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Bayesian Estimation in the One-Parameter
Latent Trait Model1'2

INTRODUCTION

In recent years there has been considerable interest among measurement

theorists and practitioners in latent trait theory since it offers the

potential for improving educational and psychological measurement practices.

However, before latent trait theory can be successfully applied to solve

existing measurement problems, the problem of estimating parameters in

latent trait models has to be addressed.

The literature in latent trait theory abounds with procedures for the

estimation of parameters. The estimation procedures that have been devel-

oped over the past thirty years range from heuristic procedures such as

those given by Urry (1974) and Jensema (1976) to conditional as well as

unconditional maximum likelihood procedures (Andersen, 1970, 1972, 1973a,

1973b; Bock, 1972; Lord, 1968, 1974; Samejima, 1969, 1972; Wright &

Panchapakesan, 1969; Wright & Douglas, 1977). With the exception of the

"conditional" maximum likelihood procedure provided by Andersen (1970)

for the one-parameter model, the maximum likelihood estimators of the

parameters in the latent trait models are less than optional as a result

1The research reported here was performed pursuant to Grant No.
N0014-79-C-0039 with the Office of Naval Research and to Grant No.
FQ 7624-79-0014 with the Air Force Human Resources Laboratory. The
opinions expressed here, however, do not reflect the positions or poli-
cies of these agencies.

2The author is grateful to the encouragement and support provided

by Dr. Malcolm Res of the Air Force Human Resources Laboratory, and to
Dr. Charles Davis of the Office of Naval Research.
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of the problem of estimating "structural parameters" in the presence of

"incidental parameters" (Andersen, 1970; Zellner, 1971, pp. 114-154).

The "structural parameters" in latent trait models are the item parameters

while the "incidental parameters" are the ability parameters since these

increase without bound as the number of examinees is increased to pro-

vide stable estimates of the parameters. Furthermore, as Novick, Lewis,

and Jackson (1973) have remarked, "in the estimation of many parameters

some, by chance, can be expected to be substantially overestimated and the

others substantially underestimated."

When several parameters have to be estimated simultaneously, and

when, as in the present case, both structural and incidental parameters

have to be estimated, a Bayesian solution to the estimation problem may

be appropriate (Zellner, 1971, pp. 114-119). This is particularly true

if prior information orbelief about the parameters is available, since

in this case, the incorporation of this information will certainly increase

the "accuracy" or the meaningfulness of the estimates. An example of

this was encountered by Lord (1968), where in order to prevent estimates of

the item discrimination parameter from drifting out of bounds, it was

necessary to impose limits on the range of values the parameter could

take. Although the estimation procedure employed by Lord (1968) was not

Bayesian, this illustrates the role of prior information in obtaining

meaningful estimates. A further argument that can be advanced in

favor of a Bayesian approach is that the logic of the Bayesian infer-

ential procedure is more appealing than the classical, sampling theoretic,

inferential procedure. As Zellner (1971, p. 362) has pointed out,

"...there is no need to justify inference procedures in terms of their
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behavior in repeated, as yet nobez'ved,1 samples as is usually done in the

sampling theory approach." Consequently, it is possible to make proba-

bilistic statements about the parameters themselves, based on the infor-

mation that is available.

Bayesian Procedures

It may be instructive to review briefly the Bayesian estimation

procedure. Let p(y, 8) denote the joint probability density function (pdf)

for a random observation vector y and a parameter vector 0, also random.

Then,

p(Y-, e) - p(Yjl) p( 8)

p (..Y-) p (Y)
where

p(eIY) - p(_) p(ZI)/p(y)
or,

[(1] P(_) P(D) p(Y-1o

since p(y) # 0 is a constant. Equation [1] is the essence of Bayes'

Theorem and is of primary importance in the estimation of parameters

and for drawing inferences concerning the parameters. The probability

density function p(61y) is the posterior pdf for the parameter vector e,

given the sample information or data, and p(S) is the prior pdf for the
vector e. The quantity p(iI.) is a proper pdf as long as is a random

variable. However, the moment the vector y is realized, p(yje) ceases

IThe italics have been provided by the authors.
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to have the interpretation as a pdf. In this case, p(lj_) is strictly a

mathematical function of 6, well known as the likeZihood function.

Since the notation p(y]8) can be mistaken for a pdf, the likelihood

function is often written as L(QJ 8), and sometimes, to emphasize the

fact that it is a function of 6, as L(81I). Thus, the expression given

in [1] can be written as

[2] p(.1I) -L(B1) pC()

It is interesting to note that if p(e) is assumed to be a constant,

i.e., the prior belief about 8 is summarized via a uniform distribution,

the posterior pdf of 8 is proportional to the likelihood function. In a

sense, this interpretation constitutes a Bayesian justification of

maximum likelihood principle.

