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‘ Bayesian Estimation in the One-Parameter
. Latent Trait Modell:?2

INTRODUCTION

In recent years there has been considerable interest among measurement
theorists and practitioners in latent trait theory since it offers the
potential for improving educational and psychological measurement practices.
However, before latent trait theory can be successfully applied to solve
existing measurement problems, the problem of estimating parameters in
latent trait models has to be addressed.

The literature in latent trait theory abounds with procedures for the
estimation of parameters. The estimation procedures that have been devgl—
oped over the past thirty years range from heuristic procedures such as
those given by Urry (1974) and Jensema (1976) to conditional as well as
unconditional maximum likelihood procedures (Andersen, 1970, 1972, 1973a,
1973b; Bock, 1972; Lord, 1968, 1974; Samejima, 1969, 1972; Wright &

3 Panchapakesan, 1969; Wright & Douglas, 1977). With the exception of the
“conditional" maximum likelihood procedure provided by Andersen (1970) 1

for the one-parameter model, the maximum likelihood estimators of the

parameters in the latent trait models are less than optional as a result

1The research reported here was performed pursuant to Grant No.
iy N0014~-79-C-0039 with the Office of Naval Research and to Gramt No.
. FQ 7624~79-0014 with the Air Force Human Resources Laboratory. The
; opinions expressed here, however, do not reflect the positions or poli-
5, ’ cies of these agencies.

2The author is grateful to the encouragement and support provided
by Dr. Malcolm Ree of the Air Force Human Resources Laboratory, and to
Dr. Charles Davis of the Office of Naval Research.

: A
" ¥
y [
k i

P ——




-2-

of the problem of estimating "structural parameters" in the presence of .
"incidental parameters" (Andersen, 1970; Zellner, 1971, pp. 114-154). 5
The "structural parameters" in latent trait models are the item parameters |
while the "incidental parameters" are the ability parameters since these
increase without bound as the number of examinees is increased to pro-
vide stable estimates of the parameters. Furthermore, as Novick, Lewis,
and Jackson (1973) hav; remarked, "in the estimation of many parameters
some, byvchance, can be expected to be substantially overestimated and the
others substantially underestimated."

When several parameters have to be estimated simultaneously, and
when, as in the present case, both structural and incidental parameters

have to be estimated, a Bayesian solution to the estimation problem may

il

be appropriate (Zellmer, 1971, pp. 114-119). This is particularly true

if prior information or belief about the parameters is available, since

in this case, the incorporation of this information will certainly increase
the "accuracy" or the meaningfulness of the estimates. An example of :
this was encountered by Lord (1968), where in order to prevent estimates of
the item discrimination parameter from drifting out of bounds, it was
necessary to impose limits on the range of values the parameter could

take. Although the estimation procedure employed by Lord (1968) was not
Bayesian, this illustrates the role of prior information in obtaining
meaningful estimates. A further argument that can be advanced in

favor of a Bayesian approach is that the logic of the Bayesian infer-

ential procedure is more appealing than the classical, sampling theoretic,
inferential procedure. As Zellner (1971, p. 362) has pointed out,

"...there is no need to justify inference procedures in terms of their
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behavior in repeated, as yet wiwbserved,! samples as is usually done in the

sampling theory approach." Consequently, it is possible to make proba-
bilistic statements about the parameters themselves, based on the infor-

mation that is available.

Bayesian Procedures

It may be instructive to review briefly the Bayesian estimation
procedure. Let p(y, 8) denote the joint probability density function (pdf)

for a random observation vector y and a parameter vector 9§, also random.

Then,
P, & = p(z[8) p(®
= p(ely P
where
p@ly = p@® pG@lO/P®
or,
(11 p@ly = p® p(l®)

since p(y) # 0 is a constant. Equation [1] is the essence of Bayes'
Theorem and is of primary importance in the estimation of parameters
and for drawing inferences concerning the parameters. fhe probability
density function p(8|y) is the posterior pdf for the parameter vector @,
given the sample information or data, and p(8) is the prior pdf for the
vector 8. The quantity p(y|8) is a proper pdf as long as y is a random

variable. However, the moment the vector y is realized, p(xjg) ceases

lThe italics have been provided by the authors.
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to have the interpretation as é pdf. In this case, p(zjg) is strictly a
mathematical function of 6, well known as the litkelihood functionm.

Since the notation p(xjg) can be mistaken for a pdf, the likelihood
function is often written as L(y|8), and sometimes, to emphasize the
fact that it is a function of 8, as L(gll). Thus, the expression given

in [1] can be written as

(21 P@ly) = L@y p® .

It is interesting to note that if p(8) is assumed to be a constant,
i.e., the prior belief about 6 is summarized via a uniform distribution,
the posterior pdf of 6 is proportional to the likelihood function. 1In a
sense, this interpretation constitutes a Bayesian justification of
maximum likelihood principle.

