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ABSTRACT

A general discussion of free electron lasers with variable

parameter wigglers is presented with a view towards their potential for the

production of high power optical radiation at reasonable efficiency. The

theoretical analysis is based upon a one dimensional relativistic

Hamiltonian formulation and is developed in a manner to take advantage of

the analogy between the free electron laser process and radio frequency

accelerators. Three promising operational modes are identified and

analyzed. The first may be thought of as an electron decelerator and is

thought tu have the most promise for single pass devices. Both oscillator

and amplifier configurations are studied. The second is based upon

adiabatic trapping and detrapping, intended to reduce the spread in

electron energy typically induced by the FEL process. The third is based

upon the method of phase area displacement. It has the advantage of wide

gain bandwidth and small induced energy spread, and is thought to have the

most promise for storage ring applications. Generally speaking, it is

found that high peak power is intrinsic to these modes of operation.

Potential problems from parasitic oscillations analogous to the stimulated

Raman effect are analyzed, and some others arising from transverse

inhomogeneity are identified.

Iv
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1.0 INTRODUCTION

The recent successful operation of the "free electron laser" by

the group at Stanford and the availability of high power electron beams has

stimulated a great deal of interest in the use of the "free electron laser"

(FEL) to produce a high power tunable laser beam.1 When an electron tra-

jvels through a periodic transverse magnetic field, the electron is given a
transverse velocity which allows it to either receive or give energy to the

transverse electric field of a plane electromagnetic wave. If the longitu-

dinal velocity of the electron is such that the electron slips behind the

radiation wave by one radiation wave length while traveling a distance of

one magnetic field period, the transverse velocity of the electron remains

in phase with the electric field of the radiation. Such electrons will

continue to have their energy increased or decreased, depending on their

phase relative to the radiation field. Phillips investigated such a

device, called the Ubitron, and used it to produce microwaves. 2 The FEL

experiment by the Stanford group 3 used a helical wiggler magnet with a

constant magnetic field and periodicity and produced optical radiation in a

similar manner as the Ubitron. Most of the analysis of the FEL, as well as

the methods envisioned for FEL operation, started with the assumption that

the magnetic field and period of the wiggler are constant.4' 5 A brief

review of the properties and limitations of such a device is presented in

Section 3 of this paper.



The maximum fractional energy that can be extracted from a con-

stant parameter FEL is equal to 1/2N where N is the number of wiggler

periods while the resulting energy spread beam of the electrons emerging

from the FEL is comparable to or greater than the mean energy loss. This

places severe limitations on the overall gain, efficiency, and modes of

operation for the constant parameter FEL. While there are many schemes to

overcome some of the limitations of the constant parameter FEL, such as the

use of transverse gradients in the magnetic field of the wiggler6 and the

J coupling of the FEL with an isochronous storage ring,7 the use of a

variable parameter wiggler may be an even more attractive method to remove

these limitations.

It is the purpose of this paper to discuss the operation of a

variable parameter FEL and to illustrate many of the possible operational

modes that may be used to overcome these limitations of the constant para-

meter FEL. For the case where the wiggler parameters such as magnetic

field and wavelength are variable, the possible operating modes envisioned

for an FEL are considerably different than those for a constant parameter

wiggler; for example, it becomes possible to extract a reasonable fraction

of the electron's energy with an emerging energy spread a great deal less

than the mean energy loss. The method of describing the electrons' motion

in this paper is similar to the treatment used by the accelerator physicist

in describing the motion of charged particles in a radio frequency

accelerating system.8'9 We assume from the beginning that the magnetic

field and period vary along the wiggler and derive the equations of motion

for an electron passing through the FEL, from which we can obtain the

2



energy lost or gained by the electron. The change in the radiation field

is taken to be given by the sum of the energies lost by all of the

electrons which pass through the FEL.

* IIn Section 2.1 we present the equations that define the energy and

relative phase of a resonant or synchronous electron in terms of the wig-

gler magnetic field, the wiggler period, the optical field, and the optical

wave numbers. In Section 2.2 we discuss the motion of the electrons about

the synchronous energy, using the Hamiltonian formulation similar to that

used in the treatment of charged particle acceleration with radio frequency

fields. The summary of the "bucket" or maximum stable phase trajectories

for the electrons is presented in Section 2.3. The results of Section 2

are used in Section 3.0 to briefly discuss the well-known properties of the

constant parameter wiggler, both as an illustration of the use of the

Ramiltonian formulation and to obtain the results in terms of notation of

this paper.

In Section 4 the use of a variable parameter wiggler to trap a

significant fraction of the electron beam in a decelerating bucket is

discussed.I0 The wiggler parameters are varied so as to gradually reduce

the resonant energy of the trapped electrons, which results in a value for

the transfer of energy from the trapped electrons to the radiation approxi-

mately equal to the reduction in the resonant energy. This reduction in

the resonant energy can be much larger than the energy that can be trans-

ferred in the constant parameter wiggler. The operation of a laser

oscillator which utilizes this scheme is discussed in Section 4.1 where the



amplification of the radiation field in passing through the wiggler just

compensates for the reflection loss. Amplifier designs for this trapping

and deceleration mode of FEL operation are discussed in Section 4.2. While

the trapped eectrons emerge with an energy spread comparable to that of

the constant parameter FEL, the mean energy loss of electrons is an order

of magnitude larger than that from the constant parameter FEL.

In Section 5 a method of adiabatically capturing, deceleration,

and decapture of the electrons is discussed. The purpose of this scheme is

to achieve a small energy spread for the emerging beam while at the same

time to obtain a significant reduction of the average electron energy.

Such a scheme would be useful if the same electron beam was reaccelerated

with an external source and then passed through the FEL again.

The last method of extracting energy from the electrons, discussed

in Section 6, is called phase area displacement, and is one in which the

initial resonant energy is below the energy of the injected electroas.'1

The wiggler parameters are varied such that the resonant energy is in-

creased to a final value above the energy of the elect:ons, a process which

can result in a decrease in the mean energy of the electrons while

producing a rather modest incre'se in the energy spread of the beam. While

the average energy lost by this process for mono-energetic electrons is of

the same order as the energy lost from a constant parameter FEL, it has the

advantage of being less sensitive to the initial energy spread of the

electrons and of producing a lower energy spread in the emerging beam.

4



There is a possibility of an instability that can arise from the

interaction between a radiation signal at a frequency shifted from the main

radiation frequency by an amount equal to the oscillation frequency of the

electrons in the pondermotive potential well; this instability is

investigated in Section 7. The results show that the instability that must

build up from noise is probably not important for the amplifier, but in the

design of an oscillator some type of damping will probably need to be

included.

Some related considerations are presented in the Appendices.

Appendix A gives a more general derivation of the Madey Theorem
1 2 relating

small signal energy gain and spread with application to the variable

wiggler. Appendix B presents some mathematical details relating to Chapter

VI. Appexdix C is concerned with the requirements on e-beam emittance.

Appendix D discusses the justification at high Y for neglecting

electrostatic effects. Appendix E discusses a different variable wiggler

concept, the Klystron,13 which is related to v-pulse designs, 14 in which

one wiggler is used for prebunching and a second for energy extraction.

%r
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2.0 EQUATIONS OF MOTION

The equations of motion of an individual electron are determined

by a Hamiltonian, Ho(x , Px, Y9 Py, z, PZ9 t) which satisfies a modified

Hamiltonian variational principle

. t2

6t f (Pxx + P + P z- Ho)dt " 0 (2.1)

Throughout this derivati n we shall assume that the electrostatic

interaction between the electrons can be neglected, deferring until later

the determination of the circumstances in which this asstmption is

justified. With this assumption we can write

Ho(t, P, t) - c Jm2c2 + [i - (e/c) A(, t)j2  (2.2)

where the total energy, E , of the electron is to be identified with the

Hamiltonian, i.e. E - H o • We expect many of the various parameters to

vary with the longitudinal coordinate z ; for this reason it is useful to

identify z as the independent variable rather than the time t • We

rewrite Eq. (2.1) as

f2 r
6 [Px x' + P y + (-E)t- - (-Pz)]dz - 0 (2.3)
zI

where we define the derivatives with respect to z with a prime, i.e. x'

dx/dz , etc.

7



It is convenient to designate the quantity (-Pz) as a new

Hamiltonian H, such that

H (x, P* y, Py, (-E), t, z) - -P (2.4)

where (-E) plays the role of the momentum conjugate to t and z is the

independent variable. The solution of Eq. (2.2) for P yields
z

H- - E2/C2 m2c 2 ) - (P e/c Ax )2  (P- e/c A)2 e/c A1.... .. .. e/c~'yAJ Az

(2.5)

For the vector potential we shall write

A - A + A (2.6)
- w -S

where A refers to the vector potential of the wiggler field and 4s to
-v

that of the signal (or optical) field. We assume these potentials to have

the special forms

A W xCos(jk (z )dz + sin~fJwz z (2.7
Aw( 1 1 y I (

0 0

" As(z) C cos( ks(z )dz 1 - wt)- Y n - st (2.8)

8O



Equation (2.7) corresponds to a circularly polarized static magnetic field

of the sort used in the original Stanford FEL experiments. The assumption

of no transverse variation can only be an approximation in practice, but we

assume that the electrons are confined to a region in which transverse

variation can be neglected. The use of a non static or linearly polarized

wiggler field makes no essential difference in the theory, but the

assumption of the form (2.7) allows some simplification of the

exposition. Aw  and kw  are both taken to be z dependent to allow for

the use of specialized magnet designs. We assume A , kw, As, ks  to be

slowly varying in z in the sense that it will generally be permissible to

neglect A' - dA /dz as compared to kwA , etc. The signal field has
w w w w

also been chosen to be circularly polarized (in the direction that is

driven by the FEL amplification process).

The assumption that A is independent of the transverse

coordinate implies that = Px + Py is a constant of the motion. We

shall, throughout most of this paper, assume this constant to be zero, an

assumption which corresponds to the neglect of transverse velocities in the

incoming beam before it enters the wiggler. Some aspects of the effect of

non zero P1  on operation are discussed in Appendix C and applied to a

discussion of the relation of the characteristics of realizable electron

beams to other design parameters.

Taking account of the above assumptions we find that the equations

of motion for the energy and time can be obtained from the following

Hamiltonian

9



H1 (iE). t ) -- mc 2l (z)+ Y 2 + 2aa e coos *(z, t)/2 (2.9)

where we have introduced the dimensionless vector potentials

a - e A/mc2 , (mc 2/e - 1706 gauss-cm - .511 x 106 Volts)

2 (z) I + a 2 (z) +a 2 (Z) , (2.10)V 8

f (kw + ks)dzl - w t and (2.11)
0

Y E/mc2  (2.12)

With the special assumptions that we have made, the problem has been

reduced to a straightforward one of one dimensional relativistic motion

with specified external forces. The quantity, mu may be thought of as an

effective electron mass, increased above the rest mass by the transverse

kinetic energy.

From Hamilton's equations (in the context of Eq. 2.9),

alHI/a(-E) - t' , a H/at - -(-E') , and the definitions of , and y Eqs.

(2.11) and (2.12) we obtain

) s  all1

"-(k + k s  + (2.13)
V a mc2 aY

and

3H1

yo M - "7 (2.14)
mc

10
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Strong beam-wave interaction occurs when the beam velocity is approximately

matched to that of the bunching wave, in which case * is approximately

constant. While we expect to allow the various parameters to vary with

z it will still be the case that the orbits of principal interest will be

those which remain in approximate velocity resonance and for which * is

slowly varying. For this reason it proves to be more convenient to use

and Y as (canonical) coordinates rather than t and (-E) with z still

the independent coordinate. This leads us to use the following Hamiltonian

to describe the motion In the *, y coordinates

H - Y(k +k) - Y 2_ P 2 + 2a acos 1/ (2.15)2 w 9(k + ks -"+2a

The equations of motion for 4 and Y which follow from this new

Ramiltonian are

Us

Y2- (kw + ks) 2 (2.16)

Jy2 V + 2a a cos

Olwe

3H2  awes sin 4'
Y, - 2 - (2.17)

-y - 2 + 2aVas

which of course are the same equations that are obtained by the use of Eqs.

(2.13) and (2.14) with the old Hamiltonian HI(-E, t, z)

For the applications to be discussed in this paper y >> 1A2

y2 >> a a and a >> a • With these approximations the Hamiltonian may

be approximated by

11



Now

H - Y(kv + 6ks) + . (2 _ 2a a cos Y) (2.18)
3 a 7C vsa

with

V 2 + a2  and 6k - k- (2.19)

Evidently the term

up= cosy (k. + k )dzI- wst (2.20)

0

plays the role of a potential (the "ponderomotive potential"). It may be

thought of as providing a bunching force which moves at the resonant

velocity.

v W= (2.21)
r k +k

w S

The equations of motion that correspond to the approximate Hamiltonian

H3 are

(k + 6k ) - P 2 - 2a a cos J) , (2.22)
w a w 82'Y c

and

wsasaw

- - W_____ sin y (2.23)

12
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The corresponding equations for the particle energy and phase may be

written as

2
2 LP - 2a a cos

= 2c (k +k --w a

U) i 2

S (2.24)
2c(k w + 6k -

and

' +6k) 2(k w  6ks - '[a + (2k + 26k -V)a sin *1w s 2 v w a s

(2.25)

where we have used the approximation that a >> a aV 8

The z dependence of aw  and kw are determined by the physical

design of the FEL hardware, and in subsequent sections we will discuss the

design considerations upon which these specifications may be based. The

optical field amplitude, and to some extent the phase, depend explicitly

upon the FEL amplification process and will be affected by such additional

properties as the design of the optical cavity and the design and magnitude

of the electron beam. In keeping with our assumption of the absence of

variation in the transverse direction we shall assume that the electron

beam and optical beam overlap perfectly and that the electron beam is also

uniform in electron density. Under these conditions the variation of a.

is determined by energy conservation. Thus we write

13



c(IE xl B -IJE B k2 2 2 2 2
4" - s z a s 0 T- e) (a ( a (0)j

n mc2 (Cy(O)> -<'(z)>

or

w2
a2 (z) - a2 (0) + (2.26)

where < > implies averages over initial distributions of energy and phase

and w2 - 4n e2 /m is the plasma frequency. n is the electronp e e

density measured in the laboratory frame, and we have assumed v - c •

An alternative derivation of Eq. (2.26) along with a determination

of 6k can be obtained from the Maxwell equation
5

- '2 I - - (2 . 2 7 )

z2  c a

Substitution of the form (2.8) yields

2w, U 06kAe - 2 ;! A 4e " - _L (2.28)

where ;1 and 62 are defined by

z z
l "£Ix os (J k (z) dz1 - ut) - y sin (Jk (z) dz1 - t)J

0 0

e' - k, 2  (2.29)

14



and we have neglected derivatives of A " and 6k, compared to Ws/C

Because e1  is a unit vector and e1  e2 vanishes we find

2 s 6k
-As -4J e (2.30)

c c

In order that the form originally chosen for A be strictly correct it is

necessary that the right hand side of Eq. (2.30) be time independent. In

j actual fact the generated by the assumed form for As will be a

periodic function of time with period 27/w . We shall eliminate the
s

oscillating terms by carrying out a long time average of J. - el " Such
15

a procedure is valid provided 6k << k •

For a single electron we have

a., ex . e16(x - xo(t))6(y - Yo(t)6(z - z(t)j (2.31)

where

-eA -eAw

v V H - - (2.32)1 p ol Ymc Ymc

for A << A • Hence,

(£I * e,)single particle YeA 08 6(x - 0o(t))6(y - Y0 (t))6(z - z0 (t))

(2.33)

15I



We time average by integrating over time from -T/2 to T/2 to obtain

Q e 2A V(z)

I single particle = zTYm cos W(z) 6(x0- XoZ)j 6(y- yo0Z)J

for -T/2 < t(z) < T/2

- 0 otherwise. (2.34)

Summing over all electrons, and averaging over the beam cross

section to eliminate the transverse 6 functions we obtain

n e 2 A(± - e 1)time average mc <Cos IVY> (2.35)

where again < > means average over initial i and energy. Substitution

of Eq. (2.35) with Eq. (2.30) yields

w 2 a
6k - w w <cos /y> (2.36)
s 2cw a

s s

Again from Eq. (2.28) we find

c s c J1 e 2

and proceeding in a similar manner we find

w2

a- a <sin */Y> (2.37)
8 2w c w

s

16



To compare Eq. (2.37) with Eq. (2.26) we note that

dY . 1 aHI a a w (sz = sdU c sn
mc

so that

d<Y> asaw 5  <sin */Y> (2.38)
d z c

The equivalence of Eq. (2.37) and Eq. (2.38) to Eq. (2.26) is apparent.