Once the prior belief about the parameter e is specified, the joint

posterior pdf of the vector 8 given the data can be readily obtained. The

posterior pdf of 8 contains all the information necessary for drawing

inferences concerning 8 (Jointly or individually) and for obtaining esti-

mtes of 6 once a "loss function" is prescribed. For instance, if a squared-

error loss function is deemed appropriate, then the mean of the posterior

pdf of 6 can be taken as the estimator of e. On the other hand, if a

zero-one loss function is appropriate, then, the mode of the posterior

pdf of 8 is the estimator of 8. Similarly, for the absolute deviation

loss function, the median of the posterior pdf of 6 is the appropriate

estimator.

The Bayesian procedure described above has been successfully applied

in a variety of situations. For a sampling of these applications the

reader is referred to Novick and Jackson (1974), and Zellner (1971).
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However, Bayesian methods have found only a limited application in the

area of latent trait theory. Birnbaum (1969) obtained Bayes estimates of

the ability parameter in the one- and two-parameter logistic models under

the assumption that the item parameters were known. He chose, for mathe-

matical tractability, the prior pdf of 0i, the ability of the ith

examinee, to be the logistic density function, i.e.

p(Oi) - exp (-DOi)/[l+exp(-DOi)]
2

where D=1.7 is a scaling factor. Owen (1975), in applying the latent

trait model in an adaptive testing context, obtained Bayes estimates of

ability, 01, under the assumption that the prior pdf of ei was normal

with mean, zero, and variance, unity.

The Bayesian procedure suggested by Birnbaum (1969) and Owen (1975)

require rather exact specification of prior belief.1 An alternative and

a more powerful procedure has been suggested by Lindley (1971). He has

shown that if tte information that is available can be considered exchange-

able, then a hierarchical Bayesian model can be effectively employed for

the estimation of parameters.

In order to illustrate the hierarchical model, let us consider

the problem of estimating, say, the ability 61 of an individual (i-1, ... , N).

If it can be assumed, apriori, that exchangeability holds, i.e., the

information about ei is no different from the information about any other

ej, observed or yet to be observed, then, ei can be assumed to be a random

sample from some distribution, p(e). For convenience, if p(e) is taken

IMeredith and Kearnes (1973) and Sanathanan and Blumenthal (1978)

have obtained empirical Bayes estimators of the ability parameters for
the one-parameter model. In these procedures the prior pdf is estimated

k from the data.

I L W l ,. . . . a . e"-,. .... .
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to be normal with mean U and variance a2, then this would constitute

specification of the first stage of the hierarchical model. Since v

and Y2 are unknown, specifying prior beliefs on these "hyperparameters"

would constitute the second stage of the hierarchical model. Usually,

the hyperparameter distributions are specified in such a way that they

depend upon constants which can be determined from the prior belief the

investigator has about the parameters, and hence the hierarchical model

terminates at the second stage. With this two stage model, it is possible

to estimate 0i (i=l, ..., N) without any reference to the nuisance param-

eters, p and a2 .

Novick (1971) has described this hierarchical model as an analog of

the empirical Bayes procedure advocated by Robbins (1955) and the simul-

taneous estimation procedure provided by Stein (1962). Furthermore, as

Novick, Lewis, and Jackson (1973) have pointed out, this procedure not

only employs the direct information gained through the observation of

an individual, but also the collateral information contained in observations

from other individuals. They further note that, "In effect, this collateral

information is used to provide 'prior' information for the estimation....

Thus to some extent, the problem of selecting prior distributions for

Bayesian analyses is neutralized, and this is effected from a strictly

Bayesian approach."

The hierarchical Bayesian model has been successfully employed by

Lindley and Smith (1972), Novick et al. (1973), and Zellner (1971), to

name a few. However, this approach has not been employed for estimating

parameters in latent trait models. The purpose of this paper, hence, is

to provide a Bayesian estimation procedure, in the sense of Lindley, for

estimating parameters in the one-parameter latent trait model.



-7-

Bayesian Estimation in the One-Parameter Logistic Model

The Model

Let Xij denote a random variable that represents the binary response

of an examinee i (i-1, ..., N) on item J (J-l, ..., n). If the examinee

responds correctly to the itemXij-l, while for an incorrect response,

Xij=O. We assume that the complete latent space is unidimensional, and

that the probability, P[Xij-l], that an individual with ability parameter

ei will correctly respond to an item with difficulty parameter, bj, is

given by the logistic model,

[3] P[Xijlli] ff= exp(6i-bj)/{l+exp(Oi-bj)}.

