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ABSTRACT

In this report the methods of analyzing the static stability of rock
slopes cut by a three dimensional network of discontinuities are given. The

general use of vector analysis to solve these problems analytically is

described and a method utilizing stereonets to solve these problems graphically
is also given, For both the graphical and analytical methods the general
analysis of slopes cut by one, two, or three sets of discontinuities is
{ presented which can take into account the porepressures acting on the dis-
continuities and external forces acting on the slope. Detailed examples are
given to illustrate both the graphical and vector methods of analysis.

The dynamic stability of slopes is also treated in this report. It
is shown that the dynamic resistance of a three-dimensional rock slope
can be calculated by either the graphic-stereonet method or the analytic
vector analysis method. The dynamic resistance can then be used to estimate
the movement of the slope under dynamic loading using a procedure given by
Newmark (1965). A criterion is then given for determining if the calculated

movement of the rock slope is acceptable or harmmful.
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CHAPTER ONE
INTRODUCTION

1.1 General

The design and analysis of rock slopes is somewhat different than
the design and analysis of slopes in soil because of the patterns of
discontinuities in the rock mass. The spatial orientation of these
discontinuities and the shearing resistance along them govern the
stability of rock slopes. Thus the method of analysis used must take
into account the three dimensional intersection of the joint sets with
each other and intersection of these discontinuities with the face or
surface of the rock slope. Limit equilibrium methods of analysis have
recently been developed to analyze these problems in three dimensions
which will be explained and illustrated in this report.

In all methods of limit equilibrium analysis the shape of the
potential failure is assumed at the outset. In the limit equilibrium
methods used for soil slopes, sections of log spirals or circles are
normally chosen to represent the failure surface. Although displacements
are ignored in limit equilibrium methods, it must be kinematically
possible for the displacements to take place in the direction assumed
along the failure surface chosen. Surfaces composed of sections of
circles or log spirals pose no kinematic difficulties. In rock slopes
the potential system of failure surfaces already exist in the mass but
the kinematics of sliding must be checked to delineate the possible
directions and surfaces on which it is physically possible for sliding

to take place.




L —

After the potential failure surface is assumed in either the rock

or soil slope stability analysis, the next step in the limit equilibrium

method is to calculate the shearing resistance required along the

potential fallure surface to keep the potential sliding mass in equilibrium,

This portion of the analysis is basically an exercise in statics.

After the shearing resistance required for equilibrium has been
found, it is compared with the available shearing resistance. This
comparison is usually expressed in terms of a factor of safety, which
must be defined very carefully., Finally the slip surface giving the
lowest factor of safety is found. 1In soils this is usually an iterative
process with failure surfaces of the same shape but with different
sizes and orientations. But in rock slopes there may only be several
potential failure wedges to consider, each having a different shape
goverened by various intersections of the sets of discontinuities.

1.2 Scope

In this report the methods of analyzing the static stability of
rock slopes in three dimensions are given and a method is suggested for
assessing the dynamic stability of rock slopes. The methods of static
analysis for three dimensional wedges are based primarily on the work
of Wittke (1964, 1965a, 1965b, 1966), and Londe (1965). Since vector
analysis is used in the analyses of Wittke and Londe, a review of vector
operations commonly used in slope stability calculations is given in
Chapter 2. The notation used for expressing strikes, dips, etc. in
terms of vectors is also given in Chapter 2,

In Chapter 3 various combinations of the vector analyses of Wittke

and Londe are presented for determining the static factor of safety




of rock slopes. The cases treated include slopes in rock masses containing

one, two, or three sets of joints, Example calculations are given for
determining the factor of safety of several typical problems by these
methods. The concept of the dynamic resistance of rock slopes is also
introduced in Chapter 3. The method given in Chapter 3 for computing
the dynamic resistance of a rock slope in three dimensions is original
with this report. The dynamic resistance can be used for predicting
dynamic displacements due to earthquake motions in the method of dynamic
analysis given by Newmark (1365).

In Chapter 4 procedures are given for performing graphical solutions
of three dimensional rock slope stability problems by the use of
stereonets. The principles of the equal angle and equal area projec-
tions are reviewed in this chapter and the equal angle projection is
used in this report for the three dimensional analysis of rock slopes.
The methods for analyzing rock wedges bounded by one, two, and three
joint planes are similar to those given by John (1968) and example
problems are illustrated. In cases where the static factor of safety
is greater than unity a method is also shown for computing the magnitude
and direction of the limiting dynamic resistance of a rock slope in
three dimensions by the use of stereonets. In cases where the factor
of safety is either less than unity or less than the desired value
a method is also shown for de.ermining the optimum direction and magnitude
of rock anchor or rock bolting forces required to achieve the desired
factor of safety,

In Chapter 5 procedures are given for estimating the dynamic

displacement of rock slopes by utilizing the method proposed by




Newmark (1965). The minimum dynamic resistance for rock slopes as :
developed in Chapter 3 is used in these calculations. Guidelines are '

also given for determining if the dynamic displacement calculated is

harmful to the stability of the slope.

In Chapter 6 a summary and conclusions are given.




CHAPTER TWO
FUNDAMENTALS OF VECTOR ANALYSIS

2.1 General

In this chapter the elements of vector analysis used in three dimen-
sicnél slope stability analyses are reviewed to serve as a ready reference
for the reader. Then the system used in this report for describing the
three-dimensional orientation of joint planes, the line of intersection
of different joint sets, and the resolution of forces, is introduced in
terms of vector notation,

2.2 Fundamental Vector Operations

A vector is a quantity which possesses both a magnitude and a
direction. Velocity, force, and momentum are examples of vector quan-
tities. Vectors of unit length may also be used to describe certain
reference directions such as a normal to a plane or the direction of
any line with respect to a set of orthogonal axes. A vector R may
be described by the set of jts directional components (Ax, Ay’ Az)
parallel to the rectangular Cartesian axes (x,y,z). Thus,

A=A, A, A) (2.1
A vector may also be expressed in terms of its components. For example,

R=TiA + ]AY +iA, (2.2)
where 7, }, and k are unit vectors directed along positive (xsy,2)

axes respectively.

The magnitude of a vector A is given by its absolute value denoted by

A= (A2 +AZ + Az) 1/2 (2.3)
x y z




Vectors may be added simply by summing the components in the x, y,

and z directions. Thus if E(cx.cy,cz) represents the sum of two vectors
R(Ax.Ay.Az) and 8(8_,B y'8z)» then it follows that
C= + ] k 3 D!
¢ (TAX jAY +ia) + ('fax +J8, + ke_)
= +
TA, +8) + 10 +8) + KA, +8)
=ic + jcy + ke, (2.4)
Equating the components in the x, y, and z directions,
cx-AxH!x,cy-t\y+sy,cz--t\z+az (2.5)
The scalar product or the dot product of two vectors A and 8 is denoted
in the form A-B and has a magnitude given by
A+B = Axex + A\yBy + Asz (2.6)
= AB cos @ (2.7)
where @ denotes the angle formed by the vectors A and B (Fig. 2.1). The
scalar project is frequently used to obtain the component of a vector in
a given direction. For example, if T is a unit vector in the x direction,
A.7 yields A, = A cos o' where &' is the direction angle between the
vector A and the positive x axis, Similarly, Ay = A cos B', Az = cos Y!
where g', and y' denote direction angles between the vector A and the
positive y and z axes respectively, Substitution of these expressions

into Eq. (2.3) yields

cosza' + coszg' + coszy' = ] (2.8)
Thus the cosines of the direction angles (direction cosines) of vector
A are not independent; they must satisfy Eq. (2.8)

A vector product or cross product of two vectors A and B is defined
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FIG. 2.1 SCALAR PRODUCT OF TWO VECTORS
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to be a third vector C whose magnitude is given by the relation

C =AB sin @ (2.9)
where @ denotes the angle between vectors A and 8. The direction of €
is perpendicular to the plane formed by vectos A and B as shown in Fig.
2.2, The vector product of A and B is denoted in the form

C=AXEB (2.10)
where X denotes vector product or cross product. The sense of C is
such that it is in the direction a right hand threaded screw perpendicular
to the plane formed by A and B would move if A were rotated into B.

In determinant aotation ths vector product is given as

i3] k
C=AxB={A A A
X 'y oz
B B B (2.11)
X V4 z f
1t should be noted that i
AxB8=-8BxA (2.12)

2.3 Vzctor Operations Used in Three Dimensional Analysis of Slopes

2.3.1 Unit Vectors Defining the Orientation of Joint Planes and the

Line of Intersection of Joint Sets ;

The orientation of joints and planes of weakness are normally re-
ported by the field geologist in terms of strike and dip. In this re-
port, the system given by Wittke (1954) will be used to describe the

orientation of the discontinuities in relation to the slope face being

investigated, According to this system, as shown in Fig. 2.3, the x
axis is parallel to the strike of the slope surface, the positive z
axis is upward and the positive y axis is directed toward the slope.

The strike of a plane of weakness is given by the angle 8 measured in
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U =cos 87 + sin B

V =cosy sin Bi — cos y cos B)— sin yk

FiG. 2.3 ORIENTATION OF A PLANE
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a horizontal plane in a counterclockwise direction from the positive

o 2 S R B . b

x-axis as shown in Fig. 2.3. The value of B can range between O and
180 degrees. The dip of a plane with the horizontal is denoted by the
angle v in a direction at 90 degrees to the strike. The dip, y, can
range from 0 to 180 degrees and is measured downward from a horizontal
line directed at an angle, % equal to B-90° to the positive x axis, An q
example of the use of this notation to describe the orientation of two '
planes is shown in Fig. 2.4, The strike and dip are described by the

unit vectors u and v respectively, and are written in terms of the

angles 8 and Y as shown in Fig. 2.3, i.e,,

u=cos BT +sinB J

and
v=cosyY sinB 1 -cosy cosB J - siny k

or
u= {cosB, sinB, 0) (2.13)
v=(cosy sinB, - cosy cos8, - siny) (2.14) |

Since the strike and dip are at 90 degrees, the scalar product uv
should be zero. u°*v =+ cosB cosy sinB - sinB cosy cosg8 =0,
Thus Eqs. (2.13) and (2.14) satisfy the orthogonal relationship required
for the unit vectors describing the strike and dip.

The cross product of U and v glves a unit vector w which Is perpen-
dicular to both U and v and thus directed normal to the plane described
by U and v. The vector w is obtained by expanding the determinant

given in £q. (2.15).

77 k
w=uXve=jlu uy u,
Vx vy V2 (2.15)
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FIG. 24 CO-ORDINATE SYSTEM FOR DESCRIBING STRIKES
AND DIPS
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The direction of w is normal to the plane of u and v in the direction of
advance of a right hand screw in turning from u to v through the smallest
angle between these vectors (< 180%), The magnitude of w is equal to the
quantity uv sin @ which assumes the vievlue of unity because 6 = 90° and

u and v are unit vectors. The sense of w for the two planes shown in
Fig. 2.4 is shown in Fig. 2,5. Note that for plane 1 the direction of

;‘l is normal to plane 1 and directed downward into the slope and w,

is normal to plane 2 directed upward out of the slope. The specification
of the unit vector w normal to a plane is sufficient to completely
describe the orientation of that plane,

The direction of the line of intersec tion of two joint planes
{planes 1 and 2) is given by a vector ;12 having the direction of the
cross product of the normal unit vectors to the two planes. Thus for
planes 1 and 2 shown in Fig. 2.5 a vector ;IH along the line of inter-
section is given by

Xpp = Wy X W) (2.16)
where ;12 is directed downward along the line of intersection as shown
in Fig. 2.5.
2.3.2 Resolution of Forces

The component of a force R in the direction given by a unit vector n

is given by

Rn =R cos (2.17)
where 8 Is the angle between R and n. Thus, for e;<ample, the component
of a force R normal to a plane is given by R-w and is given by -

= -'- - 2.18
RN R'w Rxwx + Rywy + szz ( )

13




FIG. 2.5 VECTOR DESCRIPTION OF THE ORIENTATION OF TWO
PLANES AND THEIR LINE OF INTERSECTION
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Similarly the component of i in the direction of the line of intersection

= %12
of two planes is R—
X12

The obliquity of a force R on a given plane is the angle ¢', which

the force R makes with the normal to the plane w as shown in Fig. 2.6.

tan ¢'= R/Ry

where RN and R, are the camponents of R normal and tangential to the plane,

T
H = Rew = + =
respectively., Note that RN R'w Rxwx Rywy + szz R cos ¢t and

RT = ]R X Ql = R sin ¢!

] 2 2 424172
[(Rywz szy) + (szx Rxwz) + (Rxwy Rywx) ] (2.19)

Therefore the obliquity of a force on a plane is given by

2 a2 o2 172
can ot = EI ) [(Rywz Rw )™+ (Rw R w )" + (Bgyy wax) ]
Ry ‘Iixwx + Rywy 9 szz)

(2.20)
The vector RT may also be given by R - RNQ which is given by

Ry = (RX-Rwa)n + (Ry-Rwa)J + (RZ-RNwz)k
since RN; - Rwa7 + Rwaj + RNsz. Thus the obliquity may also be given as

L(Rx"‘N"'x)2 + (Ra('RN'“y)2 + (Rz"RNWz)2 1 Ve

tan ¢' =
Rxwx + Rywy + szz (2,21)
2.3.3 Line of Application of a Force and Point of Intersection of Two
Forces
In order to analyze rotational stability, the point of application
of a force and its direction must be known. 1f the vector 05 from the
selected origin of coordinates 0 to a point & on the line of action of
the force W is known, the line of action of W may be expressed as the

line joining the tips of the set of radius vectors given by

15
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FIG. 2.6 RESOLUTION OF FORCES ON A PLANE INTO

FIG,

NORMAL AND TANGENTIAL COMPONENTS

2.7 EQUATION OFF A LINE IN VECTOR NOTATION
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"™ 0S + AW

(2.22)
and shown in Fig. 2.7,
In a three-dimensional problem the set of applied forces will not

in general intersect, and the moment of each force about a particular
axis of rotation may be considered separately, or the forces may be
moved parallel to the axis of rotation about which moments are being
summed until the forces intersect., For example, in analyzing the rota-
tion of a wedge as shown in Fig. 2.8 around the axis defined by the
unit vector d, for the external force P applied at point N and the
weight W applied through the center of gravity S, either of these forces
may be shifted any distance K parallel to d without changing the mament
about d. Thus the forces may be moved in this manner until their lines
of action intersect. If the line of action of W is defined by

;w =05 + W ( A= constant) (2.23)
and the line of action of P is defined by

;p- ON + &P (6 = constant) (2.24)
the resultant R of P and W can be considered to act at a point of inter-
section 1 by setting

Ty = Ty + Ko (2.25)
Substitution of Eqs. (2.23) and (2.24) in Eq. (2.25) yields

S + M = ON + &P + Kd (2.26)

If three equations are written from Eq. (2.26) in terms of the x,

y, and z components of P and W they can be solved simultaneously for

A= A 6= §) and K = K,

which locate the point of intersection 1, The vector from the origin 0,

17
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FiG. 28 MOMENT CAUSED BY TWO FORCES WITH
DIFFERENT POINTS OF APPLICATION

FIG. 29 MOMENT OF A FORCE ABOUT A GIVEN AXIS

18




P -—

to I, the point of application of R, is thus
ol = 0S5 + AW (2.27)
2.3.4 Moment about an Axis

The magnitude of the moment about axis d through point A as shown in

Fig. 2.9 caused by the force R acting at point I is

My = (ARIxR) -4 (2.28)
where
AT = AC + 01

2.,3.5 Point of Intersection of a Force and a Joint Plane
The point of intersection of a force and a joint plane is found by

equating the line of action of the force and the equation of a plane.
The equation of a plane is given by
;P - w = constant (2,29)
where ;P is a radius vector from the origin to a point in the plane,
and w the unit vector normal to the plane. If the vector OF from the
origin to any point F in the plane is known, then the constant is deter-
mined and the equation of the plane is:

rp + w= (0F-w)
The point where the force P intersects the plane is thus given by
solving simultaneously the equation for the line of action of the force
and the equation of the plane giving

(ON + gP) w = (OF -w) (2.30)
The solution yields GQ’ the value of § defining the piercing point Q
of the force P on the plane p as shown in Fig. 2.10,
2.3.6 Geometry of a Triangle

The area of the triangle OKL shown in Fig. 2.1l is given by




FIG. 2.10 INTERSECTION OF THE LINE OF ACTION OF A
FORCE ON A PLANE
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FIG. 2.11 GEOMETRY OF A TRIANGLE
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FIG. 2.12 GEOMETRY OF A TETRAHEDRON
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A=1/2 [oK x oL| (2.31)

and the vector from 0 to the centroid, S, is given by
05 = 1/3 (0K + OL) (2.32)
2.3.7 Geometry of a Tetrahedron
The volume of a tetrahedron as shown in Fig. 2.12 is given by
V=1/6 [0B' X DC| (h, +h,) (2.33)
The centroid at point S may be described by the vector from the origin,
0, given by
S = 1/4 (0D + OC + 08) (2.34)

The components of 0S are thus the coordinates of the centroid,

21
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CHAPTER THREE

ANALYSIS OF ROCK SLOPES BY VECOTR METHODS

3.1 General

In this chapter analytical methods are presented for detemmining
the static factor of safety of rock slopes. The cases covered include
rock slopes cut by one, two, or three joint sets. Example problems are
given where various combinations of the vector analyses of Wittke and
Londe are utilized. A typical example problem is also worked by common
engineering graphics. The notion of dynamic resistance is also introduced
in this chapter for rock slopes and example calculations of the minimum
dynamic resistance are illustrated. The methods given in this chapter
for computing the dynamic resistance of a rock slope in three dimensions
is original with this report and is intended to be used for predicting
dynamic motions under earthquake loadings in conjunction with Newmark's
method of analysis for the dynamic stability of slopes.

3.2 Stability Calculations by Vector Analysis for Sliding sn One Plane

3.2,1 Calculation of Factor of Safety for Static Loads

The simplest special case of a rock slope stability problem is where
the strike of one of the planes of weakness is parallel to the strike of
the slope face as shown in Fig. 3.1. For the coordinate system adopted
in Chapter 2, this condition can be expressed when the unit vector u in the
direction of the strike has components of zero in the y and z directions
i.e.,

:l' (ux’ Uy! Uz) = (l’ 0, 0).

Then the unit vector v in the direction of the dip has its x component

equal to zero, i.e.,

22
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FIG. 3.1 SLIDING ON ONE PLANE — STRIKE OF PLANE
PARALLEL TO STRIKE OF SLOPE FACE
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v = (Vx, Vy: Vz) = (0, VY: Vz)

The inclination of the line of fall of the plane , €v, will determine
the kinematic possibility of sliding. The angle of fall €, is given by
v
z=
tan € = oy tan(y) (3.1)

where y 1is the angle of dip of the plane. In order for sliding to be
kinematically possible, €, must be smaller than a if 0 < a < n as shown
in Fig. 3.1(b). If a = &, then €, Mmust be smaller than for the sliding
to be possible.

