
,' '~. 

' , .',' 

,. 
\ 

\ 
! 
1' 

TGCl-INIC/'t.L r.fPOf<T GL-l)O 2 

~liETHODS 

~ ~ f\r'.-~Y ~n9tn~-~0r NucJnnr ;<~.0ring Group 
L·tcrmoro, CaliF. 91155\i 

., / 1_,-,:in''~H \V,,tcrw'ly5 [J'f'(·:·ir:wnt :_;ttll:ion 

63 ir Vick:6ur~J 1 A\i~,$. :;qgo 

r-? 
! ' 



--,,_. :hi·~ ri'!pt.rt 'NlHm no lonner r1e~d~d. Do not return 

it to the ori9i;;otor. 

:,_- -il-:;,,:,:, :n this report ore not to be corr::.trued as on cf(i::::ia 1 

'" t't:V:nt of the /\rr11y flO~.ition unk'>s SO designated 
by olher OL•thorized dC>curncnts. 



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Manm Dat. fintgvrdJ

READ UETrMUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLEUI FORM

Technica ep- -02/2 GOVT ACCESSION NO, 3. RIECIPIENT'S CATALOG NUM8ER

Tec nicS. 
TYPE O REPORT A PERIOD COVERED

ANALYTICAL AND ~RPIA~rOSFRTERepr int of NCG Technical
$ -~ANALYSIS OF SLO'I'ES IN ROCK MASSES. Report No. 36'

- 6. PERFORMING ORG. REPORTNUDMBER

a -- 4. CONTRACT OR GRANT NUM§ER(o)

S. CEROTROLING OGAICEIO NAME AND ADDRESS 1.PORMEEET RJCTS

U. S. Army Engineer NcerCaeigGopMrgwy
Livermore, Calif. 94550 C 11049

14. MONITORING AGENCY NAME II ADORESS(If dlifot.i from. Controllind Office) 1S. SECURITY CLASS. (of Wle "Pont)

U. S. Army Engineer Waterways Experiment Station Unclassified
Geotechnical Laboratory_______________
P. 0. Box 631, Vicksburg, Miss. 39180 iSo. DEC 1,1EF1 CATION/ OWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

Dynamic slope stability Slope stability
Graphical methods Stereonet
Rock masses Vector analysis
Rock mechanics

26, A V C? (MdOWe M ,emeesho nesaugauand #I~etr by block ner)

in this report the methods of analyzing the static stability of rock
slopes cut by a three-dimensional network of discontinuities are given. The
general use of vector analysis to solve these problems analy-tically is de-
scribed and a method utilizing stereonets to solve these problems graphically
is also given. For both the graphical and analytical methods the general
analysis of slopes cut by one, two, or three sets of discontinuities is pre-
sented which can take into account the porepressures acting on the(Cniud

DO Foo 147 Dtion or 'SI s sOBSOLETE(CtiedD I n 7sUnclassified
SECURITY CLASSIFICATION OF TIS PAGE (**On Daea 111ee.E)

J 6Jat



Unclassified
SECURITY CLASSIFICATION OF THIS PAGSEft- Data Eum-o

20. ABSTRACT (Continued).

discontinuities and external forces acting on the slope. Detailed examples
are given to illustrate both the graphical and vector methods of analysis.

The dynamic stability of slopes is also treated in this report. It is
shown that the dynamic resistance of a three-dimensional rock slope can be
calculated by either the graphic-stereonet method or the analytic vector
analysis method. The dynamic resistance can then be used to estimate the
movement of the slope under dynamic loading using a procedure given by
Newmark (1965). A criterion is then given for determining if the calculated
movement of the rock slope is acceptable or harmful.

F 1.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(WhaM Date SfRllr*

LI II I



FOREWORD

This study was performed by the Department of Civil Engineering,

University of Illinois, uira- contract to the U. S. Army Engineer Water-

ways Experiment Station, Vicksburg, Mississippi (WES) for the U. S. Army

Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore,

California (NCG). The study was performed under Contract No. QAMC 39-67-

C-0097, "Evaluation of Analytical Methods of Determining the Stability of

Rock Slopes," and was funded by NCG TAO 2-63, "Engineering Properties of

Nuclear Craters." The contract was negotiated on 16 June 1967.

This report was prepared by Messrs. Hendron, Cording and Aiyer; and,

was reviewed by Don C. Banks, Chief, Rock Mechanics Section, Soils Division,

WES and by Major Richard H. Gates, C.E., Chief, Engineering Geology Division,

NCG.

The contract was monitored by Don C. Banks, WES. The Contracting Officer

at the time of publication was COL Ernest 0. Peixotto, CE, Director of WES.

Technical Director of WES was Mr. Fred R. Brown. The Director of NCG

was LTC Robert L. LaFrenz, CE, and the Technical Director was Mr. Walter C.

Day.

AcSsion For

.. e , .i = - , 0= ?



ASTACT

In this report the methods of analyzing the static stability of rock

slopes cut by a three dimensional network of discontinuities are given. The

general use of vector analysis to solve these problems analytically Is

described and a method utilizing stereonets to solve these problems graphically

Is also given. For both the graphical and analytical methods the general

analysis Of slopes cut by one, two, or three sets of discontinuities Is

presented which can take Into account the porepressures acting on the dis-

continuities and external forces acting on the slope. Detailed examples are

given to Illustrate both the graphical and vector methods of analysis.

The dynamic stability of slopes is also treated in this report. It

is showan that the dynamic resistance of a three-dimensional rock slope

can be calculated by either the graphic-stereonet method or the analytic

vector analysis method. The dynamic resistance can then be used to estimate

the movement of the slope under dynamic loading using a procedure given by

New.iark (1965). A criterion is then given for determining if the calculated

movement of the rock slope is acceptable or harmful.
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CHAPTER ONE

INTRODUCTION

1.1 General

The design and analysis of rock slopes is somewhat different than

the design and analysis of slopes in soil because of the patterns of

discontinuities in the rock mass. The spatial orientation of these

discontinuities and the shearing resistance along them govern the

stability of rock slopes. Thus the method of analysis used must take

into account the three dimensional intersection of the joint sets with

each other and intersection of these discontinuities with the face or

surface of the rock slope. Limit equilibrium methods of analysis have

recently been developed to analyze these problems In three dimensions

which will be explained and illustrated in this report.

In all methods of limit equilibrium analysis the shape of the

potential failure is assumed at the outset. In the limit equilibrium

methods used for soil slopes, sections of log spirals or circles are

normally chosen to represent the failure surface. Although displacements

are ignored in limit equilibrium methods, it must be kinematically

possible for the displacements to take place In the direction assumed

along the failure surface chosen. Surfaces composed of sections of

circles or log spirals pose no kinematic difficulties. In rock slopes

the potential system of failure surfaces already exist In the mass but

the kinematics of sliding must be checked to delineate the possible

directions and surfaces on which It is physically possible for sliding

to take place.

IL1
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After the potential failure surface is assumed in either the rock

or soil slope stability analysis, the next step in the limit equilibrium

method Is to calculate the shearing resistance required along the

potential failure surface to keep the potential sliding mass in equilibrium.

This portion of the analysis is basically an exercise In statics.

After the shearing resistance required for equilibrium has been

found, it is compared with the available shearing resistance. This

comparison is usually expressed in terms of a factor of safety, which

must be defined very carefully. Finally the slip surface giving the

lowest factor of safety is found. In soils this is usually an iterative

process with failure surfaces of the same shape but with different

sizes and orientations. But in rock slopes there may only be several

potential failure wedges to consider, each having a different shape

goverened by various intersections of the sets of discontinuities.

1.2 Scope

In this report the methods of analyzing the static stability of

rock slopes In three dimensions are given and a method is suggested for

assessing the dynamic stability of rock slopes. The methods of static

analysis for three dimensional wedges are based primarily on the work

of Wittke (1964, 1965a, 1965b, 1966), and Londe (1965). Since vector

analysis is used in the analyses of Wittke and Londe, a review of vector

operations commonly used In slope stability calculations is given in

Chapter 2. The notation used for expressing strikes, dips, etc. in

terms of vectors Is also given in Chapter 2.

In Chapter 3 various combinations of the vector analyses of Wittke

and Londe are presented for determining the static factor of safety

2
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of rock slopes. The cases treated include slopes in rock masses containing

one* two, or three sets of joints. Example calculations are given for

determining the factor of safety of several typical problems by these

methods. The concept of the dynamic resistance of rock slopes is also

introduced In Chapter 3. The method given in Chapter 3 for comiputing

the dynamic resistance of a rock slope in three dimensions is original

with this report. The dynamic resistance can be used for predicting

dynamic displacements due to earthquake motions in the method of dynamtic

analysis given by Newmark (1965).

In Chapter 4 procedures are given for performing graphical solutions

of three dimensional rock slope stability problems by the use of

stereonets. The principles of the equal angle and equal area projec-

tions are reviewed in this chapter and the equal angle projection is

used in this report for the three dimensional analysis of rock slopes.

The methods for analyzing rock wedges bounded by one, two, and three

joint planes are similar to those given by John (1968) and example

problems are illustrated. In cases where the static factor of safety

is greater than unity a method is also shown for computing the magnitude

and direction of the limiting dynamic resistance of a rock slope in

three dimensions by the use of stereonets. in cases where the factor

of safety is either less than unity or less than the desired value

a method is also shown for de~ermining the optimum direction and magnitude

of rock anchor or rock bolting forces required to achieve the desired

factor of safety.

In Chapter 5 procedures are given for estimating the dynamic

displacement of rock slopes by utilizing the method proposed by



Newmark (1965). The minimum dynamic resistance for rock slopes as

developed in Chapter 3 is used i, these calculations. Guidelines are

also given for determining if the dynamic displacement calculated is

harmful to the stability of the slope.

In Chapter 6 a summary and conclusions are given.

4
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CICIPTER TWO

FUNDAMENTALS OF VECTOR ANALYSIS

2.1 General

In this chapter the elements of vector analysis used in three dimen-

sional slope stability analyses are reviewed to serve as a ready reference

for the reader. Then the system used in this report for describing the

three-dimensional orientation of joint planes, the line of intersection

of different joint sets, and the resolution of forces, is introduced in

terms of vector notation.

2.2 Fundamental Vector Operations

A vector is a quantity which possesses both a magnitude and a

direction. Velocity, force, and momentum are examples of vector quan-

tities. Vectors of unit length may also be used to describe certain

reference directions such as a normal to a plane or the direction of

any line with respect to a set of orthogonal axes. A vector A may

be described by the set of its directional components (Ax, Ay, Az)

parallel to the rectangular Cartesian axes (x,y,z). Thus,

A= (Ax, Ay, AZ) (2.1)

A vector may also be expressed in terms of its components. For example,

K -TA + jA + kA (2.2)
x y z

where e, J, and k are unit vectors directed along positive (x,y,z)

axes respectively.

The magnitude of a vector A is given by its absolute value denoted by

2 2

A (A +A 2 + A) 1/2 (2.3)
x y z

Xyz5



Vectors may be added simply by summing the components in the x, y,

and z directions. Thus if Q(CxC yC z) represents the sum of two vectors

A(AxA y,A z) and 6(B x, y, z), then It follows that

(7A + ]A + KA ) + (t x  + ]B + i)

-1(A + sB ) +](A +B ) + (A +5)
x x y y z z

-Icx + Icy + kcz  (2.4)

Equating the components in the x, y, and z directions,

Cx - Ax + Bx , Cy M Ay + By, Cz - Az + 5 z  (2.5)

The scalar product or the dot product of two vectors A and i is denoted

in the form A.B end has a magnitude given by

A,-A B +A B +A B (2.6)xx yy zz

-AB cos B (2.7)

where 0 denotes the angle formed by the vectors A and B (Fig. 2.1). The

scalar project is frequently used to obtain the component of a vector in

a given direction. For example, if 1 is a unit vector in the x direction,

A.T yields A W A cos a where ca is the direction angle between thex

vector A and the positive x axis. Similarly, A - A cos B', A - cos Y,y z

where 81, and y' denote direction angles between the vector A and the

positive y and z axes respectively. Substitution of these expressions

into Eq. (2.3) yields

c2,O + cos, + cos 2 y' - (2.8)

Thus the cosines of the direction angles (direction cosines) of vector

are not Independent; they must satisfy Eq. (2.8)

A vector product or cross product of two vectors A and B is defined

6
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to be a third vector C whose magnitude is given by the relation

C = AB sin * (2.9)

where 0 denotes the angle between vectors A and B. The direction of Z

is perpendicular to the plane formed by vecto-s A and B as shown in Fig.

2.2. The vector product of A and 1 is denoted in the form

C = A X B (2.10)

where X denotes vector product or cross product. The sense of C is

such that it is in the direction a right hand threaded screw perpendicular

to the plane formed by A and B would move if A were rotated into B.

In determinant notation the vector product is given as

j1 k
X=AxB= A A Ax y z

B B B (2.11)x y z

It should be noted that

AX X = - 8 X A (2.12)

2.3 V2ctor Operations Used in Three Dimensional Analysis of Slopes

2.3.1 Unit Vectors Defining the Orientation of Joint Planes and the

Line of Intersection of Joint Sets

The orientation of joints and planes of weakness are normally re-

ported by the field geologist in terms of strike and dip. In this re-

port, the system given by Wittke (19S4) will be used to describe the

orientation of the discontinuities in relation to the slope Face being

investigated. According to this system, as shown in Fig. 2.3, the x

axis is parallel to the strike of the slope surface, the positive z

axis is upward and the positive y axis is directed toward the slope.

The strike of a plane of weakness is given by the angleS measured in

9
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a horizontal plane in a counterclockwise direction fran the positive

x-axis as shown in Fig. 2.3. The value of B can range between 0 and

180 degrees. The dip of a plane with the horizontal is denoted by the

angle y in a direction at 90 degrees to the strike. The dip, y, can

range from 0 to 180 degrees and is measured downward from a horizontal

line directed at an angle, % equal to 0-93 to the positive x axis. An

example of the use of this notation to describe the orientation of two

planes is shown in Fig. 2.4. The strike and dip are described by the

unit vectors ; and ; respectively, and are written in terms of the

angles B andY as shown In Fig. 2.3, I.e.,

= cos OT + sinB 3
and

v cos y sinB I - cos y cosB j - siny k

or

= (cos 8, sIn6, 0) (2.13)

- (cos y sin$, - cos y cosB, - siny) (2.14)

Since the strike and dip are at 90 degrees, the scalar product u'

should be zero. uv -, + cos $ cos y sinB - sin O cos y cosB - 0.

Thus Eqs. (2.13) and (2.14) satisfy the orthogonal relationship required

for the unit vectors describing the strike and dip.

The cross product of Z and gives a unit vector w which Is perpen-

dicular to both ; and ; and thus directed normal to the plane described

by ; and ;. The vector ; is obtained by expanding the determinant

given in Eq. (2.15).

, X -u x Uy uz

vx Vy vz  (2.15)

11
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FIG. 2.4 CO-ORDINATE SYSTEM FOR DESCRIBING STRIKES
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The direction of w is normal to t:he plane of u and v in the direction of

advance of a right hand screw in turning from ; to V through the smallest

angle between these vectors (< 1800). The magnitude of ; is equal to the

quantity uv sin 0 which assumes the vailue of unity because 0 = 900 and

u and ; are unit vectors. The sense of w for the two planes shown in

Fig. 2.4 is shown in Fig. 2.5. Note that for plane I the direction of

is normal to plane I and directed downward into the slope and

is normal to plane 2 directed upward out of the slope. The specification

of the unit vector w normal to a plane is sufficient to completely

describe the orientation of that plane.

The direction of the line of inter-section of two joint planes

(planes 1 and 2) is given by a vector ; 12 having the direction of the

cross product of the normal unit vectors to the two planes. Thus for

planes I and 2 shown in Fig. 2.5 a vector x1., along the line of inter-

section is given by

x12 ' w2 X w'1 (2.16)

where is directed downward along the line o f intersection as shown

in Fig. 2.5.

2.3.2 Resolution of Forces

The component of a force R in the direction given by a unit vector

is given by

R~n R cos 0 (2.17)

where 0 is the angle bet:ween R and n. Thus, for e4cample, the component

of a force R normal to a plane is given by R and is given by -

RN  R.w Rxw x + Rywy + Rwz (2.18)

13

L A



FIG. 2.5 VECTOR DESCRIPTION OF THE ORIENTATION OF TWO
PLANES AND THEIR LINE OF INTERSECTION
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Similarly the component of in the direction of the line of intersection

of two planes is R "
x12

The obliquity of a force Ron a given plane is the angle ', which

the force R makes with the normal to the plane ; as shown in Fig. 2.6.

tan *'- RT/RN

where RN and RT are the components of R normal and tangential to the plane,

n I .1 - +t RsinR*'-Rco n
respectively. Note that RN ' Rw Rxwx + Rw + R w- R cos, 8 and

R T  = IR X wl = R s in

=[(R-ywzRzwy)2 + (Rzwx-Rxwz)2 + (Rxwy-RyWx)2 ]1/2 (2.19)

Therefore the obliquity of a force on a plane is given by

RT [(Ryw-Rwy)
2 + (RzwxR v)2 + (RwRw)

2  1/2

tan ' = (RW w RW) (2.20)
x x y y zZ)(.0

The vector R T may also be given by R - RNW which is given by

T , (Rx-RNwx)i + (Ry-RNWy)J - (Rz-Rwz)K

since R"N R NwXi + RNwy + RNwz Thus the obliquity may also be given as

tan*' - [(R -RNw)
2 + (Ry ANw)

2 + (R z'NWZ)
2  1/2

Rxx y Rzwz (2.21)

2.3.3 Line of Application of a Force and Point of Intersection of Two

Forces

In order to analyze rotational stability, the point of application

of a force and its direction must be known. If the vector OS from the

selected origin of coordinates 0 to a point Se on the line of action of

the force Iis known, the line of action of W may be expressed as the

line Joining the tips of the set of radius vectors given by

15
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FIG. 2.6 RESOLUTION OF FORCES ON A PLANE INTO
NORMAL AND TANGENTIAL COMPONENTS

S 7
xw

i 
4w

FIG. 2.7 EQUATION OF A LINE IN VECTOR NOTATION
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r S+ (2.22)

and shown in Fig. 2.7.

In a three-dimensional problem the set of applied forces will not

in general intersect, and the moment of each force about a particular

axis of rotation may be considered separately, or the forces may be

moved parallel to the axis of rotation about which moments are being

sutmmed until the forces intersect. For example, in analyzing the rota-

tion of a wedge as shown in Fig. 2.8 around the axis defined by the

unit vector a, for the external force P applied at point N and the

weight W applied through the center of gravity S, either of these forces

may be shifted any distance K parallel to ; without changing the morment

about d. Thus the forces may be moved In this manner until their lines

of action intersect. if the line of action of Q is defined by

r w = OS + XW (x- constant) (2.23)

and the line of action of P is defined by

- - ii (6 - constant) (2.24)

the resultant R of P and W can be considered to act at a point of inter-

section I by setting

rw + +K.; (2.25)

Substitution of Eqs. (2.23) and (2.24) in Eq. (2.25) yields

TS + _(R TP_+ 7d(2.26)

If three equations are written from Eq. (2.26) in terms of the x,

y, and z components of P and W they can be solved simultaneously for

X X1 6 & 1 and K -K 1

which locate the point of intersection 1. The vector from the origin 0,

17



FIG. 2.8 MOMENT CAUSED BY TWO FORCES WITH
DIFFERENT POINTS OF APPLICATION

FIG. 2.9 MOMENT OF A FORCE ABOUT A GIVEN AXIS
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to I, the point of application of A, is thus

T- OS + X W(2.27)

2.3.4 Moment about an Axis

The magnitude of the moment about axis through point A as shown In

Fig. 2.9 caused by the force A acting at point I is

M d = (A-I Xi) (2. 28)

where

2.3.5 Point of Intersection of a Force and a Joint Plane

The point of intersection of a force and a joint plane is found by

equating the line of action of the force and the equation of a plane.