Once the prior belief about the parameter 9§ is specified, the joint
posterior pdf of the vector § given the data can be readily obtained. The
posterior pdf of 6 contains all the information necessary for drawing
inferences concerning 6 (jointly or individually) and for obtaining esti-
mtes of 6 once a "loss function" is prescribed. For instance, if a squared-
error loss function is deemed appropriate, then the mean of the posterior
pdf of & can be taken as the estimator of 6. On the other hand, if a
zero-one loss function is appropriate, then, the mode of the posterior
pdf of 8 is the estimator of 6. Similarly, for the absolute deviation
loss function, the median of the posterior pdf of 8 is the appropriate
estimator.

The Bayesian procedure described above has been successfully applied
in a variety of situations. For a sampling of these applications the

reader is referred to Novick and Jackson (1974), and Zellner (1971).
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However, Bayesian methods have found only a limited application in the
area of latent trait theory. Birnbaum (1969) obtained Bayes estimates of
the ability parameter in the one~ and two-parameter logistic models under
the assumption that the item parameters were known. He chose, for mathe-~
matical tractability, the prior pdf of 64, the ability of the ith

examinee, to be the logistic density function, i.e.
p(64) = exp (-Dei)/[1+exp(-Dei)]2

where D=1.7 is a scaling factor. Owen (1975), in applying the latent
trait model in an adaptive testing context, obtained Bayes estimates of
ability, 64, under the assumption that the prior pdf of 6; was normal
with mean, zero, and variance, unity.

The Bayesian procedure suggested by Birnbaum (1969) and Owen (1975)
require rather exact specification of prior belief.l An alternative and
a more powerful procedure has been suggested by Lindley (1971). He has
shoﬁn that if tie information that is available can be considered exchange-
able, then a hierarchical Bayesian model can be effectively employed for
the estimation of parameters.

In order to illustrate the hierarchical model, let us consider
the problem of estimating, say, the ability 64 of an individual (i=1, ..., N).
If it can be assumed, apriori, that exchangeability holds, i.e., the
information about 64 is no different from the information about any other
84 observed or yet to be observed, then, 6; can be assumed to be a random

sample from some distribution, p(6). For convenience, if p(8) is taken

lMeredith and Kearnes (1973) and Sanathanan and Blumenthal (1978)
have obtained empirical Bayes estimators of the ability parameters for
the one-parameter model. In these procedures the prior pdf is estimated
from the data.
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to be normal with mean u and variance 0%, then this would constitute
specification of the first stage of the hierarchical model. Since ¥

and 62 are unknown, specifying prior beliefs on these "hyperparameters"
would constitute the second stage of the hierarchical model. Usually,

the hyperparameter distributions are specified in such a way that they
depend upon constants which can be determined from the prior belief the
investigator has about the parameters, and hence the hierarchical model
terminates at the second stage. With this two stage model, it is possible
to estimate 83 (i=1, ..., N) without any reference to the nuisance param-
eters, u and oZ.

Novick (1971) has described this hierarchical model as an analog of
the empirical Bayes procedure advocated by Robbins (1955) and the simul-
taneous estimation procedure provided by Stein (1962). Furthermore, as
Novick, Lewis, and Jackson (1973) have pointed out, this procedure not
only employs the direct information gained through the observation of
an individual, but also the collateral information contained in observations
from other individuals. They further note that, "In effect, this collateral
information is used to provide 'prior' information for the estimation....
Thus to some extent, the problem of selecting prior distributions for
Bayesian analyses is neutralized, and this is effected from a strictly
Bayesian approach."”

The hierarchical Bayesian model has been successfully employed by
Lindley and Smith (1972), Novick et al. (1973), and Zellner (1971), to
name a few. However, this approach has not been employed for estimating
parameters in iatent trait models. The purpose of this paper, hence, is

to provide a Bayesian estimation procedure, in the sense of Lindley, for

estimating parameters in the one-parameter latent trait model.
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Bayesian Estimation in the One-Parameter Logistic Model

The Model

Let xij denote a random variable that represents the binary response
of an examinee 1 (i=1l, ..., N) on item j (j=1, ..., n). If the examinee
responds correctly to the item,xij=1, while for an incorrect response,
X§3=0. We assume that the complete latent space is unidimensional, and
that the probability, P[X1j=1], that an individual with ability parameter
64 will correctly respond to an item with difficulty parameter, bj, is

given by the logistic model,
(3] P[Xj3=1|8r] = exp(8;-by)/{1+exp(84-bj)}.

On the other hand, the probability that the individual will respond

incorrectly is given by

(4] P[Xj5=0|eg] = 1 - P[Xy4=1{6]
= 1/{l+exp(83-bj)} .

