AD=-A084 068 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) F/6 9/2
THE CORAL 66 COMPILER FOR FERRANTI ARGUS 500 COMPUTER.(U)
JUN 78 B GORMAN

UNCLASSIFIED RSRE=TN=799 DRIC=BR=-67199

10 e

£ oy =
Nl

b
— i

22 flis me

é

»

. .
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-’1

ADA0S4068

RSRE TECH NOTE NO. 739 1HE CORAL 55 COMPILER FOR THE FERRANTI ARGUS 500 COMPUTER

D

s

@

\

\
N\

S et T AT
LN e D 0 L2

ol

TECHNICAL NOTE.

—

T

T " No. 199 A DTy

R Y E
e) rrr | QGLECTE
LR eke Y8 g
| i’HE CORAL 66 COMPILER FOR EERRANTI ARGUS 500 EOMPUTER . c
/i m@man
! », " /: //ﬁ/\‘}
o /
J b’ ool
Royal Radar Establishment,
"Procurement Executive,
Ministry of Defence,
Malvern, Worcs.
THIS DOCUMENT, UNLESS SUBSEQUENTLY DECLARED TO BE
UNLIMITED, IS ISSUED FOR THE INFORMATION OF SUCH
PERSONS ONLY AS NEED TO KNOW.ITS CONTE|
COURSE OF THEIR OFFICIAL DUTIES. Bas besn approved
for public release and sale; its
distribution is unlimited.
804‘% 8. 65 .
LOs ey < 1 .

FOREWORD

Looking back now, the compiler described in this document
can be seen as an impontant stepping stone in the histony
of computer Languages in Britain. 1% was.commissioned by
Feuuanti Ltd fon use in industrial control and automation
projects where thene had been a strong nesistance to high
Level programming fLanguages. Much was going to depend on
the quality of the §inst compilerns, and in particulan the
§inst Conal 66 compiler for the Argus. In the event this
compilern proved to be outstandingly efficient and robust,
which happily prevented attention being diverted §rom the
main objective - increased productivity. 1 am assured by
Feouvanti that this objective was realized very quickly.

That it was possible to produce the Argus 500 compiler so
expeditiously was due in no small measure to the software
tools available to compiler writens at RSRE - tools which
were quickly exploited and sharpened by Mn Gonman. RSRE,
on RRE as it was, had Long Learned the wisdom of applying
computer methods to the production of computer software.

Languages change and Coral 66 must eventually be modified
(and ultimately displaced) as users become more dmanﬁ
and compiler writens discover new methods of dealing wi
Language problems. But the techniques which were used in
making the Angus 500 Coral compiler are not obsolete, and
shoutd prove of particularn interest and value to the many
AmpLementers of Coral 66.

P M WOODWARD February 1977

&

i CORAL 66 COMPILER FOR ARGUS 500

] : Part 1 = Description

1 Introduction

!..0.'..'..O..0.'0.0....ll...'....'.....z

]
24
N

Implementation Notes

Language Definitionccceececccceccvsccesscecesl
AdAressSeS cecescvsscccscssscccsvesccscsccsscsacsead
Data Allocation ceccsvccscccccssctcsnnsesescascssed
Chaining and JUMDPS cccessecccccsrsccssnccscscassacsd
Loader Interface ..eveeccvcevessosnsscscoscssceneell
Compiler Data Structurescceeceeceveccsseesssl0
Library Procedures ccccecccccssccoscessscesccncesell

Tae.

N OISV =

- o 3 Preprocessor and Macro Expander

1 Overall Description
.. 2 Module Descriptions

o.oo.otoo.ooo-o-c-aoou-.l.ocoz.?

-o.n.ool-.nIo-o-uc"'000'0n0042

4 Compiling Strategy

0...:....000.oo'tlo-not.ol-0000'060

5 Syntax

v 1 Syntax AnalySerecsevscccssccsccsnsccsansaessd]
B 2 Sy'ntax Rules oo.uo....oco--oc00000000010100100.0101

. 6 Module Descriptions = Procedures

.o-o--o-ooonouon.o114

7 Module Descriptions ~ Labelled Blocksecoeeee.s160
* 8 El‘rors .'.'..................'.'...‘..l.......l...-.198
Part 2 - Computer Printout

1 Compiler

1 Coral Program
2 Identifier Occurrences

2 Syntax

" ' 1 Syntax Input to SAG
2 Identifier Occurrences

e

(e
B

;. \I\ntroduction

This documentation is a working description of the Coral 66 compiler for
the ARGUS S00 produced by RRE under contract from Ferranti Ltd.

It serves not only as a guide to the actual operation of the compiler, but
also as an example of the use of RRE compiler building tools and techmiques.
These represent the culmination of many man years of research, as also do
some of the important Algorithms used within the compiler., These techniques
E- and Algorithms have been used in other compilers produc y RRE, and detsails
k have been, or will be, mede freely available.
Thie description is not intended to be a specification of the Compiler, nor

E is it intended as a guide to compiler writing for general publication. It
L : is hoped however that it contains sufficient information for the necessary

: understanding of the compiler operation required for its future maintenance.

. i Where any doubt is raised by, or ambiguity discovered in, the description of
any section of the compiler, reference should be made to the actual program
of the compiler, as this uniquely determines its operation. As the compiler
itself is written in Coral, this should not prove to be too difficult.

The use of the compiler to compile itself makes it to a large extent self
checking. Its very modular nature enables testing to be simplified as many
modules are non interacting. The central routine, about which the whole
compiler is built, uses a transformed syntax which has been exhaustively
checked by syntax manipulation programs. These features should enable a

. high degree of confidence to be placed in the correct operation of the
= Compiler.

Part 1 of this document contains the detailed description of the individual
modules forming the Compiler. This is preceded by notes on particular aspects
of the techniques and standards used, and by an overall description of the
compiler strategy, quoting the syntax rules in which it is embedded.

Part 2 consists of printouts of the actual program of the compiler and of the

- final syntax used. Each of these is accompanied by a list of all the

. identifiers used, giving the names of the pages on which they occur, the number
of occurrences on each page, and the total number of occurrences.

Language Definition

i Y

; This implementation is based on the Official Definition of Coral 66, (May 1970)
3 : and with the exception of two features, conforms to this definition.
3 (Type D without Recursion)

3 The first deviation concerns bit numbering: Ferranti standard bit numbering
E is used. The second of these concerns Tables., On the ARGUS 500, it is
inefficient to multiply the index by the number of words per entry each time
a field is referred to. Therefore only the total size of a Table is
specified, all indices requiring to be implicitly multiplied by the

9 appropriate factor. As a consequence of this, individual fields may not
- be preset.

:f’ In addition to the O0fficial Definition, the following extra features are
' ' incorporated:
. Shift Operators
p- Exponentiation
3 VALUE Procedures
Repeated Procedure Calls
Overflow Tests
Implied Tests against Zero
LABEL addresses as operands
. . SPECTAL arrays
' Tracing Facilities
Test Compilation
Integers of specified significance
Alternative use of square brackets
Page Titles
Alternative Literal and Octal constantas

Hexadecimal constants

e AR v

Identifiers commencing with £ and %

; : Macro Identifiers terminating with !
Optional Items preceded with ?

o

PRt &

Addresses

Within the compiler, and also within the loader, addresses are handled as a
24 bit word in a consistent manner. Certain types of address will however
only occur in a limited context. In general an address consists of two
components: & base and an index. The base is in the range 0O~7 and is held
in 'BITS' [3,6] of the word, and the index in 'BITS' [14,10]. The eight
different values of base refer to eight conceptual areas of core as follows:

Base . Area Mnemonjc
0 Absolute A
1 Program P
2 Data D
3 Special data S
4 Common c
5 Library L
6 External E
1 Working constants W

These areas are referred to by the first letter of the area name, and addresses
within these areas by the area letter followed by one or more octal digits for
the index. 1In the case of bases 1-4 the actual address is given by the sum of
the relevant base plus the index. In the case of base 5 (Library) the index

is the reference number of the library item. The index in the case of base 6
(External) is made up of two components, 'BITS'[5,10] being the number of the
external relocation base, and 'BITS'[9,15] being 'OCTAL'(400) plus the
displacement about that base. Base 7 (Working constants) is used to enable the
loader to optimise the allocation of storage for fixed constants at load time.
Within the compiler the index is always zero.