The equation of a plane is given by

r p * w - constant (2.29)

where ;rp Is a radius vector from the origin to a point In the plane,

and ; the unit vector normal to the plane. If the vector OF from the

origin to any point F in the plane is known, then the constant is deter-

mined and the equation of the plane is:

0~r ;w= (OF.;w)

The point where the force P intersects the plane is thus given by

solving simultaneously the equation for the line of action of the force

and the equation of the plane giving

-N+ TP (_W (2.30)

The solution yields S9the value of & defining the piercing point Q

of the force P on the plane p as shown In Fig. 2.10.

2.3.6 Geometry of a Triangle

The area of the triangle OKI shown in Fig. 2.11 Is given by
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0 0>I Plane p

FIG. 2.10 INTERSECTION OF THE LINE OF ACTION OF A
FORCE ON A PLANE

FIG. 2.11 GEOMETRY OF A TRIANGLE

AS

h2  c

h Strike Liune

Scion AA

FIG. 2.12 GEOMETRY OF A TETRAHEDRON
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A- 1/2 10-KX WLI (2.31)

and the vector from 0 to the centrold, S, Is given by

S - 1/3 (-OK+ T (2.32)

2.3.7 Geometry of a Tetrahedron

The volume of a tetrahedron as shown in Fig. 2.12 Is given by

V = 1/6 DB - X DC ( h1 + h2) (2.33)

The centroid at point S may be described by the vector from the origin,

7S, given by

I 1/ 4 (OD + TC + TB (2.34)

The components of Ors are thus the coordinates of the centroid.
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CHAPTER THREE

ANALYSIS OF ROCK SLOPES BY VECOTR METHODS

3.1 General

In this chapter analytical methods are presented for determining

the static factor of safety of rock slopes. The cases covered include

rock slopes cut by one, two, or three joint sets. Example problems are

given where various combinations of the vector analyses of Wittke and

Londe are utilized. A typical example problem is also worked by common

engineering graphics. The notion of dynamic resistance is also introduced

In this chapter for rock slopes and example calculations of the minimum

dynamic resistance are illustrated. The methods given in this chapter

for computing the dynamic resistance of a rock slope in three dimensions

is original with this report and is intended to be used for predicting

dynamic motions under earthquake loadings in conjunction with Newmark's

method of analysis for the dynamic stability of slopes.

3.2 Stability Calculations by Vector Analysis for Sliding .)n One Plane

3.2.1 Calculation of Factor of Safety for Static Loads

The simplest special case of a rock slope stability problem is where

the strike of one of the planes of weakness is parallel to the strike of

the slope face as shown in Fig. 3.1. For the coordinate system adopted

in Chapter 2, this condition can be expressed when the unit vector u in the

direction of the strike has components of zero in the y and z directions

I.e.,

u (ux, uy, u2) = (1, 0, 0).

Then the unit vector v in the direction of the dip has its x component

equal to zero, I.e.,
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(a)

/ Joint Plane

ova

(b)
Section A-A

FIG. 3.1 SLIDING ON ONE PLANE - STRIKE OF PLANE
PARALLEL TO STRIKE OF SLOPE FACE
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v (vx , v y vz ) = (0, V , v )

The inclination of the line of fall of the plane , EV, will determine

the kinematic possibility of sliding. The angle of fall E is given by
V

tan E = - = tan(y) (3.1)
V V

y

where y is the angle of dip of the plane. In order for sliding to be

kinematically possible, c must be smaller than a if 0 < a < n as shownV

in Fig. 3.1(b). If a = r, then EV must be smaller than for the sliding

to be possible.

For a slope acted upon only by gravity and the plane of weakness

striking parallel to the slope face, the sliding will occur parallel to

the unit vector v in the direction of the dip. The magnitude of the

component T of the weight W acting parallel to - may be obtained from

TW v (3.2)

where W = (0,0, -W). The vector T is given by

T = T; (3.3)

The magnitude of the component of W normal to the direction of sliding is

N=W.w

where w is the unit vector normal to the plane of sliding as given by

u x V. The magnitude of the available resisting force is given by N tan *

where * is the angle of shearing resistance between the joint surfaces

in the direction of sliding. The factor of safety against sliding is

the quotient of the resisting and the driving force in the direction of

sliding and is given by

F.S. = N tan . = (W.w) tan 0 (3.4)T (
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For the case shown in Fig. 3.1, the unit vector in the direction of

the strike is given by u = i ux = i and the dip is given by v = jvy +

kvz . The unit vector w normal to the plane of weakness is given by

w uxv i j k -TV + kv= z y

10 0

y z

Thus the magnitude of the component of the weight in the direction of

sliding is given by

T V = -Wv (3.5)

and the component of the weight nomal to the plane of weakness is

N = W " w = -Wv (3.6)
y

Thus the factor of safety according to Eq. (3.4) is:

-Wv tan v tan
F.S. = - =- tan * - (3.7)-Wv v tan yz z

which is a well known expression for the factor of safety of slopes poten-

tially free to slide down the dip angle y under gravity loading only.

If a slope is loaded by its own weight Q/, and a pore water force 0

acting on the potential failure plane in the direction of the unit vector

-w, then the factor of safety is given by

F.S. = "' U tan * (3.8)
(r# .;)

When the magnitude of the porewater force U is given by KW, Eq. (3.8)

reduces to

(-WVy - KW)
F.S. = -Wv--- tan *

-WVz

25



F.S. tan 6 + K tanL = tan - Ktan (3.9)
tan y vz  tan y sin y

where Y is the dip of the potential failure plane and vz  -sin y.

The case may also be considered where sliding can take place on one

joint or bedding plane as shown in Fig. 3.2(a) or 3.2(b). In the general

case the potential sliding wedge can be acted on by its weight W, the

porewater force U actingon the plane of sliding, and an external force

which may be applied by a structure, such as a dam. In many cases where

we are concerned with large slopes, however, the weight W will be large

compared with &. In the analysis of sliding on one plane with the forces

W, U and Q acting on the wedge, the forces are added vectorially into a

resultant R which is given by

R= W + a + (3.10)

The resisting reaction in plane a b c as shown in Fig. 3.3 is R' and is

equal and opposite to R. Thus the direction of sliding is in the direction

of the projection of R on plane a b c and not necessarily in the direction

of the dip. The angle of friction mobilized, ', by the force R is given

by Eq. 2.20 for sliding on one plane as

= [(R w -R w )2 + (RzwxRw)
2 + (Rxw-Rywx)

2]1 /2
I tan 01 =  Y (3.11)

Rw +Rw +Rw
xx yy zz

Thus the factor of safeyt for this case is given by

F.S. = tan (3.12)

tan '

3.2.2 Calculation of Dynamic Resistance

It should also be noted that Wittke (1965) has treated an. earthquake

loading as an equivalent static load applied in a horizontal plane and

parallel to the projection of the unit vector in a direction of the dip,

26
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(a) Cutslope

Contour

I " T Joint

t I

(b) Natural Slope - Bedding Planes Dipping Toward Valley - Sliding Block

Isolated from Mass by Gully on Each Side

FIG. 3.2 SLIDING ON ONE PLANE -STRIKE OF PLANE NOT
PARALLEL TO STRIKE OF SLOPE FACE
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v, in a horizontal plane. Thus, according to the analysis of Wittke (1965)

for earthquake loading, the problem is simply analyzed as for the general

case presented above where

=+UD+Q&+H

v xv Vi

where H= x I kl + J I klW(v2 +v2 (2+ v2)
x y x y ,T

The seismic coefficient kI is taken between 0 and 0.2 depending on

the intensity of the earthquake motion expected, and the force H is in a

horizontal plane and parallel to the projection of the unit vector in a

direction of the dip, v, in a horizontal plane. The factor of safety is

as given by Eq. 3.12. This approach, however, is not recommended by the

authors since it is considered as being an unduly conservative approach to

earthquake stability. The approach proposed in this report for assessing

the dynamic stability of rock slopes will essentially follow the concepts

proposed by Newmark (1965), which are presented in Chapter 5. in order to

use the Newmark method of analysis, however, it is necessary to establish

the resistance available to resist dyanmic loads. This dynamic resistance-

is the resistance which is available in addition to the resistance required

for static stability. The dynamic resistance is denoted by NW where W is

is the weight of the potential sliding block and N is a coefficient to

be determined in the following manner. The force NW is that force applied

to the potential sliding block which is necessary to just make the block

slide (i.e. F.S. = 1). Depending on the direction in which NW is applied,

its magnitude will vary. The magnitude of NW appropriate for design or

analysis is the magnitude of I&W applied in such a direction as to make NW

29



aminimum. For a potential failure of a block sliding on one plane as

shown in Fig. 3.4(a) NZ should be applied in a direction e to the hori-

zontal which will give the minimum value of NW to just cause the block

to slide. The direction and magnitude of the minimum value of NW can

be determined as shown in Fig. 3.4(b). The direction and magnitude of

the weight Wis known and the direction of a resultant R Is known and Is

inclined at *to the normal of the plane of sliding when sliding begins

to take place. Then the magnitude of the vector NW is minimum when it joins

the tip of the weight vector W in a direction which makes an angle of 960

with the resultant R. Thus from geometry, the minimum magnitude of NW is

given by

NW =W sin (0 y

or

N =sin (~-y) (3.13)

where 0 is the angle of shearing resistance and y is the dip. Thus the

minimum value of N occurs when NW is in the same direction of the horizontal

projection of the dip but is inclined upward from the horizontal at an

angle of 6 = (0 - Y) and N has a magnitude of sin (0 - y) for the case of

sliding on one plane. Using this minimum value of NW as the dynamiic

resistance is a conservative estimate because it is assumed that the

earthquake motions are in the most unfavorable orientation for the slope

being investigated.

3.3 Example Problems of Sliding on One Plane by Vector Analysis

Slope stability calculations by vector analysis are performed in

this section for several cases Involving sliding on one plane. In some

of these cases the same answer-could be arrived at quickly by means of
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(a)

Plane of Sliding

w Normal to Plane
ofSliding

(b)

FIG. 3.4 FAILURE OF A BLOCK SLIDING ON ONE PLANE
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conventional analysis, in others it would be more difficult to do by

conventional means.

For example, consider a wedge of rock sliding on a plane which strikes

East-West and dips 300 South and which has a friction angle of 400

Consider the positive x direction to be East, the positive y direction to

be North and the positive z direction to be upwards. The unit vector in

the direction of the strike is given by

U (1, 0, 0)

The unit vector in the dip direction is given by

; (0, -0.866, -0.500)

and the unit vector normal to the plane is

w = u x v= (0, 0.500, -0,866)

and w is directed downward normal to the plane.

Case I

First consider the factor of safety of the block acted on by its own

weight only. In this case the resultant force R acting on the block is

equal to the weight Wgiven by

R= =(0, 0, -W)

The magnitude of the component of A normal to the plane is given by

N = _ = 0.866 w

then oi= .866 w = (0, 0.433W, -0.750W)

the tangential component of Ron the plane of sliding is

T = R - = (0, -0.433W, -0.25W)

the magnitude of Uis given by

T W [(-0.433)2 + (0.25)211/2 =
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then F.S. N tan f 0.866w tan 400
T 0.50W

Check: By Eq. 3.7

tan 400
F.S. - tan-30- - 1.455

Case II

Consider now that a force A acts on the wedge in addition to the weight

of the wedge w. The force A acts parallel to the strike (East) and has a

magnitude of 0.20W.

Thus ..A+ =(0.20W, 0, -W)

and N Rw- 0.866W

and - N; (0, 0.433W, -0.75W)

The component of R tangential to the plane is

S. , - N ,- (0.200W, -0.433W, -0.250W) and T , 0.540W.

F.S. N tan * 0.866W tan 400 .135
T 0.54W

Note that in this case sliding does not take place down the dip but in the

direction of the vector T.

Case III

Consider now that the wedge is acted on by its own weight and a force

having a magnitude of 0.20W and acting in a direction parallel to the

unit vector in the direction of the dip. In this case the normal component

is still given by N , - 0.866W as given in Case I. The magnitude

of the driving tangential force T is the sum of the magnitudes of A and the

tangential component of the weight on the plane. The factor of safety

is therefore given by
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F.S. - 0.866W tan 400O.SOW + 0.20W

Case IV

Now consider that the plane under the wedge of weight W as in Case

I is acted upon by a porewater force, U, which increases until the factor

of safety decreases from 1.455 to 1.0. The porewater force does not change

the driving force T. Therefore, as in Case I,

T - 0.50W

The magnitude of the normal force N as given in Case I is reduced by the

magnitude of the porewater force, U. That is

N - 0.866w - u

and F.S. - 1.0 = 0.866W tan 400. 50W ta40

and solving for U

U = 0.271W

Check: By Eq. 3.9

F.S. - tan 0 K tan 0 tan 40 tan 400
tan Y sin y tan 300 -Kin 30u

Solving K = 0.271

" U = 0.271W

Case V

Consider the same wedge to be acted on by its own weight W, a pore-

water force U of magnitude 0.44W acting normal to and on the plane of

sliding, and a force A having a magnitude A = 0.60W and acting in a

direction S 45°W at a dip of JO. Then

= (0,0, -W)

= 0.44W(-;) - (0, -0.22W, 0.371W)
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The unit vector, ain the direction of force Ais given by Eq. 2.14 with

Y- 1700 and 8= 1350, thus$

( -cos 100 sin 450, -(-cos 100)(-cos 450), - sin 1003

a (-0.696, -0.696, -0.174)

Thus

A -Ai - (-0.418W, -0.418W, -0.105W)

and + 0 + =(-0.418W, -0.638W. -0.734W)

The magnitude of the comiponent of R normal to the plane of sliding is

given by

N - R -w - 0.316W

i- N;- (0, 0.158W, -0.274W)

The component of Rtangential to the plane of sliding is

T -R -N -(-0.418W, -0.796W. -0.46CM)

T - 1.009W

F..-N tan 400 M 0.316W tan 400
T 1.009W

- 0.262

Case VI

Consider the slope acted on by only Its own weight as In Case 1.

It Is desired to calculate the magnitude of the minimum dynamic resistanceNW

This is simply given by Eq. 3.13 as

NW -W sin (*- y) -W sin 100

or N -sin 100k 0.174
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3.4 Stability Calculations by Vector Analysis for Slopes Containing Two

Sets of Joint Planes.

3.4.1 Calculation of Factor of Safety for Static Loads

3.4.1.1 Description of Geometry and Loads

The general case of two systems of Joint planes is as shown in Fig.

3.5 where planes I and 2 denote the Joint planes, planes 3 and 4 denote

the planes defining the faces of the slope, yi and Y2 denote the dip angles

of plaes 1 and 2, 8! and 82 denote the strike angles of planes I and

2 measured counterclockwise from the positive x direction and a and 6

denote the inclination of planes 3 and 4 with the horizontal. The unit

vectors in the direction of the strike planes I and 2 are given by Eq. 2.13:

u1 = (cos 01, sin 81, 0) u2 = (cos 82) sin 82 , 0)

and the unit vectors in the direction of the dip for planes 1 and 2 are

given by Eq. 2.14-

v1 = (cos YI sin Bi, - cos YI cos Bi, - sin y])

;2 " (cos Y2 sin 82, - cos Y2 cos 82, - sin y 2 )

The unit vectors normal to each plane are given by

' w1 =LJ GIx 1

and w2  u 2 x v 2

Note on Fig. 3.5 that w1 is directed downward into plane I and ;2 is

directed outward from plane 2 when the normals are defined in this manner.

Also note that the plane designated as plane 1 is the one with the lowest

value of B. In the case where the strikes of two planes are the same the

plane designated as plane 1 is the one with the smallest value of y. This

convention is necessary to maintain the proper sign convention for the

following vector operations.
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FIG. 3.5 STABILITY OF A WEDGE BOUNDED BY TWO JOINT PLANES
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The loading of the slope consists of (1) dead load W acting at the

center of gravity of the mass considered, (2) live load Q applied at any

point, (3) porewater forces U and U2 acting on planes l and 2 respectively

and (4) dynamic loads induced by ground motions from earthquakes or nuclear

detonations. The resultant R of the loads in any given case can be

deterHined, and let the point of application of the resultant be at point 1.

3.4.1.2 Determination of the Mode of Sliding Failure

For the case of a tetrahedron bounded by two base planes which may

be.intersecting joint sets, failure may occur by sliding along the line of

intersection of the two planes or by siding on either one of the two

nes planes.

The first step in determining the mode of failure is to check if the

distrubing forces tend to lift the tetrahedron from either or both of

the supporting planes. Thus considering the rock wedge OBCD (Fig. 3.5),

the resultant force R tends to break the contact between the tetrahedron

and planes 1 and 2 respectively if

R wI < 0 (3.14)

and R >0

If Eqs. 3.14 show that the resultant force R tends to lift the tetrahedron

off of both supports, then equilibrium is not possible unless the joints

can take tension or rock bolts are added to take the computed tension.

Normally this will not happen for large slopes acted on by their own

weight and porepressures, but could occur for small tetrahedrons near

the surface of steep or overhanging slopes. If Eqs. 3.14 show that lifting

occurs off of one of the supporting planes then we can definitely say

that sliding cannot occur on that plane.
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If Eqs. 3.14 show that lifting off of the wedge from the supporting

planes does not occur, i.e.

" I > 0 (3.14a)

";2 <o

then we must make further kinematic tests to see whether sliding takes

place on plane 1 only or plane 2 only or along the line of intersection

of planes 1 and 2.

In order to evaluate the mode of sliding it is necessary to define

two new vectors IS12 and 2§12 which are given by

i 12 = X12 xw 1  (3.15)

2 S12 X l2 x w2

and are as shown in Fig. 3.5(b). The vector 1 12 is in plane I perpendicular

to the line of intersection ; 12 and the vector 2S12 is in plane 2 per-

pendicular to the line of intersection x12.

If sliding is to occur along the line of intersection x12 , then

Eqs. 3.16, 3.17 and 3.18 must be satisfied simultaneously.

A IS12 0 (3.16)

> 0 (3.17)

E < a if 0 < a< i and E < 6 if a w (3.18)x X

where -lIXl~z

-- tan I ----- ) (3.19)

and xl2y, xl2 z - y and z components of vector x12

The vector Xl2 along the line of intersection is defined in Chapter 2 and

is given by Eq. 2.16 as

X12 =; 2 x w I
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If sliding Is to occur on plane 1 only, then both the following equations

must be satisfied:

; 1 > 0 (3.20)

and R 12 < 0 (3.21)

Similarly If sliding is to occur on plane 2 only, then Eqs. 3.22 and 3.23

must be satisfied.