For a slope acted upon only by gravity and the plane of weakness
striking parallel to the slope face, the sliding will occur parallel to
the unit vector v in the direction of the dip. The magnitude of the
component T of the weight W acting parallel to v may be obtained from

T=W-v (3.2)
where W = (0,0, -W). The vector T is given by
T=1v (3.3)

The magnitude of the component of W normal to the direction of sliding is

where w is the unit vector normal to the plane of sliding as given by

U x v. The magnitude of the available resisting force is given by N tan ¢
where ¢ is the angle of shearing resistance between the joint surfaces

in the direction of sliding, The factor of safety against sliding is

the quotient of the resisting and the driving force in the direction of

sliding and is given by
Fs. = N tan ¢ . {W.w) tan ¢ (3.4)

T (W-9)
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For the case shown in Fig. 3.1, the unit vector in the direction of
the strike is given by u=1 u = 7 and the dip is given by v= ]vy +

Evz. The unit vector w normal to the plane of weakness is given by

w=uxv=|i j k|-= -Jv, + kvy
1 00O
0 v v
y 2z

Thus the magnitude of the component of the weight in the direction of
sliding is given by

T=W-*vs= -y, (3.5)

and the component of the weight normal to the plane of weakness is

N=W-w= -WVy (3.6)

Thus the facior of safety according to Eq. (3.4) is:

-Wv tan ¢ v
F.§, =—te——— ==L tan ¢ = tan ¢ (3.7)
-WVZ v, tan y

which is a well known expression for the factor of safety of slopes poten-
tially free to slide down the dip angle y under gravity loading only,

If a slope is loaded by its own weight W, and a pore water force U
acting on the potential failure plane in the direction of the unit vector

-w, then the factor of safety is given by
@w-u
(W +v)

F.S. tan ¢ (3.8)

When the magnitude of the porewater force U is given by KW, Eq. (3.8)
reduces to

(-wv_ - KW)
Y

F.S. = WY tan ¢
z

25
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tan y v, tan y =~ siny

F.S. = tan ¢ +K tan ¢ _ tan ¢ K tan ¢ (3.9)

where Y is the dip of the potential failure plane and v, = -sin vy,
The case may also be considered where sliding can take place on one
jolnt or bedding plane as shown in Fig. 3.2(a) or 3.2(b). In the general

case the potential sliding wedge can be acted on by its weight W, the J

porewater force U actingon the plane of sliding, and an external force Q
which may be applied by a structure, such as a dam. In many cases where
we are concerned with large slopes, however, the weight W will be large

compared with Q. 1In the analysis of sliding on one plane with the forces

W, U and Q acting on the wedge, the forces are added vectorially into a

resultant R which is given by

R=W+0+4Q (3.10)

The resisting reaction in plane a b ¢ as shown in Fig. 3.3 is R!' and is

equal and opposite to R. Thus the direction of sliding is in the direction

of the projection of R on plane a b c and not necessarily in the direction
of the dip. The angle of friction mobilized, ¢', by the force R is given

by Eq. 2.20 for sliding on one plane as

2 2 2.1/2
- + - + -
tan ¢! = [(RYWZ RZWX) (szx Rxwz) (Rxwy RYNX) ] (3.11)
Rw +Rw +R.w ’
XX Yy 2z
Thus the factor of safeyt for this case is given by
F.5, = 2204 (3.12)

" tan ¢'
3.2.2 Calculation of Dynamic Resistance
It should also be noted that Wittke (1965) has treated an. earthquake
loading as an equivalent static load applied in a horizontal plane and

parallel to the projection of the unit vector in a direction of the dip,

26




Joint
Planes

(a) Cutslope

(b) Natural Slope — Bedding Planes Dipping Toward Valley — Sliding Block
Isoloted from Mass by Gully on Each Side

FIG. 3.2 SLIDING ON ONE PLANE — STRIKE OF PLANE NOT
PARALLEL TO STRIKE OF SLOPE FACE
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FIG. 3.3 SLIDING ON ONE PLANE
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v, in a horizontal plane. Thus, according to the analysis of Wittke (1965)
for earthquake loading, the problem is simply analyzed as for the general
case presented above where

R=W+0+Q+H

- - v
where H=1 X kW + j —L—0 M
(v 2 + v 2)-2_
y x y

PO pmr

The seismic coefficient kl is taken between O and 0.2 depending on
the intensity of the earthquake motion expected, and the force H is in a
horizontal plane and parallel to the projection of the unit vector in a
direction of the dip, v, in a horizontal plane. The factor of safety is
as given by Eq. 3.12. This approach, however, is not recommended by the
authors since it is considered as being an unduly conservative approach to
earthquake stability. The approach proposed in this report for assessing
the dynamic stability of rock slopes will essentially follow the concepts
proposed by Newmark (1965), which are presented in Chapter 5. 1In order to
wse the Newmark method of analysis, however, it is necessary to establish
the resistance available to resist dyanmic loads. This dynamic resistance
is the resistance which is available in addition to the resistance required
for static stability. The dynamic resistance is denoted by NW where W is
is the weight of the potential sliding block and N is a coefficient to
be determined in the following manner. The force NW is that force applicd
to the potential sliding block which is necessary to just make the block
slide (i.e. F.S. = 1). Depending on the direction in which NW is applied,
its magnitude will vary. The magnitude of NW appropriate for design or

analysis is the magnitude of W applied in such a direction as to make NW

29




a minimum, For a potential failure of a block sliding on one plane as
shown in Fig. 3.4(a) iﬁ should be applied in a direction 6 to the hori-
zontal which will give the minimum value of MW to just cause the block
to slide. The direction and magnitude of the minimum value of W can
be determined as shown in Fig. 3.4(b). The direction and magnitude of
the weight W is known and the direction of a resultant R is known and Is
inclined at ¢ to the normal of the plane of sliding when sliding begins
to take place. Then the magnitude of the vector NW is minimum when it joins
the tip of the weight vector W in a direction which makes an angle of 90°
with the resultant R. Thus from geometry, the minimum magnitude of W is
given by

N =Wsin (¢ - v)
or

N=sin (¢ - v) (3.13)
where ¢ is the angle of shearing resistance and y is the dip. Thus the
minimum value of N occurs when NW is in the same direction of the horizontal
projection of the dip but is inclined upward from the horizontal at an
angle of 6 = (¢ - y) and N has a magnitude of sin (¢ - y) for the case of
sliding on one plane. Using this minimum value of NW as the dynamic
resistance is a conservative estimate because it is assumed that the
earthquake motions arein the most unfavorable orientation for the slope
being investigated.

3.3 Example Problems of Sliding on One Plane by Vector Analysis

Slope stability calculations by vector analysis are performed in
this section for several cases involving sliding on one plane. In some

of these cases the same answer: could be arrived at quickly by means of
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conventional analysis, in others it would be more difficult to do by

conventional means.

For example, consider a wedge of rock sliding on a plane which strikes

East-West and dips 30° South and which has a friction angle of 40°,
Consider the positive x direction to be East, the positive y direction to
be North and the positive z direction to be upwards, The unit vector in
the direction of the strike is given by

u= (1,0, 0)
The unit vector in the dip direction is given by

v = (0, -0.866, -0.500)
and the unit vector normal to the plane is

w=uxv= (0, 0,500, -0,866)

and w is directed downward normal to the plane.

Case I

First consider the factor of safety of the block acted on by its own

weight only. 1In this case the resultant force R acting on the block is

=
[fa]
<
0
=
[~
~

equal to the weight

The magnitude of the component of R normal to the plane is given by
N=R:w=0,866Ww

then N = 0.866 ww = (0, 0.433W, -0.750M)

the tangential component of R on the plane of sliding is

T=R-N= (0, -0.433W, -0,25W)

the magnitude of T is given by

T = w [(-0.433)% + (-0.25)211/2 _ . 50w
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N tan ¢ 0.866W tan 40°
then F.S. = T = IO.SW

= }.455

Check: By Eq. 3.7

tan 40°
F.5. = Tan 30° " 1.455

Case 11
Consider now that a force A acts on the wedge in addition to the weight
of the wedge W. The force A acts parallel to the strike (East) and has a

magnitude of 0,20W.

Thus R=A+W= (0.20W, 0, -W)
and N=R " ws= 0.866w
and N = Nw= (0, 0,433W, -0.75W)

The component of R tangential to the plane is

T=R-N= (0.200W, -0.433W, -0.250W) and T = 0,540M.

_ Ntan ¢ - 0.866W _tan 40° _ 1.35
T 0.54vW *

. F.S.

Note that in this case sliding does not take place down the dip but in the

direction of the vector T.

Case 111
Consider now that the wedge is acted on by its own weight and a force
A having a magnitude of 0.20W and acting in a direction parallel to the
unit vector in the direction of the dip. 1In this case the normal component
is still given by N = W w= 0866w as given in Case I. The magnitude
of the driving tangential force T is the sum of the magnitudes of A and the

tangential component of the weight on the plane. The factor of safety

is therefore given by
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0.866wW tan 40°

F.S. = 5.504 ¥ 0.200

= 1,05

Case IV
Now consider that the plane under the wedge of weight W as in Case
I is acted upon by a porewater force, U, which increases until the factor
of safety decreases fram 1.455 to 1.0. The porewater force does not change
the driving force T. Therefore, as in Case I,
T = 0.50W
The magnitude of the normal force N as given in Case I is reduced by the
magnitude of the porewater force, U. That is

N = 0.866w - U

and F.5. = 1.0 = 2B8-U ) 400
and solving for U
U= 0.27lw
Check: By Eq. 3.9
Fs =1.0=tan¢ _ K tan ¢ =tan40° R t?n40°
U tan Y sin Y tan 300 sin 30Y
Solving K = 0,271
U= 0,271V
Case v

Consider the same wedge to be acted on by its own weight W, a pore-
water force U of magnitude 0.44W acting normal to and on the plane of
sliding, and a force A having a magnitude A = 0,60W and acting in a
direction S 45°% at a dip of 10°, Then

W= (0, 0, -W)

U = 0.44W(-w) = (0, -0.22w, 0.371w)

34
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The unit vector, a, in the direction of force A is given by Eq. 2,14 with

y = 170° and B = 135°, thus,

a = [-cos 10° sin 45°, -(-cos 10°)(-cos 45°), - sin 10°)

a = (-0,696, -0.696, -0.174)
Thus
A = pa = (-0.418w, -0.418w, -0,105W)
and R=W+U+A = (-0.4184, -0.638W, -0,734W)

The magnitude of the component of R normal to the plane of sliding Is
given by
N=R * w= 0316w
N o= Nw= (0, 0.158W, -0,274W)
The component of R tangential to the plane of sliding is
T=R-N=(-0.4184, -0.796W, -0.460W)

’ T = 1,009

_ N tan 40° _0.316w_tan 40°

F.s. T " 1.009W

= 0,262

Case VI
Consider the slope acted on by only its own weight as in Case I. 3
It is desired to calculate the magnitude of the minimum dynamic resistance .

This is simply given by Eq. 3.13 as

NW=Wsin (¢ -Y) =wsin 10°

or N=sin10° = 0,174
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3.4 Stability calculations is for Sl

Sets of Joint Planes.

3.4.1 cCalculation of Factor of Safety for Static Loads
3.4,1.1 Description of Geometry and Loads

The general case of two systems of joint planes is as shown in Fig.
3.5 where planes 1 and 2 denote the joint planes, planes 3 and 4 denote
the planes defining the faces of the slope, ) and YZ denote the dip angles
of plares 1 and 2, Bl and 82 denote the strike angles of planes 1 and
2 measured counterclockwise from the positive x direction and o and ¢
denote the inclination of planes 3 and 4 with the horizontal. The unit

vectors in the direction of the strike planes 1 and 2 are given by Eq. 2.13:
Gl = {cos B)» sin 6,, 0) 32 = (cos 8,, sin B,, 0)

and the unit vectors in the direction of the dip for planes 1 and 2 are
given by Eq. 2.14:

;l = (cos v, sin B, - cos Y, cos By, - sin y,)
;2 = (cos Y, sin 82. - cos Y, cos Bz, - sin 72)

The unit vectors normal to each plane are given by

W) = U x v
and Wy = Uy X Vy
Note on Fig. 3.5 that ;l is directed downward into plane 1 and ;2 is
directed outward from plane 2 when the normals are defined in this manner.
Also note that the plane designated as plane 1 is the one with the lowest
value of B, 1In the case where the strikes of two planes are the same the

plane designated as plane 1 is the one with the smallest value of y. This

convention is necessary to maintain the proper sign convention for the

following vector operations.




/ (b) /

FIG. 3.5 STABILITY OF A WEDGE BOUNDED BY TWO JOINT PLANES
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The loading of the slope consists of (1) dead load W acting at the
center of gravity of the mass considered, (2) live load Q applied at any
point, (3) porewater forces ﬁl and Uz acting on planes 1 and 2 respectively
and (4) dynamic loads induced by ground motions from earthquakes or nuclear
detonations. The resultant R of the loads in any given case can be
determined, and let the point of .application of the resultant be at point I,

3.4,1.2 Determination of the Mode of Sliding Failure

For the case of a tetrahedron bounded by two base planes which may
be .intersecting joint sets, failure may occur by sliding along the line of
intersection of the two planes or by sliding on either one of the two
planes.

The first step in determining the mode of failure is to check if the
distrubing forces tend to lift the tetrahedron from either or both of
the supporting planes. Thus considering the rock wedge 0BCD (Fig. 3.5),
the resultant force R tends to break the contact between the tetrahedron
and planes 1 and 2 respectively if

R-w <0

(3.14)

and R w, > 0

If Eqs. 3.14 show that the resultant force R tends to lift the tetrahedron
off of both supports, then equilibrium is not possible unless the joints
can take tension or rock bolts are added to take the computed tension.
Normally this will not happen for large slopes acted on by their own
weight and porepressures, but could occur for small tetrahedrons near

the surface of steep or overhanging slopes., If Eqs. 3.14 show that lifting
occurs off of one of the supporting planes then we can definitely say

that sliding cannot occur on that plane,
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If Eqs. 3.14 show that lifting off of the wedge from the supportiﬁg

planes does not occur, i.e.

R * w, > 0 (3.14a)

R * GZ <0
then we must make further kinematic tests to see whether sliding takes
place on plane 1 only or plane 2 only or along the line of intersection
of planes 1 and 2.

In order to evaluate the mode of sliding it is necessary to define

two new vectors 1§12 and ,§,, which are given by

1512 = X12 X W) (3.15)
2512 = 12 X "W

and are as shown in Fig. 3.5(b). The vector l§12 is in plane 1 perpendicular
to the line of intersection ;12 and the vector 2§12 is in plane 2 per-
pendicular to the line of intersection x,.

If sliding is to occur along the line of intersection §12. then

Eqs. 3.16, 3.17 and 3.18 must be satisfied simultaneously.

R 15122 0 (3.16)
R 285122 0 (3.17)
€ < a If 0 <a< rand € <8 ifa=x (3.18)
where
x
€ = tan.l ( lzz) (3.19)
x x12y
and ley’ X122 =Y and z components of vector X12

The vector ;12 along the line of intersection is defined in Chapter 2 and

is given by Eq. 2.16 as

Xj2 =W X VW
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If sliding is to occur on plane 1 only, then both the following equations

must be satisfied:

R w >0 (3.20)
and R« S, <0 (3.21)

Similarly if sliding is to occur on plane 2 only, then Eqs. 3.22 and 3,23

must be satisfied.
R*w, <0 (3.22)
R - 2§12 <0 (3.23)
The physical interpretation of Eqs, 3.16 - 3.23 may be made as follows.
Eq. 3.16 is satisfied only if the resultant force R has a component which
tends to push the wedge on plane 1 toward the line of intersection §12.
Similarly Eq. 3.17 is satisfied only if the resultant force R has a com-
ponent pushing the wedge on plane 2 toward the line of intersection ;12'
Thus Eqs. 3.16 and 3.17 ensure that the resultant force R wedges the
tetrahedron between the two plane so that sliding can only take place on
both the planes along the line of intersection. In order for sliding
along the line of intersection to be kinematically possible, it should also
be ensured that the line of intersection does not plunge into the rock
! slope and this check is provided by Eq. 3,18, Thus when all the three
; kinematic conditions specified by Eqs. 3.16 through 3.18 are satisfied
simul taneously sliding can occur along the line of intersection. The
tendency to slide will be downhill if R * ;12 > 0 and uphill if R - ;12 < 0
(Fig. 3.5).
Eq. 3.21! indicates a component of R on plane 1 tending to move the

block away from plane 2 by sliding on plane 1 and Eq. 3.20 establishes

the condition for contact on plane 1. Thus Egs. 3.20 and 3.2] are suf-
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ficient and necessary conditions for sliding to occur on plane 1. Similarly
Eqs. 3.22 and 3.23 specify the conditions for sliding on plane 2.

3.4.1.3 cCalculation of the Factor of Safety for Sliding

If the kinematic tests discussed above show that sliding takes
place on only plane 1 or on only plane 2, then the factor of safety can
be computed from Eq. 3.4 for sliding on one plane. Thus for sliding on i
plane 1 the factor of safety may be computed as

N, tan (R - w,) tan ¢
T Bl ! . (3.24)

where

Thus Eq. 3.24 becomes

F.S, = (3.25)
. 2 2 2) 172
[Tlx *+ le + le]
which may be written as:
tan ¢1[Rxwlx + Rywll +Row ] 6
F.S. = 7 3 7173 (3.26)
KRywlz-szly) + (szlx_Rxwlz) + (Rxwly'Rywlx) ]
For sliding on plane 2 only, the factor of safety is given as
N, tan ¢ (R - w,) tan ¢
F.s. w22 - 2 (3.27)
2 2
The minus sign appearing in Eq. 3.27 is due to the direction of the unit ;
normal w, as shown in Fig. 3.5. \§
Eq. 3.27 can be expanded to yield 3
¥
tan ¢,[ (-R w, -R w, -R w, )] ‘
F.s. 2 x 2x 'y 2y 'z 22 —T77 (3.28) 3

= 2 2
LR wg, R g )% 4 (R, Ry )™+ (Rwy -Rowy )]
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If the kinematic tests of Eqs, 3.16, 3.17 and 3.18 are satisfied
and sliding takes place on both planes 1 and 2 along the line of inter-
section ;12’ then the factor of safety may be computed in the following
manner,

The first step is to compute the magnitude of the driving force, le,
shown in Fig. 3.6, in the direction of sliding. This is simply given by

R - X1,

= — (3.29)
12 X12

T

where X2 represents the magnitude of the vector §12. The vector le

is in the same direction as §12 and is given by
= TNiz*e

T =
12 X12

(3.30)

It is convenient to define the vector ﬂlZ’ normal to the line of inter-
section which is given by

No,=R-Tp (3.31)

In order to evaluate the frictional resistances on planes ! and 2, it is
necessary to determine the .omponents ﬁl and ﬁz of ﬁlZ acting normal
to planes 1 and 2 respectively. The relationship of the vectors R, ?12,
ilZ’ ﬁl and ﬁz are shown in Sections AA and BB of Fig. 3.6, From Fig.
3.6 it is obvious that

Npwy + Ny (-wy) = Wy, (3.32)
where Nl and N2 represent the magnitudes of the two component vectors Nl

and N, respectively.

Thus
NiWix = No¥ax = Niax (3.33)
lely - Nzwzy = N12y (3.34)
Npwp, = Novip, = Npoo (3.35)
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Any two of Eqs. 3.33, 3.34, and 3.35 can be used to determine Nl and N2
and the third equation can be used to check the numerical values of Nl
and N,. After N, and N, are obtained the factor of safety for sliding
on both planes may be determined from the equation

Nl tan "l + N2 tan ¢2

F.S. = (3.36)
T2

3.4.1.4 Calculation of Static Factor of Safety for Rotations

In addition to the previously investigated sliding movements which
endanger stability, the rock wedge OBCD may rotate about the support
edges, 0C or OD, or about the axes at point O perpendicular to planes 1
and 2, when the resultant load exerts an overturning moment about these
axes (Fig. 3.7). Even though all the above modes of failure by rotation
are conceivable, under normal conditions the most probably axes of rotation
are 310 and 320 (Fig. 3.7) and therefore consideration is given only to
rotations about these two axes in this section. The treatment of rotation
about 0C, 0D, alB or 328 is similiar and is not developed in this report.
The axes of rotation alo and 320 pass through O and are perpendicular
to planes 1 and 2 respectively, In a rotation, say about the 310 axis,
all points of the wedge in the region of the area ODB move tangential to
plane 1 while the surface OCB of the rock wedge separates from plane 2.