Bases 1, 2 and 3 always refer to locations within the current segment, the
other bases referring to locations outside.

The remaining spare bits are used in the compiler and the loader to carry
auxiliary information in specialised cases.

The most frequent of these within the compiler is where 'BITS'[10,0] are all set
to 1's. In this case the value of the index is the number of an accumulator.

An address of this type is never passed to the loader as it is automatically
converted to an absolute address in the procedure OUTI. The value used to set
these bits is given by AMARK.

Within the loader 'BITS'[3,3] may be used to hold a relativiser setting, these
bits being in the correct position for setting the NWREL and NRREL registers.

DATA ALLOCATIOR

All non-overlayed data declared within a program segment is allocated locations
within the D area of the Segment, and is addressed relative to the start of this
area., The variable used within the compiler for this allocation is DATAMAX.

Two other variables are used, in conjunction with DATAMAX, for the allocation of

anonymous locations used as temporary workspace. These variables are DATASTART
and DATAPTR.

A flag PRESETOK is used to indicate whether presetting is allowed, preset items
being output using the transfer address DTA.

The actions taken within the compiler concerned with data allocation are as
follows:

A Before the compilation of a Program segment, the flag PRESETOK is set.
The variables DATASTART, DATAMAX, and DTA are all set to the starting
"address" of the data area. (ie Tag=D,index=0)

At the start of a block, the current values of DATASTART, DATAMAX and
PRESETOK are placed on the stack. DATAMAX is then set to the value
of DATASTART.

As the declaration of each variable, table, and array, is processed,
it is allocated the address given by the current value of DATAMAX,
which is then incremented by the number of words required by the item
being declared.

After each declaration, DATASTART is set to the value of DATAMAX.
Before the first statement of a block, the flag PRESETOK is cleared.

Before each statement within the block, DATAPTR is set to the value
of DATASTART.

Temporary locations, used within a statement, are allocated using
DATAPTR, which is incremented by one each time. If jits value exceeds
that of DATAMAX, this is also incremented. Temporary locations allocated
in this way may be re-used if it is known that they are vacant.

At the end of a block, the values of DATASTART and PRESETOK are restored
to their values held on the stack. DATAMAX is only reset if its stacked
value exceeds its current value. As a result of this action, at the

end of a Program segment, the value of DATAMAX will give the total

data requirement of the segment. Similarly, after the declaration of a
procedure, which is treated as a block even if it contains no declarations,
the value of DATAMAX will have been incremented by the total data
requirement of the procedure.

Before a list of preset constants, the flag PRESETOK should be inspected.
If it is clear, the presetting is illegal, and the list of constants
must be ignored. If DTA is not equal to DATASTART, a directive is
issued to the loader to skip the data transfer address forwards, and

DTA is set to the value of DATASTART.

After each preset constant, the number is rescaled to the scale
required by the declaration. The number is only output if PRESETOK is
set and DTA is less than DATAMAX. The value of DTA is incremented by
one each time a constant is output.

Chain sation

In general, the destination of conditional and unconditional jump instructions
generated by the compiler is not known at the time of their generation.

There are several solutions to this problem. One is to generate pseudo

labels where the jump is not explicitly to a label ('IF' . . *THEN' . . 'ELSE'
and use an assembler to insert the correct addresses. This usually requires
more than one assembler pass. Another method is to fill in the addresses by

a further compiler pass. A third method is to use a "branch ahead" table,
which records the addresses of incomplete jump instructions. When the
destination is discovered, directives are output to fill in the required

addresses. Unless this table is arbitrarily large it will become full at
some time.

; The chaining method used by the compiler has none of the above disadvantages.
A Consider the case of a simple forward jump to a2 label not yet set. The first
' Jjump instruction is output with a zero address field, and its address stored
N in the record for the label. If a second jump instruction to the same label
is to be output, it is output with its address set to the address of the first
jump, and the address of the first jump in the label record replaced with that
of the second. This may be repeated an indefinite number of times without
using any further storage space within the compiler or loader. This builds
up a chain of jump instructions in the compiled program. When the destination
“~ finally discovered, the compiler outputs a directive to set the addresses
of the instructions on the chain to the required destination.

Further complexities arise in the single pass compilation of block structured
languages. Consider the following example:

1 'BEGIN' 'FIXED' . . .
2 L: o ¢ ¢ ¢ ¢ 0o @
3 'BEGIN' 'FIXED' . . .
4 'GOTO' L; « « .
5 'BEGIN' 'FIXED' . . .
6 1GOTO! L; + o
' - 'GOTO' L; « « o
8 'END' LEVEL 3;
. 9 L: o &
% 10 YEND' LEVEL 2;
T 11 'GOTO' L; . . .
, 12 'END' LEVEL 1;

When compiling the jump of line 4, it is not safe to assume that the jump is
to the label L of line 2. In fact, although the information is not available
at this point, it ias a jump to the label L of line 9. Similarly, when
compiling the jump of line 6, it is not safe to assume that the jump is to the
label L of line 2, or even that it is the same lebel L referred to in line 4.

Y

ey However, when compiling the jump of line 7, it is safe to assume that the
reference to the label L is a reference to the same label used in line 6,
because these both occur at the same block level. When the end of bdlock level
3 is reached on line 8, it may be deduced that the label L referred to on line
4 is the same label L referred to on lines 6 & 7 because it has not been set
at block level 3.

3§

The setting of the label L on line 9 supplies the destination for the jumps
of lines 4, 6, and 7. At the end of block level 2, line 10, this label goes
out of ascope, and any record of it may be safely discarded, because it has
been set. The reference to the label L in the jump on line 11 may safely be
taken to be a reference to the label of line 2 because these both occur at
the same block level.

Thus, when searching for a label record, only the list pertaining to the
current block level may be used.

These complexities introduced by block levels do not present any great problems
when chaining is used. All cases may be handled witk the following directives:

1 Set chain starting at N to current program address
2 Join chain M on to end of chain N

3 Set chain N to address A

The first directive is sufficient for non-block structured cases, and is used
to set forward references within a block level. It may be seen that this
directive is in fact a special case of the third.

The second directive would be used in such cases as given at line 8 of the
above example. Here a chain exists for block level 3 and also for level 2

in its simplest form). As it is desirable to discard the level 3 record, the
level 3 chain is joined on to the end of the level 2 chain, using a type 2
directive, only one reference within the compiler being retained. Vhen the

label is subseguently set, in line 9, a type 1 directive is used to set this
composite chain.

If however the label setting of line 9 had been omitted, when the end of block
level 2 was reached in line 10, it would be discovered that the label was
already set at block level 1. In this case, the third type of directive

would be used to set the chain to the address of the label in line 2.

Apart from jumps generated as the result of explicit 'GOTO' statements, there
will be a considerable number of Jjumps generated "anonymously", not to specific
labels, but implied by certain language features. The most obvious are those
concerned with conditional statements. A statement such as:

'IF' A=B 'THEN' C+D 'ELSE' BE+F;

might generate:

Compare A and B

Jump if not eqﬁal
Assign D to C

Juﬁp unconditionally
Asgsign F to E

Here it may be seen that two forward jumps are involved, the first (conditional)
jump skips over the consequence statement, and is due to be set at the
commencement of the alternative statement. The second jump is used to skip
over the alternative statement, and is due to be set at the commencement of

the following statement.

R At oA LA AN i TR i

e

Where a condition involves more than one comparison, the Official Definition
states that the condition is to be evaluated from left to right only as far

as is necessary to determine the overall truth or falsity.

