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A SINGLE PERIOD MODEL FOR A MULTIPRODUCT PERISHABLE
INVENTORY SYSTEM WITH ECONOMIC SUBSTITUTION
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This paper develops a single period model for a specific class of multipro- , . ,

s duct perishable inventory systems where demands are interdependent. This T T —
class of inventory systems has the property that there is economic substitution ’ ) g =
between products. It is shown that the optimal policy has the economic substi- )
tution property, and that the rate of substitution is age dependent. The model! B ’ S
serves as a generalization of a theorem discovered by Ignail and Veinott. SR L

as 2_"{ |
‘ |

1. INTRODUCTION

This paper considers the problem of characterizing the properties of optimal ordering poli-
cies for a specific class of single period, multiproduct, perishable inventory systems where there
may be dependencies between the stochastic product demands. It is assumed that there are n
products and m demand classes for these products and that each product has a known fixed
(and finite) lifetime. As is usual, the criterion for choosing an optimal ordering policy is the
minimization of total expected costs. Pertinent costs are: linear purchasing (production) and
outdating (disposal) costs and convex holding and shortage costs.

The special class we consider is determined by the property called economic substitution.

By this, it is meant that the order quantity of product i(i = 1,2,. ..,n) is a nonincreasing func-

’ tion of the on-hand inventories of the other products. In effect, some amount of product i can

. be replaced by an increase in the amounts of other products kept on hand, in terms of the

1 economic benefits realized by the firm. This phenomenon typically occurs because space and

1 capital allocated to, say, product i must be adjusted (downward) when increasing the inventory

commitment to another product. It is important to emphasize that the phrase "economic substi-

tution” as it is used here does not imply that another product, say j, can be substituted for pro-

duct i to satisfy a demand for product i. (The latter would correspond to the classical economic
interpretation.)

The model developed here would find applications in the retail food industry, photo-
graphic film industry, pharmaceutical industry, and finally in hospital and regional blood banks.

Our focus is to characterize the properties of the optimal policy when economic substitu-
tion is in effect. We show in Section 3 that the optimal starting inventory (on-hand plus
amount ordered) is in general more responsive to changes in newer inventory than older
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178 B. L. DEUERMEYER

inventory. This phenomenon carries over to economic substitution. That is, the rate of substi-
tution is age dependent.

The study of perishable inventory theory has been an active research area in recent years.
Van Zyl [11] provided the first major study on single-product perishable inventories, but the
field only began to develop after the work of Fries [5] and Nahmias {7). These three papers ail
dealt with the determination of optimal policies. These policies were very complicated to
implement, particularly from a computational standpoint. This motivated Cohen [2] to develop
an approach for determining optimal single critical number policies that were easy to use. Cha-
zan and Gal [1] proved a conjecture made in [2] that the expected number of outdates is a con-
vex function. More recently, Nahmias [9] developed an approach that allows relatively easy
computation of myopic approximate policies.

Very little work has been done in the area of multiproduct perishable inventory theory.
Nahmias and Pierskalla [10] considered a two-product perishable/nonperishable model which is
to some extent applicable to whole blood/frozen blood inventories, and to foodstuffs such as
milk and dry milk. Deuermeyer [3] considered a two-product perishable inventory-production
model where different production processes must be coordinated to make the inventory items.
The objective of this paper is to characterize the age-dependent relationships between products.

Several papers have been written in the area of multiproduct (nonperishable) inventory
theory. A summary of early research can be found in the excellent survey by Veinott [12].
Deuermeyer and Pierskalla [4] considered a two-product inventory-production system where a
by-product process and a single-item production process must be coordinated to manufacture
the two products. Ignall and Veinott [6) originated the concept of economic substitution that
we use here.

The article is organized as follows: Section 2 provides the notation and assumptions upon
which the model is based; Section 3 provides a detailed discussion of the optimal policy for the
general one-period model, and the special case for n = 2 is presented as an example.

2. NOTATION AND ASSUMPTIONS

Let the number of products be » and the number of demand classes be m. Then the vec-
tor random variable D = (D,,D,,. ..,D,,) is the joint demand during the period. We assume
that the range of D is_a Borel set ID. From D we form the product demand vector
D = (D,,...,.D,) where D, is the total demand for product / during the period. Let /; be the
fixed lifetime for product i, i € I =(1,2,...,n}. Let I=44+ L+ ...+, —n [ is the
dimension of the statespace of the problem.

The following assumptions and additional notation are required:

l is integral valued and | < [, < o0, j € [
2. Al stock is issued to meet demand according to a FIFO policy (that is, oldest first).

3. D has a continuous density of f and distribution F such that f(t) is zero except on
the positive orthant of £, (Euclidean n-space).

All units are fresh when they enter stock and there is no delivery lead time.

5. The vector of total starting (on-hand plus amount ordered and before demand)
inventories z must lie in a topologically closed set Z.

6. Let L(z), z € Z be the expected inventory holding and shortage cost function.
Specific assumptions concerning L (-} will be made subsequently.
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7. Let ¢; be the proportional cost per unit of product i purchased, / € /.

8. Let 6, be the proportional cost charged against each unit of product i that outdates,
i € I. The exact method for charging these costs will be clarified shortly.

Let x; be the initial inventory (already on hand at the beginning of the period) of age
JoJj € lil=1{1,2,...,i—1} of product i, i € I. Further, let x; = (x;q,. .z —1) be the vector
of initial inventories of products i by age, i € I. The notation x will be reserved for the vector
x = (x,X;,. ...X,) of inventories by age. In addition, we define

x,~= 2 x”, i € 1,
j€li)

which is the total amount of product / on hand prior to ordering. Finally let x = (x,. ..,x,).
Once again x refers to inventory by age while x simply refers to cumulative stock.

Let v; 2 0 be the amount of product i ordered, i€/, and y = (»,,. ..,y,) be the vector of
order quantities. Then, the vector of starting inventories (after ordering but before demand) is
given by z = x + y. We require that z € Z.

Let a and b be vectors in E,. a < b means that ¢; £ b, i € [, and @ < b means that
a < bbut g; < b for some i Similarly, a < b means that a, < b, i € I. Let [a,b] =
{x € Ej;; a, < x, b, i €1). [ab] is called a closed rectangle. Finally, let E, be the extended
Euclidean space. If H is a matrix, then |H| is the determinant of H. Let H be a square
matrix. Hj is the matrix formed from H by deleting row i and column k and A is the matrix
formed from H by interchanging columns i and k.

Let ¢ be a function defined on £, that is twice continuously differentiable over E,. Then
we write

Do (xpox) = 20 (xyeox), i=1, 2 ..., 1,
dx;
and
3 o
D; ¢ (xy,...x,) = Ex—, Do (x,..x) i, j=1,2, ..., n

We let V2¢ (x) be the Hessian matrix of ¢ (:) evaluated at x. Also, let t be fixed and let

y={(,...y) and x = (yy.. ...»,). Then, V2¢ (y.x) is the Hessian of ¢ restricted to the
first ¢ variables.

We follow the method of Nahmias [7) for assigning the outdate cost: that is, the outdate
cost 8, is charged against the expected amount of the order y; that outdates /, periods into the
future, given x; on hand. Then the appropriate cost function is given by

y,
V. ox) =6, fo G, (u,x,)du,

where G, (-,x;) is computed recursively using the marginal distribution F;(:) of the total
demand for product i. For the complete derivation of the "V " functions and their properties,
see (7], and for computational results when demands are Erlang, see [8].

The motivation for this approach is that the full impact of outdating is taken into account
at the time the order is placed. This approach is particularly attractive when studying single-
period inventory models as we do in Section 3, since the one-period optimal solution would
otherwise ignore outdating entirely.
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An important concept used extensively throughout this paper is that of a substitute
matrix, first defined by Ignall and Veinott [6]. Let H(nxn) be a nonnegative symmetric posi-
tive definite matrix. Let HY be the matrix formed from H by interchanging columns / and J,
where i < j. Then we say that H is a substitute matrix if every principal minor of H” that con-
tains elements from only one of the columns i/ or jis nonnegative. We let S, be the class of all
substitute matrices of order n. When n = 2, §, consists of all positive definite symmetric
matrices with nonnegative off-diagonal elements. Unfortunately, S, is closed under addition
only when n = 2 (see [6) for examples).

3. ANALYSIS OF OPTIMAL POLICIES

The primary aim of this article is to show that certain assumptions will be sufficient for
the optimal policy to have the economic substitution property. In addition, we will demonstrate
the additional properties of the optimal policy that are obtained as a consequence of perishabil-
ity.

We define the term optimal policy to be the specific choice of starting inventory level that
leads to the minimum expected total cost. If such a policy exists, we denote it as z(x) =
(z;(x).. ...z,(x)). Thus, z(x) solves

3.1 B(z(x)x) = igt;B(z;x). X € E
with
B(zx) = G(2) + ¥ Vi(z; — x;;x)t

i€l
and

G(iz)=Y cz+ L(2), z€ 2

i€l
We propose the following two postulates:

(A1) Assume that V. B(z:x) is a substitute matrix for each x € E,.

(A2) Assume that all sets A(s) = {z € Z; G(2) < s} are compact for each bounded
real number s.

The assumption that V2 B(z;x) be a substitute matrix is only slightly more restrictive
than requiring that B (-;x) be strictly convex with nonnegative crosspartial derivatives. The
latter occurs whenever the marginal total costs of product i/ are nondecreasing functions of the
inventories of all other products. This assumption turns out to be sufficient for the optimal
ordering policy to have the economic substitution property. Postulate (A2) will hold under a
number of conditions provided postulate (Al) is satisfied. If, for example, one of the sets
A (s) is bounded for some s/, it is a property of convex functions that 4 (s) will be bounded for
every s. A sufficient condition is to require that G(y) — oo whenever {|y|] — o, where |{-||
is the Euclidean norm on E,. Finally, the compactness will follow by the boundedness of A4 (-)
and the continuity of G(-). Postulate (A2) assures that the finite optimal policy exists and that
"inf" can be replaced by "min" in Eq. (3.1).

tNotice that in our definition of B(::x) we have not included the constant —2 ¢,y,. This is justified since the con-
stant does not affect the optimization.
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The central result of this article is Theorem 3.1. It generalizes Theorem 6 in Ignall and
Veinott [6] to perishable inventory products.

THEOREM 3.1 If postulates (Al) and (A2) hold and Z = [a,b] C E,, a unique z(x)
exists and is continuously differentiable. In addition, suppose z;(x) > x, for i € I' € I, and
z;(x) = x;, otherwise. Let i € I', k € I, and m € [k] — {2}. Then, the optimal policy has the
following properties:

(P1) >0 k=i
9z
axk
(P2) <0, k #i
(P3) <0, k=
a i a i
(P4) Z ——i—->0,k€1’,k¢i,
X1 0 |~
(P3) =0, k¢l

where z; = z;(x).

Before proving Theorem 3.1, it is important to interpret the five properties of the optimal
policy. Property (P2) shows that the optimal policy has the economic substitution property; the
optimal starting inventory of product i/ is a nonincreasing function of the initial inventory of
product k, k # i. This is sufficient to prove that the ordering quantity for product i is nonin-
creasing. This result is the analog of the assertion of Theorem 6 in Ignall and Veinott [6]. Pro-
perties (P1) and (P3)-(P5) provide the additional properties that arise from perishability.

Properties (P1) and (P3) provide the extension of earlier work in perishable inventory
theory on single-product models to multiproduct situations. Property (P1) shows that the
optimal starting inventory of a product is a nondecreasing function of its initial inventory. That
is, the ordering quantity strictly decreases when initial inventory increases, but not enough to
offset the increase. Property (P3) shows that the optimal starting inventory of a product is, in
general, more sensitive to changes in younger units than in older units. These two resuits were
discovered by Fries {5] and Nahmias [7] in the single-product case.

Properties (P4) and (P5) demonstrate that the economic substitution property is also
affected by making changes in the age distribution of the units in stock. Property (P4) shows
that the rate of substitution of product & for product / is more sensitive to increases in the
younger units of product k than in older units. However, Property (P5) shows that this age-
dependent rate of substitution only holds for the products that have been ordered—not all pro-
ducts.

PROOF: The logic required to prove Theorem 3.1 is essentially that used by Ignall and
Veinott [6], except that we need to account for the fact that the state variable is x, not x, and
the objective function depends on the state variable through the outdating cost function. All
that is needed to make their proof apply to the present theorem is to generalize their Lemma 7,
so that it incorporates the above information. Once this is accomplished, their proof only needs
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minor changes. For this reason, we do not describe a proof of Theorem 3.1 here, but instead
focus on the proof of the new lemma, Lemma 3.1.

Q.ED.

Before we can state the lemma, some additional notation is required. Let 7 be fixed and
1<r<nandleti j €Ll Let hy=D,; B(zx), h = (h,,....h,), and H be the matrix with

rows h,. Also, let H, be the matrix formed from H by replacing column i by #, (' denotes the
transpose operation).

Now, let ¥ = (x,,.. ..,x,) and let y (x) = (y,(x),y,(x),. ..,y,(x)) solve

B(y(x),xx) = min B(y,x:x).
v
Also, let

dyx)

u,(m) = , m € [k], and u(m) = (u,(m),. .. ,u,(m)).
aka

LEMMA 3.1 (Generalization of Lemma 7 in Ignall and Veinott {6]): Let y = y (x).

1. Let1 i £t, m € [i]l. Then,

(a) 3, > 0,
a i i
(b) L <0, for m # 2.
a-xim—l a-"im -

2.Letl gigt 1<k gn k#iandm € [k]. Then,

Ay,
(a) e <0,
y; ay,
=== 20, m =2
(b) P >0, m#=2

3. Letl i<t t+1<k<n méelk]l—(2). Then,
. i '

0Xym -1 0xkm

=0.

4. Lett+1<ignt+1<k<n méelk]l. Then,

8 D; B(y(x),xx) 2 0.
aka

The proof of Lemma 3.1 requires a lemma. This we put first.

LEMMA 3.2 Letl1 Sign 1 <k gn mé [kl Then,

O DB ={, !
xey T =8 k=

where A, = D\, Vilze — xixi) — Dy Vi — xx,).
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PROOF: We simply state the relevant partial derivatives of B:
D, B(z;x) = D, G(2) + D\V,(z; — x;x)),
D, B(zx) = D; G(2) + D, V,(z; — x;x,),
Dy B(z:x) = Dy G(2), k # |,
) 0, k=i
7 DiBGx) = ~Dyy Vi(z; — x;x)) + Dy Vilz, — xi3x,), k=i,

Xkm

Q.E.D.

PROOF (LEMMA 3.1): Fix iand ksuch that 1 <i <1, 1<k <, and let m € [k].
Also, let e, be the r-dimensional unit vector with a 1 in position k. Then, using Lemma 3.2 it

can be shown that
Hu(m) = A, ¢
so that
A VHEVIHI, 0 k
uilm) = [ Bim |Hyl\/IHY, i = k.

Now [H| > 0, |Hl > 0, |H¥| > 0 from postulate (A1) and by properties of substitute
matrices. Finally, A,,, > 0 from Nahmias [7]. This establishes 1(a). Now,

(D1 Vi = Dy Vi) - |HEV/IHI, i # k
ui(m - 1) - ui(’n) = [D]m Vk - D1m+1 Vk] . lHkk|/|H|' i= k'

where V, = V,(z,(x) — x:x,).

Therefore,

>0, i # k
u,(m_])—"u,(m) 20 1=k

due to results in [7]. This establishes 1(b) and 2(b).

Now, fix iand ksuch that 1 </ <tandt+ 1 <k < n andlet m € [k]. Then, Ignall
and Veinott [6] show that
But, this relation also shows that u,(m — 1) — u;(m) = 0. This establishes 2(a) and 3.

Now, fix fand ksuch that 1 +1 </, k < n,and let m € [k]. Also, let

vim) = D; B (y(x).x:x).

km

Then, analogously to [6], we obtain that

Ay
b hi

IHI

v(im) =
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Therefore, v(m) is nonnegative (positive if k = j), independent of m. This establishes 4 and
completes the proof. I

Q.E.D.

An interesting special case corresponds to n = 2. In this case, it is possible to graph the
1 decision regions and observe the economic substitution and the impact of perishability on the
ordering policy. The optimal policy is defined by four regions R;, R;, R,,, and R,. These in
turn are defined by a point z* and two functions y, (x,) and y, (x,). The point z* = (z;,27) is
the minimum of G (-) over Z. y,(x,) is defined as the solution to
| GV (y(xp).x)) =0 forx; > z;
. and
yi(xy) = z;  forx, < z,.
Similarly, y,(x,) is defined as the solution to
G? (xy,(x))) =0 forx; > z{
and

J’2(X|) = Zz. for x; < .‘.'l..

The following two corollaries to Theorem 3.1 provide additional properties ¢ the optimal
policy in this special case.

COROLLARY 3.1: If z(x) > x, then z(x) € z* (This rules out the possibility of
z(x) = z*)
1 COROLLARY 3.2: The regions characterizing the optimal policy are defined as follows:
1. x € Ry={x € Eyx; < y1(x).x; 2 27} iff z5(x) = x; and

x; < 2:(a) < y(xy).
2. x € Ry=1{x € E;x, < y(x)),xy 2 2y }iff z;(x) = x; and

x3 < z,(x) < y,(x,).
3. x€R,=[x€Ex<z)iff x < z(x) € z*

4. x € R0=(R| U R2 U RIZ)( iﬂ‘z(x)=.x.

When /|, = [, = 2, the results of the two corollaries can be depicted as in Fig. 1. Notice
that z,(-) and z,(-) wiil be nonincreasing.

4. CONCLUSIONS

The model presented and studied in this article extends the work by Ignall and Veinott [6]
to the perishable product case. The primary result in this paper shows that when the products
) are perishable, the optimal policy has age-dependent economic substitution, under the assump-
tions given. As we show in a subsequent work, the policies developed here provide a con-
! venient basis for constructing approximately optimal policies for the dyriamic problem.
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' FIGURE 1. Characterization of the optimal policy when n =/} = [, = 2.
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NONLINEAR ONE-PARAMETRIC LINEAR PROGRAMMING
AND T-NORM TRANSPORTATION PROBLEMS

Axel Wiistefeld and Uwe Zimmermann

T

University of Cologne
’ Federal Republic of Germany

ABSTRACT

X Previous methods for solving the nonlinear one-parametric linear program-

{ ming problem min {c(:)"x |4x = b, x > 0} for 1 € la, 8] were based on the
simplex method using a considerably extended tableau. The proposed method
avoids such an extension., A finite sequence of feasible bases (B, | k =
1, 2,....noptimalin [y, for k=1,2, ... rwitha=1n<n<...<
1,.; = B is determined using the zeroes of a set of nonlinear functions. Com-
putational experience is discussed in the special case of f-norm transportation
problems.

1. INTRODUCTION

Linear parametric programming has attracted many mathematicians as for example can be
seen from the large reference list in Nozicka et al. [3]. On the other hand there are only few
results known for linear optimization problems with a nonlinear parameter. Carpentier [1],
Sarkisjan [7] and Weinert [9] discuss linear optimization problems with a nonlinear parameter
in the objective function. They consider the set of feasible solutions

(1.1) Pi={x € R"| Ax = b, x = 0}

with real m X n matrix 4 of rank m and real positive m-vector b. For simplicity of the discus-
sion it is always assumed that P is nonempty, bounded and nondegenerate. Let I = la, 8] with
a,B € R, « < B and let c: { — IR" a continuous function. Unbounded intervals can be con-
sidered in the same way with minor changes in the assumptions. Then the linear optimization
problem with nonlinear parameter in the objective function is

(1.2) minf{c()"x | x€ P} (€.

In order to find for every ¢ € [ an optimal solution x () it is sufficient to consider the
finite set P of all bases corresponding to basic solutions of P. A finite sequence (B,
| k =1,2....,n of feasible bases B, optimalin t € [4,44 ) fork =1, 2, ..., rwitha =1, <
1y < ... <ty = B is called a finite optimal solution of (1.2).

In the above mentioned papers the problem is solved by means of the simplex method
using an extended tableau. A certain transformation of the objective function in (1.2) leads to
a new problem of the form

(1.3) min {[d + D h{())7x | x € P)

with a constant real vector d and a constani real n X &k matrix D. Then (1.3) is discussed and
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solved using results of linear parametric programming. The number of cclumns k is equal to
the dimension of the smallest affine hyperspace containing {c(¢) | r € I} (cf. [9]). The general
linear optimization problem with one nonlinear parameter is

(1.4) min {c()7x | x € P(¢)}
with the set of feasible solutions
(1.5 P(t):={x € R"| A()x = b(1), x > 0}

defined by a real m x n continuous matrix function 4 : / — R™" of constant rank m and by a
real positive continuous vector function b:/ — R™. If P(r) is nonempty, bounded and nonde-
generate for all 1 € [ and if the set P(¢) of all bases with respect to + € I is identical for all re/
then (1.4) can be solved in the same manner as (1.2). If all component functions are polyno-
mials then a solution method can be found in Ritter [5]. In [5] the solution method is based
on the optimality conditions of linear programming. This approach seems to be more direct
and avoids the determination of the transformed problem (1.3).

In particular, we are interested in integer and combinatorial optimization problems having
a linear characterization P such that the basic solutions of P are feasible solutions for the optim-
ization problem. Then dependence on a continuously varying parameter ¢ is considered only for
the objective function. Thus, parametric programming in this case leads in a natural way to
problems of the form (1.2).

Therefore, we develop a method for (1.2) based on the optimality conditions of linear
programming in section 2 and discuss shortly the possible extension to (1.4) under the above
assumptions. In section 3 the application of this method to transportation problems is discussed
and -norm objective functions that occur in algebraic transportation problems are treated (cf.
[11D. The coefficient functions are of the form f(r) = a' with @ € R,. Finally some compu-
tational experience for -norm transportation problems is given in section 4.

2. LINEAR PROGRAMMING WITH ONE NONLINEAR PARAMETER

As mentioned in the introduction we consider only the finite set of bases P. A basis
B € P is the index vector of the basic variables. Then N denotes the index vector of the non-
basic variables. Partitions of vectors and matrices will be indexed by these vectors in the usual
manner. The ser of all optimal bases with respect to + € [is denoted by V(r). We define

Vi't"y= n V@)forr, 1" € I witht' < 1"
r<ege”

Then for B € P the optimality set is [(B): = {1t € [ | BeV(r)}. This set can be characterized
by means of the reduced cost coefficient functions

()= c,(r) = cgl)T 45" 4,

for j = 1,2, ..., n with respect to a basis B. These functions are continuous in /. Obviously
¢g(t) = 0. From linear programming we know
(2.1) UB)={r e I]cy (1} = 0}.

Thus the optimality set /(B) is a closed subset of /. In the case of linear cost coefficient func-
tions c:/ — R" the parameter set /{B) is a closed interval (cf. [3]). In general /(B) may be
disconnected (cf. [1], [9]). Then /(B) is the union of mutually exclusive closed intervals
called optimality intervals of B. For 1 € [(B) we denote the optimality interval containing by
1B = :[af, BP]. We consider two sets of optimality intervals defined by

=11 €1 (B)




ONE-PARAMETRIC PROGRAMMING AND t-NORM TRANSPORTATION 189

< MR - e

for B € Pand defined by
L:= (18| B € V(1) ]
for + € I. Obviously /, is nonempty and finite for all + € /. The existence of a finite solution

of (1.2) is clearly equivalent to the existence of a finite covering (I,f" | Kk = 1,2,....N of I Due
to the compactness of [ the following local characterization holds.

(2.2) Local Existence Condition
For all 1 € («,B] resp. ¢ € [a,B) there exists B € Presp. B € P with
2.2.1) aB <t < BB resp.
(2.2.2) af <t <BE
(2.2) is necessary and sufficient for the existence of a finite optimal solution. Necessity is obvi-

ous and sufficiency follows by a compactness argument. We prefer to prove sufficiency in a
constructive way. Let

(2.3) h ' =«
t:=max(B8f [Be Vg )l fork=23, ...

If (2.2) holds, then (2.3) yields 2 finite sequence (1, | k = 1,2, ... ,r + 1) with 1,,, = B.
Thus, this recursion provides a solution method for (1.2). To avoid the enumeration of V(z),
further conditions are discussed which are stronger than (2.2).

(2.4) Finite Number of Optimality Intervals

Let /2 be finite for all B € P.

(2.4) implies (2.2). Furthermore, if (2.4) holds, then an arbitrary choice of the ’next’ interval
( in (2.3) with iy < B,f\l

yields a finite sequence. The problem is to find such a basis B € V(1,_,). For a discussion of
this problem we assume in the following B € V(r) for 7 € [a,8). Then we have to check
r < BB. As the optimality intervals will not be given explicitly, we must determine them with
the aid of the reduced cost coefficients. (2.1) yields the following characterization:

2.5 BE=inf ({r'e (+,8] | Ei: ty(y (+) < 0} U {BD.

Numerical determination of the considered infimum seems to be very critical. It can
easily be seen that 82 is a zero for at least one of the nonbasic reduced cost coefficient func-
tions. Therefore numerical methods for the determination of zeros of continuous functions can
be applied. Unfortunately 82 is in general not an isolated zero, which complicates the situation.

Let

Gh={tellc (1)=0)
for j=1,2,...,nand B € P. If the following conditions holds, only isolated zeros are of
interest.

(2.6) Finite Number of Zeros

Let G® = Iorlet GP be a finite set forall j = 1,2, ..., nand all B € P
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It is easily shown that (2.6) implies (2.4). Furthermore we can replace (2.5) by the deter-
mination of an isolated zero of the nonvanishing reduced cost coefficient functions ¢, , j€
J(B): = i | GE= B

2.7m B = min (|Y (GPn (.81 | je J(B)} U{B)).

Now let ¢ € (r,7). If cy(¢+') > 0, then [r,7] is a subset of an optimality interval of B. Other- : i
wise, 7 = 8.2 and we have to choose another solution B € V(r). ‘

s, SRBS A RN b
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s Even the calculation of the least zero (2.7) for a given set of at most n — m nonvanishing i
' nonbasic reduced cost coefficient functions remains very critical. No method is known to the
authors that guarantees to find this very zero.

' A further problem is to find a systematic way of changing the current basis in the case
3 1 = BE This is solved with the aid of the simplex method.

Therefore, we summarize in the following the changes due to a pivot step of the simplex
method. The nonbasic variable xy ;) is exchanged for the basic variable xp(,). The new solu-
tion X corresponds to the new basis B defined by B(i) = B(i) forall i # rand B(r) = N(s).
N is defined analogously. The new reduced cost coefficient functions are denoted by ¢ Fur-
thermore, a > o denotes the pivot element and e, denotes the r-th unit vector of R™. Then
from linear programming we know the following in parametric form for all ¢ € [

l; (281) CB(f)TAB_I = [CB (I) + (EN(S) (t)/a) e,]TAE'
(2.8.2) (DT =T (DT = @y (D/a) e A5 Ay
(2.8.3) } xgy = (xgn/a) (Ag' Ane)dawy i@ # r
Xpin = xg(nla i=r
Let z(¢) resp. (1) denote the values of the objective function in (1.2) with respect to B and B.
] Then
( (284) 5(!) = Z(f) + (XB(,)/a) ‘ EN(S)(f)

for all + € I. Due to the assumed nondegeneracy we know xz(,) > 0.

Now we perform a sequence of pivot steps in the following way. If B ¢ V(r,7) (cf. 2.7)
then there exists a nonbasic variable xy(,, with
(291) EN(s) (T) =0

(29.2) tniy (1) < Oforall ¢’ € (r,7).

Then Xy, is introduced into the basis. Due to (2.8.2) and (2.9.1) we find B € V(7).
Subsequent pivot steps according to (2.9) have the following interpretation.

Let 7' := min (7(B") | B' € V(7), BF = 7} with respect to (2.7). Then Cy) (1) < 0 for
all ¢’ € (r,7") in each such pivot step. Therefore z(+") > 2(¢') for all 1€ (r,7"). Thus a finite
sequence of such pivot steps yields a basis B € V(r,7').

An analogous interpretation can be given assuming (2.4) instead of (2.6). Then 7 in
(2.9) is replaced by a parameter value 7, defined by

' (2.10) F.oo=inf ({r' € (=,8] | Enes) (1) = 0} U {BD).

P o ol
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In the case 7 = B2 there exists an index s with 7, > 7. Then (2.9) holds and xx(;) is intro-
duced into the basis.

We summarize the above proposed steps for a performance of (2.3) in the following algo-
rithm. Finiteness and validity follow from the above remarks. The assumption (2.6) is made
but if only (2.4) holds the necessary modifications can easily be found from (2.5) and (2.10).

(2.11) Solution Method For (1.2)

@ (NITIAL SIMPLEX STEP)
Determine an initial basis B € V(a); t;,: =7 = a; k: =1,

® (LEAST ZERO CALCULATION)
Determine 7 according to (2.7);
if ¢;(t’) > 0 for all j € J(B) and a parameter ¢' € (r,7)
then go to (9

3 (PIVOTING IN V(1))
Choose a nonbasic variable xy ), with Ty (r) = 0
and Ty (¢) < O for a parameter ¢’ € (r,7);
perform a pivot step introducing xy ) into the basis,
redefine x, B, N, go to

@ (ITERATION)
=B k:=k+
|f7>[3then L =[3 r: = k; stop.
Otherwise f,: =7 : =7, go to @ .

—

We have already emphasized the numerical difficulties in the determination of 7 (cf. 2.7).
Furthermore the necessary evaluations of the nonlinear functions Ty (¢) will be highly time con-
suming in general (cf. section 4). Therefore simple numerical methods using only a few
evaluations should be preferred. During the search in V() the exact determination of ¥ can
te replaced by any procedure giving an answer to the question whether the current basis B is
optimal in a small interval (r,7 + €), € > 0 or not. Only if the answer is positive is an explicit
determination of ¥ necessary.

In the following we discuss some theoretical properties of the solutions of (1.2) and its
dual. Only the existence of a finite optimal solution of (1.2) is assumed.

We define the oprimal value function 2. I — R by
(2.12) 2(r): = cg(1) Ag'b

for + € Iand B € V(t). This is a well defined function. Due to the existence of a finite solu-
tion, the continuity of Z can be shown in the same way as in the case of linear functions ¢ (r).

The dual of (1.2) is

(2.13) max {y7b | y € S(1)}
with
(2.14) S():={y e R"| y74 < c (DT}

for t € 1. As (1.2) has an optimal solution for all 1 € [so has (2.13). A finite optimal solution
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of €1.2) yields a continuous optimal solution 3 : 1 — R" of (2.13) defined by

JOT: = cp (1) TAB","

for r € [n.0041), k=1,2, ..., r. Continuity in £, = 2,3, ..., r follows from (2.8.1). The
optimal reduced cost coefficients ¢ . 1 — R defined by
) im=ci(1) —5()TA4;, forj=1,2,....n

are continuous functions in 1.

If we consider the more general problem (1.4) the situation is only a little bit more com-
plicated. This is due to the assumptions made for (1.4). For an application of the solution
method only a few changes are necessary. The optimality set is now

.1y 1(B)={re 1| >0 xg(t) > 0)
with the reduced cost coefficients
G =) = cg(DT 45" (1) 4;(1)

for j = 1,2, .... n. The finite optimal solution is not piecewise constant in general as before
but is defined by

xg(1) :=Ag" ()b (r)

in the respective intervals of /. A discussion of the pivot step changes in (2.8) shows that the
dual optimal solution j and the optimal reduced cost functions ¢ may be discontinuous at those
optimality interval endpoints corresponding to the zeros of certain basic variables xg(,)(f).
Then the primal optimal solution is continuous at such points. The necessary modifications of
(2.11) in the definition of 7 (resp. 82 and 7,) follow easily from (2.1)’. The modified method
solves problem (1.4) in the same manner as before (1.2).

3. TRANSPORTATION PROBLEMS AND T-NORM OBJECTIVES

The nonlinear one-parametric transportation problem

(3.D minY Y ¢, () x;

X€T 75 7 ’
with a continuous function ¢: / — R™" subject to
3.2) Ti={x]Yx,=a, Yx,=b,x, 20}

! '

for given positive real numbers a,, i= 1,2, ..., mand b,, j=m+ 1, m+2, ..., m+nisa
special case of (1.2). W.l.o.g. we assume Y.a, = ) b,. Index sets for iresp. j are given expli-
citly only if proper subsets of the general range {1,2, ..., m} resp. {m + 1l.m + 2, ... m+n

are considered. The set of basic resp. nonbasic variable indices is denoted by B resp. N.

The primal transportation algorithm (cf. Murty [2]) is chosen as proper modification of
the simplex method. It makes fuil use of the special structure of the transportation problem
and provides a direct method for the construction of the nonbasic reduced cost coefficient func-
tions T, (¢) for (i) € N. The dual variables are usually denoted by u;(r), v,(1). With respect
to a given basis B they are recursively defined by

u ) + v, (1) = ¢, (1)

for all (i,j) € B starting with u,(z) = 0. The tree structure of B makes it easy to find the gen-
eral form

Y S PPV
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f(t)-zsu * C,j(’)
B

with 8; € (0, + 1} for all (i) € B. Then the nonbasic reduced cost coefficient functions are
given by

EU(') - C"j(') - u,'(t) - Vj(t)
for all (i) € N. Therefore these functions are of the general form
(3.3) T () =c,, (1) =3 vy c;(0)
B

with (u,») € Nand y; € {0, +1} for ali (i) € B. Coefficients with value + 2 do not occur as
‘row nodes’ u have even distance and ‘column nodes’ v have odd distance from the ‘root node’
1 with respect to the tree B. For the same reason y; = 0 for all (i) on the common ‘path’
from ‘root node’ 1 to the last common ‘predecessor’ of u and ». This information is helpful
for the calculation of the reduced cost coefficients from the stored functions c;(¢). Only the
storage of the iterated vectors y of length |B] is necessary. The storage required for the ;i (1)
is decreased if the objective function has the form

k
3.9 S¥ldi+ Y g @Lo) x,
i {=1
with certain functions g and constants d);, /=0,1,..., k. Weinert [9] and Carpentier [1]
consider objective functions of the form

(3.5) )»3

with certain functions 4, and constants d,’,, I1=0,1,..., k. In (3.5) the coefficient functions
depend only linearly on /. This was necessary in their approach to define the rows of the
extended simplex tableau (gf. (1.3)). The number of stored functions is only k resp. k instead
of mn. Furthermore k < k.

k
i+ ¥ (0 - dif x;
=1

A special case of (3.4) with k = 1 is
(3.6) 2060): 3 Y () x,
[

with positive real c;. For fixed ¢ € [1,o0) the minimization of (3.6) subject to (3.2) is
equivalent to the t-norm transportation problem

1/t
pIDY (Cu')'xul -
i

Such problems are examples for aigebraic transportation problems (cf. [11]). Forr =1 (3.7) is
the classical transportation problem. If we denote the objective function of (3.7) by Z(x,r) then
it is easy to see that

3.1 z(1): = aneu;l

lim Z(x,1) = d(x): = max {c; | x; > 0}
[—’”

for all x € T. This shows the close relationship of (3.7) with large values of the parameter and
the bottleneck transportation problem

(3.8) d: = min d(x).
x€T

Further on we consider the time-cost transportation problem
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d(x)
(3.9) D= lex mm
T x
<, - d(x)

that is a minimization with respect to the lexicographical ordering of vectors. Among the
optimal solutions of (3.8) we determine those with minimum sum of the basic variables
corresponding to the bottleneck. In order to exclude trivial cases we assume the existence of
¢, < dand d < ¢.

Then let
dy:=min {¢; | ¢; > d}

d_:=max {¢; | ¢; < dJ.

We assume the existence of a second-best solution of (3.9) with value §' > & in the
second component._Let € denote the minimim value of a nonvanishing basic variable and let

V(1) resp. V resp. V denote the set of optimal basic solutions for (3.7) resp. (3.8) resp. (3.9).
Using an idea of Steinberg [8] we find the following relationships.

(3.10) PROPOSITION
LetB := [In(€ q) — In€l/ [In d, — In d},

E = {In(X g, —8) —In(®' - 8)]/ lind — In d_].
Then

(3.10.1) t>B=> V() CV,
t > max B,8) = V() C 2

PROOF: Letx € Vand x * V. Thent > E implies
z(x) § B a) d<e-d, <z(x0)._ _
Let Y€ Vand x€ 7, V. Then r > max (8,B8) implies
z2x1) €8 d'+ (T a,—-8)d. <& -d < z(x1).

a

There are examples for whlch the bounds in (3.10) are sharp._ Furthermore examples are
known for which 8 < B and vav (1) = ¢ forall twithB < 1 < B

For integer problems the bounds B and E can be simplified using ¢, ' — 8 = 1 and
d, >2d+1,d_ < d-1. (3.10) shows that with increasing parameters an optimal solution of
(3.7) is necessarily an optimal solution of (3.8) and finally an optimal solution of (3.9). Due to
these relations a parametric study of (3.7) or equivalently of (3.6) can be interpreted as discus-
sion of various solutions ’between’ the classical, the bottleneck, and the time-cost transporta-
tion problem. A detalled analysis can be given if (3.6) has a finite solution at least on the
interval [1, max B, B

With slightly modified assumptions (3.10) and the discussion of -norm objectives in com-
parison with bottleneck-resp. time-cost objectives hold for the general problem (1.2). Further-
more a generalization for closed, bounded subsets P of R} holds under similar assumptions.

el o
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Existence of finite solutions in the interval [1, max (,1-3,,5)] can be derived from the gen-
eral form of the nonbasic reduced cost coefficients (3.3) for the unbounded interval [1,o). In
the special case of (3.6) these functions have the form f(z) = 0 or

A ]
SW) =3 ()= X (p,)
b=1 w=1

with mutually distinct s5, p, > 0for 8=1,2,...,kand @ = 1,2, ..., L If f(z) F 0 then
S (1) has at most kK + / — 1 zeros in R (cf. Polya and Szegé [4]). Therefore (2.6) holds with
respect to [1,%0). A bound for these zeros is (cf. Wiistefeld [10])

(3.11) 7 < In{max(k,/)) / fin X — in A}
with A : = min {max s;, max p,} < X := max {max s5, max p,}. Such bounds are very useful
1 in the calculation of the least zero 7 in step Q) of (2.11).

The optimal value function z of (3.7) has the following properties (cf. Wiistefeld [10]).

3 (3.12) PROPOSITION

3 Let g, .E R, i=12 ....mand b, € N, j=m+1, m+2, ...m+n Then z:
! [1,00) — R, is a continuous, monotonically decreasing and piecewise differentiable function.

PROOF: The optimal solution function fulfills
(3.13) 2(1) = [ch‘(t)Tka]'/’
for ¢t € [f.441), k =1,2, ..., r with respect to a finite optimal solution of (3.6). Thus z is

- continuous and piecewise differentiable. Explicit differentiation in ¢ € (g,4,,) for k €
{1,2,..., 7} shows that the derivative is nonpositive iff

Tl x;-llnc;—Inz()]1 <0
By

with (x;):= xp_. Due to the integrality we know x; 2 1 if x; # 0. Then In ¢; < In z(¢).

Together with (3.12) this yields the monotonicity of z. g

Obviously z(¢) is monotonically decreasing with limit d. For sufficiently large ¢ (cf 3.11)
we find a constant optimal solution for (3.7) which is optimal for (3.8) and (3.9) as well.

4. COMPUTATIONAL EXPERIENCE

The method discussed in the previous sections was coded for r-norm transportation prob-
lems with 7 € [1,8], 8: = In (X a;)/[In (d+1) — In d] (cf. 3.10), in FORTRAN IV. Tests were
run on the CDC CYBER 72/76 at the computer center of the University of Cologne.

PO

The random integer coefficients of the nxm cost matrices were drawn from a uniform dis-
tribution in the interval (0,100) resp. from a (50,3) Gauss distribution. The integers a; and b
were chosen in (1,10) with £ g, = £ b,. Twenty-five examples were solved for each choice of
the dimension parameters n, m.

