
AD-A085 319 ILLINOIS UNIV AT URBANA-CHAMPAIGN APPLIED COMPUATION-ETC PIG 32/1

PLANE-SWEEP ALGORITHMS FOR INTERSECTING GEOMETRIC FIGURES, (U)L
OCT 79 J5 NIEVERGELT, F P PREPARATA N00014-79-C-0424

UNCLASSIFIED ACT18 M

7. EEEEIIhIIEEE
END

7-8o

ACT-l,.. .- - -OBER 1979

.-- 2 FCOORDINATED SCIENCE LABORATORY

. APPLIED COMPUTATION THEORY GROUP

I PLANE-SWEEP ALGORITHMS FOR
SINTERSECTING GEOMETRIC FIGURES

INIE VERGELT
FR PREPARATA

" DTre ' H
ELECTE,
JUN 9 1980

1

ice vb~iuc andite t
REPORT R-S63 UILU-ENG 78-2256

I UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

UNCLASS IFIED
,SECURITY CLASSIFICAT ON O P T IS PAGE ,fWhen Date Entered)

REPORT DOCUMENTATION PAGE RE C NORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
PLANE-SWEEP 4LGORITHKS FOR INTERSECTINGI ~~ ~(EOMETRIC FIGURES! .PRIM* R.33R ~~lf

-R-863; ACT-ljUILU-ENG 78-2256
7. AUTHoR(s) 5. CONTRACTOR ANTNUMUERS)

NSF MCS 78-13642;
J.Nievergelt nd F. P.,Preparata : N00014-79-C-0424

9. PERFORMING ORGANIZATION NAME AND AODRESS A.S.=R., ZASX.

Coordinated Science Laboratory AREA W WORK UNIT NUMBERS

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

11. CONTROLLING OFFICE NAME AND ADDRESS 12. -REPORT MATE

Joint Services Electronics Program; lOctober 1979
National Science Foundation 13. NUM3ER OF PAGES

22
14. MONITORING AGENCY NAME 4 AOORESS(II diflerent from Controiling Office) 15. SECURITY CLASS. (of thie report)

I UNCLASS IFIED
ISL. DECLASSI FI CATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (o this Report)

I Approved for public release; distribution unlimited

J17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report)

I
IS. SUPPLEMENTARY NOTES

I
I19. KEY WOROS (Continue on reverse side If necessary and identify by block number)

Computational geometry, concrete complexity, combinatorial algorithms,j intersection problems, maps, polygons

" .

f 20. ABSTRACT (Continue on roverse side I necessary end identify by block number)

We consider,'various types of geometric figures in the plane defined
by points connected by straight line segments, such as polygons (not
necessarily simple) and maps (embedded planar graphs); and the problem ofIcomputing the intersection of such figures by means of a Vgreedy# type of
algorithm that sweeps the plane unidirectionally. Let n be the total
number of points of all the figures involved, and s the total number of

I intersections of line segments. We show, that in the general case (no
convexity) a previously known algorithm can be extended to compute in time-

l"DD , 1473 EDITION OF I NOV 63 IS OBSOLETE
SUNCLASSIFI ED

l I . ! ,,, /SECURITY CLASSIFICATIO0N OF THIS PAGIE (Ihen Data EnRtereg)

UNCLASSIFIED

20. (Continued)

6 0((n+s)logn) and space 0(n+s) all the connected regions into which the plane
is divided by intersecting the figures. When the regions of each figure are
convex, the same can be achieved in time 0(nlognIs) and space 0(n).

CIa io

PLANE-SWEEP ALGORITHMS FOR

INTERSECTING GEOMETRIC FIGURES

by

J. Nievergelt and F. P. Preparata

This work was supported in part by the National Science Foundation

under Grant MCS 78-13642 and Joint Services Electronics Program under

Contract N00014-79-C-0424.

Reproduction in whole or in part is permitted for any purpose of

the United States Government.

This report is issued simultaneously by the Coordinated Science

Laboratory, University of Illinois at Urbana-Champaign, and by the

Institut ftr Informatik, Eidgenossische Technische Hochschule, ZUrich.

Approved for public release. Distribution unlimited.