From Eq. (2.36) and Eq. (2.37) we have

6k = a; <cos Iy> (2.39)
a <sin *IY>

so that the assumption as/a8 << kw made at the outset would appear to

typically imply 6ks << k as well. Since we expect the particles to

bunch in the 0 < * < W/2 range, <cos */Y> will be positive. This

implies a tendency of the electron beam to trap the optical beam and hence

to counter to some extent the effects of diffraction.

The equations of motion derived above (Eqs. (2.24) and (2.25)) are

valid (under the special assumptions that were made) for every electron,

and given the initial conditions *(o) and Y(o) for every electron

along with the expressions for kw, aw, as, and 6 ks , these equations

may be integrated to yield the values of * and Y as functions of the

longitudinal position z . Of course, for a high gain FEL it is necessary

to make sure that the signal field a. used in the equations of motion is

17



also a self consistent solution to Eqs. (2.26) and (2.39); by using a

computer one can solve the equations of motion for a large number of

particles and obtain the final coordinates in phase space for every

particle as well as the final signal field and phase. In principle this

procedure could be used to choose the optimum functional form for kw(z)

and aw(z) . It is possible to gain physical insight into the content of

these equations without the need of integrating the equations of motion for

a large number of initial conditions by referring the electrons energy

variable y to the synchronous or resonant value Yr " This approach is

extremely useful in determining the functions kw(z) and aw(z) to be

used in different modes of operation for the FEL.

2.1 Definition of Synchronous Energy and Phase

The synchronous energy, yr and phase, 'P , are defined by

2 2
y2 s B(2.40)
r 2(k + 6k )cw s

and

d. r -awas (2.41)

" Y c sin 4r
r

If Eq. (2.41) yields a z independent value for V , then substitution in

Eqs. (2.24 & 2.25) shows that a particle with values of Y and V equal

to Y and * respectively will retain these values throughout itsr r

motion through the wiggler. Such a particle may be thought of as a

18



synchronous particle. More generally, as will become apparent below, if

- Ir ' 4 -
4r are initially small, they tend to remain small.

It is possible to look at Eqs. (2.40) and (2.41) as definitions

of Yr and *r assuming that k., a., a. and 6ks  are known functions

of z . However, it is also possible to consider these as design equations

where the wiggler functions kw  and aw are to be determined to achieve

the desired functions Yr' *r and as •J
Much of the remainder of the paper will deal with different ways

to choose 4r and Y r and hence the wiggler parameters for various

operating modes of the FEL. We first must study the motion of elect.rons

with phase coordinates different from the synchronous values and

demonstrate that for sufficiently small deviations the electrons will

perform stable oscillations about the synchronous values. It must be noted

that one is restricted in the choice for the functions Yr and 4r ; for
r r

example 4r is not defined if

d r w

dz IICYr

2.2 Motion About the Synchronous Energy

In this section we study the motion of the electrons about the

synchronous energy by writing

Y 6Y + Y .(2.42)
r
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We regard 6y as the new canonical momentum with a new Hamiltonian H4

given by

H 1 (*,6Y, z) - H(0, Yr + 6y, z) + dYr (2.43)H4( 6y ) 3( Yr dz

With the definitions for Y and V as chosen in Eqs. (2.40)and (2.41)
r r

and with the assumption of 6y << yr the new Hamiltonian H4 , which is

derived from the approximate Hamiltonian H3 Eq. (2.18), is

kw + 6ks (6y)2 _ sawas (cos * + 4 sin *r)  (2.44)
4 Y cYr r

This form for the Hamiltonian and the resulting equations of motion are

very familiar to accelerator physicists. The following analysis is quite

similar to their treatment of RF acceleration in standing wave linacs. In

writing Eq. (2.44) we have omitted terms which are functions only of the

independent variable z , since they have no effect upon the equations of

motion, and it has been assumed that a value of r exists, i.e. that

dYr <I Wsawa "
s- <1 (2.45)

H4 has the form of a nonrelativistic single particle Hamiltonian with z

dependent "mass" and a z dependent potential function, F, given by

F - -C(cos * + ' sin ' ) (2.46)
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with

C(z) - Wasa (2.47)
Y cr

We assume C > 0 and -r/2 < * < %/2 , so that r 4' corresponds to ar r

minimum of the potential and (w sgn V' - Vr ) to a maximum. There are, of

course, a succession of minima at * - *r + 2n n and maxima at

* - I - *r + 22 n , and one may conveniently think of the successive
Jr

troughs as buckets in which particles may become trapped. F(M) is

illustrated in Fig. 2.1.

Of particular interest are design parameters chosen so that the

behavior changes adiabatically with z . In that case electrons trace out

trajectories in the 4, 6Y phase plane given by

6y(H, 4, z) - T r [H- F()] (2.48)
iw s

and illustrated for 4r > 0 in Fig. 2.2 at z - 0 . The case

r'> 0 corresponds to dY r/dz < 0 and therefore represents decelerating

buckets. H (0) is determined by the initial values of 4 and 6y . The

closed orbits correspond to the particles trapped in the buckets. If the

change of parameters with z is adiabatic, then H (z) is determined by

the requirement that the area of the closed phase curve, given by

J = f 6Yd* (2.49)
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FIGURE 2.1

THE PONDEROMOTIVE POTENTIAL, F (0). THE CASE SHOWN IS FOR

POSITIVE 4k r CORRESPONDING TO THE CASE IN WHICH ENERGY

IS EXTRACTED FROM THE ELECTRONS.
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FIGURE 2.2

TRAJECTORIES IN THE 4', 6Y PHASE PLANE FOR 0.
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remain constant as z changes. For the unbound orbits, the representation

is valid only over a range of z for which the change in parameters is

small. For small oscillations about *r one can expand F(*) about r The

motion for these orbits is harmonic with period of oscillation

Z w

(kw + 6k) 4asaw cos r 2 asaw cos *r

2/k) r(2.50)

The period for weakly trapped particles, with large excursion in i , is of

course larger. The parameter variation may be considered to be adiabatic

if it is small over a distance of the order of the period. 16 In order that

a particle be trapped in a bucket it is necessary that 16Yi < 6Y with

max

6'max _2 Ia [co ir

cr 5 owas -o sgn *r - ) sin *r (2.51)

If one wishes to avoid the approximations associated with the use of

Eq. (2.44) it is straightforward to base the definition of Y ' r and

J upon Eqs. (2.15 & 2.43).

2.3 Summary of Bucket Parameters

Because the pattern of the stable trajectories traced out by the

electrons in the ', 
6Y phase plane repeat in a at intervals of 2T we only
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will discuss the phase motion in the interval for - i < * < 1 * The

maximum stable phase curve or bucket is shown in Fig. 2.3 and corresponds

to the trajectory given by Eq.(2.48) for

H -Hm - C [cos *r - (i[sgn * r- r) sin 4r] (2.52)

with

C M 1(2.53)Y c
r

The bucket intercepts of the 4 axis, designated by '1 and *2 in Fig. 2.3,

are given by

2 - rsgn 4r - 4' (2.54)
2 r r

and

cos 4' +4' sin r cos 42 + *2 sin 4r (2.55)

The values of 41 and * 2 are shown as a function of *r in Fig. 2.4. The

maximm bucket height 6Y given by Eq. (2.51) can be written as

6 yma x  - 2 awa r(4r) (2.56)

with

r(r) - Jcos *r- sgn *r- Vr) sin *r (2.57)

r ('I) is shown in Fig. 2.5.
r
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THE BUCKET HEIGHT FUNCTION, r- Or I-
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The area of the bucket shown in Fig. 2.3 may be obtained from Eq.

(2.49) and is given by

J /2 o wr+ o P- (n -Vr -sj sin 1 2 d

(2.58)

-6l'Yr ( (2.59)

where

a G V 2 os Yr + cos ' - (i - 'Sr - S) sin r d ' (2.60)

is the moving bucket area and is plotted in Fig. 2.6. Note that a equals

one for Y r 0 and decreases to zero for r= ;m/2 . (Eqs. (2.58) and

(2.60) are for y r > 0 , For 4r < 0 , use c(r) a(- Yr) .
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FIGURE 2.6

THE PHASE SPACE AREA FUNCTION, a(4r).
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3.0 CONSTANT PARAMETER WIGGLER

The original mode of FEL operation demonstrated
3 by Madey and co-

workers utilized a wiggler with a fixed wave number kw  and field

amplitude 4 aw  • For such a case the operational mode is one in which

'P- constant = 0 (3.1)
r

and

Y2 _ constant - s (3.2)
r (.

w

where the fact that 6k << k has been used.s w

The Hamiltonian5 which describes the motion of the electrons is

given by

H = '
.

-  (6y) 2  - C cos ' (3.3)
r

where

Wsasaw

2Y c
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For this mode of operation the buckets are stationary or non-accelerating

with a half-height

m 2 (3.5)

and the length of one synchrotron period

Z z w r (3.6)J2 4-a (6Y)m

The motion of the electrons in such a bucket is one in which some of the

electrons gain energy while others lose energy in a manner that depends

upon the total length of the FEL as well as the initial phase and energy

of the electron. If the average injection energy equals the resonance

energy, the average change in the electron energy will be zero, provided

that the initial phase distribution is uniform. Wbile there are modes of

operation for the constant parameter wiggler which assume a non-uniform

phase distribution for the injected electrons, we will consider only the

case where the initial phase distribution is unifrrm.

Electrons that have an initial energy different from the resonant

energy by an amount large compared to the maxiumum bucket height will not

be appreciably affected by the FEL and hence will have only a small change

in their energy (they will not be resonant with the optical wave), while

electrons that are too near the resonant energy also will, on the average,

have only a small energy change. The electrons with an initial nergy
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difference, from resonance, (6y)i will have the largest energy change in

traveling through the FEL when

(6y) (6 r)

Clearly, if a significant fraction of the electrons are to lose

j energy, it is necessary for the initial energy spread in the beam to be

less than the maximum bucket height. Consider a mono-energetic beam of

electrons with an initial energy difference (6y) i > 0 as shown in Fig.

3.1a. After a distance L which corresponds to approximately one-half of

a synchrotron oscillation many particles will have their energy shifted

below the resonant energy as shown in Fig. 3.1b. For longer distances

these electrons will continue to oscillate about the resonant energy and

the average energy will begin to increase back to the initial energy as

shown in Fig. 3.1c.

The performance of a FEL operating with an electron beam of an

initial uniform phase distribution and a constant parameter wiggler will

have the following properties. First, for reasonable performance, the

energy spread of the beam must not be significantly larger than the bucket

height, secondly, the maximum energy loss by the beam will be of the order

of the bucket height and thirdly the optimum length of the FEL is of the

order of one-half of a synchrotron period. From Eqs. (3.5 & 3.6) we see

that the maximum allowable energy spread, maximum energy loss, Pnd optimum

FEL length are related by
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a) Dt-

b) L corresponds to - 1/2 synchrotron oscillation
c) L is 5/3 the value shown in b.
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1

) ay ~u ~ (3.7)

spread LOSS r heignt

where N is the number of wiggler periods.

Another important characteristic of the constant parameter wiggler

is the fact that, due to the dependence of final energy upon initial phase,

electrons which enter at a particular energy emerge with an energy spread

j that is of the same order (typically larger) as the mean energy loss. This

property is qualitatively apparent in Fig. 3.1b. As a result the energy

spread in the emerging electrons tends to be increased, over that of the

entering electrons, by an amount comparable to the mean energy loss. The

above refers to the situation in which the signal amplitude is such that

the synchrotron period is of the order of twice the length. When the

signal amplitude is small compared to this characteristic amplitude, one is

in the linear regime. Then the relation between energy loss and induced

energy spread is governed by the Madey Theorem 1 2 (Appendix A)

iI1 6 2

where < > denotes average over entry phase, and implies that the induced

energy spread becomes much larger than the mean energy loss as the optical

amplitude becomes small. These results have important consequences for the

operation of an FEL as an oscillator in a storage ring. Renieri ,17 Deacon,

et a118 and Elias, et a11 9 have shown that if one depends upon the

synchrotron radiation to damp the growth of velocity spread then the
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maximum signal power which can be extracted from the electrons is of the

order of the product of the synchrotron radiation rate with the maximum

value of the fractional energy spread that will circulate in the ring,

hence of the order of 1% of the synchrotron radiation power.

3
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4.0 IMPROVED ENERGY EXTRACTION BY MEANS OF ADIABATIC DECREASE OF THE

RESONANT ENERGY

We have seen in Section 3 that the electron energy which can be

extracted in passing through a fixed parameter wiggler designed to operate

at some specified z independent optical power level is limited to some

J fraction ( .5) of the bucket height given by Eq. (2.56), so that

(<Sy>/-Y)m "aa /P . On the other hand, if the wiggler parameters are
r max 14Ws

varied so as to gradually reduce Yr as the bucket moves through the

wiggler, electrons which remain trapped in the bucket give up an energy

approximately equal to the reduction in Yr * In this section we discuss

in an exploratory way some characteristic features of this mode of

operation.