"w2 < 0 (3.22)

2 12 < 0 (3.23)

The physical interpretation of Eqs. 3.16 - 3.23 may be made as follows.

Eq. 3.16 is satisfied only if the resultant force R has a component which

tends to push the wedge on plane I toward the line of intersection x12.

Similarly Eq. 3.17 is satisfied only if the resultant force R has a com-

ponent pushing the wedge on plane 2 toward the line of intersection x12.

Thus Eqs. 3.16 and 3.17 ensure that the resultant force R wedges the

tetrahedron between the two plane so that sliding can only take place on

both the planes along the line of intersection. In order for sliding

along the line of intersection to be kinematically possible, it should also

be ensured that the line of intersection does not plunge into the rock

slope and this check is provided by Eq. 3.18. Thus when all the three

kinematic conditions specified by Eqs. 3.16 through 3.18 are satisfied

simultaneously sliding can occur along the line of intersection. The

tendency to slide will be downhill if R 12 > 0 and uphill if R 12 < 0

(Fig. 3.5).

Eq. 3.21 indicates a component of R on plane I tending to move the

block away from plane 2 by sliding on plane I and Eq. 3.20 establishes

the condition for contact on plane 1. Thus Eqs. 3.20 and 3.21 are suf-
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ficient and necessary conditions for sliding to occur on plane 1. Similarly

Eqs. 3.22 and 3.23 specify the conditions for sliding on plane 2.

3.4.1.3 Calculation of the Factor of Safety for Sliding

If the kinematic tests discussed above show that sliding takes

place on only plane 1 or on only plane 2, then the factor of safety can

be computed from Eq. 3.4 for sliding on one plane. Thus for sliding on

plane 1 the factor of safety may be computed as

N1 tan f1 (P • Wl) tan 01F.S. -T - (3.24)
1  

T 1

where

I - (I • w1)w1 = Tx i + Ty j + Tlz k

Thus Eq. 3.24 becomes

F.S. = tan 01 (3.25)

2+ 2+ 211/2

which may be written as:

tan *l[Rxwix + Rw1 y + Rw]
F.S. -z (3.26)

L(RyWlz'RzWly)2 + (RzWlx-RxWIz)2 + (RxWly-RyWlx)2] 1 (2

For sliding on plane 2 only, the factor of safety is given as

F.S. -N 2 tan 02 -( 2 • 2) tan 02 (3.27)
T2  2

The minus sign appearing in Eq. 3.27 is due to the direction of the unit

normal ; as shown in Fig. 3.5.

Eq. 3.27 can be expanded to yield

F..tan 0' 2 [ (-R xW2x R yw 2X R z w2z)] (3.28)F.S. [(Ryw2z.Rzw2y)2 + (Rz w2xRxw2z) 2 + (Rxw2y.Ryw2x)2 1/2(
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If the kinematic tests of Eqs. 3.16. 3.17 and 3.18 are satisfied

and sliding takes place on both planes I and 2 along the line of inter-

section X1 2, then the factor of safety may be computed in the following

manner.

The first step is to compute the magnitude of the driving force, T2#

shown in Fig. 3.6, in the direction of sliding. This is simply given by

T2 ;l2 (3.29)

where x12 represents the magnitude of the vector x12. The vector T12

is in the same direction as ;12 and is given by

- Tt2x12

T2 12 (3.30)

It is convenient to define the vector N 12, normal to the line of inter-

section which is given by

112 R - T12 (3.31)

In order to evaluate the frictional resistances on planes I and 2, it is

necessary to determine the ;oomponents N1 and N2 of N12 acting normal

to planes 1 and 2 respectively. The relationship of the vectors R,12

N12' Nl and N2 are shown in Sections AA and BB of Fig. 3.6. From Fig.

3.6 it is obvious that

Niw + N2(-W-2) = N12 (3.32)

where N1 and N2 represent the magnitudes of the two component vectors N1I

and N2 respectively.

Thus

NlWx - N2W2  = N]2  (3.33)

NlWly - N2W2y - N2y (3.34)

N - N2w2  =N (3.35)
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Any two of Eqs. 3.33, 3.34, and 3.35 can be used to determine N1 and N2

and the third equation can be used to check the numerical values of N1

and N2 . After N1 and N2 are obtained the factor of safety for sliding

on both planes may be determined from the equation

N1 tan 01 + N2 tan 2(3.36)
F.S. - (3.36T12

3.4.1.4 Calculation of Static Factor of Safety for Rotations

In addition to the previously investigated sliding movements which

endanger stability, the rock wedge OBCD may rotate about the support

edges, OC or OD, or about the axes at point 0 perpendicular to planes 1

and 2, when the resultant load exerts an overturning moment about these

axes (Fig. 3.7). Even though all the above modes of failure by rotation

are conceivable, under normal conditions the most probably axes of rotation

are ;10 and a20 (Fig. 3.7) and therefore consideration is given only to

rotations about these two axes in this section. The treatment of rotation

about OC, D, ;lB or d2B is similiar and is not developed in this report.

The axes of rotation ;10 and d20 pass through 0 and are perpendicular

to planes 1 and 2 respectively. In a rotation, say about the d10 axis,

all points of the wedge In the region of the area ODB move tangential to

plane I while the surface OCB of the rock wedge separates from plane 2.

The equations of the a 0 and d20 axes are obtained as follows:

dlo " -w 1  (3.37)

d20 " ";2  (3.38)

In the analysis for rotations, it is necessary to know the points

of application of the various forces acting on the rock wedge OBCD so
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that the point of application I (Fig. 2.8) of the resultant force

can be determined. The weight W acts vertically downwards at the center

of gravity S of the rock wedge as shown in Fig. 2.8. The vector OS as

shown in Fig. 2.8 can be obtained from geometrical considerations as

OS = 1/4(0D + C + s) (3.39(also Eq. 2.34)

where the vectors OD, OC and F5 are given by the following equations:

m hI  . hI  h I
OD (tan a tan B I tan y] sin 81 'tan a ' hi) (3.40)

hi t h h 4
-C tan a tan 2 tan Y2 sinB 2' tan a- hl) (3.41)

12z (hI + h2) (3.42)
x 12z 1 2

tan a - tan 6 • hE 3.

2 tan E - tan6 tan C 1

where hi, h2, c, 6, Y' 81' Y2 $ and 82 are defined in Fig. 3.9.

The weight of the rock wedge can be determined from its volume V which is

given by:

V - IDS' x DCI(h1 + h2) (3.44)6 1(also Eq. 2.33)

where

DC OC - OD (3.45)

DO' =0B' - OD (3.46)

'F I x]2  h (3.47)

X12z

The point of application, I, of the resultant force R is determined

from the known magnitudes and lines of action of the component forces

by using Eq. (2.27) and the principles of vector analysis as explained

in Chapter 2.
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For a rotation to be possible about the d axis, the resultant

force R must have a positive scalar component of moment about the ;12 and

10 axes as evaluated by Eq. (2.28); i.e.,

Mx - moment of R about x12 'x 1 2 *(-lxR)> 0 (3.48)

and Mldl 0 moment of R about dl = d10 . (OIxR)> 0 (3.49)

Similarly the moments of R about the x12 and ; 20 axes have to satisfy

Eqs. (3.50) and (3.51) if a rotation is to occur about the ;20 axis.

Mx = x] • -x)< (3.50)
x 12 ('R

and Md20 . 20 * (oixP) > 0 (3.51)

In addition a few kinematic tests must also be satisfied and these

tests are dependent on the magnitude of the angles n, k1o and k20 which

are defined as follows:

n - wedge angle between planes l and 2

= cos- (l. 02)  < < (3.52)

klo DOB = cos- 1 (O-'-OD6OB 0 < ko< n (3.53)

k COB = cos- 1 OCOB 0 < k20 < 7 (3.54)

The range of angles n, k10 and k20 for which a rotation about the 10 and

120 axes is kinematically impossible, is qiven in Table 3.1.

The analyses for determining the static factor of safety for rotations

about ;10 and a120 axes are similar in principle and therefore the details

of the analysis will be given only for the case of rotation about the d10

axis.

The resultant R Is first resolved Into components N1 and at

Its point of intersection, Q. with plane 1, as shown in Fig. 3.7(a). Thus
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Axis of Rotation: ; 10

klo k20  Supplementary

Condition

O<n<x >7(/2  >Yr/2

O<n<n <n/2 >X/ 2

tan k20
</ 2  >/ 2  </ 2  20tan o >sec(n-n)

ta (- 10)

Axis of Rotation: d20

n klo k20  Supplementary
Condition

O<n<ff >7/2 >/2

O<n<jt >ff/2 <7r[2
tanko

<f/2 <(/2  >ff/ 2  tan(rk 20 ) > sec(t-r)

Table 3.1 Range of Angles for which a rotation
is kinematically Impossible.
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N1 = (R'w1 )w1  (3.55)

and

S= R - N1  (3.56)

The component T1 tangential to plane I is now resolved into components r

and T (Fig. 3.7(b)). The force T has the direction of the vector Q0 and

the force Tt has the direction of the tangent to the rotation which Q

executes in the case of a rotation about do. The force I is thus10* t

the only component of the loading which exerts an overturning moment

about the dlco axis. The resolution of force Ti into its components Tt

is done as follows:

- Tr + - Cl(-) + c2 ( ivW) (3.57)

In Eq. 3.57, -6Q and ZO x W are vectors in the direction of T and T1 r t
By equating the x, y and z components of as given by Eqs. 3.56 and

3.57, the values of the two coefficients c1 and c2 may be determined.

Eqs. 3.56 and 3.57 give three equations for the two unknowns cl and

and therefore one of these equations can be used to check the calculations

for cI and c2. With cI and c2 known, Tr and t are obtained as follows:

T r -c1 OQ (3.58)

Tt = c2( x ;l) (3.59)

The magnitude of the overturning moment Md10 can be obtained by the relation:

MdlO ' Tt OQ (3.60)

The magnitude of the restoring moment of the frictional force on plane 1

due to the normal component Ni is obtained as

NrdlO- N1 tan O0Q (3.61)
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The factor of safety against rotation can now be obtained as the ratio of

the restoring moment to the overturning moment

N Itan €I OQF.S.(against rotation) T t OQ N I-tanOI/T t  (3.62)

The factor of safety against rotation about the d20 axis can also be

determined in a similar manner. Moments Mdlo and Md20 are very often

negative and in these cases only the sliding stability need be analyzed.

3.4.2 Calculation of Dynamic Resistance Against Sliding on Two Planes

The direction and magnitude of the minimum dynamic resistance NW

which is necessary to just make the potential block slide on the two

base planes may be found by the following procedure.

A unit vector r1 is first defined in the direction of the resultant

reaction R, on plane 1 (Fig. 3.8). In the limiting state of equilibrium

1 is inclined at an angle @1 to the upward normal -; to plane 1 and

tends to oppose the downward movement along the line of intersection x12.

Therefore,

= -Wl cos *1 x sin *i/x12  (3.63)

Similarly a unit vector r2 is defined in the direct'on of the resultant

reaction R on plane 2. From Fig. 3.8 it can be seen that

2 = w2 cos 2 " x12 sin *2 /x 1 2  (3.64)

where 02 is the angle of friction on plane 2.

The magnitude of the dynamic resistance vector NW will be a minimum

when the vector NW is normal to the plane containing RI and R2. Therefore

a unit vector n in the direction of NW may be obtained by the equation:

n= l x r2)/I;l x r21 (3.65)
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where Irl x r2 I represents the magnitude of the vector (rl x r2).

The magnitude of the minimum dynamic resistance, NW, may now be deter-

mined by the equation

NW = R n (3.66)

where R is the resultant of all static loads acting on the sliding rock

wedge. From Eq. 3.66 it follows that

N = R n (3.67)

W

3.4.3 Example Problems for Slopes with Two Intersectinq Planes of Dis-

continuity Worked by Vector Analysis.

Problem 1

Determine the factor of safety of the rock wedge OBCD shown in Fig.

3.9. Also estimate the direction and magnitude of the minimum dynamic

resistance NW which is necessary to just make the potential block OBCD

slide.

Plane 1 Plane 2

8 = 360 82 = 94 °

Y 0

= 620 Y2 = 121

= 200 = 400

cy= 700 6 =200

Solution

Static Factor of safety against sliding

According to Eqs. 2.13, 2.14 and 2.15, for plane 1,
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U= (0.8w9, 0.588, 0.000) (2.13)

v,= (0.276. -0.38o, -0.883) (2.14)

wI- (-0.519, 0.714, -0.469) (2.15)

and for plane 2,

U2 ' (-0.070, o.998, 0.000) (2.13)

V2 = (-0.514, -0.036, -0.857) (2.14)

w2= (-0.855, -0.060, 0.515) (2.15)

The only load that enters the calculation in this problem is. the weight

W of the rock wedge OBCD acting vertically dow~nwards in the -z direction.

Therefore the resultant load A may be expressed as

=(0, 0, -W)

R -w -0.469W > 0

and R .w 2 = -0.515W < 0 (3.14a)

Therefore lifting off of the rock wedge from the support planes does

not occur.

X12 = w2 x wl

= (-0.340, -0.669, -0.642) (2.16)

and x1  o .987

l~l2 x 2 xw1 (3.15)

and 2  2=x 2 xw (3.15)

=(-0.383, 0.725, -0.551)

V11 0.590W > 0 (3.16)

i -g 0.551W > 0 (3.17)
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I x 12z
C - tan (-

= tan - -0 642) 43.80 (3.19)

.< a C (3.18)

Thus according to Eqs. 3.16, 3.17, and 3.18, sliding Is kinemnatically

possible only along the line of intersection x 12 ' Since R 12 =0.642W > 0

sliding tends to occur down the line of intersection.

T A - .642W/0.987 (3.29)

- 0.650W

x1
and 0.650W -- (-0.223W, -0.440W, -0.420W) (3.30)

122

N1  R T - (0.223W, 0.440W, -0.58w) (3.31)

N Nw I + N 2 (-w2 ) (3.32)

N N(-0.519 , 0.714, -0.469) +

N 2 (o.855, 0.60, -0.515)

Solving N I 0.565W, N2 = 0.605w

F.S. N N1 tan 01 + N2 tan 02 (3.36)
T__ _ _ _ _ 12

=0.565w tan 200 + 0.605W tan 40

0. 650W

=1.10

Stability against rotation.

According to Eqs. 3.39 through 3.43

OD - (-0.404his 0.346hip h 1) (3.40)

OD - 1.138h I
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Y= (o.6o2h1. o.364h1, hl) (3.41)

OC - 1. 220hI

T-- (o.741h1, 1.460h1, l.398h 1) (3.42)

06 2.155h I

TS (o.235h1, 0.547h1, o.850h1) (3.39)

in order to apply the kinematic tests for rotation, it is necessary to

establish the values of the angles k 10, k 20 and n.

k Cos - o T8 . 48. 10 <1 /2 (3.53)

k Cos - (OC -TB 25.3 0 < [2(3.54)

ql Cos- (W1 -W-2) = 80.90 < g2(3.52)

M x 512 ) (3.48)

;= ' (TS x k) = 0.03Wh I> 0

For these values of nl, k1 0, k 20 and M , a rotation about axis 10is

kinematically possible. However the rotation can occur only if M dI0 > 0.

do= -wl = (0.519, -0.714, 0.469) (3.37)

0I = Fs- = (0.235h1, 0. 547h1 , o.850h 1)

M dIO = 1 (I x R) (3.49)

- -0.452Wh I < 0

Therefore rotation about d 0axis does not occur.

Minimum Dynamic Resistance

The unit vector riin the direction of the resultant reaction on

plane 1 is given by Eq. 3.63 as

=l (0.607, -0.439, 0.663) (3.63)
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The unit vector r2 In the direction of the resultant reaction on plane

2 can be obtained in a similar manner from Eq. 3.64

r2 - (-0.434, 0.388, 0.810) (3.64)

The unit vector in the direction of the minimum dynamic resistance vector

NW is then given by

r1 x r 2

n 1 2 (-0.616, -0.785, 0.046) (3.65)
I;lx;2 I

The magnitude of the minimum dynamic resistance is now obtained as

NW = 0= .46W (3.66)

or N =0.046 (3.67)

Problem 2

Determine the factor of safety of the rock wedge OBCD shown in Fig.

3.10 when (a) P = 0 and (b) P - 10 tons in the positive y direction.

Plane 1 Plane 2

01 - 300 02 - 30 0

B 1 = 17 0 2 = 630

Y = 60 0 2 =80
0

0 0Oa- =90°  6=0 °

Point of application of P is S such that S = (-6.1, 2.0, 9.0). The dimen-

sions are in feet units.

Solution

Case (a) P - 0

Static Factor of Safety against sliding

For plane 1,

u= (0.955, 0.292, 0.000) (2.13)
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h1- 12d 0

FIG. 3.10 STABILITY OF A ROCK WEDGE BOUNDED BY TWO
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= (0.146, -0.478, -0.866) (2.14)

- (-0.253, 0.827, -0.499) (2.15)

For plane 2,

u2 - (0.454, 0.890, 0.000) (2.13)

v2 = (0.155, -0.079, -0.985) (2.14)

2 (-0.877, 0.447, -0.174) (2.15)

When P = 0

= (0, 0, -w)

where W = weight of the rock wedge OBCD

X12 = w2 x W1  (2.16)

= (-0.079, -0.394, -0.594)

x12 = 0.717

iSl2 = X12 x w 1  
(3.15)

= (0.688, O.lO, -0.165)

2S12 = ;l2 x ;2 
(3.15)

= (0.334, 0.507, -0.381)

R- 12 = 0.165W > 0 and (3.16)

A-2 = 0.381w > 0 (3.17)

I-1 -1 ,-0.594,
c= tan -) - tan 094 (3.19)

xX 12y -

= 56.40

6 < c <a (3.18)
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Thus according to Eqs. 3.16, 3.17 and 3.18, sliding is kinematically

possible only along the line of intersection x 12.

Since V; 12 a0.594W >0, sliding tends to occur down the line of inter-

sect ion.

T 12'R 2 x1 0. 549W0. 717 (3.29)

- 0.828w

12 .828Wx2
'12

= (-0.091W, -0.455W, -0.696w) (3.30)

N 12  R T-1

=(0.091W, 0.455W, -0.314W) (3.31)

N= Nw I + N 2(-w2)

N N1(-0.253, 0.827, -0.499) +

N 2 (o.877, -0.477, 0.174)

Solving N1 I 0.733W, N2  = 0.314W

F..=0.733 tan 30 0 + 0.314W tan 300F.S. =0.828W

= 0.73 < 1

Stability against Rotation.

