). 
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7.2.   Etablissement du regime  turbulent. 

L'etablissement  de la structure   turbulente 
"classique" a  d'abord ete  etudiee dans  les   expe- 
riences  realisees  sur  cylindre.   On montre  sur  la 
figure   17  1'evolution des  profils de vitesse moyen~ 
ne pour  cinq  stations   choisies   ä la fin de   la  tran- 
sition et en aval de celle-ci.   Tous   ces profils 
ayant des parametres  de forme voisins   (excepte 
celui mesure en   X     =  0,7 m oü  la transition n'est 
pas    tout  ä  fait  achevee),   il n'est  pas etonnant 
que  leur  representation dans   les  coordonnees U/U^ 
et V/Q  dönne une courbe unique. 

L'obtention de l'etat turbulent   "asymptoti- 
que"  semble beaucoup moins  rapide  si  l'on consi- 
dere maintenant  les profils  d'intensite de  turbu- 
lence  longitudinale   (figure   17).   Leur forme  evolue 
sensiblement  avec  l'abscisse,   surtout  dans   la  re- 
gion exterieure de  la couche limite.   Aux premieres 
stations   considerees,   une  sorte  de  renflement appa- 
ratt pour y/0     compris   entre 3   et  8  environ,  puis 
s1efface  peu ä peu  :   c'est  seulement  aux deux der- 
nieres  stations  de  sondage  que l'on retrouve un 
profil  de turbulence classique.   II  semble done que 
la  turbulence  soit  plus   lente ä atteindre  son etat 
"asymptotique"  que   la vitesse moyenne. 
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FIG.   17   :     Etablissement du regime  turbulent   : 
vitesse moyenne  et  turbulence   (experience 
sur  cylindre  ;  decollement). 

Cette  remarque  reste bien entendu valable  si 
l'on considere maintenant  les moments   d'ordre 3  et 
4 de  la fluctuation u.'   ,   0n montre  sur  la  figure   18 
1'evolution dans  la couche  limite de la quantite 
3/F   ,   pour  les memes  stations que precedemment. 
F   represente  le facteur  d'aplatissement U.",/V u*)2; 

sa valeur est 3  pour un  signal  aleatoire de proba- 
bility gaussienne.   Rappelons  que  sous   certaines 
hypotheses,   le  rapport  3/F      represente  le facteur 
d'intermittence,   rapport du temps  oü  1'ecoulement 
est  turbulent  au temps  total.   On observe  qu'en 

X   =  0,7 m,    3/F       plafonne ä 0,7  au voisinage 
la paroi  ;   ä partir de  X   - 0,8 m,   la valeur unite 
est ä peu pres  atteinte aux falbles valeurs  de>/9 
et  une decroissance de  3/F       vers l'exterieur  de 
la  couche  limite  s'amorce  ä une valeur  de y/g 
d'autant  plus  elevee  que l'abscisse  est  importante. 
On a  egalement porte  sur la figure  18  1'evolution 
de 3/f"   mesuree par  KLEBAH0FF  /10/ dans une   couche 
limite  turbulente  de plaque plane pleinement Sta- 
bile   ;   il  faut aller  en   X    =   1,1 m pour obtenir 
dans  nos  experiences  une evolution voisine de 

celle-ci,   e'est-a-dire un rapport 3/F      voisin de 
1  jusqu'ay/Q   =  6   (soit y/£    2     0,5),   puis   une 

decroissance   (intermittence dite de  "frontiere") 
conduisant ä  une annulation dans 1'ecoulement ex- 
terieur. 
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12 

Facteur d'aplatissement   (Experience  sur 
cylindre   ;   decollement). 

L'etude du facteur de dissymetrie D- U. //,.12.}"\5 

(figure   19)   permet     dfavoir une  idee  de  la  forme du 
signal  instantane.   D     est nul  pour  une fluctuation 
gaussienne,   negatif  pour  un  signal presentant des 
pointes vers  les  vitesses   superieures.   On voit   sur 
la figure   19 que   D     est peu different de zero  au 
voisinage  de  la paroi,   plus   exactement  dans   les  re- 
gions  oü   3/F       est  peu different  de   1,   puis   qu'il 
prend des valeurs   franchement negatives  vers   l'ex- 
terieur  de  la  couche   limite   ;   ä y/9     donne,   la 
valeur absolue de D    decroit cependant  lorsque A 
augments.L'exemple d'enregistrement präsente   sur 
cette meme  figure indique bien des pointes  de O-' 
dirigees vers   les vitesses  inferieures.   Ces  pointes 
sont ä rapprocher de  celles  observees dans  la zone 
de  transition elle-meme   :   dans   le  signal  presente 
leur  frequence est  encore voisine de celle  des 
ondes  d'instability.   Plus   en aval,   elles perdent 
peu  ä peu  leur  regularite  et   sont  responsables  de 
1'intermittence de  frontiere de  la  couche   limite 
turbulente. 

y/o - 

FIG.   19 Facteur de dissymetrie (Experience sur 
cylindre ; decollement). 
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La persistance de la 'regularity des pointes 
quelque distance apres la fin de la transition est 
illustree sur la figure 20. On y montre trois spe6- 
tres obtenus sur le profil NACA 64 A 010 ä X/c " 0,99. 

On n'observe rien de particulier prls de la paroi, 
mais aux deux altitudes superieures, le maximum pour 
la frequence 6000 Hz, frequence des ondes de TOLLMIEN- 
SCHLICHTING, apparait nettement. 

V/8 =°i3 

y/e=4,8 

V 
•^ •/"V 

2000 

FIG. 20 

0 mo°  f(Hz) , 

Spectres de la fluctuation longitudinale 
(profil NACA 64 AO 10 x/c 0,99) 

8 - CONCLUSION. 

Ces diverses etudes, essentiellement qualita- 
tives, permettent de tirer un certain nombre de con- 
clusions quant aux divers modes d'apparition de la 
turbulence en region de transition. 

Dans le cas de 1'ecoulement uniforme, des spots 
turbulents apparaissent de facon aleatoire dans le 
temps et dans l'espace, des le debut de la transition; 
ces grosses structures, essentiellement tridimension- 
nelles, possedent dejä un certain nombre de proprie- 
tes caracteristiques de la couche limite turbulente 
que leur coalescence finira par former en aval. Ce 
mecanisme ne garde aucune trace des processus d'ins- 
tability (ondes de Tollmien-Schlichting) qui ont 
conduit ä la dSstabilisation de la couche limite 
laminaire. 

La mise en jeu d'un leger gradient de pression 
positif conduit rapidement ä des observations dif- 
ferentes, it  ceci en raison de l'amplitude conside- 
rable que prennent les ondes de Tollmien-Schlichting. 
II devient delicat de qualifier 1'intermittence, et 
les moyennes d'ensemble des regions turbulentes 
font apparaitre une persistance des ondes d'insta- 
bilite. 

Lorsque le gradient de pression positif est 
suffisamment intense pour provoquer un decolle- 
ment de la couche limite laminaire, la transition 
semble bien avoir lieu, en ce sens que le parame- 
tre de forme decroit depuis une valeur laminaire 
jusqu'ä une valeur turbulente, mais sans qu'ap- 
paraisse aucun phenomene d'intermittence : on en- 
registre seulement une amplification considerable 
des ondes d'instabilite, puis leur deformation pro- 
gressive. Au dSbut de la couche limite "turbulente", 
le spectre de U.'1  indique que l'energie de tur- 
bulence est transported en grande partie par une 
suite de pointes correspondant aux harmoniques des 
ondes d'instability. Les visualisations montrent 
des rouleaux bidimensionnels, espaces regulierement, 
tres differents des spots tridimensionnels, au ca- 
ractere aleatoire, rencontres avec un ecoulement 
uniforme. On pourrait attribuer ces differences 
de processus ä un effet de nombre de Reynolds : 
dans le cas sans gradient, on a ReT = 900 et 
avec decollement Rgr a  400. Nous pensons en fait 
qu'il n'en est rien ; en effet, des experiences 

realisees ä 1'ONERA/CERT /11/ ont permis d'obtenir 
en ecoulement uniforme des R©T  voisins de 400 
par augmentation du taux de turbulence exterieure : 
on a retrouve dans ce cas une intermittence avec 
spots tout ä fait semblable ä celle decrite au § 4. 
Le parametre gradient de pression semble done pre- 
ponderant. II faut se souvenir que les transitions 
sans intermittence sont observees dans certains 
ecoulements libres, du type jets ou sillages /12/ 
qui presentent, comme dans le cas d'un decollement, 
des profils de vitesse moyenne avec un point d'in- 
flexion tres marque. 

En ce qui concerne l1etablissement du regime 
turbulent "classique" en aval de la transition, 
nous pouvons formuler les observations suivantes : 
le profil de vitesse moyenne se stabilise tres rapi- 
dement ; il n'en est pas de meme pour les profils 
des moments d'ordre 2, 3 et, 4 de la fluctuation^ , 
qui continuent ä evoluer alors que le parametre de 
forme reste sensiblement constant ; la couche limite 
turbulente garde assez longtemps, dans sa partie1 

exterieure, le souvenir de la frequence des ondes 
d'instabilite qui ont provoque la transition, alors 
qu'au voisinage de la paroi la structure turbulent 
s'etablit assez vite ( 3/F = I, D = 0). 
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SUMMARY 

Synthetic turbulent boundary layers were constructed on a flat plate by generating systematic moving 
patterns of turbulent spots in a laminar flow.    The experiments were carried out in a wind tunnel at a 
Reynolds number based on plate length of 1. 7 x 10".    Spots were generated periodically in space and time 
near the leading edge to form a regular hexagonal pattern.    The disturbance mechanism was a camshaft 
which displaced small pins momentarily into the laminar flow at frequencies up to 80 Hz.    The main 
instrumentation was a rake of 24 hot wires placed across the flow in a line parallel to the surface.    The 
main measured variable was local intermittency; i„ e.,  the probability of observing turbulent flow at a 
particular point in space and time.    The results are reported in x-t  diagrams showing the evolution of 
various synthetic flows along the plate.    The dimensionless celerity or phase velocity of the large eddies 
was found to be 0. 88,  independent of eddy scale.    All patterns with sufficiently small scales eventually 
showed loss of coherence as they moved downstream.   A novel phenomenon called eddy transposition was 
observed in several flows which contained appreciable laminar regions.    The large eddies shifted in 
formation to new positions,  intermediate to their original ones,  while preserving their hexagonal pattern. 
The present results,  together with some empirical properties of a turbulent spot,  were used to estimate 
the best choice of scales for constructing a synthetic boundary layer suitable for detailed study.    The 
values recommended are:   spanwise scale/thickness  ss 2.5,   streamwise scale/thickness  fa  8. 

I   INTRODUCTION 

The contemporary view of turbulent fluid motion is that turbulent shear flows are not as random as 
was once thought,  but contain coherent eddy structures which represent characteristic concentrations of 
vorticity at the largest scale of the flow.    In any attempt to find and study such coherent motions in the 
turbulent boundary layer,  it is a serious difficulty that the eddies occur in various stages of development 
at random places and times.    Presumably the eddies have a typical signature in terms (say) of surface 
pressure,   surface friction,  local turbulence intensity,  interface geometry,   large-scale vorticity,   and 
the like.    However,  this signature cannot be determined until the eddy has been found,   and the eddy 
cannot readily be found unless its signature is known. 

Asa possible means for bypassing this difficulty,   Coles and Barker [1] proposed the concept of a 
synthetic turbulent boundary layer and made a few preliminary measurements in one such flow.    Their 
point of departure was the fact that transition from laminar to turbulent flow in a boundary layer is 
characterized by the appearance of turbulent spots.    The turbulent spot,  first discovered by Emmons [2] 
and first documented experimentally by Schubauer and Klebanoff [3],  is an arrowhead-shaped region of 
turbulence which appears in a laminar boundary layer (when there is a suitable natural or artificial 
disturbance)  and moves downstream,   growing in size nearly linearly in all directions.    The spot has 
been identified as essentially a large,  flat horseshoe vortex by the work of Coles and Barker [1], 
Wygnanski,   Sokolov,  and Friedman [4],   and Cantwell,   Coles and Dimotakis [5],    Consequently,  in the 
context of the coherent-structure formulation,  the spot suggests itself as a possible prototype large eddy 
for the turbulent boundary layer.    Cantwell et al.   [5] take the position that the spot is not so much a 
prototype large eddy as an alternative flow to the boundary layer,  in view of the inevitable discrepancy in 
scale.    Nevertheless,  they expect the isolated spot to have important structural features in common with 
characteristic large-scale vorticity concentrations in the turbulent-boundary layer.    Zilberman,  Wygnanski, 
and Kaplan [6] and Haritonidis,   Kaplan,   and Wygnanski [7] have recently followed an artificially generated 
spot'into a turbulent boundary layer for very large distances.    They find that the growth of the spot is 
severely inhibited in the streamwise and spanwise directions,  but not in the normal direction.    The 
characteristic celerity of the spot in the boundary layer is found to be  c = 0. 9u„i   u„ being the free- 
stream velocity.    On the basis of these experiments,  Wygnanski [8] takes the position that the turbulent 
spot may be viewed as the basic module for the turbulent boundary layer. 

The first major investigation of outer structure in the turbulent boundary layer was carried out by 
Kovasznay,   Kibens, and Blackwelder [9] and by Blackwelder and Kovasznay [10].    Their results of 
greatest interest for the present research include space-time correlations which suggest a celerity of 
0. 93ueo for the outer turbulent regions.    There is strong persistence of the large eddies over distances 
Ax/5  of  15  or more,  where  5  is the boundary-layer thickness.    A set of correlation maps in  (z, t) have 
zero-cor relation contours indicating a streamwise scale u^At/5  of about 2.5  and a spanwise scale Az/6 
of about 1.2 for the typical large eddy at the half-intermittency level.    Later triple-correlation measure- 
ments by Fulachier,  Arzoumanian,   and Dumas [11],  using heat as a passive contaminant,   support these 
estimates of scale.    Blackwelder and Kovasznay [10] infer a qualitative picture of the mean motion in a 
moving reference frame which shows large-scale rotation in the same sense as the general vorticity in 
the flow.    These authors approach,  but do not quite reach, the conclusion that the large-scale mean 
motion is a transverse vortex.    Praturi and Brodkey [12], using a combination of dye and tracer particles 
and a moving camera for flow visualization,  frequently observe large,  persistent transverse vortices,  but 
do not observe the swept-back structure which would be characteristic of the main vortex in a turbulent 
spot. 

The experiment carried out by Coles and Barker [1] was to generate a regular hexagonal pattern of 
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turbulent spots in the laminar boundary layer near the leading edge of a flat plate and to sample the flow 
farther downstream at times locked to the phase of the disturbance generator.    They found that periodicity 
in space and time persisted downstream»   and that the average velocity profile was close to that which 
would be expected in a natural turbulent boundary layer at the same Reynolds number.    Figur? J  (courtesy 
of D.   Coles) shows a photograph of a single spot in water,  using surface dye for flow visualization, 
together with a photograph of a synthetic turbulent boundary layer under the same conditions in the same 
channel. 

The present research continues the work begun by Coles and Barker [1],    Their measurements 
were made in water,  using momentary jets to create the turbulent spots and using a single-channel laser - 
Doppler velocimeter as main instrumentation.    Because of insufficient width for the channel and insuffi- 
cient flow rate for the pump,  the Reynolds number was relatively low,   and the useful region of the plate 
surface was severely limited by transverse contamination from the side walls.    There was also a sub- 
stantial acceleration of the free stream along the plate. 

The present experiments were carried out under conditions which avoid these problems,  particularly 
the problem of transverse contamination.    The main difference is that the present measurements were 
made in a wind tunnel,   requiring a shift to the hot-wire anemometer as main instrumentation,   and 
requiring also a shift to a disturbance mechanism capable of operating at much higher frequencies.    A 
relatively large range of scales in space and time is explored, in an attempt to determine which patterns 
are most coherent at certain stations in the flow.    The emphasis is on pattern and scale,  as revealed 
by measurements of intermittency in the outer part of the layer.    There are as yet no measurements of 
velocity,   surface stress,  turbulence intensity,   or other variables involved in the problem of signatures 
and eventually in the problem of dynamics.    The task of the present exploratory research is to define one 
or more synthetic flows which are suitable for more detailed study. 

This paper is derived from the Ph.D. thesis by Savas [13],  in which a more detailed description of 
the experiment and of the experimental results can be found. 

II   MODEL AND INSTRUMENTATION 

The experiments were carried out in the Merrill wind tunnel at GALCIT (Graduate Aeronautical 
Laboratories,   California Institute of Technology).    The measurements reported here were made at a 
nominal free-stream speed U = 10 m/s  to obtain a maximum region of laminar flow.    The flat-plate 
model was made from two sections of aluminum-alloy plate,   as indicated in Figure 2.    The streamwise 
coordinate x is measured from the leading edge of the plate; the spanwise coordinate z is measured 
from the plate centerline;  and the normal coordinate y is measured from the plate surface.    The leading 
edge was a  10:1   ellipse,   chosen to prevent large positive pressure gradients which could cause separation 
and/or premature transition.    The pressure coefficient was constant within ±.01   over most of the working 
surface.    With no artificial disturbances,  the boundary layer on the plate centerline was laminar along 
the total length of the plate (streamwise Reynolds number  Rex  =  1, 7x 10° at the trailing edge). 

The objectives of the present research required a disturbance generator capable of operating 
reliably over a range of frequencies from a few Hz to 100 Hz or more.    Multiple spark gaps were not 
considered suitable because of probable severe electrical interference with the data-acquisition system. 
Fluidic methods were not considered suitable because of unavoidable frequency limitations for solenoid 
devices,    A mechanical method was therefore adopted. 

The disturbances were generated by momentarily displacing small cylindrical pins into the laminar 
boundary layer.    Figure 3 shows some geometrical details of the mechanism.    The basic element is a 
nylon pin which is embedded in the front section of the plate.    Normally,   a compression spring keeps the 
pin retracted and in contact with a retaining plate,  as shown at the left,   so that the plate surface is 
uninterrupted.    The pin is displaced into the boundary layer,  as shown at the right, by a rotating nylon 
cam (impregnated with molybdenum disulfide to reduce friction).    A beryllium-copper leaf spring between 
each pin and the associated cam guarantees smooth and non-destructive contact between the two moving 
elements and also removes heat generated during operation. 