4.1 Operation at Constant Signal Amplitude

A laser oscillator, fitted with an optical cavity formed of highly

reflecting mirrors, operates at steady state so that the amplification of

the signal field a8  in passing through the wiggler just compensates for

the reflection loss. Accordingly, it is a reasonable approximation to

assune that the electrons see a constant a. . On the other hand, as we

shall find that very large a. is desirable, we may suppose that only a

small portion of the resonator is occuppied with coincident electron beam

and laser "micropulses". On account of Eq. (2.39), it is also a good

approximation to neglect 6k .
3

37



It is convenient for discussion and probably desirable as a design

characteristic to choose Y so that *r is constant. Then Eq. (2.41)

immediately provides the relation

2 Y 2 - a-L a a sin 'r (4.1)
i -f c s w

where

Yi  Yr(z = O) Yf Y r(L) and

L

a L Bf a (z)dz

0

The assumption of constant r together with Eqs. (2.40) and

(2.41) provides a useful constraint on the wiggler design. One sees, for

example, that if one chooses to keep kw  constant, then Eqs. (2.40) and

(2.41) are satisfied by decreasing aw  linearly. For this choice the

bucket (more accurately, the bucket minimum) moves with constant velocity;

the electron energy loss comes entirely from the reduction in U2 , the

effective electron mass. Alternatively, if one keeps aw constant then

the wiggler wavelength decreases linearly with z • The effective mass

remains constant, but the bucket slows down. An intermediate case is

provided by keeping the wiggler field, bw = kwaw , constant. Eq. (2.41)

is again readily integrable.
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Eq. (4.1) implies the inequality

(2 Y2 (2 L
( ") 2- asa w

which is equivalent to

2La __ (2o) 2(L) (4.2)

Eq. (4.2) represents a constraint on the length and/or optical power

density which is required to obtain a desired change in Y • It is

probably desirable, therefore, to design the wiggler magnet so as to

minimize the right hand side subject to a specified value20  of kw(L) and

bucket efficiency, which we define by - i - Yf) / i • The required

relations are easily established for the constant kw  and constant aw

cases. One obtains the following simple results:

Constant k_ case:

k La (4.3)

w Y s

1 awa (0) a ' a (L ) = -i(4 .4)

w - f -

a w(z) -a w(0)(1 - z/L) + a w(L)z/L (4.5)
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Constant a. case

kw(L)Las rb(- b )n (4.6)

a -1
w

W(Z) - w (0)(1 - z/L) + X (L)z/L (4.7)

jIt is apparent from these results that the constraint becomes severe as

% approaches unity, and that it is less severe in the constant kw

case. The constant bw  case turns out to be intermediate between the two

(see Fig. 4.7). Much of the discussion for the remaining part of this

section will for definiteness be with reference to the constant kw

case. The above discussion suggests that it is likely to be one of the

better methods of varying Y r It also may offer hardware advantages.

For the system described by Eqs. (4.3) and (4.4) we have from

Eq. (4.1)

kwLa s  1 2 - CS (4.8)

In the absence of prebunching, electrons will enter the wiggler at

arbitrary initial phase *(0) . For electrons of energy Y , only thoser

for which

1 < *(0) < r 2 (4.9)
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will be trapped in the bucket, where is defined by Eq. (2.55). The

fraction trapped in the bucket is therefore fb - For electrons
b 21T

with initial energy different from Y , the trapped fraction will ber

smaller and no electrons are trapped if the deviation exceeds 6ymax

Eq. (2.56). The product fbnb can be thought of as a sort of idealized

electronic efficiency. Fig. 4.1 provides a plot of fb as a function of

r It is apparent that increases of idealized efficiency either byr

increasing % or increasing fb drives the needed magnitude of Las to

larger values.

Although we are not carrying out any serious study of the effects

of transverse variation in this paper, we do wish to take account of some

obvious constraints which are thereby imposed upon operating parameters.

To control the effects of transverse variation in aw we write

kr o (4.10a)
w e 'SW

The quantity a is a parameter, which we shall typically set equal to
w

one, which represents our ignorance of what it should really be. It may be

dependent upon other operating parameters. In addition, we assume the

oscillator to be provided with an optical resonator formed by a pair of

mirrors and producing a Gaussian beam centered in the wiggler. This causes
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TRAPPING FRACTION, fb, AS A FUNCTION OF 'r
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an amplitude variation both transverse to and along the optical beam of the

form

exp [-r'f2'/(r'f 2 + d')

Ias (r,z)I 
=  la s(r, )l +

1Wf2

where f r 2 , and d z - L/2 To control transverse andwher f =2 c- 8

longitudinal variation in as we write

r e = 2 rs e (4.10b)re s e

and

is 20
L - rs L (4.10c)

where ae a L  play a role analogous to aw . Combining these relations

we obtain

1wa r °WS OL (4.10d)
kwLas - 1ass c o

e

which tells us that, apart from the a factors, the left hand side of

Eq. (4.8) is proportional to the square root of the peak power circulating

in the optical resonator. Returning to dimensional variables we obtain for

this power

p m,, 2 /2 \ csc r P  (4.11)
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where

25
-- 8.7 Gigawatts

e
and

Equation (4.11) provides us with some working relations which we find to be

useful for further discussion. It suggests that there is a minimum

circulating power required to reduce the Y of any electron by

6- = .i . We call this the threshold power PT with the working

definition

P =  2  2 (4.12)
T 2 e2 %b nI-

We also note that for fixed Op and idealized efficiency ni = rbf b , it

is possible to minimize the right hand side of Eq. (4.8) with respect to

We define P as the result of this minimization, with a set

equal to one. This procedure provides us with a useful estimate of

circulating power required for a given idealized efficiency and a

reasonable basis for selection of % and * r . Fig. 4.2a provides a plot

of PT and Pm as functions of % and ni respectively. Fig. 4.2b

provides a plot of the *r and n functions of n, which emerge from

the minimization.

Computer simulation, to be described later, yields electronic

efficiencies which are of the order of 80 to 90 percent of n . There are

two reasons for departure from the ideal. First, electrons which are
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FOR MINIMUM POWER DESIGN AS FUNCTIONS OF IDEAL EFFICIENCY 'i
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initially trapped do not necessarily remain trapped for the entire transit

through the wiggler. An electron which escapes from a bucket at some

z I ze experiences a fractional energy loss of

1(0) - Y(z )

Second, the electrons which are not initially trapped, i.e. those for which

j the inttial phase is outside the 1 < 2 range, all tend to gain

energy. The average gain of these electrons is of the order of

(6y)a both the fact that there is an increase, and its order of
7~max

magnitude can be inferred from Fig. 2.2.

Detrapping appears to be the more important of the two effects.

Its occurrence can be readily related to the adiabatic invariant defined in

Eq. (2.49). For an electron which enters at 6y - 0, i = ' , we have
0

from Eqs. (2.44), (2.46), (2.47), (2.48) and (2.49)

8 2wsaw(O)as(O) -a (0), €o) (4.13)r " C[kw(°) + 6kw(°) r 0

where
I.

2 -+ snrjl/2da(*,o) = 0 [cos i + 'bin Jr cos 0 + 0 sin r d

(4.14)
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One of the limits is given by 'P and the other is related to it by (see Fig.2.3)

Cos + sin cos + sin cos ' + ' sin
1 1 r 2 2 r o o r

(4.15)

In general one has

< < < <'P =IT-1i <I <  r ' r 2 2r

so that which of the two is equal to ' depends upon the range in which
0

'0 is located. In addition, at any z there is a maximum possible value

for J which is given by

J ('P ,z) = 8 2saw(Z)as() " (' (z) " - (z)J (4.16)M(r ck(z) + k(z)) r r

The function, a(' , - 'P ) = a('r ) is plotted as a function of 'r in

Fig. 2.6. The value (ze) of z at which a particle escapes from the

bucket is determined by

JM (4r(ze) z,) J(*r ( 0 ) , *o)

*4
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For the oscillator problem which we have been studying, with constant

a , r , k and 6k - 0 we have
s r w s

-2Q (',' %)

aw e aw(0) wr 0 (4.17)

and hence, from Eq. (4.4) and (4.5)

j

Z (2 - )r (4.18)

One easily sees that for a given r ,there is a range of Vo about r

such that Eq. (4.18) yields values of ze > L • These correspond, of

course, to particles which do not detrap. Fig. 4.3 provides a family of

plots of r2 "r' o)/c2(*r) ) as a function of 4o for various values of

*r , and Figs. 4.4a and 4.4b present ze as a function of *o with

and ' as parameters. Incidentally, the adiabatic theory of detrapping

typically implies an upper bound of electronic efficiency for some

designs. For the constant kw, ' a wiggler the bound is found to be
V r s

.672. If a rather than kw  is held constant, the bound is reduced to

.544.

A numerical simulation of the constant kw ' r 1 as case has

been carried out, based upon Eq. (2.25). The solution is used to compute

(L) from Eq. (2.24) as a function of *o for various values of %b and

r The results of some of these computations are shown in in Fig. 4.5
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a) Bucket efficiency 7b as parameter
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52



-- 0-

2 2

0.5

b

C

I I I I
-iT -T 0 iT7

FIGURE 4.5

ENERGY SPECTRUM OF EMERGING ELECTRONS AS A FUNCTION OF ENTRY
PHASE. ALL ELECTRONS ENTER WITH ENERGY EQUAL TO 'r(O).

THE THREE CURVES REFER TO MINIMUM POWER CONFIGURATIONS OF
THE SORT ILLUSTRATED IN FIGURE 4.2. THE PARAMETERS OF THE

THREE CURVES ARE:

qN
b r

a .425 31.90 .215 .181
b .66 21.90 .400 .314
c .823 11.40 .600 .448

THE VERTICAL LINES ABOVE THE CURVES DENOTE POSITIONS OF THE
TRAPPING BOUNDARIES ki AND 42
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for some of the minimum power configurations of Fig. 4.2. The flat

portions at Y(L)/Y M 1I - % corresponds to the range of * over which

there is no detrapping.

The fact that the rapidly changing portions are not vertical is an

indication that detrapping is taking place. The peculiar jog at the right

hand end just before *o reaches * is due to particles which detrap

after the first synchrotron oscillation. Note that untrapped particles

gain energy. All of the curves shown are for Y, - Yr , with no energy

spread included. They should be representative for a spread small compared

to 6Y . The numerical simulation also provides a value for themax

electronic efficiency n e . Fig. 4.6 shows the extent to which e

differs from n for the configurations of Fig. 4.2.

It is clear from Eq. (4.16) that detrapping can be avoided for the

constant a. case by designing the wiggler so that aw/kw is constant.

As in the constant kw , constant aw , and constant bw cases discussed

previously one can use the condition of constant r and specified nb to

determine the z dependence of aw and kw , and the required power. The

required threshold powers in the constant kw, aw , bw , and aw/kw cases

are compared in Fig. 4.7 as functions of 0 . Since the penalty due to

detrapping is rather small, one actually obtains a better net efficiency

from a constant kw wiggler than from one which avoids detrapping. Some

small improvement can probably be obtained over the constant kw case by

taking detrapping into account, but we have not pursued this question

further. This assessment applies to the case in which the incident

electron energy spread is small compared to Ymax . When they are

comparable, as is likely to be the case in practice, the penalty imposed by
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detrapping increases, and its avoidance acquires more significance as a

design consideration. It should be noted that in the case of an amplifier

or heavily loaded oscillator, where as increases with z , detrapping

tends to be avoided automatically, as discussed later in this section.

In all of the previous discussion we have imposed the requirement

(largely to simplify the discussion) that * r be z independent. One may

ask whether this choice leads to an approximately optimized wiggler

design. From the point of view of detrapping, it would be useful to have

*r decrease with z , to compensate for the decrease in aw/kw which

seems to occur for the more optimum constant 'r designs. This is
r

apparent from the behavior of a(*r ) (see Equations (4.13), (4.14) and

(4.18)) shown in Fig. 2.6. On the other hand, from the point of view of

initial capture, it would be best to have *r have a very small, or even

vanishing initial value. This can be seen from the plot of the trapping

fraction, fb , shown in Fig. 4.1. Thus to maximize trapping * r should

increase with z , while to avoid detrapping * should decrease with
r

z • One can in principle increase aw/kw to overcome the effect of

dc:reasing *' and thus avoid detrapping, but experience with the constant
r

e~r ase suggests that this will not improve matters either. Hence the

constant r ' constant kw design is probably not very far from an

optimum one. Again in anticipation of the amplifier case, we note that an

increase of as with z can eliminate the detrapping associated with an

increase in *r , so that an increase of *r with z should have some

advantages for an amplifier.
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We conclude this discussion by listing the properties of a

"standard" wiggler design, based upon the constant kw  case. It is

certainly not unique and probably not optimal either, but it does provide a

convenient point of reference for future discussion. We begin by

specifying an idealized efficiency ni , a signal frequency ws ' and an

electron beam radius re * The associated bucket efficiency, nb ,and

resonant phase, *r r are determined from rl by Figure 4.2. For wiggler

J design parameters we then propose

kw Z 1 (4.19)w 3
e

L x 6 --cSr e  (4.20)

1 (2%_%2 (z/L)
w 1-n D

0

a(z)

Bw(z) = 1.7 k a (z) 1.7 Kilo Gauss (4.22)
e

the electron beam energy C is given by

2 2%+ 21/
Ce mc2 Y .51 [ c 2-%+ 2  1/2 Mev (4.23)
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The required peak beam current is given by

~eP
m

- (4.24)
e 2 n

i e

where Q is the "Q" of the optical resonator, and i R t

electronic efficiency. Rewriting (4.24) yields

T csc (2-% )2

e Q(6wr 1/2 n  / 1/2 e

e6sre/) e (1-) (2-2 ro+r) (4.25)

where

3
-' 17.0 Kilo Amperes

The degradations associated with the variation of the resonator mode over

the electrons, as well as the effect of energy spread of the incident

electrons have been neglected in the above. For assessing the effect of

the latter we note the relation (using 4.8 and 2.56 together with the

above).

6Y 4/* / cI~(2-%1) cec * \/2
max 4 r( ) (4.26)

r wre (2-2nb+ 2 )  r
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The electron beam radius which can be used is primarily determined

by the electron beam emittance. It is shown in Appendix C that if one

asstumes ideal emittance scaling, then the beam radius must exceed a lower

limit proportional to the emittance constant. Finally, we repeat that we

have neglected the possiblity that some modification in the parametric

dependencies may emerge if the omitted "a" factors are taken into account.

j It is instructive to illustrate the above expressions with a

reasonable numerical example. Let us suppose we wish to construct a 1

micron oscillator. A preliminary perusal suggests that nfl .215 might

yield parameters achievable with current technology. Considerations

bearing upon the choice of electron radius will be discussed in Appen-

dix C, but for the moment we simply specify re - 1.24 mm. With these

choices the following numbers emerge:

ne - .18 aw  - 1.75 - 1.18 z/L

- .43 Bw - 4.56 -3.07 z/L KG

r - 320 Ee - 111 Mev

Pm - 21 GW QIe - 1100 Amps.

Xw - 2.3 cm 6Ymax/Y - .014

L - 10.9 m

As indicated, the beam current, and accordingly the optical power generated

(pm/Q, of course), will depend upon the resonator Q which is chosen,

and, on account of mirror losses, the optical power which emerges will be

60



reduced from that generated. Furthermore, we again emphasize that these

are peak values. If the electron beam is provided by an RF linac, "peak"

refers to values which obtain during a micropulse. Average values during a

macropulse are reduced by a factor which typically lies between 25 and 100.

4.2 Operation with Amplifying Signal Amplitude

In discussing the behavior of the standard design the increase in

the signal amplitude as was neglected. This neglect is justified for

large values of Q . As one decreases Q we expect n to approach

ni more closely, but otherwise the basic formulas for the operation of the

device are still expected to hold approximately despite the fact that

as is increasing. The decrease in Q is likely to be associated with

increased output coupling. This fact, together with the increase in

ne means that the extra beam power input associated with the increase in

le is being more efficiently converted to signal power output.