On the other hand, the probability that the individual will respond

incorrectly is given by

- [4] P[Xij=Oit] = i - P[Xij-llei

= i/{l+exp(Bi-bi)}

The probabilities given in Equations [3] and [4] can be combined to yield

[5] P[XiJ - xijj L] - exp{xij(ei-bj)}/{l+exp(Gi-bj)}

where xii-1 for a correct response and xij=0 for an incorrect response.

The above model, since it depends only on one item parameter,

difficulty, is commonly known as the Rasch model or the one-parameter

logistic model. For a detailed description of this model and its prop-

erties, the reader is referred to Wright (1977).
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Conditional Estimation of Ability

In some situations it may be of interest to estimate the ability Oi

of an examinee who takes a test which has been calibrated, i.e., the

difficulty parameters are known. Moreover, since the problem of esti-

mating ability when the item parameters are known is simpler to deal

with and provides an illustration of the basic ideas involved, this case

will be dealt with in detail first.

The model given by Equation [5], should in the strict sense be

expressed as

[6] P[Xij = xijlei,bjl = exp{xij(ei-bj)}/{1+exp(ei-bj)}

Although there are several ways to write the model, the expression given

by [6] is the most convenient for the present situation.

It follows, from the principle of local independence, that the

joint probability of responses of the N examinees on n items is given by

[7] P[XlfXl1,Xl2=x12,... ,Xij=xij,... ,XNn=xNnl8,e 2 , .... 9N;bl,b 2 ... ,bn]

N n
=fil 11 exp{xij(6i-bj)}/{l+exp(ei-bj)}

i=l jil

Once the responses of the N examinees on the n itemsare observed, the

above expression ceases to have the probability interpretation and becomes

the likelihood function, L(X - xle, _). Upon simplification,

[8] L(X=x,b__) = exp{J I xij(6i-bj)}/[ E{(l+e ' 1 -hI)}
i j

W exp{i riei - I qjbj}/H n{(l+exp(ei-bj)}
i j

where ri = I x i j and qj = xii. Since the item parameters are

. ..
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known constants, the likelihood function is strictly a function of 6

and, hence, can be expressed as

[9] L(xl, b) - exp{j ri~i}/ f{l+exp(Oi-bj))

i

Returning to Equation [1], we see that in order to obtain the

posterior density function of 8 given the observations and the item

parameters, it is necessary to specify the prior distribution of 6. To

this end, in the first stage of the hierarchical model, we assume that,

apriori, the ability parameters, 61, are independently and identically

normally distributed, i.e.,

S[101 eiju,o n p,.

The assumption that the thetas are independently and identically distri-

buted follows from the assumption of exchangeable prior information about

the thetas. The assumption of normality also appears to be reasonable

and has been made by numerous authors, e.g., Lord and Novick (1968).

In order to complete the hierarchical Bayesian model, we have to

specify prior distributions for p and 0. This is the second stage. At

this level, we assume that, apriori, p and * are independently distributed,

and that p has the uniform distribution. Thus,

[1h p6(,) - p(O).

The uniform distribution is not a proper distribution, although this

choice can be justified to some extent (Zellner, 1971, pp. 41-43). It

may, however, be more appropriate to specify a "non-diffuse" prior and

this possibility will be explored further in a later paper.



-10-

It now remains to specify the form of p(f). Since * is the
variance of 01, f can be assumed to have the inverse chi-square, X-2

distribution, i.e.,

[121 p(#IV, S2) 2 exp(-VS2/2f).

The quantities v and s2 are parameters of the inverse chi-square dis-

tribution, and have to be specified apriori. The inverse chi-square

distribution can be expressed in different ways. Novick and Jackson

(1974) prefer the form

p(4 V, X) f 2 exp(-X/20).

For this form, the mean of the distribution is X/(v-2) and the mode is

A/(v+2). For the form given by Equation [12] the mean is s2v/(v-2) and

the mode is s2v/(v+2), with both mean and mode approaching s2 as v

increases. These two forms are clearly equivalent, but the form given

by Equation [12] is employed in the sequel because it provides a direct

interpretation of the parameter v and s2 . The quantity s2 thus represents

the investigator's belief about the "typical" value of the parameter

while v represents his/her degree of confidence.

The joint posterior distribution of 0' - [ 1 , e2, ..., ON] given

b and the item responses is given by

[13] p(61bL, _) - L(xj, b_) p(Ojjj,¢)p(u, ).