The equations of the 310 and 320 axes are obtained as follows:

le = oW (3.37)
dyp = W, (3.38)

In the analysis for rotations, it is necessary to know the points

of application of the various forces acting on the rock wedge OBCD so
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FIG.3.7 ROTATIONAL STABILITY OF A WEDGE BOUNDED BY
TWO JOINT PLANES
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that the point of application 1 (Fig. 2.8) of the resultant force R
can be determined. The weight W acts vertically downwards at the center
of gravity S of the rock wedge as shown in Fig. 2.8, The vector 0S as

shown in Fig. 2.8 can be obtained from geometrical considerations as

—_ e — (also Eq. 2.34
where the vectors 0D, OC and 08 are given by the following equations:
® ) Py hy
o0 = (tan Q tan Bl ~ tan ) sin 81 *tana hl) (3.40)
h h h
Y P 1 - 1 1
0C = (Gan o tan B, tan y, sing,’ tan o’ h)) (3.41)
08 = h, + h 3.42
X122 1 2
tan a - tan ex tan &
hy = Ton €, - tans "tana (3.43)

where hl’ h2’ a, 6, Yo Bls vp» and B, are defined in Fig. 3.9.

The weight of the rock wedge can be determined from its volume V which is

given by:
V=g [0B' x DC|(h, + hy) (3.44)
(also Eq. 2,33)
where
| DC = OC - 0D (3.45)
)
: DB' = 0B' - 0D (3.46)
‘ x
! = 12 hy (3.47)
X122

The point of application, I, of the resultant force R is determined
from the known magnitudes and lines of action of the component forces
by using Eq. (2.27) and the principles of vector analysis as explained

in Chapter 2,
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For a rotation to be possible about the 310 axis, the resultant

force R must have a positive scalar component of moment about the ;12 and

djo axes as evaluated by Eq. (2.28); i.e.,

Mx = moment of R about ;12 = 212'(5fxﬁ)> 0] (3.48)
and Mjjo = moment of R about alo = alo-(afx§)> 0 (3.49)

Similarly the moments of R about the ;12 and 320 axes have to satisfy

Eqs. (3.50) and (3.51) if a rotation is to occur about the 320 axis.

M = ;‘12 . (OIxR) <0 (3.50)
and My20 = 920 ° (0IxR) > O (3.51)

In addition a few kinematic tests must also be satisfied and these
tests are dependent on the magnitude of the angles n, kno and k20 which
are defined as follows:

n = wedge angle between planes 1 and 2

= cos”! (W +w,) 0O<n< x (3.52)
-1 0D-08

klO = DOB = cos (m 0«< klo < 1 (3.53)
-1 OC.0B

kyo = COB = cos 50 (08) 0< kyg < @ (3.54)

The range of angles 7, kK10 and k,, for which a rotation about the 310 and
320 axes is kinematically impossible, is given in Table 3.1.

The analyses for determining the static factor of safety for rotations
about d,, and 320 axes are similar in principle and therefore the details
of the analysis will be given only for the case of rotation about the 310
axis,

The resultant R is first resolved into components ﬁl and ?l at

its point of intersection, Q, with plane 1, as shown in Fig. 3,7(a). Thus

e o - Rt R -




O<nen
O<n<n

<ﬁ/2

0<n<ﬂ
O<n<"

<n/2

Table 3.1

Axis of Rotation: d

k10

>n/2
<n/2

>ﬂ/2

Axis

10

>n/2
>n/2

<x/2

Range of Angles for which a rotation
is kinematically Iimpossible.

10
kzo Supplementary
Condition
>n/2 -
>x/2 -
tan k
20
<x/2 TanTa-k >sec(n=n)
0
of Rotation: dzo
k20 Supplementary
Condition
>n/2
<n/2
tan klO
>n/2 tan (n-ky > sec(x-n)
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'-‘1 = (ﬁ-&l)&l (3.55)
and

T, =R-N (3.56)

The component ?1 tangential to plane 1 is now resolved into components Tr

and ?t [Fig. 3.7(b)]. The force ?r has the direction of the vector Q0 and
the force ?t has the direction of the tangent to the rotation which Q !
executes in the case of a rotation about alo. The force ?t is thus
the only component of the loading which exerts an overturning moment ,

about the 310 axis, The resolution of force ?1 into its components Tt
is done as follows:

Ty =T + T =c (00 +c,(0Q x w) (3.57)
In Eq. 3.57, -36 and 36 X Ql are vectors in the direction of ?r and ?t'
By equating the x, y and z components of ?l as given by Egs. 3.56 and
3.57, the values of the two coefficients < and c, may be determined.
Eqs. 3.56 and 3.57 give three equations for the two unknowns € and c,

and therefore one of these equations can be used to check the calculations

for ¢, and c,. With c; and c, known, ?r and ?t are obtained as follows:
T =-c, 0Q (3.58)
T, = cz(OQ x wl) (3.59)

The magnitude of the overturning moment "le can be obtained by the relation:

Myjo= T, ® (3.60)

The magnitude of the restoring moment of the frictional force on plane 1

due to the normal component il is obtained as

M 410 ™ Ny tan ¢ 0Q (3.61)
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The factor of safety against rotation can now be obtained as the ratio of

the restoring moment to the overturning moment

Nltan 4 0Q
Tt 0Q

F.s.lagainst rotation) = = Nltan¢l/Tt (3.62)

The factor of safety against rotation about the 320 axis can also be
determined in a similar manner, Moments Mle and MdZO are very often
negative and in these cases only the sliding stability need be analyzed.

3.4,2 calculation of Dynamic Resistance Against Sliding on Two Planes

The direction and magnitude of the minimum dynamic resistance NW
which is necessary to just make the potential block Slide on the two
base planes may be found by the following procedure.

A unit vector ;l is first defined in the direction of the resultant
reaction ﬁl on plane 1 (Fig. 3.8). 1In the limiting state of equilibrium
ﬁl is inclined at an angle ¢ to the upward normal -Ql to plane 1 and
tends to oppose the downward movement along the line of intersection §12.
Therefore,

;l = -Ql cos ¢1 - ;12 sin ¢,/x,, (3.63)
Similarly a unit vector ?2 is defined in the direct’'on of the resultant

reaction ﬁz on plane 2, From Fig, 3.8 it can be seen that

?2 = GZ cos ¢2 - 212 sin ¢2/xlz (3.64)

where ¢, is the angle of friction on plane 2.
The magnitude of the dynamic resistance vector W will be a minimum
when the vector NW is normal to the plane containing Rl and ﬁz. Therefore

a unit vector n in the direction of NW may be obtained by the equation:

n=(r x AUCERA (3.65)
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where I;l x F2| represents the magnitude of the vector (?l x ?2).

The magnitude of the minimum dynamic resistance, NW, may now be deter-
mined by the equation
NW=R"n (3.66)
where R is the resultant of all static loads acting on the sliding rock

wedge. From Eq. 3.66 it follows that

N=R_on (3.67)

3.4.3 Example Problems for Slopes with Two Intersecting Planes of Dis-~

continuity Worked by Vector Analysis.

Problem 1
Determine the factor of safety of the rock wedge OBCD shown in Fig.
3.9. Also estimate the direction and magnitude of the minimum dynamic

resistance NW which is necessary to just make the potential block O0BCD

slide.
Plane 1 Plane 2
B, = 36° 8, = 94°
v, = 62° v, = 121°
¢, = 20° 4, = 40°
a= 70° § = 20°
Solution

Static Factor of safety against sliding

According to Eqs. 2.13, 2,14 and 2.15, for plane 1,
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FIG. 3.9 STABILITY OF A ROCK WEDGE BOUNDED BY TWO
JOINT PLANES
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u, = (0.809, 0.588, 0.000) (2.13)

31 = (0.276, -0,380, -0.883) (2.14)

;l = (-0.519, 0.714, ~0.469) (2.15)
and for plane 2,

u, = (-0.070, 0.998, 0.000) (2.13)

v, = (-0.514, -0.036, -0.857) (2.14)

w, = (-0.855, -0.060, 0.515) (2.15)

The only load that enters the calculation in this problem is the weight
W of the rock wedge OBCD acting vertically downwards in the -~z direction,
Therefore the resultant load R may be expressed as

R = (0, 0, -W)

C W 0.469%W > 0

2t

L}

Y2
Therefore lifting off of the rock wedge from the support planes does

and R -

-0.515W < O (3.14a)

not occur.
X1g = Wy X W)
, = (-0.340, -0.669, -0.642) (2.16)
5 and X)p = 0.987
| 1512 = X2 X W (3.15)
= (0.722, 0,172, -0.590)
and 2§12 = ;12 x ;2 (3.15)
= (-0.383, 0.725, -0.551)
R+}5), = 0.590W > 0 (3.16)
§-2§12 = 0.551W > 0 (3.17)
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X
e = tan ) (=12%)
X x12y
= tan"} (:—8'—2%-:-) - 43.8° (3.19)
L8 < ¢ < (3.18)

Thus according to Eqs. 3.16, 3.17, and 3.18, sliding is kinematically

possible only along the line of intersection ;12' Since ﬁ.;lz = 0.642w> 0

sliding tends to occur down the line of intersection.

Tyg = R xpp/xp = 0.642W/0.987 (3.29)
= 0,650W
= ;12
and Ty, = 0.650W —= = (-0.223w, -0.440W, -0.420W) (3.30)
12
ﬁlz = R - T, = (0.223w, 0.440w, -0.580W) (3.31)
= Nl;l + Nz('V-Vz) (3.32)
= N, (-0.519 , 0.714, -0.469) +
N,(0.855, 0.060, -0.515)
| Solving Ny = 0.565w, N, = 0.605w
|
A N, tan ¢, + N, tan ¢
' Fs, o t—13 2 12 (3.36)
! 12

_ 0.565W tan 20° + 0,605W tan 40°
0.650w

= 1,10
Stability against rotation.
According to Eqs. 3.39 through 3.43

0D = (-0.404h , 0.346h,, h)) (3.40)

li

0D = l.l38hl

At i e




0C = (0.602h1. 0.364hl, hy) {3.41)
0C = 1.220h
08 = (0.741h, 1.460h,, 1.398h,) (3.42)
08 = 2.155h,
05 = (0.235h,, 0.547h;, 0.850h,) (3.39)

1n order to apply the kinematic tests for rotation, it is necessary to

establish the values of the angles klO’ k20 and n .

-1 0D-0B

kip = cos ©ool8 = 48.1° < 572 (3.53)

kyo = cos™ ' é%ﬁ%g = 25.3° < 572 (3.54)

n = cos'l(»}l C W) = 80.9° < /2 (3.52)

Moo= ;12 . (OIxR) (3.48)
= X, * (05 x R) = 0.03wh,> ©

For these values of N, k|4, k,q and M_, a rotation about axis alo is

kinematically possible. However the rotation can occur only if Mle > 0.,

do = -&1 = (0.519, ~0.714, 0.469) (3.37)

I=0S= (0.235h;, 0.547h, 0.850h,)

410 = 950 ° (01 x R) (3.49)

x

-0.452Vhl <0

Therefore rotation about alo axis does not occur,
Minimum Dynamic Resistance

The unit vector ;l in the direction of the resultant reaction on
plane 1 is given by Eq. 3.63 as

Fl = (0.607, -0.439, 0.663) (3.63)
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The unit vector ;2 in the direction of the resultant reaction on plane

2 can be obtained in a similar manner from Eq. 3.64

e

7’2 = (-0,434, 0,388, 0.810) (3.64)

The unit vector in the direction of the minimum dynamic resistance vector

NW is then given by

Fl x ;2
n=——— = (-0.616, -0.785, 0,046) (3.65)
lryxr, |

The magnitude of the minimum dynamic resistance is now obtained as

NW = |R-n| = 0.046w (3.66) I

or N = 0,046 (3.67)
Problem 2
Determine the factor of safety of the rock wedge OBCD shown in Fig.

3.10 when (@) P = 0 and (b) P = 10 tons in the positive y direction.

Plane 1 Plane 2

¢, = 30° 6, = 30° l

B, =17° 8, = 63° ‘

y = 60° v, = 80° I
a = 90° s =0° i

Point of application of P is S such that 05 = (-6.1, 2.0, 9.0). The dimen-

sions are in feet units.

Solution
Case (a) P= 0
Static Factor of Safety against sliding

For plane 1,

‘-’1 = (0,955, 0,292, 0.000) (2.13)




a=0°

Y =160 pcf

FIG. 3.10 STABILITY OF A ROCK WEDGE BOUNDED BY TWO

JOINT PLANES
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31 (0.146, -0.478, -0.866)

(-0.253, 0.827, -0.499)

3
-
n

For plane 2,

(0.454, 0,890, 0,000)

uz-
Gz = (0.155, -0.079, -0,985)
;2 = (-0,877, 0.447, -0.174)

when P = 0
R = (0, 0, -W)
where W = weight of the rock wedge 0BCD
Xlz = Wz X Nl
= (-0.079, -0.394, -0.594)

0.717

1512 = *12 X W

(0.688, 0.110, -0.165)

2512 = X12 X %
= (0.334, 0.507, -0.381)

R-.5.., = 0.165W > O and

3.2512 = 0,38lw >0

-1 X122 -1 ,-0,594
€, = tan " (355) = tan " (T5iygy)

12y

= 56.4°
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(2.16)

(3.15)
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(3.17)

(3.19)

(3.18)
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Stabijlity against Rotati

—_— T - —

oD =

gl 8 8 8
[}

\ possible only along the
r Since R-x), = 0.594W > 0,
section.
T2
12
N2 =
3
Solving N,
F.S.

line of intersection ;12.

=R - x12/x12 = 0.549W/0.717

0.828w

X
0.8280 —2
12

(-0.091wW, -0,455w, -0.696W)

t
o
[}
-

(0.091w, 0.455W, -0.314VW)

Nyw) + Ny (-wy)

Nl(-0.253, 0.827, -0,499) +

N,(0.877, -0.477, 0.174)

= 0,314v

0.733w, N,

_ 0.733 tan 30° + 0.314W tan 30°

0.828w
=0.73 < 1

on.

(-23.70, 0, 12.00)
26.60
(-2.40, O, 12.00)
12,25
12 94, -0.59%
= 70593 (-0.079, -0,394, -0. )

(1.60, 8,00, 12,00)
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Thus according to Eqs. 3.16, 3.17 and 3.18, sliding is kinematically

sliding tends to occur down the line of inter-

(3.29)

(3.30)

(3.31)

(3.40)

(3.41)

(3.42)
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08 = 14.50

— ) — —

0s = 7 (0B +0C + 0D) (3.39)

= (-6.10, 2.00, 9.00)

-1 ,0D°08

kyjg = cos (55733) = 74° < 52 (3.53)
-1 ,0C°0B

kyo = cos | (e = 38° < /2 (3.54)

n=cos Gy W) = 47.4° < 52 (3.52)
M= Xy {0S x R) (3.48)

2.561W > O indicating thereby that the resultant

R intersects plane 1. For these values of n, klO’ k20’ and Hx a rotation

about axis 310 is kinematically possible.

dg = -&l = (0.253, -0.827, 0.499) (3.37)
Mi10 = dig ° (oS x R) (3.49)
= 4,539 > 0

Therefore a rotation can occur about the 310 axis and the factor of safety

against rotation can be determined as follows:

Ny =R w = 0.499
Nl = (R - al>al = (~0.126W, 0.413w, -0.250W)  (3.55)
?l =R - ﬁl = (0.126W, -0.413w, -0.750W) (3.56)
= cl (‘E) + cz(a x ;'l) (3-57)
0Q = O + ¥R = 05 + ¥R
=[-6.1, 2.0, (9.0~-w)]
61
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Since 0Q and Ql are mutually perpendicular, 0Q - w, = O

1

L (6.1 x 0.253) + (2.0 x 0.827) -0.499 (9.0 - ¥y) = 0

(9.0 - vw) = 6.40

0Q = (-6.10, 2,00, 6.40)
0 x w, = (-6.29, -4.67, -4.54)

T = {0.126w, -0.413W, -0.750W)

= ¢,(6.10, -2.00, -6.40) + c,(-6.29, _4.67, -4.54)

Sovling ¢y = 0.078w; c, = 0.055w

T, = cz(OQ x wy) (3.59)

= (-0.346w, -0.257wW, -0.250W)
T, = 0.498v

N, tan ¢ o
_ 1 1 _ 90.499W x tan 30~

F.S. = T = LT = 0,58 (3.62)

Note: It may be noted that all the lengths in the above case are expressed

' in feet-units.

case (b) P = (0, 10, 0)

In Case (a) the only force in the system is the weight W of the rock

wedge and it is not necessary to know the magnitude of W for estimating

St e o

the factor of safety of the rock wedge. But in Case (b) there is an
additional external force P of magnitude 10 tons acting in the positive
y-direction through the center of gravity, S, of the rock wedge and there-
fore it becomes necessary, in the present case, to compute the magnitude

of W.
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h2 =0

OC = OC - OD

= (21,30, 0, 0)

X12
X122

08 =

hy

(1.60, 7.96, 12.00)
DB' = 0B' - 0D

= (25,30, 7,96, 0)
v = 3[58" x BE|(hy + hy)

= 339.1 ft3

339.1 x 160

2000 = 27.13 tons

=
[}

(0, 0, -27.13)

t o]
"

ot
[}

(0, 10, 0)

W+ P= (0, 10, -27.13)

-1
n

S

0

“ 1512 © 5.58 >0

i R+ ,5,=15.41>0
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sliding tends to occur down the line of intersection.

(3.43)

(3.45)

(3.47)

(3.46)
(3.46)

(3.44)

(3.16)

(3.17)

The above values show that sliding is kinematically possibly only along

the line of intersection of planes 1 and 2. Since R ° ;12 = 12,48 > 0,
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Typ = R v Xp/%), = 12.48/0.717 = 17.41 (3.29)
?12 = 17.41 ilz/x12 = (-1.918, -9.567, -14,423) (3.30)
ﬁlz =R - ?12 = (1.918, 19.567, -12.707) (3.31)

Nl(—0.253, 0.827, -0.499) +
N2(0.877, -0.447. 0.174)

Solving N, = 29.4 tons N, = 10.7 tons

s - 29.4 tan 30° + 10.7 tan 30°
Al 17.41

= 1,33
Stability against Rotation.

Mx = Xy ° (0S x R)

= 112.84 > 0
The resultant R intersects plane 1 as in Case (a).

n = 47.4°% < /2

Kyo = 74° < 472
| = 18°
ﬁ For these values of n, k5, kyq, and M.» a rotation about djg is kine-
[}
' matically possible.
djo = -w, = (0.253, -0.827, 0.499) (3.37)
Mg10 = 910 ° {0S x R)
=70.0>0
Therefore a rotation tends to occur about the alo axis. The factor of
safety aginst rotation can be determined as follows.
Nl =R . wl = 21,83
64
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Ny =N ‘7‘1 = (-5.523, 18.053, -10.893) (3.55)
?1 =R - ﬁl = (5.523, -8.053, -16.237) (3.56)

= ¢)(-00) + ¢, (0Q x w)) (3.57)
00 = 0l *YR =105 + W

= [-6.1, (2.0 + 109, (9.0 - 27.13¥)]

0Q and ;l are mutually perpendicular
o0q . W, = 0
(6.1 x 0,253) + (2.0+ 109 0,827 - 0.499(9.0 - 27.13¥) = O
Solving ¥ = 0,0593
. 0 = (-6.10, 2.59, 7.39)
0 x wy = (-7.41, -4.91, -4.39)

T (5.523, -8.,053,-16.237)

"

1

= cl(6.10, -2.59, -7.39) +

cz(-7.4l, -4.91, -4.39)

Solving ¢ = 1.77 cy = 0.71

—
L}

¢, (00 x w)) (3.59)

I o-—
]

0.71(-7.41, -4.91, -4.39)

(-5.261, -3.496, -3.117)

Tt = 7.04 tons
fo o N4 21,83 ran 30°
Se=T3 7.04
t
1,79

Thus the provision of the lateral force P increases the stability of the
wedge OBCD against both sliding and rotation,
Note: In case (b) all the forces are in ton-units and all the lengths are

in feet-units,
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3.5 Analysis for Sliding on Two Planes by Engineering Graphics

The factor of safety of a rock wedge sliding on the two base planes

can also be determined graphically by using the principles of engineering

descriptive geometry. To illustrate the procedure, Problem 1 of section

R

3.4.3 will be solved using this method. The details of this graphical
golutioi ers shown in Fig. 3.11.