No significant differences were found between quadratic (n = m) and rectangular prob-
lems (n = m). Therefore we discuss only the case » = m. In comparison with transportation
problems without parameters, computing times were raised enormously. Evaluation of the
functions ¢, (¢+) in the determination of zeros (step 2 of 2.11) consumed about 70% of the
computing times.
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FIGURE 1.

Problems with Gaussian distributed random integer cost coefficients show to be more
difficult. This is essentially due to less efficient bounds (cf. 3.11) in this case. Then more
function evaluations are used during the performance of the bisection method which was imple-
mented for the determination of zeros.

The mean running time is approximately of order 0(»%). This coincides with the product
of the number of the reduced cost coefficient functions (n—1)? and the approximate order
0(n?) of the number of pivotings.

TABLE 1— Mean Number of Pivoting Steps for
T-Norm Transportation Problems in [1, B

n=m |[5 10 15 20 25

uniform || 2. 44 88 | 134 | 16.2

Gauss 1.8 5.2 85| 136 | 19.1

Standard deviations of both considered means are rather high in all cases (30-50% of the
mean values). Obviously the practical solvability of parametric problems is limited by running
times. Storage problems are less important. In the proposed method, storage is essentially
given by the size of the matrix of the cost coefficients. Compared with the simplex method
using an extended tableau (cf [9]) this is an obvious advantage.
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ABSTRACT

This paper deals with the Weber single-facility location problem where the

demands are not only points but may be areas as well. It provides an ilerative
procedure for solving the problem with /, distances when p > 1 (a method of
obtaining the cxact solution when p = 1 and distances are thus rectangular al-

ready exists) The special case where the weight densities in the areas are uni-
form and the areas are rectangles or circles results in ¢ modified iterative pro-
coss that iy computationally much faster. This method can be extended to the
simultancous locanon of several Tacilines.

INTRODUCTION

In the ordinary Weber problem, we must locate a facility so that the sum of weighted dis-
tances from the facility to n demand points is minimized. There are cases where the demand
may be better considered spread over an area or areas than concentrated at mathematical points
on the plane. For example, one could be dealing with a very large number of demand points as
in an urban area. Then too, a "distributed" demand could be used to represent random
occurrences of demand from within areas.

When distances are rectangular (/;) and when the areas are themselves rectangles with
sides parallel or perpendicular to the axes of measurement, the problem can be solved exactly
(Wesolowsky and Love [71). The problem becomes more difficuit with Euclidean (1y) dis-
tances. Love [4] expressed the objective function in analytic terms and suggested a nonlinear
optimization procedure. Bennett and Mirakhor [2] replaced the areas with their centers of grav-
ity as an approximation.

Our approach is essentially based on the Weiszfeld (6] procedure; that is, on an iterative
solution of the extremal equations. In the special case when areas are rectangles (as assumed
by [2], [4], and [7]) or circles, and demand is uniformly distributed, we propose a "special”
iterative procedure.

Our method is more general than the methods in [2] and [4] because /, distances and not
only Euclidean distances are permitted. Also, circles and general shapes are treated in addition
to rectangles. Further, our method appears considerably faster than Love’s method and gives
more accurate results than Bennett and Mirakhor’s approach.

*This research was supported by the Natural Sciences and Engineering Research Council Canada.
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THE PROBLEM

Consider the distribution of weight density over a plane. The weight density could be
interpreted as the cost per unit distance per unit area (if the area is infinitesimally small) of
delivering to the demand in that area. We wish to find the location of a facility (xq,y,) that
minimizes the total cost of delivery. We must therefore minimize

(1 Flrgwo) = J_ [ wlep) e = xol” + |y = yol 17 axdy,

where w(x,y) is the weight density, w(x,y) 2 0, and [|x — xo|” + |y — »ol1"”, p = 1, is the
I, distance of point (x,y) from (xg.y¢). Note that for p = 1, distances are rectangular and that
for p = 2 they are Euclidean.

We will consider only p > 1 because a simple procedure for solving the problem when
p = 1 already exists [7].

It is safe to assume that in practice we can find a finite circle large enough so that w(x,y)
is zero outside it. It will be helpful to consider the following discrete approximation to Eq. (1);
we use it only to make certain provable conclusions about Eq. (1) intuitive.

¥3] Slxoye) = X willx, — xol” + [y, — ol 1V dxdy.

i=l

The function f(xg,y) is simply the objective function of the ordinary Weber problem
with n demand points. It is clear that we can choose the weights w; and the number n to make
S (x0.y0) approximate F(xg.y) as closely as desired. We could thus think of F(xq,y,) as the
limit of f(xg,yo) as n — oo,

Since fixg.p) is known 1o be convex (it is a nonnegative linear combination of convex
distance norms;}. so is F(x,.ys) (this could be shown formally). The minimum is therefore
defined by the extremal conditions

BF _ IF _,

9xg 0y
Note that the derivatives of f(xg,yo) do not exist at (xq,y9) = (x;,5;). This problem does not
occur with F(xg,yg). Differentiating under the integral we have

aF Y (x — xp)|x — xol"7?
(3a) — = (x.y) dxdy = 0,
0xo f'°° f‘°° PR e = xol” + |y — wol?)t=Vr ey =0

(v = vy = vol"*

aF o0 o0
(3b) — = (v.y) — dxdy = 0.
a.Vn f--uo f~m Wi H\ - .\'()‘p + l." - _V()l”]l e @

These equations can be used to construct an iterative procedure that is similar to the
Weiszfeld procedure [6] and was suggested in {S]. In effect, we "solve" Eqgs. (3a) and (3b) and
use the result iteratively. For example, from Eq. (3a) we obtain

fw fw wlxy) x|x — xf¥ |2 dd
oo oo Tl = X7 4 [y — yd® [P}V y

(4) x$HD =

fw fw wix,y)|x — x§k |2 dd
- - 44
oo Tlx = x4 [y — o o)V
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where & stands for the & th iteration. A similar expression can be obtained for ya**'’. This
iterative procedure (for the discrete case f(x,vy) and thus for F(xg.y9)) is known to converge
for p = 2. It has not been proven to converge for p # 2, but to our knowledge has always con-
verged in practice [5]. When it does converge, however, the optimality conditions are satisfied
and the optimum has been reached.

As an illustration, let w{x,y) = +/x? + y? only inside the unit circle around the origin. If

p = 2, Eq. (4) becomes
f f\/u x Vxi+y? dydx
V1-x2 \/'X ék))2+ (v _yék))Z
/-2 3
f f\/l x? X“+y dydx
1- x2 x(k))2+(y_y0(k))2

Iterations will produce convergence to the origin. For example, when (x{*
origin it can be shown that x§* "' = xj*'/2 and y{**" = »¢*'/2.

x0(k+l)

' vé*) is near the

The numerical computation of double integrals in Eq. (4) could consume a great deal of
time. We suggest a more efficient two-stage procedure in the next section.

A TWO-STAGE ITERATIVE PROCEDURE

The total area of demand is usually made up of distinct areas where w(x,v) = 0 between
them. In any case, without a loss of generality, we can break up the total area into ¢ subareas,
Ay, .... A, We ignore for the moment the possible existence of demands at mathematical
points to simplify the presentation; such points can be easily included into consideration later.

Under these assumptions, Eqs. (3a) and (3b) become

wixy) (x — xg) |x — xolP7?

P ".2.: ,,f e — xol + 1y =yl 77 &%
(5a) %’% - _,)::ql Fulxoye) = 0
— A -2
g;(; -,jl A,f Eixf )xsly” +);j)) I—y)’o|:i?|‘p”" dxdy
(5b) 5"’}% - —:l E, (x0.90) =

The central idea behind the proposed iterative procedure is that given a location (xg,yg) of
the facility, the cost of area i can be replaced with the cost of an equivalent demand point
whose location and weight can be computed. In effect, we will then be using a Weiszfeld pro-
cedure on ¢ point destinations.

Consider (%.7'), which can be any point on the plane and any area 4,, such that F (x,7)
= 0and F,(%7) # 0. We shall find (x..y,) and w,, the location and weight of a point which
will give derivative components equal to F(x,7') and F,,(%.7). In effect, we are replacing the
area A, with an "equivalent” point; note, however, that this equivalence is dependent on the
location (%,7') and is not necessarily true elsewhere. [t follows that at optimality, ¢ points
(x,,y,) with weights w, can replace the problem with areas. Although (x,.»,) and w, are func-
tions of (%.7), we do not specify this with notation to avoid unnecessary notational complexity.




Gad

202 Z. DREZNER AND G. 0. WESOLOWSKY

Therefore, by Eqs. (5a) and (5b),
(x, = ®)|x, = 2)|r?
lx, = 2|7+ |y, = p|1'7
= )y~ plp-2
(6b) W[' (yl - y)lyl ) ‘A l/
lx, — %P+ 1y, — pl1Ve

(6a) w, = F.(%7)

=~ F,(%3).

Note that the left-hand sides in Eags. (6a) and (6b) are simply the derivatives of
w, [Jx, = |7+ |y, = ¥171"7 with respect to x and y, respectively, and the right-hand sides have
the corresponding derivatives for the term A4..
Dividing Eq. (6a) by Eq. (6b), we get
x, =% |lx, =%  FJ(x7)
(N =

v=7) Iy =0t FURD

R(x1).

Let
s(x5) =1, if R(xp) >0,
=-1, if R(x}) <O0.
Therefore, Eq. (7) implies
(8) y,=(, =)/ (s, (PR ZH|V=D) + 5

which is the equation of a straight line through (%,7); in other words, (x;,y;) is not uniquely
determined. Some comments on technical points should be made. When (%,5) is such that
Fi=0and F, # 0, then %, = x; and y; is undetermined. If F, = 0, but F,; = 0, then y, = j
and x; is undetermined. If both F,;= 0 and F,, = 0, then (x;,»;) = (%,p). Further (barring
Fi=0and F,; = 0), when x; = Xand y; = J, then Eq. (8) still gives the equation of the line in
spite of the fact that the left-hand side of Eq. (7) is undefined. The above comments could be
proved analytically, but it is easier to justify them (and, in fact, the rather surprising result of
Eq. (8) as well) by invoking a mechanical analog that has been used for solving the Weber
problem with point demands ({3}, p. 193). First, however, we complete our assignment by
finding w,, the equivalent weight of the point.

We take absolute values on both sides of Eqs. (6a) and (6b), raise both sides to the power
p/(p — 1), and sum the two equations to obtain
lx, = x1P + ly, — pI°

nNplp—1
o =3P+ by = 51

— “:“A,p/(p—l) + ’I:w.,p/(p—l)'

Therefore,
(9) W' = “F"ll’/‘l’—” + ‘lep/(p—l)](p—l)/p' |

We now turn to the Varignon frame, a mechanical frame analog, for an explanation of the
rer s Egs. (8) and (9). The frame is constructed by drilling holes in a board corresponding to
the coordinates of demand points. Weights corresponding to weights w are hung from strings
which are passed through the board from below and tied together in a knot above. It is easily
demonstrated that the knot is in equilibrium at the best location for the facility when p = 2.
However. consider the knot at some point (£,7) other than at equilibrium. Note first that the
force exerted on the knot by any weight depends on the magnitude of the weight and the angle
of the string. not on the distance of the weight from the knot. This "explains” the line relation-
ship (8) and the indeterminancy of the exact position of w . Further, we could imagine the
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areas as densely filled with holes and having very many strings leading to the knot. The condi-
tion F (Xy) = 0, F, (%) = 0 is equivalent to the knot being in such a position that the forces
of the area strings balance; this explains why w, is zero here (as can be checked by Eq. (9)).
Also, when, for example, only F,(%,5) = 0, this means that there is no X-direction component
exerted by the strings, and Eq. (8) is replaced by a vertical line through x.

The iterative procedure we now suggest is as follows. We start with some initial point
(20,59). We then convert the areas 4, into points with weights w, (if 4, is a point, w, = w,).
Since the exact location of a point on the line (8) is indeterminate, we choose that point that is
closest to the center point of the rectangle bounding 4;. We now use the Weiszfeld iteration
for points [5]:

: w, x| x; = g2
(10a) Flrn _ 2 lx, — 2®1P + |y, — 9| -Ve
a : w, |x;, — %2
“ lx, = 202+ |y, — pR-Ve
The equation for ;**1 s 'analogous and will be referred to as Eq. (10b). This procedure

could be modified to a hyperbolic form as in [5]. The new point is used to recalculate
equivalent weights, then £**" and #**" are recaiculated, and so on.

We do not have a proof that the above procedure converges. However, we have found no
cases where Eq. (10) did not converge very quickly. Also, note that when Eq. (10) does con-
verge, the optimum has been found because when the left-hand side of Eq. (10) is equal to the
right-hand side, the extremal equations are met. The advantage of Eq. (10) over Eq. (4) is that
for certain special cases, we can find relatively simple forms for the weight w, and for Eq. (8).

The method can be extended to a problem as in [7] where several facilities (with inter-
shipments) are to be located. The Weiszfeld procedure can be adapted to the multifacility prob-
lem along the lines described on p. 230 of [3]. Since only the demands are areas, Eq. (9) could
be used in the same way. In the next section, we will deal with the problem under some sim-
plifying assumptions which, incidentiallv, have also been made by previous papers on the sub-
ject.

SPECIAL ASSUMPTIONS

We first assume that the weight density in each area A, is uniform and we denote it by

w. We now have

(11) in(-i':j’) _ wi()ff (x - X’)lx - ilp—Z dxdy
4;

llx = &7+ |y — plrI-Ve

If we define A, by letting y be in the region [¢,,(x), &,,(x)] for a, € x < b, and by letting x
be in the region [w,,, (v). ¥y, (W) for ¢, £ ¥y < d,,

PN d, N N ey (1)
F(27) =w’ _I: [lx = |7+ |y = ¢|Ve w6 dy

and therefore

d, “ - ’
(12) F &5 =w' ) (o) = 217+ |y = 5117 = [y, () ~ &7+ [y = 21 7)dy.
Similarly,

h
(13) F &5 = w? [ {lx = £17+ 165, (x) = 51777 = [lx = 217+ |y, (x) = #]71""hax,

N o PRI Y
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The above one-dimensional definite integrals can be evaluated by numerical integration.
Note that Eqs. (12) and (13) may not be usable in that form if A4, is not a convex set; however, |
integration could then be done in "pieces"”. :

We now look at two special shapes of areas when distances are Euclidean (p = 2): circles
and rectangles. First, we consider finding the equivalent direction of a circular area. It could
be shown that this line of force always passes through the center of the circle. This is obvious
by consulting the mechanical analog. The strings emanating from the much drilled circular area
must pull on the knot at (%) in such a way that the resultant force passes through the center
(recall that equal weight density is assumed). To compute the weight w;, we consider the point
(%9) = (0,0) and a circle of radius R centered at (a,0). It follows that F,, = 0. Note that
from symmetry considerations the weight obtained is the same as the weight of any circle of
radius R with its center "a " units from any (%,p).

By Eqs. (9) and (12) and assuming p = 2,
w, = |F,|
R
=wl th“(VRZ ~p 4+ a) + N = [(VR? = y2 = a)? + y]'ay

= wiR? f~11 {1 =324 a/R)*+ yAV2— [J1 = y? = a/R)* + y2 1Y dy
(14) w = w? 7R f(a/R)

where

fla) = :IT— f_]]“(\/l -y + )t + Y1V - (V1 = 2 — @) + U ay.

The evaluation of f(a) can be done accurately by the evaluation of truncated series as
described in the appendix.

We now turn to the rectangle shape that was also treated in [2], [4], and [7]. In Egs. (12)
and (13), we will have to use

wl/(y) =a, wZ/(y) =b
b, (x) =c. ¢lx)=d

giving
d
Foi) =w [, =+ (¢ = DA = g, - D+ (& = P ay

and a similar expression for F, (7).

These expressions can be evaluated to give
i —d, -
" ==
— b, X
v—
"(\—‘{l)l\—(lll l /{ ]”
X X —d
v — b X —a,
F,=w "‘(L—d)h——dl, ]—j' I

{15a) F, = w,"‘(.f - b5 - h,l[_r'

v —=d

a2
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where

| fla)=laVi+al+inla+V1+ad)l

COMPUTATIONAL RESULTS AND CONCLUSIONS

Test problems with points (for comparison) and areas in the shape circles, rectangles, and

ellipses were run. The points and centers of areas were randomly selected from within a 10 x

10 area. Table 1 gives the computational results. The procedure was stopped when the /, dis-

. tance between two successive iterations was less than 107%. The considerably longer time taken

i for ellipses was due not only to numerical integration, but because p was 1.78 and computing
quantities to a power other than 2 takes longer.

TABLE 1 — Computational Results

e

\ No. Demands | Type of Demand | No. Iterations | CDC 6400 s | Distance
500 points 11 0.86 I3
500 rectangles 6 6.23 I
500 circles 6 1.02 I,
50 ellipses 11 419 1y 7%

The unconstrained example given by Love in [4] was solved in 0.1 s as opposed to the 21
s on the Burroughs B-5500 reported by Love; the same solution was obtained but the conver-
gence criteria were on different principles. As a very rough guess the CDC 6400 is 5 or 6 times
faster.

Lo

It should be noted that the approximation suggested by Bennett and Mirakhor [2],
namely, replacing areas by their centroids, could give widely different results in some examples.
For example, consider the two rectangular areas in Table 2. The optimum point is (1.32337,0)
with a cost of 41.15065. If we replace the areas with centroids, the sotution is (5.5,0) with a
cost of 58.58114.

‘ ( TABLE 2 — 4 Two-Area Example

i w |a | b [ d,
1] 8 0 1]-05]|05
2109] 1710} -051|05
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Appendix
EVALUATION OF f(a)
; ' As given in Eq. (14),
; ror= 2 LT o o [ - ]
(‘ This is an elliptic integral (see [1]) with the following properties:

£(0) =0, fleo) =1,
£(1) = 8/3w, f'l@) > 0 for @ > 0,
fla) = af(l/a).

We can compute f{a) by numerical integration.

In standard tables, we can find the series formulation
2k+1

b
Vit & 2 (4k)!
Sy =" ,?_:0 1+a? UKDk + 1)

- Since convergence is slow for « = 1, we can obtain an accelerated formula by defining
' B=2a/(1+0a?,
a, = W2/2mk — (4K)Y Q%% QK1) (k + D,

fla)=VI+ta /2l3 + W22m) B + (1 - g)/B)in(1 - B)] - ): a, 8%+,

The function f(a) can be evaluated approximately as follows:

(a) for @ € (0,1],
i) 0<€ax05

_ 2
3 f(a)=20t—_:_a2.
to a maximum error of 3 x 107%;
(i) for05<€ax<,

4 —
f@) = 2 . ‘: + a® (0.0073 + 0.0621 (a ~ 0.873)?),

to a maximum error of 2 x 107°

(b) fora > 1,
use fla) =af(l/a).
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', ABSTRACT

The waiting time in the random order service G/M/m queue is studied.
For the Laplace transform we obtain a simpler representation thai. previously
3 available. For the moments, an explicit recursive algorithm :s giver and car-

' ried out numerically for some cases. This gives rise to the conjecture ihat the
! waiting-time distribution can be approximated by the one for M/M/m after a
’ suitable change of scale.

1. INTRODUCTION

L Consider the random order service G/M/m queue with interarrival time distribution func-
tion F(F(0) = 0) and service time density we™'. Let G be the distribution function of the
waiting time W (in the stationary case) conditional on its being positive, i.e.,
G()=P(W< | W>0. We shall study G through the Laplace transform

] G(s) = fo e~ ¥dG (1) and the moments ., = J;wl"dG(t) of G

The model has been investigated by LeGall [3] and Takdcs [6], who give the characteristic
function and Laplace transform, respectively, of W. Carter and Cooper [1} and Cooper (2]
study G directly and give recursive algorithms for its computation. Carter and Cooper [1] men-
tion that their analysis was motivated by a study of the Bell System’s No. 101 Electronic
Switching System.

Ty

By a substitution of function in Takdcs’ basic differential Eq. (27) we are here able to
obtain a simpler closed expression for the Laplace transform than that following from Takdcs’
Eq. (23). Also we give a simpler recursive algorithm for the moments than the one indicated
by Takdcs in his Eq. (32)-(36). The algorithm is carried out numerically for some special cases.
The study of moments gives rise to some conjectures on approximations for G.

M LG i
—

The G/M/m/N model has been studied by Rosenlund ([5] § 10). By relations (20),
(24). (27), (28) and (29) the Laplace transform of W can for N <oo be calculated without need
for numerical integration in the usual D/M/m and Ex/M/m cases, so that it might be prefer-
able 1o approximate the present infinite waiting room with a finite waiting room. Our notation
15

B=mu,

ﬁh)=.ﬁmeﬂﬂF0),

wis) = F(Bs),
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p=- (ﬁj;mtdl-‘(t))‘l (assumed < 1),

a(s) = root z with smallest absolute value of the equation z = vis+1-2),
w = al0),

A = as given by (11) in Takdcs [6] (cited by Cooper ({2], p. 186)),

W = waiting time of i th customer,

i

- LAY .
Vix) = ¥ E(s '|i th customer finds m + k other customers at arrival x*,
k=0

M,(x) = ¥ E((BW)"Im + k customers before i th arrival) x*,
k=0

W = random variable with the limiting distribution for W, as i — 0.
The notation is adapted to obtain functions which are invariant under changes of time scale.

Let P, be an arriving customer’s distribution for the number of other customers in the
system in the stationary (long-run) case. From Takdcs [6] Eq. (9), we quote

P~ Ao "k 2 m.

Hence we can derive the relations

(1 PWED=1-A(0-w) '+ 401 -w)'GQ),
)] G(s) = (1 — @) Vyplw),

(3) E(e™)=1-A0-w)"+40-w)'G(s),
(4) w,= (1 - @)™ "M,(w),

5 E(W") = A(1 — ),

For m = 1, it holds that A = w(l ~ w).
2. THE LAPLACE TRANSFORM

From Takdcs {6] Eq. (27), we get
x—=gs+1 =NV (x)+ V(x) =
(6)
A-¢G+1-xNDU=-x)"6s+1~-x)", 0<x <1

The relation between Takdcs’ notation and ours is F(s) = ¢(s), a(s) = y(8s) and
V.(x) = ®(8s,x). Equation (6) also follows from Eq. (24) in Rosenlund [5], which was
derived by different methods and is in a different form than Eq. (26) in Takdcs [6). Before its
solution we make the substitution

Ux) = V,(x) - (s +1-x)7".
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Then from Eq. (6)
U',x)+ U )/ (x—ygs+1=-x)=51-x)""s+1-x)"%

Now take s > 0 real and let / stand for either [0,a(s)) or (a(s),1). With z an arbitrary fixed
point in I we have for xin /

U,(x) exp [f: Y ld‘_ N t” =s(1~-x)"Ys+1-x)2

z dt
exp[fx yGs+1-1) - t]'

4
dx

whence

z dt
U’(X)exp[L yis+1—-1 - r]

@)
f’ dt
w p(s+1—1)—1t

- fj sQ-w) s+ 1~ u)“2exp‘ ]du + C,..

Setting x = z it is seen that the constant of integration C,, = U,(z). Let now x — a(s). Then
Us+1—x)—x—~ (a(s) — x)(1 +¢'(s + 1 — a(s)), so that the left side of Eq. (7) tends
to 0. Hence the first term of the right side is —U,(z) for x = a(s). Put Q(s) = U,(w)/s.
Then

w _ _ w df
(8 Q(s) = -!;m A-uw) " s+1—uexp [fu TG rl-1< ’,du.

The exp factor is < 1. A comparison with Eq. (23) in Takdcs [6] reveals the relative simplicity
of Eq. (8). From Eq. (2) we now get an expression for G (s). Making substitutions of variable
to get real intervals of integration also for complex s we obtain, letting

£.0) =1 —a(s) — (@ — als))y,
1
9 0(s) = (@~ als) [, £ s + £,GN?

exp fy' (w — als))dt ]dy.

Yis + £,(0)) + f,()—1

The resulting expression for G (s) holds also for complex s with Re(s) > 0, and we can use
Lévy's inversion formula for characteristic functions, which for distribution functions F such
that F(¢+) = 0 for r < 0 can be written

(10) F() = 2 [ sin(x)x" Re(F(i x))dx,
T YO

if + 2 0is a point 9f continuity for F. The integral is defined at least in the improper Riemann
sense. Inverting G(s) we note that (8 — Bw)/(s + B — Bw) is the Laplace transform of the
exponential distribution with mean 1/(8 — Bw). This is the distribul »n of waiting time (condi-
tional on its being positive) in the “first come, first served” G/M/m queue. See Eq. (14) in
Takdcs [6]. We can now state

THEOREM 1: With Qgiven by Eq. (8) or (9) it holds that
G(s) = (B —Bw/(s +B —Bw) + (1 - w(s/B)Q(s/8)
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and

G(t)m 1 — g~ (-0 _ %(1 - w) j;“lm(Q(ix)) sin (8¢ x)dx.

From Eq. (7) we get

a1 M (x) = __8_[ V;(x)] =(1-x)"2- fx 1-u)?
ds =0 w

o
exp‘fu v -1 —z]d‘"

This relation can be used for calculating mean wait when the arriving customer’s queue length
distribution is not the stationary one. Applying a Tauberian result we can obtain
G'(0) = lim sG (s) from Theorem 1. By dominated convergence in Eq. (8) we obtain

§—x

(12) G'(0) = (B8 — Bw)w'log(1/(1 -~ w)).

3. THE MOMENTS

Také4cs [6] indicates by his Eqs. (32)-(36) a method of calculating the moments E{(W").
We shall here develop a simple and explicit recursive algorithm for this purpose. It is easily

shown that
{V, (x)] .
s=0

Let us differentiate both sides of Eq. (6) n times in s and r times in x, putting s = 0 and x = w.
Simplifying the resulting equation by substituting

(13) M,(x) = (=1)" as""

9

C0= 0,
G=01-w) ' =D ¢U -w)/riforr 21,
B,, = (1 — )™M (w)/(ntrY),

we obtain the following formula, which might be considered the most useful result of this note:

n+r+1 n r
B,, = (1+r—rc)! , -r,B,,+3 Y
i=l k=0
(14)
n—i4+r—k i+k+1
n ~ , C"_,+,_k (k + I)Bi.k+| - k » n ; 1; r 2 0

The terms with B,, on the right side cancel out, and the term with B, ., vanishes, since
co= 0. Hence Eq. (14) is a recursion. In programming, no regard need be given to the term
—~rc,B,, provided all data registers for the B:s are zero initially. To get B, o, Byo. ... . B, we
calculate Eq. (14) forr =0, ..., p —nand n = 1, ..., p. We get successively
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81,0 Bl.l e Bl.p—Z Bl.p—-l'
leo Bl,l Bz‘p_z,
Bp—I.O Bp—l.lr
B, .
We need only ¢y, ..., ¢,_;. For r > 0 the interest of B,, is only as a stepping stone on the
way to By, ..., B, From Eq. (4) then

THEOREM 2: The moments of G are u, = (8 — Bw) "n!B,, where B, are obtained
recursively from Eq. (14).

Note that the factor (8 — Bw) "n! is the nth moment of the conditional waiting time distribu-
tion for first come, first served queue mentioned in connection with Theorem 1. Hence B,
has independent interest as a comparison between disciplines of service with respect to
moments.

The recursion (14) is well suited for numerical computation (see Table 1) but to throw
more light on the mathematical form of x, we go further. Define
ayo= l,

ej=1+j“jC|,

nt+r~1

a,, = H ejmin(n,n+r—,i)'
Jj=1
D",f = a’l.’Bﬂ,l"

Substitution in Eq. (14) gives

n+r+1 o . n o
Dn,r = r e a,, — Irce Dn.r + 2 z
i=l k=0
(15)
n—i+r—k " o i+tk+1]
n—i Creivr—k|(k+1) Ay, Qg1 Diger — k e an,|-

As before, the terms with D,, and D, ,,, on the right side cancel out and vanish, respectively.
For all other terms the coefficient ¢, 'a, ,a,3!, can be seen to be a polynomial in e, ..., €,,,—;
and hence in ¢;. Thus D, is a polynomial in ¢y, ..., ¢,4,-1.

n—1
THEOREM 3: It holds that x, = (8 — Bw)™"n!D, o/ [] (1 +j — je)"~/, where D, is

J=1
a polynomial in ¢, ..., c,_; obtained recursively from Eq. (15).

For the first three moments we obtain
Dig=1
(16) Dyo=2
Dio=cy(6—c)) + 12~ 8c; + 3¢} — cf.

TNSREV it it il
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Takdcs [6] gave the first and the second moment. For n > 4 the closed expressions for D,
are complicated, and the recursion (14) is preferable for obtaining numerical resuits.

Let us apply the results to the cases of constant and Erlang-distributed interarrival times.
For the deterministic case, where F(s) = e *Tandp =1/87, we define w by w=
exp{(w — 1)/p}), 0 < @ < 1. It holds that

an ¢ = w(l-w) H-loglw))/r!, r 2 1.
For the gamma (Erlang) case, where F(s) = (\/(s + A))X (K > 0) and p = A\/BK, w is
defined by w = (1+(1-w)/pK) "X, 0 < w < 1. Here

K=1+r

18) ¢ =w(l-w) '(1-w'*)" ;

, r z

In particular for the M/M/m queue (K =1) we have w=p=A/8 and
¢, = (1—w) " 'w(r > 1). It follows that for this case

19) u3=128-M322+0w)Q2- 0wk

Table 1 gives B, o, By ..., Bjpo for F(s) equal to e™7,(A/(s + A))%, and A/(s + )), i.e.,
for the queues D/M/m, E/M/m, and M/M/m, and for the traffic intensities p = 0.5, 0.7, and
0.9. We used the calculator TI 59 and run time was 3.75 h for each case, in all 33.75 h.

TABLE 1 — Values of B, o for1 < n < 10

D/M/m L EJM/im M/M/m
p i 05 1 01 | 09 0.5 0.7 0.9 0.5 0.7 0.9
w | 203188 | 46699 | 806900 | 301931 | 552912 | 843335 | 5 7 9
| 1o 1.0 Lo |10 1.0 1.0 1.0 1.0 1.0

1.25500 | 1.50053 | 1.81251 | 1.28835 | 1.51643 | 1.81482 | 1.33333 | 1.53846 | 1.81818

1

2

3 1.97820 | 3.06019 | 4.76979 | 2.07762 | 3.11494 | 4.77927 | 2.22222 | 3.19527 | 4.79339
4 | 3.68889 | 7.69510 | 16.2385 | 395696 | 7.89274 | 16.2857 | 437037 | 8.18958 | 16.356]
5 7.75822 | 22,5330 | 67.1263 | 8.51405 | 23.3153 | 67.3971 | 9.72840 | 24.5066 | 67.8014
6 17.8677 | 74.1797 | 323.777 | 20.1019 | 77.5100 | 325506 | 23.8214 | 82.6458 | 328.092
7 1 442026 | 268.155 | 1773.23 | 51.0705 | 283.195 | 1785.31 | 62.9102 | 306.694 | 1803.40
8 115889 | 1046.83 | 108109 | 137.706 | 1118.21 { 10902.1 | 176.680 | 1231.30 | 110389
9 | 318.837 | 4359.09 | 72282.5 | 390.125 | 4712.69 | 73019.7 | 522.226 | 5281.22 | 7412735
913.672 | 19180.3 | 523851 1152.41 | 20999.0 | 530185 161184 | 23968.8 l 539726

(

The table illustrates the heavy tail of G in comparison with that of the exponential distribution
with mean 1/(8 — Bw), particularly under heavy traffic.

Holding F fixed up to a scale factor and letting p — 1 we have limc; =1 and lim ¢, = 0
for r # 1. This gives in Eq. (14)

(20) limI B,, = (n+ r)/r'.

[
so that by Theorem 2
1) lim (8 — Bw)'u, = (n")°.

p—1
Now (n!)1 = E((XY)", where X and } are independent with density e™*. We cannot, how-
ever, deduce that lim G(t/(B8 — Bw)) = P(XY < 1) = J:‘ e '(1—e~""dy since the moment
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sequence (n!)? does not determine the corresponding distribution uniquely. Neither does it
seem possible to establish such a convergence from the Laplace transform G.

Even for moderately heavy traffic Table 1 reveals that we can write approximately
B, = (n!) @ for some a0 < a < 1) determined by the parameters, so that

22) w,= B —Bw) "(nH)*e,
We can determine o to make Eq. (22) exact for n = 3, i.e.,
(23) a - lOg(BJO)/IOg(6),

where, by Eq. (16) and Theorem 3,
Byo=[c(6— c;) + 12— 8¢ + 3¢ — ¢f1Q = ¢)723 = 2¢))7 .
The approximation is not so good for light traffic.
It is further seen from Table 1 that B, , depends heavily on the traffic intensity p but not
much, given p, on the form of the interarrival distribution F, although u, depends strongly on
F through o in the factor (8 — Bw)™". This suggests that G can be approximated by the distri-

bution for M/M/m after a change of scale. More precisely, let G,z denote G when
F(1} = 1 — e7'; then our results would indicate the approximation

Q4 G() = G, (1(B — Bw)/(1 - p))

for p not too small. The indeterminancy of the moment problem still remains, though.
4. THE DISTRIBUTION FUNCTION G FOR M/M/m AND D/M/m

For the queues M/M/m and D/M/m, special formulas give more useful results for the
calculation of G than the general inversion formuia of Theorem 1. For M/M/m the result of
Pollaczek [4] seems to be the most convenient. It can be written

Gp_l(t) =1-201- P)
(25)
cot x — (1 4+ p — 2Vp cos x)} sin x dx

Vp sin x
+2 t _Npsinx
x arcan[l—\/ﬁcosx

exp[
j; +p~ 2vp cos x)2(1 + e” ')
For D/M/m the most convenient algorithm seems to be the so-called additional conditioning
variable method due to P. J. Burke, described in Cooper [2], pp 229-230. In this case the con-

ditioning variable, the number of arriving customers in (0,t), is deterministic. The algorithm is
a recursive scheme, which for D/M/m can be reformulated in the following way. Let

H,, (1) ~ PBW, > k/p + t|m + j customers before ith arrival),

(26)
k=0,1,...:0<r<p L
Then
@n G =1~0-w)Y o H 5,08t - Botl/p).t 20,
j=0

and H;, is determined by the recursion

PO
i, S, M i
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H ( ) j+! r ’j+l—r
1) =
»9 ,}_:,,-+1(j+1-r)z

e, j20
(28)

J+1 r (l/p)j+l—r Ve
. - - >17 >
’{/.k(t) 2 i+ 1 (J+ l-r)' e H,'k_l(t),k 2 l,j 2 0.

r=1

Forming the power series

o0

Ho(x)= Y xH,(1),0< x < 1,
j=0
we have
29) G(t)=1-(1 - w)i—llﬂpll.ﬂl - mp”/p(w).

From Eqs. (28) we obtain the recursion

Ho (x) = x7! j;x e’V (1—u)"2du

(30) — -,
H,(x) = x~! foxe(“‘”/”Hk_“ (u)du, k > 1.

This results in
1
31 GO =1-0-wo [ e 2u0<1<T
The formula will hold for any arrival distribution Fsuch that F(T — 0) = 0.
For numerical computations it appears that Eq. (31), when applicable, is better than Egs.

(27) and (28), while for + > T(8t > p~ ) generally Eqs. (27) and (28) are better than Egs.
(29) and (30). In Table 2 we study the suggested approximation (24). For each p-value, the

TABLE 2 — Values of G for
D/M/m with approximation (24)

p =05 o =08
l Bt G(1) appr. G(1) appr.
0 0 0 0 0

0.25 | 0.1995 | 0.2315 | 0.1353 | 0.1580
0.50 { 0.3591 | 0.3962 | 0.2510 { 0.2744
0.75 | 0.4868 | 0.5169 | 0.3501 | 0.3646
1.0 0.5889 | 0.6077 | 0.4352 | 0.4369
1.25 | 0.6707 | 0.6775 | 0.5084 | 0.4964
1.50 | 0.7371 | 0.7322 | 0.5483 | 0.5464
1.75 | 0.7885 | 0.7756 | 0.5872 | 0.5889
20 0.8305 | 0.8106 | 0.6244 | 0.6257
25 0.8683 | 0.8624 | 0.6921 | 0.6858
3.0 0.9013 | 0.8981 | 0.7331 | 0.7328
4.0 0.9482 | 0.9413 | 0.8028 | 0.8011
5.0 0.9670 | 0.9647 | 0.8503 | 0.8477
7.0 0.9872 | 0.9859 | 0.9060 | 0.9054
10.0 0.9965 | 0.9958 | 0.9499 | 0.9491
17.0 0.9997 | 9.9996 | 0.9848 | 0.9846
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left column gives G (1) for D/M/m while the right column gives G, (81(1 — w)/(1 = p)). At
least for the larger values of the argument the agreement is seen to be good for both traffic
intensities. Since D/M/m might be denoted £../M/m and since the agreement in moments
was shown to be better between £,/ M/m and M/M/m than between D/M/m and M/M/m, the
approximation (24) should be still better for Ex/M/m.
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ABSTRACT

This paper analyses the E;f"/ M/ ¢ queueing system and shows how to calcu-
late th: expected number in the system, both at a random epoch and immedi-
ately preceding an arriral. These expectations are expressed in terms of certain
initial probabilities which are determined by linear equations. The advantages
and disadvantages of this method are also discussed.

1. INTRODUCTION AND BACKGROUND

This paper investigates a ¢-server queue with exponential service times in which arrivals
occur in batches or groups of size X, where X is a random variable. The time between the
arrivals of two groups is Erlang-distributed.

The distribution of X, the size of the arriving groups, is denoted by {a,}, where
a;= P(X = i). The expected batch size is denoted by @, which is equivalent to 2 ia,.

i=1

The arrival rate of the groups is denoted by A. Since the time between the two arrivals is
Erlang-k distributed, the phases change at a rate of kKA. Units entering the system join a single ]
queue of unlimited size. The service facility is a group of ¢ identical, exponential channels in
parallel, each with a service rate u. The transition into service is instantaneous in that, when a
service channel is free, a unit from the queue (if the queue is not empty) goes into service
without delay.

Multiserver queues with batch arrivals have been investigated by a number of authors. In
particular, Neuts [8] has recently shown that in the G/*/M/c queueing system, the queue
length distribution is matrix geometric, provided the group size cannot exceed a certain limit g.

*The research for this paper was supported in part by the Defense Research Board of Canada, Grant No. 3610-603, and
by Natural Science and Engineering Research Council Canada, Grant No. A8112.
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In a more restricted scope, Abol'nikov [1] and Kabak [7] have studied the M*/M/c queue.
The results of these authors were later consolidated and extended by Cromie, et al. [3].
Cromie [3] also corrected the waiting-time distributions of the earlier authors, following a paper
of Burke [2].

This paper concentrates on finding the expected number of elements in the system. How-
ever, an extended version of this paper is available [5,6] which discusses not only the distribu-
tion of the number of elements in the system but aiso the waiting-time distribution and the
related measure of efficiency. The results concerning the mean waiting time W are not being
presented here partly because of space constraints and partly because once L is known, W can
be evaluated using the Little’s formula, L = AaW.

2. THE EQUILIBRIUM DISTRIBUTION OF QUEUE LENGTH

This section gives equations to determine p,,, the joint equilibrium distribution of n and
r, the number of elements in the system with the arrival group being in the rth phase,
1 € r € k. It also derives a generating function for the number of elements in the system,
and gives the expected number of elements at a random point in time. Further resusts can be
found in the extended version of this paper [6].

Using the normal approach, the equilibrium equations for the system in question can be
found to be

0€£n<c
) (kX + nw)p,, = (n + Dup o, + kApyr-1, 1< r <k
n
@ (kX + np)psy= (0 + Dupusy i + kKN Y @ppipo n < ¢,
A i=1
nzc
(3) (k)‘ + cl")pn‘r = C.u'pni-l,:‘r + k)‘pn,r—l' 2 S r < k’
n
@) (KN + cp)pn i = cptPrsrt + kN Y, QiDyoiicr 1 2 C.

=1
We also define p, as the number of elements in the system, that is,
k
Pn =2 P
r=l

The sum of all p, must equal one. This can only be accomplished if p < 1, where p is defined
as arn/(cu).