The likelihood function L(xj2,b) is given by Equation [9], p(p,*) by

Equation [12], and
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N 1
[14] p(el,*) - in1 - exp{- (ei-U)2/01

N
exp{- (ei-v) 2/20}

i-i

Combining these expressions, we have,

[15] S(bx,o,v, s2) c [exp{. ri}/IT II {1+exp(ei-bj)1]
i it

[ 'Z exp {- e C( i- 20}][O exp(-vs2/20)]

i

The above expression depends upon the "nuisance" parameters p and 0 and

hence these have to be integrated out. Since .(ei-p)2 = I(ete.)2 + N(e.-U)2,

and

_CD exp -{N(G.-)2/20}d 0 if

integration with respect to v yields

[16] p(_ebx,0,vs 2) L(xJ_,b_) *-(N+V+l)/2 exp[-{vs2+.(6i_.) 2}/20]

Noting that

f m exp(-k/O)do k

and integrating with respect to *, we obtain

[17] p(_b,x,v,s2) - L(x0,_b) (vs2 + (6-e.)2}-(N+v-l)/2

ii

(18] = [exp{ reil l{l+exp(ei-bj)}]
i i

.{*v2 + I (e )2 -(N+--e)/2

i i
-f~s -
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The Joint posterior modes are obtained by differentiating log

p(elk,xE) with respect to e, setting these derivatives equal to zero,

and solving the resulting equations:

[19] P pj -= ei y (i=l, .. ,N)

where

ij exp(Oi-bj)/{l+exp(ei-bj)}

and
N

a2  [ vs8+ (6i6.)2 }/(V+N-l)

Since this system of equations is non-linear, numerical procedures have

to be employed. The Newton-Raphson iterative procedure is ideally suited

for this situation. Let

n
[20] W) P + (0 _e )/ar2 

-ri

Then

n
[21] f'(e6 P (1-P )+ {02(1_ 1) -2(0 -e)/(v+N-l)}/(aY2)2.

i j=l ij i

if 8'6 is the value of e at the kth iteration, then 6(kl is given by
i i i

[22] e (k+l)= e (k) _ f( 8 (k) )/fI( 6 (k))

i i i i

with e(o) the starting value being given by (Wright & Douglas, 1977),

[23] 6(o) -b + {l+s2/2.89 }log (ri/n-ri)
ib

where

-~ ~ b/n an s - Cjb) 2/(n-1)

bil n n ab IbJb
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Although the iterative scheme given in [22] is for estimating the

ability e for each individual, in reality, only the ability correspond-

ing to each raw score r (r-1, ... , n-l) need be estimated. The ability

corresponding to raw score r=O and r-n cannot be estimated by virtue of

[23]. Hence, individuals who obtain perfect score or zero score are

eliminated from the analysis. It should also be pointed out the Newton-

Raphson scheme given above is not the vector version of the procedure

since for this procedure the matrix of derivatives {af/9 1aO3} has to

be computed and inverted. The procedure described here worked sufficiently

well, converging in as few as three to four iterations.

Joint Estimation of Item and Ability Parameters

The case considered above, where the item parameters were assumed

to be known, provides the necessary background for the Bayesian estima-

tion procedure. However, this situation may not be realistic and,

hence, it is necessary to develop a procedure for the joint estimation

of the item and ability parameters.

We proceed in the manner indicated for the case of known item

parameters. Hence, in addision to making the assumptions about the

ability parameters, we have to make assumptions regarding the item param-

eters. Again, as in the previous case, we specify prior beliefs about

the parameters in two stages. In the first stage, for the model given

in [5], we assume:

[24a] eili e *o ' N(1Iee), (il, ... , N)

[24b] b j1"bO b NO (b, ob). (J-1,., n)
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In addition, we assume that, apriori, ei and b are independent, ek and

61 (k#1) are independent, and bk and bt are independent.

As for the ability parameters, the specification of prior belief

about b seems reasonable, especially if an item bank is available. This

assumption has been made by several authors (Lord & Novick, 1968; Wright

& Douglas, 1977). Furthermore, as a result of the hierarchical Bayesian

model, departures from this assumption appear to have a negligible

effect on the estimates of b .

For the second stage, we assume that

[25a] p(pS,¢oe)  p()

-(ve/ 2+1)
c exp(-s 2 v /20 )

and

[25b] P(vb,Ob) POO

-(\%/2+1)

exp(-SVb/20b)"

We have thus assumed that, apriori, the hyperparameters are independent,

and that the prior information about the parameters, 11, and 1b' is

"vague".

The joint posterior pdf of 6, and b, is given by

[26] p(e,bx,g, €,Ab,$b,Ve,s 2 , s2)

N n
L(O,bjx){ H p(61) H p(b )}P(O0) p(¢b)

i-l j=l

w1' re L(6,blx) is the likelihood function given by [8]. Now

2 -(N+v e+2)2 1 2/20 )2/20
[271 R T P(e t)} p(00) =€exp(-VeS,/2 e) exp{-(e t-Ve)22e)



...