The !1nes DB' and CB' represent the strikes of planes 1 and 2 inclined

e o ——— i AREA TP, o

at angles B, and 8, with the front of the slope, I-I. An edge view of
each plane is drawn as an auxiliary elevation to locate the position of S
a point O common to both the planes situated at any depth, d, below the

horizontal plane DCB'., Since B' is also a point common to both the planes,

B'0 represents the line of intersection of planes 1 and 2, A side elevation o
parallel to B'U gives the true dip of the line of intersection B'0. The
weight vector W is then resolved into components NIZ and le, respectively
normal and parallel to the line of intersection B'O as shown in Fig. 3.11.
An auxiliary elevation of the two planes looking in the direction 0B' s

obtained and the components ﬁl and ﬁz of ﬁlZ normal to planes 1 and 2

PP R ]

respectively are then determined, Once the magnitudes of ﬁl and ﬁz are

R

known, the factor of safety is computed using the relationship

N, tan ¢, + N, tan ¢
F.5. == I 2 (3.36)
T2

3.6 Method of Stability Analysis for Rock Slopes with Three Intersecting

Joint Sets. ¢

In this section, the stability against sliding of a tetrahedral volume

Lol

of rock, ABCD bounded by three planes 1, 2 and 3 and an exterior surface

ABD, is investigated by using Londe's method of analysis (F’g. 3.12),
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FiG. 3.11

GRAPHICAL SOLUTION OF SLIDING STABILITY OF
A ROCK WEDGE BOUNDED BY TWO JOINT PLANES
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FIG. 3.12 FORCES ON A ROCK WEDGE BOUNDED BY THREE
INTERSECTING JOINT PLANES
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Sliding failure of the tetrahedral rock mass ABCD, can occur by separation

from one or two of the three bounding planes. There are thus six possible

e a5

modes of sliding failure as shown in Fig. 3.13. The mode of failure in a

given case will depend on the geometry of the problem and the magnitude
and direction of the resultant of the applied forces, R, as defined by

the equation: i
Re+Q+0) +0, +10, (3.68)

Where W = (wx, wy, V7) total weight vector of the tetrahedral volume of

rock ?
Q= (Qx’ Qy’ Qz) = any externally applied force on the rock wedge

Ull Uz’ U

3 hydrostatic uplift or porewater forces that act on

planes 1, 2 and 3 resepectively
The first step in the stability analysis of the rock wedge ABCD, is to deter-
mine the mode of sliding failure for a given set of input conditions. This
@n be done as explained in the following section.

3.6.1 Determination of the Mode of Sliding Failure (Fig. 3.14)

Let ;l’ QZ and &3 represent unit vectors normal to planes 1, 2 and 3
respectively, directed towards the inside of the rock volume. The resultant
force R lifts the tetrahedron from all three contact faces if all the three

following equations are satisfied simultaneously

R >0 (3.69)
(3.70)

>0 (3.71)

In such a case equilibrium is not possible unless the joints can take tension

or rock bolts are provided to resist the tensile forces across the faces.




NATURE OF CONTACT OPEN
SLIDING FACES FACES DIAGRAM

Direction CB 2and 3 |
Direction CA 3and! 2
Direction D ) and 2 3

In Plane 3.
Direction Between 3 | and 2
C8 and CA

A 8

D
in Plane |
Direction Between l 2and 3
CA and CB
-]

In Plone 2
Direction Between 2 3and |
CD and CB

FIG 3,13 MODES OF SLIDING FAILURE OF A ROCK WEDGE BOUNDED
B8Y THREE INTERSECTING JOINT SETS
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If Eqs. 3.69 through 3.71 show that lifting off of the wedge from the support
planes does not occur, then further kinematic tests must be made to determine
the mode of sliding failure.

The vectors ;12, ;23 and ;31 along the lines of intersection CD, CB

and CA are given by the following equations:

X1g = Wy X W (3.72)
Xgq = Wy X W, (3.73)
Xq) = W) X Wg (3.74)

Let us now define two new vectors, l§12 and 2512 orthogonal to ;12 and lying

in planes 1 and 2 respectively as follows:

3 (3.75)

1°12 © *12 ¥ "

S,, = w (3.76)

2°12 " Y2 X X2

Similarly the vectors 2523 and 3§23 normal to ;23 and lying in planes 2

and 3 respectively are given by

2523 = %3 X W 3.77)

S23 = W3 X X3 (3.78)

The vectors 1331 and 33 normal to ;31 and lying in planes 1 and 3 re-

31

spectively are similarly given by

3531 = %31 X%

1531 = W X X3) (3.80)

(3.79)

The orientations of all the vectors defined by Eqs. 3.72 through 3.80 are

shown in Fig, 3.14,

n
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FI1G. 3.14 STABILITY OF A ROCK WEDGE BOUNDED BY THREE
INTERSECTING JOINT PLANES
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If sliding is to occur along the line of intersection ;12' the resultant
R of the applied forces must have a component along 212 which tends to open

up plane 3. This condition can be represented vectorially by the equation

R - ;12-3 0 (3.81)

In addition the components of R on plane 1 and 2 along vectors l§12 and

2312 must be directed towards the line of intersection §12. In other words,

> 0 (3.82)

R 15122

R*.5,,>0 (3.83)
Eqs. 3.81 through 3.83 must be satisfied simul taneously if the rock wedge
ABCD is to slide along ;12 with face 3 open. The conditions to be satisfied
{ for sliding to occur along ;23 and ;31 can be obtained in a similar manner.

They are:

For sliding along ;23, R« ;23 >0 (3.84) i
R - 2§23; 0 (3.85) !
R . 3§23 >0 . (3.86) |
For sliding along ;31’ R - ;31 >0 (3.87)
R 5,2 0 (3.88)
R - 3§311 0 (3.89)

If sliding is to occur on any one plane only, say on plane 1, then R must
have a component normal to plane | directed towards the outside of the rock

wedge ABCD. In other words

R Ql < 0 (3.90)
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In addition the components of R on plane 1 along 1512 and 1531 must be

directed away from ;12 and ;31' In other words

R+ 5520 (3.91)

© 155 20 (3.92)
The corresponding equations for cases of sliding on planes 2 and 3 are as
follows.

For sliding on plane 2 only:

R v'wz <0 (3.93)

R - 2§23 <0 (3.95)
For sliding on plane 3 only:

R ° ;3 <0 (3.96)

R - 3323 <0 (3.97)

R -« 3531 <0 (3.98)

3.6.2 cCalculation of the Factor of Safety for Sliding

After deciding on the mode of sliding failure based on the kinematic
tests mentioned above, the next step is to estimate the factor of safety
against sliding under the given conditions, The procedure for estimating
the factor of safety is basically the same as that explained in Section 3.4,1.3
of this chapter for the case of a rock wedge bounded by two joint planes.

Three example problems have been added to illustrate the method of analysis.

In the preceding analysis, of Section 3.6.1, however, it has been tactily

assumed that the critical rock wedge is bounded by all the three joint planes

and the exterior slope face as shown in Fig, 3.12, When the field conditions
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are such that this assumption is valid, the method of stability analysis
presented above is directly applicable, But in a majority of cases, it

is likely that the critical rock wedge is bounded by two (rather than by all
the three) joint planes. Under these conditions the stability analysis has
to be performed as explained in Section 3.4.1.3.

3.6.3 Example Problems for Slopes with Three Intersecting Planes of

Discontinuity Worked by Vector Analysis
Problem 1

Determine the factor of safety against sliding of the rock wedge ABCD
shown in Fig. 3.12. Also estimate the direction and magnitude of the minimum
dynamic resistance NW which is necessary to just make the potential block
ABCD slide.

w, = (0.00, 0.72, 0.69)

Qz = (0.63, -0.12, 0.77)
&s = (0.00, 0,00 1.00)

W= (0, 0, -36.5 tons) Q= (0, 0, 0)

U, = 23,6 tons U, = 8.0 tons Ua = 5,7 tons

o (¢}
¢, = 40 ¢, = 40 ¢, = 40

Solution

+ 0+ 10

b -1]
| |
)

o

RO+, + T, (3.68)

=W+Q+ ul&l + Uz;z + 03;3

= (5,05, 16.04, -8.34) all in ton-units
R = 18.8 tons
;12 = (-0.638, -0.435, 0.454) (3.72)
X12 = 0.895

R R T sl s




Thus plane 3 Is closed and a failure by lifting from the base planes does

(0.120, 0.630, 0)

23

Xyq = 0.640

231 = (0.720, 0, 0)

X3 = 0.720

1512 = (-0.626, 0.440, -0.459)
2§12 = (0.280, -0.777, -0.351)
2523 = (0,485, -0.093, -0.410)
3§23 = (-0.630, 0.120, 0)
3§31 = (0, -0.720, 0)

S = (0, 0.497, -0.518)

131

R §3 = -8,34 < 0

not occur.

Eqs.

3.96 through 3.

R - 3523 =-1,25 <0

R ° 3531 = =-11,55 < 0

98 thus indicate that sliding can occur only on plane 3.

N, =R ¢ bfg = 8.34 tons

3
ﬁa - Na(-'s) = (0, 0, -8.34)

F

3 = ﬁ —ﬁa = (5.05, 16.04, 0)

Ty = 16.8 tons

Ng tan ¢, 8.34 tan 40°

F.S. = =
T, 16.

= 0.42
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(3.76)
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(3.78)
(3.79)
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Problem 2 ;
Work out Problem 1 with the following changes:
u, = 12,0 tons U2 = 2,0 tons U3 = 2.0 tons

Solution

R=W+

=
=/

+ ﬁl + ﬁ2 + 0 (3.68)

=W+Q+ Ul"l + Uzw2 + anb

= (1.26, 8.40, -24.68)

R - W, =-24.68<0 (3.71) ; %

and therefore lifting off of the rock wedge from all the base planes is not

possible.
R - §23 = 545> 0 (3.84) )
R - 2523 =9.945> 0 (3.85)
R - 2§23 =0.,22> 0 (3.86)

The above equations show that sliding can occur only along the line of

intersection Xyq-

Tyg =R ng/x23 = 8,50 tons

- ;(23
T.=T,, -~ = (1.60, 8.35, 0)
<3 23 x
23
Nyg =R - Tpy = (-0.34, -.05, -24.68)

Nz (';‘2) + N3 ('-3)

Nz(-0.63. 0.12, -0.,77) +

N, (o, 0, -1.00)
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Solving N, = 0.54 tons N3 = 24,26 tons

_ 0.54 tan 40° = 24,26 tan 40°

F.S. 5,50

= 2.44

Problem 3

A rock cut slope runs East-West and the three major joint sets inter-

secting the slope have the following orientations:

Joint Plane Strike Dip
1 Na7°E 44%sg
2 N20°W 83%w
3 N69 %W 16°sw

The angle of shearing resistance on all the three joint planes is estimated
to be 20°. Determine the factor of safety of the slope against a sliding

failure.

Solution

Consider the positive x direction to be East, the positive y direction
to be North and the positive z direction to be upwards. Then the three joint

planes have the following strike and dip angles.

Plane ! Bl = 47° Y, = 44°
o o
Plane 2 82 = 110 Yy = 97
Plane 3 8, = 159° 164°
ane 3= Yg

The unit normals to planes 1, 2 and 3 can be defined by Eqs. 2.13, 2.14

and 2.15. When these normals are oriented such that they are directed

toward the interior of the rock wedge they are defined by the following

equations:
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w = (0.474, -0,508, 0,719)

w, = (-0.933, -0.339, 0.122)

&3 = (-0.099, -0.257, 0.961)

x1p = (-0.182, 0,729, 0.635) (3.72)
X12 = 0,983

;23 = (0.295, -0.885, -0.206) (3.73)
Xy = 0.955

;31 = (-0.303, -0.526, -0.172) (3.74)
x5, = 0.631

1§12 = (0.847, 0.432, -0.253) (3.75)
251 = (-0.304, 0.570, -0.741) (3.76)
2523 = (-0.178, -0.157, -0.925) (3.77)
3§23 = (0.903, 0.263, 0.163) (3.78)
3531 = (-0.550, 0.309, 0.026) (3.79)
1§3l = (0.466, -0.137, -0.403) (3.80)

R - wy = =0.719W < 0
R - Wy = ~0.122w < O
R * wy = ~0.961W < 0

Therefore failure by lifting off of all the base planes is not possible as
shown by comparison of the above three equations with Eqgs. 3.69, 3.70,
3.71. It can easily be verified that all kinematic tests are satisfied

only for sliding on plane 3. 1In other words
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R * w, =-0.96lw <0 (3.96)

3
R " 4S5 = -0.163W < 0 (3.97)
R " 484y = -0,026W < O (3.98)

Ny =R~ (-wa) = 0.961 w

N3 = N3(-Q3) = (0.095w, 0,247w, -0,924W)
ié =R - Ny = (-0.095w, -0.247W, -0.076W)
Ty = 0.275W

(o]
Fs. = 0.961W tan 20 - 1.27

0.275W
The preceding calculations have been carried out under the assumption
that the critical rock wedgeis bounded by all the three joint planes. As
has been pointed out earlier, in a majority of cases, there exists a rock
wedge, bounded by only two joint planes, which is more critical than the one
considered in the preceding analysis. As a matter of fact, in the present
problem, the rock wedge bounded by planes 1 and 2 has a lower factor of
safety with respect to sliding. The determination of the mode of failure
and the factor of safety against sliding can be done as explained in section
3.4,1.3. The details of this analysis will not be given here except the
fact that the sliding tends to occur down the line of intersection of planes
1 and 2 and that the factor of safety is 0,58 as compared to the previous
walue of 1,27,

3.7 Computer Techniques

The stability of rock slopes bounded by two or three joint sets can
also be analyzed using digital computer techniques. This method avoids
lengthy hand-calculations and is particularly useful when there is a need

for solving a whole series of stability problems.
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1.

Y

Ty

The basis of the procedure is the same as explained in the previous

sub-sections., The essential steps in this procedure are as follows (see

flow chart, Fig. 3.15):

Using the input data calculate all the required directional vector

quantities.

2. Check to see if failure by lifting off the base planes of the rock wedge
is possible,

3. 1If not, determine the probably mode of sliding failure.

4, Calculate the factor of safety for this mode of sliding failure.

S. Check for stability against the possible mode of rotation.

6. P-int the results.
A documentation and listing of the computer programs using Fortran IV

i language is given in Appendix A.

8)
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Chapter Four

GRAPHICAL SLOPE STABILITY AMALYSIS BY USE OF STEREONETS

4,1 Properties of Spherical Proiections

4.1.1 General

The orientaticn (strike and dip) of planes or lines in space
can be represented by the intersection of the plane or line with the
surface of a reference sphere through whose center the plane or line
passes. As can be seen in Figure 4.1, the intersection of a plane with
the sphere is a great circle, while a line which parallels the plane
will plot as two points, !BO degrees apart, on the great circle. A
plane can also be represented by the intersection of its normal with
the sphere {the pole of the plane), which will plot as a point located
90 degrees from the great circle, in both the upper and lower hemispheres
of the sphere.

To communicate this information, a two~dimensional representation
of the spherical projection is necessary. Several types of projection
can be used to transfer great circles and points from the spherical
surface to the equatorial plane of the sphere.

The equal angle projection (termed a Wulff net or stereonet) is
the method used in this report because of the simplicity in plotting
the projections. Each great circle on the sphere plots as an arc of a
circle on the equatorial plane of the sphere.

Another type of projection, the equal area projection, is used for
compiling statistical information on the frequency and orientation of

lines or planes, It therefore should be used to plot and evaluate the
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Line Parallel To Plane A

Pole Of Plane A

Equatorial Plane

Projection Of Plane A
On Lower Hemisphere

FIG. 4.1 PROJECTION OF PLANE AND LINES ON

A SPHERE
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raw data from field and borehole mapping of joints and other geologic
discontinuities. The equal area projection of great circles from the
sphere to the equatorial plane results in a distortion from the circular
arc, and therefore is not quite as simple to use for stability analyses
as the equal angle projection.

4,1.2 Equal Angle Projections

Figures 4.2 and 4.3 show the lower hemisphere, equal angle method

for projecting a point from the surface of the sphere to equatorial
plane.

A line is drawn from point P on the sphere to the upper pole, U,
of the equatorial plane (dashed line in Fig. 4.2 and 4.3). The inter-
section of this line with the equatorial plane (P') is the desired pro-
jection of point P. 1In Figure 4.2, the projection of plane A and point
P from the lower hemisphere to the equatorial plane is shown; the projec-
tion of plane A plots as an arc of a circle (or line of meridian) on the
equatorial plane,

The projection of a vertical plane will project as a straight line
through the origin of the equatorial plane. A horizontal plane will project
as a line of meridian having a radius equal to the radius of the sphere,
with the same origin, All points projected from the lower hemisphere
will plot within this circle on the equatorial plane, Points from the
upper hemisphere projected on the equatorial plane will plot outside the
radius of the sphere, as can be seen for the projection, Q', of point Q
in Figure 4.3,

A diagram of the stereonet obtained from an equal angle, lower

hemisphere projection is shown in Fig, 4.4, The lines of meridian
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Projection of Plane A
on Equotorial Pigone

Equatorial Plane

Plane A !

Angle Between OP gnd OR, Boch
Lines Parallel to Plane

-

FIG.4.2 EQUAL ANGLE PROJECTION FROM LOWER

HEMISPHERE TO EQUATORIAL PLANE OF
THE SPHERE




Q' is o Projection of Point Q (Q is Above the Equatorial
Plone) P'is o Projection of Point P (P is Below the
Equatoria! Plane )

U Upper Pole

Reference Sphere

V Equatorial Plane

PRSNGSR R R S

F1G.4.3 PROFILE OF SPHERE SHOWING METHOD OF
EQUAL ANGLE, LOWER HEMISPHERE
PROJECTION
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Plane A 20 STRIKE

Strike N-S
Dip 40°W
80, 60
R': N42°W Dip 29°
\7O
Pole Of
*9 Plane A %0
w v > V E
‘ 1020304.05.05010307507_009 4 30 20 10
Angle Between Lines / ] Dip Angles |
OR And OP = 100° 4
70 | 70
[ ) 60
D Pl: S24°W Dip 19° A
40 40
30 30
20 20 Lines OR And OP Are
19° 0 "g 10 Parallel To Plane A

g —

FIG. 4.4 STEREONET ( WULFF NET) (EQUAL ANGLE PROJECTION)

88




)

v '_"'-,1 % t%f”},:ﬂ"‘l{" 3 T s ) g .
PRSI O ﬁ**”ﬂ’—‘?v«‘:%fﬂ\?ﬁ#@m::w P S L R e X mﬁ:ﬂM—- TR M v AT R g Y N YO e R

through the N and § poles of this diagram represent great circles resulting
from the Intersection of N-S- striking planes with the reference spnere. ;

Dip angles for these planes are shown on the E-W axis of the stereonet.