This implies that

the condition is not to be evaluated as a Boolean expression, with only the

final result being tested;

but that each comparison must be tested individually,

immediately after its evaluation.

Thus a statement such as:

'IF' A=B 'AND' C=D 'OR' E=F 'AND'

might generate:

G=H 'THEN' I~J 'ELSE' KeL;

7 i Compare A and B
Jump if not equal ™
Compare C and D
| Jump if equal ml

Compare E and F -

Jump if not equal B

Compare G and H

Jump if not equal P~
7 " Assign J to I
z - Jump uncpnditionally J
g (. Assign L to K :
~ E
2 This example illustrates that, irrespective of the complexity of a conditional i

statement, only two chains are required. (per conditional depth). The first ¢

of these is the "skip" or "false" chain, which is used to skip over the i
consequence statement. The second being the "true" or "due" chain, which is
used to jump directly to the consequence statement, and is due to be set at
its commencement. The application of chaining to such cases should be obvious.

What is not so obvious however is how cases involving explicit conditional
Jumps may be compiled efficiently. As an example, a statement such as:

'IF' A-B "THEN' 'GOTO' L *ELSE* 'GOTO' M;

might, in the worst case, generate:

Compare A and B

Jump if not equal

Jump unconditionally

Junmp uncondi tionally |

Y
v N e

f_Jump unconditionally —— > To M) “i

-
whereas it would be preferable to generate:

Compare A and B

- —— ._.\‘ Bl
ToL X Jump if equal
S 4 —

Jump unconditionally f~——'—_——5\T°.;i>

-

and in a complicated case, such as:

'IF' A=B 'AND' C=D 'OR' E=F 'AND' G=H 'THEN'

to generate

'GOTO' L 'ELSE' 'GOTO' M;

Compare

A and B

Jump if

not equal

Compare
-1 Jump if
Compare

Cand D
equal
E and F

N

Jump if

Compare

not equal
G and H

(‘EB L)e-—"--
~

e s

Jump if

equal

-

|

D

—

Jump unconditionally

3 ’/ v
___;{ To M,/

In the above example, the chains of jumps, which are set up before it is
discovered that a jump to a label is required, may be set to, joined on to,
or remembered as, the reference to the label at the appropriate block level.

This does not solve the problem of 'THEN' 'GOTO' optimisation.

It may be inferred

that it would be advantageous not to output the final test instruction on the

occurrence of the symbol 'THEN', but to defer its generation.

In the case of

'THEN' 'GOTO' LABEL its sense is required to be reversed, but not in the case

of 'THEN' 'GOTO' SWITCH.

possible, becomes rather complicated.

Thus the syntactic detection of this case, althousgh

Explicit conditions also occur following the symbol 'WHILE' in 'FOR' statements.
It is interesting to note the similarity between the execution of the controlled
statement if the condition is true, and the execution of the consequence

statement in a conditional statement.

Implicit jumps are also generated as a

part of 'STEP' - 'UNTIL' elements, and also from the end of the controlled
statement to the instructions to calculate and test a further value of the

control variable.

Another case of implicit jumps is where procedure declarations occur at the

head of a block, and require to be jumped around.

Where however, this block

is the outer block of a procedure, this jump may be omitted, as the entry

point of the procedure has not yet been reached.

In the Argus implementation,

the location reserved to hold the pointer to the first executable instruction
of a procedure needs to be set when this point is reached.

In the case of typed procedures, it is desirable to check that the procedure
has at least one 'ANSWER' statement, and that a return to the point of call is

only made by means of such a statement.

The return to the point of c¢all by

obeying the implicit return instruction at the end of the procedure body is

only applicable in the case of untyped procedures.

In the Argus implementation,

a single return instruction may be generated after each 'ANSWER' statement, except

where 'PROCEDURE' 'TRACE' is required;

in which case all 'ANSWER' statements

except one occurring as the last statement of the body require to be followed
by a jump to the tracing instructions generated at the end of the procedure.

Am i AR et v are st =

i
:
?
H
i
H
i
'
B

The scheme used by this compiler requires two chains at each conditional level,
referred to by the variables SKIPCHAIN and DUECHAIN within the compiler. It
also makes use of a variable, STATUS, which indicates the context in which a
statement occurs.

At the start of each statement, DUECHAIN holds a chain of jumps, which may in
fact be null, due to be set before the start of the compilation of the statement;
SKIPCHAIN holding a chain of jumps bypassing the statement. At this point,

the values assigned to STATUS indicate the contexts set out below.

STATUS=0

Control is passed normally from the preceding statement. If DUECHAIN is non
zero, the statement is also entered by means of a jump. (The contents of
the accumulators being undefined)

STATUS=1

Control is not passed normally from the preceding statement. This statement
can only be entered by a jump. If DUECHAIN is zero, the statement cannot be
entered.

STATUS=2

The preceding statement was an 'ANSWER' statment, and requires either an exit
instruction or jump to the end of the procedure (using EXITCH) depending on
whether trace is required. If DUECHAIN is zero, the statement cannot be
entered.

STATUS=3

The preceding symbol was 'ELSE', and an unconditional jump around this
statement is required before DUECHAIN (which will be non zero) can be set.

STATUS=4

The preceding symbol was 'THEN', (or 'THEN' 'ELSE® together) and a conditional
jump around this statement is required before DUECHAIN (which may be zero)
can be set.

At the beginning of the compilation of a block which does not form the body of
a procedure, both STATUS and DUECHAIN will be zero, it being assumed that such
blocks are actually entered at their head.

If a procedure declaration occurs whilst STATUS is zero, an unconditional
jump, with an initially zero address part, is output, its location being
recorded in DUECHAIN. This is the instruction to skip over procedure
declarations. 1Its use could be avoided, but only at the cost of completely
re~ordering a segment, which is an extremely complicated operation with a
single pass compiler.

At the start of the procedure declaration, after the skip over instruction

has been output if required, the current value of DUECHAIN is stacked.

STATUS is then set to 1, and DUECHAIN set to the location of the pointer to the
procedure. (In the case of Library procedures, to the Library "address", with
a sign marker for the convenience of the loader.) After the declarations, if
any, at the head of the procedure, DUECHAIN is set, STATUS is set to zero, and
the instructions to store the link and parameters generated as required.

10

At the end of the procedure declaration, DUECHAIN is restored to its stacked
value, and STATUS is set to 1. When the actual start of the block is found,
DUECHAIN will be set, thus completing the skip over instruction.

At the start of each statement, the value of STATUS is required to be
inspected, and the chain DUECHAIN is required to be set. Except in the case
of statements of the form 'GOTO' Label, this is carried out by the procedure
STATUS TEST, which is called by the compiling actions STATUSCHECK and
STATUSCODE. This procedure outputs the required jump instruction if the value
of STATUS is greater than one, and resets STATUS to zero. If DUECHAIN is
non-zero, STATUSTEST sets the chain to the current program address, and resets
DUECHAIN to zero.

Most statements will leave STATUS set to zero. Answer statements will however
set it to 2, and most cases of 'FOR' and 'GOTO' statements will set it to 1.

A conditional statement will initially set the value of STATUS to 4. The
current value of SKIPCHAIN is stacked, and SKIPCHAIN is set to zero in
readiness for the following condition. (DUECHAIN will at this point be zero.)
After each comparison (or overflow test), FUNCTION and ACCUMULATOR are set

to the appropriate values for a conditional jump instruction, the jump
occurring if the "result" of the comparison is false.

If the comparison is followed by the symbol 'AND', this jump is output with
its address on the SKIPCHAIN. If however the comparison is followed by the
symbol 'OR', the type of the test is reversed, the instruction output with

its address on the DUECHAIN, the SKIPCHAIN set to the following comparison,
and SKIPCHAIN cleared.

Following the symbol 'THEN', the consequence statement will be processed.
Provided that this statement is neither null, nor of the form 'GOTO' Label,
this will present STATUSTEST with a value of STATUS of 4. In this case the
conditional jump instruction will be output with its address on the SKIPCHAIN
before DUECHAIN is inspected.