These expectations are easily understood by making reference to

Eq. (2.41), which we rewrite as

cyr  dyr

a sin'r - r dz r (4.27)wa z
8w

The right hand side of this equation has already been determined

by the standard design to be a constant. Associated with this design was

an input value of a. and an input value of 1r " However, if as

increases, r simply decreases. Reference to Eq. (2.59) and Figure 2.6
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tells us that the phase area of the bucket increases. Hence particles

initially trapped remain trapped and apart from the small increase in

energy of the untrapped particles, n e " n " fb " Due to the fact that

the bucket is actually widening, some initially untrapped particles may

even become trapped, and ne can exceed n i . The important lesson to be

learned is the fact that a more rapid than "planned" increase in as does

no harm to the trapping and deceleration process. On the other hand if

a s increases less rapidly than planned, a reduction in phase area occurs

which can lead to some detrapping. Indeed if as drops sufficiently below

its planned value to require sinP > 1 ,total detrapping takes place.
r

It should now be apparent that a simple way to design an amplifier

is simply to remove the mirrors from the standard design and supply a beam

current given by Eq. (4.25) with 1/Q replaced by (G-1) , where G is the

power gain. The required input signal power is given by Pm

In our discussion of high Q oscillators we established a quasi

optimi,.ed connection between the minimum circulating power pm and Ti,

Clearly similar optimization could be desirable for an amplifier. The

simple amplifier designed above makes no attempt to take a programmed

increase of as into account in specifying its yr profile and hence is

unlikely to be optimum in this respect. What we would wish to have is a

procedure for designing the wiggler so as to maximize the efficiency for a

specified power output and specified gain.

As a first example of a step in the desired direction we describe

a procedure for choosing a8  (and hence yr) so as to maintain an
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approximately constant *r . In order to be specific we consider the

constant kw  case. We then find from Eqs. (2.40) and (2.41), neglecting

6~k

asZ

a, =- (2kwas(0)sin a5(z) (4.28)
w w s r)a s(0)

Note that the coefficient in brackets is a 
constant. To relate

to aw we make use of Eq. (2.26), assuming that

<Y(0)> - <Y(z)> -constant x(Yr(0) - Tr(z)) . (4.29a)

This assumption is based upon the idea that the trapped electrons represent

a constant fraction of the electrons, and that they give up energy at the
dY r

rate d- . It yields the equation

( z) + (C-i) ij 0)- P(z) 1 /2 (4. 29b)

(0= -

where G is again the power gain. Combining Eqs. (4.28) and (4.29) yields

daw La (0) sin 'P

a (L) u(0) - 1 + a w 2 1/2 w a r

1 + (G-1) P(O) - U(L)

(4.30)

The left hand side of Eq. (4.30) can be regarded as the analogue of the

right hand side of Eq. (4.2), that is, as a quantity which in this instance
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should be minimized with respect to a (L) and a (0) subject to thew w

constraint 1 b This condition then determines the

appropriate values of aw (0) and a w(L) and hence P(0) and P(L)

Subsequently a (z) is determined from

a (0) da

/z __(kL_(0 sin 1
z) 1(0) - 1 + a 2 ]1/2 L w s r

w + 11(O) - 11(L)w

(4.31)

As an example, we consider the case = .43 and for simplicity neglect

the final optimization. Instead we obtain aw (0) and a w(L) from Eq.

(4.4), which holds for the C=1 case. For G=100, the value of the left hand

side of Eq. (4.30) is found to be .203. This number for the right hand

side of Eq. (4.30) should be compared to a (0) - a (L) = 1.18 , which
w w

would be required by the simple amplifier design discussed previously in

which a decreases linearly. Thus the improved wiggler profile permits a
w

factor thirty reduction in the operating power level. The minimum of the

left hand side of Eq.(4.30) is found to be very broad for G=100, so that

the value obtained by choosing aw (0), a w(L) as noted above is within

1/2% of the minimum.

The predicted behavior of a is obtained from Eq. (4.29) by

making use of a (z) as given by Eq. (4.31). To complete this example we
w

apply the standard procedure to the rest of the design. Hence we choose

sin *Jr from Figure 4.2 to obtain the value .53 and an ni of .215. The
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required optical input power is then 640 MW. Assuming an electronic

efficiency equal to fli and a gain of 100, we obtain a required electron

beam power of 295 GW. Figure 4.8 shows the design behavior of aw as

given by Eq. (4.31) and as as given by Eq. (4.29) (curve d). it also

shows the computed values of as and electronic efficiency as obtained

from numerical simulation. The numerical simulation was based upon

Eqs. (2.25) and (2.26), neglecting the Sk terms, but explicitlys

carrying out the averages required for Eq. (2.26). Three cases are shown,

corresponding to the design beam power, a somewhat higher power and a lower

power. The design beam power does not quite yield the design performance.

First we note that the expectation of the ideal electronic efficiency

failed to take account of energy gain from the untrapped electrons.

Second, Eq. (4.29a), the assumption of a constant ratio between

Y (0) - Y (z) and <y(o)> - <Y(z)>, is clearly not satisfied at the input
r r

of the amplifier. The flat behavior of as at the input reflects the

fact that bunching must take place before amplification can begin. We see

that increasing the beam power improves the efficiency as well as providing

more than the design gain. The reduced beam power example illustrates the

effect of a smaller increase in as  than was anticipated in the wiggler

design. Equation (4.27) causes r to constantly increase, continually

rrdetrapping particles, until at z/L ~.8, r hsreached T "Al

particles are detrapped and amplification has ceased.

Because a. is an increasing function of z it should be

possible to allow +r to increase with z without detrapping

particles. One simply requires that the phase area J , given by
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FIGURE 4.8

SIMULATED PERFORMANCE OF A MATCHED PROFILE AMPLIFIER.

Peak Electron Beam Power Electronic Efficiency

a) 350 GW .214
b) 295 GW .203
c) 145 GW .091

Curve d shows the as(z)/as(0) profile obtained using

Eq. (4.29a).
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Eq. (2.59), not decrease. Indeed, by choosing dyr to vanish at the

input one can begin by trapping all particles, since * r will initially be

zero. Since as will at each z increase monotonically with increasing

beam power, there will always be a critical beam power above which all

particles remain trapped, so that fb - 1 and Te = . Whether it is

better to use the beam power to increase fb to unity rather than to

increase b is a question which we have not explored.

The amplifier length provides another quantity which can be varied

as a part of an optimization procedure. In our discussion up to this point

we have assumed the length to be given by Eq. (4.20), but there is,

however, no compelling reason to limit the length in this way. 2 1 It can be

argued that so long as the rate of amplification is sufficiently great to

maintain as constant on the electron beam (i.e., to counter the effect of j

diffraction spreading) the device can in principle be arbitrarily lonF. It

appears liklely that 6k can also play an important role in thiss

situation. We have not, however, carried out a complete analysis of tV~

super-long amplifier and will not discuss it farther here.

In our discussion of the amplifier vw r,: consistently negloe t

6k . It would of course be a straightforward matter to Incluit it In
o

6k
carrying out simulations. It appears as an order -scorrection to

w

Eqs. (2.24) and (2.25). Just as a local value of as2 (z) is obtained from

Eq. (2.26), a local value of 6ks can be obtained from Eq. (2.36). For the

case illustrated by Figure 4.8 we consider that <cos */Y> " 0 for the

first five percent of the amplifier, so that 6k is in fact zero
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initially. For the region in which a. increases approximately linearly

it is likely that <sin W/y> I so that 8k - - 9 and we

estimat d < L sn95± s aa (L +9z)
1 0 6ks

estimate Lk - everywhere. Thus k < .003 everywhere, so that
w

its neglect appears to be justified so long as transverse effects are

ignored.

We conclude this section by pointing out the fact that the neglect

of transverse effects appears to be especially suspect for the design and

analysis of amplifiers. In the amplifier illustrated in Figure 4.8, and in

the qualitative discussion of other designs that followed we have depended

upon the predicted growth of as to maintain the electron traps. We have

assumed in carrying out the design, and in the simulations, that there is

no transverse variation in the signal amplitude. This certainly will not

be the case in actuality. Suppose, for example, that the electron beam has

a Gaussian profile. Then we may write for Eq. (2.37)

W(0) 22)a aw <sin */Y> exp (-r/re) (4.32)

Where <sin '/Y> should also be assumed to be r dependent. We also have

Eq. (4.27), which implies that P sin *r is r independent. Suppose the

amplifier has been designed so that r remains constant in z at some

value of r = rd . For smaller values of r we expect a s  to increase

nore rapidly, Ir decreases and trapping is unaffected. For particles

dutside rd, as increases less rapidly than programmed. Detrapping can be
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expected to develop at larger r and progressively work its way into

rd . This could lead to a decrease of amplitude at rd itself and hence a

progressive erosion of the edge. A similar erosion may be expected to

occur at the trailing edge of the pulse. Thus while electrons at the

trailing edge can initially be trapped by the input signal, the failure of

the signal to amplify at the rear edge will lead to a progressive

detrapping that moves up the pulse. These considerations suggest that some

of the advantages of sophisticated designs over the "simple" design (in

J which one depends upon the initial amplitude to maintain trapping

throughout) may be substantially reduced.

The situation is further complicated by the fact that

w2 (0) a22
6k s  p P <cos */Y> exp (-r 2/re2) (4.33)

7= a (r, z) <cs'I.epe
s 5

The presence of this variation tends to focus light towards the center,

reinforcing the tendencies discussed in the preceding paragraph. In the

amplifier illustrated in Figure 4.8 we estimated 6k~ 9 for
SL+ 9z

z > .1 L . According to Eq. (4.33) this value should be construed as

refering to the center of the beam so long as the variation of a. and

<cos /Y> with r is neglected. Because 6k decreases with z ,the5

focusing tendency is largest near the beginning of the amplifier. To

obtain a crude quantitative estimate we consider the problem to be one of
il

propagation of rays in a lenselike medium, with index of refraction given

by 6n - c6k /w . According to the paraxial ray equation, we have
5 6
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d2 r(z) d6n (434)

dz
2  dr

where r(z) is the ray coordinate. We confine our attention to the

central portion and write

d6,,n 2r -~= 2r
d__ - (6n) - 6n (4.35)
dr 2 r-O 2 or re e

Taking advantage of the fact that rsdno/dz is small we obtain, for a ray

emitted at z = with zero slope,

r(z) -r(z 1 ) 'zl) Cos J '26,, dz/ S z re (2 /) sin 2 6,n dz/r]

1z

(4.36)

For the amplifier of Fig. 4.8, using the above mentioned estimate of 6ks

we find for z i - .1 L that focus takes place at z - .71 L . This

presumably overestimates the effect because we have neglected the fact that

the focusing effect further increases as , thus reducing 6k, . (The

factor <cos PlY> also increases, but the size of the increases is limited

by the fact that Icos *1 < 1 , and the increase in a. is the dominant

effect). Nevertheless this estimate suffices to indicate that the effect

can be significant. We remark that Eq. (4.33) does not necessarily imply

that 6k is a maximum in the center as the increase in a can dominate
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other effects. The presence of this factor in the denominator also

indicates that a true self focusing instability does not exist. The effect

clearly decreases when the gain is smaller, so that the net outcome could

simply be a limit on useable gain. On the positive side, the focusing

effect can also lead to some optical beam trapping, which could be helpful

for devices with L > kre2 . Clearly the complex of issues raised here

constitutes an important subject for further research.

j
As a final comment we note that for an oscillator,

L k dz - (4.37)f 2-Q

0

This should be compared to the total phase shift, 2 tan-1 .5 , which occurs

in the traverse of the wiggler due to diffraction. As a consequence, low

Q oscillators may require some small optical correction to take into

account both the effect and the fact that it may vary during buildup of

oscillation. Apart from this possibility, the 6k effect does not appear
s

to affect oscillator operation.

,

t
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5.0 ADIABATIC CAPTURE, DECELERATION, AND DECAPTURE

In this section we will treat the problem of capturing the

electrons into a stationary bucket with a resonant energy equal to the mean

electron energy, while at the same time minimizing the increase in the

phase area occupied by the electrons. After capture the average phase

j angle of the electrons must be changed to a positive value, so that the

electrons can be placed in the center of a moving bucket and subsequently

decelerated. For a single pass device it will be only necessary to make

sure that the phase area of the captured electrons is less than the area of

the decelerating bucket. However, for a multiple pass system we want to

minimize the increase in phase area occupied by the beam. After the beam

has been decelerated the average phase angle of the electron is returned to

zero and placed in a new stationary bucket with a resonant energy equal to

the final mean electron energy. Finally the decapture is performed in such

a manner as to achieve the small desired energy spread. The total purpose

of all of these processes is to obtain a minimum increase in the energy

spread while at the same time to reduce significantly the average electron

energy.

To illustrate these processes we divide the wiggler into five

regions: region one, with 0 < z < zi ,is where the adiabatic capture [
occurs; region two, with zI < z < z , is where the average phase angle

is increased; region three, with z2 < z < z3  , is where the deceleration

occurs; region four, with z3 < z < z4  , is where the average phase angle
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is decreased to zero; and region 5, with z4 < z < z5  , is where the

decapture occurs. The phase space occupied by the electrons during various

stages of these processes is shown as the shaded area in Figs. (5.1a to

5.1h).

Region 1

In order to capture all of the electrons without increasing the

J phase area occupied by the electrons it is necessary to use a stationary

bucket, i.e. * r 0 , and to adiabatically increase the height of the

bucket. From Eq. (2.51) we see that for r = 0 the bucket height 6y
r mlax

is given by

6ma =. (5.1)

6Y 2Yr awas(51

We want to start with 6 = 0 at z 0 and increase 6ay with z
max max

while keeping *r - 0 . This may be accomplished by having aw  increase

with z while demanding that kw also increase with z to maintain the

condition

k (z) ks [1 + a2] (5.2)
w

Since 6y (0) 0 and Y is a constant, equal to y (0) ,we mustmax rr

have
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a(O)=O and kw(O) = (5.3)S2Y 2

r

We combine Eqs. (5.1) and (5.2) and obtain

L (Z)] 4k2a2 [k(z) - kw(O)j
k s s (54)

J From Eq. (5.4) it follows that the maximum value of the bucket height

occurs for a value kw(z) = 2kw(O) corresponding to a value of aw(z)

equal to one. It is desirable to have a large value for the final bucket

height so we assume that region one of the wiggler is designed to increase

both the magnetic field aw and the wave number kw to the final values:

kw(z 2 kw (0) (5.5)

aw(zt) = 1 (5.6)

which yields a final bucket height

6Ym(Z) = Yr 'as (5.7)

m 1 zr1s

Note that the final value of the fractional bucket height, Y M is

r
dependent upon only the field strength and the wavelength of the radi-

atlon. In order to capture all of the electrons in the bucket it is

necessary for the initial energy spread in the beam before capture to be

less than the final bucket area, i.e.
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2 )initial < 8 (5.8)

While Eqs. (5.5) and (5.6) give the final values for the wiggler wavelength

and magnetic field necessary to achieve the maximum bucket area for

capture, the exact speed and method of achieving these final values have

yet to be determined. In order to satisfy the adiabatic condition, the

change in kw  and aw must be sufficiently slow. The exact number of

phase oscillations that are needed for the adiabatic condition depends upon

with what accuracy one needs the phase area to remain constant and will

require computer studies for the motion of a large number of particles.

However, as a rule of thumb the capture length must be long compared to the

final phase oscillation period, i.e.