OD = (-23.70, 0, 12.00) (3.40)

00 = 26.60

oc (-2.40, 0, 12.00) (3.41)

OC = 12.25

rB= 12 (-0.079, -0.394, -0.594) (3.42)
-0.594

- (1.60, 8.00, 12.00)
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08 = 14.50

os = i (TB + of + T"D) (3.39)

- (-6.10, 2.00, 9.00)

k o s =os OOB = 74 </2 (3.53)

k cos-' O.OBg 380 /2 (3.54)

Icos w2j =47.4
° < g/2 (3.52)

M =X 12  (S x R) (3.48)

= 2.561W > 0 indicating thereby that the resultant

i intersects plane 1. For these values of n, klo, k20, and M a rotationx

about axis d10 is kinenatically possible.

d 1O = -W, = (0.253, -0.827, 0.499) (3.37)

Md10 = d10 , x ) (3.49)

= 4.539W > 0

Therefore a rotation can occur about the a axis and the factor of safety

against rotation can be determined as follows:

N1  R "1 = 0.499W

N] = wwl = (-0.126w, 0.413W, -0.250W) (3.55)

= - = (0.126W, -0.413W, -0.750W) (3.56)

a C1(-6) + c2 ('4 x W) (3.57)

= -7+ A =s + v R

= C-6.1, 2.0, (9.0-,Yw)]
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Since O and w1 are mutually perpendicular, "Q • , 0

* (6.1 x 0.253) + (2.0 x 0.827) -0,499 (9.0 -TW) 0

(9.0 - Tw) = 6.40

* = (-6.10, 2.00, 6.40)

"Q x 1 = (-6.29, -4.67, -4.54)

*r = (0.126w, -0.413W, -0.75OW)

cI( 6 .10, -2.00, -6.40) + c2 (-6.29, -4.67, -4.54)

Sovling c 1 = 0.078W; c2 = 0.055W

Tt= c2 6(
' x wI) (3.59)

= (-0.346W, -0.257W, -0.250W)

Tt = 0.498W

N1 tan 1 = 0.499W x tan 300
F.S. - Tt 0.498W 0.58 (3.62)

Note: It may be noted that all the lengths in the above case are expressed

in feet-units.

Case (b) = (0, 10, 0)

In Case (a) the only force in the system is the weight of the rock

wedge add it is not necessary to know the magnitude of W for estimating

the factor of safety of the rock wedge. But in Case (b) there is an

additional external force P of magnitude 10 tons acting in the positive

y-direction through the center of gravity, S, of the rock wedge and there-

fore it becomes necessary, in the present case, to compute the magnitude

of W.
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h2 = 0 (3.43)

DC c - 0D (3.45)

= (21.30, 0, 0)

xl2
X1 20 h I  (3.47)
1l2z

= (1.60, 7.96, 12.00)

DB =50B' -" (3.46)

= (25.30, 7.96, 0) (3.46)

V = IN I x WI(h I 
+ h

- 339.1 ft3  (3.44)

W = 339.1 x 160 27.13 tons
2000

= (0, 0, -27.13)

= (0, 10, 0)

= + P = (0, 10, -27.13)

1 112 5.58 >0 (3.16)

2.l2 = 15.41 > 0 (3.17)

C <€ <1
x

The above values show that sliding is kinematically possibly only 
along

the line of intersection of planes I and 2. Since R = 12.48 > 0,

sliding tends to occur down the line of intersection.
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T12 = R • x12/x12 = 12.48/0.717 = 17.41 (3.29)

T12 = 17.41 x12 /x12 = (-1.918, -9.567, -14.423) (3.30)

N12 = A - T'12 = (1.918, 19.567, -12.707) (3.31)

= N1 (-0.253, 0.827, -0.499) +

N2 (0.877, -0.447T 0.174)

Solving N1 = 29.4 tons N2 = 10.7 tons

29.4 tan 30° + 10.7 tan 300

F.S. = 17.41

= 1.33

Stability against Rotation.

M 12 (TSx 9)

- 112.84 > 0

The resultant R intersects plane 1 as in Case (a).

n = 47.40 < n/2

klo = 740 < n/2

k20 =380 < n/2

For these values of n, klo, k20, and Mx , a rotation about dio is kine-

mat ically possible.

d = = (0.253, -0.827, 0.499) (3.37)

MdlO = 10 (T x

= 70.0 > 0

Therefore a rotation tends to occur about the 10 axis. The factor of

safety aginst rotation can be determined as follows.

N = R " = 21.83
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=N 1 ew (-5.523, 18.053, -10.893) (3.55)

11 - - =(5.523, -8.053, -16.237) (3.56)

C Il~~ + C2 ((E x ;)(3.57)

- [-6.1, (20+11,(9.0 - 27.13Y)]

6Q and Ware mutually perpendicular

(6.1 x 0.253) + (2.0 + 10 1 0.827 - 0.499(9.0 -27.13T)- 0

Solving 'i 0.0593

_6_= (-6.10, 2.59, 7.39)

-6x wl= (-7.41, -4.91, -4.39)

=(5.523, -8.053,-16.237)

cl( 6 .1o, -2.59, -7.39) +

c 2 (-7.41, -4.91, -4.39)

Solving c 1 =1.77 c 2 -0.71

xt = ) (3.59)

-0.71(-7.41, -4.91, -4.39)

- (-5.261, -3.496, -3.117)

Tt=7.04 tons

N1I tan 1 21.83 tan 300

F.S. = =T 7.04i

-1.79

Thus the provision of the lateral force P increases the stability of the

wedge OBCD against both sliding and rotation.

Note: in case (b) all the forces are in ton-units and all the lengths are

in feet-Units.
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3.5 Analysis for Sliding on Two Planes by Engineering Graphics

The factor of safety of a rock wedge sliding on the two base planes

can also be determined graphically by using the principles of engineering

descriptive geometry. To illustrate the procedure, Problem 1 of section

3.4.3 will be solved using this method. The details of this graphical

foluriul or* slown in Fig. 3.11.

The '!1, s DR' and CB' represent the strikes of planes 1 and 2 inclined

at angles 01 and a2 with the front of the slope, I-I. An edge view of

each plane is drawn as an auxiliary elevation to locate the position of

a point 0 common to both the planes situated at any depth, d, below the

horizontal plane DCB'. Since B' is also a point common to both the planes,

B'O represents the line of intersection of planes I and 2. A side elevation

parallel to B'l gives the true dip of the line of intersection B'O. The

weight vector W is then resolved into components N1 2 and T1 2, respectively

normal and parallel to the line of intersection B'O as shown in Fig. 3.11.

An auxiliary elevation of the two planes looking in the direction OB' is

obtained and the components N1 and N2 of N1 2 normal to planes I and 2

respectively are then determined. Once the magnitudes of N1 and N2 are

known, the factor of safety is computed using the relationship

N tan l + N2 tan 2 (3.36)F.S. = (.6
T 12

3.6 Method of Stability Analysis for Rock Slopes with Three Intersecting

Joint Sets.

In this section, the stability against sliding of a tetrahedral volume

of rock, ABCD bounded by three planes 1, 2 and 3 and an exterior surface

ABD, is investigated by using Londe's method of analysis (F g. 3.12).
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Sliding failure of the tetrahedral rock mass ABCD, can occur by separation

from one or two of the three bounding planes. There are thus six possible

modes of sliding failure as shown in Fig. 3.13. The mode of failure in a

given case will depend on the geometry of the problem and the magnitude

and direction of the resultant of the applied forces, R, as defined by

the equation:

- + &+ i + UZ + 3  (3.68)

Where W = (wx , wy, W ) = total weight vector of the tetrahedral volume of

rock

= (Qx' y z = any externally applied force on the rock wedge

U, U2 ' U3  = hydrostatic uplift or porewater forces that act on

planes 1, 2 and 3 resepectively

The first step in the stability analysis of the rock wedge ABCD, is to deter-

mine the mode of sliding failure for a given set of input conditions. This

can be done as explained in the following section.

3.6.1 Determination of the Mode of Sliding Failure (Fig. 3.14)

Let ;P w2 and w3 represent unit vectors normal to planes 1, 2 and 3

respectively, directed towards the inside of the rock volume. The resultant

force R lifts the tetrahedron from all three contact faces if all the three

following equations are satisfied simultaneously

" 1 > 0 (3.69)

"2 > 0 (3.70)

" R 3 > 0 (3.71)

In such a case equilibrium is not possible unless the joints can take tension

or rock bolts are provided to resist the tensile forces across the faces.
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If Eqs. 3.69 through 3.71 show that lifting off of the wedge from the support

planes does not occur, then further kinematic tests must be made to determine

the mode of sliding failure.

The vectors ;12 , ;23 and x3 I along the lines of intersection CD, CB

and CA are given by the following equations:

x12 mw 2 x 1 (3.72)

x23 ' w 3 x w 2  (3.73)

x3 1 = ;1 x w3  (3.74)

Let us now define two new vectors, 1S12 and 2 12 orthogonal to x12 and lying

in planes I and 2 respectively as follows:

1 12 ' -x12 x W (3.75)

2S12 w w2 x X1 2  
(3.76)

Similarly the vectors 2S23 and 3S23 normal to 23 and lying in planes 2

and 3 respectively are given by

2S23 ' ;23 x ;2  (3.77)

3 23 ' w3 x x 23  
(3.78)

The vectors IS31 and 3S31 normal to x31 and lying in planes I and 3 re-

spectively are similarly given by

3S31 - x 3  x ;3  (3.79)

w3 x x3  (3.80)

The orientations of all the vectors defined by Eqs. 3.72 through 3.80 are

shown in Fig. 3.14.
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If sliding is to occur along the line of Intersection ;12' the resultant

of the applied forces must have a component along ;12 which tends to open

up plane 3. This condition can be represented vectorially by the equation

R '122 0 (3.81)

In addition the components of R on plane 1 and 2 along vectors IS12 and

must be directed towards the line of Intersection xl2" In other words,

R IS1 2 > 0 (3.82)

22 > 0 (3.83)

Eqs. 3.81 through 3.83 must be satisfied simultaneously if the rock wedge

ABCD is to slide along x12 with face 3 open. The conditions to be satisfied

for sliding to occur along x23 and x3 1 can be obtained in a similar manner.

They are:

For sliding along x23 , R • 23 >0 (3.84)

2 S2 3 > 0 (3.85)

3 323 >0 (3.86)

For sliding along x3 1, R X3l > 0 (3.87)

1 i> 0 (3.88)

33> 0 (3.89)

If sliding is to occur on any one plane only, say on plane 1, then R must

have a component normal to plane I directed towards the outside of the rock

wedge ABCD. In other words

0 (3.90)
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In addition the components of R on plane I along IS12 and IS31 must be

directed away from x 12 and x 1 " In other words

1 1 12 < 0 (3.91)

1 l31 - (3.92)

The corresponding equations for cases of sliding on planes 2 and 3 are as

follows.

For sliding on plane 2 only:

R -<0 (3.93)

2 2 23 0- (3.95)

For sliding on plane 3 only:

- 0 (3.96)

R 3 S23 - (3.97)

• 33 < 0 (3.98)

3.6.2 Calculation of the Factor of Safety for Sliding

After deciding on the mode of sliding failure based on the kinematic

tests mentioned above, the next step is to estimate the factor of safety

against sliding under the given conditions. The procedure for estimating

the factor of safety is basically the same as that explained In Section 3.4.1.3

of this chapter for the case of a rock wedge bounded by two joint planes.

Three example problems have been added to illustrate the method of analysis.

In the preceding analysis, of Section 3.6.1, however, it has been tactily

assumed that the critical rock wedge is bounded by all the three joint planes

nd the exterior slope face as shown in Fig. 3.12. When the field conditions
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are such that this assumption Is valid, the method of stability analysis

presented above is directly applicable. But In a majority of cases, It

is likely that the critical rock wedge Is bounded by two (rather than by all

the three) Joint planes. Under these conditions the stability analysis has

to be performed as explained In Section 3.4.1.3.

3.6.3 Example Problems for Slopes with Three Intersecting Planes of

Discontinuity Worked by Vector Analysis

Problem 1

Determine the factor of safety against sliding of the rock wedge ABCD

shown in Fig. 3.12. Also estimate the direction and magnitude of the minimum

dynamic resistance N which is necessary to Just make the potential block

ABCD slide.

- (0.00, 0.72, 0.69)

M (0.63, -0.12, 0.77)

w3 " (0.00, 0.00 1.00)

W , (0, 0, -36.5 tons) . , (0, 0, 0)

U1 - 23.6 tons U2 - 8.0 tons U3 - 5.7 tons

*1 M 400 02 = 4 0 0  43 - 400

Solution

W+Q + a + a 2 + 0 3  (3.68)

" + + ull; I u2;2 + U;3

- (5.05, 16.04, -8.34) all in ton-units

R - 18.8 tons

, (-0.638, -0.435, 0.454) (3.72)

x12- 0.895
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23- (0.120, 0.630, 0) (3.73)

X2 0.640

x 1- (0.720, 0, 0) (3.74)

-1 0.720

I i12 ' (-0.626, 0.440, -0.459) (3.75)

2 i 2 ' (0.280, -0.777, -0.351) (3.76)

2 3- (0.485, -0.093, -0.410) (3.77)

3 23 = (-0.630, 0.120, 0) (3.78)

3 31 ' (0, -0.720, 0) (3.79)

= (0, 0.497, -0.518) (3.80)
1 31

R 3=-8.34 < 0 (3.96)

Thus plane 3 Is closed and a failure by lifting from the base planes does

not occur.

3 23 --1.25 < 0 (3.97)

3 31 - -11.55 < 0 (3.98)

Eqs. 3.96 through 3.98 thus indicate that sliding can occur only on plane 3.

N3 = R - 3  8.34 tons

N 3 - N 3(4w3) =(0, 0, -8.34)

f3 - - (5.05, 16.04, 0)

T3 w 16.8 tons

N3 tan *3 -8.34 tan 4 0

F.S. - T

- 0.42
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Problem 2

Work out Problem 1 with the following changes:

U1 = 12.0 tons U2 , 2.0 tons U3 - 2.0 tons

Solution

-W+ Q+ 1 + 2 + 0 3  (3.68)

• + ( + + U2 2 +

- (1.26, 8.40, -24.68)

;#3 - -24.68 < 0 (3.71)

and therefore lifting off of the rock wedge from all the base planes is not

possible.

R x23 5.45 > 0 (3.84)

2S23 = 9.94 > 0 (3.85)

R 2S23 - 0.22 > 0 (3.86)

The above equations show that sliding can occur only along the line of

intersection x23.

S , 3/x 8.50 tons

2.3 (1.60, 8.35, 0),.3 - T23 " x3

23

N23 = A - T23 
= (-0.34, -.05, -24.68)

= N2 (-w2) + N3 (-W3 )

- N2 (-0.63, 0.12, -0.77) +

N3 (0, 0, -1.00)
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Solving N2 = 0.54 tons N3  24.26 tons

0.54 tan 400 , 24.26 tan 400F.S. =8.50

- 2.44

Problem 3

A rock cut slope runs East-West and the three major joint sets inter-

secting the slope have the following orientations:

Joint Plane Strike P

1 N470 E 440 SE

2 N20°W 830 SW

3 N69°W 16°SW

The angle of shearing resistance on all the three joint planes is estimated

to be 200. Determine the factor of safety of the slope against a sliding

fai lure.

Solution

Consider the positive x direction to be East, the positive y direction

to be North and the positive z direction to be upwards. Then the three joint

planes have the following strike and dip angles.

Plane 1 a = 47 0 
= 440

Plane 2 82 = 1100 y = 970

Plane 3 83 = 1590 Y3 = 16 4 0

The unit normals to planes 1, 2 and 3 can be defined by Eqs. 2.13, 2.14

and 2.15. When these normals are oriented such that they are directed

toward the interior of the rock wedge they are defined by the following

equations:
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= (0.474, -0,508, 0.719)

w2= (-0.933, -0.339, 0.122)

w3 = (-0.099, -0.257, 0.961)

= (-0. 182, 0.729, 0.635) (3.72)

=0.983

x = (0.295, -0.885, -0.206) (3.73)

= 0.955x23 = 0.5

x3 i = (-0.303, -0.526, -0.172) (3.74)

x = 0.631

1 12 = (0.847, 0.432, -0.253) (3.75)

212= (-0.304, 0.570, -0.741) (3.76)

= (-0.178, -0.157, -0.925) (3.77)

= (0.903, 0.263, 0.163) (3.78)
3 23

3531 (-0.550, 0.309, 0.026) (3.79)

iS31 = (0.466, -0.137, -0.403) (3.80)

= (0, 0, -w)

R w, = -0.719W < 0

R w2 = -0.122W < 0

R w 3 = -0.961W < 0

Therefore failure by lifting off of all the base planes is not possible as

shown by comparison of the above three equations with Eqs. 3.69, 3.70,

3.71. It can easily be verified that all kinematic tests are satisfied

only for sliding on plane 3. In other words
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" w3 -0.961W < 0 (3.96)

• 3 =-0.163w < 0 (3.97)

R -0.026w < 0 (3.98)

N3 = R (-w3) = 0.961 w

3 = N3 (-w3) = (0.095W, 0.247W, -0.924W)

T =R-N3 = (-0.095W, -0.247W, -0.076W)

T3 = 0.275W

F.S. = 0.961W tan 2000.275W = 1.27

The preceding calculations have been carried out under the assumption

that the critical rock wedgeis bounded by all the three joint planes. As

has been pointed out earlier, in a majority of cases, there exists a rock

wedge, bounded by only two joint planes, which is more critical than the one

considered in the preceding analysis. As a matter of fact, in the present

problem, the rock wedge bounded by planes 1 and 2 has a lower factor of

safety with respect to sliding. The determination of the mode of failure

and the factor of safety against sliding can be done as explained in section

3.4.1.3. The details of this analysis will not be given here except the

fact that the sliding tends to occur down the line of intersection of planes

I and 2 and that the factor of safety is 0.58 as compared to the previous

alue of 1.27.

3.7 Computer Techniques

The stability of rock slopes bounded by two or three joint sets can

also be analyzed using digital computer techniques. This method avoids

lengthy hand-calculations and is particularly useful when there is a need

for solving a whole series of stability problems.
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The basis of the procedure Is the sam as explained in the previous

sub-sections. The essential steps In this procedure are as follows (see

flow chart, Fig. 3.15):

1. Using the input data calculate all the required directional vector

quanti ties.

2. Check to see if failure by lifting off the base planes of the rock wedge

is possible.

3. If not, determine the probably mode of sliding failure.

4. Calculate the factor of safety for this mode of sliding failure.

5. Check for stability against the possible mode of rotation.

6. Print the results.

A documentation and listing of the computer programs using Fortran IV

language is given in Appendix A.
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Chapter Four

GRAPHICAL SLOPE STABILITY ANALYSIS BY USE OF STEREONETS

4.1 Properties of Spherical Prolections

4.1.1 General

The orientation (strike and dip) of planes or lines in space

can be represented by the intersection of the plane or line with the

surface of a reference sphere through whose center the plane or line

passes. As can be seen ini Figure 4.1, the intersection of a plane with

the sphere is a great circle, while a line which parallels the plane

will plot as two points, 180 degrees apart, on the great circle. A

plane can also be represented by the intersection of its normal with

the sphere (the pole of the plane), which will plot as a point located

90 degrees from the great circle, in both the upper and lower hemispheres

of the sphere.

To communicate this information, a two-dimensional representation

of the spherical projection is necessary. Several types of projection

can be used to transfer great circles and points from the spherical

surface to the equatorial plane of the sphere.

The equal angle projection (termed a Wulff net or stereonet) is

the method used in this report because of the simplicity in plotting

the projections. Each great circle on the sphere plots as an arc of a

circle on the equatorial plane of the sphere.