The probabilities given in Equations [3] and [4] can be combined to yield
(5] P[X;y = xijlqll - exp{xij(Gi-bj)}/{1+exp(ei—bj)}

where xijal for a correct response and xj4=0 for an incorrect response.
The above model, since it depends only on one item parameter,

difficulty, is commonly known as the Rasch model or the one-parameter

logistic model. For a detailed description of this model and its prop-~

erties, the reader is referred to Wright (1977).

<t bty
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Conditional Estimation of Ability

In some situations it may be of interest to estimate the ability 6i
of an examinee who takes a test which has been calibrated, i.e., the
difficulty parameters are known. Moreover, since the problem of esti-
mating ability when the item parameters are known is simpler to deal
with and provides an illustration of the basic ideas involved, this case
will be dealt with in detail first.

The model given by Equation [5], should in the strict sense be

expressed as
(6] P[xij = xijlei,bj] = exp{xij(ei-bj)}/{l+exp(ei-bj)} .

Although there are several ways to write the model, the expression given
by [6] is the most convenient for the present situation.
It follows, from the principle of local independence, that the

joint probability of responses of the N examinees on n items is given by

(7] PX; =X 15Xy =K 00 e e s Xi§ =Ko oo s Xy ™Xn0 (015855 0o+ 053D 5Dy s -0 05Dy ]
N n
= 0 N exp{x;;(84-bj)}/{1+exp(6;-by)} .
i=1 j=1

Once the responses of the N examinees on the n itemsare observed, the
above expression ceases to have the probability interpretation and becomes

the 1ikelihood function, L(X = x|8, b). Upon simplification,
(8] L(X=x|8,b) = exp{] ] %15 (83-bg) VI M{(I+exp (Gy-bs)}
i3

= exp{zbriei -1 quj}/ﬂ H{(1+exp(ei—bj)}
i ]

where ry = § xij’ and q = ; xij . Since the item parameters are
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known constants, the likelihood function is strictly a function of 6

and, hence, can be expressed as %
[9] L(x[8, b) = exp{] r;8;}/M N{l+exp(65-by)} .
i
i
Returning to Equation [1], we see that in order to obtain the |

posterior density function of 6 given the observations and the item

parameters, it is necessary to specify the prior distribution of 6. To
this end, in the first stage of the hierarchical model, we assume that,
apriori, the ability parameters, 6y, are independently and identically

normally distributed, i.e.,
[10] eilus¢ v N(u’¢)-

The assumption that the thetas are independently and identically distri-
buted follows from the assumption of exchangeable prior information about 1
the thetas. The assumption of normality also appears to be reasonable 7
? ? and has been made by numerous authors, e.g., Lord and Novick (1968).
’ In order to complete the hierarchical Bayesian model, we have to
specify prior distributions for v and ¢. This is the second stage. At

this level, we assume that, apriori, v and ¢ are independently distributed,

. and that ¥ has the uniform distribution. Thus,

{11] p(u,9) <« p(¢).

The uniform distribution is not a proper distribution, although this

Ao -

choice can be justified to some extent (Zellner, 1971, pp. 41-43). It
may, however, be more appropriate to specify a "non-diffuse" prior and

this possibility will be explored further in a later paper.

§ Wiy vz
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It now remains to specify the form of p(¢). Since ¢ is the
variance of ei, ¢ can be assumed to have the inverse chi-square, x~2

distribution, i.e.,

-G+

[12] p(dfv, 82) = ¢ exp(~vs2/2¢).

The quantities v and s2 are parameters of the inverse chi-square dis-
tribution, and have to be specified apriori, The inverse chi-square
distribution can be expressed in different ways. Novick and Jackson
(1974) prefer the form
-G
p(olv, 1) = ¢ exp(-1/2¢).

For this form, the mean of the distribution is A/(v-~2) and the mode is
A/(v#2). For the form given by Equation [12] the mean is sZv/(v-2) and
the mode is szv/(v+2), with both mean and mode approaching g2 as v
increases. These two forms are clearly equivalent, but the form given
by Equation [12] is employed in the sequel because it provides a direct
interpretation of the parameter v and s2. The quantity 82 thus represents
the investigator's belief about the "typical"” value of the parameter ¢
while v represents his/her degree of confidence.

The joint posterior distribution of 8' = [8,, 6,, ..., 6y] given

b and the item responses is given by
(13]  palb,x) = L(x[8,b) p(8|u.¢)p(n,0).