If however, the consequence statement is of the form 'GOTO' Label, the type

of the test instruction is reversed. This is then output, using the chain for
the label as its address, DUECHAIN being linked onto the end of this chain

(or set, as appropriate). This case leaves DUECHAIN clear, and STATUS set to 5.

If the symbol 'ELSE' follows, preparation is made for the alternative statement.
The values of SKIPCHAIN and DUECHAIN are exchanged, thus the skip over the
consequence statement being due to be set at the start of the alternative
statement. If STATUS is zero, it is set to 3 to indicate that a jump to skip
over the alternative statement will be required. If however the value of
STATUS is 5, this jump is not required, and STATUS is set to zero. If the value
of STATUS is 4, the consequence statement was null, the type of the test
instruction is reversed, and STATUS left set to 4.

The alternative statement will usually present STATUSTEST with a value of
STATUS of 3. In this case, an unconditional jump instruction, with its address
on the SKIPCHAIN, will be output. If however, the alternative statement is

of the form 'GOTO' Label and STATUS is 3, no instructions will be output. In
this case the DUECHAIN is set to the address of, or added onto the chain for,
the label; STATUS being reset to zero.

1"

At the end of the conditional statement, the value of STATUS will only be 4 if
the consequence and alternative statements are both void. The test instruction
is output only if it is an overflow test. If the value of STATUS is greater
than 2, STATUS is set to zero. The SKIPCHAIN is then joined on to the end of
the DUECHAIN, and SKIPCHAIN reset to its stacked value.

'FOR' statements also stack the value of SKIPCHAIN, this chain being used in
conditions and tests within the for-list. Except in the case where the
for-list is a single step~until element consisting only of three constants, the
SKIPCHAIN is used to exit from each for element in turn, as it becomes
exhausted, and finally from the for statement.

At the end of the for statement, the value of SKIPCHAIN is assigned to DUECHAIN,
and SKIPCHAIN reset to its stacked value. Where the simple step~until case

has been detected, STATUS will be left set to zero. Otherwise it will be set

to 1, except in certain cases where it will be left set to 2.

(*FOR* + . () o o '"WHILE' . . *DO' . . "ANSWER' . ,)

The cases of a statement of the form *GOTO' Label occurring as consequence

and alternative statements has been mentioned above. Where a statement of
this form occurs, and STATUS is 1 or 2, no instruction is output, the DUECHAIN
being set to the address of, or joined on to the chain of, the label. Where
STATUS is gzero, an unconditional jump to the label is output, and STATUS is
set to 1.

The compilation of a 'GOTO' Switch statement is always preceded by the
execution of STATUSCHECK. After the required instructions have been output,
STATUS is set to 1.

At the end of the body of an untyped procedure, a return instruction is output
unless STATUS is 1 and DUECHAIN is zero. In this case the procedure has been
left by means of a goto statement, and a return to the point of call is not
required.

A typed procedure must have at least one 'ANSWER' statement. This will leave
STATUS set to 2 and/or EXITCH set non-zero. If, at the end of the procedure,
DUECHAIN is non—-zero or STATUS is zero, an attempt is being made to return to
the point of call other than by an 'ANSWER' statement.

At the end of a Program segment, a final stop instruction is required, unless
DUECHAIN is zero and STATUS is 1. In this case the program is effectively
terminated by a jump.

Conditional expressions require the values of both SKIPCHAIN and DUECHAIN to
be stacked. STATUS optimisation is not applicable in this case, so the value
of STATUS is left unchanged.

12

<

B i

The Compiler—~Loader Interface

The output of the compiler is a form of relocatable binary. In the basic
form of the compiler, this is punched on paper tape. The unit of information
output by the compiler ('PROCEDURE' OUTS) is a five character group, each
character requiring six bits. These characters are output as if they were
legible characters, and so the standard internal-external code conversion
routines may be used. The first character of the group is a directive or

tag (Tz gharacter. the remaining four characters being treated as a 24 bit
word, (W).

Where the tag indicates that the word (W) is to be stored as part of the
current segment, the three most significant bits of the tag (1) Specify
with which transfer address the word is to be loaded, and the three least
significant bits specify with which base the word is to be relocated. It
should be noted that Program instructions are initially stored with the
address in the least significant fourteen bits, and subsequently given ten
places of left cyclic shift.

Most of the tag values used for directives require more than one word to
specify the action required. Thus the requirement for a multi~length group
arises. This is satisfied by alloca‘ing tag O as a (prefix) continuation
tag. When a continuation tag is read the current word (W) is stored in an
array, and the index used in referring to this array incremented, thus
variable length directives may be used. This is required in the cases where
a string is passed as part of a directive. The first location of this array
is referred to as C, and the subsequent locations as C1, 02 etc.

Where an address is specified as part of a directive, the form of the
address is exactly the same as that used within the compiler. Before use,
the address is relocated with the base specified by bits 6=8 of the word.

List of Tags

Continuation, store W in Cn s Dent1
Size Block, W=checksum, C = Pro~ram, C1= Data, 02 = Special

Display message, W=DISP, C=string
Start of common check, W=common checksum
Library Variable Block, W=checksum, C=Lib no,C1=Value, Cz=Identifier

Library Check, W=LCHQ

Entry Block, W=NTER

Stop Block, W=STOP

Store Program, relocate as Absolute
Store Program, relocate as Program
Store Program, relocate as Data

11 Store Program, relocate as Special data
Store Program, relocate as Common

13 Store Program, relocate as Library

oOWwWOW~IoWwm A~VNV = O

-
N

14 Store Program, relocate as External

15 Store Program, relocate as Working constant, C=constant

16 Store Data, relocate as absolute

17 Set chain W to current program address unless W -ve, in which case

set entry point for Library procedure V.
18 Set chain W to address C
19 Store Data, relocate as Special data
20 Join chain W on to end of chain C
21 Set common W to procedure C
22 Set common W to switch C
23 Set common W to label C
24 Store Special data, relocate as Absolute
25 Store 3pecial data, relocate as Program

13

26 Store Special data, relocate as Data

27 Store Special data, relocate as Special data

28 Store Special data, relocate as Common

29 Store Special data, relocate as Library

30 Store Special data, relocate as External

31 Skip Data transfer address forward to W

32 spare

33 Print address W and ldentifier string C

34 Print instruction W and comment string C

35 Change instruction W to 4 JCS

36-38 spare

39 End of segment, W=segment checksum. (c=Common checksum)
40~55 spare

56 Check Common location W, C=Identifier string

57-60 spare

61 Program Segment, W=Common checksum, C=Identifier string
62 Library Segment, W=Library number, C=Identifier string
63 Common Segment, W=0, C=(COMMON)

List of Compiler Sections Generating Tags

0 OUTCONT

1 FINISHSEG

3 COMOFF

4 SETLIBVAR

7 TTAIL

8~16 (0UT24
17 SETCHAINTOPTA

18 JOINCHAINS & ENDFOR
19 oUT24
20 JOINCHAINS

2t-23 ENDPROG
24-30 0UT24

31 SKIPDTA
33 DIAG
34 OUTI

35 SETRT
39 ENDSEG
56 COMOFF

61-63 STARTSEG
Size Blocks (Tag 1)

The segment size block, which although only output after the segment has
been compiled, must be read by the loader before the header of the segment.
The format of a size block is as follows:

W Checksum for block
c Program Size

C1 Data Size

02 Special Data Size

A size block must be followed by a segment header block (tags 61-63).

14

b - e et

%
§
{
}

rogram Header Block ag 61)

W Common checksum

c Segment Identifier String

Only if a segment has been compiled as a single segment program, without
a Common communicator having been read, will the word W be zero. If the
word W is non zero, it must be identical to the Common checksum of the
previously loaded Common segment.
Libra rocedure Header Block (Tag=62)

W Library reference number of Procedure

c Procedure Identifier String
If there is an outstanding requirement for the procedure, the segment
should be loaded. Otherwise it should be ignored, by scanning forward
until an end of segment tag (39) is read.