Another type of projection, the equal area projection, is used for

compiling statistical information on the frequency and orientation of

L lines or planes. It therefore hould be used to plot and evaluate the
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raw data from field and borehole mapping of joints anJ other geologic

discontinuities. The equal area projection of great circles from the

sphere to the equatorial plane results in a distortion from the circular

arc, and therefore is not quite as simple to use for stability analyses

as the equal angle projection.

4.1.2 Equal Angle Projections

Figures 4.2 and 4.3 show the lower hemisphere, equial angle method

for projecting a point from the surface of the sphere to equatorial

plane.

A line is drawn from point P on the sphere to the upper pole, U,

of the equatorial plane (dashed line in Fig. 4.2 and 4.3). The inter-

section of this line with the equatorial plane (PI) is the desired pro-

jection of point P. In Figure 4.2, the projection of plane A and point

P from the lower hemisphere to the equatorial plane is shown; the projec-

tion of plane A plots as an arc of a circle (or line of meridian) on the

equatorial plane.

The projection of a vertical plane will project as a straight line

through the origin of the equatorial plane. A horizontal plane will project

as a line of meridian having a radius equal to the radius of the sphere,

with the same origin. All points projected from the lower hemisphere

will plot within this circle on the equatorial plane. Points from the

upper hemisphere projected on the equatorial plane will plot outside the .

radius of the sphere, as can be seen for the projection, Q1 , of point Q

in Figure 4.3.

A diagram of the stereonet obtained from an equal angle, lower

hemisphere projection is shown in Fig. 4.4. The lines of meridian
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through the N and S poles of this diagram represent great circles resulting

from the Intersection of N-S- striking planes with the reference spnere.

Dip angles for these planes are shown on the E-W axis of the stereonet.

The meridians for steeply dipping planes will approach straight lines

on this plot, while the meridians for flat-lying planes will plot as

arcs of circles having radii approaching the radius of the reference

sphere. Each of the meridians is divided into 180 degrees by E-W lines

of latitude, which plot as arcs of circles on the equal angle stereonet.

To represent a plane which strikes other than N-S, the stereonet of

Fig. 4.4 must be rotated so that its N-S axis is aligned In the direction

of the strike of the given plane. The meridian can then be traced from

the stereonet so that it is oriented in its proper strike direction.

Note that the true dip of a plane or line should be determined by orient-

ing the E-W axis of the stereonet so that it is in the direction of the

dip of the line or plane.

Stereonets similar to that shown in Fig. 4.4 are available from

graphic aid suppliers. It is suggested that such a stereonet be used for

the example problems of this report by overlaying clear vellum on the

stereonet and rotating the stereonet about its center, beneath the sheet

of vellum, to plot planes and lines of various strikes and dips.

In Figure 4.4 the great circle projection of Plane A (dipping 400

west and striking N-S) plots as a line of meridian. Yhe pole (or normal)

of plane A is located 900 from the plane. Lines parallel to plane A

plot as points on this line of meridian. The angle between two such

lines, OP and OR is 1000 and is found by counting the lines of latitude

along the meridian, between points R' and p'.
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Figure 4.5 shows the projection of two planes on the stereonet, one

striking N-S, the other N 42 E. The orientation of the line of inter-

section of the two planes is determined from the point of intersection

of the two meridians. In this case the line of intersection dips at an

angle 240 in a direction of S 320 W. All of this information can be

determined by using the stereonet, rotating it as required to plot lines

of meridian and read angles. The dip angle is read by rotating the

stereonet until either the NS or EW axis coincides with the direction of

dip. The dip angle is then read in degrees from the outer edge of the

stereonet.

4.2 Use of Stereonet to Evaluate Driving and Resisting Forces on a

Potential Sliding Wedge of Rock

The use of the stereonet in stability analyses has been described

by John (1968), Goodman (1964). The stereonet can be used to evaluate

the stability of a three-dimensional wedge of rock resting on planes

having frictional resistances. The method is very similar to the two-

dimensional graphical force polygon used to sum forces. However, only

the orientation (and not the magnitude) of forces is determined directly

from the stereonet. If the resultant driving force acts at an angle

further from the normal to the potential failure planes than the angle of

the maximum resisting reaction on the planes, then sliding will occur.

Note that the location of the forces aad reactions is not known, and

a summation of moments is not carried out.

The stability analysis is divided into two distinct parts. In the

first part the orientation of the maximum resisting reaction on the

potential failure planes is plotted on the stereonet. (For sliding on a
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single plane, the maximum reaction would be oriented at 0 degrees to

the normal of the plane.) Zones of stability and instability can thus

be outlined on the stereonet, strictly by considering the orientation

of the reactions on the potential sliding planes.

The second part involves determination of the orientation of the

resultant driving force acting on the wedge. This force may include

the weight of the wedge as well as acceleration forces, uplift water

pressures on the planes of failure, and driving forces on the wedge

from structures such as dam abutments. Graphical addition of vectors

is used in conjunction with the stereonet to determine the orientation

of the resultant vector force. If the orientation of the resultant

driving force falls within the zone of stability on the stereogram,

then the wedge is stable; if the orientation of the resultant driving

force lies outside the stable zone, then the wedge is unstable.

Not only is the stereonet method of evaluating the stability of

a wedge simple and rapid, it also possesses the advantage that a variety

of forces required to cause failure or, conversely, to ensure stability

can be clearly visualized, without resorting to extensive computations.

4,3 Sliding on a Single Fricitional Plane

The simple case of sliding on a single plane is described, to illus-

trate the use of the stereonet in stability analysis. Of course, a true

two-dimensional problem (where the resultant driving vector force, R,

acts in the direction of the dip) is more simply solved using a conven-

tional two-dimensional force polygon. However, for cases where the

driving vector is not in the di-rection of the dip (such as might occur

when an abutment load acts on a wedge), the stereographic method can
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be used to solve problems which cannot be readily solved using a two-

dimensional force polygon.

4.3.1 Orientation of reaction force on the plane of failure

The reacti~n force at failure, RL (summation of the normal force,

N, and maximum shear force, S) is oriented at the angle of friction 0,

from the normal to the plane. Should the tendency for sliding be down-

dip, then S acts upsiope and RL is as shown in Fig. 4.6a. A friction

cone can be drawn to show the possible orientations of RL for sliding

in other directions. The sides of the cone are oriented at 0 degrees

to the normal, as shown in Fig. 4.6a and b. As long as the resultant

driving vector, R, acts at an angle less than 0 degrees to the normal,

then sliding will not occur in any direction. When R = RL" sliding is

initiated.

A friction cone will plot as a circle on an equal angle stereonet,

as shown in Fig. 4.6 c. The position of the normal force is first

located on the stereonet. (The position of the normal force is located

at the pole of the plane.) The friction circle can then be drawn by

marking off 40 degree angles from N, on great circles passing through

i. (Note that N is not in the center of the circle formed by the

friction cone.)

4.3.2 Stability of wedge of weight W with uplift force, U, acting

on the failure plane

It is immediately apparent that a wedge of weight W will not 'ide

on the plane of failure because 0 is 40 degrees and exceeds the slope

angle of 30 degrees. This is also apparent from Fig. 4.6c, where the

weight vector, W, falls within the friction cone.
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If a porewater pressure were acting on the plane of failure, the

stability of the wedge would be reduced. The porewater vector force, U,

acts normal to the plane of failure, as shown in Fig. 4.6a. The resultant

driving vector, R = W + U, can be determined by drawing the two vectors to

scale (see Fig. 4.6a) and determining the angle of the resultant. In

this case, the magnitude of U is given as 0.44 W and therefore the angle

of R from the vertical is found to be 20 degrees. R is thus located

100 outside the friction circle, in the unstable zone.

The factor of safety for the two cases, with and without the uplift

force acting, is shown in Fig. 4.6d. The tangent of the angle between

the normal and the resultant driving force determines the denominator

in each case.

4.3.3 Graphical procedure for determining the direction of resultant

vector force

The summation of a series of vectors cannot be performed using the

stereographic projection alone, because there is no method for showing

magnitudes of forces on the stereographic projection. However, the

orientation of the resultant vector can be determined using the stereo-

graphic projection in combination with the graphical addition of vectors,

two at a time. Three vectors, Q and U of the preceding example and an

additional vector Aare illustrated In Fig. 4.7. The graphical addition

of these vectors is performed as shown in Fig. 4.8. As described in

the preceding example, vectors W and U are added graphically thus deter-

mining the orientation of W + U, which is found to be 20 degrees from

the vertical (Fig. 4.8a). Vectors W and A are then added, determining

the orientation of W + A, 30 degrees from the vertical (Fig. 4.8b).
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GIVEN: I. Welgi. of Wedge
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The orientations of vectors W, U, A, W + U, and W + A are then plotted

on the stereogram (Fig. 4.8c, solid arcs).

Once these vectors have been plotted, the orientation of the

resultant vector, R = w + A + 3, can be found using only the stereogram.

This is accomplished by finding the line of intersection of two planes.

One plane contains W + A and U, the other contains Q + 0 and A (Fig. 4.7).

The intersection of the two planes is the resultant vector, W + A + U.

On the stereogram in Figure 4.8b, a great circle is drawn through 9 +

and U, another great circle is drawn through W + U and A. The two

great circles intersect at = + 0 + A, which is thus determined as

dipping 42 degrees from the horizontal in a direction of S 32 0 W.

4.3.4 Determination of direction of movement and factor of safety for

case of resultant driving vector, W + U + A, acting on the wedge

In Fig. 4.9 the resultant driving vector, R =W + U +A has been

combined with the friction cone diagram. R = W +A + U lies outside of

the friction cone, therefore sliding of the wedge will occur. The

direction of sliding on the plane will be in the direction of the shear

force, S. Sliding is along a line plunging 250 in a S 270 W direction

(down an apparent dip slope). Note that this direction is not the same

as the S 320 W direction of the resultant driving vector, R.

The factor of safety is determined from the angular distances along

this great circle. From N to RL' the angle is 40 degrees, while from

to R the angle is 75 degrees. The factor of safety is therefore:

tan 400
- = 0.22

tan 750
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4.3.5 Minimum force NW required to cause failure

The orientation of the minimum force, NW, required to cause failure

on an otherwise stable slope can be rapidly determined from the stereonet.

To determine the magnitude of the minimum force, one auxiliary graphical

construction is required (Fig. 4.10).

For the single 300 plane shown in Fig. 4.6, the wedge is stable

under its own weight, W. To reduce the factor of safety to unity, the

angle between the weight, W, and the limiting reaction, RL must be

closed. The minimum angle is 10 degrees and will be obtained when

the driving forces cause sliding directly down-dip (to the south).

Any other direction of sliding will result in a larger angle between

R and W and therefore a larger value for NW.
L

The minimum force, NW will therefore be directed to the south and

will be directed upward 10 degrees so that it is normal to RL (Fig. 4.10).

The minimum force will be almost horizontal for the case of frictional

sliding on a wedge loaded only by its own weight, where the factor of

safety is near unity.

4.4 Sliding on Two Frictional Planes

4.4.1 General

The possible modes of failure of a wedge on two planes can be rapidly

determined from the stereonet. The orientation of the driving forces

determines whether sliding along the line of intersection of the planes

or sliding on either one of the planes will occur. An example problem

for sliding on two planes has been used to clarify the following dis-

cussion. The problem is illustrated in Figs. 4.11 through 4.15.
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4.4.2 Orientation of line of intersection of the two planes

The orientation of the line of intersection of two potential

failure planes is determined using the stereonet as illustrated in

Fig. 4.11. The great circles for the two planes are drawn on the stereo-

net and their intersection is determined as described in section 4.1.

For the example problem illustrated in Fig. 4.11, the line of intersection

is oriented S 270 W and plunges 40 degrees from the horizontal.

Figure 4.12 is a block diagram of the two planes, showing their

line of intersection and the friction cones acting on each plane.

For convenience, the friction cones are shown above the sliding plane.

4.4.3 Reaction forces on the failure planes

Stable and unstable zones are separated on the stereonet (Fig. 4.13)

by the limiting reaction forces, and . The unstable zones includeL1 R2 "

zones for sliding down the intersection, sliding up the intersection,

sliding on single planes, and lifting of the wedge off the planes. For

the case of sliding on plane 1 alone, the orientation of RL, as defined
LI

by the friction cone on plane 1, separates the stable and unstable zones.

For sliding along the intersection of planes 1 and 2, the orientation

of + R separates the stable and unstable zones. The boundary be-

tween sliding on the intersection and sliding on plane 1 is the great

circle which passes through NI and S1 . the normal and shear forces,

respectively, on plane 1. This great circle represents a plane normal

to plane 1 and parallel to the line of intersection.

4.4.4 Method of locating boundary between stable and unstable zones

for the case of sliding along the line of intersection

The location of the resultant, RL + RL2, must be determined in
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order to outline the stable and unstable zones for the case of sliding

along the line of intersection. The shear forces on planes 1 and 2

will act in the direction of sliding, which in this case is parallel to

the line of intersection. Therefore, the shear forces, ~land 1will

both plot on the stereogram at the same point as does the line of inter-

section (point g, in Fig. 4.13).

The direction of the reaction force on each plane is known, since the

direction of its components, the normal and shear forces on that plane,

are fixed. Th reaction force, RL 9 must act within the plane in which
1l

Nand Sl act. Therefore, the direction of the reaction force, R canI I L1
be located by drawing a great circle through N 1and S 11R Lis located

where this circle intersects the friction cone of plane 1. Similarly,

R Lis located where the getcircle drawn through N 2and S 2intersects

the friction cone of plane 2. No matter what driving forces act on the

wedge, as long as the limiting case of sliding along the intersection is

considered, then the orientation of both RLand R Lare fixed.

If R L and RL2are summxed, their resultant, RLI+ R L2 must act in

a plane parallel to RLand R. 2 This plane can be located on the

stereonet of Fig. 4.13 by drawing a great circle through R L and R 2

For sliding along the intersection of plane 1 and 2, the reaction

R L+ R will be located somewhere on this great circle, but its position

along the great circle will depend on the orientation of the driving

forces acting on the wedge, since the orientation of the driving vector

affects the relative magnitudes of R Land R L 'Should the orientation

of the resultant vector forces lie outside the stable zone outlined by

R + RLthen sliding will occur on the intersection of the two planes.
L 2
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In Fig. 4.13, the weight vector, W, is located just within the stable

zone. Only a very small force directed toward the south would be required

to move the driving vector out of the stable zone and cause sliding down

the line of intersection of planes I and 2.

4.4.5 Minimum force (' ) required to cause sliding of the wedge

In order to cause sliding of the wedge, the resultant driving vector

must lie outside the stable zone. The minimum force,NW required to

cause sliding can be determined by means which is directly analogous to

the riethod for determining the minimum force for sliding on a single

plane (Refer to Section 4.3.4). To close the force polygon (and obtain

a factor of safety of one) a force must be added which connects the tip of

the Cxisting vector (Weight, W, in this case) to the plane of the re-

action, RL + R The minimum force will be the one acting normal to

the plane of R + R as shown in Fig. 4.14.

The orientation of the minimum force can be determined from the

stereonet. Its magnitude can be determined by graphical construction Q

of the force polygon (such as Fig. 4.14). In Fig. 4.14, the minimum

angle between W and R + R, which must be closed for a factor of
L1 L2

safety of one, is 4 degrees. The minimum force is also directed upward

(in this case at an angle of 40) in order to intersect the plane of

R L + R at right angles. Note that the strike of the minimum force

(in th;K case S40W) is not the same as the strike of the line of inter-

section (in this case $27W). In general, the minimum force, NW, will

not be oriented directly along the strike of the line of intersection

unless the wedge is acted on only by its own weight and the friction

angle- . the two planes are the same.
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It should be noted that the difference in magnitude between the

minimum force, NWj and the force NW directed horizontally and parallel

to the strike of the line of intersection will be very small in most

cases, particularly for cases when the primary force acting on the

wedge is its own weight, and the facto- o safety is only slightly

greater than one. In these cases, a reasonable (but slightly unconserv-

ative) approximation is that NW acts horizontally, parallel to the

strike of the line of intersection.

4.4.6 Factor of safety and minimumi forces required to stabilize the wedge

Two separate conditions exist for determination of the factor of

safety of the wedge and the forces required to stabilize the wedge. Con-

sider the two conditions illustrated in Fig. 4.15: case 1, where the

wedge is acted on by a driving force, 5, causing sliding on a single

plane (plane 1), and case 2, where the wedge is acted on by a driving

force, B, causing sliding along the line of intersection of planes

1 and 2.

Case 1: The wedge is acted upon by the driving force, D, and will

slide on plane I alone. There will be no normal force on plane 2. In

this case, the orientations of both the normal force, Ni on plane 1,

and the driving force, D, are known, while the orientation of the shear

force, Sli and the reaction, R ,l on plane 1 remain to be determined.

Sand R are known to act within the plane of N and D. Thus, their
1

position is obtained by drawing a great circle (solid line in Fig. 4.15a)

through N Iand D, then locating S Iat 90 degrees from N Iand locating

RLat 0 degrees from N1, along the great: circle. In the example

shwn the angle between NIand RL is 0D 200 and the angle between
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- 0
RL and 0 is 37 °

. Therefore, the factor of safety is:

F.S. - Maximum shear force available tan 200 0.24
Actual shear force mobilized tan (200 + 370)

(Refer to Fig. 4.15a.) Sliding of the wedge will be in the direction of

the shear force, S, in this case plunging 190 in a direction S 400 W,

on plane 1.

The magnitude of the minimum force, P, required to close the 370

angle between RL and 5 (and thereby increase the factor of safety to

one) can be determined from the graphical contruction in Fig. 4.15a.

If the magnitude of D is known, then the minimum force is:

Pmn = D sin 370
rmin

Case 2: The wedge is acted upon by the driving vector, B, and

will slide on the intersection of planes I and 2. The direction of the

shear forces, SI and $2' are fixed parallel to the line of intersection

of planes 1 and 2, while the positions of N1 + N2 and R + R remain to

be determined. They cai, be found by drawing a great circle (solid line

in Fig. 4.15b) through S, S2 and B. R + R is located at the inter-
,R1 R2

section of this great circle and the great circle through R L and RL

- -1 2'
Il + N2 is located at the intersection of the great circle through

S + $2 and B, and the great circle through N1 and N2.

The factor of safety in this case is determined by the 510 angle

between N1 + N2 and B and the 330 angle between N1 + N2 andRL + RL

The factor of safety is therefore:

F.S. = tan (330) - tan 3 3 u .0 3
tan (330 + 180) tan 510

The direction of sliding is along the line of intcrsection, S 27° W,
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downdip at 400.

The concept of a factor of safety is somewhat misleading in this

, becaLse the force required to stabilize the wedge does not have

to close the 180 angle between R L + RL and B. Instead, the minimum

force, Pmin is B sin 160. Note that the new resultant driving vector,

.min + B, acts in a plane which is different from the plane in which

originally acted.

4.5 Sliding of a Wedge Bounded by Three Planes

The case for sliding of a wedge bounded by three or more planes is

only slightly more complicated than the case for a wedge bounded by two

planes. With three planes another friction circle is added to the

stereonet. Depending on the orientation of the driving forces, sliding

will occur on any one of the three planes, on any one of the three lines

of intersection, or the wedge will lift off the three planes. Methods

for determining the minimum forces to cause sliding, for determining

factors of safety, etc., are identical to those described for the two

plane case (section 4.4). Prior to performing the stability analysis,

a basic decision must be made as to which planes are potential sliding

planes and which wedges are critical.