It can be shown that the probability that there are n elements in the system, given that
the arrival process is in phase r, is equal to
Pinlr) =k p,..

The generating function of P(n|r) will turn out to be important later. We therefore define

PAz) = i Plnlr:"=k ¥ p,, "

n=0 1 =(}
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Also of importance is A4(z), the generating function of the distribution of the arrival
group size, which is .

A(z) = i z"a,.

n=l

It is shown in the extended version of this paper that p,(z) is equal to

r—1

c=1
1+£&’Z—’££ zk—lZ(C_”)p""zn

k
ff—(z—l) 2[

= kA KN\ fovr
(5) Pk(z) = %
Ly, _fr] k
P+an]? | ~4@s
If one defines
- u|_ep 1
Y=t Tk 7
P;(z) can be transformed to give the following expression:
1 k c—| K
% 1 ——; 2 zyr_lz”(c—”)pn.r
Pk(z) = { r=1 n=0 —
| _ep 1] _
1+ oy o A(2)

We now define

Vv =
() kv kN z

k
1+ & ——“fil] ~A(),

k ¢
U(Z) = 2 zyr—l 2" (C "'”) Pnr-

r=} n=0

It can now be shown that ¥(z) has k — 1 zeros inside the unit circile, which we number
2y, 23 .... 2z For these zeros, U(z) must be zero, which gives & — 1 equations to deter-
mine the p,,

k e=1
(6) Uz) =Y Xy z'(c~n)p,, =0
r=] p=0
Here,
- cpf_cp 1
Ol Liyeel Balraent
Furthermore, it can be shown that
k ¢l
(7) Uy=3 Y (c=n) p,=c(l-p).
re=] ne0

Equations (1), (2), (6), and (7) are sufficient to determine p,,, n < c, r=1,2, ... k
Once the p,, are determined, other measures of performance are obtained easily. For instance,
the expected number in the system immediately before an arrival epoch can be shown to be
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- [ : g7 1 u 1A
3) L prTS) n§o (c—n) z:n n+(r=1) o Do, +Cp 3 (k~1) ey + » A"},
where
2
Au(l) - d A(Z) .
dz 2.l
For the expected number in the system at a random epoch, one finds
Al 1, 4.1 &
9 L=—|aL +=4"M) +a|l+—= Y (c~n)np,
e 2 e

Once the p,, are known for n < ¢, the p,, can also be calculated for n > ¢ as shown in
[6]. Furthermore, it is possible to obtain waiting-time distributions and the related measures of
efficiency.

As an application of the theory, consider the £¥/M/c queueing system in which the group
size follows a geometric distribution, Then

a=pl—-p)rl, i>0,0<p<],

A(2) =pz/ll = (1 = plzl =p

-1
Loa- p)l .
z

V(z) now becomes

1+ £

Viz) = o

2 -1
—-g—f—l,] —pl%-(l—p)] =0.

If % is replaced by x, this results in the following equation for x :

2

l+-§-€:— -—-%A&x [x -1+pl=-p=0.

One divides this equation by (x — 1) and obtains a quadratic equation with the roots x, and x,.
One of the roots, say x,, is greater than one, and this root gives z; = 1/x,. One now calculates

1+£.& __Ei

= 2A m

and gets from Eq. (6) in an explicit form
Ulz)) =(c~0)pyy+(c =0 pyry +
(c~Dp o+ =D p iy +
Pearazi™ o qann!
A similar equation is obtained from Eq. (7):
UD)=cl —p)=(c—-0)py, +(c=0)py,+
lc=Dpy+le=Dp 4+

Pora P
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T

Equations (1) and (2) give

TR}

| 2Apo=wpi
2Apo2a=upia+2Apon

2r + (e = Dpl pea = = Dupya+ 20May ez 2+ .o + a2 o)
RN+ (c=Dulpr2=(c—Dup_ 12+ 2N p21.

. This gives 2¢ equations for the 2c¢ variables pg i, Pg 2, Pe—1.1» Pe-1.2» @nd we found that these
| equations can be solved easily for ¢ up to 10. Once the p,,, 0 € n < ¢, 1 £ r < k, are
known, L~ and L are given by Eq. (8) and (9).

3. THE POWER AND LIMITATIONS OF THE METHOD

If k is low, the zeros of V(z) inside the unit circle can be found easily. In particular, if
k = 2 and the group size distribution is geometric, no problem arises, as was shown in the
preceding section. But even if ¥ (z) is a polynomial of high degree or transcendental, the zero
of V(z) inside the unit circle can be found readily as long as k = 2. For instance, we had no
problem finding z, for the £§/M/c queue with group sizes that are Poisson distributed. In gen-
eral, the root z, can be found as follows. One first shows that z, is in the range

e oo

(10) a < Zy < b,
where
-1 -1
=1 + & = u
a 1 oY 1+ N
-1 -1
b= Ly _ @
1+2 By 1+ N

Equation (10) is correct because V(a) < 0 and V(b) > 0. Since there is a narrow range for
z;, Newton’s method or the rule of the false position can be applied to find z;.

For higher values of k, one has to use complex arithmetic. In order to see this, the fol-
lowing theorem is useful.

THEOREM: If kis odd, all Kk — 1 zeros of V(z) inside the unit circle are complex. If k
is even, ¥(z) has k — 1 complex zeros inside the unit circle, and one real zero. Moreover, the
real zero satisfies Eq. (10).

Thus, if kK = 3, one has to find two complex zeros inside the unit circle, and these zeros
are conjugate. If kK = 4, one has a pair of conjugate complex zeros and one real zero, and so
on. To find a pair of conjugate complex zeros is feasible. Hence, kK = 3 and k = 4 will not
pose unsurmountable problems even if the group size has a transcendental generating function,
as is the case if the group size in Poisson. For higher &, the zeros inside the unit circle can be
found conveniently, provided 4 (z) is a real function. The equation ¥(z) = 0 can then be con-
verted to a polynomial, and there are efficient computer algorithms available to solve such poly-
nomials. Indeed, it has been shown in another connection that it takes only a few seconds on a
computer to find the roots of a polynomial of degree 50 [4].
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For high values of ¢ and k, the solution of ck linear equations that determine the ck vari-
! ables p,,, 0 € n € ¢ — 1, 1 £ r € k, may pose problems. In this case one has to use algo-
E rithms that make use of the block-diagonal structures of the system. Further problems arise in
i‘ the case of double roots. These problems are discussed in the extended version of this paper.
; They can occur only for k& 2 S because of the theorem stated above. Moreover, it can be
: shown that no double roots will occur if the group size is geometric or constant.
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ABSTRACT

Single server queues with general interarrival and service times are approxi-
mated by queues with two-point (Bernoulli) interarrival times and exponential
service times. The parameters are chosen such that the first four moments of
the difference of the service times and interarrival times in the approximating
system equal those of the original system. The aptness of the approximation is
discussed and some examples are presented comparing the exact and approxi-
mate waiting time distributions. A more complicated approximation is pre-
sented using the dual system (exponential arrivals, Bernoulli service) for those
cases where the original approximation cannot be used.

1. INTRODUCTION

The use of the Erlang family of distributions to approximate interarrival and service time
distributions in single server queues has been studied by a number of authors. Kotiah, Thomp-
son and Waugh [5] presented an algorithm to solve for the / roots of the functional equation
arising in E,/E/1 queues. The method depends on / being integer and the solution involves
pairs of complex conjugate roots which are used in the expression for the waiting time distribu-
tion. Though the algorithm is amenable to hand calculation, the amount of work required to
end up with a usable equation involving only real numbers is substantial. More general
methods for noninteger / have been suggested (see for example, Wishart [9]), although no sim-
ple manual algorithms are given. Marchal and Harris [6] pointed out that the approximation
technique can be improved if, instead of fitting distributions separately to the service time S
and the interarrival time 7, a distribution is fitted to the difference U = S — T, since the wait-
ing time distribution depends only on U and not on § and T individually. Their scheme
involved finding two Erlang distributions such that the first four moments of the difference of
these random variables match the first four moments of the actual difference. Unfortunately,
the solution algorithm requires machine calculation.

A simple approach in the spirit of Marchal and Harris is to assume exponential service
times and utilize a Bernoulli distribution (B) of interarrival times. With the Bernoulli distribu-
tion, the interarrival times take on the value ¢, with probability 1 — p and the value #; > 1,
with probability p. The idea is to approximate a GI/G/1 queue by a B/M/1 queue, where the
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parameters p, 7, and 1, plus the parameter m of the exponential distribution, are chosen such
that the first four moments of U in the approximate system match the corresponding moments
of the original system. The waiting time distribution will be exponential and the computations
are particularly simple. However, as will be seen in the third example further on, this approxi-
mation is not always possible. The dual system, the M/B/1 queue, might be used to obtain the
waiting time approximation in that case.

The fact that the waiting time distribution can be approximated by an exponential, at least
asymptotically, has been known for some time. Kingman [4] derived an exponential approxi-
mation to the waiting time distribution for GI/G/1 queues in heavy traffic, and Riordan [7)]
suggests the exponential approximation to waiting times in M/G/1 queues. As Wishart [9]
points out, almost any probability frequency function can be written as a weighted, infinite sum
of integer Erlang distributions. A result of Smith [8] can be applied to show that the waiting
time distribution can then be written as an infinite sum of negative exponentials. For large
values of the random variables, the terms with large (in magnitude) exponents vanish rapidly
and the term with the smallest parameter governs the tail of the distribution.

2. THE B/M/1 APPROXIMATION

Let g, be the i th moment of the interarrival times, and let b, be the /th moment of the
service times. These moments could be either obtained from knowledge of the distribution or
calculated from data. The first four moments of U are:

g =b—a
Cyr= b2 - 2b,a, + a,
Cy = b3“3b20| +3b‘a2— aj

Cqy = b4 - 4b3a, + 6[)202 - 4b,a3 + a,.

If the B/M/1 queue is used as an approximation, then the / th moment of the approximat-
ing interarrival distribution is

a, = (1 —=p)ty + pry,
and the i th moment of the approximating service distribution is
b = it/m. !

The moments of the difference, ¢, are obtained as are the ¢, with g, and b, replacing a, and b,
respectively. Setting ¢, = ¢, for i =1, 2, 3, 4 yields

- - [(1 —p)ll +pf2] = (Cy
- % (¢ _P)’| +pl;‘ + [Q “p)[|2 +p122] =

62 [(1=p)e, + pts] + % [ =pid +pfl =1 = p)ef + pid) = e,
m

IR 3o 3|0 3|

_ 24
mJ

&

(1= pty + prad + A2 10 = i + il = 200 = i + prd)
m m

+ [ = p)ef + md) =,
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These four equations must be solved simultaneously for m, p, 1;, and t,. The solution is
tedious but the final result is surprisingly simple. The parameter m is the solution to the cubic
equation

a m + Kim+ K,=0,
with
4cic3— ¢y — 3¢}

2010503 + €504 — ccyg~ ¢} — ¢}

and

¢3 = 3¢, + 2cf
K2=4 2 2
2CIC2(,‘3 + Cyfg— CjCyg— Cy — C

7"

The extraction of the roots of a cubic equation is discussed in most college algebra texts and
mathematical handbooks, for example, Burington [1].

The remaining parameters are calculated as follows: let

X (cie3 — eIm* + (c1c5 = cyym® + (Bey — 4ct)m?
3 -_—

(c;—ci)m?—1
and
K3+ com? —2¢em

1—cm

K4=

The larger root of the quadratic equation
y2 - K4y + K3 =0
is denoted by y; and the smaller root by y;. Then
l—y,—cym
) p= A4 B 1
Y= N

b4 Y2
= '2= —_—
m

m

The cubic equation in m may have more than one real positive solution. The experience
of the author in working examples is that when this occurs (and it will occur if the third
moment of the service time distribution about its mean exceeds the third moment of the
interarrival distribution about its mean) none of the real positive solutions will yield positive
values for p, t|, and ¢, The B/M/1 queue cannot be used as an approximation in that case.

If m, p, ¢, and ¢, are obtained as above, then the equation

(3) (1 _ p)e—m(l—:)ll + pe-—m(l—:)lz —z=0

has one real root in the interval, 0 < z < 1; call this root Z. The expected waiting time prior
to service in this approximate system is

W, Z

T a=2Im
The probability that an arrival does not have to wait is
w,(0) =1-2
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and the probability of a wait longer than ¢ prior to the start of service is
1 — W,(1) = Ze~m=21
(see Gross and Harris [3], pages 277-279).
3. SOME EXAMPLES
EXAMPLE 1: For the E/E/1 queue with k = 1.5, 1/» = 2.5, | = 6, 1/ = 2, the algo-
rithm of Kotiah et al. [5] yields the exact probability of a wait greater than ¢ :
1— W, (1) = 0.802¢7935% — 0.013e~4740" 4 0.050¢~227!

[cos(1.234 + 1.805¢) ~ 0.649 cos(0.047 + 1.805¢)]

+ 0.021e*%% [c05(2.193 + 1.470¢) — 0.594 cos(0.021 + 1.4701)].
The approximating system is based on the interarrival moments

’l—l
a=(E| a5+
1.5 j=0

and service time moments

2 "=l
b = g H(6+J)

i=0

These are used to calculate the ¢, and K, and K,. The cubic equation becomes
m3 — 0.5486m — 0.1405 =0

which has m = 0.8454 as its single real positive solution. K, and K4 can now be calculated to
yield the quadratic equation

y2—6.9699y + 5.4373 = 0.

The roots are y, = 0.8951, y, = 6.0748. Thus, p = 0.1019, ¢+, = 1.0587, ¢, = 7.1854, and the
approximating distribution is

1— W,(1) = 0.711e70%,

The exact and approximating distributions are compared in Table 1 as are the means of the
interarrival and service time distributions, the mean waiting times, and the traffic intensities.
These expectations are shown to demonstrate that in spite of the fact that the approximating
system does not resemble the exact system, the waiting time distributions are close to each
other.

EXAMPLE 2: For the queue with hyperexponential interarrivals with probability density
function

a(t) = (Y9e ¥V + (8/9)e= W
and hyperexponential service with density function

b(r) = (1/8)e™" + (9/de™?,
the probability of a wait fonger than ¢ is

1~ W,(1) = 0.420¢7 06" + 0.106e~2327
(see Greenberg [2]). The interarrival moments are

a =13+ 1.57/2,

Sk pssnr v T
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TABLE 1 — Comparison of Exact and
Approximate B/M/1 Systems

Example 1 Example 2
Exact | Approximate || Exact | Approximate
Mean interarrival time | 2.5 1.683 1 1.377
Mean service time 2 1.183 0.5 0.877
Traffic intensity 0.8 0.703 0.5 0.636
Average delay 3.16 2.92 0.73 0.78
Prob {delay > /]
t
0 0.748 0.711 0.526 0.470
1 0.619 0.557 0.238 0.257
2 0.485 0.437 0.125 0.140
3 0.377 0.342 0.067 0.077
4 0.293 0.268 0.036 0.042
5 0.227 0.210 0.020 0.023
6 0.177 0.165 0.011 0.013
7 0.137 0.129 0.006 0.007
8 0.107 0.101 0.003 0.004
9 0.083 0.079 0.002 0.002
10 0.065 0.062 0.001 0.001

and the service time moments are
b, = il(47" + (4/3)7)/4"
The cubic equation becomes
m® - 1.0335m — 0.3057 =0,
which has m = 1.1408 as its single real positive solution. The approximating distribution is
1 — W;(1) =0.470¢7060%
and the exact and approximate systems are compared in Table 1.
EXAMPLE 3: For the queue with Erlang interarrivals with k = 3 and 1/A = 2/3, and
hyperexponential services with density function
b(t) = 0.04¢70% + 3.24¢738,
the probability of a wait longer than ¢ is
1- W, (1) = 0.587¢7 0168 4 0,079~ 2863
(see Greenberg [2]). The moments are
i
a = [-2# ;_:I:) 3 +j)

and

b, = 110" + (10/9)' "1 /4".
The cubic equation becomes
m? —2.0457m + 0.7495 = 0,
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which has two real positive solutions: m = 1.899 or 0.3969. Using the first, K; = —15.11 and
using the second K; = —0.11. Thus the quadratic equation in y will have a single positive root
and the appropriate solutions for p, 1, and f; do not exist. In this case, no B/M/1 queue can
be used as an approximation.

4. THE M/B/1 APPROXIMATION

If the M/B/1 queue is used as an approximation with L as the parameter of the exponen-
tial interarrival time distribution and service times u; (with probability 1 — ¢) and u, > u,
(with probability g), then the /th moment of the approximating interarrival distribution is
a,=j!/L' and the ith moment of the approximating service time distribution is
b= (1 — q)u| + quj. The ensuing cubic equation which must be solved for L differs from
Equation (1) only in one sign:
L3+ K\L,-K,=0

with K, and K, as in Section 2. Note that the real positive roots of this equation are the abso-
lute values of the real negative roots of Equation (1).

The remainder of the derivation is parallel to that of the B/M/1, resuliting in a quadratic
equation similar to the one in Section 2: {
21— Key + Ks=0
where
(cye3 = c#YL* — (cye; — ) L3 + (B¢, — 4cf) L?
(c;—cHLr-1

»

K5=

and
K5 + C2L2 + 2C1L

Ko = 1+ ;L

The two roots are y, and y, < y,. The estimate of ¢ is similar to the estimate of p, Equation
(2), again differing only in one sign:

1 - N +C|L
Y2 =N

q=

and

M|=,V|/L, u2=y2/L.

The expected waiting time prior to service for this approximating M/B/1 queue is
W= Lb,

21 =1

where ris the traffic intensity of the approximating system given by

r=L[(1 — q)u, + qu,l.

The Laplace-Stieltjes transform of the Bernoulli service time distribution is
(1 — ¢Yexp(—8u,) + g exp(—fu,). This can be substituted into the Pollaczek-Khinchine for-
mula. This latter expression can be expanded in an infinite series and the binomial theorem
invoked twice to yield the transform of the approximating waiting time distribution:
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B

fom exp(—=81)dW, (1) =

R N N e ) M G I s o
a-r /;()L A% Z(:) GG k) o exp{—6liuy, + (k ~ Du,l).

Reversing the order of summation, summing over j, and multiplying by 8 yields the
transform of W, (¢}, which can be inverted term by term and subtracted from unity to yield the
probability of a wait longer than ¢ :

1 "y L1t — iur~— (k — i ,
=W, =1-00-1% DY {qL 11 — iu, »'( Nyl
A=0 1 =) [
A =Ll —iuy = k= Du)P

= exp{Llr — iuy — (k — D}
where /(1) is the largest integer less than or equal to r/u, and 1(2) is the largest integer less
than or equal to (1 — ku)/(uy — uy).

This expression, although a finite sum, is quite difficult to evaluate numerically even
using double precision arithmetic on a computer. The approximation to the queue of example
3 requires a sum of thirty terms for the probability of a wait longer than ten units, a probability
of about 0.1, with a number of the terms exceeding 10 in magnitude.

An "approximation to the approximation” can be used to obtain a simpler result, using the
Riordan approximation alluded to earlier. For the M/B/1 queue the Riordan approximation
becomes

1 — L[(l - (])U| + (]Uz]

1~ W,(0) = exp{L(1 = Z)1)
1

L[(l _ q)ul‘)~l4(l~2)ll|+quze—I,(I—/)N:] _
where Z > 1 is the largest root of the analog of Equation (3):
(l _ q)e—L(l-:)u‘+qe—L(l—:)uz__: -0

EXAMPLE 3 (continued) : The cubic equation
L3 —20457L —0.7495 =0

has one real positive solution, L = 1.5868. Note that m = —1.5868 is the third root of the
cubic equation for m in the first part of this example. K and K, can now be calculated to yield
the quadratic equation

y? - 15.9005y + 89137 =0
with roots y, = 0.5819, y, = 15.3187. Hence ¢ = 0.0104, u, = 0.3667, and v, = 9.6538. The
approximating traffic intensity is r = 0.7385.

The Pollaczek-Khinchine sum for 1 — W, (1) can be evaluated at this point. The Riordan
approximation requires the largest root of

(l - 0_0104)(,—“ 5868)(1-:1(0.3667) + 0.0104?7” S868)(1 -)1(96538) __ =0

which is = = 1.1073 = Z. Hence,
1- W, (1) = 0,6057‘0\0”"-".
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The exact probability of having to wait longer than time ¢ is contrasted with the M/B/1 approxi-
mation based on the Pollaczek-Khinchine formula and with the Riordan approximation in Table
2. The expected waiting time of the approximating M/B/1 system is W, = 3.3 compared to the
true value for the original system of 3.5.

TABLE 2 — Approximations for

Example 3

Probability of Delay > ¢

t Approximations

Exact
M/B/1 | Riordan

0 0.666 [ 0.736 0.606
0.5 1 055 | 0483 0.555
1 0.501 0.389 0.511
2 0.420 | 0.339 0.431
3 0.355 | 0312 0.363
4 0.300 | 0.285 0.306
5 0.253 | 0.257 0.258
6 0.214 | 0.227 0.218
7 0.181 0.197 0.184
8 0.153 0.166 0.155
9 0.129 | 0.133 0.131
10 0.109 { 0.107 0.110
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ABSTRACT

An example of a network with flow costs depending on congestion is
presented for which no system of tolls and subsidies exists which can ensure
that all equilibria in the game of route selection are Pareto optimal.

It has long been recognized that in transportation facilities subject to congestion delays,
equilibrium flows may not be Pareto optimal. The imposition of tolls has been a much dis-
cussed remedy (see, for example, the classical treatments by Pigou [4] and Knight [3] and the
more recent discussions in Kahn [2] and Edelson [1]). The purpose of this note is to show that
an all-knowing central authority, using a system of tolls or a system of tolls and subsidies, can-
not in general force an outcome which is Pareto optimal or even Pareto superior to a given
nonoptimal equilibrium.

Consider a network containing only two nodes, A and B, which are connected by two dis-
tinct arcs, 1 and 2. Four players, 1, 2, 3, and 4, must travel from A to B. The cost (or travel
time) incurred by player / on arc k when the total traffic on arc k is x; is

2 ifiZk x, £2
ifi =k x. <2
lf = k, Xk > 2

4
cu(xy) = 3 fori=1,2
5

= 0 otherwise.

Thus, players 1 and 2 incur uniformly higher costs on arcs 1 and 2, respectively, while the costs
for players 3 and 4 are 0, independent of route and traffic. It is easy to see that the Pareto
optimal (costs being minimized) route selections result in the unique cost vector (2,2,0,0) and
involve player 1 travelling on arc 2, player 2 travelling on arc 1, player 3 travelling on either
arc, and player 4 travelling on the arc not traversed by 3. The set of Nash equilibria of the pure
strategy game of route selection, however, consists of all the configurations of two players on
each arc. The resulting cost vectors are (2,2,0,0), (2,3,0,0), (3,2,0,0) and (3,3,0,0).
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_ Suppose that a central authority, knowing the above data and fearing a nonoptimal equili-
| brium, wishes to force a Pareto optimal selection of routes for the players. Consider first a sys-
: tem of tolls on the arcs in the form of some otherwise worthless medium (say tokens) together
‘| with subsidies of tokens 1o the players. (In our usage a toll is a fixed charge which must be
: paid by every unit of flow using a particular arc. A subsidy is a gift to a player which is
independent of route selection. Different players may receive different subsidies, and different
arcs may be assigned different tolls; but different players pay the same toll if they use the same
arc.) No matter what the subsidies are (as long as all players can afford at least one of the arcs)
there is no way to stop players 3 and 4 from travelling on the arc with the cheaper toll (or on
k! the same arc, if both tolls are equal). This cannot result in a Pareto optimal selection.

Similarly, if the tolls and subsidies are in the form of money, 3 and 4 cannot be kept from
travelling on the cheaper arc.

] l A trivial way out of the dilemma in general is to use a different kind of token on each arc
in the network and to subsidize each player exactly the required number of units of each kind
of token for the route desired. This method, of course, can be used to force every player to
use the route deemed desirable for him. It does not appear to be practical in large networks,
however.
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ABSTRACT

The problem of determining a vector that places a system in a state of
equilibrium is studied with the aid of mathematical programming. The ap-
proach derives from the logical equivalence between the general equilibrium
problem and the complementarity problem, the latter being explicitly concerned
with finding a point in the set § = {x : < x,g(x)> = 0.g(x) €0, x 20} .
An associated nonconvex program, min{— < xg(x) > :g(x) <0.x 2 0}, is
proposed whose solution set coincides with S. When the excess demand func-
tion g{x) meets certain separability conditions, equilibrium solutions are ob-
tained by using an established branch and bound algorithm. Because the best
upper bound is known at the outset, an independent check for convergence can
be made at each iteration of the algorithm, thereby greatly increasing its
efficiency. A number of examples drawn from economic and network theory
are presented in order to demonstrate the computational aspects of the ap-
proach. The results appear promising for a wide range of problem sizes and
types, with solutions occurring in a relatively small number of iterations.

1. INTRODUCTION

In this paper we investigate a procedure for computing equilibria from the vantage point
of mathe- 1atical programming. A competitive model of an ecomony will serve as the basis for
the discussion although a variety of contexts would have been equally suitable. Other types of
equilibrium problems, such as those arising in traffic network analysis, have direct conceptual
and analytic counterparts to those found in economics, and are hence amenable to the same
solution techniques.

A state of equilibrium exists when competing or opposing forces are brought into balance.
One of the major themes of ecomonic theory is that the behavior of a complex economic sys-
tem can be viewed as an equilibrium arising from the interaction of a number of economic
units, each motivated by their own special interest. General equilibrium theory (2] [22],[24))
seeks to determine the point at which this balance can be struck, and in so doing focuses on the
interrelationships that exist among the markets for goods and services in the economy. The
analysis, however, is carried out in terms of individual decision makers and commodities rather
than in terms of aggregates. The fundamental questions that general equilibrium theory

*Research sponsored by the U.S. Army Research Office, Durham, N.C.
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attempts to answer are the same as those posed in macroeconomic theory: given different
economic environments, what goods will the economy produce, how will these be produced,
and who will obtain them? But where macroeconomics provides answers in terms of aggre-
gates, general equilibrium theory provides answers in terms of the individual consumers, pro-
ducers, and commodities making up these aggregates.

Consider, for the moment, a model in which m consumers are engaged in the exchange of
commodities which they initially own and in which production or supply is ignored. Suppose
there are n goods in the economy and that each of the consumer’s preferences is represented by
a utility function. A bundle of goods x is preferred to a bundle x' by consumer
i(i=1,..., m)if and only if u,(x) > u;(x’) where the utility function u; : R" — R is gen-
erally assumed to be strictly concave and continuous. Let p € R” be the vector of prices for
the n goods. The demands of the /th consumer are determined by the solution to the follow-
ing problem:

maximize u,(x)
subject to <px> < <pw'>
x20,

where w'€ R” is the initial wealth or resource endowment of the ith consumer, i =1, ..., m.
We shall assume that the solution vector for this problem, d'(p), can be written as a continuous
function of the prices p. The individual trader’s excess demand function is d'(p) — w'
(i=1,..., m) and will be denoted by g'(p). The excess demand will be positive for those
commodities whose stock he wishes 1o increase by exchange and negative for the remaining
items. If it is assumed that all purchases are to be financed solely by the sale of assets, then
individual budgetary constraints lead to the following identity:

(m 71di(p) + -+ + p,d,(p) = pywi + -+ + p,w,.
The market excess demand function g : R”— R” is simply the sum of the individual excess
demand functions

glp) = f: (d'(p) — w').

i=1

An equilibrium price vector p*is one for which all of the market excess demands are less
than or equal to zero with a zero price for any commodity whose excess demand is strictly less
than zero. This leads to the formulation of the complementarity problem ([8],[17]):

2) g(p) <0,
3) ? 20,
4 <pglp)> =0,

whose solution p* will be the focal point of this paper. Condition (4), known as the Walras
Law [27], is the aggregated form of Eq. (1) and holds for all price vectors p whether they are in
equilibrium or not.

We note here that production may easily be incorporated in this model by either replacing
or augmenting the i th consumer’s initial wealth w' by a supply function. For individual i, this
function relates the prevailing market prices p to the quantity of goods produced.

A number of persons, including Nash [20], Arrow and Debreu {1], and Kuhn [16] have
studied the existence problem of the competitive model from the standpoint of combinatorial
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topology. The first algorithms, however, actually designed for computing economic equilibria
were developed by Scarf [23], and were based on a procedure for approximating a fixed point of
a continuous mapping. More recently, Wilson [28] and Elken [10] have exploited path
methods in the pursuit of greater computational efficiency. In a slightly different vein, Lemke
{17] offered some constructive proofs relating to the existence of equilibrium points for bima-
trix games. His work strongly suggested a computational scheme for models with linear excess
demand functions.

This paper presents an alternative procedure for computing equilibria for a class of prob-
lems where the excess demand function or its logical equivalent has an explicit representation
that can be converted to a separable form. Solutions are obtained by first recasting the com-
plemeniarity problem into a nonconvex minimization problem whose optimal value or best
upper bound is known at the outset, and then using Falk’s [12] algorithm to locate a global
solution. This allows us to go beyond the common linear formulations of an economy or net-
work (e.g., see Eaves (8], Negishi [21], or Asmuth, Eaves, and Peterson [4]) which, in spite of
their outward simplicity, must appeal to rather complicated algorithms if solutions are to be
obtained.

The algorithm which we subsequently describe and use as an alternative for solving Egs.
(2-4) is based on a branch and bound philosophy, and as such, computes a convergent
sequence of upper and lower bounds on the optimal value of the problem. In our case, how-
ever, because the best upper bound on the objective function is known to be zero, the amount
of work necessary to achieve convergence is significantly reduced. The usual requirement of
finding a point that yields equality between the best upper and best lower bounds is replaced by
the simpler requirement of finding any point that yields an abjective value of zero.

In the next section, the complementarity problem is reformulated as a nonconvex minimi-
zation problem whose solution yields the desired equilibrium vector. Next, the method is
applied to a number of sample problems and our computational experience is detailed. Here we
see that the results are obtained in a surprisingiy small number of iterations of the algorithm.

2.0 REFORMULATION OF THE COMPLEMENTARITY PROBLEM

In the complementarity problem derived above, there is no objective function to be
optimized. Indeed, in many complex economic equilibrium problems there does not appear to
be a "natural” objective function whose optimization yields prices and quantities in equilibrium
(see, e.g., Scarf [24]).

In spite of this, consider the following "artificial' minimization problem (P):
(P) v* = min{-<pg(p)> : g(p) <0, p 20).

Now let p* be a solution of the complementarity problem (i.e., p* is a vector of equilibrium
prices). Then p* is feasible to problem (P), and yields a value of 0 to the objective function.
Since this objective function is greater than or equal to zero at all feasible points, v* = 0. Con-
versely, it is clear that any solution of problem (P) for which v* = 0 must be a vector of equili-
brium prices.

Problem (P) is of a nonconvex nature, and in general, no suitable technique exists for the
determination of a global, rather than a local solution; however, if each excess demand function
g,i=1,2,..., n, is separable, i.e.,
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n
g =3 g i=1,2...,n
j=1

and each g; is continuous, then problem (P) can be written as a separable programming prob-
lem whose approximate global solution can be obtained with arbitrary precision.

We now formulate an equivalent problem with a different objective function but the same
constraint region whose optimal value is equal to that of problem (P). The equivalent problem
(P) is
P) minY min(p, — &) :p 20, g(p) <0

i

Rewriting the objective function in problem (P'), we get the desired result:

ggl)il’slo l ;(min(O, -g{p) —p) + Pi)]
p20

= min 3 (min(0,w,) + pi)'

i
gpgl
w+p+glp)m0
p20

(S) = min{ Y. (min(0,w;) + p,-)]

z:gb(ﬂﬂ <0

w+p+ Xgp)=0 =L ..
Jpgo

where the w;’s will be referred to as auxiliary variables.

Problem (S) is still a nonconvex programming problem, but its separable structure,
created at the expense of a twofold increase in dimensionality, makes its mathematics much
more tractable. The traditional method for treating separable problems involves calculating
piecewise linear approximations of the associated functions and applying a modification of the
simplex method to the resulting problem (see, e.g., Miller [19]). The modification amounts to
a restriction on the usual manner of selecting variables to exchange roles (basic to nonbasic and
vice versa) and will yield a local but not necessarily a global solution of the approximating prob-
lem.

An algorithm for finding global solutions of nonconvex separable problems was developed
by Falk and Soland [13] and Soland [25). The method is based on the branch and bound philo-
sophy and yields a (generally infinite) sequence of points whose cluster points are global solu-
tions of the problem. The implementation of the method is limited by the necessity of comput-
ing convex envelopes (11] of the functions involved, although a number of applications have
been shown possible when these functions exhibit special structures (e.g., concave or piecewise
linear).

The inherent limitations that special problem structures impose have been overcome by
the introduction of two algorithms independently developed by Beale and Tomilin 5] and Falk
{12]. For this paper, we have used the programming code MOGG based on the algorithm pro-
posed by Falk and written by Grotte {15] to solve a number of equilibrium problems. The
results are presented in the next section.

PR U P




COMPUTING EQUILIBRIA VIA NONCONVEX PROGRAMMING 237

3.0 COMPUTATIONAL EXPERIENCE

A variety of equilibrium problems have been studied to test the approach outlined above.
The first is a multicommodity, transshipment problem defined on an affine network, taken from
Asmuth, Eaves, and Peterson [4] who used Lemke's algorithm {17] to obtain a solution. The
second involves a simple competitive market comprising three producers, three consumers, and
three commodities. The supply and demand functions in this economy are given a piecewise
linear formulation, and three equilibrium points are known to exist. The third problem is
identical to the second except that a majority of the piecewise linear functions have been recast
as continuous, smooth functions. The fourth problem provides an example outside the context
of economics, and is derived from a 3-node, 4-arc traffic network whose equivalent excess
demand function is both nonlinear and nonseparable.

The algorithm itself is based on branch and bound techniques and considers subsets of a
linear polyhedron containing the feasible region of problem (S). A lower bound on the optimal
value of the problem is found by minimizing the objective function over each of these subsets
and selecting the smallest value obtained. A check for the solution is made which, if success-
ful, yieids a global solution of the piecewise linear approximation to problem (S). If the check
fails, the subset corresponding to the smallest lower bound is further subdivided into either two
or three new linear polyhedra and the process continues as before with new and sharper bounds
being determined. The process is finite and terminates with a global solution of the approxi-
mate problem.

3.1 Transshipment on Affine Networks

Economic equilibria on certain affine, multicommodity, transshipment networks were first
studied by the regional economists Takayama and Judge [26] using quadratic programming.
Recently, Asmuth, Eaves, and Peterson [4] have constructed a more general approach that util-
izes the economic equilibrium conditions directly without first passing to a quadratic program-
ming problem. A brief discussion of their model and the solution to the sample problem
presented in their paper follow.

The transshipment problem can conveniently be represented by a directed graph (N,L)
with a finite number of nodes (members of N) and links (members of L) on which a finite
number of commodities can be transported. Each node i in N represents the set of producers
and/or consumers at a specific spatial location; and each link ijin L represents a specific facility
for transporting commodities from some node i to a different node j. (In particular, we assume
that there are no loops; i.e., no links connecting a given node to itself.}) Each link is aligned to
coincide with a direction of possible transport; therefore, at least two links must connect nodes
between which commodities can be transported in either direction. The nodes are enumerated
in any order, consecutively beginning with one, as illustrated by the graph in Fig. 1.

Let p; and p; be n vectors denoting the unit demand price and the unit supply price of n
commodities at node i, and let p € R" denote the cost of transporting each of these n commo-
dities over link ij. Affine relations are assumed between prices and quantities; i.e.,

(5) p'= A'x'+ a' for each node i € N,

where p'= (pi.p))T, A', and @' are given constant matrices and vectors (which arose in {4]
from inverting the difference between given supply and demand quantities, originally expressed
as affine functions of price), and x' is an n-dimensional vector representing the excess quantity
of each commodity produced by node i It is also assumed that
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34

42

FiGURE . Sample transshipment network.

(6) pY= AYxY + a¥ for each link ij € L,
where AY and @Y are given constant matrices and vectors (which arose from describing the

transport prices as functions of transport volumes), and x” € R" denotes the quantity of n com-
modities transported over link /.

The quantities are constrained by the nonnegativity condition
m xY > 0 for each link ij € L

and the commodity coanservation condition

€] x'= % x¥— ¥ x/foreach node i € N, 1
JEN JEN

where x¥= 0 if ij € L. Note that although x” is nonnegative by virtue of the choice of link

direction, the components of x' might be positive or negative depending on whether node i is a

net exporter or net importer of a particular commodity.

The price stability condition on p leads to the following relationship:
- C)) pY + p{ > pj for each link ij € L.

To see this, assume that Eq. (9) is violated for some commodity c¢. As a consequence some
economic agent would find it profitable to purchase as much of commodity c as possible at node ﬁ

i and transport it over link ¢ for resale at node j. This would clearly be an economically
i unstable situation.

The final relationship needed to establish equilibrium is the complementarity condition

(10) < x¥, (pj— p¥— pl) > = 0 for each link ij € L.

| This condition is imposed to ensure that no positive flow x¥ will occur on a link if the cost
i p” + p! of a commodity at node j exceeds the price pj which a consumer is willing to pay.

4 To conform with the notation developed in Section 1.0, a function g% € R” equivalent to
‘ the excess demand function but now expressed in terms of prices rather than quantities will be
ro defined by the following expression:

g" = pi ~ p¥ — p! for each link ij € L.
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Through the appropriate substitutions the solution (x,p) to the economic equilibrium con-
ditions (5-10) can be described entirely in terms of the solution (x,g) to the linear complemen-
tarity conditions

(1) x20, <xg>=0,¢g<0
12) g=—Mx—v

where x, g, and v are vectors equal in size to the number of links times the number of commo-
dities, and M is a square matrix of comparable dimension whose components are given in Fig.
2. The constant v follows from the substitution of Eqs. (5) and (6) into Eq. (10) and is given
by

vi= g} — a¥ — qa! for each link ij € L.

FIGURE 2. Constituents of matrix for sample network.

For purposes of illustration, the 2-commodity, 5-link network shown in Fig. 1 has been
considered for analysis. The reworked data for this problem are displayed in Fig. 3. If condi-
tions (11) and (12) are now put into the format of problem (S), we get a problem of the form

0
(A) min IZ (min(0,w,) + x;)

w0

w,— Mx +x,=v,
-Mx <v, i=1,2,...,10
x>0

where M, is the i th row of M.

The algorithm that is used for the computations does not solve the original problem (S},
but constructs an approximate problem to solve by replacing each of the associated functions
with their piecewise linear convex envelopes. A related problem is simultaneously introduced
which gives a sharper underestimate of the optimal value of the approximating problem than
does the convex envelope problem. It is this related problem that the branch and bound pro-
cedure solves first to get estimates on the optimal value of the approximating problem, and to
set up new problems if the estimates do not yield a global solution.
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[ ‘1
4 1 2 1 1 1 0 o} 1 1 1
2 3 2 2 0 -1 0 0 0 1 2
2 1 3 0 1 1 0 0 1 1 1
2 2 2 3 (¢] 1 0 0 0 1 5
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0 1 0 1 2 3 1 -1 0 1 1
0 0 0 0 1 1 2 2 0 2 0
0 0 0 0 1 -1 4 2 2 0 3
1 1 1 1 1 1 0 2 2 3 2
0 1 0 -1 0 -1 -2 0 4 2 4 _J

FIGURE 3. Data for affine network.

The functions defining the constraint region of problem (A) are all linear and hence con-
vex, and therefore will not be replaced in the approximate problem. The functions associated
with the nonlinear variables w, in the objective function (i.e., min(O,w;), i=1, ..., n) are
piecewise linear, but concave, and will be replaced in the approximate problem by their convex
envelopes, which in this case are straight lines. This is illustrated in Fig. 4.

mi (O,Wi)

Convex Envelope

FiGURE 4. Convex envelope of min(0,w,).