The likelihood function L(x|8,b) is given by Equation [9], p(u,$) by

Equation [12], and
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N

-k
(141 pCelu,0) = .1, ¢

N
= ¢'§ exp{-] (8,-1)%24}
i=]

Combining these expressions, we have,

expl- 3 (8,-1)2/¢}

[15] p(8|b,x,u,4,v, 82) = [exp{] 6, 3/mm {1+exp(ei-bj)}]

i i3

(+1)

_N -+
¢ Z exp {- J(8,-1P20}1[¢ exp(-va2/24)]
i

The above expression depends upon the "nuisance" parameters u and ¢ and

hence these have to be integrated out. Since Z(ei-p)2 = 2(91-6.)2 + N(8_-u)?,

and

0

[. exp -{N(o.-w)2/20}d, = 47,

integration with respect to p yields

[16]  p(8|b,x,4,v,8%) =« L(x[8,b) ¢

Noting that

oo

[ ¢ ™ exp(-k/¢)d¢ = k

-0

-(n-1)

and integrating with respect to ¢, we obtain

-(N+v+1) /2

exp[-{vs2+](04-0.)2}/2¢] |

(171 p(8lb,x,v,8%) <« L(x|8,b) {vs? + Z(ei-e.)z}'(m'l)/z
1
(18] - [exp{§ ri0,}/ n ;l{l-l-exp(ei-bj)}]
-(N+v-1)/2

{va? + ] (8,-6 )2}
1
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The joint posterior modes are obtained by differentiating log
p(elk,g_) with respect to 6, setting these derivatives equal to zero,

and solving the resulting equations:

[19] jil Py = 1y - (8;-6)/0% (i=1, ..., N)
vhere
Pij = exp(ei-bj)/{1+exp(61-bj)}
and

N
o2 = {vs? + ] (6,-6 )2}/ (viN-1) .
1=1

Since this system of equations is non-linear, numerical procedures have
to be employed. The Newton-Raphson iterative procedure is ideally suited
for this situation. Let

n

[20] £(e,) = ] P

- 2 _
4 j + (ei 6.)/0

I‘i .

Then
¥ 2 1, 2v2
' = - - - _ _ .
[21]  £'(ey) 321 Py (1-P ) + {o2(1-g) - 2(0,-8 )/ (WN-1)}/(0?)
If e?‘) is the value of 6:l at the kth iteration, then eik'H) is given by

(k+1) (k) (k)y /g0 (KD
[22] o 7= 0. - £(6 0 )/E'(0),

with e£°)’ the starting value being given by (Wright & Douglas, 1977),

(231 0{® = b + (1+s2/2.89 Hog (r;/n-ry)

where

b, = Iby/n, and s2 = I(by=b)2/(n-1) .

ke

el L e

s ¢ e
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Although the iterative scheme given in [22] is for estimating the é
ability 6i for each individual, in reality, only the ability correspond-
ing to each raw score r (r=1l, ..., n-1) need be estimated. The ability
corresponding to raw score r=0 and I'=n cannot be estimated by virtue of
{23]. Hence, individuals who obtain perfect score or zero score are
eliminated from the analysis. It should also be pointed out the Newton-
Raphson scheme given above is not the vector version of the procedure
since for this procedure the matrix of derivatives {af/aeiaej} has to
be computed and inverted. The procedure described here worked sufficiently

well, converging in as few as three to four iterationms.

Joint Estimation of Item and Ability Parameters

The case considered above, where the item parameters were assumed
to be known, provides the necessary background for the Bayesian estima-

§ ; tion procedure. However, this situation may not be realistic and,

i teus o2

hence, it is necessary to develop a procedure for the joint estimation
of the item and ability parameters.

We proceed in the manner indicated for the case of known item
parameters. Hence, in addition to making the assumptions about the
ability parameters, we have to make assumptions regarding the item param-
eters. Again, as in the previous case, we specify prior beliefs about

the parameters in two stages. In the first stage, for the model given

1 in [5], we assume:
!
[26a]  6,|ugiy ~ Nlug.0g), (1=1, ..., N) "
[210b] bjlub,¢b " N(ubi¢b)t (j-l) M ] n)

-
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In addition, we assume that, apriori, 61 and bj are independent, Gk and
6, (k#L) are independent, and bk and bz are independent.

As for the ability parameters, the specification of prior belief
about bj seems reasonable, especially if an item bank is available. This
assumption has been made by several authors (Lord & Novick, 1968; Wright
& Douglas, 1977). Furthermore, as a result of the hierarchical Bayesian
model, departures from this assumption appear to have a negligible
effect on the estimates of bj’

For the second stage, we assume that

% exp(-s3vy/2¢,),

p(ép)

-(vp/241)
¢‘b exP(°8§\’b/2¢b) .

We have thus assumed that, apriori, the hyperparameters are independent,
and that the prior information about the parameters, L and My is
"vague".