Figures 4.16 and 4.17 illustrate the three plane case. The orienta-

tions and friction angles for the three planes are given in the block

diagram of Fig. 4.16. The corresponding stereonet is illustrated in

Fig. 4.17. For this case it is readily apparent that, regardless of

the presence of the third plane, the wedge is still closest to a failure

by sliding (under its own weight) along the intersection of planes

1 and 2. In order for failure to occur by sliding up pldne 3, or by
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sliding along the intersect ion of plane 3 and 1, or by sliding along

the intersection of plane 3 and 2, an appreciable driving force acting

upward (toward the North) would be required.f

4.6 Wedge Bounded by Three Planes but Daylighted by Cut Face

Although the wedge bounded by planes 1, 2, and 3 is stable for the

condition illustrated in Fig. 4.17, it will not be stable if plane 3

is daylighted at the base and sides of the cut, as shown in Fig. 4.18.

Cases similar to this will commonly occur in rock masses where joint

sets form multiple wedges, rather than a single wedge.

If planes I and 2 are present, as shown in Fig. 4.18a, then wedge

A would still be stable under its own weight, as was previously shown in

Fig. 4.17. However, if plane 3 is daylighted at the edge of the cut,

then plane 2 no longer restrains wedges A and B, thus sliding will occur

along the intersection of planes 1 and 3, as indicated in the stereonet

of Fig. 4.18b.

Another possible mode of failure would be for wedges A and B

(acting as a single wedge) to rotate away from the line of intersection

of planes 1 and J and slide on plane 3 alone. This is likely to occur

if the mass of the wedges is concentrated over plane 3. away from the

line of intersection of planes 1 and 3. (Rotational wedge failures

are analyzed in section 4.7.)

Another possibility is that wedges A and B would break up and slide

as individual blocks, wedge A possibly sliding on the intersection and

wedge B sliding on plane 3 alone.

When the planes represent joint sets rather than single discontin-

uities, then modes of failure similar to those described above become
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quite possible. Some of the joints within a set may daylight on the

sides or edges of slopes and allow failure of wedges on single planes

rather than multiple planes. Joints of other sets may also free the

edges of wedges, facilitating sliding on a single plane. In general,

a lower factor of safety will be obtained if the mass has a tendency

to move as several rig7d bodies broken up by the joint sets, rather

than moving as a single rigid body. It is very important that these

possibilities be considered during the exploratory phase of the slope

stability study, prior to selecting the critical wedges on which the

stability analyses will be performed.

4.7 Rotation of Wedge on Plane 3

The factor of safety against rotation of a wedge can be estimated

using the stereonet if the point of application of the driving forces

on the failure plane is known. Consider the example of Fig. 4.19.

The wedge illustrated here is the same as the wedge of Fig. 4.18 except

for an increase in the angle of friction on plane I from 340 to 40

so that the wedge is now stable against sliding under its own weight

down the intersection of planes 1 and 3. It is assumed for a rotational

failure that the wedge rotates about point C, at the base of the slope.

It is also assumed that the limiting shear and normal stresses on plane

3 can be surmmed as forces N3 and $3' acting at point D (at the point of

intersection of the resultant driving vector, W, with plane 3). This

implies that there is no variati, , in the angle of friction on plane 3.

Based on these assumptions the direction of the shear force, S3 will

be perpendicular to line CD, as shown in Fig. 4.19.
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The given conditions for the wedge of Fig. 4.19a are:

Plane 1: Strike N32 0E, dip 40 
0SE, 6 = 4 0

Plane 3: Strike E-W, dip 50 0S, j6 200

In addition, it is assumed that the center of gravity of the wedge is

known, so that the orientation of line CD is known. Line D is the

moment arm from the center of rotation, C, to the point of intersectionI

of the weight vector, Q, with plane 3 (point D). Its orientation is

assumed to be S450W on plane 3.

It is immediately apparent from the given conditions on planes 1

and 3 that the wedge, under its own weight, W, is stable against sliding

on plane I alone, since the dip of plane I equals the angle of friction

on plane 1 (400). The wedge is therefore also stable against sliding

on the intersections of planes 1 and 3.

The wedge is not stable against sliding on plane 3 alone, since the

dip of that plane exceeds its angle of friction. If the wedge were to

extend an infinite distance to the right of the diagram, then the wedge

would behave as if it were sliding on plane 3 alone, since all of the

weight of the wedge would be over plane 3 and an infinitesimal portion

of the weight would act on plane 1. In this case the moment arm for

rotation of the wedge would extend parallel to the strike of plane 3

(line CD'). Thus the shear force, 3 would act directly up the dip-

slope of plane 3, the Identical condition for sliding on a single plane.

The factor of safety against rotational sliding would be:

RESISTING MOMENT Zi' (W tan 200) tan 200
F.S. - 0.3

DRIVING MOMENT D'(W tan 500) tan 500

the identical factor of safety for sliding directly down plane 3.
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Another extreme would be the case where the weight of the wedge

was concentrated near the intersection of planes I and 3 so that the

moment arm extended directly up-slope on plane 3 (line CD''). The

limiting shear force, S33 in this instance would be directed along the

strike of plane 3. The driving force, W, has no component in this

direction, so that rotation would not occur, reqardless of the frictional

resistance on plane 3. The factor cf safet) against rotation is therefore:

F Cs. (tan 200) -

An intermediate case, where line CO is directed S45 0W on plane 3,

is shown in the stereonet of Fig. 4.19. The rotational stability of

the wedge is determined as follows: The great circle representing plane

3 is drawn on the stereonet, as well as the normal force and friction

circle for plane 3. Line CD is located in its given direction on the

stereonet at the intersection of plane 3 and a vertical plane oriented

S45°W. S3 is then located on plane 3, at a 90° angle from line CD.

A great circle is then drawn through S3 and N:3 2 representing the plane

containing S3 and 3. This great circle will also be located 900 from

CD, along a great circle (in this case a straight line) passing through

D and W. The component of W which is normal to CD is located at this

point. The factor of safety against rotation is:

F.S. = tan d/tan (angle between N3 and the component of W .. to D)

= tan 200 tan 200 .58

tan (200 + 120) tan 320

Although the wedge is stable against sliding along the Intersection

of planes 1 and 3, it is unstable for the case of rotation on plane 3.
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However, the factor of safety against rotation (F.S. = 0.58) is still

appreciably higher than the factor of safety against sliding on plane

3 alone (F.S. = 0.30).

In order for the factor of safety against rotation on plane 3 to

be equal to one, the center of gravity must be located so that line

CD'' is oriented S27 0W on plane 3, as indicated by the dashed line

tangent to the friction circle in the stereonet of Fig. 4.19.
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CHAPTER FIVE

DYNAMIC STABILITY OF ROCK SLOPES

5.1 Introduction

The stability of rock slopes subjected to dynamic loads has usually

been treated as a pseudo-static problem by engineers assessing the

"dynamic factor of safety." In this approach, the dynamic forces on a

potential sliding mass of weight W are assumed to be equivalent to a

horizontal force of KW acting through the center of gravity toward the

free surface of the slope. The constant K is called the seismic

coefficient, the value of which is commonly taken between 0.05 and 0.20

for earthquake design in seismically active areas. If this method is

used, the factor of safety is computed by the methods outlined in Chapters

3 and 4 for static problems. The only adjustment which has to be made

is that the resultant force R acting on a three dimensional tetrahedron

Includes not only the weight and pore pressures, but also the force KW

directed in a horizontal direction. Wittke (1965) has presented this

type of analysis to assess the dynamic stability of slopes and has

suggested that the horizontal force KW be directed along the line of

intersection of the two planes on which sliding takes place for the most

critical effect. The meaning of the factor of safety calculated for

dynamic loading is somewhat nebulous however because the dynamic forces

are not constant static forces acting in one direction. The actual

factor of safety of a slope subjected to dynamic loading varies with

time, and movements of the slope only occur when the factor of safety

Is momentarily below 1.0. Thus the average factor of safety computed
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from a pseudo-static analysis using the seismic coefficient K is not

meaningful because the analysis does not indicate the magnitude of the

strains or displacements which may develop in the slope. An astimate

of the displacement or strain in the slope after shaking enables the

engineer to make a judgment on whether the displacements are harmful in

terms of either structural damage or are large enough to cause a consid-

erable decrease in shear strength of the slope materials.

In this chapter the basic analysis given by Newmark (1965) for the

dynamic analysis of earth slopes is modified to assess the displacement

rock slopes might experience under dynamic loadings. A criterion is

also given for determining if the computed displacement may be harmful

to the stability of the slope.

5.2 Dynamic Analysis of Rock Slopes

The first step in the dynamic analysis of a rock slope is to evaluate

the dynamic resistance of the slope. The dynamic resistance is defined

as the minimum force applied through the center of gravity of the

potential sliding mass which will just begin to move the mass above

the assumed failure surface. The dynamic resistance is usually denoted

by NW (Fig. 3.4a) where N is a coefficient and W is the weight of the

potential sliding mass. Physically the dynamic resistance is the minimum

shearing resistance which can be mobilized, in addition to that required

for static stability, to resist the effects of a dynamic load.

For the three dimensional analysis of rock slopes, as shown in Figs.

3.4 and 3.5, the problem is to find the direction which will minimize

N and solve for the magnitude of NTV. Graphical and analytical procedures

have been developed for findin 3 thQ minimum dynamic resistance in

123



sections 3.2.2 and 3.4.2 respectively.

The quantity Ng is the steady acceleration in the direction of NW

which will just overcome the resistance of the sliding mass. If the

maximum acceleration Ag in the area of the slope is less than Ng then

the slope is definitely safe. However, if Ag exceeds Ng, the slope

does not necessarily fail because the ground acceleration may only exceed

Ng for a very short period of time. During this time, a relative dis-

placement occurs between the portions above and below the failure surface.

Figure 5.1 shows a plot of the ground motions observed during the 1940

El Centro earthquake. Note that the maximum acceleration, Ag ( = S/0),

of 0.32 g occured only for a short period of time and also note that if a

slope in the area of this record had a dynamic resistance, NW, of 0.2 W

that the dynamic resistance would only be exceeded for very short periods

of time during 6 pulses. Although some relative displacement would

occur during these short times the slope would not necessarily fail.

Newmark's method of analysis provides a means of calculating the displace-

ments which occur for the case when A> N.

The following example illustrates Newmark's analysis for the case

of a single acceleration pulse acting on the base beneath a sliding

mass with a rigid plastic resistance between the base and mass with a

resistance of NW.

Consider the rigid body shown in Fig. 5.2 having a weight W, mass

M, and having a motion x. The motion of the ground on which the mass

rests is designated by y(t), where y is a function of time t. The

relative motion of the mass, compared with that of the ground, is given

by u, where

u x -y (5.1)
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The resistance to motion is accounted for by a shearing resistance,

which can be expressed as being proportional to the weight W. and having

a magnitude of NW. This shearing resistance corresponds to an acceler-

ation of the ground of magnitude Ng that would cause the mass to move

relative to the ground.

The accelerating forces acting on the mass M are shown in Fig. 5.3.

The acceleration considered Is a single pulse of magnitude Ng, lasting

for a time interval to0. The resisting acceleration, Ag, is shown by

the dashed line in Fig. 5.3. The accelerating force lasts only for the

short time interval indicated, but the decelerating force lasts until

the direction of motion changes.

In Fig. 5.4 the velocities are shown as a function of time for

both the accelerating force and the resisting force. The maximum

velocity for the accelerating force has a magnitude V given by the

express ion

V = Agt 0  (5.2)

After the time t is reached, the velocity due to the accelerating force
0

remains constant. The velocitiy due to the resisting acceleration has

the magnitude Ngt. At a time t , the two velocities are equal and the

relative velocity becomes zero, or the body comes to rest relative toJ

the motion of the ground. The formulation for t mis obtained by equating

the velocity V to the quantity Ngt, which results in the expression

tm Ng (5.3)

The maximum displacement of the mass relative to the ground, Us is

obtained by computing the shaded triangular area in Fig. 5.4. The

I 26



myt

FIG. 5.2 RIGID BLOCK ON A MOVING SUPPORT

Ag

c
0

0

Ng - - - -

0 t

Time, t

FIG.5.3 RECTANGULAR BLOCK ACCELERATION PULSE

VcAgld

0

FIG.5.4 VELOCITY RESPONSE TO RECTANGULAR
BLOCK ACCELERATION

127



calculation is made as follows:

1 1
um = 2 V tm - 2 V to

2 2 0
l V2  1 V 2

or um 2 Ng 2 A

V2
hence um =gN (M N) (5.4)

The acceleration pulse shown in Fig. 5.3 corresponds to an infinite

ground displacement. During a real earthquake a mass would undergo a

number of pulses occurring in random order, some positive and some

negative as shown in F:g. 5.1. If we now consider a second pulse of a

negative magnitude that is sufficient to bring the velocity to zero

even without the resisting force, then it can be shown that the net

displacement occurring with the resistance generally cannot exceed that

which would occur without the resistance.

The result of using Eq. (5.4) Is to generally overestimate the

relative displacement for an earthquake because the equation does not

take into account the fact that the pulses occur in opposite directions.

However, Eq. (5.4) should give a reasonable order of magnitude for the

relative displacement and it does indicate that the displacement is

proportional to the square of the maximum ground velocity.

The result derived above is also applicable to the case for a group

of pulses in which the resistance in either direction of possible motion

is the same. For a situation in which the body has a resistance to

motion greater in one direction than in another, one must take into

account the cumulative effect of the displacements. A simple example

where this effect must be considered is found by rotating Fig. 5.2

clockwise so that the body has a tendency to slide downhill. In this
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situation, ground motions in an upslope direction leave the mass without

any additional relative motion except where the magnitudes of the motions

are extremely large. One may consider this model applicable-to a slope.

Similar calculations using wave forms of 4 different earthquake

records were made for a resistance of NW for downhill movement and an

infinite resistance for uphill movement on a digital computer at the

University of Illinois. These results are shown in Fig. 5.5. A con-

servative upper bound to the displacement is given by

2V- . A for 0.2 <N <04
2gN N A (5.5)

For x >.4 a reasonable upper bound is given by

V2 NA

V 2 (1-_ N) A
2gN A (5.6)

N

And for- < 0.2 a reasonable upper bound for.the displacement is given by

6v2

2gN (5.7)

The simplified calculation presented for one acceleration pulse

and the calculation of displacements for actual earthquake records show

that the slope movements relative to the base are proportional to the

2
square of the maximum particle velocity, V , at a given ratio of N/A.

Since the calculations of Newmark, presented in Fig. 5.5, are for four

different earthquake records, it is conservative to use the relations

given in Eqs. 5.5, 5.6, and 5.7 for ground motions from nuclear

explosions because the duration of shaking is significantly shorter.

5.3 Permissible Movement of Rock Slopes

Ultimately, the engineer must decide if the dynamic displacement

calculated from Eqs. 5;3 - 5.5 is acceptable. Many slopes in soil and
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soft shales have undergone considerable movement (as much as 6-10 ft)

under earthquake loading without catastrophic consequences. On the other

hand, there have been catastrophic failures of some rock slopes during

dynamic loading, such as the Madison Valley, Montana slide and catas-

trophic slope failures have also been observed in sensitive marine clays

in Anchorage, Alaska under earthquake loading. Jointed rock slopes and

slopes composed of sensitive marine clays are similar in that they are

composed of materials which are strain softening for displacements be-

yond those required to develop the maximum shearing resistance. A

qualitative diagram of shearing strength mobilized versus displacement

parallel to the discontinuity is shown in Fig. 5.6b for rough rock

surfaces. The peak shearing strength given by point C on this diagram

is given by

T = a n tan ( r + i) (5.8)

where i is the geometrical component of resistance given by the roughness

along the discontinuities and, r is the residual angle of shearing

resistance.

With further displacement the asperities are sheared off to a

certain extent along the discontinuity and eventually at larger displace-

ments the shear strength will be reduced to a vali. given by

= 0n tan t (5.9)n r

wher D is the residual angle of ,hearing resistance along the 6-s-
r

continuity. Thus in any given case, the potential fall off in strength

between the peak strength and the residual strength is an tan i, where

i is the angle which the roughness makes with the average direction of

iovoment alono the discontinuity, as shown in F;.I. 5.6c. The value of
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r is a function of the type of rock of which the slope is composed and

can be relatively easily determined from smooth samples in the laboratory.

The selection of the i value, however, is somewhat difficult in that there

are usually several groups of undulations on a discontinuitiy which

have different i values. For instance, there may be broad undulations

(first order irregularities) with wave lengths on the order of 8-10 ft

which may have an i associated with them which may only be on the order

of 5-150 (Fig. 5.7). Whereas there are shorter undulations (second order

irregularities), which may have higher i values (10-460) _s shown in

Fig. 5.7. If the dynamic resistance NW is calculated on the basis of

a peak shearing strength such as point C on diagram 5.6b, then it is of

utmost importance to know approximately the wave length of the asperity

associated with the value of the angle i chosen in the analysis. For

instance, if the value of i is associated with a quarter wave length

denoted by H in Fig. 5.6c, then it is obvious that the dynamic displace-

ment as computed by Newmaark's method must be less than H or the shear

strength value upon which the calculation of NW was computed is no longer

valid. The displacement in this case would have been enough to roll up

and over the asperity shown in Fig. 5.6 c and the 3hear strength would

have been reduced to some value lower than the peak shear .:trength.

The full value of i would not be effective because of the lower slope

of the surface roughness near the top and possikly because part of the

roughness could have been sheared off by the dynamic movement. On the

other hard, a va'ue of i used in e-timatinq the pak shear strength

used in the :alcuiat ion of NW could be a relat T,,- ]ow value of about

F-lO° and this value of i could be ite, w , l.ith H (Fiq. 5.6c)
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on the order of 5 or 6 ft. In this case If the cltlculated dynamic 

dhplacement caused by a gl•1en earthquake turns out to be something 

like 6 inches, then we would definitely say that the slope ts probably 

~;table or no problems would result from dynamic loading. This Is true 

because the 6 inch displacement 1...-lll not significantly reduce the strength 

<issumcd in calculations of NW. The relative displacement would have to 

be on the order of 3 or 4ft to slgnlficantlv lower the peak shearing 

resista;,ce in this case. Thus, In general, the criterion which should 

be used to decide If a certain displacement is detrimental or not Is 

the w~vc length of the asperities giving the geometrical component of 

r·esistance because this is-the 1·esistanc:e which can be destroyed by the 

dyna~ic displacement. If preliminary calculations indicate that the 

dynamic displacements will 11ot be large In comparlsoro with the displace­

ments necessary to significantly lower the shec'r strengtht then the 

dym1mi c di srlacemcnt calcu:ated wlll pr·obably he acceptable and the 

slope can be Judged safe. However, If the dynamic dlsplace:ncnt computed 

i '• on Lhe ~;.::J•11e onll.!r of magnitude as the wave lcn!Jth of the dlsconttn­

uilics or the ordc1· of displacement necessary to significantly reduc~ 

lhr! ·,lll';:tt· !.tn.cn\)th along o discontinuity, then the slope may not be safe. 
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CHAPTER SIX 

SUH~~RY AND CONCLUSIONS 

6.1 Static Stability of Rock Slopes 

In this report the methods of analysis for assessing the static 

stability of rock slopes in three dimensions have been described and a 

method for calculating the dynamic resistance and displacement of rock 

slopes subjected to earthquake loading has been given. 