Common Segment Header Block (Tag=63)

W Zero
c " { COMMON) "

The Common checksum must be zero when the Common segment is loaded, ie
only one Common segment is allowed to be accessed by a Program segment.
The Common checksum is set by the C of the end of segment directive, and
subsequently cleared if a successful Common check has been made.

End of Segment Directive (Tag=39)
W Checksum for RLB tape

c Only present at end of Common segment, and gives Common
checksum

This directive indicates the end of a segment. In the case of a Common
segment, the Common checksum is in C, and subsequent segments referring to
Common must have the same checksum in their header. In the cases of Program
and Librey segments the Program area is to be given ten places of left
cyclic shift.
Library Variable Block (Tag=

W Checksum for block

Library reference number of Variable

C1 Preset value of variable

02 Identifier String

If there is an outstanding requirement for the varieble, this should be
set to the initial preset value.

e o o o 2 - e e o an L

Common Check Header Block (Tag=3)
W Common Checksum

This block is the header of a Common Check tape. The Common checksum in
"W must match that set up by the previously loaded Common segment. This
header is followed by directives (Tag=56) which check that the R |
references within the Common area to Procedures, Switches, and lLabels
have been supplied. The format of these directives is as follows:

W Location to be checked

C Identifier string
Provided that all the checks have been successful, when the end of
segment directive (Tag=39) is read, and its checksum for the tape 1

found to be correct, the Common checksum is cleared. Unless this is
cleared, the program cannot be entered. (or another Common loaded)

Instructions referring to Constants (Tag=15)

W Instruction
c Constant

It is left to the loader to optimise the following:
1 The use of the functions 04-07 -

2 Allocation of storage for constants

In the first case, if the constant is "short", after negation if negative,
and the function is in the range 00~03, the function is changed, and the
constant inserted into the address field.

In the second case, only one copy of each constant will be stored,
irrespective of the number of references to it in different segmenta
(including Library). The address of the constant is inserted into the
instruction, and the function part unaltered.

Change Instruction Directive (Tag=35) b

L] Address of instruction
This directive is used in certain cases of 'FOR' statement. The instruction
at location W is to be changed from an O JZE to a 4 JCS and the address
set to the current Special Data transfer address. (See SETRT)
Print Address Directive (Tag=33)

W Address

c Identifier String

These directives are generated by DIAG if the 'LEVEL! is 2 or 3. These
enable "milestones" to be printed at load time with their actual address.

rint t n Directive =34)

w Address of Instruction

c Comment string
. These directives are generated by OUTI if the 'LEVEL' is 3. These enable
instructions to be printed out in absolute form together with a commentary.
As the address of the instruction may not be set until the end of the segment,
this requires a second pass of the segment block.
References t br =13,29)

W Least significant 14 bits contain reference number.

The Library reference number should be replaced by the address of the
(pointer to) the Library item.

References to External Addresses (Tags=14,30)
W Least significant 14 bits contain external "address"

The address requires the addition of the specified external base to the
displacement.

2320 r gane

The paper tapes punched by the compiler are made up from combinations of
) the items given below. All tapes are in ISO code with even parity, and
N ' except for blank and erase characters, contain only the 64 "printing"
3 characters, corresponding to the internal code representations 0-63.
A Stop Block and Erases

The five characters 7STOP followed by 20 erases.
B Blank

Ten inches of blank tape.

(o] Size Block

; Gives space requirements for following segment. Comprised of
. 20 characters, and includes checksun.

) D Segment Block

: Gives the relocatable binary form of a Program, Common, or
Library segment; and includes checksum.

t a; E Common Check Block

Enables a check to be made to ensure that all references
within a common segment have been supplied.

b Library Data Block

Gives the Identifier, reference number, and preset value of
a Library variable; and includes checksum.

In addition, the following items m~y be used.
G Library Check Block

The five characters S5LCHQ.
H Entry Block

The five characters 6NTER

S Program Segments
The compiler punches the following items:

BDBABCBAB

, The size block (C) should be spliced on to the head of the tape, and the
g_. second stop block discarded; thus re-ordering the items as follows:

BCBDBAB

The lengths of blank tape (B) vetween other items are ignored, and their

] length is unimportant. Where several segments are to be loaded sequentially,

they may be spliced together, and all stop blocks (A) except the final

one, discarded. “

A i

Common Segments
The compiler punches the following items:

BDBABCBABEBARB

| As with Program segments, the size block (C) should be spliced on to the
head of the tape, thus giving:

BCBDBAB
This tape should be loaded before any Program segments referring to it are

loaded. When all these Program segments have been loaded, the remainder
of the tape output for the common segment: E

BEBAB
L - should be loaded. This is the common-check tape, and unless this check is
,,~W satisfactorily completed, the loader will not allow the program to ve

entered.

Libeks i Kl BN
.

e oul

Library Segments
The compiler punches the following items:
BDBABCBAB

The size block (C) should be spliced on to the front of the segment block
(D), both stop blocks being discarded. The resulting tape:

BCBDB

should be spliced on to the front of the library tape.

Library Variables

The compiler punches the following items:
BFBAB

The stop block should be discarded, and the items:

BFB

should be spliced on to the front of the library tape.

b Tape

The library tape should be built up incrementally, each Procedure referring
only to previously compiled Procedures and Variables. These must occur

on the relocatable binary library tape in the reverse order to that of
their compilation. This is why new segments must be placed on the head of
the tape. It is convenient for a library tape to end with the items:

BGBHB

This checks that the library is complete, and causes the program to be
entered at the start of the (first) Program sezment. (Where a complete
Library is to be compiled, a utility program is avzilable for processing
the compiler output without the need for tedious splicing.)

Compiler Data Structures

The workspace required by the compiler consists of:

1 A large table, STACK

2 Global variables and arrays
3 Groups of variables specific to certain language features.
4 Local variables for procedures and labelled blocks.

The table STACK, is declared as having only 39 words of store. This is the
fixed part which is directly referenced, usually by means of overlayed
identifiers. The variable part, which should exceed 3K words if the compiler
is to be compiled, is always referred to by pointers. These pointers usu=lly
pointing to chains of records. The actual area occupied by the variable part
of the stack is set at load time, the three "area" pointers MCSTART, STACKSTART
and STACH™QOP being set up by the use of Externals. These three pointers refer
to areas of core relative to the start of the stack.

The szrea from MCSTART to STACKSTART is used for macro expansion, its size
depending upon the anticipated use of this facility. The area from STACKTOP
dowrwards is used to hold records of labels, this area being shared with the
nain stack which starts at STACKSTART, and increases upwards. A check is made
to ensure that these two stacks do not overlap.)

With the exception of Arithmetic Operand records, all records held on the main
stack are chained. The first word of each record holding & pointer, relative

to the base of the stack, which refers to the succeeding record of the same type.
At any one time there mey be many chains of records on the stack, and extreme
care is reguired in removing them in the reverse order to that in which they
vere placed on the stack. Fortunately, because of the nature of the language
being compiled, this does not present much difficulty.

Chained records are always placed on the stack using the procedure ONSTACK.

This has two parameters, the number of words of the record, and the location in
core of the first word. This procedure uses GRABSTACK to allocate the required
number of words, which uses STACKCHECK to ensure that this is available. When
the record has been placed on the stack, by MOVE, the first location in core
from which the record has been moved, is updated to point at the record. Records
may be moved off the stack, back to fixed locations in core by the use of
OFFSTACK. Note however that this procedure assumes that any space anove the
record on the stack is no longer required. There is automatically no stack
compaction, nor is it needed to languages of the complexity of Coral.

Groups of variables associated with certain §recursive) language features are
moved to and from the stack as the depth of (recursion of) the use of the feature
increases and decreases. These groups commence with the identifiers:

BLOCKCHAIN, LABCHAIN,PROCCHAIN,IFCHAIN,EXPRCHAIN & FORCHAIN

The features with which these groups are associated may be deduced from their
identifiers.