The branch and bound technique proceeds to divide the domain of these functions into
pieces corresponding to their linear segments and separately solves the set of related problems
in which the nonlinear variables are respectively limited. When every function is piecewise
linear, as is the case with problem (A), we get an exact solution to the original problem.

It is customary with branch and bound methods to describe the algorithm in terms of a
branch and bound tree. The nodes of the tree correspond to the related linear subproblems,
while the branches of the tree correspond to the set on which the branching variables are
defined. A solution is obtained when the best upper bound at any node is equal to zero. That
is, any feasible point yielding a subproblem value of zero necessarily satisfies the equilibrium
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i conditons  For problem (A}, no tree developed because the solution was obtained on the first
neration of the algornthm. The optimal vector x is given by

v = (02353, 0.7059) x2' = (0.0, 2.2941) x2 = (1.5294, 0.0)
e (1.0098, 0.2151) x*2 = (0.0, 0.0).

The tormulation of problem (A) required the addition of 10 auxiliary variables to the ori-
' ginal set of 10 hinear variables. The former were each divided into two intervals for the pur-
poses of branching This division, corresponding to the segments of the piecewise linear func-
tions defined for these variables, implied that any branch and bound tree produced by the algo-
nthm could be at most 10 branches deep and that no variable could appear more than once
along any path. In theory. it might have been necessary to solve up to 2!! — 1 subproblems
' before reaching a solution. however, the fact that the first subproblem produced an equilibrium
point underscores the computational efficiencies that result from having available at the outset a
means of independently checking each iteration for convergence.

Each subproblem solved by MOGG is a linear program. When the excess demand func-
tions are affine. the solution vector necessarily yields a feasible point to the original problem.
The upper bound associated with this feasible point will always be greater than or equal to zero,
but generally not correspond to an equilibrium solution. Mangasarian [18] has shown that the
linear complementarity problem is equivalent to a linear program whose cost coefficients are
dependent upon the structure of M. The similarity between these linear programs and those set
up by MOGG when M meets certain conditions admits the possibility that MOGG wili produce
an equilibrium point on the first iteration. Although these conditions might logically arise in
some economic contexts, they were not present in this example and, hence, did not influence
the rate of convergence.

3.2 A Piecewise Linear Market

( This example [7] provides a simple explanation of how a competitive market operates. As
is common in microeconomic theory, we will distinguish among individuals according to the
economic functions that they perform or on the basis of the kinds of decisions they make.
Thus, a consumer is an individual (or unit) that consumes commodities and supplies inputs to
production. The role of the consumer may be defined as that of choosing from among the
alternative commodity bundles available to him. Similarly, a producer is an individual (or
group) that utilizes inputs to produce commodities. The role of the producer may be character-
ized as that of choosing from among the alternative input-output patterns available to him. The
same individual might appear in the economy both as a consumer and as a producer. Once the
choices are made, a state of the economy is defined.

Under certain assumptions (see Quirk and Saposnik [22]), for a mark=t that contains n
commodities, m consumers, and !/ producers, the aggregated (net) amounts of commodities
demanded and supplied for any vector of prices can be determined by a simple summation of
the amounts demanded and supplied by individual consumers and producers. Thus, given the
price vector p, where p = (p,.p,. ....p,), we can write x,;(p) as the amount of the i th commo-
dity consumed (or supplied as an input in production) by the j th individual at the set of prices
given by p; and y,(p) as the amount of the i th commodity produced (or used up as an input
in production) by the & th firm at the set of prices given by p. Then, the aggregate (net) con-
sumption of commodity i by consumers is given by
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xi(p)- i x,j(p). i 1, 2,...,"

i=1

and the aggregate (net) production of commodity i by producers is given by
!
)’,-(P) - 2 yik(p). i=1, 2, ..., n
k=1

We then define x(p) and y(p) as point-to-point mappings from R” into itself. In the absence
of any initial endowment the excess demand function can be written as g(p) = x(p) — y(p).

The sample economy under consideration contains three commodities, three consumers,
and three producers. The associated supply and demand functions are assumed to be piecewise
linear, and are given in graphic form in Figs. 5 and 6. To conform with the presentation in [7],
the equilibrium quantity rather than the equilibrium price will be computed. The following
notation will be used:

ps, = jth producer’s supply price for commodity i,
Pa, = jth consumer’s demand price for commodity /,
X; = quantity of i th commodity consumed,

Vi = quantity of i th commodity produced,

where i, j=1,2,3, p, = ¥ ps, is a function of the consumption variable x and p, = ¥, Py,
J

J
is a function of the production variable y.

An equilibrium point will exist if the following conditions are satisfied:

13 x20, 520,
(14) x—-y=0,

(15) pa—ps 20,

(16) <X, pg— p;> =0,

where p, and p, are the three-dimensional market supply price and market demand price vec-
tors. The first condition assures feasibility, the second condition clears the market; the third
condition assures price consistency by requiring the excess demand function to be less than or
equal to zero; and the fourth condition is Walras’ Law and reflects the following circumstances:
if x,, the quantity of the ith commodity being purchased, was positive and if the producers’
supply price ps, was greater than the consumers’ demand price i, then the producers would be
losing money and would begin to lower y,(=x;) to zero. Such a situation would be economi-
cally unstable.

Conditions (13)—(16) can now be written as a minimization problem in the form of prob-
lem (P):

min{<—x, (p,—p,) >}

Pa— Ps SO

x20
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FIGURE 5. Supply functions for piecewise linear market.
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FiGURE 6. Demand functions for piecewise linear market.
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In order to recast this problem in the form of problem (S), the cor mption and production
data given in Figs. 5 and 6 must be aggregated over their respective agents to obtain the market
demand and supply curves p, and p,. This has been done for each of the three commodities.

COMMODITY 1.
-2+ 18 x g1
Pay = 1-0.5x, + 16.5; x; > 1

Ixy; x; £1
Py = 17.5x, - 3.5, x, > 1

+ (6 — 3xy) + (5 — 2x3y)

+ (2 + x;) + (2 + 2x3)

COMMODITY 2:
Pa,= (12 = 5x)) + (14 — 2x)) + (10 — 5x3)

12X2 ',X2=<=1
p32-4+ 3XZ+9',X2>1 +3

COMMODITY 3.
—X3 + 8, X3 é 1}

Pay=2+(5-2x) + [—2.5x; +95 x;> 1

0; x <1 5x3;, X3
p,, =

<1
+G+x)+ {0.5x3 45 x; > 1'

The minimization problem in its separable form becomes

Ix) =3 x> 1

3
(B) min ¥ {min(0,w,) + x;}
W e
wl+pd,_ps,+xi=0
i=123
pd, - ps, 5 0
x>0

where p, and p; are defined above.

Each of the six variables in problem (B) is nonlinear, the first three (w;,wy,w;)
corresponding to the auxiliary variables and the second three (x;,x,,x3) to the original problem
variables. The associated functions are piecewise linear and contain at most one break point.
This means that the branch and bound tree can be at most six nodes deep and that a maximum
of 27 — 1 subproblems might have to be solved. Once again though, the algorithm converges
on the first iteration. The computed best upper bound for the first subproblem is zero and
hence the solution.

If the algorithm is permitted to run past this point until its usual termination conditions
are met a total of 19 subproblems will be solved. Figure 7 depicts the resultant branch and
bound tree which serves to illustrate both the advantage of knowing the optimal value at the
outset and the amount of work required to search for alternative solutions. The known results
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FIGURE 7. Branch and bound tree for piecewise linear market when forced past solution.
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are corroborated at node 9.2 where roundoff errors have produced a best upper bound of —0.2
x 107* and a best lower bound of 0.1 x 107%, a minor contradiction. The two numbers adja-
cent to each node represent the best upper and lower bounds for that subproblem. A bar in the
place of the best upper bound indicates that no corresponding feasible point to the approximate
problem exits. The numbers along the branches refer to the branching variables associated with
the preceding node, and the + and - signs indicate whether the particular auxiliary variable was
permitted to range over the set of positive real numbers or negative real numbers, respectively.
The bars appearing below the nodes indicate that either the lower bounds of the associated sub-
problems are all greater than the current best upper bound or that they are infeasible and,
therefore, cannot contain the solution.

In terms of the actual variables, the solution vectors are x* = (2,1,1) and w*
= (-2,—1,—1). From the equality constraints in problem (B), it can be seen that x* + w* =0
whenever the corresponding excess demand functions are binding. By tracing the convergent
path backwards from node 9.2 10 node 0.0 we see that the branches that fall along this path
correspond to the nonpositive orthant of w. The subscripts attached to the branching variables
in the tree denote the (closed) intervals over which the original problem variables are defined
for all subsequent subproblems.

3.3 A General Market

The separable programming algorithm works by first replacing each of the original prob-
lem functions with their piecewise linear convex envelopes, and then creating a new problem to
solve as an ultimate approximation. From this approximate problem a series of convex sub-
problems issue that are set up and solved under the branch and bound philosophy. If the origi-
nal functions are afl piecewise linear (but not necessarily convex}, then solving the aggregate of
subproblems is tantamount to solving the original problem exactly. Such was the case in both
the first and second examples. In this example, four of the piecewise linear functions in Fig. §
and 6 have been replaced with smooth counterparts. The new functions were constructed to
pass through the poiits '1,-) and (2,-), and are given by

P, = 16.516 o TOOTSxY

Pa,, = —0.75 x{ = 0.25x; + 8,
p;,, = =375 x{ + 1475 x,,
ps,, = 17.31234 log(x?* + 1).

Substituting these functions for the originals in problem (B) leads to a new minimization prob-
lem that can be written as

3
(O) min ¥ (min(0,w) + x,)

WX el

subject to

w + 3.75 xf = 13.75x, + 16.516 pTO03TSN )

wy— Sx;— 17.31234 1og(x9** + 1) — x; = 5x;=— 29

0; X1 Sl 075X32 +4.25X3"‘8'. X3=<‘l
Wi~ B3x=3x, > 1] 7327 {0.75x2 - 0.25x; — 3.5, %3 > 1
(~0.03175 1) _

—dx, = dxy=— 1

4

3.75 x} — 1475 x, + 16.516 ¢

4x, —4x; < — 7
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— 5x; — 17.31234 log(x*® + 1) — 2x; — 5x; < ~ 29
0; x <1 0.75x7 + 5.25x; — 8; x; <1
- 3x;—

3x;=3ix, > 1 0.75x2 + 0.75x, — 3.5: x; 2 1] S

-4

leO-XZZO, X320.

The number of cuts required to approximate a piecewise linear function exactly is equal to
the number of segments constituting that function. When the function is smooth, it cannot be
represented exactly by a finite number of linear segments but can be approximated with arbi-
trary precision by increasing the number of cuts. In this example, six cuts were made in the
original problem variables (x;,x;,x3) over the closed interval {0,3]. Because the cuts were
evenly spaced every half integer, and the graphs of the smooth functions pass through the solu-
tion points of problem (B), it is reasonable to expect that the solution to problem (C) would
coincide with one or more of these points. This indeed was the case: the identical solution
x;* = (2,1,1) resulted for problem (C). The associated branch and bound tree is shown in
Fig. 8. The algorithm is seen to have converged in the tenth stage at node 10.1 after 22 sub-
problems have been solved. This contrasts with the first two examples where the solution
occurred on the first iteration; however, in each of these three problems, the first feasible point
produced by the algorithm resulted in the solution. Finally, we observe from Fig. 8 that at the
tenth stage, the best upper bound and the best lower bound are nominally equal, implying that
the general conditions for optimality have been satisfied, so the algorithm is terminated. If an
equilibrium point had not yet been found at this stage, it would have been reasonable to con-
clude that none existed for the given model. The other two equilibrium points were not
uncovered.

3.4 Network Traffic Flow

The model of the road system considered here derives from the notion that there exists a
large community of users, each of whom takes the quickest route available, given the actions of
other users. The number of trips taken is assumed to depend on the time required to make a
trip, while the travel time on a particular road is assumed to depend on traffic volume. The
example that we will investigate was studied by Asmuth [3], who used stationary point theory
in conjunction with the Eaves-Saigal algorithm [9] to obtain a solution. As will be seen, the
traffic flow problem closely resembles the multicommodity network presented in the first exam-
ple.

To formulate the model, consider a directed network (N,A) with nodes /i in N and arcs ij
in A. For each arc i/, we are given a delay function f;; which expresses travel time on arc ij as
a function of the traffic flows on the arcs of the network. The travel time along arc ij will
necessarily depend on the flow on that arc, but may as well depend on flows along other arcs.
For example, a two-way street could be modeled as a pair of opposing arcs where the flow on
one of the arcs might affect the travel time on the other.

For each pair of distinct nodes i and kK we are also given a travel demand function g,
which expresses demand for travel from i to k as a function of travel times between nodes on
the network. Demand for travel from ito k will depend on travel time from i to k as well as on
travel times between other pairs of nodes; for instance, for i to some alternate destination.

Numerous solution procedures have been proposed for computing equilibrium traffic flows
and travel times on the network. When /is integrable and ¢ has an inverse which is integrable,
the usual approach has been to reformulate the equilibrium problem as a convex programming
problem. These conditions will be met if each /, depends only on the total flow along arc ij,
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and each g, is monotonically decreasing and depends only on the travel time from node i to
node k. Beckman [6], Florian and Nguyen [14)], and others have addressed this problem under
comparable conditions.

In practice, the demand and delay functions f and g are at best empirical fits and can be
endowed with these or any other restrictions which may seem useful. Asmuth’s approach does
not depend on such restrictions, but only requires that the delay functions f;, be positive on
each arc, that the travel demand functions g, be nonnegative and bounded for each pair of
nodes, and that the network be complete; that is, a directed path must exist from every node to
every other node. From a strictly analytic point of view, we will require only that it be possible
to put the functions f and g into a separable form. However, if the model is to accurately
reflect the properties of the system it might be desirable to adopt the above restrictions.

The mathematical conditions for a user equilibrium are presented below. The travel time
from node i to node k will be written as 1, and the flow on arc ij with destination k will be
written as ¥, ;. 1t will be said that the travel time vector r and flow vector y are in equilibrium
it the following conditions hold:

(l7) gl,k(t) = zylj.k - 2 y,',"k I¢k, l., kEN
J J
(18) yz20
(19) 11./\' g/;JO)) + I,I,/( l’#k, UEA, kEN
,k.k = 0 kEN

(20 ViSO + 4 — 1) =0 izk [j€EA, KEN
(PAY Y= Zy,jvk jeA

k

Condition (17) is the conservation-of-flow equation. It says that the traffic leaving node / with
destination k is the sum of the traffic arriving at node / with destination k and the traffic ori-
ginating at i with destination k. Condition (18) says that traffic flows cannot be negative.

Conditions (19) and (20) require that traffic flow be by the fastest route available. In con-
dition (19) we require that ¢, not exceed the minimum travel time from i to k, given the flows
v on the network; condition (20) limits the traffic to those routes which achieve this minimum
travel time. Together, conditions (19) and (20) imply the principle of minimum travel time.
This says that if any traffic flows from i to k, that is, if ¥ y,, > 0, then

!

Ly = min (f; () + 1;,).
z
Equation (21) relates the basic flows to the total arc flows.
It may be useful to think of this system as a multicommodity network, where all of the
traffic destined for a particular node k is a separate commodity, all of which must be shipped to
node k via the network. In this way g, (¢) is the amount of commodity & which must travel

from node i to node k. This trip will traverse a path of arcs from i to k.

Conditions (17-21) can be put in the form of problem (P) as follows:

min ¥ ¥ <y CL,0) -0t >

v 20
= heN €4
20 JEk

e ——— e e

Cem e
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subject to
~fi— s+, <0 i &k [f€EA KEN,
gl.k—zyl/.k+ zy/:.k-o i =k i, kEN'
' 1)

yl[ - zyll,k - 0 U e A
A

Rewriting this problem in the form of problem (S) we get
min ¥ ¥ Imin(0.w,,) + y,.)

v20
130 keN €A

2k
w

subject to
Woo =Sy — b+ tut 2,0 =0 ixk [j€A kEN,
—fi=ta 4, S0 ik ij€EA KEN,
i~ X+ Ly =0 ik i, keN,
! i

Vo= V=0 jEA.
X

The following sample problem is from [4] and is based on the directed network shown in
Fig. 9. Here N = {1,2,3} and 4 = (12,21,23,31], where arcs 12 and 21 represent a two-way
street. The delay functions are

f|2(y) =10+e
Ja)=10+e¢
(vy3—12)

f23(y) =4+ e ,
Sa(p) =4+ o',

71 495 10g(yy +1.0),

a1 25 log(y 4+ 1.0),

where
yil = 2 yu.k'
A

and the travel demand functions are
80

no+1’
120

ni+1’

_40 .
oy + 1 if 12, 2 N3
32,|(I) - '100 if 1, < s
t+1
80

8;.2(1) =

gu(t)’

if 1 p 133

=
g2.3(l) - 20 if 15, <hn
tyy+ 1

ry . iy
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When more than one function value is given at a particular point (e.g., 1, = f53), the

‘ value of g is the average of the two values. In this case some of the travelers from node 2 will

( go to either 1 or 3 depending on which is closest. If the travel times are equal then those trav-
elers who want to go to either 1 or 3 will be divided between the two destinations.

, In their present form, the demand functions g, | and g, ; exhibit an implicit dependency

k - on the travel times ¢, ;| and ¢, ; and therefore must be made separable before the equilibrium

: problem can be solved. Although this cannot be done explicitly, the desired result can be
achieved by considering the following three disjoint partitions of ¢ :

hi<ts =13 H)>0h;

The mathematical program associated with each of these partitions comprises 26 variables and
27 constraints. Of the 26 variables, 12 are of the type required to achieve separability of the
functions while the remainder are defined in the original problem statement.

The solution was uncovered in the third partition at the 84th stage after 168 subproblems
had been solved, and once again, coincided with the first feasible point found. The resultant
branch and bound tree is not displayed because of its extensive length, but the final computa-
tions are highlighted in Table 1 along with the results obtained by the Eaves-Saigal algorithm.
The minor discrepancies observed between the variable and functional values computed by

. either method can be attributed to the grid size superimposed on the algorithm and are, hence,
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TaBLE 1 — Results for Traffic Network Problem

Eaves-Saigal
Algorithm MOGG

ik ik 8. (1) ik &t

1,2 { 19.30 394 | 1945 391
1,3 | 28.43 408 | 28.58 4.06
2,1 ] 13.22 2.81 | 13.21 2.81
2,3 9.13 7.90 9.13 7.90
31
3,2

409 11.79 409 1179
23.38 4.10 | 23.54 4.07

i,k Yij.k Sy Yij.k Jij

12,2 8.04 19.30 799 18.68
12,3 408 19.30 406 18.68
21,1 115 13.22 1.21  13.21
21,3 0.00 13.22 0.00 13.21
23,1 1.66 9.13 1.60 8.76
233 1 11.97 9.13 | 11.96 8.76
31,1 | 13.46 4.09 | 13.41 4.08
31,2 4.10 4.09 4.08 4.08

subject to control. Finer resolution is strictly a matter of increasing the number of grid points
prescribed for the original nonlinear variables and solving a proportionately larger problem.

4.0 CONCLUSIONS

The computation of equilibria plays a major role in the analysis of economic and transport
systems. Whenever the equilibrium problem can be formulated as a set of complementarity
equations, we have shown for those cases where the original functions are implicitly separable,
that nonconvex programming can be used to obtain a solution to either probiem. A general
algorithm based on branch and bound techniques was adapted to perform the equilibrium com-
putation. Unlike the usual nonconvex program though, where the solution is recognized only
when equality is achieved between the best upper and best lower bounds, an independent check
can be made for the solution at each iteration because the best upper bound is known at the
outset. As our computational experience demonstrates, this enhancement markedly increases
the efficiency of the algorithm.

However, the fact that a numerical procedure will terminate with the correct answer in a
finite number of iterations is no guarantee that it will be of any practical use. The combination
of method and algorithm under study derives its tentative usefulness from the observation that
for most problems investigated, convergence occurred in a far smaller number of iterations
than theoretically possible. The results have been especially encouraging for problems of larger
dimensions; and in all cases, the equilibrium solution coincided with the first feasible point
found by MOGG.

The affine equilibrium problem or linear complementarity problem holds a particular
interest because of its unique structure and implicit relationship to an equivalent linear pro-
gram. Because of the similarity between the first subproblem set up by MOGG and this linear
program, immediate solutions are often obtainable from MOGG at little extra cost. In fact, the

< S
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k,; additional work required to determine the equivalent linear program, even for relatively small
' probiems, is often more burdensome and more computationally expensive than permitting
3 MOGG to run beyond its first subproblem to a point of convergence. A further and decided
1 advantage of MOGG is that it will solve all affine equilibrium problems regardless of their
matrix structure. By contrast, the majority of alternative procedures available are limited in
their application to a number of special cases which do not necessarily arise in practice.
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STOCHASTIC LINEAR PROGRAMS WITH SIMPLE RECOURSE:
THE EQUIVALENT DETERMINISTIC CONVEX
PROGRAM FOR THE NORMAL,
EXPONENTIAL, AND ERLANG CASES

Behram J. Hansotia

Caterpillar Tractor Co.*
Peoria, llinois

ABSTRACT

We consider here stochastic linear programs with simple recourse when all
the elements of the technology matrix and the resource vector have certain
specific distributions. The distributions considered are the Normal, Exponential
and Erlang. For the first two instances we extend the equivalent deterministic
program to include the variance of the recourse. Finally, a simple example is
given to illustrate the application of the formulas for the Erlang case.

1. INTRODUCTION

Recently, Stancu-Minasian and Wets [11] published a bibliography of well over 700 arti-
cles dealing with various aspects of the theory and applications of stochastic programming. The
applications listed were from such diverse areas as economic planning (12,13] to water storage
[7,9] to more classical areas like production planning [3,10] and inventory [4,8]. Needless to
say, stochastic programming has flourished considerably in the last two decades and consider-
able advances have been made both in theory and applications.

In an earlier paper [6] we provided formulas for some special cases of stochastic programs
with simple recourse. In this paper we continue along the same lines and present some more
expressions for the Exponential, Erlang and Normal cases. The motivation for this research is
to provide deterministic equivalent nonlinear programs for a variety of cases, so that research-
ers can use the nonlinear programs directly after appropriate parameter estimation. The Normal
and the Erlang cases are particularly interesting since a large number of unimodal distributions
can be approximated by these two distributions.

2. STOCHASTIC PROGRAM WITH SIMPLE RECOURSE

We consider the following stochastic program:
MinZ = cx + E Q(x,§)

such that

Qx8) = qu” +qu”,

*The paper was written while the author was Associate Professor of Management Science, Bradley University, Peoria
Illinois.
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y'-y =TIx-p,
Ax-b,x?O,y+>0.y_>0,£=(Lg_),

where A, b, and c are (m| x n),(m; x 1), and (1 x n) fixed arrays, x is the (n x 1) decision
vector, and ¢, and ¢, are the (1 X m) unit penalty vectors. We assume that £ = (p7) and p
and T are random (m X% 1) and (m x n) arrays. Our objective here is to obtain explicit formu-
las for Z under specific assumptions about the random arrays p and T.

A number of authors have studied this problem and it is well known that if ¢, + g, > 0
the problem is bounded and Z is convex in x (see Williams {15] and Beale [1]).

The problem may be interpreted in two stages. At the first stage we determine an
x € K = {x|Ax = bx > 0} and at the second stage, after we observe T and p, a recourse
(»* or y7) is uniquely determined. The objective here is to select an x € K which minimizes
the sum of the cost of x at the first stage and the expected cost of the recourse at the second
stage. Q(x, &) is the random variable representing the cost of the recourse under policy x, and
the expectation is taken with respect to £.

Ziemba [16], Beale [1], and Wets [14] give explicit formulas for Z but only when p is
random. In [6] we give formulas for Z when the elements of T and p are independent
exponentials and laterally shifted exponentials. In the same paper we also consider the case
where the elements of p and T are independent Erlangs with shape parameters equal to two. A
formula for the distribution of V where V = cx + Q(x, £) is also given for the "independent
exponentials” case. b

In this paper in Section 3 we consider the case where the elements of 7 and p have a
multivariate Normal distribution in R™"*! and derive expressions for the expected value and
variance of Q(x,£). In Section 4 we develop these expressions for the case where the elements
of T and p are independent Exponentials. Finally, in Section 5 we present recursive equations
to compute the expected value of Q(x, 5_ ) when the elements are independent Erlangs.

3. MULTIVARIATE NORMAL DISTRIBUTION

We assume that £ = (p,7) has a multivariate Normal distribution in R”*" . Q(x,£)
may be written explicitly as
(1 Qx.&) = q(Ix—p)" + q:(Tx - p)”
where
(-)*=Max(-,0)
and
(-)" = —Min(-,0).

Denoting the th element of Tx — p by ¥, we have

(2) Zy = zlr/xl - bp,
=1

where ¢, and P, are the random elements of the arrays T and p. respectively. Defining u ,
and o ¢ as the expected value and variance of Y,, we have o
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(3) my = 3, x;El1,]-Elp)

and

4 of =Varlp )+ ¥ xVarl1,] - 2F xCovip, 1]+
3, Ekx,kaov[l,,,l,k]

where E [ ], Var [ ], and Cov [ ] denotes expected value, variance, and covariance, respec-
tively.
Denoting the ratio of mean to standard deviation of ¥; by «, i.e.,
(s) a, =Myl/0' Y
it is easy to show (see Appendix A, Lemma 1) that
6) ELY =uy®la) +oydla),

where ®( - ) and ¢ ( - ) represent the cumulative distribution function and the density function
of the standard Normal randonr variable. Similarly,

V)] ElY 1= - uzld)(—a,) + cr_y'd)(a,).

Hence, the equivalent deterministic convex program may be written as

I:{Ei[l(l Z=cx+ qu,[ﬂ,z’(b(a,) + UZ,‘b(af)] +

i=1

(®) Tauluy®(-a) + oy o),

i=1

K = {x|dx = b, x = 0}.

LEMMA: If ¢, = q, = g problem (8) reduces to

9) Niel? Z=cx+ 242y @) +20ydla) —pny]

i=]

PROOF: Noting that ®(—a,) = 1 — ®(a,), we substitute q,, = g5, = ¢, in Eq. (8). For
individuals with quadratic utility functions, it can be shown that their expected utility is a linear
combination of the expected return and variance of return. Though a quadratic utility function
implies increasing risk aversion, this is a first attempt to explicitly incorporate risk in the con-
text of stochastic programming. In that spirit we suggest the following stochastic program:

(10) Melg Z'=¢x + E[Q(x,é)] + AVar [Q(x.é)],

where A may be interpreted as the decisionmaker’s risk-aversion factor.

() Varl0 ()1 = Var| £, ¥ + $an¥7

i=1 jme]

= Y, qiVarlt 1 + YqiVarlY ]+
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21 zqul‘Il/COV[Zl+'ZJ+] +

)i

Y. ¥, 9242, CovlY Y71+

j#i
22,2/qhq21C0v(Xl+'Z/—]'

where Var [Y*] can be written as (see Appendix)
(12) VarlY 1=} [®@) + *Ha)] +
O'flldiz(a,‘ —adla,) + O(a)) +
uyoyldla) + ¢la)®)].
Similarly,
(13) Var[¥7] = pf [#(~a) + D (-a)] +
o} loHa) +adle) +®(-a)l-
uyoyldla) +dla)®(—a)l

We next focus on the covariance terms in expression (11). These are all double integrals and
though we cannot reduce them to simple closed-form expressions, we give below their
equivalent forms as single integrals. This should considerably reduce the computational effort
for evaluating them.

Consider Cov[Y;", Y1, it may be written as

CovlY' Y= ElY .Y/ 1- EIYFIEIY]]

Using Jacobians, it can be shown that the joint distribution of (¥,, ¥,) is bivariate Normal. In
the Appendix we provide an equivalent form for E[Y Y/]. This is reproduced below.

(14) Exrxil=f 5imG)e@w) + s0,)é @b )IdFG).
where
(15) a(y)=m@y)sQ)
m(.V/) = E[Z,"Z,‘ = J’,]
7y,
’ (16) =I"L"‘Pu"o__y'()’i—ﬂrl)
1
(n s) = {Varly,|¥, = y]}?
= 0'!',(1 - P,z,)
where p,, is the correlation between Y, and Y, and is given by (see Lemma 4 in Appendix A)
b (18) p,=Cov(Y, Y)oyoy
! 1
} ' = 0,,0.'_ lz‘« E,J"A-"rCOV(LA- l /r) -
' RV

T b Snsasaba
. . o
K adnaiiae it et ¥ inal, . i ot . atm cni i e P
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2ixdCovli i, p) + Cov(tu. p )} + Covp,. p)l.

The covariance terms in Eq. (18) are obtained directly from the variance-covariance matrix of
the multivariate Normal distribution. Similarly,

CovlY , Y 1=ElY Y;1- ElY IELY]
where E[Y Y ]is given by (see Lemma 3 in Appendix A ) the following expression:
19 N By = [ mee-at) - sG) b)),
Finally, we need a formula for Cov{Y ", Y] in expression (11) to evaluate Var(Q(x, £)):
CoviY Y 1=ELY Y 1 - EIY'IELY]]

where E[Y' Y] is simplified in Lemma 3 in Appendix A and is given by

(20) ELY Y= [Ty m()@ @) + 50 dlaG)IdFG).

Hence for any given policy x € K, expression (11) can be computed if § = (p T) is multivari-
ate Normal in R™+D,

If the elements of £ are correlated, the covariance terms in expression (11) will have to
be evaluated numerically; however, we need to perform only single integrals as discussed
above.

4. EXPONENTIAL DISTRIBUTION

We consider next the instance where the elements of ¢ = (p,7) are independent
exponentials. In [6] we gave expressions for £[Q(x.£)] for this particular case. E[Q(x, &)
was obtained by first inverting the bilateral Laplace transform of Y, to obtain its density func-
tion and then integrating directly. We repeat some of the results here again for .wnpleteness
and also present formulas for Var Q (x, £) so that the mathematical program (10) may be used.

Denoting 1/x,; and 1/A, as the means of ¢ ,; and p, and defining L, and L, thus:

>‘Ik

(21 Ly, AN+ — - —

oo e - 2
(22) L= )\n[ /O + 0y x),
we have the following expressions for /(y;) and E[Q(x,£)]:
(23a) SO =L, exp (\,y) for y, < 0,

=N
(23b) = zL,kexp —y, for y, > 0,
k=1

(23c) =(L + Y,L)/2 fory, =0,
and
T4 ElQ(xO) = Y g, ElY 1+ TarEIY]],

=1 =1

FIY )= T Lalx, /A0
it

..... —— e ey v e
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(26) E[Zl—] = (I/A:)ZLI
We next consider Var Q (x, £):
@n VarlQ(x.£)1 = 30k Var 1Y)+ Sa3varl¥7] + 23q,,4,Covl ¥, X7,

=] i=1 =1

Consider E{(Y )% and E[(¥)?. We have
(28) EWXNT = [y y2ro)a,

which on integration by parts gives

9) EIYH =23 La(x/r )’

k=1

Similarly, again integrating by parts gives

(30) EWY)Y =2L/A}.

Therefore

G1 Var (¥ = 23 L (/A )* = (ELYA)?
k=1

and

(32) Var [¥]] = 2L/N} = LYAD,

Since E[Y Y] = 0, we have

33) Coviy?, Y71 =—ElYFIELY/).

Hence Eq. (27) can be computed for any policy x.
S. ERLANG DISTRIBUTION

In (6] we presented an expression for E(Q(x,¢)) when all the random variables were
independent Erlangs with shape parameters equal to two. We extend this result here to the
case where the shape parameter is any integer. Inverting the Laplace transform, in this case by
the method of residues, requires differentiation with respect to the shape parameter. We
present a lemma in this section which may be used to obtain £(Q(x,£)). Denoting the means
of ¢, and p, by r,/x,; and r/\,, respectively, and the bilateral Laplace transform of Y, by

Ly (s), we have

Ay
Max|——1 < s < A,
/ X;

(34) Ly(s) = [n, [ﬁ
v, X,

s + ——"~] ]l(x,) T =s)")
Xj

with

For s > ¢ where

X;

|
<c < l 1
c )\,, ]

there is one pole of order r,, and the residue R, of exp [sy,lL!’(s) at s = A, is given by

= -———-——-‘l d".-l
‘ (r, = DY gt

Ay
Max|-—
!

(35) R

[(s =X)"Ly (s) exp {sv,}],-y . i
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e I r
(36) S S SR PR LY LY
(rl—l)! ds':—l ! / x’ s + x/ exp {syi} s

Hence

a7 S) =R, for ¥ <0.

For s < c there are n poles each of order riy J =1, ... ,n, and the residue of the k' pole (of

A
order r,) at s = — —* s given by
Xk

- 1 d Tk—1 A Tik
8 Ruc = W Aot ] Ly (s)exp sy,l
X
d Tik~1 i , .

(39) (’/k DY gt ” [ l/ ils+ — {(A,) Y, — 5)} exp {sy,) Ay
Hence,
(40) fG)= S Re  for 3 >0

k=1
and
(41) SO =[lim f(y) + lim £()1/2.

y—0* v, =0~

Denoting the constants in Eqs. (36) and (39) by K, and L,, respectively, i.e.,

, )‘" Ty
(42) K = (=) ,[—’
X;
and
’ A,/ ,/l
(43) L=0a)m|—| .
X;

we need to determine the (r,_,) th- and (r;_;) th-order derivatives of G; and H,, respectively,
where

-r

Al "
(44) G = K, exp {syJI1 |s + —
i
and
(45) H=1Lexp{syl , (s+r,) "(s=Ar)"
i*k

We present a theorem which will enable us to systematically determine the higher order deriva-
tives of these two functions.

THEOREM: The mth-order derivative of the product of » differentiable functions is the
mth-order binomial expansion of their sum, with the terms in the expansion interpreted as
derivatives as shown below; i.e., given n differentiable functions f,(s}, /=1, ..., n,

dm n n m




O
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where

Si'(s) = i(f,-(s)) for i~1,...,m,
ds'

= f(s) for i=0.

PROOF: The proof is straightforward and uses the results for the derivative of a product
of functions. For exampie, for n = 3 and m =~ 2 we have

2
-‘Z—z—{f,(s) C£3(8) - f3()) = (F1(s) + fy(s) + Fiy(s))?

(46) = FES ) FL() + ) 2 () f2(s) + fRfL()fR(s) +
211 () 1) I(s) + 21 () FI() 1 (s) + 210 (s) £ () f1(s).

Note that to determine the mth-order derivative of the product of functions we need all higher
derivatives up to and including m. Therefore, if in expression (44) we denote exp {sy,} by

Ai' Ty
f1(s) and I1,|s + T’ by f,(s), we have for any integer m > 0
j

(47 —df;fl(s) = yM"exp {w,).
ds

Denoting

A --rll
s+ -;'L ] by g;(s) we have

1
Ay
s + -—-'—l l
X;
dm n
= — ()],
ds™ [,»l;llg/

which according to the above theorem is

dm dlﬂ "
relUO b 1

(48) zg[(s)] ,
j=1
which can be expanded in a manner similar to Eq. (46). Note that
gl(s) = g;(s)
and
() = L (g, (50
ds
-1 Y reme
(49 = h(—r,,—u) s+ =+ fore=1, ..., m
=0 X,

If m = r,_;, we can compute all the higher order derivatives required in expression (36),
and f(y,), y, < 0 can be computed. The partial expectation of Y, for y, < 0 can then be com-
puted by direct integration. Similarly, in expression (45) we define f,(s) = exp (sy), fo(s) =
I, G +r,) ™ and f3(s) = (s —r) "

1 #k

o~
e Saia i et i o e - A
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Equations (47) through (49) go through again for the higher order derivatives with a
slight modification of expression (48); namely, j cannot equal k in expression (48). Denoting
this modified expression as (48') we have

n

(48" I (1) = | T, (s)
ds =1
XY
and
” . dl" ~r
(fi(s)) = —(s —r) "~
dsln I] S)) dsl" s )
,""l -r,—m
(50) = (~r,—w)(s—x) " .
u=0

Note in Eq. (39) m = r,_,. Therefore R, and hence f(y;), y; > 0 can be obtained. The par-
tial expected value of Y, for y, > 0 is then obtained by direct integration.

EXAMPLE: We consider a problem where T is (2 x 2) with each element of T and p
having an independent Erlang distribution. Denoting R as the matrix of shape parameters of T
and h as the vector of shape parameters of p we assume

3
3 4 2|

Note that the (i,j)th element of R is r; and the th element of 4 is r,. Using Eqs. (36) through
(49) it can be shown that

R = and h =

SCy) = exp Ny L ()yE + L)y, + Ly(x)]) for y, <0

and
A
SO = exp [”x]_zylllMl(X)ylz + My(x)y, + M3(x)) +
2
Ap X
expl— ——» M)y + Ms(x)]  for y( > 0.
1
Hence,
L(x) L L
E[XI_]=6 |(i( 5 2(:() " J(X)
Ay Aj Al
and
o M (x)  2My(x) My(x)  2M,(x)  M(x)
E[Z| ] = 4 3 2 3 2
A A A An A
X2 X X2 Xy Xy
Similarly,
Sy = exp Ay} (P(x)y, + Py(x)) fory, < 0
and

A
Sy = exp {——;—zy;][N,(x)yé’ + Ny(x)y? + N3(xX)y, + No(x)] +
2

A
exp l——;—'yzl[Ns(x)yz2 + Ne(x)y; + Nqa(x)] fory, > 0.
1
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Therefore,
2P, (x) P,y(x)
ElY;l= -—% =
Aj Aj
and
ElYs] = 24N, (x) 6N2(X) 2N3(x) N4(x) 6N5(x) 2N6(x) Na(x)
Iyl=
lhz] [}\22 l}\zz] [Xzz [}\21] [Azll [7*21]
The functions L,(x), M,(x), N, (x), and P,(x) for i=1,2,3, j=1, ....,5 k=1,

and m = 1, 2 are reported in Appendix B. Since all the partial expected values are available,

Q(x, £) can be computed.

4. SUMMARY

We presented here equivalent deterministic convex programs for certain special instances
of stochastic programs with simple recourse. The problem studied had a/l the elements of the
technology matrix and the recource vector as random variables. Previous studies (except Han-
sotia [6]) reported explicit formulas for cases where only the resourse vector was considered
random. The specific cases studied here had all the random variables generated by a multivari-
ate Normal distribution, independent Exponential distributions, and independent Erlang distri-
butions. For the first two cases we also extended the equivalent deterministic program to
include the variance of the recourse. Finally, a simple example was given to illustrate the use
of the "not-so-simple"” formulas for the Erlang case.
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APPENDIX A
LEMMA 1: If X,' ~ N([I.ZI,O'!‘) and MI:/UZ: = a,, then
EX ) =uy® ) +0yd @)
and
E[Y;1= —ny @ (—a;) + oy (),

where ¢(-) and ®(-) are the density and the cumulative distribution functions of the standard
Normal random variable.

PROOF:

(Al) ELY}] = fow 7#0—7 exp[—%[(}’ - #!,)/Ulllzldy'

Substituting (y — "'L)/O'Z, = z we have the right-hand side (RHS) of Eq. (A1) equal to

Ty oo 1 ) By oo 1
( ~1 —_—— 2 ~1 4.2 .
A2) 7-27- j:"‘: z exp[ 3 zédz + ﬁ f_a’ expl 3 z ]dz

The second expression in Eq. (A2) is merely p.Lll — & (—a;)], which may also be written as

Ky, ®(a,). Substituting v for lz2 iﬁ the first integral, it becomes

2
__;_ag]

TY, > _ 1
Ty v e
7%

= G'L¢(a,) .