The meridians for steeply dipping planes will approach straight lines
on this plot, while the meridians for flat-lying planes will plot as
arcs of circles having radii approaching the radius of the reference

sphere. Each of the meridians is divided into 180 degrees by E<W lines

of latitude, which plot as arcs of circles on the equal angle stereonet.

To represent a plane which strikes other than N-S, the stereonet of

i

Fig. 4.4 must be rotated so that its N-S axis is aligned In the direction
of the strike of the given plane. The meridian can then be traced from
the stereonet so that it is oriented in its proper strike direction.

Note that the true dip of a plane or line should be determined by orient-
ing the E-W axis of the stereonet so that it is in the direction of the
dip of the line or plane.

Stereonets similar to that shown in Fig. 4.4 are available from
graphic aid suppliers. It is suggested that such a stereonet be used for
the example problems of this report by overlaying clear vellum on the
stereonet and rotating the stereonet about its center, beneath the sheet

of vellum, to plot planes and lines of various strikes and dips.

In Figure 4.4 the great circle projection of Plane A (dipping a0°
r west and striking N-S) plots as a line of meridian. The pole (or normal)

of plane A Is located 90° from the plane. Lines parallel to plane A

i plot as points on this line of meridian. The angle between two such
lines, OP and OR is 100° and is found by counting the lines of latitude

along the meridian, between points R' and P'.




Figure 4.5 shows the projection of two planes on the stereonet, one
striking N-S, the other N 42° E. The orientation of the line of inter--
section of the two planes is determined from the point of intersection

of the two meridians. In this case the line of intersection dips at an

angle 24° in a direction of S 32° W. All of this information can be

determined by using the stereonet, rotating it as required to plot lines
of meridian and read angles. The dip angle is read by rotating the
stereonet until either the NS or EW axis coincides with the direction of
dip. The dip angle is then read in degrees from the outer edge of the
stereonet.

4.2 Use of Stereonet to Evaluate Driving and Resisting Forces on a

Potential Sliding Wedge of Rock

The use of the stereonet in stability analyses has been described
by John (1968), Goodman (1964). The stereonet can be used to evaluate
the stability of a three-dimensional wedge of rock resting on planes
having frictional resistances. The method is very similar to the two-
dimensional graphical force polygon used to sum forces. However, only
the orientation (and not the magnitude) of forces is determined directly
from the stereonet. If the resultant driving force acts at an angle
further from the normal to the potential failure planes than the angle of
the maximum resisting reaction on the planes, then sliding will occur,
Note that the location of the forces and reactions is not known, and
a summation of moments is not carried out,

The stability analysis is divided into two distinct parts. In the
first part the orientation of the maximum resisting reaction on the

potential failure planes is plotted on the stereonet. (For sliding on a
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single plane, the maximum reaction would be oriented at @ degrees to
the normal of the plane.) Zones of stability and instability can thus
be outlined on the stereonet, strictly by considering the orientation
of the reactions on the potential sliding planes.

The second part involves determination of the orientation of the
resultant driving force acting on the wedge. This force may include
the weight of the wedge as well as acceleration forces, uplift water
pressures on the planes of failure, and driving forces on the wedge
from structures such as dam abutments. Graphical addition of vectors
is used in conjunction with the stereonet to determine the orientation
of the resultant vector force. If the orientation of the resultant
driving force falls within the zone of stability on the stereogram,
then the wedge is stable; if the orientation of the resultant driving
force lies outside the stable zone, then the wedge is unstable.,

Not only is the stereonet method of evaluating the stability of
a wedge simple and rapid, it also possesses the advantage that a variety
of forces required to cause failure or, conversely, to ensure stability

can be clearly visualized, without resorting to extensive computations.

4,3 Sliding on a Sinqle Fricitional Plane

The simple case of sliding on a single plane is described, to illus-
trate the use of the stereonet in stability analysis. Of course, a true
two-dimensional problem (where the resultant driving vector force, R,
acts in the direction of the dip) is more simply solved using a conven-
tional two-dimensional force polygon. However, for cases where the
driving vector is not in the direction of the dip (such as might occur

when an abutment load acts on a wedge), the stereographic method can
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be used to solve problems which cannot be readily solved using a two-
dimensional force polygon.
4.3.1 Orientation of reaction force on the plane of failure

The reacti-n force at failure, EL (surmation of the normal force,
ﬁ, and maximum shear force, S) is oriented at the angle of friction @,
from the normal to the plane. Should the tendency for sliding be down-
dip, then S acts upslope and ﬁL is as shown in Fig. 4.6a. A friction
cone can be drawn to show the possible orientations of RL for sliding
in other directions. The sides of the cone are oriented at P degrees
to the nomal, as shown in Fig. 4.6a and b. As long as the resultant
driving vector, R, acts at an angle less than § degrees to the normal,
then sliding will not occur in any direction. When R = RL’ sliding is
initiated,

A friction cone will plot as a circle on an equal angle stereonet,
as shown in Fig. 4.6c. The position of the normal force is first
located on the stereonet. (The position of the normal force is located
at the pole of the plane.) The friction circle can then be drawn by
marking off 40 degree angles from N, on great circles passing through
N. (Note that N is not in the center of the circle formed by the
friction cone.)

4.3.2 Stability of wedge of weight W with uplift force, U, acting
on the failure plane
It is immediately apparent that a wedge of weight W will not s'ide

on the plane of failure because @ is 40 degrees and exceeds the slope

K
a
angle of 30 degrees. This is also apparent from Fig. 4.6c, where the B}
b
- {
weight vector, W, falls within the friction cone.
93
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30°

Friction Cone
For = 40°

"
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[ Given: U =o.44w]
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FACTOR OF SAFETY
. Due To Weight, W
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2. Due To W+U

. Tan 40° _
F.S. = pgrs =071

(d)

4.6 SLIDING ON A SINGLE PLANE
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If a porewater pressure were acting on the plane of failure, the
stability of the wedge would be reduced. The porewater vector force, G,

acts normal to the plane of failure, as shown in Fig. 4.6a. The resultant

driving vector, R=W+ U, can be determined by drawing the two vectors to
scale (see Fig. 4.6a) and determining the angle of the resultant, In

this case, the magnitude of U is given as 0.44 W and therefore the angle

of R from the vertical is found to be 20 degrees. R is thus located
10° outside the friction circle, in the unstable zone. |
The factor of safety for the two cases, with and without the uplift
force acting, is shown in Fig. 4.6d. The tangent of the angle between
the normal and the resultant driving force determines the denominator
in each case.
4.3.3 Graphical procedure for determining the direction of resultant
vector force
The summation of a series of vectors cannot be performed using the
stereographic projection alone, because there is no method for showing
magnitudes of forces on the stereographic projection. However, the
orientation of the resultant vector can be determined using the stereo-
graphic projection in combination with the graphical addition of vectors,

two at a time. Three vectors, W and U of the preceding example and an

additional vector R,are illustrated in Fig. 4.7. The graphical addition

of these vectors is performed as shown in Fig. 4.8. As described in
the preceding example, vectors W and U are added graphically thus deter-
mining the orientation of W + U, which is found to be 20 degrees from

the vertical (Fig. 4.8a). Vectors W and A are then added, determining

the orientation of W + A, 30 degrees from the vertical (Fig. 4.8b).
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GIVEN: I Welght of Wedge = W
2. Porewater Force, U, Equal fo 0.44W,on 30° Plane
3. Force A, Equal to 0.6 W, Acting S 45°W, Dip I0°

20° 00
i I
/x W
/~
n
/3
a0
(b) Verticol Plone Oriented
(a) Vertical Plane Oriented N-S S 45°W Containing Vectors
Containing Vectors W ond U Wond A

: .

Plane Porallel to
W+Aond U

8 Plane Parallel to

W+U ond A i

Orientation of
W+A+U Is S32°W,
Dip 42°

S

FIG. 4.8 GRAPHICAL DETERMINATION OF ORIENTATION OF
RESULTANT VECTOR, W+ A+ U
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The orientations of vectors W, U, A, W+ U, and W + A are then plotted
on the stereogram (Fig. 4.8¢c, solid arcs).

Once these vectors have been plotted, the orientation of the
resultant vector, R = W + A + U, can be found using only the stereogram.
This is accomplished by finding the line of intersection of two planes.
One plane contains W + A and U, the other contains W + § and A (Fig. 4.7).
The intersection of the two planes is the resultant vector, R = W + A + U.
On the stereogram in Figure 4.8b, a great circle is drawn through W + A
and U, another great circle is drawn through W + U and A. The two
great circles intersect at R = W + U + A, which is thus determined as
dipping 42 degrees from the horizontal in a direction of § 32° w,

4.3.4 Determination of direction of movement and factor of safety for
case of resultant driving vector, W+U+aA, acting on the wedge

In Fig. 4.9 the resultant driving vector, R = W + U + A has been
combined with the friction cone diagram. R = W+A+ U lies outside of
the friction cone, therefore sliding of the wedge will occur. The
direction of sliding on the plane will be in the direction of the shear
force, S. Sliding is along a line plunging 25° in a s 27° W direction
(down an apparent dip slope). Note that this direction is not the same
as the § 32° W direction of the resultant driving vector, R.

The factor of safety is determined from the angular distances along
this great circle. From N to EL’ the angle is 40 degrees, while from

N to R the angle is 75 degrees. The factor of safety is therefore:
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FIG. 49 THREE VECTORS ON SINGLE PLANE
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4,3,5 Minimum force W required to cause failure

The orientation of the minimum force, NW, required to cause failure
on an otherwise stable slope can be rapidly determined from the stereonet,
To determine the magnitude of the minimum force, one auxiliary graphical
construction is required (Fig. 4.10).

For the single 30° plane shown in Fig., 4.6, the wedge is stable
under its own weight, W. To reduce the factor of safety to unity, the
angle between the weight, W, and the limiting reaction, RL must be
closed. The minimum angle is 10 degrees and will be obtained when
the driving forces cause sliding directly down-dip (to the south).

Any other direction of sliding will result in a larger angle between

EL and W and therefore a larger value for NW.
The minimum force, NW will therefore be directed to the south and

will be directed upward 10 degrees so that it is normal to RL (Fig. 4.10),

The minimum force will be almost horizontal for the case of frictional

sliding on a wedge loaded only by its own weight, where the factor of

safety is near unity.

4,4 Sliding on Two Frictional Planes

4,4,1 General

The possible modes of failure of a wedge on two planes can be rapidly
determined from the stereonet. The orientation of the driving forces
determines whether sliding along the line of intersection of the planes
or sliding on either one of the planes will occur., An example problem
for sliding on two planes has been used to clarify the following dis~

cussion. The problem is illustrated in Figs., 4.11 through 4.15,
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4.4.2 Orientation of line of intersection of the two planes

The orientation of the line of intersection of two potential
failure planes is determined using the stereonet as illustrated in
Fig. 4.11. The great circles for the two planes are drawn on the stereo-
net and their intersection is determined as described in section 4.1,
For the example problem illustrated in Fig. 4.11, the line of intersection
is oriented § 27° W and plunges 40 degrees from the horizontal.

Figure 4,12 is a block diagram of the two planes, showing their
line of intersection and the friction cones acting on each plane.
For convenience, the friction cones are shown above the sliding plane.
4.4.3 Reaction forces on the failure planes

Stable and unstable zones are separated on the stereonet (Fig. 4.13)
by the limiting reaction forces, RLI and RLZ. The unstable zones include
zones for sliding down the intersection, sliding up the intersection,
sliding on single planes, and lifting of the wedge off the planes. For
the case of sliding on plane 1l alone, the orientation of RLI, as defined
by the friction cone on plane 1, separates the stable and unstable zones.
For sliding along the intersection of planes 1 and 2, the orientation
of ﬁLl + ﬁLz separates the stable and unstable zones. The boundary be-
tween sliding on the intersection and sliding on plane 1 is the great
circle which passes through ﬁl and §1, the normal and shear forces,
respectively, on plane 1., This great circle represents a plane normal
to plane 1 and parallel to the line of intersection.
4.4.4 Method of locating boundary between stable and unstable zones

for the case of sliding along the line of intersection

The location of the resultant, iL + RL » must be determined in
2

1
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FIG. 4.13 SLIDING ON TWO PLANES . STEREONET
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order to outline the stable and unstable zones for the case of sliding
along the line of intersection, The shear forces on planes 1 and 2
will act in the direction of sliding, which in this case is parallel to
the line of intersection, Therefore, the shear forces, §1 and §2, will
both plot on the stereogram at the same point as does the line of inter-
section {point §l’ §2 in Fig. 4.13),

The direction of the reaction force on each plane is known, since the
direction of its components, the normal and shear forces on that plane,

are fixed. Thu reaction force, RL , must act within the plane in which

1
Nl and S1 act. Therefore, the direction of the reaction force, iL » can
1
be located by drawing a great circle through Nl and §1. RL is located

1
where this circle intersects the friction cone of plane l. Similarly,
ﬁL is located where the great circle drawn through ﬁz and §2 intersects
2

the friction cone of plane 2. No matter what driving forces act on the
wedge, as long as the limiting case of sliding along the intersection is

considered, then the orientation of both §L and RL are fixed.
1 2
If R, and R, are summed, their resultant, R, + R, , must act in
L L L L
a plane parallel to RL and RL . This plane can be located on the
1 2
stereonet of Fig. 4,13 by drawing a great circle through RL and R
1

For sliding along the intersection of plane | and 2, the reaction

L,

RL + RL will be located somewhere on this great circle, but its position
1 2
along the great circle will depend on the orientation of the driving

forces acting on the wedge, since the orientation of the driving vector

affects the relative magnitudes of RL and ﬁL . Should the orientation
1 2
of the resultant vector forces lie outside the stable zone outlined by

iL + RL » then sliding will occur on the intersection of the two planes,
1 2
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In Fig. 4.13, the weight vector, W, is located just within the stable
zone. Only a very small force directed toward the south would be required
to move the driving vector out of the stable zone and cause sliding down
the line of intersection of planes | and 2, . -
4,45 Minimum force (NW) required to cause sliding of the wedge 3

In order to cause sliding of the wedge, the resultant driving vector

must lic outside the stable zone. The minimum force, NW required to

3R RG]

cause sliding can be determined by means which is directly analogous to

;
the method for determining the minimum force for sliding on a single g
plane (Refer to Section 4,3.4). To close the force polygon (and obtain %
a factor of safety of one) a force must be added which connects the tip of é
the existing vector (Weight, W, in this case) to the plane of the re- é
action, §L1 + §L2. The minimum force will be the one acting normal to g
the plane of ﬁLl + §L2 as shown in Fig. 4.14, %

The orientation of the minimum force can be determined from the §
stereonct. Its magnitude can be determined by graphical construction %
of the force polygon (such as Fig, 4.14). 1In Fig. 4.14, the minimum §
angle batween W and ﬁL + RL » which must be closed for a factor of g

1 2
safety of one, is 4 degrees. The minimum force is also directed upward

(in this case at an angle of 40) in order to intersect the plane of

R, + R, at right angles. Note that the strike of the minimum force
(in this case S40W) is not the same as the strike of the line of inter-
section (in this case S27W). 1In general, the minimum force, NW, will
not be oriented directly along the strike of the line of intersection
unless the wedge is acted on only by its own weight and the friction

angle, o the two planes are the same.
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It should be noted that the difference in magnitude between the
minimum force, NW y and the force NW directed horizontally and parallel
to the strike of the line of intersection will be very small in most
cases, particularly for cases when the primary force acting on the
Wedge is its own weight, and the factor of safety is only slightly
greater than one. In these cases, a reasonable (but slightly unconserv-
ative) approximation is that NW  acts horizontally, parallel to the
strike of the line of intersection,

4.4.6 Factor of safety and minimum forces required to stabilize the wedge

Two separate conditions exist for determination of the factor of
safety of the wedge and the forces required to stabilize the wedge. Con-
sider the two conditions illustrated in Fig., 4.15: case 1, where the
wedge is acted on by a driving force, D, causing sliding on a single
plane (plane 1), and case 2, where the wedge is acted on by a driving
force, B, causing sliding along the line of intersection of planes
1 and 2.

Case 1: The wedge is acted upon by the driving force, D, and will
slide on plane 1 alone. There will be no normal force on plane 2. In
this case, the orientations of both the normal force, ﬁl’ on plane 1,
and the driving force, D, are known, while the orientation of the shear
force, 51, and the reaction, RL , on plane 1 remain to be determined.

1

§1 and §L are known to act within the plane of ﬁl and D. Thus, their
1

position is obtained by drawing a great circle {solid line in Fig. 4.15a)

through ﬂl and D, then locating §, at 90 degrees from N, and locating

1 1

RL at @ degrees from ﬁl’ along the great circle, In the example
1
shown, the angle betwecen N and RL is B = 20° and the angle between
1
109
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RL and D is 37°. Therefore, the factor of safety is:
1

F.5. = Maximum shear force available tan 20°

Actual shear force mobilized tan (20o + 370)

(Refer to Fig. 4.15a.) Sliding of the wedge will be in the direction of
the shear force, S, in this case plunging 15° in a direction S 40° W,
on plane 1.

The magnitude of the minimum force, P, required to close the 37°

angle between ﬁL and D (and thereby increasc the factor of safety to
1
one) can be determined from the graphical construction in Fig. 4.15a.

If the magnitude of D is known, then the minimum force is:

P. =0Dsin37°
min

Case 2: The wedge is acted upon by the driving vector, B, and
will slide on the intersection of planes 1 and 2, The direction of the

shear forces, §1 and §2, are fixed parallel to the line of intersection

and R + R

remain to
L t

of planes 1 and 2, while the positions of Nl + N

2 L

be determined. They car be found by drawing a great cirile (silid line
in Fig. 4.15b) through §l’ S, and B. §L1 + ﬁLz is located at the inter-
section of this great circle and the great circle through §Ll and RLZ.
ﬁl + ﬂz is located at the intersection of the great circle through

2

§1 + §2 and B, and the great circle through ﬁl and ﬁz.

The factor of safety in this case is determined by the 51° angle

between N, + N, and B and the 33° angle between N, + N, and R, + R, .
1 2 1 2 Ll L2
The factor of safety is therefore:
o ] 0
F.s. = tan (337) . ten 330 s,

tan (33° + 18%) ton 51°

o
The direction of sliding is along the line of intersection, S 27 W,

m
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downdip at 400.

The concept of a factor of safety is somewhat misleading in this

«: », because the force required to stabilize the wedge does not have

to close the 18° angle between RL + RL and B. Instead, the minimum
1 2

force, Pmin is B sin 16°, Note that the new resultant driving vector,
ﬁmin + B, acts in a plane which is different from the plane in which B

originally acted.

4,5 Sliding of a Wedge Bounded by Three Planes

The case for sliding of a wedge bounded by-three or more planes is
only slightly more complicated than the case for a wedge bounded by two
planes. With three planes another friction circle is added to the
stereonet. Depending on the orientation of the driving forces, sliding
will occur on any one of the three planes, on any one of the three lines
of intersection, or the wedge will lift off the three planes. Methods
for determining the minimum forces to cause sliding, for determining
factors of safety, etc., are identical to those described for the two
plane case (section 4.4), Prior to performing the stability analysis,

a basic decision must be made as to which planes are potential sliding
planes and which wedges are critical,

Figures 4.16 and 4,17 illustrate the three plane case. The orienta-
tions and friction angles for the three planes are given in the block
diagram of Fig. 4.16. The corresponding stereonet is illustrated in
Fig. 4.17. For this case it is readily apparent that, regardless of
the presence of the third plane, the wedge is still closest to a failure
by sliding (under its own weight) along the intersection of planes

1 and 2. 1In order for failure to occur by sliding up plane 3, or by
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sliding along the intersection of plane 3 and 1, or by sliding along
the intersection of plane 3 and 2, an appreciable driving force acting
upward (toward the North) would be required.