The general procedures for determining the static factor of safety 

of ruck slopes analytically by vector analysis and graphically with 

slereonets are given in Chapter 3 and Chapter 4 respectively. Although 

the mechanics of the calculation are different in each of these approaches, 

the same basic steps are followed in each method for determining the 

static factor of ~afety. The steps in the analysis are as follows: 

(1) the inLc,·section of the various joint sets with each other 

( ) \ 
~I 

and with the slope face must be inspecterl to determine the 

telrc1hcrdra v1hich may be potential failure wedges. These wedges 

:11usl ~hen be analyzed in detail. 

the ro,·ces tendinn to dLsturb the equilibrium of the wedge 

•;h:JL:ld (J(~ <Jdded vcclorial~y to give iJ resultant drivrng force. 

These disturbin~J forces are the weight of the wedge, W, the 

c:xl,·rn<:ll !odd dppl it~d to Lhe wedge by d stnrcture, Q, and 

Lhc poi-<'1·/Cltcr forces acti:1g on various faces of ~he tetrahedron 

qivcn as lll' u2 , i:lnd u
3

. n1is slep is illuSLrated by equutions 

3.10 ,Jnd 3.68 for the vector analysis <Jnd is shown in Figs. 

,;_7 dnd ·1.8 for the 9r<1phical method using stereonets. 
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(3) the mode of failure must then be determined. For example

a wedge supported on two base planes can either slide along

the line of intersection of the two planes, slide on either

plane or rotate on either plane. The kinematics of failure

will depend upon the orientation of the disturbing force in

relation to the orientation of the supporting planes. These

kinematic tests for sliding are illustrated by equations 3.16,

3.17, 3.20, 3.21, 3.22 and 3.23 for a tetrahedron supported

on two base planes. The kinematic tests for rotation are given

In Table 3.1. The orientation of the resultant disturbing

force which will cause various modes of failure for a wedge

supported on two base planes as shown in Fig. 4.13 by the

graphical method using stereonets. Equations 3.81-3.93 are

kinematic tests to determine the sliding mode for a tetrahedron

bounded by 3 base planes by means of vector analysis. Fig. 4.17

illustrates the method of determining the mode of sliding of

a tetrahedron bounded by 3 base planes by utilization of

stereonets.

(4) after the mode of failure is determined the maximum shearing

rLsistance which can be mobilized in the direction of movement

is compared to the shearinq forces nece'sdry for equilibrium

to obtain a factor of ',afety. This step has been illustrated

by the many example problems worked in Chapters 3 and 4.

The detailed analyses given in Chapters 3 and 4 can be used to

solve most of the problems w!;ch arise in the calculation of rock slope

stability. A majority of the real problems which arise however are
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wedges acted on by their own weight, partially submerged beneath a

phreatic surface, and resting on two base planes. The influence of

external loads is smrall relative to the weight of the wedge. For this

case, which has been the most common field case encountered by the

authors) there are several approximate generalizations which can be made

such that all the details of analyses presented in Chapters 3 and 4

are not necessary to obtain a fairly accurate answer to the problem.

First of all for a wedge resting on two base planes, acted on by only

its own weight, sliding will occur along the line of intersection of

the two planes if a line drawn down the dip in both planes tends to

intersect the line of intersection. If in either one of the planes a

line drawi down the dip is directed away from the line of intersection

then sliding will occur on that plane only and the wedge will move

away from the line of intersection. If a wedge is acted on by its own

weight, it will slide down the maximum dip if sliding occurs on one

plane and the factor of safety can be easily computed. If it is deter-

mined above that sliding will take place along the line of intersection,

the slope Of the line of intersection, i, as shown in Fig. 6.1, should

be determined immediately by means of graphics. rhe angle of friction 0

required lor stability will always be equal to or less than u. it there

are no pore pressures on the joint surfaces. rhe next step is to de-

termine the angle, 8, included between planes I and 2 in a plane per-

pendicular to the line of intersection OA as shown in Fig. 6.1. The

smaller anqle 0, the lower the value of f required for stability.

As 6 approaches zero, the lue of required for stability approaches

zero; and, as a approaches 180 0 the value of 0 required for stability
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approaches a. The next step is to determine the skewness Y of the wedge

as shown in Fig. 6.2. For the non-skewed or symmetrical case (C1 = C2

and y - 0, as shown in Fig. 6.1) the 0 required for a factor of 1.0

for various values of 8 and a are shown in Fig. 6.1. If the angle of

shearing resistance 4 is the same on both planes 1 and 2, the value of 0

required for stability is less for the symmetrical case (C1 = C2, Fig. 2)

than for the skewed case (C1 0 C2) for the same values of a and 8.

Figure 6.2 illustrates the effect of skewing the planes on the value

of 0 required for a factor of safety of 1.0. From Fig. 6.2 the value

of 0 required for a factor of safety of 1.0 can be determined from the

value of tan 0/tan a for various values of a and y where Y is a measure

of the skewness of the wedge as shown in Fig. 6.2. The curve labeled

CI = C2 (y = 0) in Fig. 6.2 summarizes the curves presented in Fig. 6.1

for the symmetrical case. The additional curves presented in Fig. 6.2

i lustrate the effect of skewing. These curves illustrate the sensitivity

of the value of 4 required to skewing. For values of Y less than 200

the tan required/tan a values are increased by only 6 percent above the

values for 1 = 0. However if te wedge is skewed 600 () = 600) then

values of tan required/tan o are approximately twice the values for

0
Y = 0. For y = 40 tan requ red/tan (, values are increased by approx-

imately 30 percent from the case where y = 0.

The five example problems showi below in Table 6.1 illustrate all

the conditions which are considered in Fig. 6.2.
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TABLE 6.1

Case 1 B=I80* C -C 2=0

Case 2 C1 =0

Case 3 iO

Case 4 C1-C2, y=O

Case 5 C1 C2

Analysis of each of these five cases by the use of stereonets is

illustrated in Figs. 6.3, 6.4, 6.5, 6.6, and 6.7.

6.2 Dynamic Stability

The analysis of rock slopes in a static fashion by considering the

inertia force as a static load (Wittke, 196 5a) is not considered adequate

for assessment of the dynamic behavior of rock slopes. In this report

a method was given in sections 3.2.2 and 3.4.2 for calculating the dynamic

resistance NW for a rock slope by means of vector analysis. The calcu-

lation of the dynamic resistance by means of stereonets is given in

section 4.3.4. The dynamic resistance N should then be used in the

dynamic analysis proposed by Newmark (1965), which is explained and

illustrated in Chapter 5. From this analysis the dynamic displacement

is computed. This displacement should then be compared with the wave-

length of the asperities on the failure planes as shown in Fig. 5.6 to

determine if the dynamic displacement would be detrimental to the static

stability of the slope. The calculation of the dynamic factor of safety

using a pseudo static analysis has little meaning.
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PROGRAM #1

This program is for the analysis of a rock tetrahedron supported on

two planes and acted on by its own weight. The program is coded in FORTRAN

IV language. The format and definition of parameters are given below.

INPUT PARAMETERS

CARD I Format (10F7.2)

Parameter Card Column Definition of Parameter

BETA I I - 7 Strike of plane I
BETA 2 8 - 14 Strike of plane 2
GAMMA 1 15-- 21 Dip of plane I
GAMIM 2 22 - 28 Dip of plane 2
PHI 1 29 - 35 Angle of Shearing Resistance on plane I
PHI 2 36 42 Angle of Shearing Resistance on plane 2
ALPHA 43 - 49 a, Slope angle as shown in Fig. 3.9
DELTA 50 - 56 6, Slope angle as shown in Fig. 3.9
H 57 - 63 Height of slope as shown in Fig. 3.9
Q 64 - 70 Desired factor of safety for design

OUTPUT PARAMETERS

Parameter Definition of Parameter

uX(]) x, y, and z components of a unit vector U in
UY(l) the direction of the strike of plane 1.
uZ(1)

VX(l) x, y, and z components of a unit vector V in
VY(l) the direction of the dip of plane 1.
vz(l)

WX(l) x, y, and z components of a unit vector W in
Y(l) a direction normal to plane 1.
wz(l)

UX(2) x, y, and z components of a unit vector D in
UY(2) the direction of the strike of plane 2.
UZ(2)

VX(2) x, y, and z components of a unit vector V in
VY(2) the direction of the dip of plane 2.
vz(2)
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WX(2) x, y, and z components of a in-it vector Q in
WY(2) a direction normal to plane 2.
WZ (2)

XX x, y, and z components of a vector X directed
XY along the line of intersection of planes I
XZ and 2.

X The magnitude of the vector X.

FS Factor of safety.

Definition of Paran-ethers Cazculated in Program in Intermediate Steps

ODX x! y, and z components of line OD, Fig. 3.9
ODY
ODZ

OCX x, y, and z components of line OC, Fig. 3.9
OCY
OCZ

OBX x, y, and z components of line 08, Fig. 3.9
OBY
OBZ

OSX x, y, and z components of line OS, Fig. 3.9
OSY
OSZ

RX x, y, and z components of resultant force action on tetrahedron
RY (Note: since this program is for a slope acted on by its own
RZ weight RX and R, are always zero and RZ is taken as -1 unit

since the magnitude of the weight does not affect the factor of
safety.)

EMX Moment about the line of intersection of planes 1 and 2 of
the weight of the tetrahedron applied through the center of
gravity of the tetrahedron.

EN(J) Magnitude of the normal component of the vector R on plane J

TX(J) x, y, and z components of the tangential component of the vector
TY(J) R on plane J
TZ(J)

T(J) Magniitude of the tangential component ot the vector R on plane J

SXI x, y, and z components of the vector Sl2 shown in Fig. 3.5(b)
SY1
SZ1

SX2 x, y, and z components of the vector zS12 shown in Fig. 3.5(b)
SY2
SZ2
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COMPUTER PROGRAM #1

C STABILITY ANALYSIS OF ROCK SLOPES
DIMENSION B(2),C(2) ,PHI(2),EN(2),UX(2),UY(2),UZ(2),VX(2),VY(2),
lVZ(2),WX(2),WY(2) ,WZ(2),TX(2),TY(2),TZ(2),T(2)
READ (5 11) BETAl ,BETA2,GAMI'H,GAMM1A2,PHI1 ,PHI2,ALPHA,DELTA,H,O

11 FORM4AT (1OF7.2)
WRITE (6.12) BETA1,BETA2,GAM1A1,GA#4A2,PHI1,PHI2,ALP4A,DELTA,H,Q

12 FORMAT (1H1,gX,8HBETAI =,F7.1,8H DEGREES,10X,8HBETA2 =,F7.11
18H DEGREES/IOX,8HGAMq4A1 =,F7.1,8H DEGREES,lOX,8HGA4MA2 =,F7.1.
28H DEGREES/lOX,8HPHIl =,F7.1,8H DEGREES,10X,8HPHI2 =,F7.1,
38H DEGREES/1OX,8HALPHA =,F7. 1,8H DEGREES,I0X,8HDELTA =,F7. 1,486 DEGREES/IOX,8HHEIGHT =,F7.1,4HFEET,14x,8HQ =,F7.2)
B(1) = BETAl /(180.0/3.141593)
BQ2? = BETA2 /(180.0/3.141593)
Ckl1 GAt4MA1/ 180.0/3.141593)
C(2) = GAMM1A2/(180.O/3.1415g3)
P111(l) PHIl /(180.0/3.141593)
PHI(2) = PH12 /(180.0/3.141593)
A = ALPHA /(180.0/3.141593)
I) = DELTA /(180-0/3.141593)
DO 101 K=1,2

UK)= O( )
UY(K) = KI(B))
UZ(K) =0.0
VX(K) = COS(C (K))*SIN(B(K))
VY(K) =-COS(CR()) *COS(B(K))
VZ(K) =-SIN(C(K))
WX (K) = (UY(K)*VZ (K))- (UZ(K)*VY(K))
WY K) = (LIZ(K)*VX (K))- (UX (K) *VZ(K))

101 WZ(K) = (UX(K)*VY(K) )_(UY (K)*VX(K))
WRITE (6,13) IJX(1),UY(1),UZ(1),VX(1),VY(1 ),VZ(1),WX(1),WY(1 ),WZ(1 )

13 FORMAT( 1HO,9X,4HUI =,F6.3,1H,,2X,F6.3,]H,,2X,F6.3/
1 3 OX,4HV1 =,F6.3,1H,,2X,F6.3,lH,,2X,F6.3/
2 1OX,4HW1 =,F6.3,1H,,2X,F6.3.1H,,2X,F6.3)
WRITE (6,14) UX(2),UY(2),UZ(2),VX(2),VY(2),VZ(2),WX(2),WY(2),WZ(2)

14 FORMAT(1HO,9X,4HU2 =,F6.3,1H,,2X,F6.3,lH,,2X,F6.3/
1 1OX,4HV2 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/
2 IOX,4HW2 =,F6.3,1H,,2X,F6.3,IH,,2X,F6.3)
XX JWY(2)*WZ(I)-WZ (2)*WY(1 )i
XY (WZ(2)*WX(l)-WX (2)*Wz(i)
XZ = WX(2)*WY (1)-WY (2)*WX(1))
X =SQRT(XX**2 +XY**2 +XZ**2)
WRITE (6,15) XX,XY.XZ,X

15 FORMAT( 1HO,9X,4HX =,F6.3,lH,,2X,F6.3,lfI,,2X,F6.3,5X,8HABS(X) =
1F6.3)
ODX = (H*COS(C(1)),/(SIN(C(l))*SIN(B(l))))+(H*COS(A)*COS(B(1))/
1 (SIN(A)*SIN(B(1))))
ODY =H*COS(A)/SIN(A)
ODZ - H
OCX - - (H*COS(C(2))/(SIN(C(2))-SIN(B(2)))'+(HI*COS(A)*COS(B(2))/
1 (SIN A *SIN(B( 2))))
OCY - H*COS A /SIN A)
OCZ - H
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A.AA =CSIN(A)/COS(A))-,XZ/XY)
BBB =(XZ/XY)-(SIN(D)/COS(D))
FFF=(SIN(D)kCOS(A) )/(COS(fl)*SIN(A))
HH = li*AAMIFFF/PBb
CCC =(H+HH)/XZ
OBX = CCC*XX
OBY = CCC*XY
OBZ = CCC*XZ
0SX =(OBX+OCX+IODX )/4 .0
OSY =(OBY+OCY MOY)/4.O
OSZ =(OBZ+0C7-FnDZ)/4.O
RX = 0.0
RY = 0.0
RZ =-1.0
EMX = XX*(O--v R7'-S/-IY)+XY*(OSZ*RX.OSX*RZ).fXZ*(OSX*RY-OSY*RX)
IF (EMX) 102,103,10)4

104 WRITE(6,105)
105 FORMAT(1110,9X,29fiRESULTANT INTERSECTS PLANE El)

j =1
110 EN(J)= RX*WXG1I)+RY*WY(J) :PO WZ(J)

TX(J)= RX-EN(iJ)*WX(J)
TY(J)= RV-EN(J)kWV(,])
TZ(J)= RZ-EHG1)*WZ(,1)
T(J) = SQRT(TX(J)k*2 4TY(J)**2 +TZ(J)**2)
FS = EN(J)*SIN(PiI (J) )/(T(,)*COS(PHI(J)))
IF (FS.LT.Q) GO TO 106

108 WRITE(6,107) FS,J
107 FORMAT(11HO,9X,4HFS =,F5.2,]OX,25HSLIDING OCCURS ON PLANE E,Il)

GO TO 200
106 IF(J.EQ.l) GO TO 111

GO TO 112
111 SXl = (xY*wZ(1)-XZ*WY 1))/X

syl = (XZ*WX(1)-XX*wZ(1)/X
SZi = (xx*WY(1)-XV*wX(1))/X
DDD1= TX(1 )*SXI+TY(1 )*SYl-FIZ(1)*SZI
IF(DDD1.LE.O.0) GO TO 108
GO TO 103

102 WRITE (6,109)
109 FORMAT(IH0,9X,2911RESULTANT INTERSECTS PLANE E2)

J =2
GO TO 110

112 SX2 =-(XY*WZ(2)-XZ*WY(2))/X
SY2 =-(XZ*WX(2)-XX*1-7(2))/XA
SZ2 =-(XX*WY(2)-XY*WX(2))/X
DDD2= TX(2)*SX2+i"[Y(2)*5Y2+TZ(2)*SZ2
IF (DDD2.LE.O.O) GO TO 108

103 T12 = (RX*XX+RY*XYARZ*XZ)/X
EN12X= RX-T]2*XX/X
EN12Y= RY-T12*X'/X
EN12Z= RZ-T12kXZ/X
EEE =-WX(1)*WY( 2)+WV(1)-WX(?)
EEE1 =-EN12X*WY (2) +EN12YkV.8"(2)
EEE2 =+WX(1 )*EN12Y-WV(1 )4EN12X
ENNI + EEE1/FEE
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ENN2 EEE2/EEE
FSu{((ENNI*SIN(PHI( ) )/COS(PHI(1 )))+(ENN2*SIN(PHI(2)),COS(PHI(2))))

1,1T12
WRITE (6,113) FS
113 FORMAT ( H0,gX,4HFS =,F5.2,1OX,45HSLIDING OCCURS ALONG THE LINE OF

21NTERSECTION)
200 STOP

END

*DATA
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PROGRAM #2

This program is for the analysis of a rock tetrahedron supported by

3 planes and acted on by its own weight, an external force, and porewater

forces on each of the three support planes. The program is coded in

FORTRAN IV language. The format and definitions of parameters are given

below.