The joint posterior pdf of 6, and b, is given by

[26] p(g’hl-’—"ue’¢e’ub’¢b’vO’sg’vb’sg)

N n
« L(8,b|x){ T p(6,) T p(b)}p(s,) p(d,)
i=1 ey 3 o b

wh:re L(8,b|x) is the likelihood function given by [8]. Now

N -(N+v _4+2)/2
(271 {1 p(8))} p(ég) = ¢

i=1

)

exp(-v483/205) exp{-(8,-ug)?/24,)
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Upon integrating with respect to ¢e and Ugy we have, from [17]

® o N
(28] {0 p(e))} p(e,)dug do
J_'aa Io 1.1 1 e e 9
N

= [vged + ] (o, - o )2 (Mve-D)/2
i=1
Similarly,
co [ n
291 [ [, G pdp) pe)du, doy

« [v.s2 + 2 (b, - b)2]
b b yo1 3

Combining [26], [28] and [29], we obtain the joint posterior density of

-(n+vb—1)/2

0 and b:

(30] P(_e_’h,_’sﬁve,ses b? b)

= [{exp( 2 r 8, ) Hvgsh + z (8,-6 )2}-(N+ve—1)/2]
i=1 i=1

n
- [{exp(- X ab )}{v 24+ 7 (b;-b y3 ~(atvp-1)/24
j=1 33 j=1 :
N n
[ T T {1+ exp(6,- j)}]
i=] j=1

The quantity given as L(8 ,Bl x),

exp(]r,0,) exp(ijbj)/n M{1+exp(8,-b,)} = T 1 exp(6,-b,)/{1+exp(6,

and, hence, is bounded. In fact,

[L(8,b|x)| =<1

Therefore, it follows that

-bj)}.
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N - (Hvg-1)/2
[ lpe,p)|...) | a8db < [[vgs] + izl (84-6 )2] de

n -(n+v,-1)/2

flvpsp + I (by-b )2 db
=1

The integralson the right of the inequality clearly exist since the kernels

are those of multivariate t densities. Hence, the posterior pdf,

P(Q.Qli,ve,sg,vb,sé), is a proper pdf although the normalizing constant

cannot be evaluated explicitly.

The joint posterior modes may be taken as estimatesof ei and bj
(i=1, ..., N; j=1, ..., n). These are obtained by setting equal to zero

the derivatives of log p(g,gj...), and solving the resulting equations:

n
(31) I Pyy = rt4- (85-0)/03 (i=1, ..., N),
j=1
¥ 2
[32] 121 Pyy = ay + (by-b /o2 (3=1, ..., n),
where
Pyy = exp(ei-bj)/{l + exp(ei—bj)} .
ry = § Xiq
qj = E xij ?
og = {vesg + E (ei-e.)z}/(ve+u-1) .
and

2 2

-b )}2/(vtn-1) .
Since the systems of equations is non-linear, the Newton-Raphson procedure

is employed to solve the equations iteratively. In order to accomplish

this, we let

n
(331  f(ey) = 321 Pyy + (8470 )/l - 1y




B o

and

N
2
[34]  h(;) = 121 Pgy = (by=b /oy - q4 -

Then

n
3] £ =} PyyQ-Ryp) + (o0 - B - 2(0,-8 )/ (vgH-D M (D)2 ,
j-

and
7 1
[36]  w'(by) = -] Py (-Pyy) - {o2(L - ) - 2(by=b Mvptn-1)}/ (op)? .
i=1

As before, if Oﬁk) and bgk) denote the values of 91 and bj at the kth

iteration, then

371 o . o _ e/ e )
and
(k+1) (k) &), , ,, . (k)
[38] bj = bj - h(bj )/h (bJ ).
5 (o) (o)
tarting with initial values 91 (i=1, ..., N), and bj (=1, ..., n),
where eio) is given by {23], and

b(0)

3 = log [(N‘qi) /qi]

6 is estimated. These values of 6 are then used to obtain revised estimates
of b. This process is repeated with the revised estimates of b being used
to obtain revised estimates of §. The process is terminated when the
convergence criterion is reached. This procedure is not the full Newton-
Raphson procedure and, in this case, is preferred to the full Newton-

Raphson procedure since the latter requires obtaining an inverse of the
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matrix of second derivatives at each stage of the iteration. In practice,
the procedure outlined here converges rather rapidly.

As ﬁointed out earlier, although the equations provided are for
estimating 91(1-1, +.e3 N), only er(r-l, «esp N=1) need be estimated.
In order to carry this out, the quantities given in Equations [34] and

[35] have to be computed as follows:

N n-1 1
izl Pij X rzl N, Pj(er) 5%
1;: nil 5
P, (1-P,;3) ~ N_ P .(6_){1-P.(6.)} |

4oy 1 i3 oy ToATE 1%r %?
|

where Nr denotes the number of examinees who obtained raw score r and

Pj(er) = exp(er-bj)/ {1+ exp(er-bj)} .