-15-

Upon integrating with respect to and u., we have, from [17]

C N
(28] f f { H p(i)1 p(eo)dle doe-" 0 j=1

N
c [V S2 + (e e.)-(N+v-l)/2.

Similarly,

n

[29] fO f0 {j- p(bj)} p(Ob)db deb
n

[vbS 2+ I (b - b.)2]-(n+vb-l)/2

J-

Combining [26], [28] and [29], we obtain the joint posterior density of

e and b:

[301 p(8,blx,vgSV , Vb,S2)

N N
[{exp( I rg6i)){vgS + I (e -8)2)-(N+ve-l)/2]

i-l ii .

n n
(exp(- I q b )}{fv bS2 + E (bj-b.) -(nv-I l,,

N n
II I {i + exP(ei-b)}]M
i-l j=1

The quantity given as L(8,bx),

exp(Iri~i) exp(lqjbj)/ f{1+exp(ei-bj)} = H n exp(Oi-bj)/{l+exp(6i-bj)} ,

and, hence, is bounded. In fact,

ThefL(_e,bJ) i 1 th.

i Therefore, it follows that

1I
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N -(+ve-1)/ 2f I Ip( _, ) ...) I dedb < f [V s82 + N (e .e )2 ] de_

ii-
2 n -(n+vb-)/2

"f[ s a + I (b -b)21 db
1" I

The integralson the right of the inequality clearly exist since the kernels

are those of multivariate t densities. Hence, the posterior pdf,

p(,b , 6e 2vb,Sb), is a proper pdf although the normalizing constant

cannot be evaluated explicitly.

The joint posterior modes may be taken as estimatesof e i and b

(i-1, ..., N; J-l, ..., n). These are obtained by setting equal to zero

the derivatives of log p(8,b ...), and solving the resulting equations:

n
[31] Pij ri - (i-e.)/C (i-1 ..., N),

j=1

N
[321 P qj + (b -b.)/a2 (J-1, ... , n),

i=l b

where

Pij = exp(ei-bj)/{l + exp(ei-bj)}

ri M [ xij

Iq M x i i

02 M {V s2 + [ (e-0)21/(ve+N-1)

and

_ {Vb82 + (b-b.))2/(Vb+n-1)

Since the systems of equations is non-linear, the Newton-Raphson procedure

is employed to solve the equations iteratively. In order to accomplish

this, we let

ni 11 i[33] f~ t  J- Pt (et-e.)/o - r
j-
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and
N[34] h(b) - ij (b qj

i-i

Then
n

[35] f'(ei) = ij(-Pij) + { - 2(e-e)/(v+N-1/(a ) 2
jz

and

[36) h'(bj) - - [ Pj(1-Pij) - {a(1 - - 2(bb )/(vb+n-l)}/(cb)2
i-i

As before, if e(k) and b(k) denote the values of 8 and bj at the kth

iteration, then

[37] 0
( k+l ) - 6(k) f(e(k))/ft(e(k))

and

(k+)= (k) - (k) (k)

(o) (0)
Starting with initial values 6i  (i1, ... , N), and bj (J-1, ... ,

(0)
where ei  is given by (23], and

b (0) log [(N-q i )/q i ]

6 is estimated. These values of e are then used to obtain revised estimates

of b. This process is repeated with the revised estimates of b being used

to obtain revised estimates of e. The process is terminated when the

convergence criterion is reached. This procedure is not the full Newton-

Raphson procedure and, in this case, is preferred to the full Newton-

Raphson procedure since the latter requires obtaining an inverse of the
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matrix of second derivatives at each stage of the iteration. In practice,

the procedure outlined here converges rather rapidly.

As pointed out earlier, although the equations provided are for

estimating eB(i=1, ..., N), only er(r-l, ..., n-l) need be estimated.

In order to carry this out, the quantities given in Equations [34] and

[35] have to be computed as follows:

N n-l
PiJ I Nr PJ (e)

i r=l r

N n-l
PIJUl-Pij) Nr P j(er )11-P (er))
i~l r=l

where N denotes the number of examinees who obtained raw score r and

Pj( 0 r) exp(er-bj)/ {1 + exp(Or-bj)}

Large Sample Properties of the Posterior Distribution
s2 s 2

The posterior pdf, p(e,bveVb,sesbx), given by Equation [30] is

a product of the likelihood function and a multivariate "double-t"

distribution. The "double-t" distribution is a product of two multi-

variate t densities (Tiao & Zellner, 1964; Zellner, 1971, p. 101). As

a result of its complex form, properties of the posterior pdf cannot be

obtained. However, it is possible to obtain the asymptotic properties

of the posterior pdf, and this will suffice, in most cases, for inferences

to be drawn regarding the parameters.