Not all groups on a given chain are always of the same length. In the case of
EXPRCHAIN for example: when the expression level is raised by one, at an
opening round bracket, five words are placed on the stack, on the expression
chain. Vhen a procedure call is detected however, eight words are placed on the
stack on the same chain. The extra expression level being required at the

procedure call level for the evaluation of parameters.

20

ot i L’ aiianEa b o

o dd)

A very important chain is the DECLIST chain of Identifier Specification records.
This holds the specifications of all identifiers (except those of labels local
to a segment) which are in scope. These records consist of five words plus the
Identifier string. During the processing of declarations these records are
built up incrementally in the fixed part of the stack. These are moved onto

the main stack, usually in their completed form, by the compiling action NEWNAME.
The details of this type of record are given in the declaration of STACK, this
being the only type of record, (apart from Arithmetic Operand records, which
share the same structure) which is accessed whilst being held on the stack.

Advantage is taken of the effect of OFFSTACK of reclaiming all space occupied
above the record to which it is applied, in the actions at the end of a block.
This automatically reclaims space occupied by Identifier Specification records
of identifiers which go out of scope at that point. Because of the complexities
introduced by labels, the identifier records of labels are kept in a separate
stack, compaction being required at the end of a block. As no type information
is required to be kept, these records are shorter.

Where an Identifier Specification record is that of a procedure, the PARANSPEC
word points at a Parameter Specification record, which usu=lly follows the
procedure's Identifier Specification record. This record is of between one and
seven words in length. It holds a summary of the parameter requirements of a
procedure, in the form of the TYPEBITS word of each parameter, and is terminated
by a negative word. Thus if a procedure requires no parameters, its Parameter
Specification record consists of a single negative word. As a procedure cannot
have more than six parameters, this record cannot exceed seven words in length.

Arithmetic Operand records are created for each primary during the compilation
of an expression. These records are five words long, the last four words having
the same structure as Identifier Specification records. The first word of these
records is not a chain pointer (CHAIN), but a pointer to a string (SPIEL), which
is used as the comment in a Level 3 listing.

Where a primary is an identifier, possibly subscripted or with parameters, the
Arithmetic Operand record is created by copying the relevant four words from
the Identifier Specification record, and setting the first word to point to the
identifier string in the Identifier Specification record. (By LOOKUP)

Where a primary is not derived from an identifier, for example a constant, the
Arithmetic Operand record is synthesised from the available information, and the
string pointer set to point to an appropriate fixed string (eg "(comsT)").

Arithmetic Opernad records are placed on the top of the stack. Only the two
records currently at the top of the stack are referred to during the generation
of instructions for arithmetic operations. These two records are referred to by
means of the pointers LH and RH, which point to the left hand and right hand
operands of the current operator. Vhen an Arithmetic Operand is added to, or
deleted from, the stack, the pointers LH and RH are updated.

Whilst generating the instructions for an arithmetic operation, (eg *) the
information held in the records referred to by LH and RH is utilised. At the
completion of this, the top (RH) record is deleted, and the remaining (LH)
record modified to become the record of the result of the operation. Thus,
after the compilation of an arbitrarily complicated expression, only one
Arithmetic Operand record remains, this giving the details of the result.

A b o o ot Abt e~

Procedure calls cause one record to be set up on the occurrence of the procedure
jdentifier, and also one record for each parameter. When the call is completed,
the records for the parameters are deleted, and the record for the procedure
modified to give the details of the result.

Subscripts are processed term by term. The compiler actions operating on the
record of the current term, and the record of the variable being subscripted.
After each term has been processed, its record is deleted. This optimisation is
also used for shift operations, in which case a temporary record, similar to that
of an anonymous reference, is used for the operand giving the number of places
of shift.

.
e n i e =

LIBRARY ENTRANTS REQUIRED BY CORAL COMPILER
A For Trace and Diagnostics

'LIBRARY' 'PROCEDURE' %ENDOFPROG/1;

3 ’ This is called at the end of every program segment which does not finish
b with a GOTO statement.

*LIBRARY' 'PROCEDURE' UNSETLABEL/2('VALUE' *INTEGER' LABEL);
2 N
This is called when a jump is attempted to a label which has not been

set. The name of the label is passed in the form of a string as the
parameter.

'LIBRARY' 'PROCEDURE' %LABELTRACE/3('VALUE' 'INTEGER' LABEL);
- This is called when a label in the scope of a 'LABEL' 'TRACE' directive is

Jumped to or passed through. The name of the label is passed in the form
of a string as the parameter.

'LIBRARY' 'PROCEDURE' %ENTERPROC/4('VALUE' *INTEGER' PROC);
This is called when a procedure in the scope of a 'PROCEDURE' *'TRACE' directive 1

is entered. The name of the procedure is passed in the form of a string as
the parameter.

'LIBRARY' 'INTEGER' 'PROCEDURE' %EXITPROC/5('VALUE' 'INTEGER' PROC);

This is called when a procedure in the scope of a 'PROCEDURE!' 'TRACE' directive
returns to the point of call. The name of the procedure is passed in the form
of a string as the parameter. This procedure must 'ANSWER' %ANSDUMP to restore
the result in cases where the procedure being traced delivers a result.

'LIBRARY' 'PROCEDURE' %ANSWER/6('VALUE' ANSWER:SCALE);

This procedure is called when a procedure in the scope of a 'PROCEDURE' 'TRACE!
directive delivers an answer. The first parameter is the result of the
procedure and the second parameter its type-scale. The answer must be assigned
to #ANSDUMP so that it may be restored by %EXITPROC.

'LIBRARY' *'INTEGER' 'PROCEDURE' %ASSIGN/7('VALUE' RESULT:SCALE; 'VALUE' 'INTEGER' VAR)

] This procedure is called after the value of an assignment statement in the scope
! of an 'ASSIGNMENT®' *TRACE' directive has been computed, and before the actual
assigmment takes place. The first parameter is the value calculated and the
‘ second parameter its type~scale, The third parameter is the name of the
variable to which the assignment is to be made, this is passed in the form of
a string. Where the assignment is to be made anonymously the string is
b o "(ANON)".

This procedure must 'ANSWER' RESULT; to restore the value.
W G 'LIBRARY' 'INTEGER' %ANSDUMP/8

] This variable is used to store the result of a procedure between calls of
: %ANSWER and EXITPROC.

\ S

.
LU
»4

Qo S e R e R S Rl A NIRRT N YW S £ ST D1 NN i e ot - . § .

N g S S ot s S e kNS

*LIBRARY' 'PROCEDURE' %FORTRACE/9('VALUE' VAL:SCALE; 'VALUE' 'INTEGER' VAR);
This procedure is called each time the controlled statement of a for-statement
within the scope of a 'LOOP' 'TRACE' directive is entered. The first parameter

is the value of the control variable, and the second its type-scale. The third
parameter is the name of the variable in the form of a string.