The camshaft is mounted on the lower side of the front section of the plate.    It is supported at seven 
locations in needle bearings.    The camshaft assembly is shielded from the air flow by a curved shield 
which extends from side wall to side wall.    Cooling air introduced into the camshaft cavity is discharged 
through the clearance gap around the shaft at the motor end.    The life of the cam-pin assembly was found 
to be critically dependent on the amount of cooling provided. 

The cam mechanism has an individual four-lobe cam corresponding to each pin in the plate.    Any 
cam lobes which were not wanted were machined away.    Normally two lobes,   180 degrees apart,  were 
retained at each pin location.    Alternate cams along the length of the camshaft were displaced by 90 
degrees.    Thus,  the disturbance generator produced a close-packed hexagonal pattern in a (z, t) plane 
when the shaft was rotating,   as shown   in Figure 4.    The period  Q in the  z  direction was fixed by the cam 
in use.    The period  T in time was half the period of shaft rotation.    The ostensible variable of the 
experiment was actually neither the period  T nor the frequency  / = 1/T ;  it was an integer N = 20 000 T. 
For example,   if N = 800  then  T = 0. 040 second  and  / = 25 Hz. 

Pins are installed in the model at a station 22. 9 cm from the leading edge.    The pins are spaced 
0. 508 cm (0. 2 in) apart.    Because room must be provided for the bearings used to support the camshaft, 
the minimum uniform pin spacing is   1. 524 cm (0. 6 in).    With a hexagonal disturbance pattern,  the 
minimum spanwise pitch or wave length  Q is therefore  3,048 cm (1.2 in).    The three values actually used 
in the present tests were 6. 10,   9. 14,   and 12. 19 cm (2. 4,   3. 6,   and 4. 8 in). 

During bench tests,  the thickness of the leaf spring and the clearances of the cam-spring-pin 
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geometry were varied,  and strobe lighting was used to observe the motion of the various elements. 
Satisfactory smooth,  bounce-free operation on the bench was achieved at pin frequencies up to 200 Hz. 
A life test was discontinued after about seventy million cycles (270 hours at 70 Hz) when no problems 
were encountered except for slight wear of the pins and cam lobes. 

Figure 5 shows typical records of static pin displacement plotted against camshaft angle (measured 
from the encoder index pulse; see below).    There were slight inadvertent variations in cam radius and pin 
length,  amounting to ± 0. 005 cm; these variations were sometimes detectable in the data as variations 
in size and strength of the turbulent spots.    The figure also shows pin position at maximum displacement 
relative to the estimated (not measured) laminar boundary-layer profile at the pin station. 

Twenty four hot-wire probes were mounted in a rake configuration transverse to the flow and 
parallel to the plate surface.    The rake was suspended from a full-span bridge,   as shown in the photo- 
graph in Figure 6.    All electrical wiring except for connections at the probes was contained within the 
rake,   struts and bridge.    The probes had no common electrical connection. 

The 24 hot-wire probes were located symmetrically about the plate center and were spaced 0. 762 cm 
(0. 3 in) apart.    The span of the rake was therefore 17. 5 cm (6. 9 in).    The hot-wire sensors were parallel 
to the plate surface and hence responded mainly to the streamwise component of velocity.    The sensors 
were 2. 5 |j.m in diameter and about  0.15 cm in length.    They were made of platinum-plated tungsten wire 
and were operated at a constant temperature of 250° C. 

Intermittency y,  interpreted as the probability of observing turbulent flow,  was the primary 
measured variable in the present research.    Turbulent flow was distinguished from laminar flow in terms 
of energy content at high frequencies.    Each hot-wire circuit included an intermittency meter consisting 
of a single-pole bandpass filter,   a rectifier,  a level detector,   and a retrigger able mono stable multi- 
vibrator,   or one-shot.    After some preliminary measurements,  the cut-off frequencies of the band-pass 
filter were set at  2. 7 kHz and  7. 0 kHz and were left fixed throughout the course of the experiments.    The 
threshold levels on individual channels varied slightly with differences in the particular wires and circuit 
components.    The pulse lengths of the one-shots were set to 1 ms;  no attempt was made to correct the 
data for the associated time lag at the end of a turbulent region. 

Adjustment of the intermittency meters was essentially a subjective process.    All twenty four 
circuits were tuned in a turbulent boundary layer flow generated by taping a tripping device onto the plate 
surface at x M 23 cm.    The trip extended from wall to wall.    The rake was placed well downstream at a 
suitable distance from the plate surface.   After considerable adjustment of probe height and circuit 
parameters,  the average intermittency factor seen by the 24 wires at x = 118 cm,  y = 2. 02 cm, 
U = 10 m/s  was 0. 50.    Extreme individual readings were  0.48 and 0. 53. 

Figure 7 shows typical analog and digital signals in a typical synthetic flow for two hot wires which 
are spaced a half period apart in the spanwise direction. 

During the main experiments,  the 24 bits of intermittency information were read at regular intervals 
and written on magnetic tape.    A 200-line encoder on the camshaft controlled the data-transfer rate,   and 
an index pulse from the same encoder guaranteed synchronization. 

in   DATA PROCESSING AND PRESENTATION 

For the synthetic flows,   a systematic method was wanted for setting the hot-wire rake at a suitable 
distance from the plate surface.    During some preliminary runs with the 12.2-cm cam,  it became apparent 
that a disturbance frequency of 25 Hz (N = 800;  the frequency is 20 000/N)produced a very regular, 
coherent flow over the full length of the plate (see Figure 10).    Some experimenting showed that a good 
rake position for this flow was one where the overall intermittency (averaged over all 24 wires) was about 
0. 4.    This value was therefore adopted as a standard to be set at each station for the particular cam 
speed N = 800 for each cam,   and the probe position was left unchanged for all other runs with the same 
cam.    Because of variations in spot size and density with frequency,   and also changes in apparent origin 
for spot growth,   one consequence of the method just described was that the global intermittency changed 
significantly but systematically with x for fixed N  (for  N f 800),   and also changed with N for fixed x. 

A filtering operation was applied to the intermittency data before ensemble averages at constant 
phase were computed.    There were two reasons.    One was to sharpen the classification of the flow into 
laminar and turbulent regimes.    The other was to provide a means for communication between adjacent 
wires,  which sometimes had slightly different responses in the same flow. 

Figure 8 shows several examples of unfiltered and filtered intermittency data.    After some experi- 
menting,  the filtering method chosen was to center a rectangular window,   3 wires wide and 5 samples 
long,   over each bit of the pattern.    If the sum of the 15 bits was 8 or more,  the center bit was replaced 
by a one;  if the sum of the 15 bits was  7  or less,  the center bit was replaced by a zero.    The data from 
wires   1   and 24,   at the ends of the rake,  retained their original values.    Because the same 3x5 filter 
window was used for all of the data processing, the effect of filtering was uniform for different probe 
stations but not for different cam speeds. 

For each run,  the filtered data were ensemble averaged over 4000 cycles of the disturbance pattern 
as a 24 x 200  array,   covering one camshaft revolution.    In principle,  the two cycles of a revolution should 
be identical and could be combined.    In practice, however,   slight variations in maximum pin displacement 
were sometimes detectable as variations in peak intermittency within a turbulent region.    For this reason, 
the fundamental period of the experiments was usually taken as one revolution rather than one cycle. 

Two characteristic values for overall intermittency were eventually calculated.    One is the global 



234 

mean intermittency; i.e.,  the value obtained by averaging over one revolution and over the number of 
wires corresponding to one spanwise period of the pin disturbance.    This value is usually a little different 
from the global mean value chosen during the experiment to set the probe height (the target value was a 
global mean of 0.40 for  N = 800).    The reason is that the probe was set with the aid of a quick-look 
program which did not filter the intermittency data.    The second characteristic overall intermittency was 
the value midway between the largest and smallest values occurring in the filtered 24 x 200 array.    This 
value,   called the median value,  identifies the contour which is shaded to indicate regions of turbulence in 
Figures 9-11 below.    The median was preferable to the mean for this purpose because it did not decrease 
toward zero in flows with low inherent intermittency. 

During the study of synthetic boundary layers,  the two main parameters,  pin spacing and cam speed, 
were varied over a range which it was hoped would include one or more synthetic flows giving good cause 
for eventual closer study.    This hope was realized in full.    Figures 9,   10,   and 11 are three typical samples 
from the results of the present research.    In each of these figures the ensemble-averaged intermittency 
<y> is presented as a function of the three independent variables x, z,  and t   (streamwise distance, 
spanwise distance, and time,   or more properly phase).    The main coordinates in each figure define the 
(x, t) plane.    The origin in time is the index pulse.    At each x corresponding to one of the six probe 
stations,   a centered strip of data shows contours of constant ensemble-averaged intermittency in coordi- 
nates   (z, t) ; i. e.,  in coordinates representing a plan view of activity in a narrow strip symmetrical about 
the plate centerline.    These are filtered data,   so that the two end wires are not used directly.    The effec- 
tive width of the rake is 16, 0 cm (6. 3 in).    The contour interval in <y> is 0.1.    The pattern in each strip 
is periodic with period Ut = 2UT,   where 2T is the time required for one camshaft revolution.    The figures 
therefore depict the downstream evolution of an average disturbance pattern.    To assist in visualization, 
the region inside the median contour is shaded for the particular pattern which was generated approximately 
at t = 0  at the pin station.    The solid horizontal lines and the small circles at the pin station indicate the 
time during which the flow is disturbed and the moment when the pins are at top dead center.    Note that 
the coordinates x, z, and Ut  are all in cm and have the same scales,   so that the intermittency data show 
the various flow patterns without distortion except for the small difference between celerity  c  and 
reference velocity  U,   or more precisely free-stream velocity u„, =  1.013 TJ. 

IV   RESULTS,   DISCUSSION,   AND CONCLUSIONS 

The results of the present research,  taken as a whole,   establish the important conclusion that the 
downstream large-eddy structure always develops directly from the original disturbance pattern,  with an 
explicit correspondence between spots and large eddies.    In this sense,   at least,  the turbulent spot can 
certainly serve as a prototype large eddy.    The data also confirm a related finding by Zilberman et al [6]. 
There is an enormous reduction in the growth rate of each spot,  in both the spanwise and streamwise 
directions,   as it moves downstream in a crowd of neighboring spots.    The growth rate normal to the surface, 
however,  is almost unaffected.    The data do not support the conclusion by Elder [14] that spots grow 
independently of each other and can be treated by superposition.    Elder studied only the case of two spots 
side by side,   and then only at an x-Reynolds number of about  0. 4 x 10  .    The present data deal with large 
arrays of spots and with the range of x-Reynolds numbers from 0,4x 10° to  1.3 x 10^. 

Another important result,     apparently new,   concerns an interaction phenomenon which we propose 
to call eddy transposition.    This phenomenon is depicted in Figure 9.    It involves the appearance and 
rapid growth of regions of new turbulence to the rear of the original spots and in the gaps between them. 
The original spots then decay and disappear.    In the middle of the transposition process the number of 
large eddies is twice the normal value,   and these eddies form a honeycomb pattern of hexagons with empty 
centers.    When the transposition process is complete,  the original hexagonal pattern is restored with a 
substantial phase shift. 

It seems likely that eddy transposition in the synthetic boundary layer is connected with the appear- 
ance of wave packets and new breakdowns to turbulence at the wings of a single spot,   as observed by 
Wygnanski,  Haritonidis,   and Kaplan [15],    At least the early stages of the transposition process seem to 
involve configurations with substantial regions of laminar flow.    If so,  transposition should properly be 
classified as part of the transition process.    There is no reason at present to suppose that the trans- 
position phenomenon cannot occur more than once in a given flow. 

An important question is raised by the disappearance of the original eddies in the late stages of 
transposition.    One conjecture can be based on the position taken by Cantwell et al.   [5] regarding the 
process which supplies energy to a turbulent spot.    In their view,   freestream fluid overtakes the spot and 
is entrained and slowed by friction on the wall at the rear of the spot,  where the surface friction is large 
(the large friction may be thought of as either a cause or an effect of the deceleration).    It may be that 
during transposition the rear eddies shield the front ones and reduce their energy supply to such a level 
that they are obliged to decay and disappear.    This conjecture,  if it is correct,  implies that a configura- 
tion with large eddies following in line,   one behind the other,  might be quite unstable.    Hence a rectan- 
gular pattern would be a poor choice for a synthetic flow,  whereas a hexagonal pattern would be a good 
one.    It should be admitted that the reason for choosing a hexagonal pattern for the present experiments, 
following Coles and Barker [11,  was aesthetic rather than scientific.    In any event,   an experimental test 
of the conjecture in these terms is clearly feasible. 

Figure 10 displays a synthetic boundary-layer flow in which the original disturbance pattern preserves 
its identity with little loss of coherence over the full length of the plate.    As the spots are packed closer 
together in space and time, the resulting pattern tends to lose its coherence more or less rapidly,   as 
shown by one example in Figure 11. 

In any flow configuration where the large eddies remain reasonably intact as they move downstream, 
their celerity can be easily measured as the slope  Udx/dUt in x-t  diagrams like Figures 9-11.    Such a 
measurement,   corrected for the small difference between U = 1000 cm/s and u^ = 1013 cm/s,   and with 
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emphasis on the data at the more downstream stations,   gives a constant celerity  c = 0, 88 (±0.02)u  . 
The disperson in this value is a measure of experimental scatter rather than of any systematic 
dependence of celerity on either of the two scales of the hexagonal eddy pattern over a very large range. 
The phenomenon of eddy transposition,  in particular,   affects the position but not the celerity of the large 
eddies. 

An attempt has been made to collapse the results for different cams,   different cam speeds,   and 
different stations into a map or diagram showing the kinds of interactions and evolutions which can occur 
in the synthetic boundary layer.    On the reasonable assumption that the flow is not much affected by 
viscosity,  variables which suggest themselves for this purpose are the spanwise and streamwise periods 
normalized by the local layer thickness.    Because the patterns vary from open and highly regular (Figure 
10) to closed and nearly incoherent (Figure 11),  it is not a simple matter to define a layer thickness 
consistently.    The nearest available variable is the rake height,  which was adjusted at each of the six 
stations to obtain a global unfiltered intermittency  <y> close to 0.40 for the particular cam speed 
N = 800,  and was left unchanged for other cam speeds.    At each rake station,   an experimental value was 
available for the derivative  d<y >/dy,  as a byproduct of the adjustment process just described.    For each 
run,  therefore,  the rake height  A  could be corrected to find a height corresponding to  <y> = 0.40 for 
any other cam speed.    The correction to  A was appreciable only for the highest cam speeds and then 
only for the first one or two rake stations.    On the basis of intermittency measurements by Klebanoff [161 
in a tripped boundary layer,  it is reasonable for synthetic flows with cam speeds which are not too low 
to make the tentative association A = 0. 8 6,  where  A  is the probe height at which <y > = 0.40  and 6 is 
the boundary-layer thickness according to some conventional definition. 

The corrected data are displayed in Figure 12; this figure is the main product of the present 
research.    The coordinates are proportional to the two basic scales,  which are  UT in the streamwise 
direction and  Q in the spanwise direction.    Each of the 39 flows studied experimentally is represented 
by a straight line,  with the local operating point moving downward and to the left as the pattern proceeds 
downstream and A increases.    Data for the three cams are denoted by three different symbols.    The 
number attached to each flow trajectory is the value of the experimental parameter  N, which by coinci- 
dence is very nearly the distance in mm travelled by the free stream during one camshaft revolution 
(two cycles of the disturbance pattern). 

The solid symbols and the shaded area in the lower left part of Figure 12 define a region where there 
is substantial loss of coherence.    It was first necessary to define a quantitative measure for dispersion 
in the intermittency maps in Figures 9-11 (and 36 similar figures).   After some experimenting, the 
measure adopted was that a symbol in Figure 12 should be solid if the maximum value of the derivative 
| d<y>/d(z/Q) |   in the corresponding map was less than unity.    Roughly speaking,   a larger value (near 
2. 5)  already guarantees that full modulation between the limits  0  and  1   can no longer be expected for 
the surface <y>(z, t). 

Another shaded area in Figure 12 defines the region where transposition is observed to occur.    This 
region was defined in part by a subjective classification of the intermittency maps.    A more objective 
criterion, met by the flows represented by solid italic symbols,  was that the number of distinct turbulent 
islands or eddies should be locally larger than the number originally generated upstream.    The trans- 
position region is shown extending indefinitely to the right,  where the disturbance frequencies become 
very low.    However,  it is likely that the presence of laminar flow and the existence of a viscous length 
scale are decisive in this region,   and this part of the figure should therefore not be taken very seriously. 
Note that near the center of the figure several flows pass through the transposition region and emerge 
as displaced but still coherent patterns,  as already illustrated by the example in Figure 9. 

The original synthetic flow studied by Coles and Barker   [1] can be placed in Figure 12 once an 
estimate is made for the boundary-layer thickness.    The flow apparently falls in the late transposition 
region,   as indicated by the star at the point  £/A   = 3. 8,   UT/A   = 24.    The present indication of transposition 
in this flow may account for the observation by Coles and Barker that the region of ensemble-averaged 
velocity defect passed the probe with its blunt end forward,   rather than its narrow end. 

It is now possible to reconsider the question of scales raised in the Introduction.    The correlation 
measurements by Kovasznay et al.   [9] revealed an average large eddy about 1.2 8 wide and 2. 5 5 long 
at the half-intermittency level.    Other investigators have used counting methods,  measuring the frequency 
of various events which are believed to be related to the large-scale motion.    For example,   Kovasznay 
et al.   [9] counted interface crossings and found a maximum frequency u^y/6  of about 1. 3 at the half- 
intermittency level.    This value was later confirmed by Chen and Blackwelder   [17],who used heat as a 
passive contaminant and counted temperature-interface crossings.    Various results obtained from the 
position of zero crossings in time correlations have been summarized, with new data at higher Reynolds 
numbers,  by Badri Narayanan and Marvin [18],    They recommend the value U^T/8   = 5 to 6. 