Let t be a vector of parameters, and y a vector of observations.

Then, the posterior pdf of t, p(dy), is
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p(tl) -p t) L (yI

where p(t) is the prior distribution of t and L(yjIt), the likelihood

function. Then, for large samples,

[39] p(t) - L(yjt_)

and, in turn, L(yI.t) is approximately multivariate normal centered at

t, the maximum likelihood estimate, with dispersion matrix

[40] E _ [-a2 log L(yjt)/atiatj]-
1-

Thus, for large samples,

For a detailed discussion of this result we refer the reader to Jeffreys

(1961, p. 193) and Zellner (1971, p. 32).

This result clearly applies in the present situation when both n

and N, the number of items and the number of examinees, are large.

Denoting the [(n+N)xl] vector [e,b] as

' [ , b']

[411 Llx N N(t, E)

In order to evaluate E, we write

G8  Ge
[42] r

Gbe Gb

where



-20-

[431 Ge -3- 2109 L(xL~)3~O~

-t P (1-P )1 6i

where 6mis the Kronecker delta,

[44] Gb {-a 2log L(xiq,b)/3b abrn1,

N
I Pi 2 (l-Pim) 62mv

and

[451 G eb = {-32log L(x[-Q,.)/ aeiabj I

p Pi(1-Pij

ij ij

estimate of 01. and variance, a2 , given by the ith diagonal element of
ei

[46] a2  = [Ge -GGe e Geb GO GbeP

Similarly, the marginal distribution of bj has me an ithe maximum like-

2
lihood estimate of b, and variance, Obj' given the jth diagnonal element

of E, i.e.,

[4] 1 [Gb - Gbe G;1 G 1



-21-

This approximation to the posterior pdf of e and b can be improved

upon if we take into account the "double-t" distribution (see Equation

[30]). For a sufficiently large sample, the multivariate t density ap-

proaches the normal density. Thus, in the expression

N (ve+N-1)/2
[Ves2 + I (e -e.)

i=l

if we write veuNke where 0<k 8 <l, for large N, we obtain

2 N ee)2]N(k +l)/
2+ (k8+l) N(0 2k T I (ei-e.)21

exp{- _ A11 --

where

(ke+l) 1 i
A11  = keS2  [N] N

with IN being the identity matrix and l' = [i 1 ... 11 Similarly,

for large n,

2 n -(vb+n-l)/2 2 n -n(kb+l)/2+4k
[491 Ivbsb + I (bj-b.)2] = [nkbsb + I (b-b. )2]

e{-(kb+1) nexpf- -b I(b -b.) 21
2kbsb jul

= exp(- b A22 b}

where
(kb+l) 1

A2 2  2 (1'n n 1

Thus,

&
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[50] [vs 8 2 2 (v b+n-l)I2 2 N - 2-(BNI/

b y (b -b. )2 vese + (e i )2

exp f --1(9A 1 t+ b' A2 2

[51] exp f-t A ti

where

0 ' b'

and

A 
= A l l 0

0 A2 2

Combining [411 and [51], we have

[52] P_-h~~v~ s , 22b

[53] 2x {(t-.t)' E(t-t) + t' A t)

[54] -exp{- -1 (t -)'T (t - T)

where

[55] T E -

and

[561 T - (E+A)- (Et)*

*This result follows from the fact that

(x-A)'A(x-a) + (xi-bTE(x-b) -(xi-t)'T(x-t) + constant,

where

T -A+B,

and
t- (A+B)1' {Aa +Bb)
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If the off diagonal matrix Gab in [42] can be ignored, then

2 1 2[57] 06 Pij(l-Pij)]- + (N-l)(k+l)/Nkeso
J-1

and

N
[58] a bj [ P(I-Pij ) ] - + (n-i)(kb+l)/nkbsb

The expression [57] is useful when the item parameters are considered

known. Similarly, [58] is applicable when the ability parameters are

known. In general, however, when the item and ability parameters are

estimated simultaneously, the off diagonal matrix, Gab, cannot be

ignored, and hence, in this case, the complete expression given by either

[46] or [55] should be employed. With these results it is possible to

construct "credibility intervals" (Novick & Jackson, 1974) for the

parameters of interest.

COMPARISON STUDIES

In order to study the efficacy of the Bayesian procedure described

above and to compare the Bayesian estimates with the maximum likelihood

estimates, a simulation study was carried out. Although simulation studies

may not be realistic in some situations, they can be justified in the

present context since only through a simulation study can one estimation

procedure be compared with another.