Large Sample Properties of the Posterior Distribution

The posterior pdf, p(gtglve,vb,s%,sg,g), given by Equation [30] is
a product of the likelihood function and a multivariate "double-t"
distribution. The "double-t" distribution is a product of two multi-
variate t densities (Tiao & Zellner, 1964; Zellner, 1971, p. 101). As
a result of its complex form, properties of the posterior pdf cannot be
obtained. However, it is possible to obtain the asymptotic properties
of the posterior pdf, and this will suffice, in most cases, for inferences
to be drawn regarding the parameters.

Let t be a vector of parameters, and y a vector of observations.

Then, the posterior pdf of t, p(tly), is
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ptly) = p(®) L@lv)

where p(t) is the prior distribution of t and L(y|t), the likelihood

function. Then, for large samples,

(39] p(tly <« Lylv ,

and, in turn, L(zlg) is approximately multivariate normal centered at

t, the maximum likelihood estimate, with dispersion matrix
- [-22 -1
[40] x [-3210g L(1|£)/3t13tj]£_£
Thus, for large samples,

tly ~ NGE, Z 8 .

-For a detailed discussion of this result we refer the reader to Jeffreys
(1961, p. 193) and Zellner (1971, p. 32).
This result clearly applies in the present situation when both n
and N, the number of items and the number of examinees, are large.

Denoting the [(n+N)x1l] vector [8,b] as

[41] tlx ~ N(t, I) .

[42] I =

where

Rl oart b b A8 Lhi g AL eI S 7
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(431 G4 = {-3%log L(x|6,b)/ 36,36y} .
9_-

= { - } 6
31,‘,’ 2y (1-Pg)” Cem

where Som 18 the Kronecker delta,

[44] G, = {-3%log L(x|8,b)/3b,3by}
b=b
N
= { P, (1-P; )} 8yps
121 ig im m
and
[45] Gy = {-3%log L(x]|g,b)/36;3by}

g=8,b=b

Thus, the marginal distribution of ei has mean 51, the maximum likelihood
estimate of 91, and variance, ag., given by the ith diagonal element of
1

L i.e.,

2 = - -1
[46] %% [GO Ggp SGp

~1
Cpolyy -
Similarly, the marginal distribution of by has mean Sj, the maximum like-
1ihood estimate of bj’ and variance, ogj, given the jth diagnonal element

of L, 1i.e.,

A N RS
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This approximation to the posterior pdf of 6 and b can be improved
upon if we take into account the "double-t" distribution (see Equation
{30]). For a sufficiently large sample, the multivariate t density ap-

proaches the normal density. Thus, in the expression

N - -
i=1

if we write v6=Nke where 0<k651’ for large N, we obtain

N N
“N(k,+1)/2+% (kg+1) 2
(48] Nkos2 + (6,8 )2] 6 N exp[- (0,-8 )?2]
| ) 121 i”. 2 exp Zkese izl i”.

1
= exp{- E-Qf A, 8}

where

(kg+1)

A = I
11 2
kese N

1
-§11']

with Iy being the identity matrix and 1' = (111 ... 1] . Similarly,

for large n,

2 n ~(vy#n-1)/2 ) n —n(k +1)/2+%
[49] [vysy, + (bi-b_)2] = [nkysi + ) (b,-b )?]
v+ 1O kyop + L 0570,
n
'_\: exp{- _(_k..b:q-_)_ X (bj_b )2}
Zkbs% j=1 *

exp{- % P_ A22 h}

where
(e, +1) 1
Bpp =T [I,-3 11'1 .
kpsy,
Thus,
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, rz. ,,~Optam1D/2 ) t;: , .~ a1 /2
[50] [v,s, + (b.~b )“] [(vasg + (8,-8 )°]
LILIMT- Rt IR 076 " 5 1

E « exp {- ‘J{ (0'A{,8 + b' Ayb)
? [51] = exp {- %‘5' At}
] where

E' = [ gl k' ] .

and
A = All 0

Combining {41] and [51], we have

[52] P(_e_’hli,\’esvb:sgyslz))

(53] = exp -3 ((£-D)" E(t-E) + £' A t}
1
[54] =exp{-3 (£-D'T (-1}
where
[55] T - L+ A
and
(561 T o= () o

*This result follows from the fact that
(x-a) 'A(x-a) + (x-bYB(x-b) = (x-£)'T(x-t) + constant,

where
T = A+B,

and {
t = (A+B)”! {Aa + Bb}
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If the off diagonal matrix Geb in [42] can be ignored, then

n
(571 o5 = [jgl Pyy(1-Pyp) 170 + (N-1) (kg +1) /Nkgsg
and
N
2 -1 2
[58] %, * [izl Py (1-P33) 170 + (a-1) (i, ¥1) /mkpsy,

The expression [57] is useful when the item parameters are considered
known. Similarly, [58] is applicable when the ability parameters are
known. In general, however, when the item and ability parameters are
estimated simultaneously, the off diagonal matrix, Geb’ cannot be
ignored, and hence, in this case, the complete expression given by either
[46] or [55) should be employed. With these results it is possible to
construct "credibility intervals" (Novick & Jackson, 1974) for the

parameters of interest.