I 2 >>  (5.9)
I k a

S a

From Eq. (5.9) we see that it is desirable to have a low resonant energy

and a hig> optical field in order to have a short capture length. The

exact form of the change in kw  and aw has only one constraint given bhy

Eq. 5.2, so we are free to chose the 6lmple form:

kw(z) kw(0) [1 + ( Z) 2a and (5.10)

(za

w(Z) (Z Ci (5.11):

with a a constant.
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Region 2

In order to decelerate the electrons, after the adiabatic capture

has been completed, it is necessary first to change the average phase of

the electrons from zero to a positive value J(z2) . There are many

possible programs for the variation of kw  and aw  that can be used to

accomplish this change; as one example, we will describe one simple program

below. From the preceding section we have shown that at the end of the

adiabatic capture region (z - Zj) the values for the wiggler period,

j magnetic field and bucket height are given by Eqs. (5.5 to 5.7), and the

average particle phase and energy are equal to i(z ) = 4r(0) = 0
1 r

and Y(z ) = Y (0) • Consider the case where the wiggler period and
1r

magnetic field are changed discontinuously at z = z, such that for z > z1

kw kw(z 1 ) [1 + f] and (5.12)

aw aw(z1) (5.13)

with f << 1

We can regard this as a discontinuous change in the definition of

Y such that for z > z

r . Yr ( 0 )  [I - f/2] (5.14)

with 4, still equal to zero. For the case where the change in y is
rr

less than the bucket height 6Y the center of the electron bunch will
m
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proceed to perform synchrotron oscillations about the new value of I

(see Fig. 5.1c), with the maximum change in J occurring after one-quarter

of a synchrotron oscillation period. If, on the other hand, the change in

the value of Yr is greater than the bucket height, the magnitude of the

increase of ' will not be limited (i.e. the electrons are detrapped).

Because we want to prevent an increase in the phase area occupied by the

bunch we need to change the phase and energy of all of the electrons in the

bunch in a coherent manner. This can be achieved if all of the electrons

in the bunch are near enough to the new bucket center to be in the linear

region. In order to be able to accomplish this it is necessary that the

phase area occupied by the bunch must be small compared to the bucket area

and the change in the bucket center must be smaller than its height. This

second condition yields

(f/2)Y < 6y (5.15)
r m

If the restriction of Eq. (5.15) is satisfied, the average values

of * and Y are equal to the central values, and we find that after one-

quarter of an oscillation P reaches its maximum value

-- r

'P f (5.16)
m

while the average energy of the bunch has changed by

i - f/2 Yr (0) (5.17)
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Region 3

With the new values of ' and Y it is now possible to use a

tapered wiggler, as was discussed in detail in Section 4, to produce a

decelerating bucket and to decrease the energy further. The energy of the

bunch has already been decreased during the process of increasing ' and

if the desired energy extraction is sufficiently small it may be possible

to skip the decelerating region entirely.

j Region 4

In this region, with z3 < z <z 4  , we must reduce the average

phase angle to zero in preparation for the decapture; as an example we

choose a program similar to that used in region 2. That is we choose kw

and aw such as to produce a stationary bucket with a resonant energy

equal to Y(z 3 ) and allow the bunch to perform one-quarter of an

oscillation so that ' returns to zero (see Fig. 5.1f). The new average

phase angle and energy at z = z4 is given by

(z) = 0 and (5.18)

Y(z4 ) 4 (1 - f/2) Y(z ) (5.19)

Note that if major decelerating region 3 is eliminated the total energy

change is

A= Y(z 4 ) - (0) = - fYr (5.20)
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which corresponds to Jumping the stationary bucket down in energy by

- f/2 Yr and allowing the bunch to perform one-half of a phase

oscillation.

Region 5

In the fifth and final region, with z4 < z < z 5  , the electrons

are debunched by allowing the magnetic field to decrease to zero. This

process is the reverse of the capture process of region 1 and also must be

done adiabatically in order to conserve the electron phase space density.

It follows that the wiggler period must increase such that ' remains zero

and Yr - constant First the center of the bucket must be placed at a

value of Y = Y(z 4) by a discontinuous change in the wiggler period and

field such that for z > z4

k (z) = (1 - f) k (z4) (5.21)
ww4

aw(z) -a (z (5.22)
w w 4

Next we must decrease the bucket area to zero to decapture the electrons;

for simplicity we choose the reverse of the form chosen for the adiabatic

capture in region 1, i.e. for z4 < z < z

kw(z) - L+ z 5  z 4  (5.23)

and

5 ((5.24)
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It is clear that an arbitrarily long wiggler magnet could in this

way decelerate electrons while producing little energy spread. However, in

order to determine whether or not the scheme is a promising one, further

analysis is required. Especially, a more quantitative estimate is needed

of the number of oscillations required in the adiabatic trapping and

detrapping steps of the process. Furthermore, because of the additional

length associated with these steps, a more severe side band instability

problem (see Sec. 7) may be anticipated.

j
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6.0 PHASE AREA DISPLACEMENT

In order that a large fraction of the electrons be decelerated and

hence transfer energy into the optical field for the operational modes of

the FEL described in the previous sections, it was necessary that the

energy spread of the incoming electron beam be less than the maximum bucket

J height. In this Section we will discuss the method of phase area displace-

ment1' which can allow all of the electrons to be decelerated even when the

initial energy spread (or effective energy spread when transverse emittance

and magnetic field variation with beam size are included) is considerably

larger than the bucket height. Phase area displacement refers to an opera-

tional mode in which an empty bucket is accelerated through the phase area

of the beam with the result that the phase area occupied by the electrons

is displaced downward in energy. Consider the case where the accelerating

bucket starts with a resonant energy far below the energy of the electrons

in the beam and is adiabatically moved through the beam until the final

resonant energy is far above the electron's energy, as illustrated in Fig.

6.1. Note that for an accelerating bucket * <0 . The final mean energy
r

of the electrons is lowered by the phase area of the empty accelerating

bucket divided by 2r , while the final energy spread of the beam is nearly

equal to the initial energy spread, i.e.,

<Y(0)> - <Y(L)> - J  (6.1)

AYf ~ AY (6.2)
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where J is the area enclosed by the accelerating bucket and is given by

Eq. (2.59). From Fig. 6.1 we see that the total change in Y r must be

much larger than the sum of the bucket height and the energy spread in the

beam, i.e.

[Yr(L) - Yr(0) ] -Y L >> 2 (6y) + aY (6re
r max spread(6.3)

As long as both the adiabatic condition, which is discussed below,

and the above condition are met, the energy spread of the beam is not

greatly increased and the average energy loss of the electrons is indepen-

dent of the initial energy spread. We note that the Hamiltonian for the

particle motion as given by Eq. (2.44) is

H (6,Y)2 S w s (cos + ' sin 'r3  (6.4)
r r

It is convenient to use a transformation of the independent variable

2k
du = dz (6.5)

r

to define a new Hamiltonian

hA (cos + i sin (6.6)5 ~ 2r

with

w 
a w s

A a w~~~ (6.7)
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rr

If * r is a constant, less than zero for an accelerating bucket, then for

the wiggler design with constant, the Hamiltonian is a constant of
w

the motion; for simplicity we will specialize to this case to derive an

analytical expression for the rms energy spread for the beam after passing

through the FEL.

The equation for the rate of change in the synchronous energy in

J terms of u can be obtained from Eqs. (2.41) and (6.5)

-d = -Asinr (6.8)

du r r

The rate of change for the total energy, y = (SY + yJ , follows directly

fromHamiton' equtiond(6Y) 5

from Hamilton's equation du - --- which when combined with

Eq. (6.8) yields

d -- A sin* (6.9)

We can use the fact that H is a constant of the motion along with
5

Hamilton's equation d-t - 5 to obtain

d' 6y (6.10)

and

6Y /-2 ~ H + A (cos + 1sin. (6.11)

86



Thus the change in energy is given by

- - f+ (sinP) d (6.12)

rr
2j H+ A(cos* + *sin %

We are considering an electron which passes completely around the bucket,

i.e., P starts at a large negative value '1, reflects at Jf, and

returns to a large negative value *2 as shown in Fig. 6.2. We neglect

the quantities which oscillate rapidly as I and *2 + - c , neglect

f compared to I and 2, and note that H =- Afcos f + 4f sin r)

to find

- si [ + A(cos + 4sin4, hi + A(cos*f + *sinr

(6.13)

If we know the probability of an electron having a certain value of 4f

then we can use Eq. (6.13) to calculate both the average energy change of

electrons, Ay , and the final rms spread.

The evaluation of Eq. (6.13) is rather complicated and details are

given in Appendix B. A further energy spread is expected from the fact

that the bucket is of course not moved up from -0 to + but has a

finite energy traverse

2 Ay= r(L) -Yr(O) . (6.14)
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The additional energy spread due to the end points is uncorrelated with the

spread due to the spread calculated above and the two spreads should be

added in quadrature. This effect also is considered in Appendix B where it

is shown that for *<<« , the average energy gain is given by

_j A (6.15)

and the ratio of rms energy spread to energy gain is approximately given byj

(AY)rms si +1(-- ( . (6.16)

These equations are in good agreement with numerical calculations for small

values of i
r

For a reasonable wiggler it is not feasible to allow a very large

value of Ay or a very small value of *p , and because of the approxi-

mations made in deriving the Hamiltonian H4 it is necessary to

numerically integrate the equations of motion, Eqs. (2.22 and 2.23), for a

large number of electrons with various initial conditions. For the case

where ' is held constant a small fraction of the particles are oftenr

captured by the moving bucket and will have their energy increased, thereby

significantly contributing to the increase in the energy spread of the

final electron beam. W 2ther this trapping, which would not occur for a

static Hamiltonian, is due to numerical errors or the small non-static
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corrections to the Hamiltonian is not now completely clear. However it

would probably be present due to small errors in any physical realization

of the wiggler. The particles that may become captured are those which are

near the unstable fixed point of the bucket when the bucket passes through

the phase space of the beam. One method that may be used to prevent this

capture is to increase the magnitude of the resonant phase angle 'r as

the bucket is accelerated; this moves the unstable fixed point slightly,

preventing the trapping of the electron. This results in electrons with

J larger energies being decelerated less than those at the lower energies

producing an extra source of energy spread in the emerging beam. A balance

between all of .hese effects as well as a desire to minimize the length of

the wiggler requires computer simulation to arrive at a reasonable design.

While this method will allow a much larger entrance bandwidth and

produce a relatively small additional energy spread as compared to a

constant wiggler one must pay the price with a longer wiggler magnet. It

also appears that the small signal gain of such a device behaves differ-

ently from that of the constant parameter FEL. 12 At this writing it does

not appear to be out of the question that the phase area displacement

wiggler has adequate characteristics to be used in a CW storage ring,

although much more simulation is required and the start-up problem must be

addressed.
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7.0 INSTABILITIES

7.1 Introduction

We have been concerned in this paper primarily with free electron

lasers operating at very high Y , and our principal interest has been the

mode of operation in which the electrons are trapped in decelerating

potential wells for a single pass through the wiggler. In this mode of

operation collective effects should be small. In particular the

relativistic longitudinal plasma frequency 'PL " ("ne is small

F \ Y /
enough that / (L dt << 1 for a pass through the wiggler. Thus we will

concentrate our attention on instabilities which arise essentially from

interactions of individual electrons with the electromagnetic field.

These are of two kinds. First there are problems arising from the

transverse structure of the beam which occur because the effective

refractive index depends on the density of trapped electrons. A

qualitative discussion has been given in Section 4; a more complete

quantitative treatment is in progress and will be published later.

A second type of interaction which can occur is the unstable

generation of parasitic electromagnetic waves, i.e. waves with a different

frequency from that of the signal which we are trying to grow. Such

generation can be expected in any situation other than the simple linear
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regime operated at the maximum of the signal gain curve. Thus in the

"descending bucket" scheme, a highly non-linear mode of operation, the

electrons are all effectively trapped and moving on the average at a common

velocity. We might therefore worry that a wave of somewhat lower frequency

than the signal wave, corresponding to a ponderomotive phase velocity

v - k which is slightly smaller than the bucket velocity, could be
kR + kw

unstably amplified. In the remainder of this section we will show that

4such amplification does occur.

7.2 Linear Theory of Raman Instability

The problem which we will treat is that of the stability of an

infinitesimal electromagnetic wave as it perturbs the equilibrim of

electrons trapped in the ponderomotive buckets of the signal wave. In a

single pass wiggler this equilibrium is not quite a static one. The

potential wells may change slowly in shape and depth as the wiggler is

traversed, the electron oscillation phase may not be quite random due to

the trapping process at the entrance to the wiggler, and the wiggler is of

course of finite length. In order to make the stability problem tractable

we will idealize to a true static equilibrium. This would correspond

physically to a constant parameter wiggler in which the electrons are

uniformly accelerated by a DC (or resonant RF) longitudinal electric field

of such a magnitude as to exactly balance the radiative loss to the signal

wave. This equilibrium may be described by the Hamiltonian H 4 given in

Eq. (2.44):
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.1

4 kw+ 6ks ()2 W awas

H v -2 (cos 1+ 4'sin 4r)  (7.1)
r r

where we recall that Y is the resonant y for particles in the well,

kw  is the wiggler wave number, 6k the modification of the signal wave

number which may be lumped into kw and will be subsequently ignored,

aw and as the non-dimensional vector potentials of the wiggler and

z

signal fields, and the phase f f (k + k ) dz - w t • We recall that
0

the canonical variables in Eq. (7.1) are 6y and 4 . The independent

variable is z

For the static situation which we are considering all quantities

except 6Y and ' are constants and from Eq. (2.41) we see that the D.C.

electric field necessary to maintain the static equilibrium is given by

eE awaswsin (7.2)
mc2 Yc r

We note further, from Eq. (2.41), that the rate at which a given

electron is radiating into the signal wave depends on its phase and is

given by: (in units of mc2)

- a sa a sin . (7.3)

Yr

In order to eliminate unnecessary constants it is convenient to

define U2  2kw aS 2  and - 2 6y . In these units the

r
Hamiltonian becomes simply

93



* .1

p2

H5  - - (cos 4 + 4 sin *r)

where p and 4 are the new canonical momentum and coordinate effectively

and U is the independent variable.

This is of course the Hamiltonian for the pendulum equation which

we have discussed in Sect. 2 and 3 with a succession of potential wells as

shown in Fig. 2.1. Electrons trapped in the potential well oscillate with

.j frequency 9 (H5) . This frequency ranges from 11 - 0 for particles at

the top of the potential veil to 0 - cOs *r for particles at the

bottom. Thus AU - 2w corresponds to a synchrotron period, while a

typical wiggler length would be of order U - (a )-1/2 for an efficient

single pass design. To specify the equilibrium we must give the distri-

bution of electrons f(p,*) in the potential well. In steady state we

expect f to be independent of the phase of oscillation in the potential.

It is therefore convenient to introduce action angle variables:

J(Ha) " y p d*" d*' 42 (H5 + cos V( + 4( sin *r) (7.5)

and

Q d ' (7.6)

f 2(H 5 + cos *' + *' sin *r

with

5 PI
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The symbol f means a complete cycle of oscillation in the

potential well. From Eq. (7.6) we see that * varies between 0 and 2w in

an oscillation period. The area in phase space is given by dJ dJ and

the equilibrium distribution function is independent of * . Thus we

specify the equilibrium by giving:

Sf =f (J) .(7.7)

The equations of motion of a particle are

dJ 0 (7.8)
dU

and

. U(J) (7.9)

Note that because of the well-known adiabatic properties of J, we might

expect our results to be applicable also to slowly varying wigglers. For

convenience we normalize

]max f (J) dJ - 1

0

The rate at which energy is given to the signal wave may be seen

from Eq. (7.3) to be:

I des asawws1
dr- aWa.ws 1 sin ~DdJ d* (7.10)

z c r  T ff
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For the equilibrium distribution this is

dEs asaws(.
- -7-- sin *r (711)

r

since <sin *> = sin *r , (the bracket indicating a phase average i.e.,

<A> = fAd.) . Finally we note that the phase space above the

potential well must be empty, i.e., the phase space density of untrapped

electrons must be much smaller than that for trapped electrons which have

been held together by the ponderomotive wave. Moreover we expect theIdistribution to be continuous, since various diffusive processes which we
will discuss later are operative. Hence it is reasonable to impose the

condition

0o (max) (7.12)

where Jmax corresponds to the top of the well.