4.6 Medge Bounded by Three Planes but Daylighted by Cut Face

Although the wedge bounded by planes 1, 2, and 3 is stable for the
condition illustrated in Fig. 4,17, it will not be stable if plane 3
is daylighted at the base and sides of the cut, as shown in Fig. 4,18,
Cases similar to this will commonly occur in rock masses where joint
sets form multiple wedges, rather than a single wedge.

If planes 1 and 2 are present, as shown in Fig. 4,18a, then wedge
A would still be stable under its own weight, as was previously shown in
Fig. 4.17. However, if plane 3 is daylighted at the edge of the cut,
then planc¢ 2 no longer restrains wedges A and B, thus sliding will occur
along the intersection of planes 1 and 3, as indicated in the stereonet
of Fig. 4.18b,

Another possible mode of failure would be for wedges A and B
(acting as a single wedge) to rotate away from the line of intersection
of planes | and J and slide on plane 3 alone., This is likely to occur
if the mass of the wedges is concentrated over plane 3. away from the
line of intersection of planes 1 and 3. (Rotational wedge failures
are analyzed in section 4.7.)

Another possibility is that wedges A and B would break up and slide
as individual blocks, wedge A possibly sliding on the intersection and
wedge B sliding on plane 3 alone.

When the planes represent joint sets rather than single discontin-

uities, then modes of failure similar to those described above become
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quite possible. Some of the joints within a set may daylight on the
sides or edges of slopes and allow failure of wedges on single planes

rather than multiple planes. Joints of other sets may also free the

edges of wedges, facilitating sliding on a single plane. 1In general,
a lower factor of safety will be obtained if the mass has a tendency

to move as several rigid bodies broken up by the joint sets, rather

R P S p—,

than moving as a single rigid body. It is very important that these

possibilities be considered during the exploratory phase of the slope

stability study, prior to selecting the critical wedges on which the

stability analyses will be performed.

4.7 Rotation of Wedge on Plane 3

The factor of safety against rotation of a wedge can be estimated
using the stereonet if the point of application of the driving forces i

on the failure plane is known., Consider the example of Fig. 4.19.

The wedge illustrated here is the same as the wedge of Fig. 4.18 except
for an increase in the angle of friction on plane 1 from 34° to 40°, i
so that the wedge is now stable against sliding under its own weight .
down the intersection of planes 1 and 3, It is assumed for a rotational
failure that the wedge rotates about point C, at the base of the slope.
It is also assumed that the limiting shear and normal stresses on plane
3 can be summed as forces ﬁs and §3, acting at point D (at the point of
intersection of the resultant driving vector, W, with plane 3). This

implies that there is no variati.n in the anglc of friction on plane 3,
Based on these assumptions the direction of the shear force, §3, will

be perpendicular to line CD, as shown in Fig. 4.19.
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Plone 1L to CD ( Containing N, and S, )7

Plane Containing -
CD and W - Component of W__

Normal to Line CD
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C is Center of Rotation O is Point of Intersection
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Plane Containing W and CD

/

Component of w
Normal to CD
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\ Containing Nsond S3
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FIG. 4.19 ROTATION OF WEDGE ON PLANE 3
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The given conditions for the wedge of Fig. 4.19a are:

Plane 1: Strike N32°E, dip 40°SE, ¢ = 40°

Plane 3: Strike E-W, dip 50°S, ¢ = 20°

In addition, it is assumed that the center of gravity of the wedge is

i

known, so that the orientation of line CD is known. Line CD is the

moment arm from the center of rotation, C, to the point of intersection

of the weight vector, W, with plane 3 (point D). Its orientation is ;

assumed to be $45°W on plane 3. §
It is immediately apparent from the given conditions on planes 1 ; ?

and 3 that the wedge, under its own weight, W, is stable against sliding

on plane 1 alone, since the dip of plane 1 equals the angle of friction

on plane 1 (400). The wedge is therefore also stable against sliding
on the intersections of planes 1 and 3.

The wedge is not stable against sliding on plane 3 alone, since the
dip of that plane exceeds its angle of friction. If the wedge were to
extend an infinite distance to the right of the diagram, then the wedge
would behave as if it were sliding on plane 3 alone, since all of the
weight of the wedge would be over plane 3 and an infinitesimal portion
of the weight would act on plane 1. 1In this case the moment arm for

rotation of the wedge would extend parallel to the strike of plane 3

(line CD'). Thus the shear force, §3, would act directly up the dip~
slope of plane 3, the identical condition for sliding on a single plane.
The factor of safety against rotational sliding would be:

F 5. - RESISTING MOMENT D' (W tan 20%) _ tan 20° _ ,

DRIVING MOMENT TD' (W tan 50%)  tan 50°

the identical factor of safety for sliding directly down plane 3,
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Another extreme would be the case where the weight of the wedge
was concentrated near the intersection of planes 1 and 3 so that the
moment arm extended directly up-slope on plane 3 (line CD'')., The
limiting shear force, §3, in this instance would be directed along the

strike of plane 3, The driving force, W, has no component in this

direction, so that rotation would not occur, recardless of the frictional

resistance on plane 3. The factor cf safety against rotation is therefore:

TR o
E.S _ Lb !tanZO!__co

e Th'' (tan 0°) )

An intermediate case, where line CD is directed s45% on plane 3,
is shown in the stereonet of Fig. 4.19., The rotational stability of
the wedge is determined as follows: The great circle representing plane
3 is drawn on the stereonet, as well as the normal force and friction
circle for plane 3. Line €D is located in its given direction on the
stereonet at the intersection of plane 3 and a vertical plane oriented
sa5%. §3 is then located on plane 3, at a 90° angle from line CD.

A great circle is then drawn through §3 and ﬁ3, representing the plane

containing §3 and ﬁa. This great circle will also be located 90° from

EE, along a great circle (in this case a straight line) passing through
CD and W. The component of W which is normal to CD is located at this

point. The factor of safety against rotation is:

F.S. = tan g/tan (angle between ﬁ3 and the component of W A to CD)

tan 20°  _ tan 20° | g
tan (20° + 12%)  tan 32°

Although the wedge is stable against sliding along the intersection

of planes 1 and 3, it is unstable for the case of rotation on plane 3.
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However, the factor of safety against rotation (F.S. = 0.58) is still
appreciably higher than the factor of safety against sliding on plane
3 alone (F.S. = 0.30).

In order for the factor of safety against rotation on plane 3 to

be equal to one, the center of gravity must be located so that line
TD''' is oriented $27°W on plane 3, as indicated by the dashed line

tangent to the friction circle in the stereonet of Fig. 4.19.

ot e s
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CHAPTER FIVE

DYNAMIC STABILITY OF ROCK SLOPES

5.1 Introduction

The stability of rock slopes subjected to dynamic loads has usually
been treated as a pseudo-static problem by engineers assessing the
"dynamic factor of safety." In this approach, the dynamic forces on a
potential sliding mass of weight W are assumed to be equivalent to a
horizontal force of KW acting through the center of gravity toward the
free surface of the slope. The constant K is called the seismic
coefficient, the value of which is commonly taken between 0,05 and 0,20
for earthquake design in seismically active areas. If this method is
used, the factor of safety is computed by the methods outlined in Chapters
3 and 4 for static problems. The only adjustment which has to be made
is that the resultant force R acting on a three dimensional tetrahedron
fncludes not only the weight and pore pressures, but also the force KW
directed in a horizontal direction, Wittke (1965) has presented this
type of analysis to assess the dynamic stability of slopes and has
suggested that the horizontal force KW be directed along the line of
intersection of the two planes on which sliding takes place for the most
critical effect. The meaning of the factor of safety calculated for
dynamic loading is somewhat nebulous however because the dynamic forces
are not constant static forces acting in one direction. The actual
factor of safety of a slope subjected to dynamic loading varies with
time, and movements of the slope only occur when the factor of safety

is mohentarily below 1.0. Thus the average factor of safety computed
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from a pseudo-static analysis using the seismic coefficient K is not
meaningful because the analysis does not indicate the magnitude of the
strains or displacements which may develop in the slope. An 2stimate

of the displacement or strain in the slope after shaking enables the
engineer to make a judgment on whether the displacements are harmful in
terms of either structural damage or are large enough to cause a consid-
erable decrease in shear strength of the slope materials,

In this chapter the basic analysis given by Newmark (1965) for the
dynamic analysis of earth slopes is modified to assess the displacement
rock slopes might experience under dynamic loadings. A criterion is
also given for determining if the computed displacement may be harmful
to the stability of the slope.

5.2 Dynamic Analysis of Rock Slopes

The first step in the dynamic analysis of a rock slope is to evaluate
the dynamic resistance of the slope. The dynamic resistance is defined
as the minimum force applied through the center of gravity of the
potential sliding mass which will just begin to move the mass above
the assumed failure surface, The dynamic resistance is usually denoted
by NW (Fig. 3.4a) where N is a coefficient and W is the weight of the
potential sliding mass. Physically the dynamic resistance is the minimum
shearing resistance which can be mobilized, in addition to that required
for static stability, to resist the effects of a dynamic load.

For the three dimensional analysis of rock slopes, as shown in Figs,
3.4 and 3.5, the problem is to find the direction which will minimize
N and solve for the magnitude of NV, Graphical and analytical procedures

have been develuped for findin; the minimum dynamic resistance in
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sections 3.2.2 and 3.4,2 respectively,

The quantity Ng is the steady acceleration in the direction of NW
which will just overcome the resistance of the sliding mass. If the
maximum acceleration Ag in the area of the slope is less than Ng then
the slope is definitely safe. However, if Ag exceeds Ng, the slope
does not necessarily fail because the ground acceleration may only exceed
Ng for a very short period of time. Ouring this time, a relative dis-
placement occurs between the portions above and below the failure surface.
Figure S.1 shows a plot of the ground motions observed during the 1940
El Centro earthquake. Note that the maximum acceleration, Ag ( = Vo),
of 0.32 g occured only for a short period of time and also note that if a
slope in the area of this record had a dynamic resistance, NW, of 0.2 W
that the dynamic resistance would only be exceeded for very short periods
of time during 6 pulses. Although some relative displacement would
occur during these short times the slope would not necessarily fail.
Newmark's method of amalysis provides a means of calculating the displace~
ments which occur for the case when A> N.

The following example illustrates Newmark's analysis for the case
of a single acceleration pulse acting on the base beneath a sliding
mass with a rigid plastic resistance between the base and mass with a
resistance of NW.

Consider the rigid body shown in Fig. 5.2 having a weight W, mass
M, and having a motion x. The motion of the ground on which the mass
rests is designated by y(t), where y is a function of time t. The
relative motion of the mass, compared with that of the ground, is given
by u, where

us x -y (s.1)
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The resistance to motion is accounted for by a shearing resistance,
which can be expressed as being proportional to the weight W, and having
a magnitude of NW. This shearing resistance corresponds to an acceler-
ation of the ground of magnitude Ng that would cause the mass to move
relative to the ground.

The accelerating forces acting on the mass M are shown in Fig. 5.3,
The acceleration considered is a single pulse of magnitude Ng, lasting
for a time interval t,- The resisting acceleration, Ag, is shown by
the dashed line in Fig. 5.3, The accelerating force lasts only for the
short time interval indicated, but the decelerating force lasts until
the direction of motion changes.,

In Fig. 5.4 the velocities are shown as a function of time for
both the accelerating force and the resisting force. The maximum
velocity for the accelerating force has a magnitude V given by the
expression

V = Agt_ (5.2)
After the time t is reached, the velocity due to the accelerating force
remains constant. The velocitiy due to the resisting acceleration has
the magnitude Ngt. At a time tm, the two velocities are equal and the
relative velocity becomes zero, or the body comes to rest relative to
the motion of the ground. The formulation for tm is obtained by equating

the velocity V to the quantity Ngt, which results in the expression
v
tn = Ng (5.3)

The maximum displacement of the mass relative to the ground, u is

obtained by computing the shaded triangular area in Fig. 5,4. The
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calculation is made as follows:

m m o
_1y 1
or Un =2 Ng " 2 Ag
2
-V _N
hence Uy = 2N (1 A) (5.4)

The acceleration pulse shown in Fig. 5.3 corresponds to an infinite
ground displacement. During a real earthquake a mass would undergo a
number of pulses occurring in random order, some positive and some
negative as shown in Fig. 5.1. If we now consider a seccend pulse of a
negative magnitude that is sufficient to bring the velocity to zero
even without the resisting force, then it can be shown that the net
displacement occurring with the resistance generally cannot exceed that
which would occur without the resistance,

The result of using Eq. (5.4) Is to generally overestimate the
relative displacement for an earthquake because the equation does not
take into account the fact that the pulses occur in opposite directions.
However, Eq. (5.4) should give a reasonable order of magnitude for the
relative displacement and it does indicate that the displacement is
proportional to the square of the maximum ground velocity.

The result derived above is also applicable to the case for a group
of pulses in which the resistance in either direction of possible motion
is the same. For a situation in which the body has a resistance to
motion greater in one direction than in another, one must take into
account the cumulative effect of the displacements. A simple example
where this effect must be considered is found by rotating Fig. 5.2

clockwise so that the body has a tendency to slide downhill, In this
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situation, ground motions in an upslope direction leave the mass without
any additional relative motion except where the magnitudes of the motions

are extremely large. One may consider this model applicable to a slope.

Similar calculations using wave forms of 4 different earthquake
records were made for a resistance of NW for downhill movement and an
infinite resistance for uphill movement on a digital computer at the
University of Illinois, These results are shown in Fig. 5.5. A con-

servative upper bound to the displacement is given by
2

_Y LA N
§ = TN N for 0.2 < A < 0.4 (5.5)
por N s o
or 3 >.4 a reasonable upper bound is given by
2
- -NA
S=2 U-RY§ (5.6)
And for % < 0.2 a reasonable upper bound for .the displacement is given by
oo 8
T 20N (5.7)

The simplified calculation presented for one acceleration pulse
and the calculation of displacements for actual earthquake records show
that the slope movements relative to the base are proportional to the
square of the maximum particle velocity, VZ, at a given ratio of N/A.
Since the calculations of Newmark, presented in Fig. 5.5, are for four
different earthquake records, it is conservative to use the relations
given in Egs. 5.5, 5.6, and 5.7 for ground motions from nuclear
explosions because the duration of shaking is significantly shorter.

5.3 Permissible Movement of Rock Slopes

Ultimately, the engineer must decide if the dynamic displacement

calculated from Eqs. 5.3 - 5.5 is acceptable, Many slopes in soil and
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soft shales have undergone considerable movement (as much as 6-10 ft)
under earthquake loading without catastrophic consequences. On the other
hand, there have been catastrophic failures of some rock slopes during
dynamic loading, such as the Madison Valley, Montana slide and catas-
trophic slope failures have also been observed in sensitive marine clays
in Anchorage, Alaska under earthquake loading. Jointed rock slopes and
slopes composed of sensitive marine clays are similar in that they are
composed of materials which are strain softening for displacements be-
yond those required to develop the maximum shearing resistance. A
qualitative diagram of shearing strength mobilized versus displacement
parallel to the discontinuity is shown in Fig. 5.6b for rough rock
surfaces, The peak shearing strength given by point C on this diagram
is given by

T =g tan @+ i) (5.8)
where i is the geometrical component of resistance given by the roughness
along the discontinuities and v, is the residual angle of shearing
resistance.

With further displacement the asperities are sheared off to a
certain extent along the discontinuity and eventually at larger displace-
ments the shear strength will be reduced to a valux given by

t = tan $r (5.9)
where br is the residual angle of ~hearing resistance along the d.s-
continuity. Thus in any given case, the potential fall off in strength
between the peak strength and the residual strength is o, tan i, where
i is the angle which Lhe roughness makes with the average direction of

sovement alona the discontinuity, as shown in Fiy, 5.,6c. The value of
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¢r is a function of the type of rock of which the slope is composed and
can be relatively easily determined from smooth samples in the laboratory.
The selection of the i value, however, is somewhat difficult in that there
are usually several groups of undulations on a discontinuitiy which

have different i values. For instance, there may be broad undulations
(first order irregularities) with wave lengths on the order of 8-10 ft
which may have an i associated with them which may only be on the order
of 5-15° (Fig. 5.7). Whereas there are shorter undulations (second order
irregularities), which may have higher i values (10—460) «5 shown in

Fig. 5.7. If the dynamic resistance NW is calculated on the basis of

a peak shearing strength such as point C on diagram 5.6b, then it is of
utmost importance to know approximately the wave length of the asperity
associated with the value of the angle i chosen in the analysis. For
instance, if the value of i is associated with a quarter wave length
denoted by H in Fig. 5,6¢c, then it is obvious that the dynamic displace-
ment as computed by Newmark's method must be less than H or the shear
strength value upon which the calculation of NW was computed is no longer
valid. The displacement in this case would have been enough to roll up
and over the asperity shown in Fig. 5.6c and the shear strength would
have been reduced to some value lower than the peak shear strength.

The full value of i would not be effective because of the lowar slope

of the surface roughness near the top and possibly because part of the
roughness could have been sheared off by the dynamic movement, On the

other hard, a va'ue of i us=d in estimating the prak shear strength

used in the zalculation of ﬁ; could be a relarist low value of about
T‘—IOO; and this value of i could be (ansiatent with o length H (Fiq. 5.6c¢)
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on the order of 5 or 6 ft, 1In this case if the calculated dynamic
displacement caused by a glven earthquake turns out to be something
Like 6 inches, then we would definitely say that the slope is probably
stable or no problems would result from dynamic loading. This is true
because the 6 inch displacement will not significantly reduce the strength
assumed in calculations of NW. The relative displacement would have to
be on the order of 3 or 4 ft to significantly lower the peak shearing
resistance in this case. Thus, in general, the criterion which should
be used to decide if a certain displacement is detrimental or not Is

the wave length of the asperities giving the geometrical component of
resistance because this is-the resistance which can be destroyed by the
dynamic displacement., If preliminary calculations Indlcafe that the
dynamic displacements will not be large in comparison with the displace-
ments necessary to significantly lower the sheer strength, then the
dynamic displacement calcuiated will probably be acceptable and the
slope can be judged safe. However, If the dynamic displacement computed
iy on the same order of magnitude as the wave length of the discontin-
uitics or the order of displacement necessary to significantly reduce

the whear strength along a dlscontinuity, then the slope may not be safe.
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CHAPTER SIX

SUMMARY AND CONCLUSIONS

6.1 Static Stability of Rock Sleopes

In this report the methods of analysis for assessing the static
stability of rock slopes in thrce dimensions have been described and a
method for calculating the dynamic resistance and displacement of rock
slopes subjected to earthquake loading has been given.

The general procedures for determining the static factor of safety
of rock slopes analytically by vector analysis and graphically with

stereonets are given in Chapter 3 and Chapter 4 respectively. Although

the mechanics of the calculation are different in each of these approaches,
the same basic steps are followed in each method for determining the
static factor of safety. The steps in the analysis are as follcws:
(1) the intersection of the various joint sets with each other
and with the slope face must be inspected to determine the
tetraherdra which may be potential failure wedges. These wedges

must then be analyzed in detail.

—~
29
~—r

the Torces tendino to disturb the equilibrium of the wedge
should ve added vectorially to give a resultant driving force.
These disturbing forces are the weight of the wedge, W, the
external load applied to the wedge by a structure, Q, and

the porewater forces écting on various faces of the tetrahedron
given as Dl’ 02, and 03. This step is illustrated by equations
3.10 and 3.68 for the vector analysis and is shown in Figs.