COMPARISON STUDIES
In order to study the efficacy of the Bayesian procedure described

above and to compare the Bayesian estimates with the maximum likelihood

estimates, a simulation study was carried out. Although simulation studies

may not be realistic in some situations, they can be justified in the
present context since only through a simulation study can one estimation
procedure be compared with another.

Artificial data, representing the responses of N individuals on n

items, were generated using DATGEN (Hambleton & Rovinelli, 1973) accord-

ing to the one-parameter logistic model. In generating the values of

o
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64 and bj (i=1, ..., N; j=1, ..., n), it was assumed that 64 and bj were
independently and identically normally distributed with mean, zero, and
variance, unity (we shall return to a discussion of this issue later).
The design of the comparison study was conceptualized in terms of the
following, completely crossed, factors: estimation procedure (Bayesian,
maximum likelihood); number of examinees, N (20, 50); number of items,

n (15, 25, 40, 50). This design was carried .out for (i) conditional
estimation of 8, and, (ii) joint estimation of 6 and b.

The size of the examinee population, N, and the test length, n,
were chosen to facilitate comparison of the maximum likelihood and the
Bayesian estimates for small sample sizes and short tests, since the large
sample behavior of the maximum likelihood estimates has been studied by
Swaminathan and Gifford (1979). These authors have found that maximum
likelihood estimates of 64 and bj approach the true values for N as large
as 200 and n as large as 100. Since for these values of N and n, Bayesian
estimates can be expected to be the same as maximum likelihood estimates,
the study was focused on small values of N and n.

The Bayesian estimates and the maximum likelihood estimates were
compared with respect to accuracy. The two sets of estimates were com-
pared with respect to: (a) the mean value of the estimates, as compared
with the mean value of the true values; (b) the mean squared error
difference between the true values and the estimated values; and, (c) the
regression of the true value on the estimated value.

It may be argued that since the joint modes of the posterior distri-
bution were taken as estimates of the parameters, the criterion employed

to determine the accuracy of the estimates is incompatible with the loss
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function employed to arrive at the estimates. This is a valid argument.
However, we are primarily interested in comparing the Bayesian estimates
with the maximum likelihood estimates. Since, in one sense, the maximum
likelihood estimates can be thought of as the modes of the posterior
distribution derived under the assumption that the prior information is
vague, comparison of two modal estimates using a different criterion
other than that involved in deriving the estimates may be justifiable;
particularly since this will not provide an "unfair" advantage to one
set of estimates.

Comparison of the two estimation procedures in terms of the regres-
sion of true values on the estimates needs some explanation. If t is
the true value of the parameter and E, the estimate, then E(TIEse) = BO+81e.
If Bp=0 and 81=1, then, it can be concluded that the estimates are unbiased,
and hence, the departure from the expected values of 80 and 8; can be
taken as an indicator of bias. It should be pointed out here that the
classical notion of bias is not critical in Bayesian analyses. Neverthe-
less, comparison of the regression lines will provide a further assessment
of the accuracy of the two procedures.

The comparison of the maximum likelihood (ML) procedure and the
Bayesian procedure for the conditional estimation of ability 6 is provided
in Table 1. The first column contains the means of the true values of 6,
the ML estimates, and the Bayesian estimates. The second column provides
an assessment of accuracy in terms of the mean squared deviation between
the estimate 6§ and the true value, et. The correlations between 8, and
8 for each estimation procedure is displayed in column four, while the

regression of et on § is given in column five.
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An examination of the correlations between the true values and esti-
mates reveals that, in general, the difference between ML and Bayes
estimates, is negligible for relatively large values of N and n. However,
for small values of N and/or n, the Bayes estimates correlate better
with true values than the ML estimates.

The correlation coefficient, by itself, is not a sufficient
indicator of the accuracy of estimation. Clear differences between the
Bayesian and ML procedures emerge when we examine the other criteria.

In general, the means of the Bayesian estimates, in comparison with
the ML estimates, are closer to the means of the true values. This result
can be anticipated if we examine the estimating equations [19]. The

estimating equations for ML estimates are:

n
I Pyy = x4 (i=1, ..., N).

The additional term in the Bayesian estimating equations, (ei-e.)/o2
contributes to the regression of the estimates towards the mean, and
hence, the Bayesian estimates are closer to the means of the true values.
The only exception occurs with N=20 and n=15, 25. At this point, there
is no explanation for this anomolous result. Further replications are
clearly necessary to establish this point conclusively.