Artificial data, representing the responses of N individuals on n

items, were generated using DATGEN (Hambleton & Rovinelli, 1973) accord-

ing to the one-parameter logistic model. In generating the values of

- -
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0i and bj (i-l, ... , N; J-1, ... , n), it was assumed that ei and bj were

independently and identically normally distributed with mean, zero, and

variance, unity (we shall return to a discussion of this issue later).

The design of the comparison study was conceptualized in terms of the

following, completely crossed, factors: estimation procedure (Bayesian,

maximum likelihood); number of examinees, N (20, 50); number of items,

n (15, 25, 40, 50). This design was carried out for (i) conditional

estimation of e, and, (ii) joint estimation of 6 and b.

The size of the examinee population, N, and the test length, n,

were chosen to facilitate comparison of the maximum likelihood and the

Bayesian estimates for small sample sizes and short tests, since the large

sample behavior of the maximum likelihood estimates has been studied by

Swaminathan and Gifford (1979). These authors have found that maximum

likelihood estimates of ei and bj approach the true values for N as large

as 200 and n as large as 100. Since for these values of N and n, Bayesian

estimates can be expected to be the same as maximum likelihood estimates,

the study was focused on small values of N and n.

The Bayesian estimates and the maximum likelihood estimates were

compared with respect to accuracy. The two sets of estimates were com-

pared with respect to: (a) the mean value of the estimates, as compared

with the mean value of the true values; (b) the mean squared error

difference between the true values and the estimated values; and, (c) the

regression of the true value on the estimated value.

It may be argued that since the joint modes of the posterior distri-

bution were taken as estimates of the parameters, the criterion employed

to determine the accuracy of the estimates is incompatible with the loss

1- + . . ....+ " -+. .. + z ; . .+ .... X-, .. -.. .. ... ..... .. . .... , '
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function employed to arrive at the estimates. This is a valid argument.

However, we are primarily interested in comparing the Bayesian estimates

with the maximum likelihood estimates. Since, in one sense, the maximum

likelihood estimates can be thought of as the modes of the posterior

distribution derived under the assumption that the prior information is

vague, comparison of two modal estimates using a different criterion

other than that involved in deriving the estimates may be justifiable;

particularly since this will not provide an "unfair" advantage to one

set of estimates.

Comparison of the two estimation procedures in terms of the regres-

sion of true values on the estimates needs some explanation. If T is

the true value of the parameter and E, the estimate, then E(TIE-e) 0 8+Ole.

If OoOand 6 1-1, then, it can be concluded that the estimates are unbiased,

and hence, the departure from the expected values of 00and B1 can be

taken as an indicator of bias. It should be pointed out here that the

classical notion of bias is not critical in Bayesian analyses. Neverthe-

less, comparison of the regression lines will provide a further assessment

of the accuracy of the two procedures.

The comparison of the maximum likelihood (ML) procedure and the

Bayesian procedure for the conditional estimation of ability 8 is provided

in Table 1. The first column contains the means of the true values of 6,

the ML estimates, and the Bayesian estimates. The second column provides

an assessment of accuracy in terms of the mean squared deviation between

the estimate 6 and the true value, O%. The correlations between 8t and

Sfor each estimation procedure is displayed in column four, while the

:regression of 6 t on 6is given in column five.
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An examination of the correlations between the true values and esti-

mates reveals that, in general, the difference between ML and Bayes

estimates, is negligible for relatively large values of N and n. However,

for small values of N and/or n, the Bayes estimates correlate better

with true values than the ML estimates.

The correlation coefficient, by itself, is not a sufficient

indicator of the accuracy of estimation. Clear differences between the

Bayesian and ML procedures emerge when we examine the other criteria.

In general, the means of the Bayesian estimates, in comparison with

the ML estimates, are closer to the means of the true values. This result

can be anticipated if we examine the estimating equations [19]. The

estimating equations for ML estimates are:

n
JX Pij = ri (i-1, ... , N).
j-l

The additional term in the Bayesian estimating equations, (6i-e )/o2

contributes to the regression of the estimates towards the mean, and

hence, the Bayesian estimates are closer to the means of the true values.

The only exception occurs with N-20 and n-l, 25. At this point, there

is no explanation for this anomolous result. Further replications are

clearly necessary to establish this point conclusively.

The most dramatic difference between the Bayesian estimates and the

ML estimates is with respect to the mean squared deviations of the esti-

mates from the true values. In general, the mean squared deviations are

much smaller for the Bayesian estimates than for the ML estimates. The

difference is particularly noticable with small N and n. In these cases,

the mean squared deviations for the ML estimates is almost four times as

iL
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large as that for the Bayesian estimates. This finding can again be

explained by the fact prior information is most helpful in these cases.