4.7 and 4.8 for the graphical method using stereonets.
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(3) the mode of failure must then be determined. For example
a wedge supported on two base planes can either slide along
the line of intersection of the two planes, slide on either
plane or rotate on either plane. The kinematics of failure
will depend upon the orientation of the disturbing force in
relation to the orientation of the supporting planes. These
kinematic tests for sliding are illustrated by equations 3.16,
3.17, 3.20, 3.21, 3.22 and 3.23 for a tetrahedron supported
on two base planes., The kinematic tests for rotation are given
In Table 3.1, The orientation of the resultant disturbing
force which will cause various modes of failure for a wedge
supported on two base planes as shown in Fig. 4.13 by the
graphical method using stereonets, Equations 3.81-3,93 are
kinematic tests to determine the sliding mode for a tetrahedron
bounded by 3 base planes by means of vector analysis, Fig. 4.17
illustrates the method of determining the mode of sliding of
@ tctrahedron bounded by 3 base planes by utilization of
stereonets.

(4) after the mode of failurc is determined the maximum shearing
resistance which can be mobilized in the direction of movement
is compared to the shearing forces necessary for equilibrium
to obtain a factor of tafety. This step has been illustrated
by the many example problems worked in Chapters 3 and 4.

The detailed analyses given in Chapters 3 and 4 can be used to

solve most of the problems which arise in the calculation of rock slope

stability, A majority of the real problems which arise however are
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wedges acted on by their own weight, partially submerged beneath a
phreatic surface, and resting on two base planes. The influence of

external loads is small relative to the weight of the wedge. For this

case, which has been the most common field case encountered by the
authors, there are several approximate generalizations which can be made
such that all the details of analyses presented in Chapters 3 and 4

are not necessary to obtain a fairly accurate answer to the problem,
First of all for a wedge resting on two base planes, acted on by only
its own weight, sliding will occur along the line of intersection of

the two planes if a line drawn down the dip in both planes tends to
intersect the line of intersection. If in either one of the planes a
line drawn down the dip is directed away from the line of intersection
then sliding will occur on that plane only and the wedge will move

away from the line of intersection., If a wedge is acted on by its own
weight, it will slide down the maximum dip if sliding occurs on one
plane and the factor of safety can be easily computed. If it is deter-
mined above that sliding will take place along the line of intersection,
the slope of the line of intersection, .1, as shown in Fig. 6.1, should
be determincd immediately by means of graphics. The angle of friction ¢
required tor stability will always be equal to or less than « it there
are no pore pressures on the joint surfaces, r(he next step is to de-
termine the angle, 8, included between planes 1 and 2 in a plane per-
pendicular to the line of intersection OA as shown in Fig. 6.1. The
smaller angle B, the lower the value of ¢ required for stability.

As B approaches zero, the \.lue of ¢ required for stability approaches

zero; and, as 3 approaches 180° the value of ¢ required for stability
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approaches . The next step is to determine the skewness Y of the wedge
as shown in Fig. 6.2. For the non-skewed or symmetrical case (cl = C,
and y = 0, as shown in Fig. 6.1) the ¢ required for a factor of 1.0

for various values of 8 and o are shown in Fig. 6.1. If the angle of
shearing resistance ¢ is the same on both planes 1 and 2, the value of ¢
required for stability is less for the symmetrical case (Cl =Cy Fig. 2)
than for the skewed case (Cl # CZ) for the same values of ¢ and B.

Figure 6.2 illustrates the effect of skewing the planes on the value

of ¢ required for a factor of safety of 1.0. From Fig. 6.2 the value

of ¢ required for a factor of safety of 1.0 can be determined from the
value of tan ¢/tan o for various values of 8 and Y where Y is a measure
of the skewness of the wedge as shown in Fig. 6.2. The curve labeled

¢, =¢ (v = 0) in Fig. 6.2 summarizes the curves presented in Fig. 6.1
for the symmetrical case. The additional curves presented in Fig. 6.2
itlustrate the effect of skewing. These curves illustrate the sensitivity
of the value of ¢ required to skewing. For values of y less than 20°

the tan ¢ /tan o values are increased by only 6 percent above the

required
values for Y = 0. However if te wedge is skewed 60° (v = 600) then
values of tan ¢required/tan « are approximately twice the values for

o
Yy=0. For y=40 tan ¢ /tan ¢ values are increased by approx-

required
imately 30 percent from the case where y = 0.
The five example problems shown below in Table 6.1 illustrate all

the conditions which are considered in Fig. 6.2,
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TABLE 6.1

Case 1 8=180° C.=C =0
Case 2 C.=0

Case 3 B8=0

Case 4 Cl-CZ, v=0

Case 5 Cl#C2

Analysis of each of these five cases by the use of stereonets is
illustrated in Figs. 6.3, 6.4, 6.5, 6.6, and 6.7.

6.2 Dynamic Stability

The analysis of rock slopes in a static fashion by considering the
inertia force as a static load (Wittke, 1955a) is not considered adequate
for assessment of the dynamic behavior of rock slopes. In this report
a method was given in sections 3.2.2 and 3,4.2 for calculating the dynamic
resistance NW for a rock slope by means of vector analysis. The calcu-
lation of the dynamic resistance by means of stereonets is given in
section 4.3.4. The dynamic resistance N4 should then be used in the
dynamic analysis proposed by Newmark (1965), which is explained and
illustrated in Chapter 5. From this analysis tha dynamic displacement
is computed. This displacement should then be compared with the wave-
length of the asperities on the failure planes as shown in Fig. 5.6 to
determine if the dynamic displacement would be detrimental to the static
stability of the slope. The calculation of the dynamic factor of safety

using a pseudo static analysis has little meaning.
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for a = 40°)

S
Line of interseetion
A
Nmel7 _}m Plane ?
/ f ;\ X -
0A
HORIZ.

» = 180°, C1 =, =0
For factor of safety = 1

Qrequ:lred =a

¥I1G, 6.3, WEDGE ACTING UNDLR OWN WEIGHT
CASE 1: SINGLE FLANE, 8 = 180°

143

e - BN S PR AR FR - oM et < 8 i e s .




(shown for g = 90°,
c, = 90°, and a = 40°)

For F.8. = 1, ¢

required = ¢

FIG. .. WEDGE ACTING UNDER OWN WEIGHT
CASE 2: Cl =0, 8 and C2 = any value

(SINGLE PLANE CASE)
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c, = 10° C, = 110°
— ¢=0 | \
N = E
1 @) R oag
W 7 1" Ré \\\
| { =0
I nO
| "\
oA

(shown for C\= T0°,
C, = 110°, “ahd o = u40°)

2
a = k0°

Planes 1 and 2

For F.S. =1
é

=
required

FIG. 6.5. WEDGE ACTING UNDER OWN WEIGHT
CASE 3: B8 = 0; ANY C,, C,y @




Plane 1 Plane 2

- ——

-

]
c, C,
OA
HORIZ For F.S. = 1 and B8 >0:

FIG. 6.6,

¢ required < a

Por F.S. =1, ¢, =C, = 4s°, a

then ¢ req“;[_rgd = P°

WEDGE ACTING UNDER OWN WKIGHT

CASE L: cl-ce#o.eio
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For F.S. = | and 8 = same as Case i:

9 (Case ) < (Case 5) - a

required required

For F.S5. = 1, a = 4L0°, 8 = 90, C

= 20°, C, = T0° then brequired = 3:°

1

FlG. 6.7. WEDGE ACTING UNDER OWN WEIGHT
CASE 5: C, #C,, 8#0
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APPENDIX A

COMPUTER PROGRAMS
for the
STABILITY OF ROCK SLOPES
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PROGRAM #1

This program is for the analysis of a rock tetrahedron supported on

two planes and acted on by its own weight. The program is coded in FORTRAN

IV language. The format and definition of parameters are given below,

INPUT PARAMETERS

CARD 1  Format (10F7.2)

Parameter Card Column Definition of Parameter

BETA 1 1 -7 Strike of plane 1

BETA 2 8 - 14 Strike of plane 2

GAMMA 1 15-- 21 Dip of plane 1

GAMMA 2 22 - 28 Dip of plane 2

PHI 1 29 - 35 Angle of Shearing Resistance on plane 1
PHI 2 36 42 Angle of Shearing Resistance on plane 2
ALPHA 43 - 49 a, Slope angle as shown in Fig, 3.9
DELTA 50 - 56 &, Slope angle as shown in Fig. 3.9

H 57 - 63 Height of slope as shown in Fig. 3.9

Q 64 - 70 Desired factor of safety for design

OUTPUT PARAMETERS

Parameter Definition of Parameter
ux(1) X, ¥, and z components of a unit vector U in
uy (1) the direction of the strike of plane 1.
uz(1)
vx(1) X, ¥, and z components of a unit vector V in
vy (1) the direction of the dip of plane 1.
vz(1)
wx(1) X, y, and z components of a unit vector W in
wy (1) a direction nomal to plane 1.
wz(l)
ux(2) X, ys and z components of a unit vector U in
uy(2) the direction of the strike of plane 2.
uz (2)
vx(2) X, y, and z components of a unit vector V in
vy (2) the direction of the dip of plane 2.
vz (2)
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wx(2)
WY (2)
Wz (2)

XX
Xy
XZ
X

FsS

X, ¥, and z components of a unit vector W in
a direction normal to plane 2.

X, ¥, and z components of a vector X directed
along the line of intersection of planes 1
and 2.

The magnitude of the vector X.

Factor of safety.

Definition of Paraneters Calculated in Program in Intermediate Steps

0DX
opy
0Dz

ocx
ocy
0CZ

08X
0BY
08Z

0SX
osy
05z

RX
RY
RZ

EMX

EN(J)

TX(J)
v {(J)
12 (J)

T(9)
sx1
sY1
szl
X2

Sy2
S22

it e SR 0

S A AN AT SAN Rub s IR .« A A Sl S S

x: v, and z components of line OD, Fig, 3.9
X, Yy, and z components of line 0OC, Fig. 3.9
X, y, and z components of line 0B, Fig. 3.9
X, y, and z components of line 0S, Fig. 3.9

X, ¥y, and z components of resultant force action on tetrahedron
(Note: since this program is for a slope acted on by its own
weight RX and R, are always zero and RZ is taken as -1 unit
since the magnitude of the weight does not affect the factor of
safety.)

Moment about the line of intersection of planes 1 and 2 of

the weight of the tetrahedron applied through the center of
gravity of the tetrahedron,

Magnitude of the normal component of the vector R on plane J

%, y, and z components of the tangential component of the vector
R on plane J

Magnitude of the tangential component of the vector R on plane J

x, y, and z components of the vector 2512 shown in Fig. 3.5(b)

X, y, and z components of the vector z§l2 shown in Fig. 3.5(b)
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n
12

10
13

14

15

COMPUTER PROGRAM #1

STABILITY ANALYSIS OF ROCK SLOPES

DIMENSION B(2),C(2),PHI(2),EN(2),UX(2),UY(2),uZ(2),VX(2),VY(2),
Z(2),Wx(2),Wy(2),WZ2(2),TX(2),7¥(2),T2{2),T(2)

READ (5,11) ‘BETA1.BETA2.GAMMAT ,GAMMA2, PHI} ,PH2,ALPHA, DELTA, H,0
FORMAT {10F7.2)

WRITE (6,12) BETA1,BETA2,GAMMA],GAMMA2,PHI1,PHI2,ALPHA,DELTA,H,0
FORMAT (1H1,9X,8HBETA1 =,F7.1,8H DEGREES,10X,BHBETA2 =,F7.1,
18H DEGREES/10X,8HGAMMAT =.F7.1.8H DEGREES. 10X .SHGAMMAZ =.F7.1.
28H DEGREES/10X,8HPHI1  =.F7.1.8H DEGREES.10X .8HPHI2 =.F7.1.
38H DEGREES/10X,8HALPHA =.F7.1.8H DEGREES, 10X, BHDELTA_=,F7.1,
48+ DEGREES/10X,8HHEIGHT =,F7.1.4HFEET, 14x.8HQ JF7.2)

B(l) BETA1 /(180.0/3. 141593;

B(2) = BETA2 /(180.0/3.141593
C{1; = GAMMAl/ 180.0/3.141593;
C(2) = GAMMA2/(180.0/3.141593
?Hl(]; = PHI1 /(180.0/3.141593)
PHI(2) = PHI2 /(180.0/3.141593)
A = ALPHA /{180.0/3.141593)
) = DELTA /(180.0/3.141593)
DO 101 K=1,2
UX{K) = COS(B K))
UY(K) = SIN(B K))
uz(k) = 0.0
VX{K) = cOS(C K))*SIN(B(K);
VY(K) =-C0S(C(K))*Cos(B(K)
VZ(K) =-SIN(C(K))
5 ) = suv(K)*vzgx)) ﬁuz(x)*vv(x))
K) = (UZ(K)*VX(K))-(UX{K)*VZ(K))
NZ(K) = (UX(K)*VY(K))-(UY(K)*VX(K))
WRITE f 513) UX(1),UY(1),UZ(1),VX{(1),v¥(1),vzZ(1),WX(1),Wy(1),wz(1)
FORMAT(1H0,9X,4HU1 =,F6.3, H,,2X,F6.3,1H,,2X,F6.2/
] 1ox 4HVY =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/
2 10X, 4HW1 =.F6. 3,1H,,2X,F6.3.1H,,2X,F6.3)
WRITE (6,14) UX(2),uv(2), u2(2) vx(2) VY(2),VZ(2) WX(2) WY (2) WZ(2)
FORMAT(1HO,9X ,4HU2 =,F6. 3, H,,2X,F6.3,1H, ,2X,F6.3/
1 10X,4Hv2 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/
2 10X,4HW2 =,F6,.3,1H,,2X,F6.3,1H,,2X,F6.3)
XX = wvg )*wZ(l) Wz 2)*NY(1 )
XY = (WZ(2)*Wx g -Wx(2)*4z(1))
XZ = (WX(2)*Wy(1)-wy(2)*wx(1))
X = SQRT(XX**2 +XY**2 4 x7#%2)
WRITE ?6 158) XX,XY, xz X
]FORM?T 1HO, 9X , 4¥X =, F6. 3,1H,,2X,F6.3,1H,,2X,F6.3,5X ,8HABS(X) =
F6.3
0DX = ~(H*COS(C(1))/(SIN(C(1))*SIN(B(1))))+(H*COS(A)*COS(B(1))/
1 SIN(A)*SIN(B(1))))
gg{ = n*cos A)/SIN(A)
ocx = ~(H*COS{C(2))/(SI 2))*SIN(B(2))),+(H*COS(A)*COS(B(2))/
SIN%A%*SIN%B(
ocv = H*COS A)/SIN(A)
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104
105

110

108
107

106
m

102
109

12

103

AAA =(SIN(A)/COS(A))- X7/XY)

BBB =(XZ/XY)-(SIN(D)/c0S(D))
FFF=(SIN(D)*C0S(A))/(COS(D)*SIN(A))
HH = H*AAAXFFF /DB

CCC =(H+HH)/XZ

0BX = CCC*XX

0BY = CCC*XY

0BZ = CCC*XZ

0SX =(0BX+0CX+0D))/4.0
0sy =(0BY+0CY+0DY)/4.0
0SZ =(0BZ+0C7+0DZ)/4.0
RX = 0.0

RY = 0.0

RZ =-1.0

EMX = XX*(03Y RZ-0S/*RY)+XY*(0SZ*RX-0SX*RZ )+ XZ*(0SX*RY-0SY*RX)
IF (EMX) 102,103,104

WRITE(6,105)

SORM?T(1“0,9X,29HRESULTANT INTERSECTS PLANE E1)
EN(J)= RX*MUX(J)+RY*WY(J) :RZ*WZ(J)

TX(J)= RX-EN(J)*WX(J)

TY(J)= RY-EN(J)*WY())

TZ(J)= RZ-EN(J)*WZ(J)

T(J) = SQRT(TX(J)*¥*2 +TY(I)**2 +TZ(J)**2 )
FS = EN(I)*SIN(PHI(J))/(T(:)*COS(PHI(J)))

IF (FS.LT.Q) GO TO 106

WRITE(6,107) FS,Jd

FORMAT(1H0,9X,4HFS =,F5.2,10X,25HSLIDING OCCURS ON PLANE E,IT)
GO TO 200

IF(J.EQ.1) GO TO 111

GO TO 112

SX1 = (XY*WZ{1)-XZ*WY(1))/X

SY1 = (XZ*WX(1)-Xx*4Z{1))}/X

SZ1 = {XX*WY(1)-XY*WX(1))/X

DDD1= TX(1)*SX1+T¥(1)*SY1+TZ(1)*SZ1
IF(DDD1.LE.0.0) GO TO 108

GO TO 103

WRITE (6,109)

FORMAT ( THO,9X , 291IRESULTANT INTERSECTS PLANE E2)
J=2

GO TO 110

SX2 == (XY*WZ(2)-XZ*WY(2))/X

SY2 =-(XZ*WX(2)-XX*WZ(2))}/%

SZ2 =-(XX*WY(2)-XY*WX(2))/X

DDD2= TX(2)*SX2+T1Y(2)*SY2+TZ(2)*Sz22

IF (DOD2.LE.0.0) GO TO 108

T12 = (RX*XX+RY*XY+RZ*XZ)/X

EN12X= RX-T12*XX/X

EN12Y= RY-T12*XY/X

EN122= RZ-T12*XZ/X

EEE  =-WX(1)*WY(2)+WV(1)-kX(?)

EEET =-ENT2X*WY(2)+ENT2Y*12(2)

EEE2 =+WX(1)*ENT2Y-WY(1)*ENT2X

ENNT + EEE1/FEE
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ENN2 = EEE2/EEE ,
]FS-((ENNI*SIN(PHI(I))/COS(PHI(I)))+(ENN2*SIN(PHI(2))/COS(PHI(Z))))
/112

WRITE (6,113) FS

113 FORMAT(1HO,9X,4HFS =,F5.2,10X,45HSLIDING OCCURS ALONG THE LINE OF
2INTERSECTION)

200 STOP
END

* DATA




below.

This program is for the analysis of a rock tetrahedron supported by
3 planes and acted on by its own weight, an external force, and porewater
forces on each of the three support planes, The program is coded in

FORTRAN IV language.