Next we consider the introduction of a small perturbing

electromagnetic wave defined by a helical vector potential analogous to

that given for the signal wave in Eq. (2.8)

AR - LA 8 Ix cos (kRz - WRt) - y sin (kRZ - Rt) 1 (7.13)

Here c specifies the relative strength of the perturbing wave. The

Hamiltonian H of Eq. (2.9) then becomes
1
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.1,

H -mc
2  P 2  + 2a acos W + 2 e aa 

Cos R1/2

where the phase of the perturbing ponderomotive wave is given by

*R= (kw +kR) Z - Rt- w (7.14)

The development of Section 2 is easily modified to include both

radiation fields, A and A , to yield the new Hamiltonian:

r 8

= 2H;- p-- (cos * + sin - E co R(715)

with, in these units, *R - v + AU . The canonical variables of course

remain p and i * We will retain the angle action variables defined by

Eqs. (7.5) and (7.6) although the evolution of p and V are now given by

Hamilton's equations for (7.15).

In this expression we have neglected ('O -R ) since

- << 1 and * remains bounded for trapped particles. Further,
s

S _(7.16)

(We note parenthetically that for a w 1, X would be nearly constant even

for a variable wiggler oscillator. For an amplifier, in which as  is a

strong function of z, X may vary appreciably.)
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Similarly following the developments in Section 2 we find that the

energy given to the perturbing wave is analogous to that described by Eq.

(7.10), i.e.

dERsin d d (7.17)

dz Y C  2w f R dJ
r.

Since f is independent of U the energy transfer given by Eq.0

(7.17) will be oscillatory in U, i.e., vanish on average, for the

equilibrium distribution f fo " Hence it is necessary to proceed to the

next order and determine fl , the distribution function to first order in

C , the amplitude of the sideband.

Notiig that the phase space element 2N dpd* - dJdO , we can write

the Liouville equation for the distribution function:

af dO 3f dJ af

afo 3fo
Recalling that -j-- . -T - 0 the linearized Liouville equation is:

afl afl dJj afo0M

3f1 + 9 -- + o- -r 0 (7.18)

It is thus necessary to find the rate of change of J caused by

the perturbation.

From Eqs. (7.4), (7.5), (7.6) and (7.15), we have:
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d 2'dH aH a; aH HdJ 2T 5 21 5 5 5 5d'- I i" "T- F +  _7_ .

" - pC sinh R - - 2 7rc - si n*R

We may now substitute into Eq. (7.18)

f 2wc Cos af0+fl -T c~sR T + f

f 0

to see that f satisfies:

1

-f..- + Q.-I+ E2X sin C,(J, )+ Q) .,- - 0 (7.19)

The first term in the above expression for f1 will give no

dER
non-oscillatory contribution to dE- as may be seen from Eq. (7.17) since

cos *R sin*R oscillates with frequency 2XU . Hence, only f1

contributes to energy transfer. We solve Eq. (7.19) by first substituting

f I = f+ (J,*) e- AU + c.c.

Further, writing f+ - I X it is easy to solve for
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A ____-___"___,'

f+ -i- e -M - d(* e (7.20)

The lower limit has been specified by the following argument,

familiar in plasma physics. We must suppose the perturbation to be a

growing wave i.e. X has a small positive imaginary part. This makes the

integral convergent. MSoreover we see that f+ (o + 21) - f+ (0) as is

required for a single-valued function. Hence Eq. (7.20) is the unique

solution of Eq. (7.19). We may now find the energy transfer rate from Eq.

(7.17).

dE R a s'-- w-w-- dJ d o sin fRe f+ + c.c
Rz sw_ dc sin ffR [+

r

We are in fact concerned with that part of the radiated energy which is

non-oscillatory in U , i.e.

deR~~~~ ~~~ _ITsws e
E a a w~

.E 2 ro1d d' e

(7.21)

We may simplify the o" integral in the following way. Note that

is a periodic function of o so that the integrals for successive

periods differ by factors of e -iX21/ . Thus

100



e W+ e

0

f d4 ei e T i (P' + ')W

n-0

We may exchange labels € and 4* in the second term to obtain

I - fd d4" e e ( ' e +

n-0 0 0 L
+e2e i(n+1) e- i ( +) + P

Finally I must be added to its complex conjugate to yield

I = d J de" e e +e +

l-= 0 0

2oever e - m) (X -mn) where m is any

nM -GO roll0
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integer. We may again exchange * and * in the second term to obtain

finally,

O1W 1(* +pX~ 2
I= - m) d e (7.22)

f

This result may now be substituted into Eq. (7.21). However it is useful

first to define the relative gain of the unstable wave to the signal

gain. Thus,

G(X) fIi dER I des(.3

, 2 a2  ad.
s s

From Eqs. (7.11, 7.22 and 7.23) we have

J

CO afmax f 6 (X -2 4

G(X) -- %m J dJ 6(X - m(J) ei( + m) d*

m-0 0 0

(7.24)

Recall that we have normalized fo dJ =

Equation (7.24) is our principal result. We note that in an

amplifier G directly gives us the number of e-foldings of an unstable

mode relative to the signal gain. In general it will turn out that G is

only slightly larger than 1 and therefore the buildup from noise is not

significant. Further we see from Eq. (7.16) that since in an amplifier

a varies strongly with U , the resonant condition X - mi is only met
a

for a short time. We conclude that the instability is not important for an

amplifier.
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For an oscillator, however, where the optical waves are reflected

many times we must require G(X) < I if the external circuit is non-

dispersive, i.e., if the external fractional attenuation of the signal and

the sideband are equal. For G > 1 the sideband would grow when the sig-

nal is in steady state, and as we discuss in the following section, would

presumably destroy the particle trapping. Hence an effective requirement

for oscillator stability is G(O) < I for all X

The form of Eq. (7.24) immediately suggests the physical inter-

pretation of our results. Recall that the action J is analogous to the

quantum level of the electron in the potential well. Thus the instability

consists of a stimulated Raman scattering in which the signal wave ws

decays into the sideband wR plus m "quanta" of particle oscillation.

Since both this process and its inverse are possible, the net energy

af
transfer depends on the derivative of the distribution function 0 . If

afo
-r- < 0 , the usual case, it is waves with X > 0 , i.e., the lower side-

band, which grow. When many waves of different frequencies A are excited

we may expect the particles to diffuse in the potential well leading

eventually to detrapping as will be discussed later.

Equation (7.24) is of course a rather complicated one, with the

gain depending in detail on the distribution fucntion. We have not quite

been able to prove that it is impossible to make G(A) < I for all X

However the following sum rule indicates strongly that this is the case.
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Consider

af 0 2 I + mo)12

o m0 0 (7.25)

Now

aD 211ra s 2 t 2 7
21f e(*mo)dlj f ei' a irn0 -i4( -imo,

dO -e f~ e we d

4M0 o M-0 o 0

C* IFd 02 I dO 2 .iL iiJ VJ) eim(O -F 2Fd 1

m=- e 0 0 0

In the last line we have used definitions (7.5) and (7.6).

Substituting this result into Eq. (7.25) and integrating by parts on J

while using the fact that fo(J - 0 , we find that

Go

r =j C dX 4 (7.26)

0

We may compare this to r the value which we would have for a
0

marginal cp.e where G R I from X - 0 to X Q U - (cos r) /2and
max

zero for A > 9 • We see thatmax
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r _= s >1 (7.27)r sin 2*
0 r

This result is not quite conclusive proof of instability since G is non-

zero even for X > 9 due to harmonic emission. However in practice
max

these growth rates appear to be small, and are not enough to offset the

numerical factor in Eq. (7.27). We would expect therefore that values of

G somewhat greater than unity would typically be found. This is indeed

true for all distributions we have looked at.

There is a particular distribution function f , of some physicalo

interest, for which Eq. (7.24) simplifies somewhat. This distribution is

given by

1
f for J < J
o J max

max
and

f -0 for J > J . (7.28)
o max

If electrons are introduced into the wiggler from a distribution which has

some energy spread and is random in optical phase we would expect the phase

space to be uniformly occupied as in Eq. (7.28). Such a distribution would

also tend to arise from a slow diffusive process in which electrons were

boiled off from the top of the well. One might also expect this distribu-

tion to be relatively favorable since the derivative of fo is large only

near the top of the well where the coupling to the radiation is weak.
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Since the integrand of Eq. (7.24) is non-vanishing only for

J - Jmax we may take the orbit integrals in Eq. (7.24) to be those for the

particle at the top of the well i.e. in Eq. (7.5) we should put

H - HM -cos *r - ( r- r) sin *r"

It is useful to take advantage of periodicity to improve convergence of the

orbit integral for particles near the top of the well. We may thus putj

1 2 ei( )d - f[ei* + e re o -'Od'[2(HM + cos*' + V snVr)/'

o + cos *J'+*~sin*

where

[eF e -i'iXj~'d42(HM + cos*( + V' sin*r j-V1/2

K(X) -. f[ei + ee- + + sin r )

(7.29)

is independent of J . Note that the subtraction we ha.e performed makes

the integrals smoothly convergent. Equation (7.24) then becomes

G() -+ m dQ 6(X - mQ) 2lK(X) 12/4sin *

Q If *s-X I

I U a.X sin V
m-O m
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ut 28f f
But -1 and the sum over m may be converted to an

integral A d(t) . Hence we obtain the growth rate

SXIK(X)1 2

G - (7.30)4 sin *rJmax

j
We have evaluated Eq. (7.30) numerically and find that the growth

rates indeed have the properties we have described. The results are

illustrated in Fig. 7.1 for various *r" Thus peak gains of about G - 2

occur, typically for values of A .4 - .5 . The optimum value of Vr is

seen to be around 300. A significant feature of the results is that there

is a range A < .1 for which G < 1 even for a distribution in which the

well is filled to the top. This implies that the growing sideband is

separated by a finite frequency interval from the signal so that dispersive

external optics may be applied to correct the modest parasitic excess

growth.

From Eq. (7.16) we note that tie unstable region is given by

.2F _+V_] '4R w (7.31)

w w

Here aw I and as a typical value is a- I0 ,the unstable sideband

-2 w -3extends in the range 10 > - 10 - 3
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FIGURE 7.1

RELATIVE GAIN OF SIDEBAND COMPARED TO SIGNAL. G( X IS DEFINED BY EQ.
(7.30) AND PLOTTED AS A FUNCTION OF THE FREQUENCY SHIFT OF THE TEST WAVE

FOR DIFFERENT VALUES OF Vr
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* 7.3 Discussion and Conclusions

In Section 7.2 we have shown that an idealized constant wiggler

oscillator is linearly unstable against sideband generation. In this

section we will describe briefly the results of some particle simulations

and some nonlinear estimates.

In principle it appears attractive to do a 1-dimensional particle

simulation, calculating particle orbits and interactions with the electro-

j magnetic waves. We have in fact done some simulations of the pendulum

equations (2.25) including the linearized equation for 6* resulting from

the presence of the sideband. By integrating Eq. (7.24) by parts we see

that the rate of energy transfer by a particle to the sideband field should

be proportional to

dE_ E23aj - TJi(V +m)dj 2 (7.38)
U W

0

Here E is in units of the bucket height y s and all other quantities

are 0(0)

This result wuld evidently be a bit difficult to simulate! In

fact the wigglers which were simulated were of finite length and variable

properties. If we try to take the finite length into account by solving

Eq. (7.19) over a finite interval in U the infinite sums leading to

Eq. (7.22) are replaced by finite stuns and we find that Eq. (7.38) is

approximately modified (averaging over the initial phares of the particles

or the sideband waves) by replacing
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(+ I - - - -m)U (7.39)

W A - MU

Variable wiggler profiles lead to X depending on U as is seen

from Eq. (7.16) and it should be so interpreted in the argument of the 6

function in Eq. (7.38). We have not found a simple way to represent both

effects simultaneously.

The results of the simulations so interpreted were in agreement

with Eq. (7.38), and unstable over-all relative gains G - 3-4 , consistent

with the distributions studied, were observed. There was however one

striking result which has not been quantitatively analyzed. Particles near

the top of the well sometimes gained or lost large amounts of energy. This

came about because such particles, as they are about to detrap, are in an

unstable equilibrium perched at the top of the well, and strongly perturbed

by the sideband. For such particles the assumption of many oscillation

periods is clearly incorrect. The fluctuations of energy were large and of

either sign and we have not determined whether such particles produce any

net effect, either stabilizing or destabilizing. Very good statistics

would be required to determine this, but on the basis of our limited

simulations it seems unlikely that this effect is strong enough to modify

our overall picture.

We pass now to a brief discussion of the non-linear behavior of

the excited wave. We first consider the situation where only a single

unstable mode is excited in addition to the signal. In this case we expect

the wave to be stabilized by eventual detuning of resonant particles from
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the wave as their energy is changed. We will not present here the lengthy

calculation of this effect but will give a qualitative estimate based on

Eqs. (7.38 and 7.39).

We imagine a sideband wave with amplitude C interacting with an

electron beam weak enough that the amplitude C is unchanged during the

interaction. After a certain distance U , which we wish to determine, the

resonant electrons will become detuned and further transfer of energy to

j the wave will not occur. Integrating Sq. (7.38) with respect to U from

0 to U we find for a nearly resonant particle, i.e. a particle for which

(A - mf)U - 0(0) , an energy change at position U

AE 2 Tji 2  ei( -M 0d 2 (7.40)/
This may be estimated by expanding the sine, and putting (X-msl)U - 1

while recalling that in our units all parameters are of order unity. Thus

&E 2 U3

However, detuning will occur for - AEU 1 1 , i.e. the resonant

electrons will be detuned for U > E-1/2 . The width of the resonance,

i.e. the number of electrons involved at this point will be of order

U-*I , C/2 . Integrating Eq. (7.38) over J we see that the peak

energy transfer rate AE' - 2 and the maximum energy transferred to the

wave in an infinite length wiggler is then:
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AEsa 3/2 (7.41)

This contrasts with the signal wave growth which continues for the

length of the wiggler. For good extraction, - 0() , this length is

AU - a -1/2 as noted earlier. Hence the relative gain may be estimated bys

G AE a Another way to see this is to note that over
E 2 sats 6

the distance in which it is amplified, e-1/2 , the sideband growt: rate is

only slightly larger than that of the signal, while the latter continues to

grow for the full length as-1/2 . Thus a single wave will saturate at a

very low level e - a - 10- 4 , since above this level its growth is lesss

than that of the signal for each pass of the wiggler.