INPUT PARAMETERS

CARD 1 FORMAT (9FS.l)

Parameter Card Column Definition of Parameter

BETA 1 1 - 5 Strike of plane 1
BETA 2 6 -10 Strike of plane 2
BETA 3 11 - 15 Strike of plane 3
GAM A 1 16 - 20 DIp of plane I
GAMMA 2 21 - 25 Dip of plane 2
GAMMA 3 26 - 30 Dip of plane 3
PHI 1 31 - 35 Angle of Shearing Resistance on plane 1
PHI 2 36 - 40 Angle of Shearing Resistance on plane 2
PHI 3 41 - 45 Angle of Shearing Resistance on plane 3

CARD 2 FORMAT (7F7.2)

WT I - 7 Weight of the rock tetrahedron being analyzed
QX 8 - 14 z, y and z components of a force Q applied
QY 15 - 21 to the tetrahedron
QZ 22 - 28
UP 1 29 - 35 Magnitude of the porewater force on plane 1
UP 2 36 - 42 Magnitude of the porewater force on plane 2
UP 3 43 - 49 Magnitude of the porewater force on plane 3

OUTPUT PARAMETERS

Parameter Definition of Parameter

UX(i) x, y, and z components of a unit vector in the direction of
IY(l) the strike of plane I
uz(l)

VX(l) x, y, and z components of a unit vector in the direction of
VY(l) the dip of plane I
VZ(O)

WX(I) x, yand z components of a unit vector in the direction normal
WYed to plane .
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UX(2) x, y, and z components of a unit vector in the direction of
UY(2) the strike of plane 2
UZ (2)

VX(2) x, y, and z components of a unit vector in the direction of
VY(2) the dip of plane 2
vz (2)

WX(2) x, y, and z components of a unit vector in the direction
WY(2) normal to plane 2
WZ(2)

UX(3) x, y and z components of a unit vector in the direction of
UY(3) the strike of plane 3
uz(3

VX(3) x, y, and z components of a unit vector in the direction
VY(3) of the dip of plane 3
VZ(3)

WX(3) x, y, and z components of a unit vector in the direction
WY(3) normal to plane 3
WZ(3)

XI2X x, y, and z components of a vector, X12, in the direction
X12Y of the line of intersection of planes I and 2 as shown
X12Z in Fig. 3.14
x12 the magnitude of the vector X12

X23X x, y, and z components of a vector, X23, in the direction of
X23Y the line of intersection of planes 2 and 3 as shown in Fig. 3.14
x23z
X23 the magnitude of the vector X23

X3lX x, y, and z components of a vector, X3 1 in the direction of the
X31Y line of intersection of planes 1 and 3 as shown in Fig. 3.14
X31Z
X31 the magnitude of the vector X

S121X x, y, and z components of vector 1S13 shown in Fig. 3.14
S121Y

S122X x, y, and z components of vector 2S12 shown in Fig. 3.14
S122Y
S122Z

S232X x, y, and z components of vector 2S23 shown in Fig. 3.14
S232Y
S232Z
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S233X x. y. and z comnponents of vector 3 3shown in Fig. 3.14
S233Y
S233Z

S313X x, y, and z components of vector 3S 31 shown in Fig. 3.14
S313Y
S313Z

S31lX X9 y, and z components of vector 1 31 shown in Fig. 3.14
S311 Y
S3112

(Sliding tends to occur along X12 on planes 1 and 2)
FS Factor of Safety
ENl Normal'force on plane 1
EN2 Normal force on plane 2
T12 Component of disturbing forces parallel to the line of inter-

section of planes 1 and 2

(Sliding tends to occur along X23 on planes 2 and 3)
FS Factor of Safety
EN2 Normal force on plane 2
EN3 Normal force on plane 3
T23 Component of disturbing forces parallel to the line of inter-

section of planes 2 and 3

(Sliding tends to occur along X31 on planes 1 and 3)
FS Factor of Safety
EN3 Normal force on plane 3
ENI Normal force on plane I
T31 Component of disturbing forces parallel to the line of inter-

section of planes 1 and 3

(Sliding tends to occur on plane 1)
FS Factor of Safety
ENI Normal force on plane 1
TI Tangential force on plane I

(Sliding tends to occur on plane 2)
FS Factor of Safety
EN2 Normal force on plane 2
T2 Tangential force on plane 2

(Sliding tends to occur on plane 3)
FS Factor of safety
EN3 Normal Force on plane 3
T3 Tangential force on plane 3

Note: Tests 1 through 12 in program #2 are used to determine the mode of
sliding as can be determined from equs. 3.69, 3.70, 3.71, 3.81,
3.82, 3.83, 3.84, 3.85, 3.86, 3.87, 3.88, 3.89, 3.90, 3.91, 3.92,
3.93, 3.94, 3.95, 3.96, 3.97, and 3.98.
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COMPUTER PROGRAM # 2

C STABILITY ANALYSIS OF ROCK SLOPES-THREE INTERSECTING JOINT SETS

DIMENSION B(3),C(3),GAMM1A(3),VX(3),VY(3),VZ(3),UX(3),UY(3),
1UZ(3) ,WX(3) ,WY(3) ,WZ(3)
DO 200 IJK=l,2
READ (5,11) BETA1,BETA2,BETA3,GAMMA(1),GAMMA(2),GAMMA(3),PHI1,
1PH12,PHI3,WT,QX QY,QZ,UP1 ,UP2,UP3

11 FORMAT (9F5.1/7F7.2)
WRITE (6,12) BETA1,BETA2,BETA3,GA tlA(l),GAMA(2),AMMtA(3),PHI1,
IPHI2,PH13,WT,QX,QY,QZ,UP1 ,UP2,UP3

12 FORt4AT(1H1,8X,8HBETA1 =,F5.1,5H DEG.,14X,8HBETA2 =,F5.1,5H DEG.,
1 14X,81IBETA3 =,F5.1,5H DEG.,//9X,8HGAMMA1 =,F5.1,5H DEG.,14X,
28HGAMhIA2 =,F5.1,5ti DEG.,14X,8liGAMMA3 =,F5.1,511 DEG.//9X,BHPHI1
3,F5.1,5H DEG.,14X,8HPHI2 =,F5.1,5H DEG.,14X,BHPHI3 =,F5.1,5H D
4EG.//9X,4HWT =,F7.2,5X,4HQX =,F7.2,5X,4HQY =,F7.2,5X,4HQZ =,F7.2,
55X,5HUP1 =' F7.2,5X,50IP2 =,F7.2,5X,5HUP3 =,F7.2)
Bl 1 = BETA1/(180.O/3.141593)
B 2~ - BETA2/(180.O/3.141593)
B = BETA3/(180.O/3.141593)

Cb 1 GAMMA(1)/(180.O/3.141 593)

M~) = GAtMA(2)/(180.0/3.141593)C =) GAMMA(3)/(180.O/3.141593)
PHIl = PH11/(180.O/3.141593)
PH12 = PHI2/(180.O/3.141593)
PH113 =PHil3/(1BO.0/3.141593)
DO 201 K=1,3
UX~ K) = COS(B(Kj)
YK) = SIN(B(K)
U~K) z 0.0

VXj K) : COS (C Kj *SIN( B(K))
Ky _:OC K *COS ( BK)

Vx(K) =-SIUY( K)V))(z)*YK)
WY(K) (Z K)*VX(K) (UX(K)*VZK))
WZ(K) =UX( K)*VY(K) )-(UY(K)*VX(K))
IF(GAMflA(K).GT.90.0) GO TO 201
WX(K) = -WX(K)
IY K) z -WY(K)
WZ(K) = -WZ(K)

201 CONTINUE
WRITE (6,13) UX(),UY(1),UZ(1),VX(1),VY(1),VZ(1),WX(1),WY(l),WZ(1)

13 FORMAT(1H0,9X,4HU1 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/
1 1OX,4HV1 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/
2 1OX,4HWI =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3)
WRITE (6,14) UX(2),UY(2),VZ(2),VX(2),VY(2),VZ(2),WX(2),WY(2),WZ(2)

14 FORMAT(1H0,9X,4HU2 =,F6.3,lH,,2X,F6.3,1H,,2X,F6.3/
1 1OX,4HV2 -,F6.3,1H,,2X,F6.3,lH,,2X,F6.3/
2 IOX,4HW2 =,F6.3,1H,,2X,F6.3,1H,,2X,F6.3)
WRITE(6,115) UX(3),UY(3),UZ(3),VX(3),VY(3),VZ(3) ,WX(3),WY(3),WZ(3)

115 FORMAT(1HO,9X,4HU3 -,F6.3,1H,,2X,F6.3,1H,,2X,F6.3/
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1OX,4HV3 =,F6.3,1H,,2X,F6.3,iH,,2X,F6.3/
2 1OX,4HW3 =,F6.3,iH,,2X,F6.3,iH,,2X,F6.3)
WiX = Wi)i
w1y = WY(1)
W1Z = WZ(1)
W2X = WX 2j
W2Y z WY (2)
W2Z = WZ (2)
W3X = WX (3)W3Y = WY (3)
W3Z = WZ(3)
Xi 2X=W2Y*Wi Z-W2Z*W1 Y
Xl 2Y=W2Z*Nl X-W2X*W1 Z
Xi 2Z=W2X*W1 Y-W2Y*W1 X
Xi 2=SQRT(Xi 2X**2+X1 2Y**2+Xi 2Z**2)
X23X=W3Y*W2Z-W3Z*W2Y
X23Y=W3Z*W2X-W3X*W2Z
X23Z=W3X*W2Y-W3Y*W2X
X23 =SQRT( X23X**2+X23Y**2+X23Z**2)
X3iX=W1Y*W3Z-W1Z*W3Y
X3i Y=Wi Z*W3X-W1 X*W3Z
X3i Z=Wi X*W3Y-Wi Y*W3X
X31 =SQRT( X3i X**2+X3i Y*2+X3i Z*2)
WRITE(6,15) Xi2X,X12Y,X12Z,X12,X23X,X23Y,X23Z,X23,X31X,X3lY,X31Z,
1 X31

15 FORMAT(1HO,9X,SHX12 =,2( F6.3,1H,,2X),F6.3,5X,lOHABS(X12) =,F6.3//
1 1OX,5HX23 =:2(F6.3,iH,,2X),F6.3,5X,IOHABS(X23) = F6.3//

2 1OX,5HX3i =,2(F6.3,1H,,2X),F6.3,5X,O-ABS(X31) =,F6.3)
RX= QX + UPi'WiX + UP2*W2X + UP3*W3X
RY= QY + UPI*WIY + 1JP2*W2Y + UP3*W3Y
RZ= QZ + UPI*WIZ + UP2*W2Z + UP3*W3Z + WT
Si2iX= W1Y*X12Z-W1Z*X12Y
Sl21Y= W1Z*X12X-W1X*Xi2Z
S121Z= W1X*Xi2Y-W1Y*X12X
Si 22X= Xi 2Y*W2Z-X1 2Z*W2Y
Si 22Y= Xl 2Z*W2X-X1 2X*W2Z
Si 22Z= Xi 2X*W2Y-Xi 2Y*W2X
S232X= W2Y*X23Z-W2Z*X23Y
S232Y= W2Y*X23X-W2X*X23Z
S232Z= W2X*X23Y-W2Y*X23X
S233X= X23Y*W43Z-X23Z*W3Y
S233Y= X23Z*W3X-X23X*W3Z
S233Z= X23X*W3Y-X23Y*W3X
S31 3X= W3Y*X31Z-W3Z*X3iY
S31 3Y= W3Z*X31 X-W3X*X31 Z
S31 3Z- W3X*X31 Y-W3Y*X3i X
S3iiX= X31Y*WIZ-X31Z*WiY
S3iiY= X3iZ*W1X-X31XiWIZ
S31 iZ= X3iX*WIY-X3iY*WiX
WRITE(6,121) S12iX,S121Y,S12iZ,Si22X,S122Y,S122Z,S232-X,S232y,
1S232Z,S233X,S233Y,S233Z,S313XS313Y S313Z,S3liX,S311Y,'S31iZ

121 FORMAT(iHO,9X,5HS12i=,2(F6.3,1N 2XIF6.3,5X,5HS122%2(F6.3,iH,,
i2X) ,6.3//OX,5HS32=,2 F63 ,2k) ,F6.3,5X,5HS233:'2 (F6.3,1I1,,

22X) F6.3//lOX,5HS-113 ,2( F6.3,lH,,2X) ,F6.3,5X,5HS3ii=,20F13,iH,
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32X) ,F6.3)
TESTi =RX*X1 2X+RY*X1 2Y+RZ*X1 2Z
TEST2 =RX*X23X+RY*X23Y+RZ*X23Z
TEST3 =RX*X31X+RY*X31 Y+RZ*X31 Z
TEST4 =RX*WIX+RY*W1 Y+RZ*W1Z
TESTS =RX*W2X+RY*VW2Y+RZ*W2Z
TEST6 =RX*W3X+RY*W3Y+RZ*W3Z
TEST7 =RX*S121X+RY*S121Y+RZ*S1 21Z.
TEST8 =RX*S1 22X+RY*S1 22Y+eRZ*S1 22Z
TEST9 =RX*S232X+RY*S232Y+RZ*S232Z
TESTi O=RX*S233X+RV*S233Y+RZ*5233Z
TESTi11=RX*S31 3X+RY*S31 3Y+RZ*S31 3Z
TEST12=RX*S311X+RY*S311Y+RZ*S311Z
IF(TEST1.GE.O.O.AND.TEST7.LE.O.O.AND.TEST8.LE.O.O) GO TO 101
IF(TEST2.GE.O.O.AND*.TEST9 .LE.O.O.A,!D.TESTl0.LE.O.O) GO TO 102
IF(TEST3.GE.0.O.AND.TEST11.LE.0.O.AND.TEST12.LE.0.0) GO TO 103
IF(TEST4.LE.O.O.AND.TEST7 .GE.O.O.AND.TEST12.GE.O.O) GO TO 104
IF(TEST5.LE.O.O.AND.TEST8 .GE.O.O.AND.TEST9 .GE.O.O) GO TO 105
IF(TEST6.LE.O.O.AND.TEST1O.GE.O.O.AND.TEST11.GE.O.O) GO TO 106
IF(TEST4.GE.O.O.AND.TEST5.GE.0.0.AND.TEST6.GE.O.O) GO TO 119

101 WRITE(6,107)
107 FORMAT(1110,9X,5OHSLIDING TENDS TO OCCUR ALONG X12 ON PLANES 1 AND

12)
T12 = TEST1/X12
ENi 2X=RX-T1 2*X1 2X/X1 2
ENi 2Y=RY-T1 2*X1 2Y/X1 2
ENi 2Z=RZ-T1 2*X1 2Z/X1 2
EEE =WIX*W2Y-W2X*W1Y
IF (EEE.EQ.0.O) GO TO 122
EEE1=W2X*EN1 2Y-W2Y*EN1 2X
EEE2=W1Y*EN1 2X-W1 X*EN1 2Y
ENI =EEE1/EEE
EN2 =EEE2/EEE
GO TO 123

122 EEE=W1Y*W2Z-WlZ*W2Y
EEE1=W2Y*EN12Z-W2Z*EN12Y
EEE2=W1Z*EN12Y-W1Y*EN12Z
ENi =EEE1 /EEE
EN2=EEE2/EEE

123 FS =((EN1*sIN(PHI1)/COS(PHI11))4(EN2*SIN(PHI2)/COS(PHI2)))/T12
WRITE(6,108) FS,EN1,EN2,T12

108 FORMAT(1H0,9X,4HFS =,F5.2,1OX,SHEN1 =,F7.2,5X,5HEN2 =,F7.2,5X,5-T1
12 ,F7.2)
GO TO 200

102 WdRITE(6,109)
109 FORMAT(1HO,9X,5OHSLIDING TENDS TO OCCUR ALONG X23 ON PLANES 2 AND

13)
(23 = TEST2/X23
EN23X,=RX-T23*X23X/X23
EN23Y=RY-T23*X23Y/X23
EN23Z=RZ-T23*X 23Z/X23
EEE =W2X*W3Y-W3X*W2Y
IF(EEE.EQ.O.0) GO T0 124
EEE2 =W3X*EN23Y-W3Y*Efl23X
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EEE3 =W2Y*EN23X-W2X*EN23Y
EN2 =EEE2/EEE
EN3 =EEE3/EEE
GO TO 125

124 EEE=W2Y*W3Z-W2Z*W3Y
EEE2=W3Y*EN23Z-W3Z*EN23Y
EEE3=W2Z*EN23Y-W2Y*EN23Z
EN2=EEE2/EEE
EN3=EEE3/EEE

125 FS =((EN2*SIN(PHI2)/COS(PHI2))+(EN3*SIN(PHI3)/COS(PH13)))/T23
WRITE(6,1iO) FS,EN2,EN3,T23

110 FOR!4AT(1H0,9X,4HFS =,F5.2,10X,5HEN2 =,F7.2,5X,5HEN3 =,F7.2,5X,5HT2

13 =,F7.2)
GO TO 200

111 FORtAT(1HO,9X,5OHSLIDING TENDS TO OCCUR ALONG X31 ON PLANES 3 AND
11)I

EN31 X=RX-T31 *X31 X/X31
EN31 Y=RY-T31 *X31 Y/X31
EN31 Z=RZ-T31*X31 Z/X31
EEE -W3X*WIY-W1X*W3Y
IF(EEE.EQ.0.0)- GO) TO 126
EEE3 =W1X*EN31Y-W1Y*EN31X
EEE1 =W3Y*EN31X-W3X*EN31Y
EN3 =EEE3/EEE
ENi =EEE1 IEEE
GO TO 127

126 EEE=W3Y*WIZ-W3Z*W1Y
EEE3=W1 Y*EN31 Z-W1 Z*EN31 Y
EEE1 =W3Z*EN31 Y-W3Y*EN31 Z
EN3=EEE3/EEE
ENI =EEE1 IEEE

127 FS =((EN3*SIN(PHI3)/COS(PHI3))+(EN1*SIN(PHII)ICOS(PHIl)))/T31
WRITE(6,112) FS,EN3,EN1,T31

112 FORI4AT(1H0,9X,4HFS =,F5.2,IOX,5HEN3 =,F7.2,5X,5HEN1 =,F7.2,5X,5HT3
11 =,F7.2)
GO TO 200

104 WRITE(6,113)
113 FOR?4AT(lHO,9X,33IISLIDING TENDS TO OCCUR ON PLANE 1)

EN1 = -TEST4
TlX = RX + EN1*WIX
T1Y = RY + ENI*W1Y
T1Z = RZ + EN1*WlZ
TI = SQRT(T1X**2+TIY**2+TlZ**2)
FS = EN1*SIN(PHII)/(COS(PHI1)*T1)
WRITE(6,114) FS,EN1,Tl

114 FORt4AT(1IIO,9X,41IFS =,F5.2,lOX,5HEN1 =,F7.2,5X,5HT1 =,F7.2)
GO TO 300

105 WRITE(6,215)
215 FORHAT(IN4J,9X,33HSLIDING TENDS TO OCCUR ON PLANE 2)

EN2 =-TEST5

T2X =RX + EN2*W2X
T2Y =RY + EN2*W2Y
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T2Z = RZ + EN2*W2Z
T2 =SQRT(T2X**2+T2Y**2+T2Z**2)
FS = EN2*SIN(PHI2)/(COS(PHI2)*T2)
WRITE(6,116) FS,EN2,T2

116 FORIAT(lHO,9X,4HFS =,F5.2,IOX,5HEN2 =,F7.2.5X,5HT2 -,F7.2)
GO TO 300

106 WRITE(6,117)
117 FORJ4AT(IHO,9X,33HS1IcING TENDS TO OCCUR ON PLANE 3)

EN3 =-TEST6

T3X =RX + EN3*W3X
T3Y =RY + EN3*W3Y
T3Z =RZ + EN3*W3Z
T3 =SQRT(T3X**2+T3Y**2+T3Z**2)
FS =EN3*SIN(PHI3)/(COS(PHI3)*T3)

WRITE(6,118) FSEN3,T3
118 FORMAT(1HO,9X,4HFS =,F5.2,1OX,5HEN3 =,F7.2,5X,5HT3 =,F7.2)

GO TO 300
119 WRITE(6,120)
120 FORMAT(lHO,9X,4OHROCK WEDGE IS LIFTED OFF THE BASE PLANES)
300 IF(TESTI.LT.O.O.AND.TEST7 .LE' .(..AND.TEST8 .LE.G.0) GO TO 101

IF(TEST2.LT.O.O.AND.TESTg .LE.n4.0.AND.TESTlO.LE.fj.O } GO TO 102
IF(TEST3.LT.O.O.AND.TEST11.LE.e .O.AND.TEST12.LF.O.O) GO TO 103

200 CONTINUE
STOP
END

*DATA
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