PLANE-SWEEP ALGORITHMS FOR INTERSECTING GEOMETRIC FIGURES

J. Nievergelt and F. P. Preparata

Abstract

We consider various types of geometric figures in the plane defined

by points connected by straight line segments, such as polygons (not

necessarily simple) and maps (embedded planar graphs); and the problem

of computing the intersection of such figures by means of a "greedy"

type of algorithm that sweeps the plane unidirectionally. Let n be the

total number of points of all the figures involved, and s the total number

of intersections of line segments. We show that in the general case (no

convexity) a previously known algorithm can be extended to compute in time

O((n+s)logn) and space O(n+s) all the connected regions into which the

plane is divided by intersecting the figures. When the regions of each

figure are convex, the same can be achieved in time O(nlogn+s) and space

0 (n).

Keywords and phrases:

Computational geometry, concrete complexity, combinatorial algorithms,

intersection problems, maps, polygons.

CR categories:

5.3, 5.32.

Addresses of authors:

J. Nievergelt, Informatik, ETH, CH-8092 Zurich, Switzerland.

F. P. Preparata, Coordinated Science Laboratory, University of Illinois,
Urbana, Illinois 61801, USA.

This work was supported in part by the National Science Foundation under

Grant MCS 78-13642 and Joint Services Electronics Program under Contract

N00014-79-C-0424.

1. INTRODUCTION

One type of algorithm that emerged from recent research in computational

plane geometry promises to be efficient for all problems to which it applies.

It sweeps the plane "from left to right", advancing a "front" or "cross-

section" from point to next point. All processing is done at this moving

front, without any backtracking, with a horizon or look-ahead of only one

point. Algorithms of this type are often called "greedy," in contrast to

exhaustive search algorithms that create tentative partial results perhaps

to be discarded later. An important issue in computational complexity is

to understand which problems can be solved by greedy algorithms. We

contribute to this issue, and present two efficient algorithms for problems

that have applications in geographic data processing.

Shamos and Hoey [6,7] presented an algorithm that, by sweeping the

plane unidirectionally, determines in time O(nlogn) whether or not n line

segments are free of intersections. Bentley and Ottmann [2] have extended

this algorithm to report all s intersections of n line segments within

time O((s+n)logn). We elaborate on this type of algorithm in two directions.

First, we show that, within the same asymptotic effort, it can compute all

connected regions into which the plane is divided by the line segments,

where each region is presented by a cyclic list of all its boundary

vertices and/or segments. Second, we show that assumptions of convexity

allow one to improve these asymptotic bounds. Specifically, we present an

algorithm that computes all s intersections of two convex maps (embedded

planar graphs with convex regions) with a total of n points in space O(n)

and time O(nlogn+s), which is optimal in s.

a-.

2

2. REGIONS FORMED BY A POLYGON

Later sections of the paper will refer to several versions of the

problem of computing regions of the plane formed by embedded graphs. Here

we present in detail the version which is simplest for expository purposes:

let the given graph be a polygon, i.e., a closed chain of n line segments

(or equivalently, a cyclic list of n points in the plane). The reader who

has understood how the algorithm works in this case will have no difficulty

in following the brief description of how it applies to the intersection

of more general plane-embedded graphs.

2.1 Statement of the Problem and Terminology

Given a sequence of n points Vi = (xiYi), i = 1,2,...,n, in the plane,

a polygon with vertices V. is the sequence of line segments VIV2 , V2 V3 ,...,
3.12'23

VnV1 . These n line segments in general define s intersection points

Wj = (xj,yj), j = 1,2,...,s. When s = 0 the polygon is called simple and

divides the plane into two regions, an internal bounded region R1 and an

external unbounded region RO. In general s = O(n 2), and the polygon

divides the plane into r+l > 2 disjoint regions, namely the external

unbounded region R0 and r simply connected internal regions R, . .. ,R

(when the polygon is non-degenerate, r = s+l). Each region is itself a

polygon that has as its vertices some subset of [V 1 ,...,VnW1 l...,Ws].

The desired result is a list of all regions, where each region is given

by a cyclic list of its vertices, starting with the right-most vertex; the

external region in clockwise order, the internal regions in counterclockwise

order. Figure 1 illustrated these concepts.

3

V5

g4

Fig. 1. A polygon of 5 line segments and the regions it defines:

4115

RVRR 0 : 34WVIV

R2 23W1

As Fig. 1 suggests, we make certain assumptions of non-degeneracy,

namely: all points (originally given or intersection) are distinct; a point

lies on only those line segments on which it mist lie, and no others (e.g.,

V2 does not lie on V4 V5). Section 4 discusses the modifications required

to handle degenerate pictures.