B Floating Point Arithmetic
x The following procedures preserve the setting of the overflow indicator on entry, .
and reset it to its previous setting on exit; unless the operands cause the
procedure to deliver a result which lies outside the prescribed range, in which
case the overflow indicator will be set on exit, and the result will be zero.
*LIBRARY' 'FLOATING' 'PROCEDURE' %FPFLOAT/10(!'VALUE' NUMBER:SCALE);
Tiais procedure is used to convert 'INTEGER' and 'FIXED' welues to 'FLOATING',
in standardised form. The first parameter is the number to be converted, and
the second its type-scale.
'LIBRARY' 'FLOATING' 'PROCEDURE' %FPMULT/11('VALUE' 'FLOATING' A,B);
This procedure performs the floating point multiply operation, delivering as
its result the floating point value of the first parameter times the
second parameter. (A*B)
'LIBRARY' 'FLOATING' 'PROCEDURE' %FPADD/12('VALUE' 'FLOATING' A,B);
This procedure performs the floating point add operation. (A+B)
'LIBRARY' 'FLOATING' 'PROCEDURE' %FPSUB/13('VALUE' 'FLOATING' A,B);
This procedure performs the floating point subtract operation. (4~B)
'LIBRARY' 'FLOATING' 'PROCEDURE!' %FPDIV/14('VALUE' '"FLOATING' A,B);
This procedure performs the floating point divide operation. (A/B)
YLIBRARY' 'FLOATING' 'PROCEDURE! %FPRAISE/15('VALUE' 'FLOATING' A,B):
This procedure performs the floating point exponentiate operation. (AtB)

'LIBRARY' 'FLOATING' 'PROCEDURE' %FPRAISE1/16
(*VALUE' 'FLOATING! A;'VALUE' 'INTEGER' I);

This procedure performs the floating point exponentiate operation to an
integer power. (AtI)

'LIBRARY' 'FLOATING' 'PROCEDURE' %FPRSUB/17('VALUE' 'FLOATING' A,B);

This procedure performs the floating point subtract operation with the
operands interchanged. (B-A)

'LIBRARY' 'FLOATING' 'PROCEDURE' %FPRDIV/18('VALUR' 'FLOATING' A,B); y

/ This procedure performs the floating point divide operation with the operands
g interchanged. B/A) .

'LIBRARY' 'FLOATING' 'PROCEDURE' %FPRAISE/19('VALUE' 'FLOATING' A,B);

y A This procedure performs the floating point exponentiate operation with the
W operands interchanged. (BtA)

11 24

M

*LIBRARY' 'FLOATING' 'PROCEDURE' %FPRRAISEi/20
(*VALUE' 'INTEGER' I; 'VALUE' 'FLOATING' A);

This procedure performs the floating point exponentiate operation to an
integer power, the operands being in the reverse order to those of
GFPRAISEi. (AtI)

"LIBRARY' 'INTEGER' 'PROCEDURE' %FPFIX/21
('VALUE' 'FLOATING' A; 'VALUE' INTEGER' SCALE);

This procedure converts the floating point number supplied as the first
parameter to the scale specified by the second parameter.

C NON-STANDARD LIBRARY PROCEDURES USED BY FLOATING POINT ARITHMETIC

'LIBRARY' 'PROCEDURE! %FPNORM/?Z; @7-number,@-exponent ,@4~1ink+overflow marker. l
This procedure normalises and packs floating point numbers. On exit the ‘
floating point number is in @7, and overflow is only set if the sign bit
of @4 was 1 on entry. If however, the number is out of range, %TPERROR
is called.

*LIBRARY' 'PROCEDURE' #%FPERROR/23; @4=1ink

This procedure is entered by all floating point procedures where the operands
or the results lie outside the specified range. This procedure sets overflow
and clears @7; (This procedure could be revised to have a parameter specifying
the type of error, this could be either a simple integer or a string).

'LIBRARY' 'PROCEDURE' %FPLOGCOM/SO; @7=floating point number,@5=1ink

] This procedure evaluates the logarithm to base e of the floating point number
1 - supplied in @7 as a'FIXED' (18,11) number in @7. If overflow is set on entry
; the sign bit of @4 is set to 1. This procedure does not use 6.

'LIBRARY' 'PROCEDURE! %FPEXPCOM/SZ; @T=number, @4=1ink+overflow marker,@3=—scale.
This procedure evaluates e to the number given in @7 after fixing the numbver,

using the scale given in @3. This procedure exits to %FPNORM without
altering @4.

D OTHER FLOATING POINT PROCEDURES
(See note on section B regarding overflow)

*LIBRARY' 'FLOATING' 'PROCEDURE' LOG/51('VALUE' 'FLOATING' A);

. This procedure evaluates Loge(A), where A>0.
ﬂ.:j 'LIBRARY' 'FLOATING' 'PROCEDURE' EXP/53('VALUE' 'FLOATING' A);
This procedure evaluates eA.
*LIBRARY' 'FLOATING' 'PROCEDURE' EXPM/54('VALUE' 'FLOATING' A);
. This procedure evaluates e-A.

*LIBRARY' 'FLOATING' 'PROCEDURE' SIN/61('VALUE' 'FLOATING' A);

\&i ? This procedure evaluates sine(A), where A is in radians.

E i 25

'LIBRARY' 'FLOATING' 'PROCEDURE' C0S/62('VALUE' 'FLOATING' A);

This procedure evaluates cosine(A), where A is in radians.
'LIBRARY' 'FLOATING' 'PROCEDURE' ARCTAN/63('VALUE' 'FLOATING' A,B);

This procedure evaluates tan-1(A/B). The result is in radians in the i
range YT,

f] E OTHER PROCEDURES DELIVERING A NUMERIC RESULT ‘

'"LIBRARY' 'VALUE' 'PROCEDURE' SQRT/40:OUTSCALE('VALUE' X:INSCALE);

This procedure evaluates the square root of X, where X>0. The result is

scaled to the scale required by OUTSCALE. Overflow will only be set on exit

if it was set on entry, if X is negative, or the result cannot be rescaled
) to the required scale.

'LIBRARY' 'FIXED'(24,23)'PROCEDURE' FIXSIN/65('VALUE' 'FIXED'(24,23) X):

This procedure evaluates sine (7X). (ie X is scaled in half revs)
Overflow is cleared on exit. As a result of +1.0 would cause overflow,

sine(”/2) is represented by 1=2"23, Similarly sine(=7/2) is represented

by -142723,

'LIBRARY' 'FIXED'(24,23)'PROCEDURE' FIXCOS/66('VALUE' 'FIXED'(24,23) X):
E
This procedure evaluates cosine(X) using sine((X+)).

= N 'LIBRARY' 'FIXED'(24,23)'PROCEDURE' RANDOM/T1;

This procedure delivers random numbers in the range O to 1. 1

doaias

'LIBRARY' 'INTEGER' %RANDOMINT/70~ 262143;

This is used as workspace by RANDOM. Its initial setting determines the
sequence of random numbers produced by RANDOM.

A\ ‘ 26

p- READER

Introduction

The Reader (pre-processor) is the only section of the compiler concerned
with the individual characters which form the source program. It processes
these, grouping them as required, to produce a series of symbols representing
- the source program. This symbol sequence is then analysed by the syntax
g analyser, which in this implementation not only checks for the legality of
their occurrence within the sequence, but also invokes the required compiling
actions at the appropriate points.

Some symbols may have an arbitrarily large number of character combinations
allowable as their representation. These differing representations although
syntactically indistinguishable are semantically distinct. Thus a symbol
group may not only have a syntactic "value" associated with it, but may
also have a semantic "value" which is a function of the actual characters
themselves. For example: in this implementation, a non-zero integer

- constant has a single syntactic "value", but has over sixteen million
possible semantic values (which in this case is its numeric value), and
several times this number of permitted representations.

The syntactic symbols are passed to the syntax analyser, one symbol per
call of READER, using the variable T1. As semantic values are evaluated,
they are passed to the compiling actions through global variables, these
being: NUMBER,NUMBERSCALE,RELOP,ACCUMULATOR,FUNCTION,NACC and NAME. In
the last case NAME is the start of an area into which completed strings
representing identifiers are placed. It would be possible to incorporate
the syntax for identifiers into the table which is used to steer the syntax

L . analyser. This would however prove to be rather slower in operation. As

' the macro expansion facility is required, the Reader must examine each

identifier before it is "seen" by the syntax analyser, to determine whether
it is the identifier of a macro. If macro expansion is not required, the
string is moved to NAME. An alternative method could be used, where each
identifier is represented by a unique integer value, new values being
assigned to identifiers on their first occurrence. This technique is often
used in conjunction with "Hash Tables".

The Reader removes from the source program all layout and comment, Macro
definitions, deletions, and calls; and also 'HALT' directives and
optional items.