Unfortunately there may be of order 10 optical wavelengths

between mirrors, hence 107 possible unstable modes (even neglecting off-

angle propagation). Under these circumstances even the relatively narrow

resonances for the saturated single modes overlap and we can expect that

the resonant detuning will not occur, since particles will simply move from

one wave to the next as their energy changes. In these circumstances it

seems appropriate to assume random phases for the waves, leading to a

quasi-linear diffusion of the particles in the well. The quasi-linear

diffusion equations may be obtained by carrying Eq. (7.19) to second

order. Omitting the details of the derivation we find:

f2w3 ~2 2 Tr i( + MO)d 12 ___0

Dm T. (ma) f e 0 (7.42)

m 0
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Here we have normalized E2 (X)dX as the energy in sideband waves

between X and A + dX relative to the signal. Equation (7.42) is con-

sistent with our physical picture of the instability, describing a Brownian

motion of the electrons in the potential well as the Raman scattering pro-

ceeds. If we multiply Eq. (7.42) by J and integrate over a small

interval we see that the rate of change in the number of action "quanta" in

that interval is proportional to m times the rate of energy gain of the

waves in that interval as given by Eq. (7.24). (Recall that fo dJ is the

number of electrons.] The form of Eq. (7.42) can be simplified if we

assume a flat sideband spectrum, i.e. put 2(X) = £2 for all X . The sum

on m can then be done as in the derivation of Eq. (7.26) to give

afo 2 n2  J foW - = C -T - j M -- (7.43)

This is a diffusion equation with diffusion coefficient of order

£2 . Hence a characteristic diffusion distance for detrapping to occur is

U -
-2 . It follows that when the energy in the sidebands is greater

than as1/2 times the signal energy the buckets will be destroyed before

the wiggler has been traversed. We have of course assumed random phases in

the sideband waves, but any kind of phase locking which could restore

stable buckets seems improbable.

In summary we find that the scheme of decelerating electrons

trapped in potential wells is subject to a Raman sideband instability where

the gain of the unstable wave is several times the signal gain. It seems

probable that any mode of FEL operation which tries to suppress energy
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spread, e.g., adiabatic trapping, gain expanders, etc. would be subject to

similar instabilities, which are inherent to operation away from the peak

of the linear gain curve.

We note finally that rather modest dispersive optics would be

required to stabilize a high-Q-trapped-electron-oscillator. If the cavity

Q were 50 it would have to be reduced to 20 for the sidebands. This

could presumably be accomplished by incorporating a grazing incident

diffraction grating in the optical system or by providing an etalon grating

in the outer part of the mirrors. It would also be possible to introduce a

gas or liquid with enough dispersion that the sideband pulses would arrive

back out of phase with the electron micropulses, if breakdown could be

avoided at high power.
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8.0 CONCLUSION

In the preceding sections we have described and analyzed a number

of techniques for making use of the properties of variable parameter wig-

glers to substantially improve the efficiency of energy extraction from the

electrons. These techniques have the common feature of requiring the

j existence of substantial ponderomotive potential wells or "buckets" which

are then manipulated so as to produce desirable properties. Because of

this feature, they all require high optical peak power, either circulating

in a resonator or emitted from an amplifier, and are thus intrinsically

high peak power devices.

A number of potential problems have been identified for "filled"

bucket devices. One of these especially applicable to oscillators is the

potential instability to parasitic oscillations at frequencies displaced

from the main frequency by an amount of the order of the frequency of

particle oscillation in the trapping buckets. It appears that some

frequency discrimination device such as a diffraction grating may be

required to suppress these oscillations. The second, especially applicable

to amplifiers, has to do with the effects of transverse variation. The

amplification process may introduce growing inhomogeneity in the optical

field arising both from inhomogeneity in the growth rate and transverse

inhomogeneity in the induced non linear index of refraction. The

assessment of this problem requires further wrk and clarification before

one can Judge its magnitude. Mre generally, the one dimensional character

115



of our analysis is a major deficiency. Serious attempts to design

practical devices should be based upon an analysis which includes three

dimensional effects more adequately.

Despite the above comments, it is our overall conclusion that the

use of a variable parameter wiggler in a free electron laser to produce

high power optical radiation at selectable frequency and reasonable

efficiency is a quite promising prospect. The exact scheme that is the

J best one to use (or combination of various schemes) will depend upon the

type of electron beam that is available as well as the type of use for the

radiation. At the present time there are several groups that are pursuing

the variable wiggler approach, and we have enjoyed greatly our interaction

with them. It is a pleasure to thank C. Brau and R. Cooper of LASL; D.

Prosnitz, and A. Szoke of LLL: S. Mani and J. Reilly of Schafer Associates;

R. Center and J. Slater of MSNW; and P. Sprangle of NRL for sharing their

preliminary results on the variable parameter wiggler with us. We

especially wish to acknowledge the many insights gained from our

collaborators, V. K. Neil and R. Novick, without whose help this paper

could never have come into being.
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APPENDIX A

THE RELATION BETWEEN ENERGY SPREAD AND ENERGY

TRANSFER IN THE SMALL SIGNAL LIMIT

John Madey1 2 has proved an important theorem which, in the small

J signal limit, relates the phase averaged energy spread to the phase

averaged energy change experienced by an electron as it passes through the

laser interaction region. The theorem states that

12) 2>(A1
<Yf - 71> 2 <CYf -

i (A-)

where < > denotes an average over entry phase and Yi  Y yf denote

initial and final values respectively. yi is taken to be fixed so that

it is yf which is dependent upon the entry phase before the average is

carried out. The left hand side is obviously the phase averaged energy

change, 6EL  (measured, of course, in units of mc2). The phase averaged

energy spread, AE , is given by

E2 <Y2 > Y>2 _(Y2 >>2
E <Yf> - <Yf> (Yf - Yi) - <(Yf - Yi)>

We shall see that <(Yf - )>2 /<(Yf - y1)2> vanishes in the small signal

limit (indeed, it is implied by Eq. (A-I)) so that (A-1) may also be

written
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E AE2  (A-2)

Both Eqs. (A-I) and (A-2) are valid only in the small signal limit.

The importance of the theorem in the discussion of the energy

spread problem in storage rings has been indicated in section 3. The proof

given by Madey contains a number of unnecessary approximations and restric-

J tions which complicate the exposition and limit the generality of the

result. It therefore seems worthwhile to present our modified version of

his proof here. We shall see that the derivation of (A-i) is not signifi-

cantly more complicated than the evaluation <Yf - Yi> in specific cases,

so that one can take advantage of Eq. (A-i) to obtain <Yf - Yi>  from the

much simpler evaluation of <(yf - Yi)2> .

For simplicity we make the (almost certainly) unnecessary

assumption that the transverse canonical momentum is both conserved and

vanishing. As described in Section 2, the motion of an electron through

the wiggler magnet is, under these conditions, described by the Hamiltonian

H - mc 2Y - mc 2L2W () -P) _ 2a W~a Wzcos *' (Z't)J1/ (A-3)

where we have introduced the dimensionless vector potentials a = 2 and2
mc

U2(z) 1 + a2(z) + a2(z) (A-4)
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I(k w + ks ) dz' -W t + (A-5)

aw  and a. are the vector potential amplitudes of circularly polarized

wiggler and optical fields respectively. We shall assume that a particle

enters at z - 0 , t - 0 and exits at z - L . The phase 0 then

represents the random phase of the optical field at which the particle

J enters. From Hamilton's equations one easily shows that

dY _sawas sin ' (A-6)
dz #'2 I2co

c - V + 2aw a Cos

and

v z  , 2 2a a s

8 1 - + - cos (A-7)
c 2 Y2

For a more detailed discussion of the equations of motion, the reader is

referred to Section 2.

We are now in a position to undertake the derivation of

Eq. (A-i). First write

Y = Yi + y + + "'" (A-8)

where Y1 is first order in asa Y2 second order, etc.
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From (A-6) we have

a awz')a a(z')sin 4'(z',t(z'))dz'
Y(z) Yi- J' a

o .!Y
2(z') - U2(z-) + 2a w(z') a Cz') Cos ' (z',t~z')

(A-9)

where

t(z) I f dz' (A-10)
0

-t 0+t 1+ (A-11)

and to 0, etc. also refer to zero, first, etc. order in as We have

immediately

w a'a'sin *'dz'
Y (z) -A w Vs 0 (A-12)

1' Y 2 _ .2

where *4, *(z',t 0 (z,)), U
2 

-1+ a2 ,and in general, the primes indicate
0 V

that the argument is z' (and double primes, that the argument is z" )

Using

<sin 4>-0 (A-13)
0
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and

<sin V' sin V"'> - os B -4') (A-14)o o 2 o o

yields

<Y I > W 0 (A-15)

and, to lowest nonvanishing order (second in a. ), using

i Y )2> 2 >z = also yields
<(yi - f z YL '

2 L L 8a

<(Yi- 'Yf) 2> 2c dz' 2 V cos('o- 0 "o
1o i -0 1,, 0

(A-16)

Expanding Eq. (A-9) one obtains

W / a' w a'a'
y~7 Y sin ti - V Cos V dz'

2 c/f Y i IiY P2 1, 2 .2 0 J
-z a 2

( 2 _ a 3 / 2 sin '° cos o dz' (A-17)
c 2 23/ 0 0

0 i 0

We write Y2 for the first line of Eq. (A-17) and note that since

<sin ' cos 0'> = 0, <Y> - <Y 2>

0 02 2
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Next, expanding Eq. (A-10), and using Eq. (A-7) yields

Z* dz'

t(Z') - ape ( , A-18)
0

a M I (A-19)
o 2

Yi

and writing t I t la + tl

t ~ f YV' --- V-,dz'' (A-2n)
la C 0

0

t lbaI~ -c- w ) Cos *0 dz' (A-21)
1 0

In writing Eq. (A-21), we have, in anticipation of what is to follow, made

use of the identity

d+ (A-22)
Y 2 Y 2C=O- dy i 2

i 1 2

Substituting Eq. (A-12) in Eq. (A-20) and interchanging the order of

integration we obtain
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la I s 2 v 8 f d z ' -2d Y1 0
0- If dz 0 z'

0

-A z w (t0(Z) - t (Z') (A-2 3)

Now substitute Eqs. (A-12), (A-21) and (A-23) into Eq. (A-17) to obtain

dz- gd: sin V' sin 'P'
2) 2yi [a2

i 0

a'a*
+s wo Vso

20B 0

2 l.2 2 1., 27 V 2

-CO 1 a) wO 8" -o V sin (t-' - t. (-2)

oY2 - o Y 2 o y

0 0 2 0
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yields, to lowest nonvanishing order (second in as)

<'I - <2> z-L

2 2 a-a" a'oa'
W S dz" dz'" w w s - cos(Wo 0

0 0 0

(A-27)

2 i <(Yf -
) >  (A-28)

In going from Eq. (A-27) to Eq. (A-28) we have made use of Eq.

(A-16) and of the symmetry in (z',z") of the integrand of Eq. (A-27).

Eq. (A-28) and Eq. (A-i) are the same so the proof is now complete.

It should be added that an identical theorem holds for the Yariv,

Shih 22 device. The proof is similar but simpler.

Madey has also derived Eq. (A-i) by means of a quantum mechanical

argument in which stimulated and spontaneous emissions are related to one

another and to Eq. (A-i). In a similar spirit, we offer an even simpler

proof based upon the principle of detailed balance. Let P(Y1,y 2 ) be the

probability density in Y2 that an electron which enters at y - y1

leaves with Y - Y*2 The principle of detailed balance states that

P(Y1 ,Y 2 ) - P(Y 2 ,Y 1 ) I (A-29)
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Assuming that the wiggler magnet with optical field satisfies

Eq. (A-29), we have, with Ay - Y2 - I

P(Y1,I + AY) - P(l + AY'y + AY - AY)

- P(Y 1 ,y - AY) + K ) p (YIYl - AY) Ay (A-30)

Eq. (A-30) holding only in the small signal limit. Now multiplying Eq.

(A-30) by AY, integrating over Ay, and using

<(Yf - XI)> - fP(Y,, 1 + AY)Ay d(AY) - -fP(yI,y 1 - AY)Ay d(AY)

and

(Ay) 2 dY) J (Yliy 1 - AY) ( AY ) 2 d(AY)

a < < ( Yf  
-

) 2 >

we obtain Eq. (A-I) again.

It is perhaps worth emphasizing that Eq. (A-I) demonstrates that

for finite wigglers in the small signal limit, zero energy spread implies

zero energy transfer. To see this we note that Eq. (A-16) may be written

in the form

- )2> F *F (A-31)

2c
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with

L ~ a a
F- dz V a exp i*°  (A-32)

f l 2 2
0 1 ,Ii 0

The vanishing of <(yf - Yi) 2> therefore implies that F vanishes. For

finite L, 3F cantb iglrs ( > must vanish as
cannot be singular so (f-~ Yi)2>

ii
well.

As a simple example of the application of (A-i) we consider the

case of a variable parameter wiggler. Equation (A-5) specialized to zeroth

order yields

kw 2Y2 (A-33)

and for simplicity we consider the case studied by Brau
2 3

k - k + k'z (A-34)
w Va w

with awasi constant and y u22 Z y Because of Eq. (A-31) we may
i 0

choose the integration constant arbitrarily in determining 0o from Eq.

(A-33). Choosing this constant conveniently, we obtain

2 w2a2a2

<( Y > -- !-SF F* (A-36)
<f Y1 2c 2 Y2 1 1
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where

L. 2
F1 =Jdz exp i (z - zo) (A-37)

0-

with

- - kw)/ k (- 8

The point z0  corresponds to dWo/dz as given by Eq. (A-33). It is, of

course, the phase matching point for given w asY when it occurs within

the wiggler. It is apparent from Eq. (A-37) that the dependence on zo  is

identical to that which occurs for the single slit Fresnel intensity

problem, where zo  is the displacement of the observation point from and

parallel to the slit edge and kw/k'w its distance from the slit plane.

The constant wiggler corresponds to the Fraunnofer limit and hence to the

case k'L2 Z 1 . To express F, in terms of standard Fresnel integrals we
w

define

dz p zd (y vk'/I) + iS (y /w
2 lyl I z w[ Y w '

0 

(A-39)

Then

FI = F2 (zo ) + F2 (L -z o ) (A-40)

end Eq. (A-i) yields immediately
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2a2a2  0 dz dF*
> 2 dY i Re d-- F/ (A-41)

f 2c2 ( 2 
21

W a a I 1 i -(L - z) -i- z °

a 3SWS Re [ k 2 o 2]
2c 3 Y5 k -e 

(F2 (z) + F2 (L - zo))

Equation (A-41) reveals the energy transfer to be a rapidly

oscillating function of zo . While its derivation is simple,the

discussion of its behavior is complicated. For zo  well within the

wiggler, F (z ) + F2(L - z) 0 + i and hence
2 0 2 wk2

dF1  k"
Re -j Fd I  - os ( HL- -- ) - cos ( 2Zo -4

0w

F2 ~tk' L2 2 7k sin kLZ sin (i w L 2

w 1 2 4 1 4

where zI - zo - L/2 is the distance of zo from the wiggler center. The

energy transfer is seen to oscillate symmetrically about zero with

decreasing period and non decreasing amplitude as zo  moves towards the

center of the wiggler. An energy spread in the incident beam induces an
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verage in zo over a range 6z° w For typical values of
e i oI

and the other parameters the average extends over several periods

(' 5) near the center. For such a beam the oscillations will decrease

strongly in amplitude as one moves towards the center.