INPUT PARAMETERS

Parameter

BETA 1
BETA 2
BETA 3
GAMMA ]
GAMMA 2
GAMMA 3
PHI 1
1 PHI 2
F PHI 3

WwT
Qx
Qv
Qz
uP 1
up 2
up 3

Parameter

CARD 1  FORMAT (9F5.1)

CARD 2 FORMAT (7F7.2)

Card Column Definition of Parameter

1- 5 Strike of plane 1 :
6 - 10 Strike of plane 2 .
11 - 15 Strike of plane 3 ’
16 - 20 Dip of plane 1
21 - 25 Dip of plane 2
26 - 30 Dip of plane 3
31 - 35 Angle of Shearing Resistance on plane 1
36 - 40 Angle of Shearing Resistance on plane 2 ;
4] - 45 Angle of Shearing Resistance on plane 3

1 - 7 Weight of the rock tetrahedron being analyzed

8-14 z, y and z components of a force Q applied

15 - 21 to the tetrahedron
22 - 28
29 - 35 Magnitude of the porewater force on plane 1
36 - 42 Magnitude of the porewater force on plane 2 '
43 - 49 Magnitude of the porewater force on plane 3

QUTPUT PARAMETERS
Definition of Parameter

PROGRAM /2

The format and definitions of parameters are given

ux(1)
3 vy (1)
uz (1)

F P R R R AT

X, ¥, and z components of a unit vector in the direction of
the strike of plane 1

X, Yy, and z components of a unit vector in the direction of
the dip of plane 1

X, ysand z components of & unit vector in the direction normal
to plane 1

PR - oy o -
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ux(2)
uy(2)
vz (2)

vX(2)
vy (2)
vz(2)

wx(2)
wy(2)
wz(2)

ux(3)
uy(3)
uz(3 )

vx(3)
vy (3)
vz(3)

WX (3)
WY (3)
wz(3)

x12x
x1zy
x12z
X12

X23X
X23Y
X232z
X23

X31X
' x3ly
A x31z
i X31

s121x
si21y
sl2iz

s122x
sla2y
sl22z

$232X
$232Y

X, Ys and z components of a unit vector in the direction of
the strike of plane 2

X, Y, and z components of a unit vector in the direction of
the dip of plane 2

xs ¥, and z components of a unit vector in the direction
normal to plane 2

X, y and z components of a unit vector in the direction of
the strike of plane 3

x, y, and z components of a unit vector in the direction
of the dip of plane 3

X, Y, and z components of a unit vector in the direction
normal to plane 3

X, ¥, and z components of a vector, X,,, in the direction
of the line of intersection of planes 1 and 2 as shown
in Fig, 3.14 _

the magnitude of the vector X2

x, ¥, and z components of a vector, X 3 in the direction of
the line of intersection of planes 2 and 3 as shown in Fig. 3.14

the magnitude of the vector X,q

X, Y, and z components of a vector, 231 in the direction of the
line of intersection of planes ! and 3 as shown in Fig. 3.14

the magnitude of the vector i3l

X, Y, and z components of vector 1513 shown in Fig. 3.14

X, Y, and z components of wvector 2§12 shown in Fig. 3,14

X, Y, and z components of vector 2§23 shown in Fig. 3.14




§233X
$233Y
$2332

S313x
S313y
$313z

S311x
s3lly
S3112

X, ¥, and z components of vector 3§23 shown in Fig., 3.14

X, Y, and z components of vector 3§31 shown in Fig. 3.14

X, Y» and z components of vector 1531 shown in Fig. 3.14

(sliding tends to occur along %12 on planes 1 and 2)

Fs

ENL
EN2
T12

Factor of Safety

Normal force on plane 1

Normal force on plane 2

Component of disturbing forces parallel to the line of inter-
section of planes 1 and 2

(sliding tends to occur along X23 on planes 2 and 3)

FS

EN2
EN3
T23

Factor of Safety

Normal force on plane 2

Normal force on plane 3

Component of disturbing forces parallel to the line of inter-
section of planes 2 and 3

(Sliding tends to occur aleng X31 on planes 1 and 3)

FS

ENJ
ENI
31

Factor of Safety

Normal force on plane 3

Normal force on plane 1

Component of disturbing forces parallel to the line of inter-
section of planes 1 and 3

(sliding tends to occur on plane 1)

Fs
EN1
Tl

Factor of Safety
Normal force on plane 1
Tangential force on plane |

(sliding tends to occur on plane 2)

FS
EN2
T2

Factor of Safety
Normal force on plane 2
Tangential force on plane 2

(Sliding tends to occur on plane 3)

FS
EN3

Note:

Factor of safety
Normal Force on plane 3
Tangential force on plane 3

Tests 1 through 12 in program #2 are used to determine the mode of
sliding as can be determined fram equs. 3.69, 3.70, 3.71, 3.81,
3.82, 3.83, 3.84, 3.85, 3.86, 3.87, 3.88, 3.89, 3.90, 3.91, 3.92,
3.93, 3.94, 3.95, 3,96, 3.97, and 3.98.
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COMPUTER PROGRAM # 2

¢ STABILITY ANALYSIS OF ROCK SLOPES-THREE INTERSECTING JOINT SETS

DIMENSION B(3),C(3),GAMMA(3),VX(3),VY(3),vZ(3),Ux(3),UY(3),
10Z(3),Wx(3),Wy(3),wz(3)
DO 200 IJK=1,2
READ (5,11) BETA1,BETA2,BETA3,GAMMA(1),GAMMA(2),GAMMA(3),PHI1,
1PHI2,PHI3,WT,QX,QY,QZ,UP1,UP2,UP3

n FORMAT (9F5.1/7F7.2)
WRITE (6,12) BETA1,BETAZ,BETA3,GAMMA(1),GAMMA(2),GAMMA(3),PHI1,
1PHI2,PHI3,WT,QX,QY,QZ,UP1,UP2,UP3

12 FORMAT(1H1,8X,8HBETA1 =,F5.1,5H DEG.,14X,8HBETA2 =,F5.1,5H DEG.,
1 14X,8HBETA3 =,F5.1,5H DEG.,//9X,8HGAMMA1 =,F5.1,5H DEG.,14X,
28HGAMMA2 =,F5.1,5H DEG.,14X,8HGAMMA3 =,F5.1,5H DEG.//9X,8HPHIT =
3,F5.1,5H DEG.,14X,8HPHI2 =,F5.1,5H DEG.,14X,8HPHI3 =,F5.1,5H D
4EG. //9X,4WWT =,F7.2,5X,4HQX =,F7.2,5X,4HQY =,F7.2,5X,4HQZ =,F7.2,
55X,5HUP1 =,F7.2,5X,5HUP2 =,F7.2,5X,5HUP3 =,F7.2)
B(1) = BETA1/(180.0/3.141593)
B(2) = BETA2/(180.0/3.141593)
B(3) = BETA3/(180.0/3.141593)
C 1 GAMMA(1)/(180.0/3.141593)

C(2) = GAMMA(2)/(180.0/3.141593)

C(3) = GAMMA(3)/(180.0/3.141593)
PHIT = PHI1/(180.0/3.141593)

PHI2 = PHI2/(180.0/3.141593)

PHI3 pu13/(1ao 0/3.141593)
D0 201 K=1,
X x; = COS(B(K;

3; E) f SIN(B(K))

VX(K) = cos K;;*SIN(nggg

wit) eRlet el
! wx(K) = ;*VZ(K ;-(uz(x *VY K;;
. uvgx = g g *YX(K))-(Ux(K)*vZ(K

wZ(K) = (UX(K)*VY(K))-(UY(K)*VX(K))

WX(K) = -WX(K)
WY(K) = -WY(K)
WZ(K) = -WZ(K)
201  CONTINUE
WRITE (6,13) UX(]% »UY

‘ xrgsAMMA(K) .GT.90.0) G0 TO 201

Y(1),0z(1),VX(1),v¥(1),VZ(1),Wx(1),u¥(1),WZ(1)
13 FORMAT(1H0,9X,4HU1 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/
1 10X,4HV1 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/
2 10X,4HW1 =,F6.3,1H, ,2X,F6.3,H, ,2X,F6.3)

WRITE (6,14) UX(2),UV(2),02(2},VX(2),VY(2),VZ(2) WK(2) WY (2) MZ(2)
14 FORMAT(1HO,9X,4HU2"=,F6.3,H,,2X,F6.3,TH, X, F6.3/

1 10X,4HV2 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/

2 10X,4HW2 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3)

WRITE(6,115) UX(3),U¥(3),02(3],VX(3),VY(3),VZ(3) ,WX(3) ,W¥(3) ,WZ(3)
115 FORMAT(1HO,9%,4HU3 =,F6.3,1H,,2X F6.3,H, ,2X F6.3/
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15

121

1 10X,4Hv3 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3§
3

2 10X,4HW3 =,F6.3,1H,,2X,F6.3,1H, ,2X,F6.
WIX = WX lg

Wiy = WY(1

WIZ = wz(1)

W2X = WX(2

W2Y = WY(2

W2Z = WZ(2

W3X = WX(3

W3Y = WY(3

W3Z = WZ(3)

X12X=W2Y*W1Z-W2Z*W1Y
X12Y=W2Z*W1X-W2X*W1Z
X12Z=W2X*W1Y-W2Y*W1X
X12=SQRT(X12X**24X12Y**2+X12Z**2)
X23X=W3Y*¥2Z-K3Z*W2Y
X23Y=W3Z*W2X-W3X*W2Z
X237=W3X*W2Y-W3Y*W2X
X23 =SQRT(X23X**24X23Y**2+X237**2)
X31X=W1Y*W3Z-W1Z*W3Y
X31Y=W1Z*W3X-W1X*W3Z
X31Z=W1X*W3Y-W1Y*W3X
X31 =SQRT(X31X**2+X31Y**2+X3]1Z**2)
WRITE(6,15) X12X,X12Y,X12Z,X12,X23X,X23Y,X23Z,X23,X31X,X31Y,X31Z, : :

1X3Y )
FORMAT(1HO, 9X, 5HX12 =,22F6.3,1H,,2X),F6.3,5X,10HABS(X12) =,F6.3//

1 10X,5HX23 =,2(F6.3,1H,,2X),F6.3,5X, 10HABS(X23) =,F6.3//

2 10X,5HX31 =,2(F6.3,1H,,2X),F6.3,5X,10HABS(X31) =,F6.3)

RX= QX + UPT*W1X + UP2*W2X + UP3*U3X

RY= QY + UPT*W1Y + UP2*W2Y + UP3I*W3Y

RZ= QZ + UPT*W1Z + UP2*W2Z + UP3*W3Z + WT !
S121X= WIY*X12Z-W1Z*X12Y i
S121Y= WI1Z*X12X-W1X*X12Z

$121Z= WIX*X12Y-W1Y*X12X

S122X= X12Y*W2Z-X12Z*W2Y

$122Y= X12Z*W2X-X12X*W2Z

$122Z= X12X*W2Y-X12Y*W2X

$232X= W2Y*X23Z-W2Z*X23Y

$232Y= W2Y*X23X-W2X*X23Z

S2327= W2X*X23Y-W2Y*X23X

$233X= X23Y*W3Z-X23Z*W3Y

$233Y= X237*W3X-X23X*W3Z

$233Z= X23X*W3Y-X23Y*W3X

$313X= W3Y*X31Z-W3Z*X31Y

$313Y= W3Z*X31X-W3X*X31Z

$313Z= W3X*X31Y-W3Y*X31X

S311X= X31Y*W1Z-X31Z*W1Y

$311Y= X31Z*W1X-X31X*W1Z

$311Z= X31X*W1Y-X31Y*W1X

WRITE(6,121) S121X,5121Y,5121Z,5122X,S122Y,5122Z,5232X,S232Y,
152322,5233X,5233Y,52332,5313%,5313Y,5313Z,5311X,5311¥,S311Z
FORMAT(IHO,QX,5HS]21=,2(F6.3,1H,,ZXS,FG-3,5X,5HS]22=,2(F6.3,1H,,
12X ,F6.3//10X.5HSZ32=,22?6.3,1H,,ZX ,F6.3,5X,5H8233=,2§F6.3,1H,,
22X),F6.3//10%,5HS213=,2(F6.2,14,,2X) ,F6.3,5X,5HS311=,2(F613, 1H,,
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101
107

32X),F6.3)

TEST1 =RX*X12X+RY*X12Y+RZ*X12Z

TEST2 =RX*X23X+RY*X23Y+RZ*X23Z

TEST3 =RX*X31X+RY*X31Y+RZ*X31Z

TEST4 =RX*WI1X+RY*W1Y+RZ*W1Z

TESTS =RX*W2X+RY*H2Y+RZ*W2Z

TESTE =RX*W3X+RY*W3Y+RZ*W3Z

TEST7 =RX*S121X+RY*S121Y+RZ*S121Z

TEST8 =RX*S122X+RY*S122Y+RZ*S122Z

TEST9 =RX*S232X+RY*S232Y+RZ*S$232Z
TEST10=RX*S233X+RY*S233Y+RZ*$233Z
TESTT1=RX*S313X+RY*S313Y+RZ*$313Z
TEST12=RX*S311X+RY*S311Y+RZ*$311Z
IF(TEST1.GE.0.0.AND.TEST7.LE.0.0.AND.TEST8.LE.0.0) GO TO 101
IF(TEST2.GE.0.0.AND. TESTO .LE.0.0.8D.TEST10.LE.0.0) GO TO 102
IF(TEST3.GE.0.0.AND.TEST11.LE.0.0.AND. TEST12.LE.0.0) GO TO 103
IF(TEST4.LE.0.0.AND.TEST7 .GE.0.0.AND.TEST12.6E.0.0) GO TO 104
IF(TESTS5.LE.0.0.AND. TEST8 .GF.0.0.AND.TEST9 .GE.0.0) 60 TO 105
IF(TEST6.LE.0.0.AND. TEST10.GE.0.0.AND. TEST11.GE.0.0) GO TO 106
IF(TEST4.GE.0.0.AND. TEST5.GE.0.0.AND. TEST6.GE.0.0) GO TO 119
WRITE(6,107)

F?RMAT(]HO,QX,SOHSLIDING TENDS TO OCCUR ALONG X12 ON PLANES 1 AND
12

T12 = TESTI/X12

EN12X=RX-T12*X12X/X12

ENT2V=RY-T12*X12Y/X12

EN12Z=RZ-T12%X12Z/X12

EEE =W1X*W2Y-W2X*W1Y

IF (EEE.EQ.0.0) GO TO 122

EEE1=W2X*EN12Y-W2Y*EN12X

EEE2=WTY*ENT2X-W1X*EN12Y

EN1 =EEE1/EEE

EN2 =EEE2/EEE

GO TO 123

EEE=W1Y*W2Z-W1Z*W2Y

EEET=W2Y*EN12Z-W2Z*EN12Y

EEE2=W1Z*EN12Y-W1Y*EN12Z

ENV=EEE1/EEE

EN2=EEE2/EEE

FS  =((ENT*SIN(PHI1)/COS(PHI1))+(EN2*SIN(PHI2)/COS(PHI2)))/T12
WRITE(6,108) FS,ENT,EN2,T12

FORMAT(1HO,9X ,4HFS =,F5.2,10X,5HENT =,F7.2,5X,5HEN2 =,F7.2,5X,5KT1
12 =,F7.2)

GO TO 200

WRITE(6,109)

F?RMAT(]HO,QX,SOHSLIDING TENDS TO OCCUR ALONG X23 ON PLANES 2 AND
13

123 = TEST2/X23

EN23Y=RX-T23*X23X/X23

EN23Y=RY-T23*X23Y/X23

EN23Z=RZ-T23*X23Z/X23

EEE =W2X*W3Y-W3X*W2Y

IF(EEE.EQ.0.0) GO TO 124

EEE2 =W3X*EN23Y-W3Y*EN23X




124

125
110

103
m

126

127

12

104
13

14

105
215

EEE3 =W2Y*EN23X-W2X*EN23Y

EN2 =EEE2/EEE

EN3 =EEE3/EEE

GO TO 125

EEE=W2Y*W3Z-W2Z*W3Y

EEE2=W3Y*EN23Z-W3Z*EN23Y

EEE3=W2Z*EN23Y-W2Y*EN23Z

EN2=EEE2/EEE

EN3=EEE3/EEE

FS =((EN2*SIN(PHI2)/COS(PHI2))+(EN3*SIN(PHI3)/COS(PHI3)))/T23
WRITE(6,110) FS,EN2,EN3,T23

FORMAT(1HO0,9X,4HFS =,F5.2,10X,5HEN2 =,F7.2,5X,5HEN3 =,F7.2,5X,5HT2
13 =,F7.2)

G0 TO 200

WRITE(6,111)
lngMAT(1H0,9X,50HSLIDING TENDS TO OCCUR ALONG X31 ON PLANES 3 AND
T31 = TEST3/X31

EN31X=RX-T31*X31X/X31

EN3TY=RY-T31*X31Y/X31

EN31Z=RZ-T31*X31Z/X31

EEE =W3X*"W1Y-W1X*W3Y

IF(EEE.E0.0.9)- 60 TO 126

EEE3 =WIX*EN31Y-WIY*EN31X

EEE1 =W3Y*EN31X-W3X*EN3TY

EN3 =EEE3/EEE

EN1=EEE1/EEE

GO TO 127

EEE=W3Y*WI1Z-W3Z*W1Y

EEE3=WIY*EN31Z-W1Z*EN31Y

EEE1=W3Z*EN31Y-W3Y*EN31Z

EN3=EEE3/EEE

ENV=EEE1/EEE

FS =((EN3*SIN(PHI3)/COS(PHI3))+(ENT1*SIN(PHI1)/COS(PHI1))}/T31
WRITE(6,112) FS,EN3,EN1,T31

FORMAT(1HO,9X,4HFS =,F5.2,10X,5HEN3 =,F7.2,5X,5HENT =,F7.2,5X,5HT3
11 =,F7.2)

GO TO 200

WRITE(6,113)

FORMAT( 1HO,9X ,33HSLIDING TENDS TO OCCUR ON PLANE 1)

EN1 = -TEST4

TIX = RX + ENT*WIX

TIY = RY + ENT*W1Y

T1Z = RZ + ENT*WN1Z

T1 = SQRT(TIX**2+4T1Y**2+T1Z2%*2)

FS = ENT*SIN(PHIT)/(COS(PHIT)*T1)

WRITE(6,114) FS,ENI1,T?

FORMAT(1H0,9X ,4HFS =,F5.2,10X,5HENY =,F7.2,5X,5HT1 =,F7.2)
GO TO 300

WRITE(6,215)

FORMAT(1Hv, 9X ,33HSLIDING TENDS TO OCCUR ON PLANE 2)

EN2 = -TESTS

T2X = RX + EN2*W2X

T2Y = RY + EN2*W2Y
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T2Z = RZ + EN2*W2Z
T2 = SQRT(T2X**2+4T2Y**24T22%*2)
FS = EN2*SIN(PHI2)/(COS{PHI2)*T2)
WRITE(6,116) FS,EN2,T2
116  FORMAT(1H0,9X,4HFS =,F5,2,10X,5HEN2 =,F7.2,5X,5HT2 =,F7.2)
GO TO 300
106 WRITE(6,117)
117 FORMAT(1H0,9X,33HSLIDING TENDS TO OCCUR ON PLANE 3)

EN3 = -TEST6

T3X = RX + EN3*W3X
T3Y = RY + EN3*W3Y
T3Z = RZ + EN3*W32Z

T3 = SQRT(T3X**24T3Y**2+T374+2)
FS = EN3*SIN(PHI3)/(COS(PHI3)*T3)
WRITE(6,118) FS,EN3,T3

118 FORMAT(1HO0,9X,4HFS =,F5.2,10X,5HEN3 =,F7.2,5X,5HT3 =,F7.2)
GO TO 300

119 WRITE(6,120)

120 FORMAT(1HO,9X,40HROCK WEDGE IS LIFTED OFF THE BASE PLANES)

300 IF(TEST1.LT.0.0.AND.TEST? .LE.0.0.AND,TEST8 .LE.0.0) &0 TO 101
IF(TEST2.LT.0.0.AND.TEST9 .LE.0.0.AND.TEST10.LE.0.0; G0 TO 102
IF(TEST3.LT.0.0.AND. TEST11,LE.C.0.AND.TEST12.LF.0.0) GO TO 103

200 CONTINUE
sToP
END

* DATA
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In accordance with letter from DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Hendron, Alfred Joseph
Analytical and graphical methods for the analysis of
slopes in rock masses / by A. J. Hendron, Jr., E. J.
Cording, and A. K. Aiyer, Department of Civil Engineering,
University of Illinois, Urbana, I1l1. Vicksburg, Miss.
U. S. Waterways Experiment Station ; Springfield, Va.
available from National Technical Information Service, 1980.
xi, 148, 14 p. : i11. ; 27 cm. (Technical report - U. S.
Army Engineer Waterways Experiment Station ; GL-80-2)
Prepared for U. S. Army Engineer Nuclear Cratering Group,
Livermore, Calif., under Contract No. DACW 39-67-C-0097.
Reprint of NCG Technical Report No. 36.
References: p. 148,

1. Dynamic slope stability. 2. Graphical methods. 3. Rock
masses. 4. Rock mechanics. 5. Slope stability. 6. Stereonet.
T. Vector analysis. I. Aiyer, Arunachalam Kulathu, joint
author. II. Cording, Edward J., joint author. III. Illinois.
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