Hence E[Y ;'] is given by
py® @) + oy dla,).




t
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To prove the second result we note that
(A3) Y=y
Denoting —Y,; by W and the mean and standard deviation of W by u w and o y, we have
E[W*] = uy®(a) + owéd(a)

wherea = pw/o . Noting thatuy = —uy andoy = oy, we have
Wiow W ; ud I

E(Y ] = ~py®Ca) +oydla).
Q.E.D.
Note how similar E[Y;"] and E[Y;] are. To obtain the latter all we need to do is replace py,

by —puy, and —a; by a;. Also note that because of symmetry ¢ (—a,) = ¢ ().
LEMMA 2: If Y, ~ N(p,!’, “Z,-) anda; = py /oy, then,
VarlY/l = puy i@ (@) + ®a)) + aplle?l) — aple) + ®le)] +
uyoyldla) + ¢a)® ()]

and
VarlY7] = py M0 (a) + @ (=a)] + oy 2% a) + ai¢ (@) + ®(-a))] —
uyoylola;) + ¢la)P(a)l.
PROOF:
(A4) Var (Y] = E[YH? - (E[Y;])?
(AS) EWxHA = [ yry (3

Substituting z = (y — uy)/oy in Eq. (A4), we have the RHS of Eq. (A4) equal to

L 0.2 (" 2 I, = 1
Ners [(rL f_a’ 2z exp[—;z dz + uyoy, f_a'_ 2 exp{— 722 dz +
ry? f_:, °""{‘% zzl"’] '

1 * .
N f_ o Z exp{—% zzldz is merely ¢ (a;) (see Lemma 1) and

L7 expl-totdts = 1 — p(ca) =
N .L,, e"Pl 27 }dz 1-®(-a)=¢@).
Hence, let us consider / = :/—;—_; f_:' 22 exv{— % zzldz. Integrating by parts and noting that

f z exp[— % zzldz = — expl-— —;~ z’l (up to a constant),
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we have [ equal to

?-[—z exp[——z +expf {——z]

=—apla)+1-d-a,

- a,-¢(a,-) + q)(a,‘) .
Hence E[(Y )% is given by
Ufll—a,tb(a,-) + ®(a)] + uyoydla) +uyid(a,).

Substituting £{Y;*] (from Lemma 1) into (AS) and using the above result we have
Var[)_'f] - “}f,[(p(ai) + d)z(a,')] + O'l’izllbz(ai) - a,~¢(a,-) + (P(a,)] +

(A6) uyoyle) + ¢@)®@)].
QED.

The second result is obtained quite easily by substituting into Eq. (A6) —py, for ky, and —a;
for a; and noting that ¢ (—a;) = ¢ (a;).

LEMMA 3: If (¥;, ¥;) is Normal in R?, then

ELY Y = 7 nlmGaa(s)) + s(5)é(y))dF (),

ElY;xl= f_(; yiim(y)® (a(y)) — s(y)eé @ (y))]dF(y),

ElY'y;)= fow = yIm ()@ (y)) + s(y)¢ @ (y)1dF (y),

where m(y;) = E[Y,|Y; = y)]

1
s(y) = {Varly,|Y, = y}}2, and
a(y) =m(y)/s(y).

@ ELrr Y= [ [ vy, dF Gy

(A7) = J, f, v dF Glypar o).
But dF (y,|y;) is Normal in R with mean m (»;) and standard deviation s (»;), where

(AB)

Ty,
m(y;) -ﬂ:!’_pij# v, ‘F-Z,)
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and
‘ (A9) sO) =oy(-pd)
- with p;; being the correlation between Y, and Y,. Equation (A7) may be written as
: J; .Vj[fo Yi dF(inyj)] dF(){,-) - J‘O Yi E[},i+|Zj - }’j] dF(Vj)-

Using Lemma 1, we have

F ELY Y, =yl = mG)@a)) + s()é (),
where
PI
{ (A10) a(y) = mo)/s() .
Hence E[Y;Y}] is given by
8 J 2 m0)e@0) + s6)8@ENFG) .
) (ii) In an identical fashion we prove the second result:
0 0 0

E[Y Y] = f_m f_,, »iy; dF ily)) dF () = f_m — Y EIXTIY, = yldF().
‘ Using Lemma 1 we have
r E[ZI_IZJ - y,-] = —m (Yj)‘p(_a()’j)) + S(Yj)‘b(a(}’j)

where m (y;) = E[Y,|Y, = y;] and is given by expression (A8). s(y) = {Var[Y,|Y, = y]}*
and is given by expression (A9) and a(y;) = m(y;)/s(y;). Hence

0
ElYi ¥l = [ ylmG)o-a®) - s k)dF ()

i QE.D.
Finally,
0 ©
’ E(Ytxl = f_w J; = yiyidF iy)
{ o
= f_m —J [,I:) J’idF(Vib’j)ldF(yj)
= [~ ImGeEG)) + 50 @GN dF () |
- Q.E.D.

Note that p; = Cov (Y,.Y))/oy o v, We present next a Lemma to compute Cov (Y.Y).

LEMMA & If Y, =Z, tyxy —p;and ¥, = L, Ly X = P)»
COV(Z,»Z,) = z'kzrxer Cov(llkL_’,lr) - zI\' Xy Cov(!,/k:llf) b
T, X Cov(typ,) + Covip,.p,).

PROOF: Consider

(A1) Var{Y, + ¥,) = Var[Y ] + Var[Y;] + 2Cov(Y,, Y))
and
‘ (A12) Var{Y, — ¥Y,) = VarlY ] + Var[Y,] = 2Cov(Y,, Y ).
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Taking the difference between expression (All) and (A12), we have

(A13) VarlY; + ¥} ~ VarlY, - ¥,] = 4Cov(Y,, Y)).
But,
VarlY, + ¥;1 = £,x*(Var(z,) + Var(z,)) + Var(p ) + Var(p ) +
p E,kxkx,Con,k,i,,) = 2%, Cov(iu, p)) +

2. X, xx Cov(ty, ty) — 22, x, Cov(t e, p) +
(A14) K s e L Kk = Q_;)
2L, L, %%, Cov(ty, ;) = 2Tex Cov(t i, E_f) -
szkaOV(__!ikn Ej) + 2COV(£,‘, B/) .

Similarly,
VarlY, -~ Y} = L, x2(Var(t,) — Var(z,)) -+ Var(p;) + Var(p, )+
zk }:. xkx,COV(\',k, t,,) b 22/( Xk COVL,k,p,) +

r#k
(A15) , rirkxer Cov(tjw, t;r) =~ 224 %, Covty, py) —
212, 2x CovU i, ;) + 22 x, Covliy, p)) +
2%, %, Cov(ty, p;) —2Cov(p,, p,).
Substituting expressions (A14) and (A15) into expression (A13) and simplifying, we have

Cov(Y,, ¥)) =L, Z, %X Cov(ty, £;) — 4 Cov(tj, ) — £, X, Covty, p)) + Cov(p.p,).

APPENDIX B Q.E.D.

The following functions appear in the example in Section 3.

-2 -3
A A
1. L(x)--—-’ . ) ——+x
2. Lz(x)-—KH-—+M l-—-+x —2[——-+x l———+)\, ]
A L S7
3. L,(x)-——— ——'l+x —11+M +12-——+A 2] 4
X7 X1 X3
-5
12 T+h ———+M
1
K[ Al oa -
4. M(X)-_2'_z i —-'f-l *-"]'2-—)\1]

A A A
5. M,(x) = -—2% H A "] —E~x, +3

sl ]







PARTIALLY CONTROLLED DEMAND
AND INVENTORY CONTROL: AN ADDITIVE MODEL

Y ves Balcer

Department of Economics
University of Wisconsin-Madison
Madison, Wisconsin

ABSTRACT

The primary goa) of this paper is 1o establish properties of the inventory
and advertising policy minimizing the expected discounted cost over a finite
horizon in a dynamic nonstationary inventory mode] with random demand
which is influenced by the leve! of goodwill. Under linearization of the cost as-
sociated with the maximum inventory and the advertising effect on demand,
the model is shown to be equivalent 10 an inventory model with disposal.
Many results of this paper are extended o cover convex ordering cost of in-
ventory and time lag in delivery of stocks.

1. INTRODUCTION

The problem of optimal inventory management when the demand is partiaily controllable
is the main focus of this paper. Few authors have attempted to analyze traditional inventory
control models where the level of demand is a choice variable; generally, these attempts were
concentrated on models where the demand is a function of the inventory level. One way to
model the contiol one can exercise on the demand is to specify that the demand is an increas-
ing function of advertising expenditures. Along those line, even fewer authors have attempted
to optimally integrate inventory policy with advertising policy. In fact, the only refercnce we
know of is Miercourt [9]. In this paper, we shall integrate them in the context of a discrete
time dynamic inventory model involving a single commodity with random demand, which
depends on the level of advertising. Under certain restrictions, the solution to the inventory
problem with advertising is equivalent to Fukuda's [4] solution to the inventory model with
disposal. Also Veinott {20} and Ignall and Veinott [S] have established the existence and the
characterization of the optimal policy for a dynamic, nonstationary, multiproduct inventory, of
which many of our results in Section 3 could be regarded as applications. Topkis' [17] and
Veinott’s [23] work on subadditive functions on sublattices and its application to inventory
problems by Veinott [22] provides us with the proper tools and methods for our analysis. A
knowledge of their theory, at least to the extent of the Appendix, is essential to understand this
paper. An abundant literature (see Balcer [2]) covers the problem of optimizing advertisement
expenditures, given a known demand-advertising relationship and no inventories. Most of it
generalizes the model of Arrow and Nerlove [1], which introduces the concept of goodwill
increasing with advertising and decaying exponentially over time.

The problem faced by the manager of a store with important inventory costs and an

advertising budget is the theme of this paper. These problems are important because not only
can jointly managed advertisement and inventory policies reduce costs, but such policies,
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independently managed, may very well reduce profits, well below the level obtained in the
absence of advertisement. Though the present model is developed on the theme of a store
manager in charge of advertising and inventory, the basic equation could just as well be reinter-
preted as trying to maintain the inventory at a positive level, like maintaining a work force or a
number of working pieces of equipment at a prescribed level (let S be convex with a minimum
at the prescribed level). In the example of the work force, the demand is simply the random
number of individuals who will quit minus g(b), the number preveited from doing so or
rehired, as compared to the number of new workers, y — x, obtained outside of the organiza-
tion.

In Section 2, we set up an inventory model with sdvertisement. In the next section, we
present and interpret conditions for the existence of an optimal solution. In Section 4, the
optimal solution is characterized and shown to be nondecreasing in the initial inventory and
advertisement. In Section 5, results on the monotonicity of the optimal solution are extended.
In Section 6, the problem is reduced to an inventory model with generalized disposal. By gen-
eralized disposal, we mean that purchasing and disposing of inventory could both take place
concurrently at the beginning of every period. When advertisement and ordering costs are
linear, this is equivalent to the usual disposal problem discussed by Fukuda [4].

In Section 7 many results of Section 4 are extended to a model where convex inventory
ordering cost is allowed. In Section 8, under additional assumptions, the model with lag in
delivery and promotion is shown to have the same properties as the model with no lag.

2. MODEL

In this paper, we will study a discrete time dynamic model of single commodity manage-
ment, when the nonnegative demand for the commodity in each period is uncertain, but has a
known distribution depending on the existing goodwill. At the beginning of each period, the
manager knows the initial inventory x and goodwill a > 0, the present and future demand dis-
tributions, and the cost structure. He decides to instantaneously increase the initial inventory x
to a level y 2 x by ordering at a unit cost ¢, and the initial goodwill a to a level b 2 a by
advertising at a unit cost p. The random demand g(b) + U depends on the goodwill and a
nonnegative random number U. We assume that g(0) = 0 without loss of generality since a
constant can always be added to U. During this period, the demand g (b) + U occurs, so the
terminal inventory becomes y — g(b) — U and the terminal goodwil! is unchanged. The initial
inventory and goodwill in the next period are respectively nly — g(bi - U] and 666 2 0 and
n(z)=m,z" —nm_z", where n, 2 n_ 2 0, z* = max (z,0), and z~ = max (—z 0). When the
slope of 7 is between zero and one, (1 — %,) is interpreted as a depletion or loss of inventory
and (1 — y_) as a loss of sales arising from the impatient consumers who depart before receiv-
ing their orders. Values of # less than one correspond to depletion of consumer goodwill. This
assumption corresponds to Zielske's [24] finding that the goodwill declines almost exponentially
over time, and to Tull's [18] evidence on the carryover effect of advertisement. We introduce
an additional concept, the book value of the terminal inventory, v — g{b) — U, and of thec ter-
minal goodwill, b, denoted Ty — g(b) — U.b). The function T(zb) is equal to
—=Acm(z) — Ap'8 b, where A 2 0 is the discount factor and the primes indicate the cost func-
tions associated with the following period. If z, the present terminal stock, is positive, the next
period initial stock is n.z, and the manager would pay the then discounted price A¢.z to reach
inventory level 5.z, if no carryover of inventory were permissible from one period to the next.
If z is negative, the next period initial stock is m_z, and the manager would pay the then
discounted price A¢m_ 2" to satisty the backlogged demand completely. The next period initial
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goodwill is 85, and the manager would pay the then discounted price Ap'@b to reach that
goodwill level, if no carryover of goodwill were possible from one period to the next. The book
value of the last period terminal inventory and goodwill is called the terminal cost.

During each period, the manager incurs a capacity cost # on the starting inventory and a
shortage-holding cost s on the terminal inventory. Both of these cost functions are convex, and
the function s increases to infinity with its argument. Moreover, s(z) is nondecreasing in z on
the nonnegative real line. The function # is bounded below. There is a unit selling price r.
The current sale price is paid when each consumer demand is incurred. This yields a gross
revenue of r{g(b) + U] to the manager. If the inventory is positive, the consumer receives
the commodity without delay until either the demand is totally satisfied or the inventory is
completely exhausted, whichever comes first. If consumers subsequently depart or increase
their orders without being served, the manager refunds or pockets, respectively, the then
current sale price. The sale is final only when consumers receive the commodity they have pur-
chased. We assume that EU and £s(y — g(b) — U) are finite, where E denotes the expecta-
tion, and that the demand function g(b) is increasing and concave in the goodwill. This last
assumption has been verified empirically by Shryer [12] and Stone [15] for mail ordering,
Telser {16] for cigarettes, Palda [10] for drugs, Clement et al. [3] for milk, and Simon [13,14]
for liquor.

Given a finite horizon N, let C"(x,a) be the minimum expected discounted cost in the
periods n, ..., N, where x and a are, respectively, the initial inventory and goodwill in period
n. The function C" can be calculated for each period by the dynamic programming recursion

C'(xa)= min {c(y—x)+plb—a)+ h(y)+ Esly — g(b) — U]

yrzxbza

) —rlg) + EUI+ (0 — 9 )rEly — g(8) — Ul
+AE C"'In(y — g(6) — U), 651}

forn=1,..., N, where C"*'(x,a) = —cx — pa. Every symbol in Eq. (1) should be indexed
by #n, however, when no confusion is possible because of the context, the index # is suppressed
throughout this paper. For simplicity, we will assume that the total demand is uncorrelated
from one period to the next. However, the results to be proven in this paper can easily be gen-
eralized if the basic demands in a given period are correlated with the basic demands in a
preceding period, independently of the goodwill.

It is convenient first to transform the problem to one with no ordering cost, a technique
which has been used by Veinott [20]. On letting C"(x,a) = C"(x,a) + cx + pa, the recursion
(1) becomes

(2) C"(xa)= min {L(y,b) + NEC"In(y — g(b) — U), 6b]),

v2xb>a
where
3) Lub)=cv+hn(@)+(p—A0pYb+ Es[y—g(b)— Ul-rlgb) + EU]
+lr—m_(r=ANDEly —gb) = Ul" — Aen Ely — g(8) — UL,

The term in braces in Eq. (2) is denoted 8"(y.b). Under this transformation, C"*!(x,a) = 0.

Upon regrouping the terms in Eq. (3), we obtain
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4) L(yb) = H(y) + Plg(b)] + Sly — g(b)],

where

(5) H(z) = cz + h(2),

() P(2)=(p —A0p)g7'(2) - 2,

and

N S(Z)=Els(z=U)~Aeqmz-U)+ U —n)r(z- U)7].

A constant term — rEU has been omitted as it clearly does not affect the choice of the optimal
policy. The term B”(y,b) in Eq. (2) is not necessarily convex since it is the sum of the convex
functions with the concave function — . Hence we will transform Eq. (1) by replacing g(b),
g(a), C"(x.a), B"(y,b), and L,(y,b) with B8, a, C"(x,a), B*(y,8), and L,(y,B), respectively.
For simplicity, the same notation is used for C, L, and B whether the goodwill effect (a« and 8)
or the advertising level (a and b) is used. The resulting recursion is

(8) C'(x,a) = y)rgiﬁn) (HO) + PB)+S(r—8) +
ANEC™*'[n(y — B — U), g0g~' (BN} .

Because g(b) is increasing in b and g(b) = B, the optimal policy B(x,a) associated with recur-
sion (8) can be expressed in terms of the optimal policy b (x,a).

In the new problem described by recursion (8), the variable 8 can be thought of as the
additional guaranteed demand that the manager purchases at a price P(8). This situation can
arise when the manager discounts the merchandise to attract additional customers or to increase
the quantity purchased by customers. In the remainder of this paper, the term goodwill will
instead be called advertising or promotion. The term advertising is used when the presence of
goodwill in one period influences the level of subsequent demands, i.e., 8 > 0, and the term
promotion is used otherwise, i.e., 8 = 0. Thus the effect of advertising is persistent while that
of promotion is ephemeral.

From here on, (5"(x,a), B"(x,a)) is the optimal policy in period n whose components are
the optimal inventory and the optimal controlled demand and which minimizes the right-hand
side of Eq. (8). The solution to the minimization of the total costs as given by Eq. (8) when
only one of the two variables can be chosen and when that variable is unconstrained is denoted
7™a) and B"(x), respectively. Also, the solution to the minimization of the total costs in
period n as described by Eq. (8) when the two variables are unconstrained is (3*", 8*". This
defines the base stock level in period » (as we shall see in Section 3) whose components are the
base inventory level and the base controlled demand. The differences y"(x,a) — B"(x,a) and
y*"— B*", are the optimal net inventory and the base net inventory in period n, rewritten
Z"(x,a) and z*", respectively. Finally, the solution to the minimization of the total present
costs in period n, as given by the right-hand side of Eq. (8) with the last term omitted, is the
myopic policy. In the preceding sentences, if we replace superscript n by subscript n, we have
the myopic counterparts of the optimal solutions. For example, z, is the myopic base net
inventory in period n.

3. EXISTENCE OF OPTIMAL SOLUTIONS

Before proving the existence of an optimal solution, we will further specify the admissible
functions g When 8 > 0, we also assume that g(8) = g(6g~'(8)) is convex in B. (The

. igan
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reason for this will become clear shortly.) This means that each additional unit of demand pur- :
v chased in a period generates more demand in the following period than the preceding units of
demand. Also, since g is increasing, 6 is positive and g~'(B) is positive when B is positive, it

follows that £(8) < B for9 < 1,g(B) =B for® = 1,and g(B) > B ford > 1.

Let I be the class of all concave increasing functions g such that g(0) = 0 and g(8) is

; convex in 8. The class I'” of all functions kb, where k > 0and 1 2> v 2 0, is a subclass of .

' Moreover, g(B) is linear in B8 for all elements of I'". If 8 < 1 and k > 0, kIn (b + 1) belongs
3 torl.

To ensure that the minimand in Eq. (8) is convex, we assume that the following condi-
g tions hold hereafter:

CONDITION 1: D*s(0) + r — Ac'ny 2 n-(r — x¢) + D™s5(0),

CONDITION 2: p = r6p),

¥ where D*s(0) (D s5(0)) indicates the right-(left-) hand derivative of s at zero. The left-hand
» side of Condition 1 can be regarded as the marginal revenue generated by a guaranteed demand
' of size € for a given inventory level €, where € is an arbitrarily small positive number. The
marginal revenue consists of the marginal sales price minus the marginal book value of the
inventory sold plus the marginal savings on holding cost when reducing the inventory level
The right-hand side term can be thought of as the marginal revenue generated by an arbitrarily
small guaranteed demand, given a nonpositive inventory level. The marginal revenue consists
of the marginal sales price on preserved sales minus the marginal book value of the inventory
sold minus the marginal increase in shortage cost when reducing the inventory level. Therefore
Condition 1 means that the marginal revenue at an arbitrarily small positive inventory level,
,‘ generated by an equally small guaranteed demand, must be no smaller than the marginal reve-
g nue at any nonpositive inventory level, generated by an arbitrarily small guaranteed demand. !
‘( Condition 2 asserts that the present price p of a unit of goodwill is greater than its book value. ‘e

Thus, both S and P are convex, since g is concave and increasing and therefore g~! is

;

]

1

convex and increasing. By the assumptions of Section 2, H is convex and P is continuous at g
{

i

d

!

zero. From this point on, we will deal with a problem with convex costs H, P, and S such that
P is continuous at zero. We now show that

PROPOSITION 1: Under Conditions (1,2), C"(x,a) is convex and nondecreasing in
(x,a).

PROOF: Of course C¥*! = 0 is convex. By the induction hypothesis, C"*!(x,a) is con-
vex in (x,a). Hence, because nondecreasing convex functions of convex functions are convex,
n(y — B — U) and EC"*'[n(y — B — U), g(B)] are convex in (y,8). Thus B"(y,B8) is convex ;
in (,8). The minimum of a convex function over a convex set being convex, C"(x,a) is con-
vex in (x,a). Because the sets over which the minimization takes place are decreasing in
(x,a), the function C"(x,a) is nondecreasing in (x,a). This concludes the proof.

o Since B"(y,B) is convex and convex functions are continuous, B"(y,8) is continuous.
Since B"(y,B) increases to infinity with |y| + B under conditions to be described, the space
over which the minimization takes place can be limited to a compact set. Also, the intersection




el & g e . b R W s =

278 Y. BALCER

of a closed set {y 2> x, B > a} of R? with a compact set is compact. Since the minimizing set
of a continuous function over a compact set is compact, the minimizing set M (x,a) of B"(y,8)
over {y 2 x, B2 a) has a lexicographically least element (7 (x,a),8(x,a)), called the optimal
policy.

We proceed to show that B"(y,8) tends to infinity with |y| + B under the following addi-
tional conditions, which are assumed to hold hereafter in this paper:

CONDITION 3: D™H() + D™S(e0) > 0,
CONDITION 4: D"H(e) + D™ P() > 0,
CONDITION §5: D™ P() — D*S(~) > 0,
CONDITION 6: D*H(—o) + D*S(—o0) < 0.

The interpretation of Conditions (3-6) is very natural. Condition (3) states that with fixed
added demand, it is not profitable to increase the starting inventory without limit. Condition
(4) states that it is not profitable to increase together indefinitely the added demand and the
inventory. Condition (5) states that when no inventory is ordered, it does not pay to increase
the added demand indefinitely. Finally, Condition (6) states that with fixed added demand, it
does not pay to let the inventory reach a very small level.

PROPOSITION 2: Under Conditions (1,2), the function L,(y,8) tends to infinity with |y|
4+ B(B = 0) if and only if Conditions (3-6) hold.

PROOF: The only if part follows by observing that since L,(-,) is convex, Conditions
(3-6) are respectively equivalent to the assertion that L,(y,8) — o along the respective half
linessy 20,8=0,y=820,y=0,20,andy< 0,8 = 0.

For the converse, recall first that the convex function L,(y,8) — o as [y + g8 — oo if
that is so along every half line emanating from the origin. Let 8 = 8y, so L,(y,B) associated
with Eq. (5) becomes

dOW=L,(oy)=HQE)+PEy)+S5((1-8)y).

CASE l:Ify20and 128 2 0, then
tim D¢ (y)=tlim {D"H()+6D"PBy)+(1-8)D-S((1-5)y)}
Yoo

= lim (8[D"H () + D P@y)I+ (1 -8)[D"H () + DS ((1-8)y)])
—8[D~H (o) + D~P(c0)] + (1= 8)[D~H(c0) + D~S(s0)] > 0
since Conditions (3,4) hold.

CASE 2: If y 20and 8 2 1, then

lim D¢ (y)=lim {D"H(y) +8D"P(By) + (1-8)D*S((1-8)y))
y—'on

y—

= lim {[D-H) + D"P(By)1+ 6 - 1)[D PBy)-D*S((1-8)»]}

¥y

=D "H() 4+ D P(2)]+ (3 —1)[D"P(0) —D*S(—=)] >0
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- since Conditions (4,5) hold.

CASE 3: Lety<0andd <0, then
lim D*¢(y)= lim {D*H()+8D"P@By)+ (1-8)D*S((1-5)y)}
y—e—o0 y——o0

= lim {[D*H(y)+ D*S((1-8)y)] + 8[D~P(By)-D*S((1-8)y)]}
y——o0
={D*H(—00)+ D*S(~0)]+8ID " P(0) ~ D*S(~=)] < 0
since Conditions (5,6) hold. This completes the proof of Proposition 2.

PROPOSITION 3: If L,(y,5) tends to infinity with [y| + bfor i = n, ..., N, then B"(y,b)
tends to infinity with |y | + b.

PROOF: This is obviously true for BY since B¥ = Ly. By the induction hypothesis, B"*!
has the property. Hence, by convexity B"*! is bounded below on R x R,. Thus, C"*! is
bounded below. From this, we conclude that B"(y,b) tends to infinity with |y| + 6. This
proves the assertion.

Proposition 3 completes the proof of the existence of the optimal policy.

In the rest of this section, we will establish sufficient conditions to warrant the existence
of nonnegative base inventory levels. When the base inventory levels are nonnegative, the res-
triction n_ < m, can be waived since the optimal policy (7(x,a), B(x,a)) is greater (see
Theorem 1 in Section 4) than or equal to (3% 8*) = (0,0) for all (x,a), and since
Dy C™'np(w), 2(v)] =0 for all w < 0 and v > 0, where D;”C denotes the left-hand deriva-
tion of the function C with respect to its i th argument. Obviously, Conditions (1-6) must stil
hold.

We assert that if the myopic base inventory level for each period is nonnegative, then the
base inventory level is also nonnegative in each period. We show this by induction. Since
CN*! is zero, the myopic base inventory level in period N is equal to the period N base inven-
tory level. By induction, the result holds for period n + 1. Therefore, D C"*'(x,a) = 0 on
R_x R,. Since n(x) < 0 for x £ 0, 0 is nonnegative, and the demand is nonnegative,
ED;C*"'[n(y -8~ U), 8(8)] =0 for all (y,8) € R_ x R,. This, with the fact that the
myopic base inventory level is nonnegative in period n, implies that the period »n base inventory
level is nonnegative, completing the proof of the assertion.

An expedient method to guarantee nonnegative base inventory levels is to impose the res-
triction y 2 0. Another method is to impose an additional condition on the cost structure such
that 7(0) > 0, which is sufficient to ensure that y* 2> 0, since 0 € 7 (0) < 7(B*) = y* (see
Theorem 1) where 8* > 0. Because of the preceding paragraph, it will suffice to establish the
result for myopic base inventory levels. By differentiating Eq. (4) with respect to y with
b = B = 0, we obtain the desired condition

CONDITION 7. D-H() + D~S(0) < 0,
which ensures nonnegative base solutions. For inventory problems with perishable goods, i.e.,

7. = 0, the nonnegative base inventory guarantees that the optimal policy is independent of the
level of backlogged demand, n_x".
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4. CHARACTERIZATION OF THE OPTIMAL POLICY

In this section, we will first establish that C"(x,a) is subadditive in (x,a), then character-
ize the minimizing set M"(x,a) and the form of the optimal solution. We remind the reader
that the starting stock is (x, a).

PROPOSITION 4: If Conditions (1-6) hold, C"(x,a) is subadditive in (x,a) and B"(y,B)
is subadditive in (y,8).

PROOF: Clearly, C¥*! =0 is subadditive in (x,a). By the induction hypothesis,
C"*!(x,a) is subadditive in (x,a). Therefore, since n is convex nondecreasing and g is nonde-
, creasing, EC"*![n(y — B — U), g(B)] is subadditive in (y,8) by Example A7. (This and the
! following examples can be found in the Appendix). Because § is convex, S(y — B) is subaddi-
i tive in (y,8) by Example A6. Thus, by Example A8, B"(y,B) is subadditive in (y,8). Since
i B"(y,B) is independent of (x,a), B"(y,8) is subadditive in (x,a,y,8). Also, {y > x, B = a)
is a sublattice of R* by Example Al. Since the minimum of a subadditive function over a sub-
lattice is subadditive by Theorem Al, (also in the Appendix) C"(x,a) is subadditive in (x,a),
completing the proof of the proposition.

We now turn our attention to the set M"(x,a).
PROPOSITION 5: The minimizing set M"(x,a) is a nonempty compact sublattice.

PROOF: By Proposition 1, we know that B"(y,8) is continuous. By Proposition 4, we
also know that B"(y,8) is subadditive in (y,8). Alse B"(y,8) tends to infinity with ly| + 8.
Therefore, by Theorem A2 (see Appendix) the minimizing set M"(x,a) is a nonempty compact
sublattice. This completes the proof of the assertion.

The lexicographically least element of M"(x,a) is then the least element of M"(x,«) and
is called the optimal policy, written (¥ (x,a), B(x,a)). Also, the least element of M"(—c0,0) is i
denoted (y* B8*) and called the base stock level. Before further characterizing the optimal pol- '
icy, we recall that j (a) is the least y minimizing B"(y, ) subject to 8 = a and 8(x) is the least
B minimizing B"(y,B) subjectto y = xand 8 2 0.

THEOREM 1: Under Conditions (1-6), y(x,a) = x Vj({B*V a) and Bx,a) =a V |
B(y* v x) with 7 and B being nondecreasing on their respective domains.

g

PROOF: Proposition 5 and Theorem A2 imply that the optimal policy exists and is non-
decreasmg in (x,a) and that 8 and j are nondecreasing. Also (y(B ), B(y*)) (y*B*). Now
for (x,a) € (V%8"), (F(xa), B(x,@)) = (y*B*). For x > y*and a < B(x), we have by
the convexity of B" that y(x,a) = x and so B(x,a) = B(x). Similarly, for a > B*and x €
jla), y(x,a) = j («) and B(x,a) = a. Combining these two facts we see that if (y%,8*) <
; (x,a) € (Fla), B(x)), then (x,a) = (F(x,a), B(x,a)). Now if (»*8*) < (x,a) and if
‘ , (G (@), B(x)) € (x,a), then Oxa), B(x,@)) = (x,a). For if not, there are three possibili- i
1 ties, viz., (i) y(x,a) > x and B(x,a) = a, (i) ¥(x,a) = x and B(x,a) > a, or (iii) ¥x,a) > ;
x and B(x,a) > a. If (i) occurs, then ja) = y(x,a) > x 2 j(a) which is impossible. If (ii)
holds, then B(x) = B(x,a) > a > B(x) which is also a contradiction. Finally, if (iii) holds,
then since B" is convex, B” is nonincreasing along the line from (5,8) to (y*B8*), implying
that either (i) or (ii) holds, contradicting (iii). This completes the proof.

To sum up, we have shown tr!al the optimal policy is as depicted in Figure 1. Also, we
have proved 7(8*) = y*and B* = 8(y*).
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Initial
goodwill

*

y x
. Initial inventory

FIGURE 1. — Depiction of optimal policy.

For this paragraph, we further assume that the costs and the demands are stationary and ;
that the depletion factors of inventory, n., and of goodwill, 8, are no greater than one. When )
’ the initial inventory x and goodwill « are smaller than the base stock level of the first period,
the myopic policy is optimai in every period (20]. It is optimal to order (* — x,8* — a) at the
beginning of the period. By further restricting A to be smaller than one, the model easily car-
ries over to the infinite horizon. We could obtain myopic optimal policy for this problem under
a nonstationary structure by applying the conditions defined in Veinott [20] and in Ignall and
Veinott [5].

:
;,
3
F?

5. MONOTONICITY OF THE OPTIMAL POLICY

In this section, we shall take advantage of the particular structure of the optimal policy to
exhibit its monotonicity in the initial parameters. Namely, we will prove:

ilbinans

THEOREM 2: For all n, 5"(x,a) and B"(x,a) are nondecreasing in (x,a). Also '(x,a),
x = 7"(x,a), x ~ B"(x,a), and x — z"(x,a) are nondecreasing in x. Moreover, a — 8" (x,a)
and a + z"(x,a) are nondecreasing in a. Finally, if H is linear, « — y"(x,a) is unimodal in a,
and z"(x,a) is nondecreasing in .

PROOF: By Theorem 1, 7"(x,a) and B"(x,a) are nondecreasing in (x,a). Let y = x and
B’ = x — B, and consider

xg}i,go {P(x —B8)+ SB) +A\EC" ' [nB' — U), g(x — B8"]}.

il ikade

Since P is convex, P(x — B') is subadditive in (x,8") by Example A6, and since C"*! is subad-
ditive on R x R, n and g are nondecreasing. A EC"*'[n(8' — U), g(x = B)] is subadditive in
‘ (x,8") by Example A7. By Theorem A2, the greatest element 8’ = x — 8"(x), minimizing the
E term inside the braces subject to 8’ < x, is nondecreasing in x. Thus, x — 7"(x, a) = x — xV
7'(B*" Va) and x — B"(x a) = x —aVB" (y*"Vx) are nondecreasing in x. Also, z"(x,a) =
xvj"g*"va) - aV B"(y"*V x) is nondecreasing in x. Moreover, x — z'(x,a) = x — y"(x,a)
+ B"(x,a) is nondecreasing in x.
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Now, a —B"(x,a) = a — aVB"(y*"Vx) is nondecreasmg ina. Also,a + z'(x,a) = a
— B"(x,a) + 7"(x,a) is nondecreasing in a. LetB = a and —y’ = a — y, and consider

min {H(a + y') + SO¢/) + AEC" ' (' = U).g(@)]}.
y

If H is linear, the term inside the braces is subadditive in («,y’) by Examples A5 and A8 and
the fact that C"*'(x,a) is subadditive in (x,a). Therefore, the least y’ = j"(a) — a achieving
the minimum is nondecreasing in a. Thus, a — j"(x,a) = a — xV 7"(8*"Va) is unimodal in
a. Since Z'(x,a) = x Vi"(B*"va) — aVB"(y*"Vx), 7"(x,a) is nondecreasing in a, complet-
ing the proof.

When the goods are assumed to be totally perishable, i.e., n, = 0, we can transform the
problem into a convex program and exhibit the monotonicity of the optimal policy in the initial
guaranteed demand «. By imposing Condition (7) or y 2 0, we ensure that the base inventory
level is nonnegative. Since the goods are perishable, x < 0 always. Also, since y*" is always
nonnegative, C"(x,a) = C"(0,a) for all x £ 0. Thus, with C"(a) = C"(0,a) and n, = 0,
recursion (8) becomes

¢) C'a) = r})ﬁﬂn> (Hp) + PB) + S —B) +AC™'[g(@)]).

y20.82

Since the state variable in Eq. (9) is not random, it follows that the advertising of perish-
able goods model is a deterministic convex program, viz.,

N
(10 C'(a) = min ¥ (H,(»,) + P,(8,) + S,(, — B,)]
n=1

such that y, > Oforall n, 8, > £(8,-) forall n > 1, and 8; 2 . Thus it is not necessary to
find the optimal policy for all values of the initial controlled demand in every period. Since the
right-hand side of Eq. (10) is subadditive in Yn and B,, and the set of feasible solutions is a
nonempty closed sublamce of R™ that is bounded below, there is a least vector
Gl @), ..., ywia), Bi@), ..., BY(a)) minimizing the right-side of Eq. (10) over the feasi-
ble region. These vectors can be found by nonlinear programming algorithms. Let Z)(a) =

¥ a) — B a).

_THEOREM 3: When n, = 0, for each n, the functions 3! (@), B8}(@), =7} (@), a — 7"(a),
a — B"(a), and « + Z"(a) are nondecreasing in «.

PROOF: By Theorem A2, () («),8,)(2)) is nondecreasing in @ > 0 for all n. Replacing
— B, by —z,’, the right-hand side of Eq. (10) becomes

N
an min 2 [H,,(,B,, -z,)+ P,(8,) + S,(~z,)]

subject to 8, > z, and B, > g(8,-,). Since H, is convex, by the same argument as above,
the {N+1,...,2N]}-lexicographically least element 8/(a)....Bx(a), =2!(a), ..., —zN(a))
minimizing Eq. (11) subject to the constraints indicated above is nondecreasing in a, so Z, (a)
is nonincreasing in a for all n.

If instead we let 8’ = a — B and y' = a — y, Eq. (9) becomes

(12) C"a)= min (Hla-y)+ Pla-8)+SB —y)+

¥'€a.B'<0

AC"™ ' (g(a - BN} .
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Since P, H, S, and C"*!(g(-)) are convex, the term inside the braces in Eq. (12) is subadditive
in {(a,y,B") by Example A6. The space over which the minimization takes Pplace is a sublattice
by Example Al. By Theorem A2, the greatest element (a — ¥"(a), @ — B"(a)), minimizing
the right hand side of Eq. (12), is nondecreasing in a. Moreover, a + z'{a) =

a — B"(a) + y"(a) is also nondecreasing in a by the above, completing the proof.

The results of Theorem 3 are stronger than those of Theorem 2, as not only the current
optimal policy is increasing in the initial parameter but also all subsequent optimal policies. As
the guaranteed demand due to past advertisement increases, the additional impact of optimal
current expenditures on advertisement must not increase. Similarly, the optimal inventory
level must not increase as fast as guaranteed demand due to past advertisement.

6. GENERALIZED DISPOSAL

In the remaining sections, @ is assumed to be 0. The assumption # = 0 means that the
effect of advertising is ephemeral and therefore the initial goodwill in each period is « = 0.
The problem as described by Eq. (8) is thus reduced to
(13) C"(x) = min. (Hp) + PB) + S(y — B) + \EC™!In(y — 8 ~ )1},

Y ZX,

where C"*! = 0. Heretofore, we have supposed the cost p(b) of purchasing b units of promo-
tion in a period is linear in &, and that g and g are concave and convex, respectively, and non-
negative and increasing. From now on, we drop these assumptions and assume only that g is
nonnegative and increasing, and that p(g~'(8)) is convex in 8 > 0. Also, let P(B) =
p(g7'(8)) — rB. Thus, each additional unit of added demand in a period is at least as expen-
sive as its predecessor. Under Conditions (3-6) with D p(g~!(e0)) replacing
(p — A8p")Dg~!(ce), an optimal solution will exist when the problem is expressed in the origi-
nal costs.

We will show that under the linearity of Pand H, the problem at hand is equivalent to the
usual inventory model with disposal as discussed by Fukuda [4). If P is linear the result of
Theorem 1 can be sharpened in the following way. Let S'(z) = S(z) — Pzand z = y — 8 then
Eq. (13) becomes

(14) C'(x) = m?in (H(x) + Px + S'(z2) + AEC"*'[n(z — U]},

s0 B"(x) = (x — z**")*, where z**" is the greatest z minimizing the sum of the last two terms
in braces in Eq. (14) over R. This result is summarized below.

LEMMA 1: If P is linear on R,, then B"(x) = (x ~ z**D*, B(x) = (x ~ z**")*
VT — 29 = (x vy — 2% and 77(x) = 2% A(x Vy*n).

REMARK: If y*" > 2**" then z"(x) = z**" = z*"for all x and if y*" < z**", then

ynn_ Padd for x < y*"
as Z"(x) = {x for y*" £ x £ z**".
2% for z**" £ x

An important question here is: when is y*" £ z**"? We already know that y*" < z**" implies
B*" = 0. Therefore y*" is the least y minimizing

(16) {HG) + SG) + AEC" ' [n(y — U)]).
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By comparing Egs. (14) and (16), we obtain that D"H(y*") + P > 0 implies y*" < z**,
Similarly, a necessary condition for y** £ z**"is D*H(y*") + P> 0.

In the rest of this subsection we assume also that H is linear, so Eq. (13) becomes
C'x)= min (Hy +PB+ Sy —B) + \EC™'[y(y — 8- U)]].

y2x.820

On letting z = y — 8, we have
C"(x) = min {(H + P)y — Pz + §(z) + AEC"*'[n(z — D)]}.

y2zVx
Since H + P > 0 by Condition (4), y = z V x in the above recursion which then reduces to

C"(x) = min {(H+ P)(zv x) — Pz + S(z) + N\EC"*'n(z — U]}
=min {Hx + H(z = x)* + P(z = x)" + S(z) + AEC"'In(z - U)]}.