The situation near one side of the wiggler is different. For zo

negative or " zero we write

dF1  
zw w-(zz2 _ (L - zo) 2

F1  - 2(zo) + F2 (L - zo) e- 2 [ - e T L 1

The first factor in square brackets is non oscillatory in the range

considered. The second factor is even more rapidly oscillating than before

but with average value equal to 1. Again an energy spread will strongly

damp the oscillations. We therefore omit the oscillating term to obtain

dF1
Re _ ° FI = - g Iz o

where

g(x) - CCX cos x ~ + - S(x) sin j

2- for x > 0 •

2 + 4.142x + 3.492x2 + 6.670x
3
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For x < 0 , g reaches a peak of 1.3 at x - -.74 and then commences to

oscillate at non decreasing amplitude and decreasing period, being

x/2sin (fx2 + 1) for lxi large. The situation at z > L or f L is

similar, buc with the sign of the effect reversed. A qualitative picture

of the behavior as a function of <1> that results after energy averaging

is shown in Fig. A-i.

1
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FIGURE A-1

QUALITATIVE PICTURE OF THE ELECTRON ENERGY TRANSMIT FUNCTION

IN THE SMALL SIGNAL LIMIT FOR A VARIABLE PARAMETER WIGGLER.

131



RMEDING PAE BLAhN&OT FIMI)

*" APPENDIX B

EVALUATION OF PHASE AREA DISPLACEMENT ENERGY TRANSFER AND ENERGY SPREAD

We may obtain a formal result for AY by rewriting Eq. (6.13)

Ay -- 2_ Y sin 4r df DfdX e -x2 [H + (cos + 1,sin

-X2H + (cos f + 4 sin 1]}
-e 1,]

(B-1)

where here H -cos -f f sin* and we focus our attention upon the

turning point lf which lies between the minimum at 4r and maximum at

W-i r as shown in Fig. 6.2. The range of *Ff within these limits is given by

I <  f <Ir-r' ,where satisfies

cos I + IFlsinir r cos (O + r) - (Or + Ir) sin Ir

133

LLt



and is given by (r - --4) for small IrI . Since Vr

r rl

is negative here, we find it convenient to write lr - -1yrland replace

*f by w so t - , h - /QrI < - 11 < 0 • Making these

changes and also shifting the variable of integration by i we obtain

*ff

A-=2-,2 A/Trs inlr d I X exp X2 [cos -Cos O+ ( -O)sinj*r1]

(B-2)

Next we write

exp X 2 (cos + sinljr 1) dip exp X2 (cos P + P siniPr )d

- n0' - 2it(n + 1)
f

S] 2di exp X2 (cos + 1P sint'rP ) 0 [exp(-2)X2 s in rl) n !

EP -27'-*R n0nff

2 7'n-

exp(TX 2sinli rp) ! f exp 2(cos ip+ V sin[Or ) d* (B-3)S2 sinh(ffX 2 sinj-r [ I f -r2

r23T
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and

/ exp )X2(cos ' + 4' inj4) )d* exp X2 (cos + *sinft I W~~

+ exp(-2X X2sini Pr) exp X2 (cos + 4 sinj r 1) di

(B-4)

Substituting (B-4) into (B-3) and (B-3) into (B-2) we obtain

y 2 VYK7 sinl*rI dX e 2 sinh (IT2sinl*r)

71X2si 4 (1f _ 2 sinlbI1f -I ' X2COB 4

I 2 sin 4rI -x2sinlrl x *) 2cos f

(B-5)

which we rewrite as
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A= 2 v,/rsinl i I dX e2
f 2sinh rX2 (sin 14r)

osh(1X2 sinl 4rI ) e e x d

+ sinh(X si[f 
X2sin rj(-) e X2cos j x Cos:f

(B-6)

This is of course a bit complicated. However we may perform the

integral over * in the limit *'2, Jrj + 0 to yield, after some

manipula t ion,

AY -. 2 T I d [ 2r

tL

+ v2fIT j 2e 2 dx]( (B-7)

where B =  n0 f - r1I and Io is the usual Bessel function of imaginary

argument. This is still too hard to do exactly. Splitting it into ranges

we have for the integrand if
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- 1 + o(X2 ) e -X 11 +.T (*f-lj( 2  coth iT,21*r -v/ i*i-liril)

21*rI

and if X >

X2 , 2 2 - - ( W - I'J 2
(X) _X 1 -1X 1427e 2f r

eo er 2

(B-S8)

The integrations may be done approximately to yield

0 (X2 ) e-X 1] I ' )2 I
AY '2 2 of dX X2  2 i I n Ii n -r -

Ir i _l r I  + 'l'j I - I4 *rl -  (B-9)

f rVrl)2~ ~ '

with Ei(z) the exponential integral. We observe that

d X 1(X 2 )- -2v/7
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Note that the result diverges unless - [Tr < - rj < 0

which is the allowable range for turning. The derivation is correct only

in the limit of very small 1*r1. The logarithmic terms are exact but

errors of order (InjrI )-l are to be expected. We have somewhat arbi-

trarily chosen them so that the leading term goes to zero for sinlr- I

Noting that the range of 'f - r is from - 4'r to 0

f r~t

we put f *- ri) -vi r X . Then as a rough approximation we have with

o 4 X4

AY .. A 1/i~ + [x tI n sinl4*'11 + I In xl + 9-n I I-Xi (B-10)

and doing the averages over 2XdX we find the r.m.s. spread

rms (AY) siin) 2
4.1 - 7 si 4 -- sVn4rin in l n  sinvrI 2

(B-li)

Note that 8y- - F is exactly what is obtained in the I r limit

by taking the phase space displacement at the bump as expected. The terms

proportional to ltEn Xl and InJl-xI in Eq. (B-10) arise of course from

particles which just graze the top of the reflecting wells.
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A further energy spread is to be expected from the fact that the

bucket is of course not moved up from -- to +0 but has a finite energy

traverse 2AY . Thus in Eq. (6.12) if we look at the end point contribu-

tions to AY we see that we may expect a spread from the two end points

Ay = cos F 2

Eliminating A by using Eq. (B-8) we find for the r.m.s.

contribution to end-loss

AYrms  2 T7 
(B-12)

EY 64

The spreads (B-11) and (B-12) are presumably statistically

independent so theyshould be added on in the r.m.s. sense. For small

resonant angles we may approximate the slowly varying terms in Eq. (B-11)

and combine it with Eq. (B-12) to give a simple formula for the ratio of

spread to gain

4f

- = 5m + ( (B-13)
r (64)2 \KA1
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APPENDIX C

THE LIMITATION ON ELECTRON BEAM RADIUS IMPOSED BY EMITTANCE

All of the discussion in the main body of this paper has been

carried out under the assumption, P1 = 0 . Any real electron beam will,

however, have R distribution of transverse velocities, so that at best one

can only expect PI/P to be small. While we are not prepared to discuss

the effects of this spread completely, there is one important effect which

can be readily estimated and which provides a basis for estimating the

magnitude of spread which can be tolerated. This effect is the spread in

the axial velocity vz which a spread in pI implies for a monoenergetic

beam.

We assume an azimuthally symmetric beam. The phase area in x

dx which contains the beam is equal to that in y , d and is denoted

by wC . The quantity C is referred to as the beam emittance. We

therefore take

P

P± = C Z (C-1)
r e

as an appropriate measure of the variation in p1  re is the electron

beam radius as in Section 4). We take

[I A 2 2112 (C-2)
-[1+ + w
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to be fixed, so that the deviation of P2  oscillates with the wiggler

period. Since this period is short compared to the synchrotron period, it

is appropriate to average. Hence we obtain (asstiging O - 1 )

z

= = I12 Ymc /(c3

We require

da z  112

_ > < •6y m 6ymax (C-4)

where 6y is the bucket height defined by Equation (2.56). CombiningYmax

these relations yields the inequality

r > (C-5)e 2 _yy
2 max

Y

For linear accelerators the following relation has some theore-

tical and considerable experimental support
24

K 1/2 (C-6)
YO e

where K is referred to as the emittance constant. I is the peake

electron beam current averaged over a macropulse. Hence we obtain

1 1/2

r > e K . (C-7)
e t 6 Ymax
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All of the factors which appear in Equation (C-7) can be related to the

"standard design" parameters discussed in Section 4. Thus using Equations

(4.25) and (4.26) we obtain

r> 1/4 %3/2 (2-%) 5/2 csc 3/2 *r 1/2
e e (-% ) (2-2%+b 2 ) r

e 1/2 1/2

e MK (C-8)

which, for the numerical example following Eq.(4-26), takes the form

1~ /2\ " m3)

> 1.28 /2 K (C-9)

Since Ie refers to the peak current in a micropulse, the factor

I /I varies from 1/25 to 1/100, depending upon design. A typical "good"
e e

value for K is .3 cm - (kA)- 1/2 . Assuming this value for K we see

that the choice re = 1.24 mm used in the numerical examples satisfies C-9

for I e/QIe < 1/163 •

In the case of amplifiers, the peak current required is so large

that it is probably necessary to use an induction accelerator instead of an

RF linac. Then the factor I /I is simply unity. In addition Q is of
e e

course also unity. Actual numbers depend upon gain required and wiggler
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profile design details, but for our example of Figure 4.8, we find

re > 5.6 K cm . Reference to Equation (4.20) suggests that an order of

magnitude reduction in K would greatly enhance the practicality of

amplifier applications.

It should be mentioned that emittance also affects the beam

transport problem 24 . Furthermore, to the extent that one depends upon the

J wiggler to provide focussing, there is a connection between emittance and

the wiggler factor a (Eq. 4.10a) 24 ,2 5 . These considerations have not

been taken into account in deriving Eq. (C-8).
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*APPENDIX D

NEGLECT OF SPACE CHARGE FORCE

In this appendix we estimate the importance of space charge forces

in the discussion of longitudinal motion. We do not consider transverse

J space charge effects.

The ponderamotive force on an electron has a z derivative given

by

K s mw 2 cosS' (D-1)

at the bottom of the bucket. K may be thought of as the bucket spring

constant. The negative spring constant arising from space charge forces at

the bottom of the well is given (approximately) by

2fble e

Ksc 2fbePe  2c  (D-2)
sc fbe e 2 e

re

where pe is the electron beam charge density and fb is the trapped

fraction. Hence

Ksc 2fb e Y e" 2 (D-3)
K 2 2
p cmw a a r cosW

s w s e r

We consider space charge forces to be unimportant when this ratio is small.
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From 2.40 and 2.41 in the standard model

a b (2-n b )
as L(-(D-4)

From 4.24 and 4.11 (taking ne f bnb

l c 3  n b (2-n b) 2

b (1-nb) sin2QY

and from 4.4 at z- L, where K /K) is largest,

aw
w _ 1 M-6)

Y Yi

Combining the abovc relations in the standard model we obtain,

2Ksc 9 (2-2_b+ _b2 ) (2-n b )K 9 2 3 (D-7)

p 8QY (1-n b) sinr cos r

For the values of Y which we have in mind, this is always a very small

number. For the numerical example given after Eq. 4.26,

K K/ K M 5.8 x 10.4 / Qsc p

For the case of an amplifier the Q factor is of course

missing. The space charge effect is relatively strongest at the input en,

because the ponderamotive force is weakest there. The numerical factors

depend upon design details. For the amplifier of Figure 4-8 we find
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11w IIE 1

SC 200 (D-8)
V- 2
p

so that space charge effects can be significant for smaller values ofY
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APPENDIX E

THE OPTICAL KLYSTRON

In order to improve the efficiency of the constant parameter FEL

in storage ring operation it is logical to think of bunching the electrons

J before sending them through the wiggler. One could speculate that by

properly choosing the phase of the modulation, energy spread could be

greatly reduced 14 . To study this we consider a system of two wiggler

magnets (a velocity buncher and a radiator) separated by a long drift

space (Fig. E.1).

1L 11 w21
L )">Z

Fig. E.1 Schematic Representative of Optical Klystron

Configuration

This is a special soluble case of a variable wiggler, where

bunching becomes large. The electron motion is given by Eq. (2.44)

dz = -A(z) 6Y (E-i)

dz C(z) sin . (E-2)
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Here A and C are defined in the main text. For our case,

since << L ,we may take A = 0 for z < X , and z > 9 + L ,and

A - const in the drift space. We take C - C1  in the first magnet and

C - C2  in the second. Consider an electron with 6y 6y0 , 0 - o at

z - 0 • Then at z - £

'- 'F, 6y 6y + C £sin 'o

0 0 1 0

j at z = +L

'F = -A [6Y + C Xsin *0] L + X

where we have allowed for a phase shift x in the second magnet and

6y ft 6 y + C £sin

o 1and finally at z a gL + 2i a st a

6y- 6yo + C Xsin o + C2£sin + X -AL 6Y° + Clisin 0o)]

0t

150

0 10 2 R 0 0 1

(E-3)

with Jn being the nth order Bessel function.

We may now average over initial phase to obtain
0
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<6y - o- C2 "J (ACLl) sin (X- AL6Y ) (E-4)

and

K(6y 6y- 2~>. 2t2 +1 C2 X2[1cos 2(X-AL6y.)3(2AC Lk)

+ +C 1 C2 
2 Cos()( - AL6y) 3 0(AC ILX) -J2(A1Lk

(E-5)

K(6y -6o2

If we now minimize the ratio <2 with respect to C2/C I

holding other factors fixed we have: < 0/

< ( 6 -6 2 > 1 -c s 2 ( X A L 6 Y ) J ( C L ) - c 2 (X A L 6Y 0)[3 o . J21 2 ]
<y- 6y) 2 [-si ° J 1 s in U - AL6 0) J

1 [ - 3 2 (2 )- J o (0 )-J 2 (B ) )2 2J 2 (2 )+ ( JJo ( )-J 2  ( ) )2
2 ([J0) sin (X - AL6 Y 0)J

with 0 - AC1LX

Since I - J2(20) - [Jo(O) - J2 ()] 2 > 0 , the optimum value for

the phase will be such that sin (X- AL6Yo ) - 1 , i.e. CI/C 2 - 0 .

Hence, finally for the optimum energy 6Y° , the ratio of spread to gain is
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given by:

( 6Y - sy02 - 1 + J 2(20)](E6

< y- 6Y >2 2 2  (E-6J

<( 6Y - Y02
The ratio is optimal for 8 - 2.2 where - 2 .

This, at first sight, may appear advantageous for finite 8 operation.

J However we may note that for small values of 8 the moments given by

Eq. (E-4) obey the Madey theorem:

6-6y 1 3 6 - 6Yo)2>,

o 6)> = 4 -

0

while as 8 is increased the bandwidth I also becomes very

small. For storage ring operation the ratio, bandwidth x mean energy

loss/(energy spread) 2 , optimised with respect to C2/C1 for 6Y at the
0

peak gain point (sin (x - A6 )Y 0 -1), is presumably more relevant. The

optimised ratio is found to be JI(8) / 8 so that low 8 operation is in

fact preferable. Similarly, use of the Fokker-Planck equation to determine

a steady state solution from Eqs. (A-4) and (A-5) shows that even for large

8 , the steady state is characterized by an emitted power which is a small

fraction of synchrotron radiation (and a decreasing function of a ).

However, that is only an indicative result, not a conclusive one since for

large 8 , the Fokker-Planck equation is not valid as higher derivatives

nf become important as the bandwidth becomes small. Pending a presumably

0
numerical solution of the integral equation for the distribution function
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in a storage ring at large 0 , we can only say that the outlook is not

promising. In particular the result (E-6) shows that it is not possible,

even for a 6-function input, to completely eliminate energy spread.
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