These experimental estimates of scale give values which are at variance with each other and are all 
appreciably smaller than the scales which characterize the coherent region in Figure 12.    We now propose 
a conceptual estimate based on a return to the idea,   discussed at some length in the Introduction, that the 
large eddy can be explicitly identified with the turbulent spot. 

In dye photographs of spots (see Figure 4 of Cantwell et al.   [5]),  the vortex position is usually quite 
well defined by a strong concentration of dye.    The included angle between the two legs of the vortex in a 
plan view is close to 40 degrees.    The same angle can be inferred from the angle of the dye concentrations 
in the regions of transverse contamination,   as well as from the aluminum photographs in the same paper. 
Consider therefore the hexagonal cross-hatched pattern shown in the sketch,  in which the diagonal lines 
represent vortex cores aligned in a regular way.    The geometry of the sketch implies tan 9/2 = £/CT.    For 
9 = 40 degrees  and c = 0. 88u^*  it follows that  £/ucoT  = 0. 32.    This condition is shown in Figure 12 by 
the dashed line.    For  u„ =  1013 cm/s and for  Q  = 12.2,   9.1,  and 6.1 cm,  the appropriate values for 
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T are 0.038,   0,028,   and 0.019 seconds. 
The corresponding flows show loss of 
coherence in Figure 12 at about £/A = 3. 2, 
UT/A = 10.    If A/6 = 0.8,  therefore,  the 
flow in the sketch should be marginally 
stable when 

5 

U   T 
2.5 8 

Both values are close to the scales 
reported by Zilberman et al.   [6]   and 
Haritonidis   et al.   [7] for a spot immersed 
in a natural (i. e.,  tripped) turbulent 
boundary layer. 

At this point,   a combination of scales 
can be specified for constructing a syn- 
thetic boundary layer suitable for work on 
the signature problem discussed in the 
Introduction.    To operate in a marginal 
state at a given station and a given speed, 
it is only necessary to know (or guess) the 
layer thickness.    The required cam spacing and cam speed then follow from the numerical estimates just 
derived.    Because the boundary of the loss-of-coherence region in the left center of Figure 12 has a 
negative slope,   slightly different combinations of cam spacing and cam speed might also serve,  within 
limits,   as long as an increase in one is compensated by a decrease in the other. 

What is missing from the measurements so far is any real information about the dispersion or loss 
of coherence which is observed to occur as the synthetic flows move downstream.    It is reasonable to 
suppose that this loss of coherence is associated with an insupportable geometrical distortion of the 
three-dimensional large-eddy structure.   As a synthetic flow develops in the coherent region,  the span- 
wise and streamwise scales do not change,  but the thickness increases almost linearly with time or 
distance.    Eventually,   a phenomenon like the vortex pairing or coalescence first observed in the plane 
mixing layer by Brown and Roshko [19] and Winant and Browand [20] must occur.    To fix the ideas, 
suppose that eddies in the boundary layer normally coalesce in pairs,   and coalesce rapidly enough so 
that the volume of turbulent fluid does not change     (that the volume of turbulent fluid is almost constant 
during pairing in the mixing layer has been established by computer analysis of high-speed shadowgraph 
movies taken by L.  Bernal in the Brown-Roshko apparatus at GALCIT; J.   Jimenez,  private communica- 
tion).    During the pairing process,  the spanwise and streamwise scales must then increase by a factor 
rJZ, while the thickness remains unchanged.    The main effect of the pairing process will therefore be to 
reduce the relative thickness of the large eddies,   and the situation should remain stable until the thick- 
ness has again grown by a factor Jz,    This argument implies that the most comfortable synthetic eddy 
for a given combination of spanwise and streamwise scales is one for which the thickness  6  is about 
20 percent less than the value at which loss of coherence becomes apparent in Figure 12.    This conclusion 
should be taken into account in any selection of scales for a synthetic boundary layer,  as should the likely 
proposition that coalescence might occur more naturally for vortex fours than for vortex pairs. 

The present data have not yet been examined in detail on the question of eddy coalescence.    Whatever 
the results may be,  it is interesting to speculate about the properties of a hypothetical synthetic flow so 
perfectly constructed that loss of coherence is itself a deterministic process.    What should happen,   once 
the flow reaches the boundary of the shaded region in Figure 12,  might facetiously be called planned 
coalescence.    The trajectory should reverse direction and then resume its normal evolution with new 
scales.    Since there is considerable design freedom in the method used for generating disturbances during 
the present research,   such an experiment is probably within reach. 
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L 
(a) (b) 

Figure 1.    Dye visualization in water channel,  from flow studies by Coles and 
Barker (Coles,   private communication). 

(a) turbulent spot; 
(b) synthetic turbulent boundary layer. 
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Figure 2.    Detail of front section of plate,   showing location of camshaft and 
windshield.    Major and minor axes of ellipse are 19 cm and 1.9 cm. 
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Figure 3.    Detail of disturbance-generating mechanism. 
Right: pin displaced into boundary layer. 

Left: pin retracted. 
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Figure 4.    Close-packed hexagonal disturbance pattern in (z, t) plane.    Periods 
Q  and  T in z and t  directions are defined as shown. 
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Figure 5.    Pin displacement against camshaft angle for 12.2-cm cam,    Open 
symbols: center pin.    Solid symbols: pin at z = 6, 1 cm.    At left,  maximum pin 
displacement is compared with estimated profile in Blasius boundary layer at 
pin station (6* is displacement thickness). 

Figure 6.    Photograph of model in tunnel,  looking downstream.    Note pitot-static 
probe in foreground,   screen in background,   and hot-wire rake supported from 
bridge structure attached to flow shields.    Plate length is 264 cm.    Plate width 
between shields is 97 cm. 
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•P . 

Figure 7,    Examples of hot-wire analog outputs and associated intermittency 
signals in synthetic turbulent boundary layer.    Flow is for 12, 2-cm cam, 
N = 1991,   x = 56,9 cm,   y = 0,63 cm.    Oscilloscope is triggered at index pulse. 
Upper traces: hot-wire 13 (z =0.38 cm).    Lower traces: hot-wire 21 (z = 
6.48 cm).    One camshaft revolution is shown. 
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Figure 8.    Typical unfiltered and filtered intermittency data for  U = 10 m/s, 
x = 87.3 cm. 

(a) spot; y = 1.02 cm,   N = 800  (Run 538); 
(b) synthetic boundary layer; y = 1,36 em,   12. 2-cm earn,  N = 800  (Run 117); 
(c) tripped boundary layer; y = 1, 70 cm  (Run 225), 
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Figure 9.    Synthetic turbulent boundary layer,   12. 2-cm cam,   N = 1659 ( T = 0. 083 s). 
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Figure 10.    Synthetic turbulent boundary layer,   12. 2-cm cam,  N = 800 ( T = 0. 040 s). 
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Figure 11.    Synthetic turbulent boundary layer,   12. 2-cm cam,  N = 386 ( T = 0. 019 s). 
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Figure 12,    Coherence diagram for synthetic turbulent boundary layer.    Open 
symbols: coherent pattern.    Solid italic symbols: transposition.    Solid symbols: 
disintegration or loss of coherence.    Squares: 12. 2-cm cam.    Circles: 9. 1-cm 
cam.    Triangles: 6. 1-cm cam.    Dashed line: C/uro

T = 0.32.    Star: flow studied 
by Coles and Barker [1]. 
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COHERENT STRUCTURES IN TURBULENT BOUNDARY LAYERS 

by 
R. F. Blackwelder 

Department of Aerospace Engineering 
University of Southern California 

Los Angeles, California 90007 
U.S.A. 

SUMMARY 

The dynamics of turbulent boundary layers are controlled by two different eddy struc- 
tures.  In the intermittent region, the large scale outer structure dominates the flow 
field and controls the entrainment of nonturbulent fluid.  Near the wall, counter- 
rotating streamwise vortices, with resulting elongated streaks of low speed fluid lying 
between them, are the predominate eddies.  The interaction between these two different 
eddy structures seems to be the primary means by which turbulent energy is produced.  The 
main features of these characteristic eddies are reviewed and some remaining problems are 
out 1 i ned . 

NOMENCLATURE 

Re 

u , V , w 

U 
00 

UT 

x, Y, z 

6 

X , X , 

x 

( ) + 

probability density of distance between streaks 

Reynolds number based on free stream velocity and momentum thickness 

velocity components in the streamwise normal and lateral directions 

free stream velocity 

friction velocity 

coordinates in the streamwise, normal and lateral directions 

boundary layer thickness 

wavelengths in the streamwise and lateral directions 

kinematic viscosity 

momentum thickness 

streamwise component of vorticity 

non-dimensional length normalized with respect to sublayer scale v/uT 

1 NTRODUCTION 

A coherent eddy structure can be defined as a parcel of vortical fluid which occu- 
pies a confined spatial region and evolves in time such that a distinct phase relationship 
is maintained between the flow variables associated with the eddy's constituent components. 
Most vortices thus qualify as coherent eddies.  One of the most frequently referenced 
eddy structures are the transverse vortices of the Karman vortex sheet behind a circular 
cylinder.  The amplitude of the eddy structure may vary with time; for example the Karman 
vortices decay as they evolve downstream.  On the other hand, if the eddies are the result 
of an instability, their strength may increase 'when followed downstream; e.g. Gortler 
vortices in a boundary layer on a concave wall.  More importantly though, the phase re- 
lationship between the vorticity, velocity, etc. remains essentially constant independent 
of the amplitude.  Indeed, the spatial phase relationship is the most recognizable charac- 
teristics of all eddies. 

Coherent eddy structures,are most readily identified in laminar flow because the 
eddies are usually periodic in space and/or time so that a regular pattern is observed 
throughout the entire field.  The earlier definition is equally valid for defining coherent 
structures embedded in turbulent flow fields; however in this environment, they appear 
randomly in space and time. • One of the most striking examples of this is the large eddy 
structure which dominates the free shear layer as shown by Brown and Roshko (1971) and 
Winant and Browand •(197'*).  Since the eddies in turbulent flows are surrounded by back- 
ground random fluctuations, they are much more difficult to identify, detect and study. 

2.  LARGE SCALE OUTER STRUCTURE 
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Figure 1.  Sketch of the cross section of the large scale outer 
structure and the resulting flow field.  The entrainment 
occurs on the back sides and/or deep in the valley between 
two structures.  The turbulent region is denoted by the 
shaded area. 

late 1960's, Kaplan and Laufer (1969) and Kovasznay et al. (1970) determined that these 
eddies had a velocity defect relative to their environment and contained a large scale 

vortical motion. 

More detailed investigations, such as those of Antonia (1972), Falco (1977) and others, 
have studied the distribution of the fluctuation quantities within the large outer struc- 
tures.  Chen (1975) and Thomas (1977) used multiple probes to study the spatial extent of 
the coherent eddies.  A synthesis of the existing data on the large scale outer structure 
clearly shows that the most active part of these eddies are the back sides, i.e., the  _ 
upstream interface.  Most of the entrainment occurs through this interface and/or deep in 
the valley between the eddies.  The velocity gradients are sharper and have a greater 
magnitude across the upstream interface than those across the leading edge of the eddy. 
The small amount of turbulent production which occurs in the outer region is also concen- 
trated near the upstream interface. 

3.  COHERENT STRUCTURE IN THE WALL REGION 

Turbulent boundary layers also have another set of eddies near the wall which scale 
with uT and v.  The most readily identifiable eddy structures in this region are elongated 
streamwise streaks of low speed fluid.  Hama (see Corrsin 1957) observed them by injecting 
dye at the wall; however, the first detailed study was by Kline et al. (1967) using 
hydrogen bubbles.  They found that the bubbles coagulated into streaks which appeared 
randomly in space and time and moved more slowly than the surrounding fluid.  Kim et al. 
(1971) found that the width of the streaks decreased with increasing distance from the w all 
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Figure 2.  The probability density of the streak spacing 
in the wa11 reg i on . 
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and was approximated 1.0-30v/uT.  The probability density of the distance between the 
streaks was measured by Lee et al. {197^t) and Oldaker and Tiedemann (1977).  Their results 
are shown in Figure 2.  The density is skewed and can be approximated by a Rayleigh prob- 
ability density function.  The average spanwise spacing is typically Xz   =   100, however, 
the most probable spacing is significantly less.  Short time correlations in the spanwise 
direction by Gupta et al. (1971) yielded similar results.  The length of the streaks seen 
in the visualization studies are often greater than 1000v/uT.  Space-time correlations of 
velocity signals obtained in the wall region by Gupta et al. (1971), Kreplin and Eckelmann 
(1979) and others yield similar length scales.  The streaks meander slightly as they move 
downstream which degrades the correlations.  Consequently the measured streamwise length 
scale is less than that observed visually. 

Several authors have conjectured that the low speed streaks are the result of counter- 
rotating vortices in the wall region.  No direct vorticity measurements of these eddies 
are presently available due to their small scale and the lack of a suitable sensor. 
However, several different investigators have measured the velocity components associated 
with these structures.  Bakewell and Lumley (1967) used measurements of the streamwise 
velocity component in the wall region of a pipe flow  together with an orthonormal 
decomposition of space-time correlations and deduced an eddy structure consistent with the 
iox vortices.  Blackwelder and Eckelmann (1979) measured the streamwise, u, and spanwise 
w, velocity components and used conditional averaging to study the vortex structures. 
Their detection probe, located at y+ = 15 and Az + = 0 in Figure 3a, essentially triggered 
on the abrupt ending the low speed streaks and their sampling probe measured u and w at 
two Az+ locations as shown.  Two typical conditionally averaged <w(y+, Az+)> profiles are 
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Figure 3.  Conditionally averaged spanwise velocity profiles 
from Blackwelder and Eckelmann (1979).  a) the 
detection probe was located at Az+ = 0 and the 
sampling sensors were at Az+ = 17 and 3**.  b) Span- 
wise velocity profiles obtained at 5v/uT' before 
the end of the low speed streaks were detected, 
c) spanwise gradient profiles obtained from 3b. 

found in Figure 3b.  These and other <w(y+)> profiles plotted by Blackwelder (1978) bear 
a striking resemblance to those attained by Klebanoff, et al. (1962), suggesting a 
similarity between the eddies in transitioning and turbulent boundary layers.  The 
gradient of the spanwise velocity obtained from the curves in 3b is plotted in 3c.  Coles' 
(1978) heuristic model for the vortices indicates |3v/3z|<<|3-w/3y|, so the gradients in 
Figure 3c are essentially equivalent to wx vorticity.  The vortices in Figure 3 extend up 
to y+ =» 50.  Lee et al. (.197*0 indicates that the spanwise spacing between them is 
X+z/2 ^50.  Even though the vorticity in Figure 3 is primarily positive as expected, a 
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significant region near the wall is negative, illustrating the distinction between 
vorticity and vortices as discussed by Saffman and Baker (1979).  Note that the streamwise 
vorticity is quite weak, i.e. an order of magnitude smaller than the spanwise vorticity 
at the wall, u^T/v."  Nevertheless, since the vortices exist in a region of strong mean 
velocity gradient, they are very effective in moving high and low speed fluid toward and 
away from the wall respectively.  As a result, they are instrumental in the subsequent 
dynam i cs. 

The spatial relationship between the streaks and the streamwise vortices is sketched 
in Figure h. The coordinate system in the figure is chosen to convect with the low speed 
streak and the streamwise scale is greatly compressed with respect to the other two axes. 

Figure k.      Model of the counter-rotating streamwise vortices which 
occur randomly in space and time.  They remove low speed 
fluid from the wall into elongated low speed streaks. 
The conditionally averaged velocity profiles are from 
Blackweider and Kaplan (1976). 

As the vortices continue to add low momentum fluid to the streak, it grows in time.  The 
vortices, represented by vortex lines, also bring higher momentum fluid toward the wall 
at z+ = ±50 resulting in a velocity profile there with greater stability. 

k.      THE BURSTING PHENOMENON 

The term "bursting" has been used by various authors to describe events which have 
small time scales and considerable mixing of fluid.  It has been used to denote different 
aspects of the wall eddies and even the large scale outer structure.  It is suggested that 
"bursting" is not a single event, but is rather a characteristic interaction between the 
eddy structures in the outer and wall regions.  The relationship between these eddy struc- 
tures was noted by Laufer and Badri Narayanan (1971) who observed that the frequency of 
occurrence of events in the wall region was approximately the same as the passage frequency 
of the large scale outer structure. 
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To further explore the relationship between the bursting phenomenon and the large 
scale outer structure, Chen and Blackweider (1978) slightly heated the entire wall beneath 
the turbulent boundary layer.  They found a distinct temperature front existed throughout 



24-5 

the entire boundary layer from the wall to the outermost region.  At each position above 
the wall, the temperature on the upstream side of the front was characteristically warmer 
than the average and that on the downstream side was cooler.  In the outer region, the 
fronts were coincident with the backs of the large scale structures and near the wall it 
was related to the strong acceleration.  A lower streamwise velocity existed downstream 
of the front and a higher velocity upstream, suggesting that it is the leading edge of 
the sweep found in the wall region.  Nychas et al. (1973) observed a similar shear layer 
associated with large vortical structures in the outer region and also suggested it was 
related to the ejections of low speed fluid in the wall region. 

The inflexional velocity profile in the wall region suggests that an instability mech- 
anism may be related to the subsequent events.  Using the results from a quasi-steady 
two-dimensional shear layer stability analysis, Blackwelder (1978) observed that the 
instability would manifest itself in an oscillation having a streamwise wavelength of 
^x ** 150.  This compares favorably with the observed oscillations from several investigators 
listed in Tab 1e 1. + Re xx 

2550 200 Blackwelder and Kaplan 

Emmerling 

Kim, et a 1 . 