This, together with the regression effect described previously, results

in an increase in the accuracy of the estimation procedure.

An examination of the regressions of true values on estimated

vlues also provides some interesting results. In general, the intercepts

and the slopes of the Bayesian regressions are closer to zero and one

respectively, than the ML regressions. The trend for the intercepts is

reversed for large n. In these cases, the intercepts for the ML regressions

are closer to zero than the intercepts for the Bayesian regressions. This

latter result is interpretable, since the maximum likelihood estimates of

6, for large N and n, approach the true values. However, the trend for

small n and N is rather surprising since, as a result of regression towards

the mean, the Bayesian estimates can be expected to be "biased." The only

explanation for this finding is that the ML procedure is severely biased

for small n and N, even more so than the Bayesian procedure.

The above findings, for conditional estimation of 8, appear to be

valid for the joint estimation of 6 and b (Tables 2 and 3). In fact, the

results for the joint estimation of e and b favor the Bayesian estimates

on all counts for both 0 and b: the means of the estimates are closer

to the means of the true values; the mean squared deviations are much

smaller (in some cases, one-tenth the size of those for ML estimates);

the slopes and intercepts are closer to one and zero respectively (the

only exception occurs for large N and n, in which case, the intercepts

of the ML regression are closer to zero).
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DISCUSSION

The Bayesian procedure for estimating parameters in the one-parameter

latent trait model is an attractive alternative to the maximum likelihood

procedure. Bayesian procedures are conceptually more appealing since

direct interpretations of probability statements involving the parameters

are possible. Empirically, as the results of the comparison study indi-

cate, the Bayesian estimates of the parameters are superior to the maximum

likelihood estimates in terms of their accuracy.

Although the empirical results demonstrate the effectiveness of the

Bayesian procedure, it may be argued, and correctly, that the simulation of

the data favored the Bayesian procedure. The data were generated to meet

the strong distributional assumptions required by the Bayesian procedure.

In addition, in specifying prior belief about the distribution 00 and 0b*

s2 and s2 were set equal to one with the corresponding v6 and Vb being

specified as 15. In the simulation *e and *b were set at one, and the

specification of s2, s2 and the relatively large values for ye and vb

reproduced the true state of affairs. It is not surprising, therefore,

that the Bayesian procedure proved to be superior to the maximum likeli-

hood procedure.

In fairness to the study, it should be pointed out that the simula-

tion and the accurate specification of prior belief were deliberate in

order to determine the applicability of the Bayesian procedure, at least, under

ideal conditions. Preliminary investigations with non-normal data and

also with poor specification of priors indicate that the Bayesian proce-

dure, being based on a hierarchical model, is relatively robust and is

superior to the maximum likelihood procedure. A detailed study of the

effects of poor specification of priors and departures from underlying

- Mfib&MM"
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assumptions is currently under way and we expect to report these results

in the near future.

Despite the encouraging results obtained, a theoretical problem

still remains with the estimation procedure. The procedure described in

this paper requires the joint estimation of n structural parameters and

N incidental parameters. If N- while n remains fixed, the joint posterior

pdf may not become concentrated about the estimated values. This trend

is evident from Tables 2 and 3; with increasing N, the intercept and

slope do not tend to zero and one respectively. This problem is similar

to the one that exists with maximum likelihood estimates. Although

from a Bayesian point of view asymptotic properties, such as consistency,

are not critical, the lack of them, at least to some degree, is discom-

forting. It appears that this situation can be remedied, if when esti-

mating the n structural, or item, parameters, the ability parameters

are considered nuisance parameters and can be integrated out to yield the

marginal posterior pdf of b. The marginal posterior pdf is currently

not available as a result of the exceedingly complex form of the joint

posterior pdf. 4pproximations, such as the one indicated (Equation [151)

may be employed to simplify the joint posterior pdf. Initial investiga-

tions reveal that this approximation is reasonably good, but further

research in this area is clearly needed.

In summary, we note that the Bayesian procedure developed in this

paper is relatively simple to implement, and computationally as efficient

as the maximum likelihood procedure. Despite the issues raised above,

the Bayesian procedure has the potential for greatly improving the accuracy

of the estimates. Moreover, the maximum improvement in accuracy occurs
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for small values of N and n, a result that can be expected, and this

makes the Bayesian procedure more attractive than the maximum likelihood

procedure.
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Sacramento State College
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University of LeyJen Bolt Beranek & Newnan
Foerhaaveloan 2 50 Moulton Street
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