Let C*(x) = C"(x) — Hxand $(z) = S(z) + AHEn(z — U), so the new recursion is
C"x) =min (Hz = x)* + P(z — x)" + 8@) + \EC" ' [n(z = O)]}.

This is the usual formulation of the recursion for the inventory problem with disposal, where
y*" is the base ordering level and z**” the base disposal level.

7. CONVEX PRODUCT ORDERING COST

In this section, we generalize our model from linear to convex product ordering cost.
Suppose now that there is a nondecreasing ordering cost function ¢ where ¢(z) = 0 for z < 0.
If we define ¢ to be equal to D*Z(0), then the right-hand derivative of the function ¢(z) =
¢(z) — czis equal to zero at zero. Under this transformation Eq. (13) becomes

17 C"(x) = mino{c(y—x)+H(y)+P(B)+S(y—B)+

yz2x.p2

AEC™In(y — B — U]},

where H, P, and S are defined by Egs. (5), (6), and (7), and C"*'(x) = 0. Under Conditions
(3-6), L,(y, B) tends to infinity with |y| + B by Proposition 2. Since c(y — x) is nonnegative
for all y, L,(»,8,x) = L,(3,8) + c(y — x) also tends to infinity with |y| + B for every x. By
Proposition 3, B"(y,8,x) does similarly upon noticing that C"*'(x) is bounded below. There-
fore, an optimal solution exists for every x. As L,(y,8,x) is a convex function of (y,8,x),
C"(x) is convex in x, provided n is linear.

THEOREM 4: If 4 is linear, y"(x), z"(x), B"(x), x — y"(x), x — z"(x), and x — B"(x)
are each nondecreasing in x.

PROOF: Since the additional term c(y — x) in Eq. (17) relative to Eq. (13) is subadditive
in (y.x), by Proposition 5 B"(x,y,8) is subadditive in (x,y,8), and by Theorem A2 y"(x) and

B"(x) are nondecreasing in x. Let z = y — B8 in Eq. (17) which becomes

(18) C'(x)= min {c(y —x)+ HQ) + P(y — 2) + S(2) + NEC"*'[n(z — U)]}.

y2xy2:

Since P and c are convex, the term inside the braces is subadditive in (x,v,.z) by Examples A6
and A8. Therefore, by Theorem A2 the 2-lexicographically least element, (3"(x), z"(x))
minimizing the right-hand side of Eq. (18) is nondecreasing in x.
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Upon letting y' = x — yand 8’ = x — B, Eq. (17) becomes

(19) C"(x) = min . {c=y)+ Hx—y)+ P(x—B) + SB' —y) +

Zyx2

AEC" ' [n@B' -y — U]}

Since H, P, S and C"*! are convex and 7 is linear, the term inside the braces in Eq. (19) is
subadditive in (x,y’,8") by Examples A6 and A8. Therefore, by Theorem A2 the {1,2}-
lexicographically least element (x — y"(x),x — 8"(x)) minimizing the right-hand side of Eq.
(19) is nondecreasing in x. Moreover, x — z"(x) = (x — y"(x)) + B”" (x) is nondecreasing in

x by the above, completing the proof.
8. COMMON TIME LAG IN DELIVERY AND PROMOTION

In this section, we generalize our models by allowing a common interval of time to occur
between the moments of product ordering and of promotion purchase, respectively, and the
moments of the delivery of the product and of the promotion effect. This interval of time, v,
where v is a nonnegative real integer, is called a time lag.

Let x be the inventory on hand plus on order minus the contro'led demands of periods »
to n + v — 1, at the beginning of period n. Also, B is the controlled demand that will take
effect in period n + ». In addition, all costs are incurred at the beginning of period n + v.
Under the assumption n(x) = x, recursion (13) becomes

Q0 C"(x) = min o (HQ) + P(B) + Sy = B) + AEC™'(y — B — U},

y2x.pg2

where n £ N-v, H, and P are defined by Egs. (5) and (6), and
S(z) = Es(z — V) — ¢z,

with ¥ a random variable whose distribution is the convolution of F,, ..., F,4,.

Since the structure of Eq. (20) is identical to that of Eq. (13), all results discussed in Sec-
tions 2-6 apply directly.

9. CONCLUSION

This paper has shown the existence of an optimal policy to an inventory problem where
the demand is influenced through advertising under the control of the same management unit.
The present approach links together two generally separate functions of firm management,
though there are examples of such a link in the real world, such as an ad campaign for an end
of season sale, or an increase in inventory by merchants prior to a major ad blitz by a producer
or by themselves. When the optimal policy for inventory level and advertising level is charac-
terized, this link is rendered more explicit as each component of the optimal policy is increasing
in the other and also in the initial levels of inventory and advertising.

Numerically, this two-variable dynamic program can be treated like two one-variable
dynamic programs since the optimal policy (x v #(8* Va), a V 8(x v »*)) is a known function
of two single variable functions y and 8 over the range (y* o0) and (8* =), respectively.
Since, in general, these functions cannot be obtained in closed form, they are evaluated using
one-variable search procedures. Thus, the number of numerical computations necessary to
solve this problem are of the same order of magnitude as that of a one-variable dynamic pro-

gram.
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APPENDIX
SUBLATTICES AND SUBADDITIVE FUNCTIONS

This whole appendix summarizes some results of Topkis [17] and Veinott [23] (forthcom-
ing) on the minimization of subadditive functions on a sublattice. Throughout, C is the Carte-
sian product C; x ... x C, of a finite number of chains. A chain is a completely ordered set.
For example, the real line R is a chain.

A subset L of a partially ordered set is called a lattice if every two elements s, s' € L have
a greatest lower bound in L, called their meet and denoted s A s’ and a least upper bound in L,
called their join and denoted s V s

A subset S of a lattice L is called a sublattice of L if S is a lattice and if the meet and join
of every two elements of S coincide respectively with the meet and join of those same two
points considered as elements of L.

EXAMPLE Al: The set {s € R"|a;s; + b;s; > c;, for 1 < i, j € n} is a sublattice of R”
provided that ¢;;b; < Oforalll < i, j < n

EXAMPLE A2: A chain in a lattice is a sublattice.
EXAMPLE A3: The Cartesian product of two sublattices is a sublattice.

Theset L, = s’ € L'|(s,s’) € S}, where S is a sublattice of the Cartesian product L x L’
of two lattices, is called a section of S. The set [1,,§ = U,¢, L, is called the projection of S on

L'
EXAMPLE A4: The section L, and the projection II; .S are sublattices of L

A real valued function f on a lattice L is called subadditive if f (xAy) + f (xVy) <
f (x) + f£(y) for all x, y € L, and superadditive if the inequality is reversed. The assertion that
f is subadditive on the product L x L’ of two chains is equivalent to the assertion that the
mixed second differences of f are nonpositive on L x L. If f is twice continuously
differentiable and L x L'is an open subset of R?, then f is subadditive if and only if D}, f < 0
onLx L’

LEMMA Al: A function f on C is subadditive if and only if f(s) is subadditive in (s;,s;)
on C; x C; for each i < i < j < nand each fixed 5, € G with k= i, .

For the next three examples, we define the following functions:
fiLxL —R gL—L, ~g'L'—L hiL'—L,andg:L x L'— L,

where L and L' are subsets of R.

EXAMPLE AS: If f(s,t) is subadditive on L x L’and g and # are nondecreasing on L and
L', respectively, then f(g(s),h (1)) is subadditive in (s,t) on L x L’
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EXAMPLE A6: If L + L = L, f(s,1) is subadditive on L x L’and convex in s on L for
each + € L, and if g g and h are nondecreasing on their respective domains, then
S (g(s) — g'(t), h(t)) is subadditive in (s5,¢) on L x L’

EXAMPLE A7: If f(s,t) is subadditive on L x L’and convex nondecreasing in s on L for

each ¢ € L', ¢ is subadditive on L x L', £ is nondecreasing on L and nonincreasing on L', and A
is nondecreasing on L', then f(2(s,1),h(¢)) is subadditive in (s,r) on L x L’

EXAMPLE A8: The set of subadditive functions on a lattice is a convex cone.

LEMMA A2: If f is subadditivg on C where C, C R, F is a chain in the set of all real
valued distributions, and g (t,F) = | f(s.1)dF(s) is finite for all (+F) € C, x -+ x C, x F,
then g (¢, F) is subadditive in (+,F) on C; X -+ x C, x F.

THEOREM ALl: (Projection theorem). If S is a nonempty sublattice of the product L x
L’ of two lattices, f is subadditive on S, and g(s) = inf, L, f(ss) is finite for s € 11, S, then g

is subadditive on I1; S.

If Ly,..., L, are partially ordered sets and L C L; X --- X L,, we say s € L is lexico-
graphically smaller than ¢ € L, written s < ¢« if either s = ror s = rand s, < ¢ for i =
1, ..., j, where j is the smallest index i for which 5; # 1. If 4 is a subset of the first n positive

integers, denote by L4 the set L where the ordering on L, is reversed for each i € 4. We say s
€ L is A-lexicographically smaller than ¢+ € L, written s <1, if s is lexicographically smaller
than tin L.

THEOREM A2: (Monotonicity theorem). If S is a nonempty sublattice of the product L
x L’ of two lattices where L' C R”, if L; is compact for each s € I1, S, and if f is subadditive
on § and continuous on L, for each s € I1; S, then the set M (s) of points minimizing f(s, -)
over L; is a nonempty compact sublattice of L, for each s € II;S. Also, M(s) has least,
greatest, and A-lexicographically least elements, each of which is nondecreasing in s on IT; S.

st

(. 2 T (rs




e R e v LA B L 9K

A DYNAMIC INVENTORY SYSTEM WITH RECYCLING
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ABSTRACT

This paper deals with a periodic review inventory system in which a con-
stant proportion of stock issued to meet demand each period feeds back into
the inventory after a fixed number of periods. Various applications of the
model are discussed, including blood bark management and the control of
reparable item inventories. We assume that on hand inventory is subject to

proportional decay. Demands in successive periods are assumed to be indepen-
F dent identically distributed random variables. The functional equation defining
an optimal policy is formulated and a myopic base stock approximation is
developed. This myopic policy is shown to be optimal for the case where the
feedback delay is equal to one period. Both cost and ordering decision compar-
isons for optimal and myopic policies are carried out numerically for a delay
time of two periods over a wide range of input parameter values.

] INTRODUCTION

This paper deals with the analysis of inventory systems in which recycling occurs. The
term recycling is used here to indicate that a fixed fraction of the stock used to satisfy demand
returns to inventory after a fixed number of periods.

Feedback or recycling in inventory systems can occur in a number of different ways.
Examples include systems where customers buy items with a rent/purchase option and return
items that are not ultimately purchased. Another cause of recycling is the result of over-
ordering stock. This occurs in hospital and regional blood banks since physicians requesting
blood for their patients tend to over-order by a factor of two or three. A further application of
recycling occurs in retail sales systems where a fixed fraction of stock purchased by customers
may be returned, and subsequently mixed with existing inventory.

*Research supported by Grant ENG-77-07463 from the National Science Foundation
**Research supported by Grant 78-3494 from the Air Force Office of Scientific Research and Grant ENG 78-05928
from the National Science Foundation. Visiting, Department of Operations Research Stanford University, 1978-1979
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N
The phenomenon of recycling can aiso be observed in reparable item inventories. An A
issue stock inventory is maintained to replace items in the field which are subject to failure. i
§ Failed items are returned for repair and after a fixed delay time (which includes the tinwe

1 required for transportation and repair), the repaired item is returned to the issue stock inven-
; tory. A fraction of those items that fail are condemned and leave the system forever. The
reparable item system is pictured in Figure 1.

FRACTION (1-a) OF ITEMS
) ARE CONDEMNED AND LEAVE
, THE SYSTEM

% EXTERNAL
v FAILED UNITS ARE REPAIR
‘ SHIPPED IMMEDIATELY FACILITY

; ‘ TO REPAIR FACILITY

FRACTION a OF ITEMS 1
ARE REPAIRED AND )
RETURNED A PERIODS LATER

STOCK IS ISSUED TO REPLACE
FAILED UNITS
EXTERNAL DEMAND — ISSUE STOCK
i
' ITEMS MAY BE ORDERED FROM
ESXUTPE,T,“;‘L EXTERNAL SUPPLIER WITH
ZERD LEADTIME

( FIGURE 1.

Previous analyses of this class of inventory system have been restricted primarily to simu-

lation studies of blood banks (Cohen and Pierskalla [2]), or systems where demand is deter-

u ministic and the proportion of stock recycling is treated as a random variable (Cohen, Nahmias
and Pierskalla [3]). Related reparable item inventory models include Prawda and Wright [4] ;

and Allen and D’Esopo [1]. This paper treats the case where demand (or failure) is stochastic f

and where the fraction of stock that feeds back into the system is fixed. 3

The paper begins with a description of notation and assumptions for a general mode! with
- arbitrary recycle lag and stochastic demand and the functional equation satisfied by the optimal
order policy is formulated. A myopic approximation to the optimal order policy and conditions
for its optimality are derived for the case of an arbitrary recycle period. The optimality of this
policy for the case where the recycle period is equal to one is then demonstrated.

The final section reports on the results of a numerical analysis comparing optimal and
myopic policies for a variety of cases where the recycle lag is equal to two periods. These
results suggest that the myopic policy provides a very effective approximation to the optimal.




T

o

DYNAMIC INVENTORY SYSTEM WITH RECYCLING 291

MODEL ASSUMPTIONS AND NOTATION
A periodic review inventory system with the following features is considered:

®  Successive demands {D;} are independent and identically distributed random variables
with known cumulative distribution function F(-) and density f(-).

e A fixed fraction, a, of stock issued to meet demand is returned after a delay of A >
1 periods. The fraction, 1 — a, is consumed.

® A fixed fraction, 8, of stock on hand at the end of each review period survives,
without decay, into the next period and the fraction, 1 — 8, is lost to decay.

] Excess demand is lost in each period.

®  There is no leadtime for ordering. That is, orders are received in the period in which
they are placed.

e  Excess demand is lost (lost sales).

Time periods are numbered forward by integers n, n =1, 2, ..., T, where T is the decision
horizon for the problem.

The following variables describe the state of the system each period:

1 = (I,,....1,_)) is the vector of stock quantities issued to meet demand in the previ-
ous A—1 periods. Interpret /; as the quantity issued exactly / periods previously.

u = starting inventory before ordering but after the arrival of recycled stock in the
current period.

z = inventory on hand after ordering and after returns in the current period.

The state of the system at any point in time is described by the vector (1,/), and the decision
variable (the order quantity), is given by z — u.

We will adopt the common conventions that the holding cost function #(:) and the shor-
tage cost function p(-) are convex functions of ending stock in each period. The outdating cost
is assumed to be @ per unit of stock that outdates at the end of each period, and the procure-
ment cost is ¢ per unit. If follows that the one period expected holding, shortage, and outdate
cost function, say L (z), is a convex function of the starting stock z, and is given by

L(z) = ElhlG = D)1+ pl(D — 2)*1 +6(1 - 8) G = D)*),
= [ hG— s+ [ pu~Dr0d+00-p)f G- Dr0a

Assuming that future costs are discounted by a where 0 < a <€ 1, it follows that the
functional equations defining an optimal policy are given by:
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Colu) =minjc(z ~ u) + L(z)

22u

+ o,fozc,,+1 @z = 1) + aly_t 0y, .. L) f(Odr
+ aj; RN TN N NN Y OF

for n21 and Cryy (-} = 0. Note that this is equivalent to assuming that stock remaining at the
end of the horizon is not salvaged. Other salvage assumptions are possible and will be con-
sidered in the next section.

Here C, (u,]) has the interpretation as the minimum expected discounted cost at the start

of period n when u is the starting stock after returns, and / is the vector of previously issued
stock.

The process dynamics are implied in the functional equations above. Let ¢ be the realiza-
tion of demand in period n. Then there are two cases:

(a) ¢ < z In this case ( — 8) (z — 0 is lost due to decay and 8(z — ) transfers to the
next period which combines with the stock which recycles in period n + 1, af,_;.
Exactly f units are issued to meet the demand. In this case if (&,]) is the state vector
in period n, it follows that (8(z — ) + al,_;,t.1,,....1,_,) is the state vector in
period n + 1.

(b) t > z In this case ending stock in period » is zero and no stock decays or is
transferred to the following period. Starting stock the next period consists only of
the stock which recycles in period » + 1, which is a/,_;. Since only z can be issued
to meet demand, the state vector one period hence is (al,_,,z,/,,....1,_7).

The optimal policy is to order the max (z, (/) — «,0) where z,(/), the order to point,
minimizes the bracketed term on the right hand side of the functional equation above. Compu-
tation of an optimal policy will be difficult due to the limitations of dynamic programming with
vector valued state variables. However, for A = 1 under reasonably general conditions the
optimal policy can be shown to reduce to a single critical number in each period. In addition, a
critical number approximation is derived for the case A > 1.

A MYOPIC CRITICAL NUMBER APPROXIMATION

We will assume as above, that periods are numbered forwards and the planning horizon is
exactly T periods where A £ T £ +o. We ignore the case T < A, as the feedback process
will not be relevant, and the optimal policy reduces to the ordinary critical number order policy.
The variables u, and z, are still to be interpreted as starting stock after returns before and after
ordering respectively in period n. In addition, let (/1),...,/())) represent stock issued in the
final A periods. That is, /(1) is issued in period T — A + 1, /(2) is issued in period 7 — A + 2,

., and [(A) is issued in period T.

In order to construct the approximation we will need to assume that all stock remaining in
the system at the end of the horizon can be salvaged at a return equal to the purchase cost of ¢
per unit. This includes stock on hand at that time, (u7,,), and the stock issued in the final A
periods of the horizon /(1}, ..., /(7). In addition, we assume that the issued stock cannot be
salvaged until it returns to inventory. Hence a/(1) is salvaged in period T + 1, a/(2) in period

T+2 ...,and al(\) in period T + A. (The salvage assumption was first used by Veinott
(51
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With th;se assumptions, the total discounted cost over T periods, say TC(z), when fol-
lowing the ordering policy z = (zy,...,z7) is

T
TC(z) = E{Y a" ' {c(z, — u,) + L(z)}} — a"curyy — ¢ i aT* lal(k).

n=1 k=1

The process dynamics imply that
B(z,_1— D,-)*for2< n <
Un = [B(z,,_, - D,-)* + a min (z,-,,D,_\) forA+ 1 < n < T+ 1
and 7(k) = min(zp_y4x,Dr-s+4) for 1 < k <A,

By a rearrangement of terms, one can show that

TC@) = ¥ o« 1W(z) — cuy,

nw]
where
W(z,) = Elc(z, — aB(z, — D,)* — o* a min(z,, D)1+ L(z,) for 1 < n< T.
We have the following result:
THEOREM 1: Assuming

1.  All inventory on hand in periods T + 1, ..., T + A can be salvaged in that period
at a return of ¢ per unit.

2. p0)>U-a*a)c

3, P'D,,) iisl‘—llz‘]-lforl <n<T

4. uy < z*

where z* is the minimizing point of W(z) and is the root of the equation W'(z*) = 0, then the
optimal policy is to order to z* every period.

T LT
PROOF: Since ), W,(z*) < Y, W,(2), it follows that z* is the optimal order to point if
1

ne= n=1
z* can be achieved. It will be possible to order to z* in period » if and only if z* — u, 2 0.
Following the policy z* in every period implies that

u, = B(z* - D,_y)* + a min (z*,D,_,)
< B(z* - D,_)* + az* = max(az* (a + B) z* — BD,_)).
Clearly az* € z*. By assumption 3, (a +B8) z*—8D,.;, £ (@+B) z* - (a+B-1)
z* = z* hence, u, < z*.

Since W(z) is convex in z, and by assumption 2, W'(0) < 0, we have that z* > 0.

PR
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COROLLARY: For A = 1, P an > i—*—g—“——‘—] z'}- 1 for 1 € n < T, and hence

the myopic policy defined in Theorem 1 is optimal when only assumptions (1), (2) and (4)
hold.

PROOF: ForA = 1 we have,
U, =p{z*— D,_)*+ a min(z*, D,_,),

and it follows easily that , < z*for all realizations of D,_,.

When all costs are linear, z* will be given by,

i p— c(l—a*a)

(1) ==F p+h+0(1-8)—ac@-a*la)|

Assumption 3 in Theorem 2 is somewhat tautological when A > 2, since z* depends on
the distribution of D,. When this assumption does not hold, it may not be possible to order to
z* in every period as it will not necessarily be true that 4, € z* However, since the expected
cost function, W(z), tends to be relatively flat in a neighborhood of the minimum, it seems
reasonable to conjecture that when assumption 3 is not met, ordering (z* — u,)* in every
period should give a good approximation.

In order to test this conjecture, numerical computations are performed for A = 2 in the
next section. Dynamic programming is used to compute the optimal stationary policy which is
then compared to z* for a variety of demand distributions and cost configurations.

NUMERICAL COMPARISONS FOR A = 2

A series of runs were carried out for a variety of configurations of the system parameters
to compare the effectiveness of the approximation to the optimal policy when the recycle delay
was two periods. In order to reduce the number of different factors considered, the cost param-
eters (c,h,p) are combined into the single constant m = (p — o)/(p + h) (which is motivated
by the solution to the newsboy problem). For each demand distribution the following factors
and levels are considered:

(1) cost ratio, m € 1.5, .75, .95}
(2) return fraction, a €{2 .5 8
(3) outdate cost, 6¢€f1,2

(4) outdate fraction, B €

These factor levels lead to a 36 case experiment. The discount factor a was fixed at .95,
order cost ¢ at 1 and holding cost h at .5. The required values of m were achieved by setting p
at 2.5, 5.5 and 28.5, respectively.

The total 36 case experiment was run, for uniform, exponential and geometric distribu-
tions each with a mean value of five which resulted in a total of 108 cases. The output for a
typical case is illustrated in Table 1. The optimal solution was computed by standard value
iteration techniques and the myopic policy was computed from (1). A 30 period horizon was
selected to minimize transient effects. Convergence to the stationary optimal policy generally
occurred in ten periods or less. We note, from Table I, that both the optimal solution and cost

T
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penalty for using the myopic approximation are relatively insensitive to changes in the initial
inventory level. The maximum percent cost penalty for using the myopic policy is 0.3% in this

case.

TABLE 1-— Optimal and Approximate Policies for the Case
m=.5a=.260 =18 = .8 Poisson Demand

Initial Optimal Myopic Average Qost
Inventory Order Order-up per Period % Difference
I Function | -to Level in Cost
(z*(I)) (z% using z*(/) | using z*
0 6 5 3.232 3.240 0.2
1 6 5 3.227 3.237 0.3
2 6 5 3.225 3.236 0.3
3 S S 3.211 3.218 0.2
4 5 5 3.205 3.212 0.2
5 6 5 3.200 3.208 0.3
6 6 5 3.196 3.205 0.3
7 6 5 3.193 1.204 0.3
8 5 5 3.179 3.186 0.2
9 5 5 3.173 3.181 0.3
10 6 S 3.169 3.176 0.2

Table 11 summarizes 36 runs selected from the set of 108 runs. The runs illustrated were
selected by taking the worst case (that is, the largest cost error) over the three demand distribu-
tions for each case. Optimal and myopic policies and costs for just the single initial inventory
level of five are indicated, since, as noted above, the results are not sensitive to the initial
inventory level. Table II also indicates the maximum percent cost differences for each case
taken over all initial inventory level values. Note that the maximum percent cost penalty
ranges from 0.0% to 6.9% over all factor values. In addition, also note that 71% of all 108 cases
had a maximum cost difference of less than 1% and that only 6.5% had a maximum cost
difference of more than 5%.

It seems reasonable to conjecture that the myopic policy will also provide a good approxi-
mation for values of A, the recycle delay parameter, larger than two as well. The approximation
has the dual advantage of being both easy to compute and easy to implement. The model
presented here is applicable to a variety of inventory problems where stock recycling is present,
including blood bank inventory control and reparable item management.
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TABLE 11— Worst Case Optimal and Myopic Cost Comparisons

Optimal Approx. Average
§ Run m a | theta | beta Demand Optimal | Average Policy Cost of { Maximum
K # CDF z* (5} Cost at 20 Approx. | % Penalty
I=5 Policy
1 501 .2 1 2 Geometric 2 3.372 1 3.501 4.0
2 1541 .2 1 2 Poisson 6 4.802 S 5.026 4.7
'y 3 95 2 1 2 Uniform 10 7.658 9 7.969 4.1
4 501 .5 1 2 Poisson 5 3.041 4 3.198 5.2
5 51 s 1 2 Uniform 7 5.542 7 5.542 0.0
6 951 s 1 2 Uniform 10 6.890 9 71.21 4.7
7 504 8 1 2 Poisson 5 2.566 4 2,745 6.9
' 8 as | 8 1 .2 Uniform 7 4932 7 4932 0.0
{ 9 95 | 8 1 .2 Uniform 10 6.188 9 6.525 55
; 10 S50 | .2 2 2 Geometric 1 3.589 i 3.593 .1
: 11 a5 | 2 2 2 Poisson S 5.394 5 5.394 0.0
12 95| 2 2 2 Poisson 8 7.980 7 8.403 5.3
! 13 50 .5 2 2 Uniform 3 4.649 3 4,649 0.0
14 515 2 .2 Uniform 7 6.603 6 6.639 0.1
15 951 .5 2 2 Poisson 8 7.236 7 7.655 59
16 S0 8 2 2 Geometric 2 3.095 1 3.188 3.7
17 15 ] 8 2 2 Poisson 6 4.101 5 4193 2.2 i
18 95| 8 2 2 Poisson 8 6.557 7 7.003 6.7 :
19 50 | .2 1 8 Poisson 6 3.200 S 3.208 04
20 a5 2 1 8 Geometric 6 3.652 5 3.728 - 2.1
21 95 | .2 1 8 Geometric 9 4.608 9 4.609 0.0
22 S50 5 { 8 Uniform 7 3.161 6 3.217 1.9 ;
3 {155 t | 8 | Uniform 9 3.666 8 3.696 038 4
24 95 (.5 1 8 Poisson 9 3.655 9 3.656 0.0
25 501 .8 1 8 Geometric 3 2.162 4 2.185 2.6
26 .75 8 ] 8 Geometric 6 2.903 6 2.926 14
27 951 8 1 8 Geometric 9 3.883 9 3.885 0.2
28 50 | .2 2 8 Uniform 6 4.090 6 4.093 0.1
29 751 .2 2 8 Poisson 7 3.944 6 4.030 2.3
; 30 95| 2 2 8 Poisson 9 4.828 8 5.060 48
( 31 501 5 2 8 Uniform 6 3.417 6 3.427 04
32 a5t s 2 .8 Poisson 7 3.208 3 3.323 36
13 951 .5 2 8 Poisson 9 4.086 8 4312 5.5
34 50 .8 2 8 Poisson 6 2.070 5 2.092 1.3
35 751 .8 2 8 Poisson 7 2.629 6 2.699 2.1
3 36 95 | .8 2 8 Poisson 9 3.499 8 3.639 39
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ABSTRACT

Sensitivity analysis of the transportation problem is developed in a way
which enables reducing the dimensionality of the associated tableau. This tech-
nigue is used to reduce the dimensionality of a transportation problem whose
origin requirements are relatively small at the majority of origins. A long trans-
portation problem, for which efficient solution procedures exist, results. A
second application relates to the location-allocation problem. Reducing the
dimensionality of such a problem, accompanied by the partial determination of
the optimal solution, should prove helpful in the quest for an analytic solution
to the aforementioned problem. In the meantime, reducing dimensionality
greatly decreases the effort involved in solution by trial and error. Examples of
the two applications are provided.

1. INTRODUCTION

The sensitivity analysis of the transportation problem has been thoroughly developed in
the classical papers of Srinivasan and Thompson [7]. The latter investigators described how to
find the optimal solution of a transformed problem, given the optimal solution of the original
problem. Finding the new solution is somewhat easier when the optimum basis structure is
preserved. Otherwise, one proceeds from basis to basis until arriving at the optimal basis.

The present paper takes a different approach to sensitivity analysis. Rather than obtaining
specific values for all members of the optimal solution, we determine the values of selected
variables in a way which enables reducing the dimensionality of the transportation tableau. The
greater the similarity between the original and transformed problems, the more the tableau may
be reduced in size. Larger transformations do not permit as large a reduction in tableau size,
leading to a greater expenditure of time in the solution of the resulting tableau.

The aforementioned technique has been described exhaustively in a paper by Intrator and
Paroush [5]. It is not the purpose of the present work to compare these two methods of per-
forming sensitivity analysis as far as efficiency and ease of implementation are concerned,
although the authors feel that doing so would indeed be a worthwhile task. Rather, a single
facet of the new approach is enlarged upon, and how this aspect may be utilized in speeding up
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the solution of two problems not generally associated with sensitivity analysis is explained.
More important than the savings in computer time, however, is the fact that reducing the size
of the tableau in the case of the location-allocation problem may serve as a stepping-stone in
the eventual determination of an analytic solution for the latter problem.

2. DEFINITIONS AND THEOREMS

Consider a transportation problem A having cost matrix C = (¢;) and optimal solution
(xy), and a second problem A’ identical to ghe first in all respects except for the fact that the
cost matrix has been transformed to C’ = (c;;), leading to a new solution (x;;).

Consider the simple loop
L = (iy,j) gD G . . Cigadiat)
for which ji ., = j;. Then the following quantities may be defined:
(1 CL= Gy, = Gy Gy = Cjy ™ Gy

(2) CL = ci'ljl - c’ljl

¢

= Gy T cikjk+l'T

+ Gy,

The 8L transformation changes any feasible solution of the original problem, (y,), to a

new solution (y;) by defining the members of (y;) as follows: )

yy + 8, if (ij) = Gjp), ie., if Gj)is
an odd-numbered member of L.

3 yo=1y; =8, if ) = Grjur). ie., if G)is
an even-numbered member of L.
Yij» if Gij) is not a member of L.

Before executing the 8 L transformation, both the loop L and the real number 8 must be deter- l
mined. If they are chosen such that (y;) is also a feasible solution, then 8L is termed a feasi- !
ble transformation. _,

For a given loop L and 8 < 0, the 8 L transformation will be feasible if the odd-numbered ;
cells of the loop are all positive (basic)—a requirement that ensures that y, + 8 will not :
become negative. In particular, it is necessary that —§ < |r<nli£1k Yiy, (Eq. (3)). 1f & > 0, the :

transformation is feasible if the even numbered cells are positive—a requirement that ensures
that y,; — & will not become negative. In particular, it is necessary that 8 < lgxligk X, Vi,
More concisely, a feasible transformation is one for which

— min v . < min vy
(4) 121,.2;( y‘IJl < 8 < ]rgnllgk y’}JHf

Letting z and z* represent the value of the objective function before and after the
transformation, respectively, then

+1t may be assumed without loss of generality that both C; and C; never equal zero, since it is always possible to ap-
propriately perturb the costs ¢, and c},.
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z* - z=2XLey, — EXc,y, = 2, ¢, (O, +8)

ISIgA
+ 2 C'///vl(y’/’/u -8+ zzclly'/ - 2 Z Yy
1</<k G)eL [
(%) =823 ¢;-8 2 G = 8- Cp.

I<i<k ISisk

If 8C;, < 0, the objective function has been reduced and 8L is called an improving
transformation. If 8C; > 0, 8L is called an impairing transformation.

LEMMA 1: The solution (x;) of the transformed problem 4’ may be obtained from the
solution (x;;) of the original problem A by performing a finite sequence of feasible transforma-
tions. The transformauons are each improving with respect to 4" and impairing with respect to
A

PROOF: If (x;) = (x;), no transformations are required, and the theorem is true in a
trivial fashion. Assume on other hand, that (x;) = (x;). Since ZZXU Za, Za, (since

the only changes are in the cost matrix) = ZZ x,-~, it follows that there CXlSlS at least one cell,

. . U ’ ’ . . .

say (i.jy), such that x, ; > x;, . Since Zx,lj =q =a = 2 X, there must exist j, = j,
i J

J
such that x, ;> x, . Since Z Xy, = b

Wy > X, ,= b, = X x;,, there must exist i/, i} such that

!
Xiyjy > x,2 Jj Ihe process connnues until a previously utilized row or column is encountered.
In this manner, a loop L, containing exactly two cells in each row and column, is obtained.

By construction, for each odd-numbered loop member

Xiyjy > Xy T (X"/!/ x’/!/) <o

For each even-numbered loop member

X; ) <0

i < x'.ljl+ 1 (X

et '//m
In moving from A4 to A’ it is necessary to add to the even-numbered cells of the loop and sub-
stract from the odd-numbered cells, an objective which may be achieved by executing a 8L
transformation with 8 < 0. In particular, let

).

(6) 8, = max{(x,jl %) O = X,

Then, by Eq. (3), 8,L, is feasible, because —8, < min(x,; — x,,'j,) < min x; .

After the execution of 8,L,, the transformed solution (y;) replaces (x;) in Eq. (6) and
the procedure is repeated, leading to the construction of a second loop L, Additional loops
Ly, Ly, ... L, are constructed as necessary. The algorithm terminates when all of the variables
have been appropriately modified, i.e., when 8,,, = 0. At each stage, at least one variable
attains its optimal value in A’, the remaining loop members approach their optimal values in A4,
while no "overshoots" may occur.

The transformations employed are all feasible with respect to the original solution (x,)
(although they are actually executed on a transformed solution). However, a transformation
away from the optimal solution must be an impairing one, implying 8,CL, > 0, from which it

follows that each transformation is an impairing one with respect to A.
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By the same token, the inverse transformations (—8;) L; gradually lead from 4'to 4 when
executed in the sequence (~8,)L;, (—8,_)L;-,, ... (=8)L,. Since (x;) is optimal, these
transformations are impairing with respect to 4, implying that the original transformations are
improving with respect to A"

COROLLARY: If c,} = ¢, in all but one row, say i, then each of the loops L, must con-
tain members of row ig.

The corollary follows from the fact that the transformation loops are improving ones with
respect to A, i.e., 51CL, < 0, and impairing ones with respect to 4, i.e., 8,CL, > 0, which can
only occur if C; # CL',, i.e., the loops contains members of iy.

DEFINITION: Let §;= Y (x; - x;), ie., S represents the sum of the positive
I1€j€n
.xu>xU'
differences between the optimal values of the variables in row / of the original problem 4 and
the transformed problem A"

Let S = max §,, i.e., S represents the maximum such difference among all the rows.
I
LEMMA 2: If ¢; = ¢, in all but one row, say io, then S = S, < a;.

PROOF: By the Corollary to Lemma 1, every llc:op L; contains members of row i;. But
row ip contains initially only g, items, hence §; = Y 5 < a;,. As far as the other rows are

i=1

concerned, p < k of the loops L; pass through any specific row, so that
P K
S = 28:' < 25.' < a;,
1= i=)
Thus, $ = max §; < a,.

It will now be shown that the case in which 4 and A’ differ in terms of origin require-
ments reduces to the case in which the two differ in terms of transportation costs.

THEOREM 1: Suppose the two transportation problems 4 and A’ differ only with respect
to their origin requirements. In particular, suppose that

@a <ali=1,.m—-1
(b) a, > a,
© Y a = zm‘, a,.

i=] i=1

Then x,,, > x,,;, where (x,) and (x,;) represent the optimal solutions of 4 and A4’ respectively.

PROOF: Suppose, on the contrary, that there exists some column j, such that Xy, > x,:,jl.

m m
Since b, = 3 x,, = 2 X;,, there must exist at least one i # iy = m such that x

130} > Xiziy:

o= =

However, from

n
a'z = 2 xl,lg S ,a’j = zl ’x’:;_l’
1=1 /=

n
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it follows that there must be some j, # j,; such that Xijy > x,'zjz. For the new j, there must be

a new /3. The process continues until one returns to a row or column encountered previously
in the process, and a loop, say L, containing k cells is obtained.

Regarding loop L there exist three possibilities:

(a) C; = 0. Perturbation eliminates this possibility.

(b) C, > 0. Letd= min x,; > min x;;
1ISigk M 1<isk M
formed on A is an improving one, since —8C; < 0, a result which contradicts the optimality of

(xij) .

2 0. Then the (—8)L transformation per-

() C; < 0. Letd= min x,; > min x;; > 0. Then the 8L transformation per-
1<I<k Wi+l I<I<k 1+1
formed on A’ is an improving one, since 8, < 0, a result which contradicts the optimality of

().

The initial assumption that there exists a variable Xmj, > x,;,j must therefore be dropped
in favor of the conclusion that Xmj) < x,;,jl. (Note that it follows from Theorem 1 that x,;,j =0
implies x,,; = 0 while x,; > 0 implies x,;; > 0 (1 < j € n) when the stipulated conditions
hold.)

THEOREM 2: Suppose that 4 and A’ differ in the following respects as regards their ori-
gin requirements:

ai=a ‘e, ay=0a,—a, g =ali=2m—1).
Then $,=0,S,=a, S <a,2<i<m—1,ie,S=a

PROOF: By Theorem 1, consideripg a to be a,, it follows that x, ;> x 1< /< n),
which implies that S;= Y (x); — x;;) = 0.
xlj>xij

Also, looking upon the new problem as the original and vice-versa, it follows from
Theorem 1 that x,,; < x,;, which implies that

n
Su= X Otp— Xm) = ap— an=a.
=

xmj>xmj

In order to prove that §; € a(l < i € m), it will be demonstrated that 4 and A" are
equivalent to two transportation probiems which differ from each other with respect to the
transportation costs in a single row exclusively. '

Consider the auxiliary (m + 1) x n transportation problem A having the following param-
eters:

ag=a,i=12 ...m-1, a,=a,—a,

dms+) = a,
Gi=c, b=b0<i<ml1<j<n,

ém+l.j = Cmj» l€jsn
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Let A’ be defined identically, except that é,.;; = c;, | < j < n. Now, note that Ais
equivalent to the original problem A with X,; = % + Xp41;, Since LXK + Xy, ;)
(@, — a) + & = a, (see [3], pp. 319-320). On the other hand, 4’ is equivalent to 4’ with
Xyj = Xy + Xpayj, since L(X); + X,41;) = a; +a. Since 4 and A’ are identical except for
differing transportation costs in row (m + 1) for which a,,.; = a, it follows from Lemma 2 that
$i<S=Sp S a

THEOREM 3: Suppose A4 and A’ differ as follows with respect to their origin require-

: ments:
i @a=a,-y,(1<p<r0<y,<a,),

b a,=a,+B, r<s<mB;,=0), i
¥ () L8, = Ly,. !
] Then

§=38,= 2 (a; — a,) ;

a;>a
and
S5 <L B=I8,-Bi= X (a—a).
s#i a'>a,
PROOF: The transition from 4 to 4’ may be broken down into a finite sequence of steps ;

of the type considered in Theorem 2. The process may be described as follows. Suppose min
(vprv, >0} = ¥,, and min {88, > 0} =B, Let ay = min (y,,B;). Then consider the

transformation ¢, = a, — ay, a/V = a, + a,. By Theorem 2,
Py (N 1 S) S 1

§;=0,i=s5
Si=ay i=p,
SiSa, i #pp, sy,
S=a;.

Note that either 4, = 4, or a,") = a, (or both). The remaining values of g; are unaffected.

In other words, one of the requested changes has been executed, a second has been (at least)
partially implemented, and no "overshoots’ have occurred.

The second step involves choosing the next origin requirement to be transformed to a;.
First, one sets Yp, = ¥p, — @1 and B, = B, — a, (at least one of which will be 0), and then the
previously described algorithm is executed. The process terminates after k steps when all y,
and B8, equal zero. Applying Theorem 2 to each of the k stages, one finds that

K m
S = 2 a, = Z B,
he ) s=r+1

(since each B, has been reduced to 0). For r < i € m, S; = 0 for every transformation which
leads to an increase in the value of a,. Such transformations involve a total increase of 8;.
Taking all transformations int(i account (even those which do not involve a;, for which
m m
S; < ay), one finds that §; € ), @, — B, = Y, B;—B,= 3 B, The latter applies when
h=1

s=r+1 s=r+1

sAi

i £ ras well, since s cannot equal /in such a case.
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DEFINITION: Let Dy (j) = c; — ¢, i.e., Di(j) equals the difference in costs between
the cells of column j associated with rows i and k, respectively. Since it is always possible to
introduce cost perturbation, it may be assumed that Dy (j;) = Dy (j,) if and only if j, = j,.