1800 

660 

200 

175 

Oldaker and Tiederman 

Blackwelder and Eckelmann 

500 

400 

1 20 

160 

TABLE 1 

As discussed earlier, the experimental evidence reveals that shortly after the onset of 
the observed oscillations, parcels of fluid are violently ejected from the wall region. 
Corino and Brodkey (1969) found that the ejections were narrow in the spanwise extent, 
i.e. Az <20.  Other.evidence also implies that the spanwise extent of the suggested in- 
stability is small compared to its wavelength, as found by Klebanoff et al. (1962) in the 
"spike" formation in a transitioning boundary layer.  If the observed oscillations do 
indeed result from an instability, one could further speculate that the ejection of low 
speed fluid into the logarithmic region is a result of the nonlinear and/or three 
dimensional aspects of that mechanism. 

The visualization and probe data find the ejections are quite violent and hence 
should have a strong pressure field.  Emmerling (1973) found strong wave-like pressure 
patterns impressed upon the wall and convected downstream at velocities typical of those 
in the buffer and logarithmic regions.  These pressure disturbances had a wavelength of 
A.x = 200 and were nominally Az+<50 in spanwise extent suggesting that they were related 
to the ejection process. 

Although a measureable Reynolds stress exists throughout t 
Klebanoff (1954) has shown that most all of the turbulent energ 
y+<50. Several aspects of the eddies contribute to this. The 
obviously transport momentum by moving lower momentum fluid awa 
speed fluid toward the wall. However, Willmarth and Lu (1972), 
and others have found that the strong ejection of low speed flu 
the following sweep of high momentum fluid toward the wall prov 
to the uv signal. 
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The low speed fluid ejected from the wall region causes considerable mixing and pro- 
duction of turbulent energy.  However it is not clear what happens to this fluid after it 
leaves the buffer layer.  Kovasznay (1970) and others have suggested that this fluid may 
pass through the logarithmic layer and grow to ultimately form a new large scale outer 
structure.  Fa 1co (1977) observed eddies with a scale of !00v/uT moving outward along the 
backs of the large outer structure suggesting that they may have originated as an  ejection 

Obtained from their accompanying 8mm movie film. 
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Support for this idea is also obtained from the triple correlations of temperature measured 
by Fulächier et al. (197*0 on a heated wall.  Although further study of this problem is 
imperative, it may require new data processing techniques, possibly combining Eulerian and 
Lagrang i an data. 

The frequency of occurrence of the bursting phenomenon is difficult to measure and 
the various techniques used to study it have found a large variation in its value.  Black 
(1966) originally suggested that it should scale with the wall parameters.  Using a crude 
detection scheme; Narahari Rao et al. (1971), found that when scaled with the outer vari- 
ables, the frequency was independent of Reynolds number.  One of their critical data 
points, obtained from Willmarth and Woold r i dge (1962), was later shown to be incorrect by 
Lu and Willmarth (1973).  Other evidence suggests that the frequency depends upon either 
the Reynolds number or, in the Eulerian measurements, possibly upon the spatial scale of 
the ' detection probe. 

Most all of the exper imenta V- d.a ta have been accumulated at low Reynolds number.  It 
remains to be seen if the dynamics change as the ratio of scales between the outer and 
inner structure, i.e. 6uT/v, increases.  Zakkay et al. (1978) have explored the boundary 
layer structure at R9 = 105 and find that the dynamical layer associated with the backs 
of the outer structure is similar to those studied at lower Reynolds numbers; however 
because of the small scales, they were not able to make measurements in the wall region. 
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SUMMARY 

Flow visualisation experiments have been performed using an argon-ion laser to 
illuminate longitudinal and transverse sections of the smoke-filled boundary layer in 
zero pressure gradient. Most of the experiments have been confined to the range 
600 < Ree < 10,000.. 

The main finding of the investigation is that the boundary layer consists almost 
exclusively of vortex loops or hairpins, some of which may extend through the complete 
boundary layer thickness and all of which are inclined at a more or less constant charac- 
teristic angle of approximately 45° to the wall. 

Since the cross-stream dimensions of the hairpins appear to scale roughly with the 
wall variables UT and v,  while their length is limited only by the boundary layer 
thickness, there are very large scale effects on the turbulence structure.  At high 
Reynolds numbers  (Refl ~ 10,000)  there is little evidence of large-scale coherent 
motions, other than a slow overturning of random agglomerations of the hairpins just 
mentioned. 

1.  INTRODUCTION 

Considering the effort that has gone into the use of hot wires for exploring turbulent 
boundary layer structure, it is somewhat disappointing that no final picture has emerged 
which describes in a physically satisfying way the basic structure of the layer and the way 
in which it is affected by Reynolds number. 

Certainly the simple physical concepts and dimensional reasoning that were originally 
responsible for much of our practically useful knowledge of the boundary layer (law of the 
wall, velocity defect law etc.) did little to suggest that the boundary layer should con- 
sist of more than an assemblage of purely random motions, with scales that are simply 
related to distance from the wall or position in the boundary layer.  Later work, by 
Townsend and others, has done much to refine these ideas and put them on a sounder basis, 
but the concept of at least the smaller scales of turbulence as purely random motions is 
retained. 

The generally accepted view of turbulent boundary layer structure may perhaps be 
described briefly as follows.  The boundary layer at reasonably high Reynolds numbers 
consists of two regions:  first, an inner region in which turbulence production and 
dissipation are both large and of similar magnitudes, so that this part of the flow can 
be considered in a state of approximate energy equilibrium;  second, an outer region 
where the turbulence is maintained by the relatively small excess of turbulence energy 
produced in the inner region, convected through the layer by large-scale motions, or 
large eddies.  These latter, which occur on scales comparable with the boundary layer 
thickness are responsible for the contortions of the outer interface of the turbulent flow 
and the phenomenon of intermittency.  Most of the turbulence energy is contained in motions 
that are small compared with the large eddies but still sufficiently large to be subs- 
tantially unaffected by the direct effects of viscosity.  There is a continuous flow of 
turbulence energy from larger to smaller scales, with the energy spectrum, possibly over 
only a very small part of its range, following Kolmogoroff's - % law.  It is against this 
background of general understanding that experimental work may be said to have proceeded. 

During recent years, Falco has identified certain small-scale motions (which he terms 
"typical eddies") with the Taylor microscale of turbulence, and has explored their proper- 
ties in detail using a combination of flow visualisation and hot-wire anemometry.  He has 
shown that these typical eddies represent concentrations of high shear stress and has 
further identified them with the "bursts" of high shear stress measured in the outer part 
of the layer by Antonia^. 

Over a rather longer period, the flow in the immediate wall region has been extensively 
explored by Kline and others (see, for example, the review article by Kline ) and successive 
events have been observed which are characterised as "bursts" and "sweeps", occurring 
alternately, and both contributing to the high levels of turbulent shear stress observed in 
the wall region.  Willmarth4 and Smith^ suggest that the "burst" represents the lifting of 
a vortex loop from the wall, although it is not altogether clear whether the loop arises 
from pre-existing streamwise concentrations of vorticity in the sublayer or from the warping 
of transverse concentrations of vorticity, as Willmarth* suggests. 

We have thus arrived at the situation where events in the wall region have been 
reasonably well documented and where concentrations of Reynolds shear stress in the outer 
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part of the layer have been identified with a particular type of vortex structure. 
What is required to fill in the outlines of the conventional picture is to establish the 
nature of the large-scale motions, the origin of Falco's typical eddies, and (hopefully) 
the mechanism connecting these with observed events in the wall region. 

To a large extent, it is believed that the results presented here provide an answer 
to these outstanding problems, but at the cost of substantially redrawing the original 
picture, so that the concept of random turbulent motions, at least over the range of 
Reynolds numbers considered here, is largely replaced by one which involves a much more 
ordered structure of stretched vortex loops or hairpins arrayed at a characteristic angle 
to the wall.  Of course a large measure of randomness is still present, but the turbulence 
in the layer can no longer be seen as the purely random motion of small parcels of fluid, 
and it now seems unnecessary to postulate the existence of large-scale eddies which 
convect the energetic small-scale motions from one part of the layer to another. 

We shall first discuss the experiments that have led to the present conclusions and 
then look briefly at some of the implications.  It will be recognised that the present 
picture has much in common with the earlier proposals of Theodorsen" and Black , which 
will be referred to later. 

Some of the earlier results have already been presented in References 8 and 9 and 
will not be described in detail here. 

2.  EXPERIMENTAL INVESTIGATION 

2.1 Apparatus and Techniques 

Experiments were performed in one or other of the tunnels shown in Figure 1, the 
adapted laboratory tunnel being used for values of  Re_  greater than 2,200. 

The boundary layer on the floor was filled with smoke injected either just upstream 
or just downstream of the trip.  In the low-speed smoke tunnel this consisted simply of 
a serrated strip normal to the wall, with serrations 10 mm high, while in the laboratory 
tunnel it took the form of two staggered rows of spheres 2.5 mm in diameter at a spacing 
of 6 mm.  In all cases transition occurred directly at the trip.  Smoke, in the form of 
condensed oil vapour,was supplied by a C.F. Taylor Ltd. smoke generator. 

The smoke-filled layer was illuminated by a plane of light formed by using a glass 
rod or bi-convex cylindrical lens to fan-out the beam from a 4W or 5W argon-ion laser 
(different lasers were used at different times). 

Photography was performed using a 16 mm Fastax camera with Ilford Mk V film, and the 
photographs presented here are mainly enlargements of single frames from the cine films. 

In the initial stages hot-wire measurements were made using two or three single wires 
in a staggered array or (for the first few experiments only) the combination of a crossed 
wire in the outer part of the layer and a single wire very close to the wall.  Hot-wire 
signals were displayed on a storage oscilloscope in the field of view of the camera and 
also recorded on magnetic tape for subsequent digitisation and storage on floppy discs. 
To synchronise the film and the stored hot-wire signals a timing signal was used.  This 
operated a counter in the field of view of the camera and was stored along with the hot- 
wire signals so that the number of waves could be counted during digitisation and checked 
against counter readings.  Further information is given in the paper by BandyopadhyayS. 

2.2 Initial Experiments 

Preliminary experiments were made with a single hot wire very close to the surface 
and a crossed wire vertically above it.  From the crossed-wire signals, vectors could be 
plotted representing disturbance velocities, and these could be superimposed upon tracings 
of the instantaneous boundary layer edge as defined by the smoke.  Thus, disturbance 
velocities associated with specific features could readily be seen.  Part of a particular 
record is shown to a small scale in Figure 2.  Perhaps the most obvious feature of this 
record is simply the occurrence of smoke-filled features and smoke-free fissures at a 
preferred angle of something like 45° to the surface.  Inspection of the film itself 
suggests a similar result. 

To check whether this angle was in fact significant, the hot wire next the wall was 
moved out to about 10 mm and the crossed wire was replaced by a second single wire 
staggered behind the first so that the line joining the two wires made an angle of 
approximately 40  to the surface. 

With this arrangement a film was made with simultaneous hot-wire records for an  Re_ 
of 2,200.  As related by Bandyopadhyay^, the record showed up numerous patches about 
2.55 long where the two hot-wire signals were remarkably similar, and the suggestion was 
made that these represented the passage of extended arrays of vortices being convected 
downstream with their axes inclined at about 40° to the wall. 

Various checks were applied to show that the similar patches were not simply due to 
the random coincidence of signals that covered much the same frequency range (see Head 
and Bandyopadhyay ). 
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Further evidence was then sought to support the hypothesis that the similar patches 
were due to arrays of hairpin vortices being convected past the hot wires.  First, there 
was the evidence from an earlier film made for the 1969 Boeing Symposium on Turbulence 
that vortex loops were a common feature of the turbulent boundary layer at low Reynolds 
numbers (see, for example, Figure 3), and then there was the evidence from current films 
at higher Reynolds numbers where the longitudinal light plane showed up numerous instances 
of vortex loops that had been skewed into the plane of illumination (see, for example, 
Figure 4). 

The tentative conclusion was reached at this stage that the turbulent boundary layer 
at all times consisted of extended vortex loops or hairpins;  and that, occasionally, these 
were sufficiently regular and closely aligned to produce the observed similar patches in 
the hot-wire records. 

Films taken at high Reynolds numbers (of the order of Re_ = 10,000) showed no 
evidence of large-scale coherent motions beyond a slow toppling or overturning, and large- 
scale structures appeared (in most cases) simply as random arrays of very much narrower 
45° features, as will be evident from Figure 5. 

On the other hand coherent large-scale motions did appear at sufficiently low Reynolds 
numbers, and these are perhaps best shown by a sequence in the Boeing Symposium film where 
a thick smoke filament in the free stream was positioned so as to first impinge upon the 
boundary layer at some distance upstream of the point of observation.  Thus, the frames 
reproduced in Figure 6 show the boundary layer after entrainment has proceeded for some 
appreciable time, and the details of the internal structure have become clearly visible. 
From this figure it seems quite plausible that, at this low Reynolds number  (Refl ~ 500), 
the large-scale motions we see in the film are simply the result of photographing longi- 
tudinal sections of one or more vortex loops. 

In fact we can account for the large differences in structure between high and low 
Reynolds number boundary layers if we simply assume that the vortex loops become pro- 
gressively more elongated as the Reynolds number increases, somewhat as shown in Figure 7. 

2.3  Experiments with Transverse Light Planes 

With the evidence from the use of longitudinal light planes strongly suggesting the 
existence of vortex loops and hairpins arrayed at a characteristic angle to the surface, 
it seemed possible that more decisive evidence might be obtained from the use of transverse 
light planes inclined to the wall at something like the characteristic angle.  After a 
delay of more than a year due to absence of a laser, experiments were resumed with this in 
mind, but it was in fact found that the most convincing evidence came from the use of light 
planes inclined at both 45° downstream (the characteristic angle) and 45° upstream. 
Figures 8 and 9 indicate the directions of the light planes and the views we might expect 
to see as inclined features are convected across them. 

With light plane inclined downstream we should expect to see rapidly changing views 
of extended vortex loops, while with it inclined upstream we should expect to see numerous 
examples of vortex pairs, apparently in continuous motion towards the wall. 

Further, if Figure 7 is anything like correct, we should expect to see the loops or 
hairpins becoming increasingly extended as the Reynolds number is increased. 

With some allowance made for general randomness and the presence of a variety of 
scales, and for some mutual interaction between vortex p-airs, this is in fact what the 
films actually showed. 

Experiments were performed with both upstream and downstream inclinations of the 
light planes at three Reynolds numbers  (Ree 

= 600, 1,700 and 9,400),  and selected frames, 
which may be taken as quite reasonably representative, are shown in Figure 10 with 

approximate scales of  100 zj-  indicated. 
T 

Comparing the views with downstream and upstream inclinations of the light plane, we 
note that they exhibit characteristic differences at all three Reynolds numbers.  With 
the 45° downstream inclination, the general appearance is that of continuous filaments 
with an overwhelming preponderance of extended loop-like structures.  By contrast, the 45° 
upstream light plane shows the typically knotted type of structure we should expect, with 
cross sections of the loop-like structures or hairpins appearing as vortex pairs.  In the 
outer part of the layer these may be isolated, but over a considerable distance from the 
surface they appear sufficiently close for some measure of interference or mutual induc- 
tion to be inevitable.  Both views show the presence of a variety of scales, with the 
upstream light plane also showing a variety of orientations of the vortex pairs where 
these can be distinguished. 

Comparing the results for different Reynolds numbers we see that there is a consistent 
reduction in the scales of the hairpins with increasing  Refl-  We also note that, at the 
two lower Reynolds numbers, the scales of the larger hairpins are also the dominant scales 
of the large-scale features, whereas at  Refi = 9,400  the hairpins (which are now very 
narrow) appear to have combined to form much larger structures, although in the very 
outermost part of the layer they again appear as individual entities.  It should be pointed 
out that the boundary layer on the wind tunnel floor at  Refl = 9,400 was noticeably 
thicker on the centreline than on either side, and this is reflected in most frames of the 
cine film. 



25-4 

A result which shows up very clearly in the film for  Re  = 1,700,  with the light 
plane inclined downstream, is the appearance of a smoke-filled "island" as the last trace 
of a particular feature as it passes the plane of illumination.  All features that extend 
beyond the edge of the boundary layer, as determined from the measured mean velocity 
profile, disappear in this way, as well as a large number of features that do not extend 
quite so far.  In no case have we observed the appearance of an island preceding the 
appearance of the remainder of the structure, and we must conclude that the tips of the 
hairpins are inclined forward into the flow.  This has important implications, which we 
shall return to later (in section 4.4). 

Velocity profiles and skin-friction coefficients were measured over the full range 
of Reynolds numbers but are not shown here. 

Figure 10, and (much more convincingly, we believe) the films from which these 
frames were taken, seemed to provide the decisive evidence we were seeking for the basic 
validity of the hairpin-vortex hypothesis. 

3.  COMPARISON WITH OBSERVATIONS MADE ELSEWHERE 

It is of interest to see how other authors' results fit in to the present picture. 

First, it appears that the lateral dimensions of the hairpins is in the region of 

100 Yj— i     which is just the sort of spacing that has been observed for the sublayer streaks 
whichTare commonly accepted as representing the presence of longitudinal vortex pairs very 
close to the wall.  (See, for example, BlackwelderlO). 

5 
Already several authors have suggested (see, for example, Smith ) that bursts occurr- 

ing in the wall region represent the lift-off of vortex loops from the wall, so the present 
results would seem in no way to contradict the extensive observations of Kline and others 
regarding the occurrence of bursts and sweeps in the immediate wall region. 

Further out in the layer as already remarked, Falco  has identified vortical struc- 
tures which he has termed "typical eddies".  These are precisely the features one would 
expect to observe with a longitudinal light plane intersecting vortex loops or hairpins 
close to the plane of symmetry.  Moreover, the present results would seem to provide an 
adequate explanation (which would otherwise be lacking) for the approximate scaling of 
these features with the wall variables v and U .  In fact, the actual dimensions of the 

"1 T 

typical eddies as determined by Falco  (100 - 200 —)  are quite similar to the cross- 

stream dimensions of the hairpins, and there is at least the suggestion in the present 
results of a similar increase in these dimensions as  Re_  is increased.  As mentioned 
earlier, Falco-'- has„identified his typical eddies with the bursts of high shear stress 
measured by Antonia which he (Antonia) suggests originate in the wall region, and this 
result also would seem to fit into the present picture. 