The notions above are sufficient to describe the problem and its

solution. In order to describe the algorithm which computes the solution,

we introduce auxiliary concepts that reflect the dynamic aspects - a

unidirectional sweeping of the plane. Call the originally given points

Vi and the intersection points Wjsimply points, PI,P2,. ..,Pn~s, sorted in

Vorder of increasing x-coordinate. (We assume for ease of exposition that no

two points have equal x-coordinates ; if Piand Pi+l have equal x-coordinate,

R V
2 i ~

4'. 4

a lexicographic ordering on the pair (x,y) suffices for the following

discussion to apply.) Under our assumptions of non-degeneracy and distinct

x-coordinates, each point can be classified uniquely into one of the

following 4 categories:

- a start point cr
-an end point an d ipoints originally given as vertices

- a bend of the polygon.

- an intersection pointX:

I

P P2 P3 P4 P5 P6

Fig. 2. Figure 1 revisited. Points have been ordered according to
increasing x-coordinate. Cross section y contains one interval
for each of the regions R and R and two intervals for two
branches of R that have split. Oriented "rubber bands" trailing

the cross section Y are shown as broken lines.

5

A cross section is a vertical line in the plane along with all the

information about which line segments, regions and components it cuts,

and in what order. The line segments cut by a cross section partition

it into intervals. We are mainly concerned with cross sections that do

not pass through any points; the set of all (topologically equivalent)
cross sections that lie between two adjacent points is called a slice.

A cross section that passes through (exactly) one point is called a

transition.

As the current cross section sweeps the figure, it drags along "rubber

bands" that hug the periphery of regions, as shown in Fig. 2. Much of the

specification of the region-finding algorithm is concerned with properly

maintaining these rubber bands across transitions.

2.2 Data Structures Maintained by the Algorithm

The region-finding algorithm to be presented in section 2.3 operates

upon three data structures. These are crucial for understanding the

algorithm as well as for its efficiency. We present these data structures

at a fairly abstract level: by postulating what operations must be performed

and how much time is available for them (asymptotically in terms of the

problem parameters n and s). We refer to standard textbooks [1,4] for

concrete implementations that realize the postulated time bounds.

The x-structure X

At any moment X contains those points that have been discovered so far

and are yet to be processed, sorted according to increasing x-coordinate. P

Points are assigned a type according to the classification of section 2.1.

The x-structure is a priority queue that must support the following

6

operations within time bound O(log k) when it contains k entries:

- MIN: find and remove the entry with minimal x-coordinate

- INSERT: insert a new entry with given x-coordinate.

Heaps or balanced trees are suitable for implementing priority queues.

Initial content: the n originally given points, sorted, with their

classification.

Final content: empty.

At each transition, the point which defines this transition is removed,

and at most two intersection points are inserted into X. During execution

a total of n+s points move through the x-structure, hence the maximal

number of entries at any given time is < n+s. Since s = O(n 2), any operation

on the x-structure can be done in time O(log(n+s)) = O(logn).

The y-structure Y

Y contains all the information about a cross section which is

representative of its entire slice. It has an entry for each segment

intersected by the slice, including two sentinels corresponding to

y _- and y = -m, and thus it never has more than n+2 entries. Y is a

dictionary (see [11) that must support the following operation within time

bound O(logk) when it contains k entries:

- FIND: given a point (x,y), find the line segment in the cross section

at x whose y-value does not exceed y.

In addition, in constant time, the y-structure supports the following

operations:

.....- .

7

- DELETE(s): given a pointer to an entry s, delete that entry.

- INSERT(s;t):given a pointer to an entry s, insert a new entry t

following that entry.

- PREDECESSOR(s):given a pointer to an entry s, obtain the pointer to

the immediately preceding entry.

- SUCCESSO(s):given a pointer to an entry s, obtain the pointer to

the immediately following entry.

Various types of balanced trees, with additional "prodecessor" and

"successor" pointers can be used to implement such dictionary. Initial and

final content of the y-structure: the pair (-o,-I). Figure 3 shows the

y-structure of the slice between P4 and P5 in Fig. 2.

Pointer '-'- Boundary of Name of region of
peripn,.- or interval which this intervalregio + C*is a Rpart
region 1 - RO

R~2
1i 5 R 4)
6R 0

Fig. 3. The y-structure of the slice between points P4 and P5 in Fig. 2.