LEMMA 3. If x,, > 0 and x;, > 0, then Dy () > Dy (u), where (x;) represents the
optimal solution of transportation problem 4.

PROOF: Consider the simple loop L = (k,u); (k,v); (i,v); (ix). Letting & equal the
minimum of the even-numbered cells (i.e., 8 = min(x,,.x,,) > 0 by hypothesis) ensures that
the 8L transformation is feasible. However, (x,) is the optimal solution, so that 8L cannot be
an improving transformation; i.e., of necessity 8C; = 8(¢,, — ¢, + ¢, — ¢,,) = 8[D, () —
D, (u)} > 0, which implies that Dy (v) > D, (u), as was to be proven. See Fig. 1 for a sche- 1
matic representation. "

—— Dyl

FiGURE 1. The relative positions of Dy () and Dy (v) on a scale whose uppermost ele-
ment corresponds to the smallest value of D, (i) and whose lowermost element
corresponds to the largest value of Dy (j) when it is known that x, > 0and x,, > 0.

e e e e et i -

Dik(U)

COROLLARY: If Dy (v) < Dy (u), it is impossible that both x,, > 0 and x;, > 0.

DEFINITION: Let A, represent the set of columns associated with the optimal group of
basic cells in row i of problem 4, i.e., 4, = {Jj Ix,-j > 0}. The n; elements of 4; may be arranged
as the vector K = (iy,. ..i,) where Dy (i) < Dy (iy) <...< Dy(iy), i.e., each basic column j

- is ordered in terms of its corresponding D, (j) value. The integer s(i k) will be determined by
y the following inequality:

)] Z,: x; > 82 2' X . ;

u=s(ik) * u=s(ik)+1 ¥ !

For an example of the above notation, see Fig. 2.

Consider the transportation problem A’ which diﬂ'ers,from A with respect to origin !
requirements exclusively. Although the optimal solution (x;) differs from (x;), the Dy (/) '
values are unaitered, since the transportation costs have not changed. )

THEOREM 4: If v < s(i,k), then x;; = 0(i, € Ky). ;

PROOF: Suppose xk',-y > 0. Then, by the Corollary to Lemma 3, for all v < u < n; (for
which D, (i,) < Dy (i,)), x,-;n = 0. Since i, € 4, x;, > 0. It follows, then, that x; > x,-;“ for
ally < s(i,k) € u € n;. Then
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FIGURE 2. In the above figure, s(i,k) = 4and n; = 7,
where iy, iy, ... i are the elements of 4,.
i5
is

—l i

"l ”l
2 Xij, = Z (xn'“ - xii“) < 2 (x; = x;) = S;.
u=s(ik) s (i) ox!
Yy
n, i
In short, 3, x;, < ;. But by definition Y X;, > S;, which is in contradiction to the
u=s(ik) p=s(ik) , _
result presently obtained. Accordingly, the initial assumption that Xy, > 0 must be rejected.

The application of Theorems 3 and 4 is as follows. One first calculates s {i,k) for each of
s the m(m — 1) permutations of i and k, a task which requires knowledge concerning
' S;,, i =1, ... m. Theorem 3 enables the determination of an upper bound on S;, which in turn
provides a lower bound on s(ik), as follows from Eq. (7). Utilizing Theorem 4, a large
number of variables xk', are set to 0. Whenever all but one of the variables in a given row or
column equal 0, the remaining variable equals a; or b; as the case may be, and the respective

row or column may be eliminated from the tableau.

3. APPLICATIONS

Reducing the Dimensionality of a Certain Class of Transportation Problems

m
Consider an m X n transportation problem A for which Za, = Ebj = R. Furthermore,
m, = J=1
suppose that Za,- = aR and f a, = (1 — a)R. The present application concerns the case in
i=] immy+1
which m; < < m and a is near 1, i.e., the situation in which most of the merchandise is
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concentrated at a relatively small number of warehouses. This would be the case when a small
number of factories, at which large quantities may be stored, supply a larger number of
intermediary warehouses of significantly smaller storage capacity.

Consider the following three transportation problems:
A: The original problem,

A': An m\ x n transportation problem identical to A except for the fact that the last
m
m = m) rows of A are deleted and a,,, = Y a,

i=m

A”: An m X n transportation problem identical to A4 except for the fact that the last
m
m — m, values of a, are set to 0 and Uy, = 2 a;. Clearly, an optimal solution A’ also optim-

=,

izes A”. The proposed solution procedure is as follows:

(1) Solve A" The relatively small value of m, ensures that 4’ will be a long transportation
problem for which an extremely efficient computerized solution procedure has been developed
{4). The solution to problem A4” is now available, and the previously obtained sensitivity
analysis results will now be utilized in finding the solution to A.

(b) Based on the optimal solution to 4", find the set of positive cells in row i, 4;, which
serves as a prerequisite in determining the ordered vector K, for each value of i, 1 £ i € m,
and | € kK < m, k # i, leading to a total of m;(m — 1) vectors K.

(¢c) For each i, 1 < i € m,, determine S;. Note that 4 and A" differ only with respect to
their requirements a;. More specifically,

a=a,i=1 ...m-1,

A, = 0y, — YV
1 1 1

m m
(where ym, = 2, 4, since a,, = ) a),

i=m+1 i=m,
a,=a +B,i=m +1,...m (where B, = a, since a, = 0 over this range).

m
Since y,,, = 3, B;, Theorem 3 is applicable, implying that

imm+1

m
‘SIS 2 (a,"—a,'”)-(l-a)R,ial, L. My
= +1
(d) For each 1 € i €< m and 1 € kK < m, k # i, determine s{i,k) by summing the

values of x;; associated with the lower values of the ladder scale K until they exceed (1 — a)R
(see Eq. 7).

(e) By Theorem 4, for v < s(ik), x, = 0@, € K,). Since zlx,,n = g,, the theorem

u=1

”l
will be useful if sGik)>1, ie. if 3 x <a, which will imply that

u=s5k)
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’,l
X Xy -« Xk(so - 1) = 0. But in the present situation ¥ x;, =8, € (1 - «)R which
n=s(ik)
by assumption is small with respect 10 4;, so that s(i,k) > > 1 and hence a large number of
variables x;, will be set to zero in row k.

(f) The m(m — 1) s(ik) values each lead to a set of x,, values which are known to
equal zero in the original problem 4 Since 1 € k& < m, such zeroes have been determined for
all of the m rows of 4. Whenever all but one of the variables in a given row or column equal
zero, the remaining variable equals a;, or b, as the case may be and the respective row or
column may be eliminated from the tableau.

(2) A second means of obtaining zeroes is available for row m; exclusively. Since

"
a <a (i=1,..mi# m) and ay, = Ya> A, it follows from Theoarem 1 that

I‘I"l
-

Xp i > Xp,. Thenif x,, ; = 0, it follows that x,, , = 0 in problem 4.

(h) Steps (f) and (g) serve to reduce the row and column dimensions of the remaining
problem. The reduced tableau 4, may be treated in two ways:
® It may be solved as a routine transportation problem,

® It may be solved using the technique of Srinivasan and Thompson [7]. If 4”is reduced
in size in a manner which completely parallels the reduction in size of the original problem A,
leading to 4 l', then an optimal solution to A is available, since an optimal solution to the ori-
ginal problem Af is optimal for any subtableau.

Selecting Additional Warehouses from a Predetermined Set of Possibilities

Consider the following problem. Given
(a) The requirements at each of » destinations,
(b) The capacity at each of m origins,
(c) The transportation costs between each of the m, origins and each of the destinations,
(d) The transportation costs between each of (m — m,) additional (potential) origins and
each of the given destinations,

m
(e) The total additional capacity desired, i.e., Y, a,
i=m 41

Find
® The specific values of a;, m; + 1 < i < m,

® The amount to be shipped from each origin to each destination so as to minimize the
total shipping cost. The number of origins in the optimal solution equals the number of
sources i for which x; > 0 for at least one value of j. It is expected that some of the
a, m + 1< i< m,will equal zero, i.e., some of the warehouses will not be built.

The problem described is reminiscent of the location-allocation problem [1,2] in the sense
that the capacities and final locations of the additional origins are not fixed in advance. How-
ever, rather than choosing coordinates optimally, the optimal capacities and locations are indi-
cated by the values of a, which are positive for minimal cost schemes. The final locations are
thus limited to being a subset of the original set of potential warehouses of size m — m.
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As in the first application, the procedure to be presented relates to the situation in which

(a) ia,- = ibl = R,

=1 Jj=1
m m

®Ya=aR 3 a=(1-aR,
i=] imm+1

© m < < m,

(d) « is close to 1.

The first m, origins are assumed to be operating and indeed supplying most of the merchandise,
m

since Y a; = aR. Accordingly, a,, a;, ..., ap, will be assumed to be known. The gquestion
i=1
relates only to the exact and optimal values of q,, ¢ Omitls oe Gm.

The approach to be taken involves the solution of a number of long transportation prob-
lems. In particular, consider the following transportation problems:

® A, an m X n transportation problem, with ¢; equal to the known transportation cost
between each of the m origins and » destinations. 4 cannot be solved initially because no
specific values have been specified for A +1s -+ Ame

. A';'1+l’ an (m, + 1) x n transportation problem for which

.

CU= ij» i= 1, ...”7,.['== 1, ..o n,
Cm+1j = Cmy+1,jo J = 1, ...n

a=a,i=1 ...m,

m
Gne1 = X, 4= (1-a)R.

i=m

® A7, an m X n transportation problem identical to 4 except for the fact that the last
- m
m — (m; + 1) values of g, are set to 0, and a,, ,; = 3, a;.

i=my
Clearly, any optimal solution A,,',lH also optimizes 4"

A,;,IH is a long transportation problem which can be solved efficiently as previously noted,

thus providing a solution to 4”. But the relationship between 4 and 4" may be stated as fol-
lows:

a,-'S a;, I-l, ..o m, i¢m1+1,

m
L]
am,+1 = z a > am +1-
immy+1

It follows then, from Theorem 1, that

. L]
(M X +1.j 2 X +1.)
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and from the note following Theorem 1 that

(i) Xp 41, = 0 implies x, ;= Oforalll1 < j < n.

A method for determining zeroes in row m; + 1 of the original problem has been
presented. The number of zeroes determined will be quite large, since

n
Y Xm+1; = Gm+1 = (1 — @) R has been stipulated to be small.
=1

a In) Igeneral, since the fraction of the total requirements assigned to row m; equals
—

R , the average number of zeroes in row m, will be an, where « is close to one.

Zeroes may be obt,ained in rows m; + 2, m; + 3, ... m by following an identical pi'o-
cedure. For example, 4p 42 would also be an (m, + 1) x n problem which differs from Am +1

only regarding the transportation costs in row m; + 1, which would now equal ¢, , ;. In gen-
eral, for Ay yi, k=1, ..., m—m,

le+l,j = le+k.j _] = 1, NP (N

Zeroes have thus been determined for rows m, + 1, .. m. As far as the first m; rows are
concerned, a similar procedures may be followed, although it will be a little less fruitful. Again
the total amount of merchandise associated with the lower rows, (1 — a)R, will be combined.
However, instead of letting a; = (1 — a) R for one of the lower rows, (1 — &) R will be added
to one of the first m, rows, and a; will be set to zero for i = m + 1, .. m. The expected

— g a;

, ) . aR
number of zeroes inrow i = 1, ... m, will then be —= | n=le-—o

As in the previous application, the large number of zeroes obtained enables the elimina-
tion of numerous rows and columns of the original tableau 4, and the subsequent reduction in
size of the remainder of the problem. To solve the reduced problem, one must supply values
for @y .y, ... a,. However, at this point, the dimensions of the problem to be solved are

sufficiently small that a large number of alternative sets of values for {a,,,l+,...a,,,} may be
experimented with until a satisfactory solution is obtained.

4. AN EXAMPLE

The utility of the preceding algorithms can be demonstrated only by systematically experi-
menting on large-scale problems. The purpose of the present small-scale example, on the other
hand, is to review and illustrate the previously described techniques, terminology, and notation.
Consider the 5 x 10 transportation problem which appears as Table 1. Note that most of the
merchandise is concentrated at origin 1, so that m; = 1.

n
A’ will be the 1 x 10 transportation problem with a,, = 2 a; = 59, and the optimal

i=m

solution to 4’ appears in Table 2.

The set 4, includes all columns of 4’ having a basic variable in row 1. In the present
example, 4, = (1, 2,3, 4,5,6,7,8,9, 10]. For j € 4;, the value of Dy,(j} will now be
determined (Table 3) and arranged in ascending order (Table 4).
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TABLE 1
b,
s | 8|83 4|9|2]9]8]3
a;
_4_]_5J7h1l_ﬂj_§f_ﬂ_u_41
51
2] [afpsIi3li8l Lalfajo][2f]1]
1
2_3_T_&J_1_"l_il_ﬂ¢l_ﬂ_3!_u_zj
0] | 5] i) | 4]

) | 871 211 3] L 9] 21 L6l
3__2J_fJJ_2J_u5JJ_U_AJ_3J_2J
TABLE 2

b,
s 8|8 |3'4|9]2]|9]8]3
a;
| 4] [ sTl 2016l ]7][3] 1] 4]
59
s {8 ({8 [3(4l9|2]{9]|8]3
TABLE 3
Destinationj | 1 | 2 | 3 4 516 7 8 91 10
? Do) |2lal2]-2]-2{6{-1]~7|-1] 3
TABLE 4
Destination j 8 4 5 7 9113|1012 6
D) 7l =2)-2|-1]-1]2]2] 3)4]6
X, 9| 3| 4| 2| 8|s5{8| 3|89

Klk - [89 41 57 71 91 1! 31 109 2, 6}-
$:<¥ @-a)=59-51=8

i=1
y
Fx =9>58=8
u=10 “
! Thus s(1,2) = 10. It follows that x;; = 0(1 < j < 10, j # 6).
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Similarly, if the D,;(j) are arranged in an increasing sequence one obtains Table 5.

TABLE §
Destination j | 7 4 2 819 (1(10]5(61{3
Dy3() —6(—-4/-31-1|0]1] 212|516
X, 2 3 8 918)]5] 3/14)9]|38

10
zx,—,-“= 17 > S] S 8

=9

Thus x3'j =0forj=1,2,4,57,8,09.
For D)4(j) and D\5(;), the results of Tables 6 and 7 are obtained.

TABLE 6
jl718j10(3[4]9]|2(6]5]1
x; |29 3(8(3(8[8[9([4]5

Thus x4; = Oforj=2,3,4,6,7,8,9, 10.

TABLE 7
J 1 8({91451711110}6}3)2
x, |9|8]3|al2]5]3]9]s8]s

iy

xs; =0forj=1,4,56,738,9,I10.

The resuits of the present ca'culations are arranged in a 5 x 10 table (Table 8) enabling
the reduction of the original problem A to the tableau of Table 9. Note that the second means
of obtaining zeroes suggested in the previous section is not applicable here since the variables
in row m; = | are all positive.

TABLE 8
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TABLE 9
1 2 3 5 6 b;
1 51-25 =26
3 (x{x X 2
4 X | X X 2
' 51 x X[ x 3
g | 5188 4|8

In Tables 8 and 9, an x in location (i,j) means that variable (i) has been determined to
be equal to zero. Note that the original values of a; and b, have been reduced by the optimal
values of x; which have already been determined; e.g., instead of a;= 5I,
ay— X14— X171 — X135 — Xj9 = 26 appears in Table 9. Similarly, bs has been reduced by one.
The reduced problem is of dimension 4 x 5 rather than 5§ x 10.

The sample problem previously dg:scribed will be used to demonstrate the second applica-
tion. As before, a; = S51. Suppose Y a; = 8 as before, but the exact values of these origin
j=2
requirements are unknown, and it is desired to determine them optimally.
In the present case, the number of known values of a@;, i.e. m,, equals one. A,, = A,

, S
is formed by setting @, = Y a, = 8, and appears in Table 10 together with its optimal solution.

jo2
TABLE 10
b;
51818314929} 8]3
a;
af L SIl el 7d 3] L2l 1] 4]
51 s {8 |8 (3 |4[4] 29S8
[ 2] [ 1] sipaf 1] 4] L2111
8 5 3

Ay = A is formed by setting a; = iai = 8, and appears in Table 11 together with its

=2
optimal solution, as do A4 (Table 12) and 45 (Table 13). It should be noted that the same ini-
tial solution may be used when solving each of the auxiliary problems.

TABLE 11

5 181 8(3 14109 9|18 3

2
] [S] |2 1] 3] 1]
51 5 3 2 199 8
|97 (1]

|
3 9
Nl el a

a;

&Ho

et

ath e a Al . i i Sl s i
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TABLE 12
b;
5 8 8 3 4 9 2 9 8 3
a;
4] 1 sppalallell 7l 2011l 4f
s1 8 8 3 1 9 2 9 8 3
10} | s}l 8}]2 1 al12]] 6]
8 5 3
TABLE 13
b,
S 8 8 3 4 9 2 9 8 3
a;
4] [ ST 2l [al{el{zi|3t{af[1]]4]
51 5 8 8 3 4 1 2 9 8 3
(2f [ol [ 2T [af [ sT]2f{ 2] [4]]31]2]
8 8

As previously explained, the zero variables in rows 2 of 4;, A3, A, and As will remain zero in
rows 2, 3, 4, and 5, respectively of the original problem A4, independent of the (unknown
optimal) values of ;. The information presently available is displayed in Table 14.

TABLE 14

51
xlx ] x| x|x x| x| x a,
x| x x{ x| x|{x|x]|Xx az
x| x|x xPx| x| x| x| ag
x| x| x| x{x X X[ X{X| as
a;

518|813 (4(9]2]9)81]3
b

X represnts a variable whose value at optimality is known to
equal zero.

Columns 2, 4, 7, 8, 9 may be removed. Row 5 may also be removed. The missing vari-
able in row 5 will equal as, since all the other x5; = 0. The reduced 4 x 5 problem appears in
Table 15. In addition to the zeroes indicated by Table 14, the optimal values of the following
variables are now known: x;; = 8, x;4 = 3; x;7 = 2, x;3 = 9, x19 = 8, x5, = as.




REDUCING DIMENSIONALITY OF TRANSPORTATION PROBLEMS

TABLE 15
1 3 S 6 10
(4] V7] el 7] [ 4]
21
@ sp el [l
a
X X X
(3] (1 [4] 2] [2]
as
X X X
(10f [ 8] [ 3] s5] [l
ag
X X X
a;
5 8 4 | 9—-a; 3
b;

The exact values of the a; will now be determined by trial and error. What has been
gained is that instead of solving a 5 X 10 tableau many times, one solves a 4 X 5 tableau many
times. The additional preliminary work of solving 4 long (2 x 10) transportation problems is
not overly burdensome, and in addition to enabling a reduction in dimensionality, it provides
knowledge regarding the exclusion of certain variables in the reduced tableau from the final
solution.
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ON A SEARCH FOR A MOVING TARGET

 y A. R. Washburn

Naval Postgraduate School
Monterey, California

ABSTRACT

] We consider the problem of searching for a target that moves in discrete
time and space according to some Markovian process. At each time, a searcher
attempts to detect the target. If the searcher’s action at each time is such as to
maximize his chances of immediate detection, we call his strategy "myopic.”
, We provide a computationally useful necessary condition for optimality, and
i { use it to provide an example wherein the myopic strategy is not optimal.

DESCRIPTION OF THE PROBLEM

Let X be the position space within which the target moves, and let P(x, 1) be the proba-
bility that the target starts at position x at time 1 (so Y, P(x,1) = 1). In general, let P(x,1)

x€X
be the probability that the target is at position x at time r and has not been detected by any of
the searches at times 1, 2, ..., t—1; x € X, 1 £t £ m. If g(x.) is the probability that a

target at position x at time ¢ will not be detected at time 1, then P(x,t) = P(x,r) q(x.) is the
probability that the target is at x at 7 and has not been detected by any of the searches at times

1, .... 1 If g(x1) is selected 10 minimize ¥, P(x,/) within whatever constraints are imposed
xeX
on the search, then the search is myopic. After the search at time ¢, the target moves to its

position at time ¢ + 1; thus

o Pyr+1) =3 P Tyt y € X, 1<t < m—1,
xeX
| ( where I'(x,y,1) is the probability that the target is at y at ¢ + 1, given that it is at x at 1.

The problem is to select g(x¢), x € X and 1 £t < m, so as to minimize

Sm= 3 P(x,m), where s,, is just the probability that the target is never detected at any time
xeXx
<€ m. We will introduce a necessary condition for optimality in problems of this sort that lends

itself to successive improvement of search strategies, and will give an example showing that the
myopic strategy can be improved.

BACKGROUND
Pollock [9] considered a special case of this problem where there were two positions and

where the searcher had to decide which one to search at each time. He solved it using an appli-
cation of dynamic programming that is not easily extended. Dobbie [4] subsequently solved a
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similar problem where time was continuous, rather than discrete. lida [8] obtained necessary
and sufficient conditions for optimality when the target’s riotion is discrete but not necessarily
Markov, when the detection function is regutar [12], and when effort is infinitely divisible. He
used his condition to solve a problem where there were five essentially different paths that the
target might follow. Hellman [7] and Saretsalo [11] have also derived necessary conditions for
optimality in continuous diffusion and in general Markov motion, respectively. All of these
conditions differ from ours, and are apparently not as amenable 1o computation.

The author became interested in this subject after reading Hellman [5,7), who showed
that the effect of random search on a target whose motion is a diffusion is to introduce an extra
term into the diffusion equation for the probability density. After making a discrete approxima-
tion to the diffusion equation, the author based an algorithm for finding the optimal effort dis-
tribution on a necessary condition involving the adjoint of the discrete diffusion equation, and
submitted a paper on the technique to this iournal in 1976.

During a revision of this paper, Brown [1] appeared and gave necessary and sufficient con-
ditions for optimality in the case of arbitrary target motion in discrete time and space but with
an exponential detection function. Brown derived an algorithm for optimizing search plans
which, like his conditions, was based on planning search at a given time interval using a target
location distribution which accounted for failure to detect the target both with past and with
future search. This algorithm is based on the simple but powerful condition involving the func-
tion that is Q{x.r.¢) in this paper, representing the effect of future search, and playing the same
algorithmic role as the solution of the adjoint equation in the author’s earlier submission. In
the present paper, we observe that a slight generalization of Brown's condition for Markov
processes is necessary for optimality when the detection function is arbitrary, as long as
glimpses at different times are independent. In particular, we permit the restriction that all
effort must be placed in a single cell at cach opportunity, which is sometimes a restriction in
practice.

THE NECESSARY CONDITION

To emphasize the dependence of P(x.r) on the search strategy ¢(-,-), we will write
P(x,1.q). however, P(-,1,q,) does not depend on ¢ (-, 7) for r 2 . Define Q(x.1.¢) 10 be the
probability that the target is not detected by any of the searches at r + 1. ... . m, given that
the target is at x at time ¢, with Q(-,m,") = 1. Q(-,1,q) does not depend on g (-, 7) for r « &

For any r between 1 and m, the probability that the target is not detected by any of the
first m searches is, according to the theorem of total probability,

(2) sm= 3, Plx.tg) g(x.0) Q(x.r1q).
veyx
From our earlier observations, the product P(x.r.¢) Q(x.t.q) does not depend on ¢(-.r). Let
S(q.1) be the set of functions f(-) that are feasible for ¢(-,1) when ¢(-,7) is specified for
r # ( Then, if s, is minimal, it must be true that 2 P(x,0,q) /(x) Q(x,1,¢) is minimized
X}

for /' € S{q.r) when f(:) = ¢(-,1). This is our necessary condition. The computational useful-
ness of the condition arises from the fact that functions of position only, rather than position
and time, are involved in the optimization. Strategies satisfying the necessary condition will be
refe.red to as “critical.”
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STRATEGY IMPROVEMENT

Given any search strategy ¢ (-, -) that does not satisfy the necessary condition for some r*,
it is evident that a better strategy is ¢'(-,t) = g(-.t) for t = r* and ¢'(-.t*) = f(-), where f(-)
is the minimizing function in S(g,/*). Repetitive applications will always result in (strictly)
improved strategies as long as the necessary condition is not satisfied. The flow diagram in Fig.
1 simply organizes this procedure in a manner that is computationally efficient. It assumes that
Q(-,-.q) is initially known. The efficient thing about the procedure is that, even though there
are potentially m distinct search strategies considered, only m applications of Eq. (1) and no
computations on @ are needed. The reason for this is that time is considered sequentially, so
that in the minimization step P(xtq) depends only on the part of g{:,-) that has been
changed, whereas Q(x,t,g) depends only on the part of ¢ (-, ) that has not been changed. Note
that the search strategy achieved at EXIT would be the myopic strategy if Q(-,',q) were set
identically equal to 1 at the input.

t=1
P(+,1,q) = initial condition
solve min Yy P(x,t,q) f(x) 0(x,t,q)
r £Fes(t,q) x¢€X

!

qg(-,t) « £(+)

A Y

t « t+l

yes -—g— EXIT

no

1

get P(.,t,q) from eq. (1)

FiGURE 1. Flow diagram for stralegy improvement.
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{ Repeated passes through the flow diagram will result in a succession of strategies, each
. strictly better than the preceding as long as the preceding does not satisfy the necessary condi-
?' tior‘x. Before each pass, the function Q(-,,¢) must be computed. This can be done recursively
: by initializing Q(:,m,q) = 1, x € X, and then making m — 1 applications of Eq. (3):

[

,? (3) Q(xt—1,g) = ¥ Mlxyr = 1) g(nt) QUt.q),

r rekx

xX€EX t=m m-1,...,2

MYOPIC STARTING POINT

The present writer and also Brown [1] have found that one has to be ingenious to think of
examples where the myopic strategy differs significantly in terms of detection probability from
strategies that satisfy the necessary condition. The problem in the next section will provide a
typical example where the difference is small. Based on this experience, it is reasonable 1o con-
clude that the myopic strategy provides a good starting point for the ncrative procedure dis-
cussed in the previous section. This can be done by beginning the first iteration with Q(-.-.q)
= 1.

AN EXAMPLE

Let X be the first 67 integers with the target initially on number 34. The target moves in
a discrete diffusion; from interior points it goes left or does not move or goes right with proba-
bilities 0.3, 0.4, 0.3, respectively. From either of the two end positions, the target stays where
it is or returns to the closest interior point with probabilities 0.4 or 0.6, respectively. At each
opportunity, the searcher picks any one of the 67 integers; if the target is currently at that
integer, the probability that it will not be detected is 0.875, or otherwise 1.0. There are 80
opportunities.

If the searcher were to pick an integer at random at each opportunity, the probability of
nondetection for all 80 opportunities would be (1 ~ 0.125/67)% = 0.8612. Successive passes
through the flow diagram in Fig. 1, with Q(-,-,¢) = 1 initially, produce probabilities of non-
detection of 0.3664, 0.3641, 0.3629, 0.3626, and 0.3625, with 0.3664 corresponding to myopic
search (g,) and with the strategy corresponding to 0.3625 (g,) being critical. g, is not globally
optimal in this problem; after trying some different starting points, another strategy (¢) satisfy-
ing the necessary condition with nondetection probability 0.3623 was found. A globally optimal
search strategy for this problem is unknown.

Figure 2 shows g, and contrasts it with g, ¢, is somewhat more "spread out” than g,
because Q(-.-.q,) is smallest for values of x near the center. P(-.-.¢qy) and Q(-. .¢;) can be
seen in Figs. 3 and 4. Figure 5 contrasts P(x,40.4,) with P(x.40.q;). Thc myopic strategy
tends to cause a flat spot in the region being searched that is missing when critical strategies are
employed.

EXTENSIONS AND POSSIBLE EXTENSIONS

Permitting space lo be continuous rather than discrete is simply a matter of replacing
sums by integrals and I'(x.3.¢) by I'(x.dv.r}) in the preceding. Permitting time to be continuous
would be more difficult, since one would have to hegin by changing the definition of ¢(x.7) and
abandoning the simple step-by-step proofs that are possible when time is discrete. We will not
speculate on the form of the necessary condition in this case.




e Te—— T

i i

319

SEARCH FOR MOVING TARGET

‘(Eh vy uondsung dy ¢ 4unoLyg

sa13atens (1y3u) [ponud
pu® (1J21) Mdofw Jo uosuedwo) 7 IWNNIH

08 *
- »
.
* *
* -
* =
* *
* *
*
* *
¥ *
* »
=
hd »
= *
* *
*
* *
# L3
x =
k 1
hd -
* *
*
b4 »
* -
*
* »
* »
e LY
*
= *
* -
»
* *
= »
* k¢ -
* =
* W *
*
* 1 -
* L]
* I *
* *
* *
* .
* -
* .
» *
» .
* °
* L]
* »
* .
* »
* L]
* *
= -
* %
- -
* .
* =
* *
* *
* -
Ld -
”* L
* *
* -
* .
3 *
* *
be -
. -
% *
* »
* *
* -
e E
- 1 'Y
43 143




A. R. WASHBURN

320

£
e

L,

3
g e ST T
N ¥ LT :

W T

FiGure 4. The function Q{v.r.q;).

Brown [1] has
shown that it is in fact sufficient when the detection law {12] is exponential and a fixed amount

of search effort is available at each time. His proof would hold for any strictly convex, decreas-

The necessary condition would be more useful if it were also sufficient.
ing detection law.

in search for a stationary target, the myopic strategy is optimal for both maximizing detec-

tion probability at a fixed time and for minimizing the expected time to detection [12].

The

myopic strategy can be implemented by providing a display of P(-.t.,q) to an operator who

presumably selects positions x at which P(x.r.q) is large at which to continue the search;

computer-aided search schemes such as [2] function in this manner even when the search is for

Strictly speaking, one ought to be explicit about the objective function when

searching for a moving target, since myopic search is not generally optimal for the probability

a moving target.

Whether myopic search is optimal

of detection in a fixed time problem when the target moves.

.y '
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FIGURE 5. Comparison of P(x,40.4,) with P(x.40.,). A
or even near optimal for the expected-time-to-detection problem is unknown. This is unfor-
tunate, since expected-time-to-detection is a reasonable criterion in problems where the target
is very valuable and search cost is proportional to time spent searching. At the present time, to
the best of this author’s knowledge, there is no algorithm applicable to the problem of comput-
ing the search strategy that provides the minimal expected time-to-detection. Construction of
such an algorithm would be a useful extension.
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ANALYSIS OF DATA FROM LIFE-TEST EXPERIMENTS
UNDER AN EXFONENTIAL MODEL

J. F. Lawless and K. Singhal

University of Waterloo
Ontario, Canada

ABSTRACT

This paper discusses situations in which the distribution of a lifetime
response variable T is taken to depend upon a vector x of regressor variables.
We specifically consider the case in which 7, given x, has an exponential distri-
bution, and in which x represents levels of fixed factors in an experimental
design. Methods of analyzing data under this type of model are discussed, with
maximum likelihood and least squares methods being presented and compared.

1. INTRODUCTION

In many life-testing situations the life distribution of the items under study is dependent
upon physical and environmental factors. For example, the lifetime of a capacitor may depend
upon the voltage and temperature the capacitor is subject to, the time to breakdown of a type of
electrical insulation may depend on voltage as well as certain physical characteristics of the insu-
lation, and so on. With such items, life-test experiments are often carried out in which several
factors affecting lifetime are varied simultaneously. This paper deals with the analysis of data
from such experiments. We deal specifically with situations in which the life distribution of the
items under consideration is, at fixed environmental conditions, exponential. We also assume
that the scale parameter in the exponential distribution is related to the environmental factors
in a multiplicative fashion. That is, the lifetime T of an item depends on a given set of
environmental factors which can be represented by a (row) vector x. The distribution of 7,
given x, is exponential with density

oY) ;' exp(=1/6,), t>0,

where 8, = exp(x8) = exp(x|8; + ... + x8,). This paper deals mainly with analysis of vari-
ance type models, in which # depends in a multiplicative way on fixed factors, in which case it
is often convenient to write the model in a form (see Eq. (4)) analogous to that used in normal
theory analysis of variance.

The model described above covers a wide variety of applications. Before proceeding we
briefly note some examples.

EXAMPLE 1: Zelen [16,17] has considered factorial experiments with an exponential
model; for a two-way model, for example, we have the mean life 8 depending on two factors 4
and B, having a and b levels, respectively. His assumed model has

(2) 0U=ma,bjcu,l=1, ...,a;j"l,...,b,
323
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where the parameters are subject to restrictions
a b a b
(3) il;ll a=- jl;Il bj - iIJI cij d jI-}I cij - l.
This mode! can be written in the form (1), with
4) 8, =expu +a; +8; + vy,

where u = log m, a; = log g;, 8, = log b;, and y; = log c;. In this paper we generalize and
extend Zelen’s method of analysis for this model.

EXAMPLE 2: Power law models play a large role in many engineering studies. For
example, Nelson {12] and Lawless [9] have considered data on time to breakdown of electrical
insulating fluid under constant voltage v. The assumed model involves a power rule, with
@ = cv P letting x = log v, this can be expressed in the form (1), with 8 = exp(a + 8x),
where « = log cand B8 = —p.

EXAMPLE 3: All four models discussed on pp. 421-422 of Mann et al. {11] can be
expressed in the form (1). For example, the Generalized Eyring Model [11, p. 422] has §~! =
AT lexp (—=B/kT)] [exp (C¥V + DV/kT)], where T and ¥ are environmental stresses, 4, B, C,
D are unknown parameters, and k is Boltzmann’s constant. This model can be written in the
form (1) with

@ = expl—log 4 — log T+ B{1/kT) — CV — D(V/kT)].

Several authors have considered the analysis of data from models of the form (1). For
example, Lawless [9], Prentice [13], Singpurwalla [14], and Kahn [5] discuss the particular
form of Eq. (1) mentioned in Example 2 previously, while Lawless and Singhal [10], Prentice
[13], and Singpurwalla et al. [15] discuss models (1) with more than one regressor variable
present. This paper deals primarily with analysis of variance type models such as Eq. (4): these
can, of course, be treated as special cases of Eq. (1) and analyzed in this way, though it is
sometimes useful to dwell on the particular "fixed-effects” form of Eq. (4). This has received
less attention in the literature, with the main results to this point given by Zelen [16,17]. In
this paper we extend Zelen’s methods of analysis and discuss alternate methods. In particular,
Zelen has discussed the model (4) in the special case in which the experiment is run so that at
each combination of factor levels (i,j) only the first r failure times are observed. He shows how
to carry out likelihood ratio tests concerning various factors in the model, and how to obtain
confidence intervals for ratios of different 4;’s and ;’s in Eq. (2). We extend his work by con-
sidering the case where the first r;; failure times are observed at levels (i,j). We also consider
more detailed analyses of data from the model (4), involving the examination of treatment con-
trasts, for example.

2. TWO-FACTOR EXPERIMENTS

The remainder of the paper will be mainly concerned with analyzing data from a two-
factor model of the form (4). This allows us to discuss all relevant features of proposed
methods of analysis; the techniques are, however, easily used with other models of the form
(1). The two-factor model has previously been discussed by Zelen [16,17], who gives methods
of analysis based on likelihood ratio tests. We extend (and correct, in one instance) his work
here, and also discuss alternate methods of analysis.

We consider experiments in which there are two factors 4 and B, having a and b levels,
respec'ively. with experimentation at all ab factor level combinations. At the levels (i,j ) for 4
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and B, n; items are simultaneously put on test, the experiment being terminated at the time of
the r;th item failure. Let ¢, be the k th failure time for combination (i,j) (k = 1,...,r;); the
t;’s are the first 7; ordered observations in a sample of size n; from an exponential distribu-
tion with mean 8; (i=1,....a;j = 1,....,5). We consider the model (4) where, in the most
general case,

There are only ab independent parameters in Eq. (5), and for convenience we take the linear
restrictions on the parameters to be

i=1 J=1 4

: a b
" 2 ryyy =0 (for all j), 3 ryy; = 0 (for all i).
i=1 j=1

RN e W e

b a a b
Here r, = 3, ry,r; =Y ry; we will lateralsouse r.. = 3, 3’ r;.
j=1 i=1 i=1 j=1

It is well known [4] that the quantities
I

Ty=3 ty+ (ny~ ri)tyr,
k=1

are sufficient for the 6,;’s, and that T}; has a gamma distribution with density
r,_,.—l A

f(T;8,) = + exp(~T,/8;).
(r,'j - 1)! 0,:,"’

The likelihood function for the model is
a b
L(Oij’s) - 'rll 'rll f( T,J, 0U)
=1 jm

E-'( and the log likelihood function is, except for an additive constant which we omit without loss of
generality,

a b a b
)] log L=—3 3 r;log8;~ 3 Y T;/6;

im1 jm1 iml jul

We now discuss methods of analyzing data from this model. We begin by considering
likelihood ratio tests of various factors in the model, and then proceed to a discussion of max-
imum likelihood and least squares procedures.

3. LIKELIHOOD RATIO TESTS OF EFFECTS

ntasiididian

* In analyzing data from the model in Section 2, a number of hypotheses will be of interest.
These include hypotheses of "no interaction” between factors, and hypotheses concerning "main
effects.” To formulate these ideas, we consider a set of five hypothesized models:

Hy:log0;=p +a;+8,,
b H231080,~j-u +Bj;
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Hi:logb;=p+a,
Hy:log8;=p.

In these models, the a;’s, 8,’s, and y;’s satisfy the linear restrictions given in Eq. (6).
Preliminary analysis of data will often involve testing some of these models against others. For
example, to test for "no interaction" between A and B, we test H; vs H,, taking H; as the null
and H, as the alternative hypothesis. In general, to test H, (null hypothesis) vs H, (alterna-
tive), we can use the generalized likelihood ratio test statistic

Ag=—2log [Lmax (Ifs)/Lmax (1'11)]
=2(A; — A)),

where A, = — log L, (H,) is minus the maximum of log L under the model H,. Under H,,
A, is asymptotically (i.e., as the r;’s become large) x? with degrees of freedom given by the
difference in the number of functionally independent parameters in H, and H, (e.g. [7] Ch. 24).

We now give the maximum likelihood estimates (m.l.e.’s) and maximized log likelihoods
necessary for carrying out likelihood ratio tests for models H, to Hj,.

Hy Under H,, there is a one-to-one relationship between {0} and {«, a;, B, v,}, deter-
mined by Egs. (5) and (6). It is well known [4] that the maximum likelihood estimate of 8; is
i = T;/r;. We find that (henceforth all sums over i are from 1 to a and over j are from 1 to
b, unless stated otherwise) the parameter estimates /i, &;, 8;, and y,; are given by the following
equations:

) i=——3%r 088,
i J

r..

~

i) ¥, = log @,»j — &, — B, — i, where
iii) Thea;’s and é ;'s are found as solutions to the linear equations

(9) Zr,-j logé,j=r," (ﬁ+a,)+2r,jﬁj, i= 1,..., a,
J J

> logé,,=r,j(ﬁ. +B,~)+2r,ja,-, j=1...,b
i i

subject to the restrictions ¥, r,a, = X ;B;=0. Comments on the solutions of such equa-
tions are given, for example, by Kempthorne [6, pp. 80-81]. From the m.l.e.’s we obtain
A" = 22 m logf),, + 22 Tu’/éi/
I ] ! 1
=r..pn+r..

Note, in particular, that in order to obtain A4, it is not necessary to obtain anything other than
4. This is noteworthy, since often (see following) we may wish to test H; against Hy, and then
to discuss only H; further, if H; is accepted.