The observations of Chen and Blackwelder  where a vertical array of hot wires gave 
very nearly identical signals but with an increasing time shift with distance from the 
wall would seem to be in excellent accord with our suggestion of long narrow features 
originating close to the wall. 

12 
The results of Praturi and Brodkey  , which include sketches of both transverse 

vortex motions and vortex motions inclined to the wall, would seem to conform in all 
important respects to the present picture at a low Reynolds number. 

13 
Only one set of results, those of Brown and Thomas  , would seem seriously to con- 

flict with the present observations.  These authors showed that the highest correlations 
occurred along lines at 18° to the surface, whereas present results might suggest that the 
figure should be 45°.  This, however, is not necessarily the case, and a regular sequence 
of hairpins with their tips lying along a line at a smaller angle to the wall will define 
an interface across which there must be a very substantial velocity jump, and along which 
changes in hot-wire signals will be very highly correlated.  Such well defined interfaces 
are not a common feature of the present results but, where they do occur, it is very often 
at an angle which is similar to Brown and Thomas's value, in the vicinity of 20 .  Figure 
11 shows typical examples.  Thus there may be no real conflict with present results. 

In closing this section we must draw attention to the similarities between the present 
picture and the earlier proposals of Theodorsen^ and Black'.  The former clearly envisaged 
the key role played by horseshoe vortices in turbulence production and even predicted the 
45° angle at which they should occur, while the latter equally clearly envisaged that the 
lateral dimensions and streamwise spacings of the horseshoes should be determined by the 
wall variables  U  and v,  while their largest dimension should scale with the boundary 
layer thickness.  Although their results have scarcely influenced the course of the present 
investigation, there can be no doubt concerning the remarkable degree of physical insight 
these authors have shown. 
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4.  SOME IMPLICATIONS OF PRESENT RESULTS 

4.1 General Remarks 

Although in certain respects the present picture is radically different from the one 
that is generally accepted, it must nevertheless be compatible with hot-wire measurements 
that have been made in the past and with universal features of the layer that are well 
established (e.g.  law of the wall, velocity defect law etc.)  We have already seen that 
most of the more or less direct observations that have been made of boundary layer 
structure would seem to fit satisfactorily into the picture we propose, but that is very 
different from showing how this picture can account for all the observed features of the 
layer.  To do so would obviously be a major task and all we can do here is to make some 
rather disconnected observations that may help to reconcile the present results with 
established concepts. 

4.2 Inner Region 

At high Reynolds numbers, it would seem likely that, in the wall region at least, a 
variety of scales should be present and a variety of orientations of vortex pairs, and 
that there may be considerable mutual interaction between adjacent hairpins.  In these 
circumstances it would seem quite likely that, due to mutual entanglement and limited 
lifetimes, the majority of the hairpins should not survive into the outer region of the 
layer.  Thus, there would seem to be nothing to contradict the idea that the flow in the 
inner region should be in a state of substantial energy equilibrium, with turbulence 
production and dissipation both very high and with all quantities scaling with U and v. 

4.3 Hairpin Growth 

There would seem to be three possible (perhaps complementary) mechanisms by which a 
hairpin vortex may grow.  First, by simple stretching, with the hairpin axis coinciding, 
at least approximately, with the direction of maximum strain;  second, by each limb of 
the hairpin inducing in the other a velocity normal to the plane of the hairpin and away 
from the wall;  and third, by the "peeling-up" of a vortex pair from the viscous sublayer. 
The second would seem to be the most powerful mechanism, incidentally involving the third, 
while the first would seem to provide a means of maintaining the induced velocities in the 
face of dissipation. 

4.4 Limits of Hairpin Growth 

If we accept that hairpin growth is essentially due to induced velocities, then it is 
reasonable to ask why the maximum lengths of the hairpins should be set by the boundary 
layer edge and why they should not proceed substantially beyond it.  The answer we would 
tentatively propose is that the hairpin can grow, approximately straight, only so long as 
it remains in a pre-existing region of shear;  once it enters into a region of zero shear, 
the tip curls over and inhibits further growth.  Two cases illustrating the behaviour of 
hairpins in zero shear are shown in Figure 12.  (The second case has been taken from 
Reference 14).  The significance of the observation made in section 2.3 that "the tips of 
the hairpins are inclined forward into the flow" will now be clear;  growth is continuing 
only so long as the hairpin remains within a region of mean shear. 

4.5 Significance of 45  Angle to Wall 

In a parallel shear flow the principal axes, along which the rates of strain are a 
maximum, are inclined at 45  to the wall, and it follows that the rate of increase of 
vorticity in the cross-section of a vortex element will be greatest (for a given shear 
flow) if the element is inclined downstream at this angle.  But this by itself would not 
seem to explain why hairpins should set themselves at just this angle and grow out in 
this direction.  A single vortex element for example, like a line marked in the fluid 
with a passive contaminant, would be rotated towards the wall by the shear flow (as well 
as stretched) as it is swept downstream, even if originally set at 45°.  The presence of 
a vortex pair and the resulting induced velocities are evidently essential if a fixed 45° 
angle is to be maintained.  However, it is still not obvious why the hairpin (or vortex 
pair) should set itself at this angle.  The following may be a possible explanation. 

If we assume that the stretching of a hairpin vortex brings the legs closer together, 
then such stretching will increase the induced velocities and the hairpin will tend to be 
rotated away from the wall, counteracting the direct effect of the shear.  If we have a 
hairpin that initially makes an angle greater than 45° to the wall, dissipation will at 
some stage reduce the induced velocities and the hairpin will be rotated by the shear flow 
back towards the 45° angle.  At the same time, the rate of stretching will be increased, 
increasing the induced velocities and opposing the effect of dissipation so that the 
status quo will tend to be maintained. 

On the other hand, if the hairpin initially makes an angle that is less than 45  to 
the wall, dissipation, as it proceeds, will reduce the induced velocities and the conse- 
quent rotation towards the wall will result in a decreased rate of stretching and a further 
decrease in the induced velocities, so that the situation is unstable. 

On the basis of the foregoing, we might expect to see the majority of hairpins making 
an angle of 45° or more to the wall, but only a small minority at lesser angles. 
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While the present tentative explanation may not appear altogether satisfactory it is 
believed that it reflects the importance of dissipation and vortex stretching as opposing 
effects. 

4.6 Lifetime of Hairpins 

Since the lateral dimensions of hairpins appear to scale roughly with •—-,     we might 
x 

expect that v and UT  are the relevant variables defining, on average, the characteristics 
of the vortex pairs representing hairpin cross-sections.Thus we might expect the lifetime 

2 
of an average vortex pair to be measured by v/U  .  The induced velocities associated with 

the vortex pair will similarly be related to U ,  and the time for a hairpin to grow 

through the layer will be measured by — . 
T 

The ratio (time to grow across boundary layer)/(lifetime) we should then expect to be 
measured by 

X U  2 SU TT*   fcl S       T   _   T     U6_ (_f 
U   v       v      ~'v   2 
T 

At high Reynolds numbers, this quantity will become very large, and ultimately we 
might expect that a stage will be reached where hairpins will no longer survive to pene- 
trate the outermost regions of the layer.  Even taking into account the possible effects 
of vortex stretching in prolonging the active lifetime of the hairpins, it seems not 
unlikely that some change in structure should take place at Reynolds numbers above those 
covered in the present investigation. 

Two facts may be worth noting here.  First is the observation that, despite the slow 
overturning motion that large-scale structures appear to undergo at values of  Re   in 
the region of 10,000, they seem, nevertheless, always to be composed of very narrow 
features making an angle of approximately 45° to the wall.  This suggests that these 
narrow features (hairpins) may have a very limited lifetime and may be in process of 
being continually renewed;  but, of course, alternative explanations for these observa- 
tions may exist. 

The second fact to be noted is that, while the vorticities of opposite sign from the 
two legs of the hairpins may diffuse into each other and cancel, there is no similar 
mechanism by which the transverse vorticity in the hairpin tips can be destroyed.  Thus, 
at really high Reynolds numbers, it may be only the tips of the hairpins that survive 
and remain active in the outermost regions of the layer. 

4.7 Transfer of Momentum 

It will be obvious that the transfer of momentum by a hairpin vortex may take place 
in two ways, by the circulatory flow fields around each limb of the hairpin, and by the 
direct transport of low-momentum fluid as the hairpin grows out through the layer, 
impelled by the induced velocity that each limb of the hairpin imposes on the other.  In 
the outer regions of the layer at high Reynolds numbers, it would seem that the latter 
must be the dominant mechanism of momentum transport since transverse scales will be very 
small, the hairpins comparatively widely spaced, and the probable lifetimes of the hair- 
pins relatively short. 

5.  CONCLUSIONS 

Leaving on one side the more speculative aspects of the preceding discussion we may 
list the conclusions of the present investigation as follows. 

(i)  The turbulent boundary layer at Reynolds numbers up to  Re - 10,000  consists very 
largely, if not exclusively, of vortex loops, horseshoes or hairpins arrayed at a 
characteristic angle of approximately 45° to the wall. 

(ii) The cross-stream dimensions of these loops, horseshoes or hairpins scale (at least 
approximately) with the wall variables  U  and v,  while their length appears to be 
limited only by the thickness of the layer. 

(iii)  As a consequence of (ii) there is a very large scale effect on the structure of 
the layer. 

(a) At very low Reynolds numbers (Re„ < 500, say) no very clear distinction can be 
made between large and small-scale motions, and the large eddies appear to 
consist of individual vortex loops or relatively small numbers of such loops. 
The eddies appear quite rounded and exhibit a relatively brisk rate of rotation. 

(b) As the Reynolds number increases, at least a proportion of the loops become 
increasingly elongated, so that they may be better described as horseshoes or 
hairpins.  At  Re > 2,000  (say) large-scale structures appear to be made up of 
random agglomerations of such hairpins, and it is, perhaps, misleading to refer 
to them as large eddies since they do not appear to exhibit any particular 
coherent motion beyond a relatively slow overturning or toppling due to shear. 
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(c)  At high Reynolds numbers  (ReQ = 10,000)  a small proportion of the loops 
appear to have become almost incredibly elongated, and in the outermost part 
of the layer are widely separated in relation to their cross-stream dimensions. 

(iv) At the higher Reynolds numbers there is occasional evidence of hairpins being 
formed in a regular sequence so that their tips lie on a line which makes a smaller 
angle to the surface than the 45° angle characteristic of the individual hairpins. 

(v)   There is substantial evidence that the tips of the hairpins are inclined forward 
into the flow, and this leads to the speculation (for reasons described in the text) that 
the outward growth of the hairpins continues only so long as they lie in a region of pre- 
existing shear. 

(vi)  It is a general conclusion of the investigation that the use of smoke, with light- 
plane illumination by laser, provides a very satisfactory means of exploring turbulent 
boundary layer structure.  The full potentialities of the technique remain to be exploited, 
and it is suggested that much of the present work should be repeated more carefully and in 
greater detail and extended to higher Reynolds numbers and to flows with pressure gradient. 
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FIGURE 10(C0NT.) VIEWS WITH 45°DOWNSTREAM AND 45°UPSTREAM LIGHT PLANES AT Re  = 9,400 
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SUMMARY 

Results are presented to describe some measured features of the organized large structure of a turbulent 
boundary layer.  The spanwise correlation scale, the conditional Reynolds stress contribution and the experi- 
mentally determined streamline pattern of the large structure are discussed.  Correlation and conditional 
sampling techniques are employed to examine the influence of this structure at the wall.  It is found that 
increased activity at the wall is associated with curved streamlines.  This is to be expected if it is a 
rotational instability that couples the turbulent bursts to the large structure. 

1.  INTRODUCTION 

It is of some interest to contemplate the techniques currently being applied to the study of boundary 
layer turbulence.  In the past heavy use was made of long time-averaged statistics such as correlation and 
spectral techniques.  A well-established trend is now to supplement these methods with conditional data 
analyses, such as conditional sampling and conditional correlations.  This is, in part, indicative of the 
deeper understanding of the flow achieved through the important finding that the flow consists of structures 
possessing a considerable degree of organization and repetitivity.  Since any measurement at one point will 
record the passage of an ensemble of structures, each originating randomly from different upstream positions 
at different times, a long time-averaged statistic may not show the presence of any organized component in 
the flow.  Alternatively, a conditional approach, provided it is carefully implemented, may bring out these 
organized motions. 

In the case of the boundary layer, these techniques, coupled with flow visualization studies, have 
indicated the presence of two important types of organized structure in the layer.  Near the wall the flow 
is known to be dominated by the low speed streaks and the turbulent burst-sweep cycle of events.  Kim, Kline 
and Reynolds^; Offen and.Kline^; Nychas, Hershey and Brodkey5 and others have made many contributions that 
have clarified aspects of this phenomenon.  In the outer part of the layer, the flow is dominated instead by 
the large structure whose presence has been inferred from correlation and conditional sampling measurements 
(Kovasznay, Kibens and Blackwelder^; Antonia^).  A crucial step is our understanding of the flow lies in the 
knowledge that these two types of motion are, in some way, intimately related together.  The scaling trends 
of Rao, Narasimha and Narayanan^ and Lu and Willmarth'7 suggest this to be so. 

In the earlier part of the present work, Brown and Thomas^ examined this critical relationship directly. 
Correlations were computed between the fluctuating wall shear stress and velocity fluctuations measured in 
the outer part of the layer.  The important conclusion of the work is that the large structure gives rise to 
a slowly varying component in the wall shear and that intense small scale fluctuations, indicative of the 
bursts and sweeps, occur most often when this component is high.  A hypothesis was examined suggesting that 
a warping of streamlines by the large structure causes a rotational instability near the wall giving rise to 
the streaks of longitudinal vorticity and small scale activity that have been observed in that region. 

Offen and Kline suggested an alternative model for the coupling between the bursts and the large 
structures.  They contend that the flow arising from the repeated pairing of bursting fluid near the wall 
gives rise to momentary adverse pressure gradients at the wall. These streamwise gradients in turn stimulate 
trie lift up and bursting of  new fluid. 

In either of these two models, there is a direct coupling between the flow at the wall and the flow 
further from the wall.  However, it is important to note that Brown and Thomas place emphasis on the role of 
the large structure in the dynamics of the flow, whereas it is the bursts and sweeps that are emphasized in 
the work of Offen and Kline.  It is clear, therefore, that further study is needed to examine the problem. 

Thinking such as this motivated the work described in this paper.  It represents a continuation of the 
work of Brown and Thomas^ and is aimed at studying certain features of the boundary layer structure leading, 
hopefully, to clarification of the mechanism that couples the bursts and sweeps to the large structure.  To 
do this, some interesting large scale correlation features of the structure in the outer part of the layer 
will be presented.  It will then be shown that similar correlation scales can be detected at the wall.  The 
flow field existing within the structure responsible for these correlations, and its contributions to the 
Reynolds stress will then be examined in detail.  These data will be shown to support the emphasis Brown 
and Thomas place on the role of the large structure in the dynamics of the flow.  Finally, their contention 
that a rotational instability may be occurring near the wall will also be examined.  Evidence will be pre- 
sented to show that necessary (although not sufficient) conditions do exist at the wall for such a mechanism 
to occur.  The role of the pressure field of the large structure will also be briefly discussed in relation 
to the alternative mechanism for this phenomenon proposed by Offen and Kline. 

2.  THE EXPERIMENTAL APPARATUS 

The wind tunnel used in this investigation is of the open circuit type with aluminum test section 5m 
long and 230mm square.  The lower floor of the tunnel consists of a thin flexible steel sheet which was 
adjusted to account for boundary layer growth and to give a zero pressure gradient condition.  The boundary 
layer developing on the upper surface is used in this investigation, and the properties of the mean flow 
are summarized in Table 1 below. 

* Present address:    Loakheed-Georgia Company,  Marietta,  Georgia,  U.S.A. 
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Table 1 

Uo 36.3 m/sec 

UT 1.28 m/sec 

s 40.3 mm 

S" 5.5 mm 

e 4.2 mm 

Ree 10,200 

X 3.5 m 

The behavior of the data observed for this high Reynolds number condition was also observed at a lower 
Reynolds number condition (Reg =4,920), with no apparent Reynolds number dependency.  Therefore, only the 
high Reynolds number results have been presented. 

Wall shear stress fluctuations were measured with small (0.25 mm x0.5 mm) hot films manufactured by the 
vacuum deposition of nickel onto glass.  A shock tube test for these devices showed a step response time of 
about 50 usecs which was well within the desired range.  Calibration was achieved using the rotating disk 
apparatus of Brown and Davey^ and in all cases the measured mean wall shear was within 5%  of the value given 
by Preston tube measurements.  A dynamic calibration was inferred from the steady calibration by assuming 
quasi-steady heat transfer with the appropriate correction being applied to account for the reduced spread 
of heat flux into the substrate at higher frequencies.  For full details, the reader is referred to Thomas^O. 

Streamwise velocity fluctuations were measured using tungsten wires of 5 ym diameter with copper plated 
ends to give an active length of 1 mm.  Constant temperature operation was used. 

All data analysis for this work was performed on a CDC 6400 digital computer and the data were recorded 
on line with a small data acquisition system and written onto computer tape.  The analog to digital con- 
verters of this system operate with an 8-bit precision and each typical record of data consisted of 2560 
data points.  Typically, 16 such records were acquired to achieve stationarity of the averages that were 
computed.  A sampling rate of 12.5 KHz was used which corresponds to a Nyquist folding frequency of 6.25 KHz 
or, in nondimensional terms, ü)6*/UO = 6.0 or (ov/UT

2 = 0.36.  Spectral estimations showed that only \%  of the 
mean square signal energy existed above this frequency so that little frequency folding should be expected. 
Subsequent analysis showed that, indeed, there was no apparent distortion due to this phenomenon. 