The field "P3P6
'' contains the definition of the line segment

connecting the two points P3 and P6. Given an x-value, this entry

allows evaluation of the corresponding y-value in time O(1).
Notice the entry R4 (.) under "Name of region." It refers to a

tentative region which was created at transition P4. In a left-to-

right scan of the plane it will only become known at transition P5

that region R4 is to be identified with region RI. The field

"Pointer into periphery" will be explained when we discuss the
r-structure.

8

The r-structure R

The r-structure is the key to our algorithm. It integrates information

about the regions and their peripheries as it is accumulated during the

unidirectional sweep. It is initialized to be empty and terminates empty.

For any given cross section it contains information about exactly those

regions that are cut by this cross section. Specifically, with each

segment in the cross section it associates pointers to the two cyclic lists

of vertices on the boundaries of the regions which are respectively above

and below that segment; equivalently, with each interval determined by two

adjacent segments it associates the cyclic list of the boundary vertices of

that part of the region which lies to the left of the cross section. Figure 4

shows the r-structure relative to a cross section in the slice between P4

and P5 of Fig. 2.

336

R
P25

P PR4

Fig. 4. The r-structure of a cross-section in slice P P of Fig. 2,4 5
shown attached to the y-structure.

1 i

9

The description above is a static picture of R. Section 2.3 presents

the dynamic picture, how R is updated at each transition, and how the

region boundaries can be printed to produce the output.

2.3 The Region-Finding Algorithm

The algorithm that sweeps the plane and outputs the region boundaries

has the following simple overall structure (here X, Y, and R are the three

data structures previously described):

Procedure SWEEP

begin X - n given points (sorted by x-coordinate)

Y - (-m,+-), name of region - 0

R4-0

while X 0 do

begin P - MIN(X)

TRANSITION (P)

end

end

Procedure TRANSITION is the advancing mechanism of SWEEP, and denotes all

the work involved in processing one point (P) and moving the "front" from

the slice to the left of this point to the slice imediately to the right

of it; in this process it updates the corresponding data structures and

builds up the result in an output structure. TRANSITION will be invoked

exactly (n+s) times and, since it will be shown that one invocation uses

O(logn) time, an O((n+s)logn) time bound on the performance of SWEEP will

result. Figure 5 illustrates the situation when transition is invoked:

for any given segment s, A(s) and B(s) are respectively the cyclic lists

of vertices of the regions bordering s above and below, with the shown

orientations.

10
I

I I 0

ii
l next point P

A(s)I

B(s)

Fig. 5. The situation faced by TRANSITION. The "next point" P is of
one of 4 types:

bend /O , startO , end >O, intersectionO<(
A(s) and B(s) are the cyclic lists of vertices of the regions
bordering s above and below, respectively. Associated with s
there are pointers to the head of A(s) and the tail of B(s).

Lists are thought of as being ordered from left to right; thus, for a

point P and a list L, "P*L" denotes that P has been added to L as its new

head, whereas "L*P" denotes that P is the new tail.

Similarly, for two lists L1 and L2 , L1*L2 denotes their concatenation.

We shall now give a detailed description of TRANSITION. The function

INTERSECT(sps2) checks in time 0(1) whether two segments s1 and s 2

intersect, and if so, inserts the intersection point into X in time

O(logIXj).

procedure TRANSITION (P)
1. begins - FIND(y[P])
2. case P is "bend": (*see figure 6a*)
3. begin t - segment beginning at P
4. h - SUCC(s)
5. A - PRED(s)
6. if (A -0) then INTERSECT(L,t)
7. if (h # 4w) then INTERSECT(t,h)
8. A(-s) ' A(s)*P
9. B(s) - P*B(s)
10. Replace s with t

end
11. case P is "end": (*see figure 6b*)
12. begin h - SUCC(s)
13. t #- PRED(s)
14. I - PRED(t)
15. if (1 0 --) and (h # +w) then INTERSECT(L,h)
16. Link A(t)*P*B(s) and output it
17. Link A(s)*P*B(t)
18. DELETE(s)
19. DELETE(t)

end
20. case P is "start": (*see figure 6c*)
21. begin t - SUCC (s)
22. (1,h) segments starting at p
23. if (s # .-) then INTERSECT(s,L)
24. if (t # +w) then INTESECT(h,t)
25. INSERT(s;A)
26. INSERT(A;h)
27. Link B(L)*P*A(h)
28. Link B(h)*P*A(L) (*B(L),A(L),B(h),A(h) consist of P alone*)