The most dramatic difference between the Bayesian estimates and the
ML estimates is with respect to the mean squared deviations of the esti-
mates from the true values. In general, the mean squared deviations are
much smaller for the Bayesian estimates than for the ML estimates. The
difference is particularly noticable with small N and n. In these cases,

the mean squared deviations for the ML estimates is almost four times as
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large as that for the Bayesian estimates. This finding can again be

explained by the fact prior information is most helpful in these cases.
This, together with the regression effect described previously, results
in an increase in the accuracy of the estimation procedure.

An examination of the regressions of true values on estimated
vlues also provides some interesting results. In general, the intercepts
and the slopes of the Bayesian regressions are closer to zero and one
respectively, than the ML regressions. The trend for the intercepts is
reversed for large n. In these cases, the intercepts for the ML regressions
are closer to zero than the intercepts for the Bayesian regressions. This
latter result is interpretable, since the maximum likelihood estimates of
8, for large N and n, approach the true values. However, the trend for
small n and N is rather surprising since, as a result of regression towards
the mean, the Bayesian estimates can be expected to be "biased." The only
explanation for this finding is that the ML procedure is severely biased
for small n and N, even more so than the Bayesian procedure.

The above findings, for conditional estimation of 6, appear to be
valid for the joint estimation of 8 and b (Tables 2 and 3). 1In fact, the
results for the joint estimation of 6 and b favor the Bayesian estimates
on all counts for both 8 and b: the means of the estimates are closer
to the means of the true values; the mean squared deviations are much
smaller (in some cases, one-tenth the size of those for ML estimates);
the slopes and intercepts are closer to one and zero respectively (the
only exception occurs for large N and n, in which case, the intercepts

of the ML regression are closer to zero).
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DISCUSSION

The Bayesian procedure for estimating parameters in the one-parameter

latent trait model is an attractive alternative to the maximum likelihood

procedure. Bayesian procedures are conceptually more appealing since
direct interpretations of probability statements involving the parameters
are possible. Empirically, as the results of the comparison study indi-
cate, the Bayesian estimates of the parameters are superior to the maximum
likelihood estimates in terms of their accuracy.

Although the empirical results demonstrate the effectiveness of the
Bayesian procedure, it may be argued, and correctly, that the simulation of
the data favored the Bayesian procedure. The data were generated to meet
the strong distributional assumptions required by the Bayesian procedure.
In addition, in specifying prior belief about the distribution ¢e and ¢b’
s% and s% were set equal to one with the corresponding Vo and Vp being 1

specified as 15. 1In the simulation ¢4 and ¢ were set at one, and the

specification of sg, s% and the relatively large values for Vo and vy,
reproduced the true state of affairs. It is not surprising, therefore,

that the Bayesian procedure proved to be superior to the maximum likeli-

.

hood procedure.
In fairness to the study, it should be pointed out that the simula- J

tion and the accurate specification of prior belief were deliberate in

order to determine the applicability of the Bayesian procedure, at least, under

ideal conditions. Preliminary investigations with non-normal data and

also with poor specification of priors 1nd1cate that the Bayesian proce-

dure, being based on a hierarchical model, is relatively robust and is ‘ ’

A Ao

superior to the maximum likelihood procedure. A detailed study of the

effects of poor specification of priors and departures from underlying

L T W b e AT e T
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assumptions is currently under way and we expect to report these results
in the near future.

Despite the encouraging results obtained, a theoretical problem
still remains with the estimation procedure. The procedure described in

this paper requires the joint estimation of n structural parameters and

N incidental parameters. If N+» while n remains fixed, the joint posterior

pdf may not become concentrated about the estimated values. This trend
is evident from Tables 2 and 3; with increasing N, the intercept and
slope do not tend to zero and one respectively. This problem is similar
to the one that exists with maximum likelihood estimates. Although
from a Bayesian point of view asymptotic properties, such as consistency,
are not critical, the lack of them, at least to some degree, is discom-
forting. It appears that this situation can be remedied, if when esti-
mating the n structural, or item, parameters, the ability parameters
are considered nuisance parameters and can be integrated out to yield the
marginal posterior pdf of b. The marginal posterior pdf is currently
not available as a result of the exceedingly complex form of the joint
posterior pdf. Approximations, such as the one indicated (Equation [15])
may be employed to simplify the joint posterior pdf. Initial investiga-
tions reveal that this approximation is reasonably good, but further
research in this area is clearly needed.

In summary, we note that the Bayesian procedure developed in this
paper is relatively simple to implement, and computationally as efficient

as the maximum likelihood procedure. Despite the issues raised above,

the Bayesian procedure has the potential for greatly improving the accuracy

of the estimates. Moreover, the maximum improvement in accuracy occurs
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for small values of N and n, a result that can be expected, and this

makes the Bayesian procedure more attractive than the maximum likelihood

procedure.
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