3.  SPANWISE CORRELATION DATA 

This report is concerned with describing measured features of the large structure and examining the way 
the structure influences the wall region.  If, as Brown and Thomas suggest, this large structure gives rise 
to a slowly varying component in the wall shear, then it is reasonable to expect that the flow near the wall 
should indicate some spanwise correlation over scales typical of the large structure.  Now the spanwise 
correlation data of Kovasznay, Kibens, and Blackwelder^ indicate a lateral scale for the structure which is 
of the order of 6 in the outer part of the layer.  However, data recorded much nearer the wall^ have indi- 
cated a spatial lateral scale that is much smaller (-100v/UT).  This apparent inconsistency with the preced- 
ing arguments probably arises because the wall region is dominated by the smaller scale intense bursting 
phenomenon and this in turn dominates the correlations. 

Nonetheless, it is perhaps curious that despite the documented influence of the large structure at the 
wall, there is no evidence of some weak but large scale spanwise correlation being present superimposed on 
the smaller scale correlation.  It seemed important to examine this in more detail by computing a series of 
spanwise correlations for both the flow in the outer part of the layer and also for the flow at the wall. 

3.1  Spanwise Velocity Correlations 

For the first experiment to be reported, time correlations have been computed between the velocity 
signals recorded at two adjacent spanwise positions in the layer, i.e. 

„  = <u(x,y,z=0,t) • u(x,y,z=Az, t+t)> 

Here, a conventional long time average is implied and, for the present purposes Az, the spanwise separation, 
is restricted to values of 0.15s, 0.36, 0.456 and 0.66.  The results for three different positions in the 
outer part of the boundary layer are shown in figure 1.  The correlations are symmetrical about T=0, a 
necessary consequence of spanwise homogeneity.  At small spanwise separations, the correlation is positive, 
but as the separation increases, the zero time delay value of the correlation reduces, passes through zero 
and then becomes negative.  At y/6=0.75 this zero crossing occurs somewhere between separation of 0.3 and 
0.456.  Nearer the wall, however, however, it occurs sooner, being somewhere between 0.15 and 0.36.  A re- 
duction in the perception of the spanwise scale nearer the wall is already becoming apparent.  The temporal 
extent of the correlations is quite large, being of the order of 206*/Uo or about 36/U0.  This compares 
favorably with the values that can be inferred from the curves of Kovasznay, et al.^, and their interpre- 
tation of the correlations is, no doubt, correct. 

A very significant feature, however, which cannot be seen in their data is that, in the outermost part 
of the layer, the correlations corresponding to a separation of Az=0.36 show a clear indication of twin 
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Figure 1. Time correlations of the streamwise 
component of velocity at adjacent points 
separated only in the spanwise direction. 
Three different heights from the wall 
have been presented.  (a) y/6 =0.75, 
(b) y/6 =0.56,  (c) y/6 =0.25«. 

Symbols are: O Az = 0.156 
A Az = 0.306 
O Az = 0.456 
^) Az = 0.606 

maxima with symmetry about the x=0 axis.  This correlation effect, although of small amplitude, seems un- 
mistakable in these data, but as it was not evident in previously reported work, special studies were under- 
taken to prove that it was not spurious.  It is noted that the same results were obtained at other flow 
speeds and in thinner and thicker regions of the boundary layers occurring in the wind tunnel.  The mean 
flow was checked for spanwise homogeneity and found to be closely two dimensional.  The same effect was 
found when any pair of wires separated by 0.36 were used either on or off the tunnel centerline.  The 
Vdl   luUS    LCSO the the correlations are c-ertainlv real. 

A set of correlations such as these could arise from structures that have a characteristic periodicity 
within them.  However, no such behavior has been observed previously and none is evident in a visual exami- 
nation of the signals.  An alternative implication of these twin maxima is that they result from significant 
correlation at positive time delay for half the time and at negative time delay for the other half of the 
time.  That is, the structure has a characteristic angle in the transverse direction.  This conclusion is 
supported directly by a visual examination of the velocity signals where phase lead and lag can be observed 
between recordings from adjacent wires.  The characteristic angle is quite acute, and the included angle 
between the structures and the flow direction appears to be about 25° at y/6 =0.75 and 0.50, if it is 
assumed that the structures responsible for the generation of these curves are convected at about the local 
mean velocity. 

The important question is what this obliqueness really means in terms of the geometry of the structures. 
Another turbulent structure that displays oblique regions is the turbulent spot whose leading edges lie at a 
comparable acute angle to the mean flow.  Coles and Barker^ used the spot as a model for a synthetic bound- 
ary layer and the present results appear to be consistent with the idea that there may be a similarity 
between the structural element of the boundary layer and the turbulent spot.  While this may indeed be the 
case, such a conclusion should not be drawn on a basis of the present data alone and the obliqueness may not 
be representative of the leading fronts of the structures.  It is necessary to consider in more detail the 
way the correlations are generated.  For example, consider the correlations that would be generated by a 
large structure that was basically a symmetrical "blob" of uniform velocity perturbation as shown in figure 
2(a).  The velocity excursions recorded on a rake of closely spaced hot wires, each separated only in the 
spanwise direction, would not correlate to maxima at non-zero time delays.  The correlations, determined by 
taking slices through the structure, would be symmetrical and the same would be true if the rake was on or 
off of the structure centerline.  If, alternatively, the blob was triangular in plan view (i.e. like a spot) 
as shown in figure 2(b), but still of uniform velocity defect, then the possibility arises for twin maxima 
to occur in the correlations.  However, the same effect could arise by another means.  The third example 
shown in figure 2(c) shows a turbulent blob that is spatially symmetrical, but whose velocity defect is 
nonuniform.  It is possible for such a structure to also indicate twin maxima at non-zero time delays be- 
cause of its streamwise asymmetry. 
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(b) (e) 

Figure 2.  Plan views of a series of hypothetical turbulent structures and their velocity signatures at 
three adjacent spanwise locations: 
(a) A symmetrical "blob" of turbulence with uniform velocity defect. 
(b) A triangular patch of turbulence with uniform velocity defect. 
(c) A geometrically symmetrical structure, but with nonuniform velocity defect. 

The conditional velocity time histories to be presented in a later section will show that the case in 
figure 2(c) is in fact closer to the real situation.  Under these circumstances, any correlations will be 
dominated by the intense fluctuations occurring at the back of the structure.  The apparent obliqueness 
implied by the correlations is most likely associated with the backs of the structures as opposed to the 
fronts. 

3.2 Spanwise Wall Shear Correlations 

Brown and Thomas demonstrated that the same velocity fluctuations used to generate the correlations in 
figure 1 are also correlated with fluctuations in the shear stress at the wall.  It is reasonable then to 
expect the shear stress to display similar correlation extent.  Since the correlation scale near the wall, 
as reported by others, is very much smaller than the scale implied by the data in figure 1, a careful 
examination of the flow near the wall is necessary.  A series of long time-averaged spanwise wall shear 
correlations have been computed and the results are presented in figure 3(a). 
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It can be seen that the general behavior is of these correlations similar to that of the velocity 
correlations although the level of correlation is reduced.  The most significant and surprising finding is 
that the shear stress can be correlated, albeit weakly, over a scale of the order of 6.  Since this repre- 
sents about 2400 v/UT, it is a huge scale in relation to the scales typical of the wall and clearly demon- 
strates that the large structure is influencing the flow at the wall. 

The question now arises as to why this behavior is not evident in previously reported measurements. 
For example, the data of Gupta, Laufer and Kaplan^ show nearly zero correlation in the velocity near the 
wall beyond a spanwise separation of 300 v/UT.  There is no evidence of the small negative correlation 
values found here.  The apparent inconsistency with the present data is presumably a consequence of the 
dramatic and violent activity occurring just outside the sublayer.  This could swamp any weak large scale 
correlation effect, but because these fluctuations do not easily penetrate the highly viscous sublayer, it 
is probable they do not dominate the wall shear correlations so significantly.  Consequently, the shear 
stress data show a weak, but detectable, large-scale presence. 

It is possible to obtain what might be viewed as a more realistic measure of the presence of the large 
structure at the wall.  The correlation data are an ensemble of all times, including those times when the 
structure of interest may not be present.  If it were possible to discriminate upon those times when the 
structure was present, as opposed to those times when it was not, a more meaningful correlation might be 
generated. 

Brown and Thomas addressed the same problem with wall shear-velocity correlations and showed that 
discrimination of the presence of the large structure could be based upon the correlation between the wall 
shear and velocity at y/6=0.25.  To do this, the data are first broken up into a series of short time 
records of length TUo/6*=50, that is, a length somewhat larger than the scale of the structure.  A series 
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of short time correlations are then computed between the wail shear and velocity at y = .25<S and a search 
made to flag those occasions when each correlation is twice the long time average.  By determining a condi- 
tional ensemble average correlation for this subset of times, Brown and Thomas found that the correlation 
between the wall shear and the velocity at al1 points in the layer was enlarged.  They interpreted this as 
evidence of the presence of the large structure, and if this is so, then it is logical to expect that, for 
a similar subset of times, the spanwise wall shear correlations should also be enlarged. 

To examine this possibility, an identical procedure has been applied to the data used to generate 
figure 3(a).  The resulting conditional ensemble averaged correlations that correspond to figure 3(a) are 
shown in figure 3(b).  The discrimination process was successful 261 of the time, and it is very reassuring 
to see that, without exception, all the correlations have been enlarged and are nearly double their long 
time average. This is true even at spanwise separations as large as 0.75. These data clearly demonstrate 
the strong influence of the large structure at the wall and support the conclusions of Brown and Thomas. 
The nature of this influence will be discussed in more detail in Section 5. 

4.  CONDITIONALLY SAMPLED DATA 

Having established the influence of the large structure at the wall, attention is now directed toward 
the structure itself.  In order to extract more details of the large structure, it is now necessary to em- 
ploy a conditional sampling procedure.  As mentioned in the Introduction, the interpretation of long time- 
averaged statistics can be greatly supplemented using a conditional analysis.  The results of the last 
section clearly demonstrate this and even the data of figure 2 are, in some sense, special cases of condi- 
tional data. They aid greatly in understanding the generation of the unusual spanwise velocity correlations. 
However, extraction of further details of the structure, such as its Reynolds stress contribution and 
streamline pattern can only be achieved with a more rigorous and objective conditional procedure. 

Conditional data analysis is based upon the recognition and detection of an identifiable event in one 
time signal and, in some cases, its relationship to some characteristic pattern in another. These patterns 
or events must be repeated in time since an isolated occurrence would be meaningless to the dynamics of the 
flow.  Having established that this is the case, it is then possible to characterize the events or patterns 
by ensemble averaging the time histories of all the different realizations of the pattern.  The resulting 
average time history can then be regarded as a typical time history of all such patterns. 

This procedure appears to be very straightforward, but the simplicity is notoriously deceptive and 
there are a number of factors which can lead to misleading results.  For example, successful detection re- 
quires a priori  knowledge of the character of the structure.  The initial definition of the structure can, 
in turn, affect the the outcome of the process.  Furthermore, any detection algorithm will inevitably be 
satisfied by fluctuations which, fortuitously, have the character of the pattern of interest but are un- 
related to the structures of interest.  Likewise, random fluctuations can distort a pattern to the point 
where it is no longer recognizable.  As a consequence events will be included when they should be omitted 
(false detections) and vice versa.  Finally, any successful detection scheme should always identify the 
corresponding point in time on each successive pattern.  Otherwise, the ensemble average of samples centered 
upon what are assumed to be corresponding times will be a distorted representation of the average pattern. 
Other problems may also arise with the technique and Thomas and Bull^ present results which show one example 
where they can be quite severe.  Despite this, the use of conditional sampling should not be rejected since 
it can provide an abundance of useful information and detail which would otherwise be unknown.  Therefore, 
in what follows, the philosophy of the technique will not be discussed or defended in rigorous detail. 
Instead, results will be presented that will define some of the problems of the technique and the methods 
by which some of these problems can be overcome. 

4.1  Choice of Detection Scheme 

The first problem in the present case lies in trying to detect and discriminate upon the presence of 
the organized structure in some unbiased manner.  Various schemes have been suggested in the literature but 
most suffer from various shortcomings.  In particular, they assume prior knowledge of the character of the 
structures of interest, i.e. they assume that the structures whose presence is being detected do have large 
excursions in vorticity or Reynolds stress, etc.  In the present context, however, the amplitude and charac- 
ter of the excursions is unknown and it seems inappropriate to consider only large excursions in Reynolds 
stress or velocity as the characteristic feature of the large structure. 

In considering alternatives, attention was turned to the earlier work° which highlighted two important 
characteristics of the large structure in the boundary layer.  Firstly, a visual inspection of velocity 
records at various points in the layer indicated that the structure was characterized by a steep change in 
velocity on its back or upstream surface.  Secondly, it was demonstrated that an intimate relation exists 
between the large scale and small scale features of a velocity signal.  To demonstrate this, a correlation 
was computed between the low frequency component of a signal and a signal synthesized by smoothing the 
rectified high frequency component of the signal.  That these correlations are large and maximize at a non- 
zero time delay is a means of quantifying the fact that steep velocity changes occur on the upstream surface 
of the structures.  Since this behavior is a unique character of these particular signals, this suggests 
that the smoothed rectified high frequency component of a signal should be used as a basis for the detection 
of the large structure in the layer.  By using the rectified high frequency signal there is evidently no 
bias toward either positive or negative going disturbances.  Therefore, any ensemble averages obtained 
should reflect genuine features of a signal rather than a distortion due to the detection scheme. 

In what follows a low pass digital summing filter was used to split each streamwise velocity signal 
into its low frequency and, by subtraction, its high frequency component.  The latter was then rectified and 
smoothed and those points flagged that were a local maximum exceeding some certain discrimination level. 
Both the streamwise and normal components of fluctuating velocity were sampled and averaged at these points. 

Decisions must be made as to which filter cutoff and which discrimination level should be used.  These 
problems are discussed in detail in Appendix A where it is demonstrated that any filter-discriminator combi- 
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nation cannot be objectively favored over any other combination.  This problem is fundamental to work of 
this kind but it is not as serious as it may first seem.  This is because the results that are obtained 
depend only weakly on the filter cutoff and discrimination levels. 

Therefore, in some sense the conditional average does reflect a characteristic feature of the flow and 
the precise settings of these variables become less important.  The values of the parameters that were 
finally settled upon were a filter cutoff of (u6"/U0 = 0. kj   (450 Hz) being used to generate the smoothed 
rectified high frequency detection signal, and a discrimination level of 1.5 times the rms level of the 
smoothed rectified high frequency signal. 

4.2 Enhancing the Conditional Averages 

As mentioned previously, any successful detection scheme should identify the same point in the phase 
of each structure that satisfies the scheme.  Because of the random fluctuations that are inevitably 
present, however, this may not always be the case.  Likewise, random influences can give rise to the possi- 
bility of a number of false detections.  A technique has been developed to minimize these problems. 

Initially the ensemble-averaged time history is formed from those points where the detection criterion 
is satisfied.  A series of time correlations are then computed between this average time history and each 
individual realization which contributes to the average.  These correlations are computed at various time 
delays with a short averaging time and are normalized by the relevant local short time estimate of the rms 
value.  This avoids the possibility of large correlations resulting from large signal amplitudes as opposed 
to genuine correlation in the statistical sense. 

Now, if any one such correlation is negative, then that particular detection point may be regarded as 
being fasle and may be rejected.  Usually about 30% of the initially detected points were rejected on this 
basis.  Next, each correlation is examined to find the local maximum level nearest the zero time delay 
point.  The largest value occurring anywhere in the time delay aperture is not used because that may be 
associated with some adjacent structure rather than the particular realization of interest.  If the maximum 
occurs at a non-zero time delay, then the detection point is moved by an amount corresponding to this time. 
This will minimize the problem of phase uncertainty. 

With the detection points redefined in this way, a new ensemble average may now be generated and, 
furthermore, the entire correlation process -may be repeated until such time as no significant changes occur 
in either the average itself of the definition of the points at which the average is formed.  In practice 
this was usually found to occur after the first two or three iterations although five were generally used. 

The mechanics of this technique and the selection of an appropriate averaging time are discussed in 
detail in Appendix B.  It is a kind of bootstrap operation in the sense that every iteration sharpens the 
definition of the detection criterion and reduces the set of events which now satisfy the more stringent 
cond i t ion . 

4.3 Sampling of the Velocity Field and Reynolds Stress 

The techniques described in the last section have been applied to the signals recorded by a cross-wire 
probe placed at various positions within the boundary layer.  The cross-wire probe was oriented within the 
flow so as to record the normal and streamwise components of velocity.  The high frequency detection scheme 
has been applied to the streamwise component to generate the array of detection points which have then been 
used as a basis in the sampling scheme. 

The enhancing technique has been based upon the averaged time history of the streamwise component alone, 
but has been used to redefine the detection points and obtain the enhanced averaged time histories of both u 
and v as shown in figure k. 

Consider first the averaged time histories of the streamwise component u.  In most cases (except perhaps 
at far from the wall) the most striking feature is a region of sudden acceleration.  From the data at y=0.55 
and 0.76, it appears also that this occurs on the back or upstream surface of the structure.  This is consis- 
tent with the earlier visual observations and correlation data of Brown and Thomas1'.  The important contribu- 
tion of the present data lies in the observation that these regions of acceleration are a signature of the 
large structure and can be observed across the entire layer.  Also, they must be steeper than the correspond- 
ing regions of deceleration on the front, for were this not so, the detection scheme would not be so success- 
ful.  The structure appears, therefore, to have streamwise asymmetry and the flow at the front is apparently 
a rather diffuse flow in relation to the flow at the back.  This point was raised previously in Section 3-1 
and was used in the interpretation of the correlation results. 

The data near the wall are quite like those of Blackwelder and Kaplan-^ who used a similar detection 
algorithm.  They argue that because the region of low velocity followed by a sudden acceleration is similar 
to the cycle of events observed by Corino and Brodkey^S and Kline et al.^S then such averages may represent 
the bursting phenomenon near the wall.  However, the present work demonstrates that similar signal features 
can be identified across the entire layer.  It is probably more correct to say that these features represent 
a signature of the large structure and that the occurrence of bursts is related to the passage of this 
structure. 