end
29. case P is "intersection": (*see figure 6d*)
30. begin h - SUCC(s)
31. t - PRED(s)
32. A - PRED(t)
33. if (A # --) then INTERSECT(L,s)
34. if (h 0 4-) then INTERSECT(t,h)
35. Link A(t)*P*B(s) and output it
36. A(s) '- A(s)*B
37. B(t) - P*B(t)
38. interchange s and t
39. Link B(t)*P*A(s) (*A(s) and B(t) consist of P alone*)

end
end

1..

12

h h
S A)

B (s)

(a) A")(b p
A~) - At (b A(t) W

B(t) C -

t h
'A(s)

A hS(h)
h) (d) B("~.-

B ()
s

Fig. 6. Illustration of the four cases treated by procedure TRANSITION.

As a general comment to the outlined algorithm, all four cases have

an analogous format. After segment s has been located (Step 1) in Y in

time O(logIY), the other segments which are candidates for intersections

are found in time 0(1) (e.g., Steps 3, 4, 5); next, intersections are

sought and, if necessary, X is updated in time O(logjXj) (e.g., Steps 6, 7);

finally, R (e.g., Steps 8, 9) and Y (e.g., Step 10) are updated, both in

time 0(I).

We have seen in section 2.2 that lxi - O(n) and IYI O(s) - o(n2),

and thus all the operations in TRANSITION require time O(logn). Since the

algorithm that sweeps the plane makes n+s transitions, it requires time

O((n+s)logn), thus confirming a prior claim.

. . . - t - .--

U13

3. INTERSECTION OF CONVEX MAPS

A map is a planar graph G embedded in the plane: each vertex of G

is represented as a point and each edge as a straight line segment in

such a way that edges intersect only at common vertices. A map subdivides

* the plane into r simply connected internal regions R1,... ,Rr and one

external unbounded region R A map is convex if each internal region is

*convex and the complement of the external region is convex.

Given two convex maps GI and G2 with n1 and n2 vertices, respectively,

and s intersections of edges of G1 with edges of G2 ; we will show that the

set of these s intersections can be computed in time O(nlogn+s) and

space O(n), where n = nl+n2 . A straightforward application of the plane-

sweep algorithm described in [2], which does not take advantage of

convexity, would yield this result in time O((n+s)logn) and space O(n+s).

The problem of computing intersections of rectangles with parallel edges

has been studied by Bentley and Wood (31 and McCreight (5]. Their

results are not directly comparable to those of this section, since

rectangles may intersect even if their edges don't.

Let G and G2 be two convex maps. For i - 1,2, let ei be an edge

of Gi, and assume that el and e2 intersect in a single point u

(degenerate cases can be handled with no difficulty). Define ri as the

region of G such that r n r lies entirely to the left of u (Fig. 7).

We now define a plane domain U as follows. Let ej e1 be an edge - if

it exists - on the boundary of r which intersects e2, and let e2 be

analogously defined. If e' exists, define U as the convex hull of the
i

extremes of ei and el, otherwise Ui is the unbounded half plane-strip

orthogonal to ei on the side of r ; then let U - U 1 f U2 (Fig. 7).

I,-.

41

-22 UII 2

,2 e 2
"" .

U

1 ..--... --- ". 2

Fig. 7. The domain U is shown cross-hatched.

We claim that U contains in its interior no edge, nor portion of edge,

either of or of G2 It suffices to show that U2 contains in its interior

no edge, nor portion of edge, of Gi. This is obvious when U is unbounded,

Ibecause in this case U iis contained in the unbounded exterior region of i

when U is bounded, then, by convexity, Ui S ri, and obviously the claim

holds.