H,: The maximum likelihood estimates of u, a,, and 8, under H; cannot be given in
closed form, and must be determined numerically. To maximize log L under the restriction on
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the «;’s and 8;’s we consider
logLl=—r..u-XY Texpl—pu—a,~B)),
i

where we consider, through Eq. (6), that a, = — 1 Y r a;and B, = — L Y r.B, That

Ta. i#a o j=b

is, u, @), ..., @,y and B, ..., B,_, are considered as the unknown parameters and a, and 3,
are given in terms of these. Differentiation of log L gives equations

glog L =—1r. .+22 T;j exp(—u—a,-—ﬂ,)*O,

M ™5

dlog L _ i

(10) 3e =Y 7 exp(-,u—a,—Bj)—-’-—Z T, expl—u —a, — B)),
i Jj . a

i=1,...,a~1,

r.
QI—OE-L-=Z Tyexpl—p —a; = B;) — ~= ¥ Tpexpl—p —a; = B),
9B, i Fe 75

j=1...b-1

These equations have to be solved iteratively. This is easily done, for example, using Newton’s
method (7, Ch. 18]. We note that again in this case, A; is of the form

A3=f..ﬁ.+f..,

where 4 is the maximum likelihood estimate of u obtained from expression (10). To see this,

observe that the first equation in expression (10) implies 3.3, T; exp(— g —a;, —B;) =r . .,
iy

so that substituting the m.l.e.’s in log L gives A; as stated.

Hy: In this case we need to consider
logL=—r..pu—23 T;expi—u~pB)
iJ

where again, using Eq. (6), we treat 8, ..., By,—; as the unknown parameters, with 8, =
-~ —;L Y. r,B;. Itis easily found that log L is maximized for u and 8y, ..., 8, by choosing
b j=b

e

and
B, =108(T)/r) =4, Jj=1,...,0b
where T, = Y. T, . A, then once againequalsr . .4 +r .. .
i

H,: We similarly find here that maximizing log L leads to estimates

i = —— % log(T,/r)

&,-IOS(T;/’,)_IZ. i=10-"' a,

where T, =3 7, Then, Ay ~r..ga+r...
)
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Hy: In this case we find o2 = log(T. ./r. ) andAg=r. . i+ r..,where .. =YY T,.
iJ

’ Utilizing the expressions given above, we can test any form of the model against any
other. We will often want to start by testing H3 vs H,. Acceptance of H; would mean that
there is no interaction, in a sense, between factors 4 and B, and this would make it meaningful
to consider questions about the a,’s and B8,’s individually. If H; is accepted we might, for
example, then want to examine the hypothesis that Factor 4 has no effect. This would be done
by testing H, vs H;. Similarly, we might want to test H, vs H;. The likelihood ratio method is

, a convenient way to do this, and examples of the above tests are given in Section 6.

REMARK: Zelen [17] gives likelihood ratio tests like those discussed here, for the case
in which all r,;’s are equal. It should be noted that the statistic M3 given on p. 513 of his paper
is incorrect, however, as is the expression for /13 on p. 512. This error arises because Zelen

{ obtains incorrect expressions for his parameter estimates under model H;. In fact, he uses
closed-form expressions for the estimates, though as noted above, it is not possible to obtain
these.

4. LARGE SAMPLE MAXIMUM LIKELIHOOD PROCEDURES

Likelihood ratio procedures are convenient for testing hypotheses concerning main effects
and interactions in the model (5), but are less convenient when, for example, it is desired to
estimate contrasts involving the parameters or to obtain confidence intervals for parameters.
We discuss here procedures based on large sample properties of the m.le.’s, which can be used
to test overall effects in the model or for estimation purposes.

We begin by considering the full model (5), in which case the log likelihoua is, trom Eq.

N,
a b a b
log L (w,a;,B;v,)=— 221 riw +a, + B +yy) - 22‘ Tjexp(—p —a;,—B; — ¥i)-
=] (=] j=
o The parameters satisfy the linear restrictions (6). In what follows we will suppose that the ab
( unknown parameters in the model are u, ay,..., @, , By..., By, and vy
f- (=1, ...,.a-1j=1, ...,b —1). The remaining parameters can be given in terms of
these through Eq. (6).
~ Using standard asymptotic properties of m.l.e.’s, the covariance matrix of the limiting nor-
mal distribution for (i,&y....&,-1,81. . Bo—1:711r -« »¥a—i-1)) iS given by the inverse of
the matrix of negative expected second deviatives of log L. This is found here to be of the
form
r.0 00|
\ 0 ADO
' (1 V= o D'BoO| -
000

where the estimates are written in the order given above, and V is therefore partitioned so that
Aist@a—1Dx@a—-1,Bisb-1)x(b—-1D,and Cisa—1) (b—-1D x(a—1) (b—1).
Specifically, the entries in the matrices A, B, and D are

I'/ "/ . . '.‘2
= Gz A =r +—,
;

—8% log L
da,da,

. A,,=E[

4 rAl
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2
—62 log L rir; .. . r;

(12) By= B2l -0 (i j), B =r, + L,
v 38,08, ) Y R "

D.. = —§? log L - rifis _ ritfaj + ri T ilap

Y 8a 08, v Iy Ia, Taly

The expression for C;, is more complicated and will not be given here, since we do not require
an explicit expression for it in the sequei. The formula for Cj; is, however, precisely the same
as the expression given in Kendall and Stuart (8, Section 35.79] for the case of least squares
regression with unequal replication. We also note that in the "proportional frequency" case,
when r, = r,r,/r .., things simplify to a degree, since then E£(—3* log L/da;88;) = 0, so that
D=0.

An alternate way to obtain expression (11) is by analogy with least squares methods for

unbalanced two-way models. Since 8, = T,/r, has a gamma distribution, log ¢, has a log
gamma distribution (e.g., see Bartlett and Kendall [2]) with mean and variance given by
(13) E(log é,j) =log 8, — log r; + ¢ (ry),

Var (log é,j) =¢'(ry),

where ¢ (-) and ¢’'(-) are the digamma and trigamma functions (see, e.g., Abramowitz and
Stegun [1]). These functions, incidentally, have series representations

(14) W) = log ry = 51— = =z ...
ij ij

‘ll'("ij)=’l“+%+—l—3‘+...,
ri/ er 6r,/
The maximum likelihood estimates of 4, a;, [3,, ¥ given by expressions (8) and (9), are
linear combinations of the log 8,;’s. Hence the variances and covariances of these estimates are
in principle readily determined. The calculations are somewhat tedious, though if we note that
the calculations required are just those required in the unbalanced two-way analysis of variance
model

where e; — N(0,1/r;), then we can make use of standard techniques for this model (see, e.g.,
[6, pp. 79-91] or [8, Chapter 35]).

The statistic for testing for absence of interaction (i.e., that v;=0, i=1,.,a
J=1,...,b) is, in terms of expression (11), So = A' Ch, where n = (y||, ..., Yia-1
Y2is --+» Ya—11p-1y)- This turns out to be equal to

a b
-2
(16) S()= 2 2 r,‘j ‘Yijv

=1 jl

where 7, is as given in expressions (8) and (9). Asymptotically, Sy is distributed as X &,_1)-1)
if Hy is true, and large values of S, give evidence against H.

Variances of contrasts involving the m.l.e.’s can be determined from V. In addition, tests
concerning the a;’s and 8;’s can also be carried out. However, tests concerning the «;’s and
B,’s are unlikely to be of much interest except when the interaction terms y,, are 0. Therefore,
in discussing these quantities we will suppose that we are in situations where it has been found
suitable to work with the "main effects” model H;.

]
i
!
i
3
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The equations for obtaining the m.le.’s under model H; have already been given in
expressions (10). Test and estimation procedures can be based on the limiting normal distribu-
tion of (i,&,...,a,.1,.8, ....B5_1). The covariance matrix for this limiting distribution is,
as in the case of the full model, obtained from the expectations of the second derivations of log
L. In this case, the covariance matrix is of the form

.0 o)t

Slo ~

A

D' B
where V; is dimension (@ + b— 1) x (@ + b — 1), and 4, B, and D are as given in expres-
sions (12). The matrix V, is readily inverted numerically in any specific application. In the

proportional frequency design mentioned earlier, in which case r; = r; . ,-/ r.., we have D=0
so that

rb 0 0
(18) V=10 A1 0
0 0 B!
Further, it can be shown (e.g., see Kendall and Stuart [8, p. 18]) that 4! and B~ have entries
S U U By
A" = r r.’ A r. (i %)),
gl L g _1uy
r; r. r.
In the general case (nonproportional frequencies), ¥, will have the form
.00
19) v, =0 Fl.
0 F G

Tests of the models H, or H, vs H; can be carried out by employing the limiting normal
distribution of the m.le.’s. To test H,: log 6;; = u + B, vs H; (that is, we are testing a; = 0
within the model H3), we consider the statistic

S;=a"E'4,
where & = (&), ...,&,-)) is the m.le. of a under Hi. If H, is true, S, is approximately
x%-1. Similarly, to test H, vs H; (8, = 0), we consider

Si=8G'8

which, if H, is true, is approximately x f-1).

Contrasts involving the a,’s or 8,’s are also easily handled. If we are interested, say, in
the contrast ¢ = lja; + ... [,_j&,_, then we consider the approximate normal distribution of
¢ = L&, + ... l,_,&,_,, which is easily obtained from the approximate joint normal distribu-
tion of (&,,...,&,_,). In particular, & has a limiting normal distribution with mean ¢ and
variance ' £ {, where [ = (I}, ....[,_))".

A final remark is that, since Var(log 8,,) is exactly equal to ¢'(r;) and only asymptotically
equal to 1/r,, it may be preferable to use ¢'(r,) instead of r, in the above calculations, unless
the r,’s are fairly large. In this case V will be the exact covariance matrix for the estimates,
and not just an approximation, although this does not of course imply that S, will necessarily be
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more closely approximated by a x? distribution than before. In the case of ¥, use of ¢'(r,)
: { does not give the exact covariance matrix of the m.l.e.’s, so it is doubtful whether the above
modification is worth considering.

5 5. LEAST SQUARES ANALYSIS

Least squares methods can be conveniently used with the types of models discussed here.
We consider this only briefly, since least squares analysis is essentially the same as the approxi- |
mate normal analysis using the model (15) described in Section 4. |

£
£
r
b
i
3
b

We consider the distribution of log 9 ij» and write

Ly (20) logé,, =logd, —logr; + €

E where €', has a log gamma distribution with mean y (r,)) and variance ¢'(r,). The model (20)
can be rewritten as

\ (21) Y, =logb, + ey

where Y, = log 8, + log r; — ¢(r;) and e;, = ¢’; — ¢(r;). In view of expressions (14) we
note that .

i Y, = logd, + —— + 1 + ...

| = 1oy 50+ D
and €,; has mean 0 and variance ¢'(r,) = 1/r; + 1/2r} + ... . Least squares analysis is carried

out by considering the model (21) and using weighted least squares with weights w; = 1/¢'(r;).
Tests of hypotheses can be carried out by treating the €;;’s as being approximately normally dis-
tributed. We observed that this analysis is similar to the approximate normal theory analysis
for model H, described in Section 4, except that r; is replaced by w;, and log 8, is replaced by
log 6, + log r;—¢(ry). The covariance matrix for the least squares estimates of
Bo@y, a1y Bl o Be=1s Yils -+ Y@a-1 (-1 IS Biven by expression (11), except that r;
is replaced by w;; in Eqs. (12). This method and the approximate normal methods of Section 4
do not differ by much, unless the r;’s are fairly small, since to first order (14), '(r;) = V/r,.

For more details on weighted least squares in the two-way model, we refer the reader as
vefore to Kempthorne {6, pp. 79-91] or Kendall and Stuart {8, Ch. 35).

6. AN EXAMPLE

In handling data from the model (5), we have two main choices with regard to overall test
of models H, vs H,: one choice is to use likelihood ratio tests, the other to use tests based on
the approximate normality of the m.le.’s or least squares estimates of the parameters. Both
methods require a moderate amount of computation., For example, in using likelihood ratio
statistics we may need to solve equations itératively to obtain m.l.e.’s. If we use least squares
estimates, this is not necessary, though we do have to solve linear equations for the estimates.
However, when we use a statistic such as S; or S,, we need to invert matrices, which is not
required for the likelihood ratio tests. In order to estimate contrasts for parameters, maximum
likelihood or least squares methods can be used. In both cases it is necessary to obtain the
covariance matrices V or V|, and to invert matrices. The least squares estimates are slightly
more easily calculated, if model H; is used, though they are also slightly less efficient than the
m.l.e.’s (see Section 7).

We will now demonstrate the use of the procedures in an example, and return briefly to a
further discussion of the merits of the procedures in Section 7.
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EXAMPLE : We consider for convenience a simulated 3 x 3 factorial experiment with 6 ;
= exp(2i +2j), i=0,1,2;: =0, 1, 2. The values of T; and r, (in brackets) are given
below:

J B
i 0 1 2 T (r)

0 9.61 (10) 48.14 6) 102.7 (4) 160.45 (20)
A 1 46.88 6) 281.7 ) 463.7 (2) 792.28 (12)

254.7 4) 807.8 (2) 8431.0 (2 9493.50 (8)

T

o

(r) 131119 (200 1137.64 (12) 89974 (8) | 10446.23 (40)

We begin by testing for absence of the interaction term in the model log 6, = u + «a;
+ B, + v;. Using the likelihood ratio test of H; vs H,, we find A3s = 2(A3— A, = 1.227.
Comparing this with percentage points of the xf, distribution, we see there is no evidence
against A3, and hence in further discussions we will work with model H;. We note that in
order to calculate A3, we had to compute the m.l.e. &2 under model H, (see Eqgs. (8)), and also
the m.le.’s of u, a,, B; under H;. These latter quantities are found by solving Egs. (10) to be
i = 2709, & =- 1521, & = 0625, a; = 2.864, 8, = — 1.352, B, = 0.767, and B; =
2.228.

Alternately, we could test A3 vs H, by using the large sample approximate normal distri-
butions of either the m.l.e.’s or the least squares estimates. Using Sy given by Eq. (16), we
find S = 1.207, which is in close agreement with the likelihood ratio test result. Using S, but
using the least squares estimates and their variances instead of the m.l.e.’s, gives §; = 0.935,
in good agreement with the other results. The least squares estimates of the parameters under
model Hj are, incidentally, & = 2.747, &, = — 1.476, a4, = 0.726, a3 = 2.972, 8, = — 1.316,
B, = 0.851, and 83 = 2.323.

Effects within the model H; can be examined further using either the m.Le.’s or least
squares estimates. We will illustrate here the use of the m.l.e.’s; as noted above, least squares
methods are computationally similar to these. The m.l.e.’s of the parameters have been given
above. We also require the covariance matrix V7!, which is readily found from expressions
(17) and (12} to be

0.0250 0 0 0 0

0 0.0250 -0.0250 0.0 0.0
Vi=10 —0.0250 0.0586 0.0 ~0.0028].

0 0.0 0.0 0.0250 ~0.0250

0 0.0 —0.0028 —0.0250 0.0586

Overall tests of the main effects 4 and B can be carried out using either statistics S, and S,, or
the likelihood ratio tests. The former requires the inversion of some 2 x 2 matrices, but does
not require any new estimates to be calculated. The latter method requires us to calculate new
m.l.e.’s under H, or H,, but no matrix inversion. In this and similar problems, the amount of
computation required by the two methods is comparable, and the two methods will usually give
results in fairly close agreement, so it is simply a matter of preference which procedure one
uses.

Using the likelihood ratio test for H, vs H;, we find A3 = 108.9, and for H; vs H; we
find A;; = 74.6. The corresponding values of S| and S, are 116.4 and 83.3; use of ¢'(r,)
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instead of 1/r; in V), as discussed at the end of Section 4, changes these only marginally, to
117.2 and 83.4. The upper 0.01 percent point x &) is 9.21, so that both tests show strong evi-
dence in favor of main effects for both 4 and B.

If desired, contrasts involving the parameters can also be examined. For example, in the
present situation it would be of interest to consider constrasts which correspond to linear and
quadratic effects in 4 and B. For example, for 4 we might consider ¢;, = a3 —a; and ¢g, =
a3 — 2a; + ay. Estimates of these contrasts and their variances are easily obtained from a;,
«,, a3, and V|, and are as follows:

bra=&y— G, = 4385, Var(d,,) = 0.1755,

bos = é3— 2, + &, = 0.0931, Var(dg,) = 0.1755.

In calculating variances of é 14 and J)W,_we make use of the restriction 20a; + 12a, + 8a; =
0 to rewrite ¢, 4 as — 3.54, — .56, and ¢, as — 1.5, — 3.5a,. Testsof ¢,, =0and¢,, =
0 can be carried out by treating ¢ 7,/ Var(d,,) and ¢,/ Var(d y,) as approximately x ). Here
we find, that ¢ 2,/ Var(é,4) = 109.5, and &é,,/ Vér(qASQA) = 0.017, indicating very strong evi-
dence in favor of a linear, but no quadratic, effect on log 8 for factor 4. (This is of course as
we expect, since the simulated data come from the model log 8, = 2i + 2/.)

In a model in which there is no interaction effect, it may also be of interest to estimate,
say, a, — a;. Note that a; — a, = log 0, — log 6, = log (6,/0 ;) represents the log of the
ratio of the mean lifetime of items at levels j and j of factor 4 (and the same level of factor B).
For example, above we have found that a; - &, = 4.385; if we desire an approximate
confidence interval for a; — a;, we find it using [’&r(& 14) = 0.1755, so that an approximate
0.95 confidence interval for a; — a is given by ¢, + 1.96 ~/Var(é¢,,). In this case, this
yields the interval 3.564 < a; — a; < 5.206. This gives confidence limits on the ratio 03,/6,,
of mean lifetimes of items at levels 1 and 3 of 4 as 35.30 < 8;,/0,, < 182.4.

7. ADDITIONAL REMARKS

The procedures described are all easy to use. The least squares procedures do not require
any iterative solutions for estimates, though with an unbalanced design the computation
required for the least squares analysis is not much less than that required by the maximum
likelihood or likelihood ratio procedures. The maximum likelihood methods are, in experi-
ments having many factor combinations, more efficient than the least squares procedures, espe-
cially when the r,’s are not large [3]. All the procedures described rely, however, on large
sample approximations, and so the question arises as to how well various statistics are approxi-
mated by their limiting x? or normal distributions. The log gamma distribution of 8,
approaches normality fairly rapidly as r, increases, so that with even moderate sized r;’s (say
about 8 or more), the approximations employed should be sufficiently accurate for practical pur-
poses. Zelen [16] has performed a few simulations which support this, though unfortunately
some of his results refer to an incorrect likelihood ratio statistic. For even smaller values of r,,
the approximations should be reasonably accurate, though in this case x? approximations
involved with likelihood ratio tests might be expected to be slightly better than those involved
with the distributions of m.l.e.’s or least squares estimates.

We also remark that although we have restricted our discussion to a two-way model, more
general analysis-of-variance or regression models can be handled in a similar way. Hence the
large number of models which are of the form (1), with log @ a linear function of fixed effects
or covariables, can, for example, be readily handled.
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Finally, no work on the exponential distribution is complete without a reminder that pro-
cedures based on the exponential model are rather nonrobust. That is, they are sensitive to
departures from exponentiality. This is equally true of the maximum likelihood and the least
squares procedures. Therefore, in using procedures such as those discussed irn this paper,
checks need to be made on the adequacy of the assumed exponential model.
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ABSTRACT

In 1973 the Defense Department made plans to close many Navy bases in
the United States. Hardest hit was Rhode Island which would suffer a loss of
45.61% of the total cutback of 42,812 jobs. This paper describes two models
which were built to forecast the severity of the economic impact in Rhode Is-
land: one used the reduced form equation approach, and the other the simul-
taneous equations system approach. Tests on muiticollinearity, specification,
and serial correlation were conducted. An ex post evaluation of these two
models’ performance in forecasting then concludes the paper.

1. INTRODUCTION

On April 16, 1973, the Defense Department announced plans to close or modify installa-
tions in 30 states, the District of Columbia, and Puerto Rico. It would eliminate 26,172 civilian
and 16,640 military jobs by June 30 of the next year. Hardest hit by this cutback was Rhode
Island, whose Quonset Point Naval Air Station would be shut down with a loss of 3,809 civilian
and 4,217 military jobs, and whose Newport Naval Base would be severely cut down, eliminat-
ing 430 civilian and 11,069 military positions. This meant that Rhode Island would suffer a pri-
mary job loss of 4,239 civilian and 15,286 military employments with a total of 19,525, which
was 45.61% of the total cutback of 42,812 jobs. This announcement was greeted in Rhode
Island with "shock, anger, and bewilderment,” and was ranked to be as catastrophic as "the
disastrous hurricanes” experienced by the state in the past.

A study was conducted in the summer of that year to analyze, to assess, and to forecast
the severity of the economic impact of the Navy base closing in Rhode Island. The resuits
were reported as a headline story in The Providence Sunday Journal [2] on August 5, 1973.

Two forecasting models were built for this economic impact study: one for the employ-
ment and the other for the retail sales subject to taxation. However, only the employment
model will be discussed here,
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2. IMPACT MULTIPLIER, REDUCED FORM EQUATION,
AND SINGLE EQUATION LEAST SQUARES METHOD

2.1 Specification of the Model

In the employment model, a five-equation system is built as follows: the first equation is
an identity (Eq. (2.1)), which defines the total nonagricultural wage-and-salaried employment
(T) in the state as consisting of manufacturing (M ) and nonmanufacturing (N ) employment;
the latter includes Navy civilian workers (C) as a part of its government employment, but not
Navy military personnel (D). Thus, nonmanufacturing (N ) employment is equal to Navy civi-
lian workers (C) plus the remaining, which we shall call service (S) employment:

2.1 T=M+N=M+S+C
where N = § + C.

Based upon past research, it has been found that Rhode Island manufacturing (M)
employment is strongly subject to cyclical influence but her nonmanufacturing (N ) employ-
ment is not. Therefore, it is hypothesized that in Eq. (2.2) manufacturing (M ) employment is

a function of both time trend (/) and a cyclical dummy variable (V), using 1 as downswing and
0 as upswing:

2.2) M=a+bt+cV+u,

In Eq. (2.3), service (S) employment is assumed, following the economic base theory, to
serve on a supportive basis for the state’s total (7) employment and Navy military personnel
(D). Thus, we have

(2.3) S=h+kT+wD+u,.

Finally, Navy civilian workers (C) and military personnel (D) are taken to be exogenous
as they are specified in Egs. (2.4) and (2.5):

2.9 C=
2.5) D=

)

»

=]

2.2 Estimation, Testing, and Evaluation

Since the immediate interest back in 1973 was the impact effect of the Navy base closing,
Egs. (2.1) and (2.2) were substituted into Eq. (2.3) and solved for Sin terms of 7, V, Cand D :

(2.6) g htka kb ke o, _k

w kll2+ IIJ
D+ Matls
-k TT-x'T1-x 1

11—k 1-k

kC+

Using time series data from 1961 to 1972, this reduced form equation for the service (S)
employment was estimated by the single equation least squares method. It turns out to have an
annual growth factor of 5.647, and a recession coefficient of 3.928. The Navy civilian and mili-
tary employment impact multipliers are estimated to be 0.499 and 0.216, respectively. All these
statistics are presented in Table 1.

The "t" test for time trend (r) is found to be statistically significant at more than 1%
level; for cyclical effect (V), significant at 5% level; for Navy military personnel (D), significant
at about 30% level; and for Navy civilian workers (C), not significant at all. The R?is 0.993,
and the calculated F with 4 and 7 degrees of freedom is 392.721.
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TABLE 1 — Estimation of Impact Multiplier
and Reduced Form Eguation

Service Employment Equation*

Variable Estimated Coefficient | 1 statistic
Y-intercept 147.444 -
Time 5.647 12.915
One, if a downswing —-3.928 —-2.645
Navy civilian workers 0.499 0.311
Navy military personnel 0.216 1.018

‘R = 0993, F(4,7) = 392.721, D.W. = 2.049, S.E.E. = 1.639.

To compare the ex ante forecast which was reported by Goodrich [2] against the ex post
forecast, Tables 2 and 3 are prepared.

TABLE 2 — Ex Ante Forecasting of Secondary Job Loss
Based on Planned Reduction

Planned Reduction Secondary
Year Category Civilian Military Multiplier Job
Workers Personnel Loss
Civilian
1973 Wplrkers 2,518* 0.499 ~1,257
Military
Personnel 12,244% 0.216 —2,645
Total 2,518 12,244 - -3,902
Civilian
1974 W.Of'kers 1,721* 0.499 —~859
Military
Personnel 3,042% 0.216 —657
Total 1,721 3,042 - -1,516

*Total planned reduction in Navy civilian workers in 1973 and 1974 is distributed accord-
ing to the percentage calculated from the acnal reduction in 1973 and 1974,
+Same as above except it is related to Navy military personnel.

TABLE 3 — Ex Post Forecasting of Secondary Job Loss
Based on Actual Reduction

Actual Reduction Secondary
Year Category Civilian Military Multiplier Job
Workers Personnel Loss
Civilian
1973 Wp.rkers 3,504 0.499 -1,749
Military
. Personnel 18,523 0.216 —4,001
Total 3,504 18,523 - -5,750
Civilian
1974 W'o!'kers 2,395 0.499 . -1,195
Military
Personnel 4,609 0.216 -996
Total 2,395 4,609 - -2,191
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It is interesting to note that first, the actual reduction in civilian workers and military per-
sonnel by the Navy is greater than the announced planned reduction; and, consequently, the ex
ante forecast of the secondary job loss is smaller than the ex post forecast. This shows once
again that the conditional forecasting is different from the unconditional forecasting. Second,
among the many other forecasts made in 1973, our ex ante forecast turned out to be the most
optimistic one in the sense that the economic impact of the defense base closing would be the
least severe. Had our forecast used the actual reduction figure, it would have sounded more
alarm. But events proved to be the contrary. For instance, in 1973 the secondary job loss
should have been forecast to be 5,750 based on the actual reduction figure (not 3,902 based on
the planned reduction figure), and the ex post forecast for Rhode Island total employment
should have been 356,351; but the actual observed total employment was 365,900, and the
underestimation was 9,549. Thus, we have to conclude that either Rhode Island’s inner
economic strength is actually stronger, or the economic impact of the defense base closing is
much weaker than suspected, or both.

Since a high degree of multicollinearity implies that at least one of the explanatory vari-
ables is a linear function of one or more of the remaining explanatory variables plus residual, to
run the test for multicollinearity in our sample, we regress each of the explanatory variables on
all the remaining explanatory variables. The functional forms and the R? values are listed in
Table 4. The highest R? is 0.865, which may be taken as a measure of the multicollinearity in
our sample.

TABLE 4 — Muilticollinearity Test for
the Service Employment Fquation

Functional Form R?

C=¢(G V. D) 0.814
D=h@ V, O) 0.344
t =i(V, C, D) 0.865
V=j C D) 0.005

TABLE 5 — Evaluation of the Forecasting Performance
of the Reduced Form Equation

: Forecast | Actual Percent
Equation Year Value Value Error Error
Service 1973 | 225.642 | 235.191 —9.549 | —0.041

Employment 1974 | 225.171 | 237.686 | —12.515 | —0.053
1975 | 230.918 | 232.270 | -1.352 | —0.006
1976 | 240414 | 239.737 | +0.677 | +0.003

Mean Absolute Error 6.023 -
Mean Absolute Percent Error - 0.026
Manufacturing Not Estimated
Employment
Total 1973 | 356.351 | 365.900 —9.549 | -0.026

Employment 1974 | 354.185 | 366.700 | —12.515 | —0.034
1975 | 347.848 | 349.200 | -1.352 | —0.004
1976 | 366.977 | 366.300 | +0.677 | +0.002

Mean Absolute Error 6.023 -
Mean Absolute Percent Error - 0.016
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The specification error tests are conducted by distinguishing among various regression
models. Many regressions with different specifications are run. Those retained here seem to
have the correct sign and magnitude.

The Durbin-Watson statistic is calculated to be 2.049, which indicates no serial correlation
in this service employment equation.

Lastly, in Table 5 we evaluate the forecasting performance of our estimation by calculat-
ing the difference between the actually observed value and the forecast value using the ex post
data for the explanatory variables. This yields a mean absolute error of 6.023 and a mean abso-
lute percent error of 2.6% for the service employment equation, whereas for the total employ-
ment equation the mean absolute error is 6.023, and the mean absolute percent error is 1.6%.

3. IMPACT AND LAGGED MULTIPLIERS, SIMULTANEOUS EQUATIONS SYSTEM,
AND TWO-STAGE LEAST SQUARES METHOD

3.1 Specification of the Model

More recently, a simultaneous equations system has been tested with a partial adjustment
model built in as its theoretical basis. Assuming the desired level of the manufacturing employ-
ment (M*) in the state in a year is a linear function of time trend (1), cyclical influence (V),
and cyclical influence lagged by one year (V_;), we have

(3.1 M*=a+bt+cV+dV_+u.

Due to institutional rigidity, technological constraints, and other reasons, it is theorized that the
actual level and the desired level can only be adjusted partially as follows:

(32) M—M_1=k(M*'—M_|)+V,

where 0 € k& < 1, and v is a random disturbance.

Solving for M*in Eq. (3.2) and inserting the result into Eq. (3.1), we obtain
(3.3) M=ak + bkt +ck V+dk V_;+ (1—k) M_; + (ku, + v).
Similarly, we work out the service employment equation as the following:
34 S*=h+sM+C)+mM+C)_;+wD+rit+u,
35) S-S =3g(S*—-S5_)+e
36) S=hg+sgM+C)+mgM+C)_;,+wgD+rgt+(1—g) S+ (gug+e).

Equations (3.3) and (3.6) together with the identity (2.1) constitute our second model,
which is a simultaneous equations system and which will be estimated by the two-stage least
squares method.

3.2 Estimation, Testing, and Evaluation

Since all the explanatory variables on the right-hand side of Eq. (3.3) are either exo-
genous or predetermined, we, using the same time series data but one year less, estimate Eq.
(3.3) first by the least squares method. The result is presented in Table 6(a).
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TABLE 6 — Estimation of Impact and Lagged Multipliers and Simultaneous
Eguations System

T e TR

(a) Manufacturing Employment Equation*
Variable Estimated Coefficient | ¢ Statistic
Y-intercept 60.225 -
Time 0.952 1.516
! One, if a downswing —8.351 —3.065
One, if a downswing lagged 1 yr. —5.487 —1.033
Manufacturing employment lagged 1 yr. 0.471 1.483

» *RY = 0.707, F(4,6) = 7.023, S.E.E. = 2.831.

(b) Service Employment Equation*

Variable Estimated Coefficient | ¢ Statistic

Y-intercept 125.533 -
Calculated manufacturing employment

and Navy civilian workers 0.377 1.580
Manufacturing employment and Navy

civilian workers lagged 1 yr. —0.237 —-0.977
Navy military personnel 0.098 0.317
Time 5.105 1.460
Service employment lagged 1 yr. 0.078 0.112 y

‘R’ = 0.987, F(5.5) = 151.535, S.E.E. = 2.089,

In Eq. (3.6), M is the only endogenous variable on the right-hand side of the equation, so
we use the estimated values of M and estimate Eq. (3.6) by the least squares method again.
( This produces the statistics in Table 6(b).

Finally, using the estimated regression coefficients obtained from Egs. (2.1), (3.3), and
(3.6), we form the following matrix equation:

3.7 WY =AY +BX +CX_;+u,

where W, A, B, and C are estimated regression coefficient matrices, Y, and Y, are the column
vectors of the endogenous variables, and X, and X;_, the column vectors of the exogenous vari-

ables, at periods f and r—1, respectively.

Premultiplying Eq. (3.7) by W"!, we have
V=W 4Y  + WIBX + WICX_(+ W,

B8 ey B XX+ W,
where 4* = W='4, B* = W™'B, and C* = W'C.

Now, lagging the matrix Eq. (3.8) by one period and substituting the result into the same
matrix equation repeatedly, we obtain

| To= AN+ B XA B+ COX + ANA B+ X
(3.9 + (ADHA B+ CVXy + e
! + AL B + C)Xpny + AU X L,

' 7 where we have, of course, ignored the residual term.
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In order to have the system to be stable, it is required that lim (4*)* = 0 when k — o,
and all the characteristic roots of 4* be < 1 in its absolute value. The coefficients of 8* will
then serve as our impact multiplier after one-shot increase of its related exogenous variable, the
coefficients of (4* B* + C*) our lagged multiplier lagged by one period, 4*(4* B* + C*) our
lagged multiplier lagged by two periods, etc.

In our case, the system is found to be stable, and the impact multipliers for Navy civilian
worker and military personnel are estimated to be 0.377 and 0.098, respectively. When com-
pared to the impact multipliers of 0.499 and 0.216 from the reduced form equation in the first
model, it is found that they are slightly smaller, and seem more reasonable as the aftereffects
are known now.

Those lagged multipliers for Navy civilian workers lagged by one, two, and three years are
estimated to be 0.029, 0.0023, and 0.00018, while those for Navy military personnel are
estimated at 0.008, 0.0006, and 0.000047, respectively.

The secondary job loss for 1973 and 1974 is calculated in Table 7, which should be com-
pared to Table 3. The impact effect in 1973 turns out to be smaller, and the impact and lagged
effects are also smaller in 1974. The advantage of this second model is then the capability of
calculating both the impact effect as well as the lagged effect lagged as many years as required.

TABLE 7 — Estimation of Secondary Job Loss by Impact Multiplier for 1973
and by Impact and Lagged Multipliers for 1974

Actual Reduction
Secondary
Year Category Civilian Military Mulitiplier Job
Workers Personnel Loss
Civilian
1973 Wpfkers 03,504 0.377 -1,321
Military
Personnel 18,523 0.098 ~1,815
Total 3,504 18,523 - ~3,136
Civilian 02,395(74) 0.377 -903
1974 Workers 03,504(73) 0.029 -102
Military 04,609(74) 0.098 —452
Personnel 18,523(73) 0.008 —148
Total 05,899 23,132 - -1,605

To demonstrate the lagged effects for many years, we calculate the cumulated secondary
job loss for the year of 1976 in Table 8.

Following the same test for multicollinearity as we did before, we regress each of the
explanatory variables on all the remaining explanatory variables for both the manufacturing
employment equation and the service employment equation. The results are collected in Table
9, (a) and (b). It seems that the degree of multicollinearity is high in the manufacturing
employment equation (the highest R? = 0.867), and that in the service employment equation
it is even higher (the highest R? = 0.998). This is so because of the fact that time trend (r)
plays a more significant role in the latter equation than in the former equation.

To test the specification error, we run many regressions with different specifications again.
The estimated Eqs. (3.3) and (3.6) again seem to have the correct sign and magnitude.
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Next, we run the special test for serial correlation as given by Durbin [1], as in our least
3 squares regression some of the regressors are lagged dependent variables. However, the 4

1 TABLE 8 — Estimation of Secondary Job Loss by Impact arnd Lagged Multipliers for 1976

Actual Reduction
! Secondary
i Category Civilian Military Multiplier Job
’ Workers  Personnel Loss
| 67(76) 0.3771 =25
i Civilian +216(75) 0.2943E-1 +6
Workers 2,395(74) 0.2296E-2 -5
3,504(73) 0.1791E-3 -1
211(76) | 0.9822E-1 =21
Military 34(75) | 0.7663E-2 -0
Personnel 4,609(74) | 0.5979E-3 -3
18,523(73) | 0.4665E-4 -1
Total 5,750 23,377 - ~50

TABLE 9 — Multicollinearity Tests for the (a) Manufacturing
and (b) Service Employment Equations

Functional Form For (a) R? »

t = gV, V_,, M_) 0.858

V = h(t, Vo, M_)) 0.240

Vo, = i, V, M_y) 0.867

,( M_y = j, V, V) 0.781
: Functional Form For (b) R?

M +C = gM+C)y, D t, S-1) 0.720

M+ Oy = h(M +C), D, , S.) | 0.801

< t = i(M,+C), M+ C),, D, Sy | 0.997
D= jlM+C), M+C)_y, t S_)) | 0452

S, = k((M,: + C), (M+ C)_l. D, 1) 0.998

statistic cannot be calculated because nV (b)) > 1, where b, is the regression coefficient of the
lagged dependent variable. Following the procedure given at the same source, we run the
regression of ¢, (the residual at period /) on e_;, 1, ¥V, V_,, and M_, for the maaufacturing
employment equation, and find that the s statistic for e_; is not significant at the 1% level.
However, when we run the regression of ¢, on ¢,_y, (M, + C), (M + C)_;, D, ¢, and S_; for
the service employment equation, the ¢ statistic for e, is significant at the 5% level but not at
the 1% level. Thus, it is concluded that serial correlation is not present in the manufacturing
employment equation, but is suspected in the service employment equation.

‘ Lastly, the forecasting performance of our second model is evaluated in Table 10. The

mean absolute errors for the service, manufacturing, and total employment equations are found
! to be 5.059, 3.333, and 6.133, and the mean absolute percent errors are 0.02]1, 0.028, and
| 0.017, respectively. They are extremely small again.
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TABLE 10 — Evaluation of the Forecasting Performance
of the Simultaneous Equations System

. ) Forecast Actual Percent
Equation Year Value Value Error Erizr

1973 | 23G.672 | 235.191 —4.519 | —-0.019

1974 | 232,798 | 237.686 —4.888 | —0.021

Service 1975 | 236.991 | 232.270 +4.721 | +0.020

Employment 1976 | 245.846 | 239.737 +6.109 | +0.025
Mean Absolute Error 5.059 -

Mean Absolute Percent Error - 0.021

1973 | 128.886 | 124.300 +4.586 | +0.037

1974 | 123.747 | 125.000 -1.253 | —-0.010

Manufacturing | 1975 | 119.542 | 112.700 +6.842 | +0.061

Empioyment 1976 | 123.052 | 122.400 +0.652 | +0.005
Mean Absolute Error 3.333 -_

Mean Absolute Percent Error - 0.028

1973 | 365.967 | 365.900 +0.067 +0.000
1974 | 360.559 | 366.700 -6.141 —-0.017

Total 1975 | 360.763 | 349.200 | +11.563 +0.033

Employment 1976 | 373.061 | 366.300 +6.761 +0.018
Mean Absolute Error 6.133 -

Mean Absolute Percent Error - 0.017

4. CONCLUSIONS
Based upon the preceding study, it is concluded that

® An ad hoc economic impact study should be conducted for the state or region involved
whenever there is a defense bas- sing. The data, variables and models should be directly
related to the peculiar economr ad demographic conditions of the state or region. The
current practice by the Defense L partment of using an employment multiplier of 2.585 for the
civilian workers and an employment muitiplier of 0.662 for the military personnel, which were
estimated from a cross-section of data of 15 defense base closings, should be avoided (see
Lynch (4]). In our 1973 case, there is no doubt now about the very unrealistic forecasts made
from these employment multipliers.

® [f resources are in short supply, a simple reduced form equation which gives the
impact multiplier only may be worked out. otherwise, a simultaneous equations system should
be estimated. The latter presents not only the impact multiplier but also the lagged multipliers
lagged as many years as desired.

® [t is often criticized that the above study contains a large measure of multicollinearity
which renders the research useless. As it is argued by Kmenta [3], multicollinearity is "a ques-
tion of degree and not of kind." In most of the real world data, it seems that there is always
some degree of multicollinearity present in the sample. As long as our experiments cannot be
controlled, mutticollinearity seems to be unavoidable in any social or economic environment.
Further, since our purpose is focused on forecasting rather than explanation, it seems that as
long as the forecast is accurate, multicollinearity is of secondary importance.
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o Further research may be carried out by disaggregating the manufacturing and service
i employment into various two-digit SIC groups or some particular industries in the state, which
are closely related to the defense base closings, if desired.

¢ If time, financial resources, and data at the state level are available, a more sophisti-
cated model of various employments may, based upon the neoclassical theory of the firm, be
specified by introducing, say, the constant-elasticity-of-substitution (CES) production function
with efficiency, distribution, substitution, and return-of-scale parameters included, if appropri-
ate. Then, another question arises: in view of the high forecasting performance of this simple
model, is the benefit gained by economic sophistication worth the cost; or, in other words, will
the economically sophisticated model perform better?
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