Consider now the averages of the v or normal component of velocity.  Their behavior is very similar to 
the average of u except for an inversion.  This immediately suggests a large contribution to the Reynolds 
stress.  A significant feature of the averages is the change in their character across the layer.  Near the 
wall they show a predominantly positive region with a rather weaker negative region occurring at positive 
times. ' At the time when the strong acceleration occurs on the streamwise velocity, there is, correspond- 
ingly, a sudden fall in the normal component of velocity.  This finding is also consistent with the results 
of Blackwelder and Kaplan-'*.  However, as the point of measurement is moved farther from the wall, the 
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region of negative velocity becomes reduced, until at about y/5=0.5 the averages show mostly only a positive 
going region.  Then at still larger y/6 values, the averages show a negative region once again, except that 
now it occurs at a negative time corresponding to the downstream side of the structure.  This implies the 
structure has a rotation and the very interesting streamline pattern which can be drawn from these results 
will be discussed shortly. 

The ensemble-averaged time histories of the instantaneous uv product corresponding to these data are 
shown in figure 5-  It is clear from figure 5 that significant contributions are made to the Reynolds 
stress; the averaged values are typically an order of magnitude greater than the mean value near the outer 
edge of the layer and two to three times greater than the local mean near the wall.  Indeed, estimations 
based upon these average contributions and their measured frequency of occurrence suggest that as much as 
90% of the total Reynolds stress may be carried by these structures alone. 

An important feature of the present Reynolds stress data and a feature that may be observed in the 
data of Blackwelder and Kaplan, is that, particularly at y = 0.055, the averages show two maxima, one on 
either side of a low value at the time of detection.  Such an effect is clearly a result of the steep nega- 
tive to positive jump of the streamwise velocity component and the corresponding sudden fall in the normal 
component of velocity.  The same effect cannot be discerned in the data of Lu and Willmarth'7 and this is a 
reflection of the different sampling criterion that they used.  It is based on detection of a fixed level 
of the streamwise component of velocity, and because of intensity variations, the detected points will not 
always bear the same phase relationship to the structure of interest from one realization to the next. 
Therefore, the rather subtle effect that may be discerned in the present averages could become lost. 

Despite this, the averages are not inconsistent with the detailed and extensive set of data presented 
by Lu and Willmarth'7.  It can be concluded that large contributions to the Reynolds stress are made by slow 
moving disturbances lifting away from the wall (bursts in their terminology) and faster structures moving 
towards the wall (sweeps).  The present data show, however, that these disturbances are not part of the 
burst-sweep cycle since they can be detected so far from the wall.  They arise from the large structure 
itself.  This explains the finding of Lu and Willmarth'7 who showed that the mean periods of these distur- 
bances scale on outer flow variables and are the same across the entire layer. 
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Figure 4.  Ensemble-averaged time histories of the 
streamwise component (u) and normal 
component (v) of fluctuating velocity at 
different points in the boundary layer. 

Figure 5.  Ensemble-averaged time histories of the 
large structure contribution to the 
Reynolds stress. 
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h.k    The Streamline Pattern of the Large Structure 

Although the results of the previous section have served to provide a quantitative measure of some of 
the large structure characteristics, they have not yet provided a clear physical picture of the structure. 
A much clearer interpretation of the conditional velocity data can be obtained by using the ensemble 
averages to create a streamline pattern of the large structure. 

By positioning each average time history, for a particular y/<5, at the value of time (relative to zero 
at the wall) where Brown and Thomas found the wall shear-velocity correlations to peak, the streamline 
pattern of figure 6 is obtained.  Here time has effectively been replaced by x, and the result is shown in 
a frame of reference moving with the large structure, that is a frame of reference moving at a speed of 
0.8 U0 (changing this speed has little effect on the picture, and a speed of 0.8 U0 has been chosen since 
wall pressure correlation data suggest this to be the convective speed of the large scale motions).  The 
arrows shown in figure 6 are, in fact, velocity vectors whose lengths are given by (U +<u> - Uc)

2 +•' 
and direction by arc tan (<v>/(Ü +<u> - Uc)), where <> refers to the ensemble average.  The solid '" 
not streamlines but are presented to serve as a visual guide only. 

! ines are 

It is quite remarkable that the independently measured sets of data from different positions in the 
layer form such a coherent picture of a single large structure.  The dominant feature does appear to be the 
rear or upstream surface where the rapid changes in velocity occur.  This region, which triggers the detec- 
tion algorithm, is most accurately represented by the ensemble averages.  Further from this region, the 
cumulative effects of the random variations in amplitude and time scale between different realizations 
cause a degradation to both the averages and the streamline pattern.  Despite this the pattern is very 
similar to the flow field sketched by Brown and Thomas. 

It is to be noted, also, that near the wall the streamlines display a region of convex curvature.  The 
existence of such a region was suggested by Brown and Thomas and is necessary if a rotational instability 
is the source of the streaks of longitudinal velocity that have been observed in that region. 
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Figure 6.  The experimentally determined streamline pattern of the large structure. 
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The structure in figure 6 is presented in a convected frame of reference, that is, one in which the 
structure is quasi-steady (clearly it would be absurd not to view the structure in this way).  As the 
curved streamlines near the wall are convected past a fixed cross wire, the curvature will induce fluctua- 
tions in u and v.  Thus, time records of u and v can be interpreted as fluctuations in the streamline 
radius of curvature.  Curvature is given approximately by 

and by definition, along a streamline 
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where vs and us are the velocity fluctuations the convected frame of reference.  Combining these yields: 
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It is possible, therefore, to use a cross-wire pair to synthesize a time history of 1/R(t)  (R itself 
is not used since it can be numerically large when the flow is parallel to the wall).  As before, the pres- 
ence of small scale fluctuations near the wall has been characterized by the excursions in the smoothed 
rectified high frequency component of wall shear.  Shown in figure 7 is the correlation between l/R, 
measured at y+ = 170 assuming Uc = 0.8 U0, and the smoothed rectified high frequency component of wall shear. 
The time delay at which the correlation peaks arises because the hot-wire pair was directly above the hot 
film and the structures are inclined to the wall.  The positive correlation shows that the small scale 
fluctuations are correlated with streamlines having convex curvature.  While not proving the existence of 
a rotational instability, this result is certainly a necessary condition for such an instability to occur. 
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Figure 7.  The correlation between the smoothed rectified high frequency 
component of wall shear and the synthesized curvature signal 
measured at y+ = 170 (see text). 

As mentioned in Section 1, it has been suggested by Offen and Kline^ that it is the pressure field of 
fluid arising from the repeated pairing of bursts at the wall that drives and maintains the wall flow.  In 
this model momentary adverse streamwise pressure gradients give rise to inflexional velocity profiles near 
the wall and a phenomenon that Offen and Kline view as a convected separation of the wall flow.  Willmarth^S 
extended the ideas of the model to a larger scale effect viewed from a convected frame of reference.  In this 
model it is the adverse pressure gradients of the large structure itself which, through convection, may act 
for a long time on the wall flow and lead to regions of deceleration and a loss in instability of the flow. 

During the course of the present work, measurements of the wall pressure have been made using miniature 
transducers.  To examine the two models discussed above, the same conditional approach discussed in Section 
h  has been used to analyze the data.  Because of the nature of the distribution of pressure sources, the 
full interpretation of the data is complex and beyond the necessary scope of this report.  The material will 
instead be presented elsewhere^.  It is to be noted, however, that large scale characteristic pressure 
fluctuations can be observed in the data and these are indeed associated with small scale fluctuations at 
the wall.  Because these signatures are of large scale, it is difficult to view them as being generated by 
fluid arising from the bursting process at the wall.  This is particularly true at high Reynolds numbers 
where there is considerable disparity between Liie  sea i e oi    une J I   D L3     a nd   the 

It appears, instead, that these signatures are produced by the inclined near surface of the large 
structure where steep velocity gradients occur.  These gradients tend to give rise to overpressures at the 
rear surface of the large structure.  This places the pressure higher upstream of the burst region so that 
the pressure gradients are actually favorable when viewed in a frame of reference fixed on the wall. 

However, this alone does not necessarily invalidate the model proposed by Willmarth.  If instead the 
structure is viewed in the frame of reference moving with the structure, that is the convected frame of 
reference of figure 6, where the wall flow is perceived as being in an upstream direction, then it can be 
seen that the gradients felt by the flow at the wall are adverse.  In the absence of more detailed 
measurements of this phenomenon, it is difficult to discuss the effect such gradients might have on the 
stability of the wall flow.  Simple estimates do suggest, however, that they would be unlikely to perturb 
the stability of the wall flow as drama': leal 1 y as would be necessary in the models discussed above. 

6.  CONCLUDING REMARKS 

This paper has described a number of measurements and observations of the structure of boundary layer 
turbulence both near the wall and in the outer part of the layer. A summary of the important findings now 
follows: 

(1)  The large structure appears to play a critical role in the dynamics of the flow.  Its measured 
correlation features in the outer part of the layer suggest that its rear surface is a dominant feature. 

(2) The large structure influences the flow at the wall directly, and the wall shear displays a weak 
non-zero spanwise correlation even over scales as large as v/UT.  A conditional procedure has been used 
that ties the generation of this correlation to the flow further from the wall and to the large structure. 

(3) A conditional sampling procedure has been defined that identifies the large structure in the 
layer with a minimal bias.  An enhancing procedure is described that redefines the detection points and 
minimizes the effects of false detections and random phase mismatch. 
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(4) These procedures have been used to generate ensemble averaged time histories of u and v for the 
large structure.  They show that throughout the layer sudden changes in velocity are associated with the 
upstream surface of the structure.  The same region also makes very large contributions to Reynolds stress 
and typical values may be an order of magnitude greater than the mean.  Simple estimations suggest as much 
as 90% of the total Reynolds stress may be carried by this structure. 

(5) The conditional data has been used to present a remarkably coherent view of the streamline pattern 
within the structure.  This shows a large inclined structure with a strong outward flow along its rear 
surface and a more diffuse return flow at the front.  Near the wall the streamlines display convex curvature 
below the large structure.  This view is very similar to an earlier postulation of the form of the structure. 

(6) By using a correlation technique and a synthesized curvature signal, it has been demonstrated that 
intense small scale wall shear fluctuations occur when the streamlines at the wall have convex curvature. 
This is a necessary condition for a rotational instability to be the source of the longitudinal vorticity 
observed in that region, and may provide the coupling between the large scale structures and the smaller 
organized structures near the wall. 
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APPENDIX A.  THE DETECTION SCHEME 
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From these results, which were also checked for various other signals, any fi!ter-discriminator combi- 
nation cannot be objectively favored over any other combination.  This seems to be a basic to the nature of 
the turbulent signals.  The important point, however, is that the character of the results depend only very 
weakly on the filter cutoff and discrimination level.  Therefore, the precise values of these parameters 
become unimportant. 

The values that were finally chosen were a filter cutoff of 450 Hz and a discrimination level 1.5 times 
the rms level of the smoothed rectified signal.  By visually comparing detection points obtained using this 
choice with the original signals, it did appear qualitatively to be more successful than other combinations. 
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Figure A1. The different average time histories 
obtained by varying the filter cutoff and 
discrimination level of the detection 
scheme.  The signal used in this example 
is the velocity component at y =0.056. 

This detection technique has also been applied to a synthetic signal created by filtering white noise 
to yield a signal with the same power spectrum as a typical turbulent signal. The corresponding conditional 
average has been generated and, except for some statistical scatter, an essentially zero average is the 
result.  This demonstrates that the detection and averaging technique does not lead to the identification 
of a signal pattern if none exists within a given signal. 

APPENDIX B.  THE ENHANCING TECHNIQUE 

In order to demonstrate the way the conditional average time histories are enhanced, typical results 
are shown in figure B1 using, as before, the streamwise fluctuating velocity at y/5=0.05. To obtain these 
data, a series of short averaging time correlations have been computed between the first ensemble-averaged 
time history and each realization that contributes to this average.  The detection points have then been 
refined upon a basis of the sign of the correlation and the time delays at which each peak occurs in the 
correlations.  Figure B1 also shows a histogram distribution of these time delays after five iterations 
of the process.  The averaging time is T^y U0/S<>=25 in each case. 

There is a dramatic effect associated with this enhancing technique and the amplitude of the averages 
is nearly doubled. The general character of the averages is still the same but the increased amplitude is 
now more typical of actual signal levels.  Furthermore, the histogram demonstrates that only very small 
time adjustments are required to minimize the problem of phase uncertainty at the time of detection. The 
results will therefore be independent of the range of time delays used when generating the short averaging 
time correlations, provided, of course, the range is sufficiently large. Shown in figure B2 are the 
results obtained from the same data using four different averaging times.  They clearly demonstrate that 
the effect, if any, of varying the averaging time is indeed small; the precise value is, therefore, some- 
what arbitrary.  In the present work a value of T^y U0/<5* = 25 was used.  Higher values were not used be- 
cause of the penalizing increase in computing time associated with the process. 
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Figure B1.  The effect of applying the enhancing tech- 
nique to the velocity recorded at y = 0.056. 
The histogram represents the distribution 
of the time shifts, inferred from each 
short averaging time correlation, used to 
redefine the detection points. 
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Figure B2.  The effect of varying the averaging time 
of the correlations used to enhance the 
ensemble-averaged time history of the 
velocity at y/6 =0.05. 
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ROUND TABLE DISCUSSION 

Prof. Llepmann 

To open the general discussion: sometimes it is the practice to get a number of 
people up on the platform and to have them discuss their views.  Because of the late 
hour, I would prefer to make the discussion open from the floor.  To start it out, I 
want to make a few remarks to explain why the meeting was done the way it was. 

As you know, at my urging and with the support of the Committee, a great emphasis was 
placed on large-scale coherent structures;  That was done intentionally, to balance 
out the meeting a little, because computational methods have had a lot of attention 
already.  I believed, and I think a number of Committee members agreed with me, that 
the time had come when we should also take stock of the physical basis for what we 
are doing and map out future possibilities, both computational, and in particular, 
experimental. 

It has often been remarked during the meeting that one couldn't really see what 
coherent structures have to do with computations, since the equations are usually 
averaged.  I happen to be a professor, so I think in terms of classes.  If you have a 
class in which you have two guys with an A and two guys with F, then you have an 
average which is about a C.  This is o.k. when you discuss it with the authorities, 
but if you want to recommend one guy, you don't say he is a member of the C class. 
This is precisely what can happen with a large-scale motion.  For example, if you 
deal with combustion, in which one part of the large-scale motion is much more 
important than another, the mean value may have very little meaning.  For that 
reason, I feel strongly that the use of Reynolds averaging has to be questioned. 

In the discussion we ought to keep in mind that there are several aspects of the 
problem.  First, there is the need for the computation of turbulent boundary layers. 
In particular, you want to have computational methods which permit you, rather 
rapidly, to assess turbulent boundary layers on wings, in ducts, and so on.  There is 
industrial and technical pressure to produce methods which are reasonably accurate, 
reasonably fast, and which reproduce at least the major aspects of a flow.  I don't 
mean that anybody who doesn't use coherent structures is immediately to be omitted 
from further reading.  I don't believe that.  But, this is one aspect which is 
important and which should be discussed. 

There is also an experimental aspect, which in my opinion and experience, is much too 
little supported.  This is a real need for absolutely first-rate standard measure- 
ments, measurements which have an accuracy comparable to some of the work at the 
Bureau of Standards.  Once the measurements have been done, they do not need to be 
questioned, and people have data with which they can compare their computations.  It 
strikes me as slightly ridiculous that whenever anybody computes turbulent separation 
he goes back to the paper by Schubauer and Klebanoff, who had to do their experiments 
in anything but good conditions, in fact, in what amounted to a birdcage. Their 
tunnel was outside and had to be wrapped in chickenwire or birds would fly into the 
diffuser.  I think there is a very urgent and important need to support work which is 
done with the utmost dedication and with sufficient support.  We need a few standard 
cases that people can use to check their computations without worrying about the 
accuracy and reliability of the data. Producing such data is not a very thankful job, 
but a thing you get much credit for.  It doesn't count for many brownie points in a 
university, and I doubt that many administrators in government labs like to have a 
guy measure a relatively simple case for a year at a time, but it seems to me 
absolutely necessary.  Otherwise we will fall flat on our faces in the next compu- 
tation contest.  There should be some experiments which are really done to get fixed 
points, like you do the fixed points in the temperature scale in physics. 

Another aspect is the attempt to come to grips with the discoveries by the 
experimenters.  In recent years there have been quite a few experiments which have 
been made and are being made to find new physical phenomena. I am thinking of the 
shear layer experiments by Brown and Roshko, the boundary layer experiments by 
Klebanoff and Blackwelder, the channel experiments by Eckelmann, and others, which 
have shown that our early concepts have been at least faulty. 

New approaches have been found to transition.  In particular, there are the discovery 
of turbulent spots and the beautiful recent contribution by Gaster.  All of that has 
to be eventually digested and put into a theoretical framework.  It must effect the 
modelling, even if negatively.  Even if you can come to the conclusion that for this 
case and that case you can average, there are definitely cases where you cannot. 
Examples are the chemical laser or the combustion problem, in which averaging in the 
Reynolds sense is completely inadequate.  I am quite sure that we will find more of 
this.  Understanding of coherent structure should eventually penetrate into the 
theory and numerics. 

To my great pleasure, we have had in this meeting for the first time a real attempt 
by numerical experts to come to grips with this problem in one way or another.  This 
should continue, of course, but there must also be support and encouragement of 
fundamental research which aims at discovery rather than at precision results.  I 
believe that we have by no means yet exhausted the possibilities. 
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Just to have a certain carrot dangling before us, I would like to comment that the 
discovery of coherent structures - the fact that at least some features of turbulent 
flow are partly deterministic rather than completely stochastic - for the first time 
opens the possibility of turbulence control by means other than brute force.  By 
brute force, I mean for example removal of the boundary layer by suction or attempts 
to control the mean profile. Phasing and interference between eddies must affect the 
skin friction on the one side and the acoustics on the other.  We have for the first 
time come to a point where control may be possible.  The future here I think is 
startling, and I can only enter a plea for an expansion of such research. 