Consider now a cross-sac tion Y at the abscissa of a vertex v of, say,

SG 1 (Fig. 8a) and suppose that edges e~ and e2 of Gand G2 respectively,

are adjacent in Y and intersect at point u. By the preceding argument,

the wedge comprised between the vertical through v, el, and e 2 does not

Icontain edges, nor portion of edges, of G and G;hence we advance the

1 2

cross section to include point u to its left (see Fig. 8b). This amounts

to exchanging the order of e and e2 in Y, so that we may proceed with theo

I n de o oto fego i hsi biu hnU subudd

S eas nti aeU scnandinteubuddetro eino i

whnU sbudd hn ycneitU 1 n biul h li

15

Y-t I II

J e
2 I

10

v vI

(a) (b)

Fig. 8. The current cross section advances by one point.

verification of whether e1 and e2 have further intersections with edges of

G2 and G1 , respectively. Specifically, for each intersection found two

new adjacencies arise which are potentially intersection-producing; each

such adjacency is then placed into a queue for later processing. The

plane-sweeping algorithm will scan from left to right the vertices of both

maps and perform the corresponding deletions and intersection of edges

(Steps 5-7 and 9-13, respectively, in the following procedure SWEEP); for

any new vertex, at most two adjacencies are created which may potentially

yield intersections: specifically, if the edges issuing to the right of

a vertex are ordered counterclockwise, these adjacencies may involve the

first and the last elements of this sequence of edges. After this

initialization of the queue (Steps 12 and 15 of SWEEP), for each inter-

section found the cross section is dynamically updated, i.e., an exchange

of order of two segments takes places (Step 23) and two new adjacencies are

examined for possible addition to the queue (Steps 20-22). At any point

in the execution of the algorithm the cross section corresponds to a curve

I16

in the plane (not at straight line, necessarily!) which bounds the

discovered intersections to their right (Fig. 9).

cross section

afte

cross sectionX / pross inv
before fit
processing v

0i

Fig. 9. Structure of cross sections in the proposed technique. Edges
of G are shown in solid lines, those of G2 in broken lines.

A description of the procedure is given below. For each vertex v (either

of G1 or G2) we denote as L(v) and R(v) the sets of edges incident to v

and lying, respectively, to its left and to its right. The y-structure

Y is a dictionary, while the x-structure X is simply an array; I denotes

the set of the intersections found; Q is a queue (implemented as a

linear list), for which ft Q" and "Q 0" denote the operations "remove"

and "add." For simplicity, the algorithm omits consideration of the

r-structure.

*17

procedure SWEEP

1. begin for each vertex v of G UG2 do sort counterclockwise the
terms of L(v) and R(v)

2. sort the vertices of GUG2 by increasing abscissa and placeJ them in X[l:n]

3. Q-¢
4. for i - 1 unti__ n- do
5. begin while (L(Xi]) 0 0) do
6. begin e - next edge in L(X[i)
7. DELETE (e)

end (*all edges incident to Xli] from the left
are deleted*)

8. s - FIND(y(X[i]))
9. while (R(X[i]) 0 0) do
10. begin e - next edge in R(X[i])
11. INSERT (s;e)
12. if (s and e belong to different maps) then

Q (s,e)
13. s - e

end (*all edges issuing from X[i] to the right
are inserted*)

14. s' - SUCC (s)
15. if (s and s' belong to different maps) then Q 4 (s,s')

(*at most two pairs of edges have joined Q*)
16. while Q 0 0 do
17. begin (e.,e2) 1 Q

18. if (e1 and e2 intersect) then

19. begin I - lU(el,e2)

20. e'4- PRED(e 1),e" - SUCC(e2)

21. if (e' and e2 belong to different

maps) then Q r (e',e 2)

22. if (e1 and e" belong to different

maps) then Q f (el,e")

23. exchange (ele 2) in Y

end
end

end

LV
I II I I I III I I I ' I ' -] '" '

J 18

Notice that intersections are discovered only when marching on an

edge from left-to-right; where an edge is deleted (Step 7) all inter-

sections of this edge have already been found. Moreover, when edges are

deleted no intersection-producing adjacencies are generated; indeed if

e (being deleted) is incident to v from the left, either there is some e'

incident to v from the right which maintains separation, or v is the

rightmost vertex of its map: but in this case, no adjacencies between edges

of G1 and G2 are possible to the right of v. The running time of the

algorithm is easily shown to be 0(nlogn). Indeed such is the running time

of Steps 1 and 2; loop 5-7 uses O(logn) time for each vertex, and is

executed n times; similarly does loop 9-13. Notice that Steps 12, 15,

21, and 22 each use 0(1) time, and they are collectively executed O(s)

times; finally, loop 16-23 involves O(s) manipulations of the y-structure

(Steps 20 and 23) each of which uses 0(l) time, since pointers to e1 and e2

are available. Thus we conclude that our map intersection algorithm runs

in time O(nlogn+s). The O(n) space bound is obvious.

'V

19

4. VARIANTS OF THE PLANE-SWEEP ALGORITHM

In order to assess the generality of the plane-sweep algorithm, we

cast the two instances used in sections 2 and 3 into a common frame.

Both algorithms have the following structure:

Algorithm SWEEP:

1. Initialize x-structure

y-struc ture

(perhaps other data)

2. while x-structure not empty do TRANSITION

where TRANSITION is of the form

1. P = (x,y) "- remove next point from x-structure

2. with y locate an interval in the y-structure

3. compute i new intersections and process these.p

The y-structure is identical for both algorithms. It stores the current

cross-section consisting of O(n) entries in a data structure that supports

the operation FIND in logarithmic time, and the operations PRED and SUCC

in constant time.

The x-structure is rather different for the two problems we have

discussed. The simple case is illustrated by the convex map problem:

all relevant transitions are known a priori: the n = n 1+n2 vertices of

the two given graphs. After they have been sorted they can be stored

in any static data structure suitable for sequential processing (i.e.,

the operation NEXT takes constant time) - for example an array. The

reason is that the intersections being computed can be processed

entirely (an 0(i) operation) when they are encountered; hence they

20

don't need to be considered to be transitions, i.e., they don't need to be

stored for deferred processing and retrieved from the x-structure

(an O(logn) operation). By contrast, in the regions-of-a-polygon

problem, a computed intersection must be treated as a transition, to be

stored and retrieved from the x-structure. This requires a dynamic data

structure, which supports the operations MIN and INSERT, and cannot be as

efficient as a static data structure. The mere fact that operations on

the x-structure now require logarithmic as opposed to constant time,

however, would not affect the asymptotic time requirement of the algorithm,

since this access time gets absorbed in the nlogn term. The difference

between O(nlogn+s) and 0((n+s)logn) is merely due to the fact that n+s

transitions move through the x-structure as opposed to n.

This comparison is summarized in the following table:

regions-in-a-loop convex maps

SWEEP:

1. Initialize sort: O(nlogn) sort: O(nlogn)

2. while-do TRANSITION (n+s) times n times

TRANSITION:

1. P - remove from x-structure MIN: O(logn) NEXT: 0(G)

2. locate interval in cross
section FIND: O(logn) FIND: O(logn)

3. process i new intersections i = 0,1 or 2 i times 0(1),p p p
INSERT: O(logn) where E ip = s.

TOTAL: O(nlogn) O(nlogn)

+ (n+s)O(logn) + s.0(l)

The two algorithms presented can easily be combined to compute the regions

of the intersection of two arbitrary maps (non-convex) in time O((n+s)logn).

21

In order to do this, however, the classification of points into the 4

categories - ,c< , >t , < (section 2.3) must be changed to

deal with one general type of point where an arbitrary number of edges

meet. This modification resolves the problem of degeneracy mentioned in

section 2.1. An intersection between more than 2 edges in the same point

is simply treated as a vertex of high degree. By means of the same

generalization, the regions of the intersection of two convex maps can

be computed in time O(nlogn+s).

ACKNOWLEDGEMENT

We are grateful to the following people for helpful comments during

the development of this paper: H. R. Gn'igi, P. Lauchli, T. M. Liebling,

E. M. McCreight, K. Lieberherr, J. Waldvogel.

REFERENCES

1. A. Aho, J. E. Hopcroft, and J. D. Ullman, "Analysis and Design of
Computer Algorithms," Addison-Wesley, Reading, Mass. 1974.

2. J. L. Bentley and T. A. Ottman, "Algorithms for reporting and counting
geometric intersections," IEEE Transactions on Computers, Vol. C-28,
No. 9, pp. 643-647, September 1979.

3. J. L. Bentley and D. Wood, "An optimal worst case algorithm for
reporting intersections of rectangles," Technical Report, Dept. of
Computer Science, Carnegie-Mellon University, July 1979.

4. D. E. Knuth, "The art of computer programming," Vol. 3, "Sorting
and Searching," Addison-Wesley, 1973.

5. E. M. McCreight, personal communication.

6. M. I. Shamos and D. Hoey, "Closest-point problems," 16th Annual
Symposium on Foundations of Computer Science, 151-162, 1975.

7. M. I. Shamos and D. Hoey, "Geometric intersection problems," 17th
Annual Symposium on Foundations of Computer Science, 208-215, 1976.