I hope that we will have more meetings in which all of these points of view can be 
brought forward.  There should be fights, because they are absolutely essential, but 
people should leave the meeting with the intention of doing something, whether it is 
something new or more and better work on what they are doing.  I am somewhat relieved, 
because 1 was worried when we started, I was less worried yesterday, and today I feel 
that we have succeeded in having a meeting which will contribute to this general 
scheme of interchange, of turbulent mixing, in a very coherent way. Let me stop here 
and ask for short contributions or questions from the audience.  Please identify 
yourself and speak loudly and clearly, as this discussion will be taped. 

Dr. Klebanoff 

I would like to make two comments just to complement what Prof. Liepmann has said, 
and if they appear naive, perhaps you could excuse them because they come from a 
non-modeller.  I have been observing and listening to the accounts of what has been 
accomplished and, in view of the difficulties that have been revealed relative to the 
handling of the very strong pressure gradients, and the difficulties in calculating 
separation, I believe I am permitted the observation that not much substantative 
progress has been made in the last 30 years.  Perhaps not since we were trying to 
calculate separation by estimating critical shape parameters. Now, if this obser- 
vation is only partly true, then I think it emphasizes the point that Prof. Liepmann 
made and which Prof. Gaster referred to, and that is, perhaps the equations should 
reflect the physical reality.  By that I mean, for example, at low Reynolds numbers, 
where the frequency range is markedly decreased, and the flow is dominated by a 
large-scale structure, it does not appear feasible that a gradient diffusion-type 
model can be satisfactory. It then would appear that the more complicated methods 
with five or six empirical constants are in a sense fictitious representations.  We 
cannot, for example, know at this stage - or I don't think evidence has been 

Dr. Murphy, 

I am going, since we are all agreeing, to agree with everybody else at this point; 
agree, but with a couple of provisos.  I think that the experiments that are needed 
are ones with very rapidly varying boundary conditions, very severe pressure 
gradients, because for equilibrium conditions we really can predict very well - with 
about the same accuracy as the experiment.  For a mild pressure gradient, favorable 
or adverse, I don't think that there is any problem with prediction.  The second 
thing is that with regard to incorporating the concept of coherent structures into a 
calculation, we really don't know how to do it.  I think that we are probably in the 
same situation that the particle physicists and astrophysicists were just before the 
turn of the century.  It took an Einstein to come along and develop the mathematics 
in order to incorporate whatever was required to explain the experimental anomalies. 
In addition, it isn't clear at this point that the structure observed needs to be 
incorporated to provide adequate predictions. 

Prof. Liepmann 

I hope that is too pessimestic an attitude.  I think you guys ought to be smarter 
than that. 

Prof. Lilley 

Just a small comment, Mr. Chairman, I think on the first day you mentioned the 
possible control of some features of the coherent structures in turbulent boundary 
layer flow, by grooving of the surface. 

Prof. Liepmann 

That is attributed to me, but it isn't right, I never said it. 
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Prof. Lilley 

I don't say that this work is attributed to you, but I noted you mentioned it, or at 
least referred to the possible control of coherent structures.  At any rate, I think 
that one or two other people have mentioned it, and I wonder whether we could have a 
little bit more information on whether indeed this is possible, if it has been 
achieved, and what are the results that have come out of this work. 

Prof. Liepmann 

I do not know anything myself about grooving.  The only control scheme which we are 
playing around with is an attempt to develop some kind of active feedback control.  I 
can imagine that it is possible, for example, to control large-scale shedding from a 
jet by feedback from a noise pickup, in such a way that you get minimum noise output. 
I think this is within the possibility of today's technology and today's under- 
standing. 

Whether you can do similar things to suppress the large-scale structures in boundary 
layers, I don't know.  We are going to try, but I wouldn't bet on it. We know that 
polymers are effective in very small amounts.  My conclusion that is it must be phase 
rather than energy which is affected because the amount of polymer is not suffi- 
ciently large. 

Maybe we will be smart enough to act like a polymer and apply active control to 
phase.  This is, of course, wild talk, but before the coherent structure was dis- 
covered, it was completely out of the question.  It would have been the same as 
controlling Brownian motion by feedback and ending up with Maxwell's demon, which 
unfortunately was shown several times over not to work. 

Dr. Eckelmann, 

I want to come back to the second question you raised about a flow which can be used 
as a standard.  In the oil channel, we are working now more than 10 years, and many 
generations of students and experienced fluiddynamicists have worked with it.  Also 
recently Dr. Hofbauer made flow visualizations, so a second method in addition to the 
hot-film technique has been used.  Thus, we can say that we know the flow field quite 
well.  Anyone who is interested is welcome to make a computation and try to get what 
we measured, i.e., the fluctuating components,  the Reynolds stress, etc. 

Prof. Liepmann 

Yes, but I am afraid what you are asking for may be very detailed computations on a 
relatively simple geometry.  What the applications people want are very simple compu- 
tations for a very complicated geometry.  Don't misunderstand me; I am all for it, 
but I think we also ought to have experiments, for example, for a separated airfoil, 
for a swept-back airfoil, for the corner flow, and other flows which are geometri- 
cally complicated.  If one thing can be handled well on a computer, it is usually the 
geometry.  If you understand the physics, the geometry can be handled better than by 
the experimentalists.  There should be measurements with which the computers, or 
rather the modellers, can at least verify their codes.  But your offer is*very 
welcome.  I hope you have a large set of computers.  You shouldn't always tell 
people the results beforehand, by the way.  I even talked to Klebanoff and a few 
others about the proposition that we really ought to publish some utterly wrong 
measurements.  Then we wait until they have been checked by modelling, and these 
models can be removed from further reading. 

Prof. Coles, 

In my own mind I elevate, to a fifth item on the agenda, the development of calcul- 
ation methods which are specifically based on the idea of coherent structures.  If I 
knew how to do that, of course, I would be at home doing it and not here.  I think 
the situation where that would be easiest would be the mixing layer, but the mixing 
layer has not yet been observed in sufficient detail so that we know where the 
entrainment occurs, what the internal energy and dynamical processes are, and in 
particular, what the interactions are between these structures.  We know there is a 
very violent interaction which may or may not be the major source of aerodynamic 
sound.  That is one of the questions to be answered.  But as the boundary layer has 
received about 80% of the effort, the boundary layer is so much more complicated, 
being three-dimensional in any representation, that I don't hold out too much hope. 

I hope somewhere, somebody has a gleam in his eye about how to get at this problem. 
I think if you understood a single coherent structure you could assemble these 
statistically, you would have a much better chance of synthesizing the effects of 
roughness, pressure gradient, three-dimensionality, eventually into a common body of 
knowledge.  I hope that I live long enough to see something happen in this field.  I 
haven't seen any signs of it yet, and it bothers me vexy much. 

Prof. Liepmann 

You should quit smoking. 
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Dr. McCroskey 

Could I mention something about unsteady effects for just a moment or two, and perhaps 
this could be in the vein of challenges for the developers of engineering methods. 
There are questions that interest some of us about what happens to boundary layers 
when the outer inviscid flow has some time-varying characteristics.  First, what 
happens to the flow structure in some overall sense or in some engineering sense; 
secondly, in more detail, what happens inside the boundary layer; thirdly, what 
happens to your computation method; and fourthly, what happens in the turbulence 
modelling? 

If I could just show very briefly a couple of slides, I will illustrate a simple 
problem.  One of the simplest problems to look at unsteady effects is a flat plate 
that has an oscillating flow outside it - an average velocity plus some sinusoidal 
variation.  One might expect the boundary layer throughout to,respond in some sinu- 
soidal fashion, there would be some amplitude and phase relationships inside the 
boundary layer, and shown schematically in Fig. 1 are the phase angle for the wall 
shear and for the displacement thickness.  The most important parameter for this type 
of problem is some kind of a reduced frequency.  The laminar case is well understood 
and well documented for low frequency behavior and high frequency behavior and shown 
by the dotted lines there. 

The turbulent case typically shows a phase angle much smaller than the laminar one. 
for the wall shear.  That is to say, it seems to indicate that unsteady effects may 
be confined to a thin layer near the wall.  On the other hand, the displacment thick- 
ness of the turbulent boundary layer shows normally a much larger change in phase 
angle with increasing reduced frequency.  Those are schematics there that would be 
approximately correct for a flat plate. 

Fig. 2 shows some comparisons of calculations for this flat plate problem with sinu- 
soidal variations in the outer velocity.  The wall shear then responds sinusoidally 
with some amplitude change and phase angle, and I have shown here the phase angle as 
calculated by a few people who have already attacked this problem. 

There is one limited set of experimental data with hot wire velocity profiles from 
which it is very difficult to extract with any precision the phase angle of the wall 
sh6'r, but nevertheless one worker has attempted to do that , and it is shown by the 
dot there.  I would say that there is probably a plus or minus 10 degree error band 
arou d the experimental data.  These are the results by various people.  I used a 
simp • integral method, Nash-McDonald, a very old one. I al so tried a eddy viscosity 
modex, of Cebeci-Smith. Telionis used the Cebeci-Smith viscosity model, the Nash 
calcuT. ations used Bradshaw's turbulent kinetic energy model, and the Kuhn and Nielson 
method is some integral method.  I don't know the type, but it is obviously not 
correc t.  However, you see quite a wide discrepancy there in the calculated results 
for th is simple problem We don't really know for sure what the answer is. My own 
feelin g, is probably the Cebeci-Smith results are the cl osest to the correct value. 
Noneth eless, that's the situation. 
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I think that this perhaps represents a challenge for someone who would like to try 
their new engineering method, and see where they can put a curve on this.  Perhaps we 
already have some contributions here.  Basically, what we are interested in here is, 
if you had some flow that you thought you more or less understood in an engineering 
sense in a steady case, what would happen when you applied unsteady fluctuations in 
the outer velocity.  Right now I don't think we really have satisfactory calculation 
methods for engineering purposes that address this question. 

Prof. Liepmann 

I would say that this is one particularly case where I feel you should get the experi- 
ment certified.  These are not trivial experiments. 

Prof. McCroskey 

These are not trivial experiments, and there are some efforts underway. 

Prof. Liepmann 

I remember when it was still an issue to predict whether how turbulent skin friction 
was influenced by the mach number.  There were 22 theories which covered the plane 
completely.  The issue was only eventually resolved by one set of first-rate experi- 
ments.  Therefore, my point is important, because otherwise you might give the poor 
modellers a bum steer.  I think I would make sure that the experiments are absolutely 
first-rate. 

Dr. Klebanoff 

I just wanted to add to what Don Coles said.  That is, to change the perspective in 
terms of what the large-scale structure is.  The large-scale structure is the mean 
flow and the theoreticians should think of the large-scale structure from this point 
of view.  Some recent experiments that we have made at boundary layer Reynolds numbers 
based on momentum thickness ranging from 400 to 5000 have shown that the logarithmic 
region which varies considerably in y* units doesn't disappear, but always remains a 
constant percentage of the boundary layer thickness.  We know that the large-scale 
structures do scale with the thickness.  This would imply then that the log law is 
intrinsic to the large-scale structure.  It is a property of the shape, its con- 
vective speed and its vorticity and mutual interaction, so I think that the point 
that Don Coles made about synthesizing and understanding large-scale structure can 
play a very important part in changing our attitude towards the modelling. 

Prof. Liepmann 

What I think you mean, and I agree completely, is that the idea of a mean-velocity 
profile plus fluctuations is not adequate for the large-scale structure.  It is a 
sequence of the large-scale structures together, in average, that makes the mean 
velocity; that's what you mean.  I can add to what Don said also, that vortex compu- 
tations have, of course, been made for the mixing layer.  Namely, interacting point 
vortices have been used as a model - and quite successfully.  In a farfetched sense, 
these are attempts to deal with the large-scale motion and to get the mean velocity 
from superposition of vortex elements. 

Dr. Murphy 

The comments about incorporating the large-scale structure as part of a mean flow in 
a calculation scheme raise some difficulties in that apparently one must in order to 
do that, use a three-dimensional time dependent calculation.  When you incorporate 
that kind of complexity into the mean flow, you have effectively ruled out engin- 
eering calculations for a substantial majority of the world.  There simply are not 
enough fast machines nor enough money to support them to do that sort of thing on a 
routine basis. 

Prof. Liepmann 

Of course, we have to deal with engineering computations for which this may not be 
necessary.  But occasionally a computation ought to be done specifically to under- 
stand the problem and put a better foundation under the engineering method. I agree 
fully that not everybody will compute every wing using large-scale motion. I think 
that is completely out of the question. 

Dr. Kim 

I agree with Dr. Murphy that not many people can afford a fully three-dimensional 
time-dependent calculation.  However, we can learn a lot about turbulence from this 
type of simulation, and this information, in turn, can be used to improve the 
Reynolds average-type modelling.  For example, one of the findings in our compu- 
tational work is what we call the "splatting effect" near the wall.  Although some 
people may not agree, this effect might be very significant near the wall.  One could 
try to include this splatting effect in his model and see how it behaves.  This kind 
of information can help, not only the large-eddy-chaser, but also for the Reynolds- 
average modellers with engineering applications in mind. 
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Prof. Blackwelder 

From an experimental standpoint, a lot of us have seen, and it has been discussed 
this week, very close similarities between structures in turbulent shear flows and 
stability problems that exist in free-shear layers and in boundary layers, etc.  In 
the stability cases, one doesn't model a fully three-dimensional time-dependent 
problem.  One tries to capture the important physics and then model that to obtain 
reasonable agreement with the problem.  I feel that there is some hope for using that 
same type of idea in modelling the turbulent structure that we are studying near the 
wall, the mixing layer, the outer structure, etc.  The full three-dimensional 
time-dependent problem is out of the question.  But if you capture the physics, and 
in particular I am thinking in terms of stability-type arguments, I think you could 
simplify the set of equations of Kim and Moin to a workable engineering-type 
approximation. 

Prof. Orlandi 

Most people model the turbulent pressure diffusion term as the turbulent energy 
diffusion one.  Both Laufer's experiments and the results of the large eddy 
simulation show that the turbulent pressure diffusion is a production term in the 
viscous layer.  Thus, using the one equation turbulence model to calculate the 
turbulent boundary layer, I modelled it in a different way than usualand I found 
better results; for example, the maximum Q reached a value of nine, closer to the 
Klebanoff results; on the contrary the value obtained with the usual model was 
eight.  Thus, I think the results obtained with the expensive large eddy simulation 
can give a valid contribution to the cheaper time-averaged models used to solve 
engineering problems. 

I can add one comment to the experimentalists about the pressure-strain correlation. 
I think the pressure in an incompressible fluid is not very well defined.  It is much 
better to work with vorticity, which is really going closer to the physics.  The only 
trouble is that nobody so far has come up with a decent vorticity meter.  The 
laser-Doppler anemometer might do it.  If you measure three points simultaneously, 
then with a reasonable digital setup you must be able to get the vorticity.  I think 
it would be a tremendous advance if you could measure vorticity, because that is 
really what we are talking about in turbulence. 

Dr. Cebeci 

I have one simple question to raise while we are talking about engineering problems. 
Maybe someone should define what are some typical engineering problems and what are 
the problems that are associated with them. 

Prof. Leipmann 

Who would like to volunteer? 

Dr. Yoshihara 

Unfortunately, on our airplanes we have shock waves, and we have turbulent boundary 
layers hitting shock waves.  What then happens to the coherent large scale turbulence 
after passage through a shock? 

Prof. Liepmann 

I think that is an easier problem than turbulent separation from a cylinder. 

Dr. Forest 

Could I add a few other nasty complications. On our turbine blades, we have flows 
which are partly transitional, highly curved, highly cooled, transonic mach number 
range, and also perhaps with shock boundary layer interaction. 

Prof. Liepmann 

And with an upstream boundary layer which in many cases you don't know.  And then of 
course, there are all the problems of mixing.  Nobody can predict the performance of 
a chemical laser because it involves mixing with chemical reactions. On the other 
hand, you can make absolutely astronomical gains by improving combustion efficiency 
by one percent.  We won't run out of technical problems, even if we stick to 
aeronautics. 

Dr. McCroskey 

I think a lot of us would be interested in having a good method for CL maxon a two 
dimensional airfoil in steady flow. ' 
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Prof. Liepmann 

I think that we can only say, like the old cartoons, back to the old drawing board. 
I hope everybody returns being somewhat wiser, somewhat more cautious, and on the 
other hand, somewhat more adventurous, because you can combine the two. 

Mr. Jones 

I can't add very much at this time in a technical vein to the discussion that has 
just taken place.  I would however, like to thank some of the people who have helped 
to make this meeting possible.  First of all, the National Delegates to AGARD from 
the Netherlands, who have been our hosts.  We are very grateful to them for that, and 
to Mr. Bleeker, who is the Deputy Coordinator for the Netherlands to AGARD, without 
whom we couldn't possibly have arranged such a fine meeting. 

There are some others whom you should recognize.  Following a group of technical 
people when they begin to describe the technical programs in which they are 
interested, is a very difficult job for interpreters who have to keep up with that 
very rapid discussion.  Our interpreters for the meeting have been Mile Malot and M. 
de Liffian, and I want to give them a hand.  We have had further assistance from two 
gentlemen from SHAPE, Mr. Wauters and Mr. Grovenlock.  They have handled the sound 
and the projection equipment.  I want also to thank Mrs. Faddegon, who assisted Mile 
Rivault with the registration and all of the problems that we have encountered at the 
registration desk in front. 

I would like to thank Prof. Liepmann and his Committee for organizing this meeting, 
which has been a very interesting, and somewhat provocative meeting; the authors and 
the speakers for their efforts in putting together the papers that you have heard 
here; but most important, all of you for the contributions made in your discussion, 
because it occurs to me that one of the major contributions of this meeting has been 
to emphasize the communications between the theoreticians, the experimentalists and 
the modellers.  I think that communication has to continue, if we are indeed to make 
progress in this total field.  Thank you very much.  I hope you all go home with new 
questions and new ideas and have found the meeting to have been quite worthwhile. 
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