A\ : 27

READER; INFORMATION FLOW

| o R SYNTAX
= Internal Code Terminal
Characters Symbols(T1)
- Y
) Data to compiling
. ' actions
L T Checked terminal symbols
k- CSUM Common checksum
" NUMBER
Constants
NUMBERSCALE
RELOP Relational operators

ACCUMULATCR g Code instructioms

FUNCTION) Shift operators

E NACC Accumulator operands
NAME Identifiers
—_— and

strings
¢

-

) \

] (, 28

. \. :

READER:

SIMPLIFIED FLOWCHAR!

ENTER ReADE
Y RoM STNTAX

(LeAVE CHARACTER
w T1) !

29

ANALYSER
v
5 - v —
7 >V € <
A
15 T2 ciLenr?
A \ |
READ NExT
VSE CHRRACTER KAARACTER FROH
S ToRE TAPE cR FRoM
LTORED 1N T2 MACRO EXPANZICN
D 4
5 < 4 A
7 = A
LETTERS <SPACES
< SwiTed ¥ /
v CHARACTER
FRLLT
DTS e A
S Rme
\(SYMBuLs cnARACTER
A "“‘“‘““’"" h{ Y ‘ocqim’ e
Y and e PP AL
STRINGS
‘emp’
- Sw T
Conmens IDENTI - SYMRdon. CLITAVE Y 3 '
FIERS lrpednine, “Nel pars wWOR DS VLwWEaRY
A51C g
Yes s Joeeme
N |, [RYs L
4 Y y /
RATG eeh Tionay How
& MAcRO CLEAR T, S FT [svaracTic 3
T ehRatcks DIRECT VeS|

LIST OF TERMINAL SYMBOLS PASSED T0 SYNTAX ANALYSER

Value

P N T g e e
TN OO0 0-JOWw AN -0

Symbol

Zero Constant
Integer Constant
Real Constant

Shift Operator
Relational Operator

String

Code Instruction
Differ

End

If

Colon
Semicolon
Then
Overflow
No

Trace
Assignment
Loop

And

Or

Union
Location
Mask
Special
Open Round Bracket
Close Round Bracket
Multiply
Plus

Comma
Minus

Self
Divide
Accumulator
Array
Begin

Code

Do

Else

For

Goto

Common
Integer
Fixed
Floating
Label
Procedure
Identifier
Unsigned
Finish
Switch
Library
Step N
Table

Representation

Any zero constant

Contains integer part only
Includes . and/or &

'SRA', 'SLA', 'SRL', 'SLC'

> 'GT', <= 'LE', <> 'NE',

= 'EQ', < 'LT', >= 'GE'

Enclosed in " quotes

Octal digit followed by 3 Letters
*DIFFER'

'EN’DI » lEl

'IF'

H

ITHENI

'OVERFLOW' , 'OVR'

'NO!

'TRACE?

'ASSIGNMENT '

'LOOP!

'AN’D'

IORI

'UNION'®

'LOCATION®* , 'L’

"MASK' i
S |
) 113

+ %

{'*BIT'}

[™

'SELF', *
/

@0,91,02,03,84,05 ,86,07
"ARRAY' , 'A'
'BEGIN' , 'B!
'CODE"

|Do'

'ELSE!

'FOR'

'GoTo' , 'G!
*COMMON''
*INTEGER' , 'I!
'FIXED' , 'F!
YFLOATING'
'LABEL*
*PROCEDURE' , 'P!
Starts with Letter , £ , or %.
'UNSIGNED' , 'U!
'FINISH!

'SWITCH' , 'S’
'LIBRARY!

‘*STEP! PR
*TABLE' , 'T°

Until

Value

While

External

Absolute

Overlay

Open Square Bracket
Answer

Close Square Bracket
Power

Becomes

With

Compile (Spare)
Bits (Bit)

Load (Spare

Dump (Spare
Recover fgpare)
Level

Test

'UNTIL' , :
'"VALUE' , 'V
'"WHILE'
"EXTERNAL'

' ABSOLUTE'
rmmu'

' ANSWER'

’ ’ * %
L o 9 =
'WITH!
'COMPILE'
'BITS'
tL.0oAD’
'DUMP'
YRECOVER'
'LEVEL!
'TEST'

{These alternatives may only be used in a limited number of

cases|]

READER

Operation

On entry to the Reader, from the syntax analyser, the previous "terminal

Symbol" is moved from T1 to T, this symbol having been checked and found

to be legal. If the one character lookahead facility has been used, an

unprocessed character will be waiting in T2. This, for example, might

be the character following an identifier, which will not be a letter or

digit. 1If no character is awaiting processing, a call is made of the -
procedure READ to supply the next character. This may come directly from

the program source, or from a macro expansion.

Having obtained the next character to be processed, it is used as an index
of the switch CHARACTER. This causes the section appropriate to the
character to be entered. This switch has 64 entries, but as many of the
entries are repeated it has only 18 distinct ways. This could probably be
programmed in rather less than 64 code instructions, but would be slower,
and much less amenable to alteration.

Simple Symbols j

The characters () + , ~ /[] t « are terminal symbols in their own right.
The corresponding entries in CHARACTER cause a jump to be made to the label
OK which is one of the exit points of the Reader. The character value has
been assigned to T1, and T2 is cleared (set to -1) before a jump is made
back to the syntax analyser at its label EXIT. This label is the common
return point for all compiling actions, which although taking the form of
a labelled block or section, are treated in the syntax gs if they were
procedures. This saves over four words per action.

The other exit point from the reader is EX. This is used where the
character look ahead procedure READT2 has been used, and the character in
T2 inspected but unprocessed. As the actual instruction labelled EX is

a 'GOTO' EXIT all the jumps to EX will be set directly to EXIT, this being
an effect of STATUS optimisation.

Language Wcrds

A commonly occurring character is the ' character denoting the start of a
"language word". As each of these words has a fixed meaning, they form in
effect an extension to the character set. This is reflected in the operation
of the section PR, which is entered in this case. After the word has been
recognised by the use of RECOG, the value returned (range 7 = 90) is used

as an index of the switch ULWORD, which is used in a manner similar to that

. ! of CHARACTER. As however values less than 72 represent language words which
are terminal symbols in their own right, this case is treated separately by

a test and jump to OK. This reduces the size of ULWORD to 19 entries,
although it has only 11 distinct ways.

4 List of Recognised Language Words
(Lower case represents optional letters)
_ Word Value
i A (ARRAY) 33
ARray 33 «
ABsolute 57
AND 18

\ 32

ANSwer
ASsignment
B (BEGIN)
Blts
BEgin

¢ (COMMENT)
CODe
COMPile
COMMOn
COMMEnt
DO

DUmp
DIffer
DEFine
DELete

E (END)
EQ

ENd

ElLse
EXternsl
F (PIXED)
FOr
Floating
FIXed
FINish

GE

GT

GOto

HEx

HAlt

I (INTEGER)
IF
INteger

L (LOCATION)
LT

LAbel

LE

LEVel
LIBrary
LiTeral
LOAd

L0Op
LOCation
Mask

NE

NO

OR

0Ctal

OVR (OVERFLOW)

OVERLay
OVERFlow

P (PROCEDURE)
PAge
PRocedure
Recover

S (SWITCH)
SEl1f

STep

60
16
34
66

34
82+

65?

T4%

13

83+
45
697
49
30
51

33

.

SWitch 49

SLA T9*
SLC 81*
SPecial 23
SRA 8%
SRL 80*
T (TABLE) 52
TEst e
THen 12
TAble 52
TRace 15
U (UNSIGNED) 47
UNIon . 20
UNTil 53
UNSigned 47
Value 54
WIth 64
WHile 55

+ Value is not passed to syntax analyser
* Different value is passed to syntax analyser

? Spare word for future use

Character Pairs

Certain characters may be terminal symbols in their own right, or they
may be the first of a pair of characters representing a terminal symbol.
Bach of these characters is allocated a section which tests the following
character to determine if the two characters form a pair. These pairs are
tabulated below:

Character Section Possible Pairs Alternative
H CN = -
< Ls <=z ‘1B’
<> 'NE!
> GS >= 'GE'
» AS ** 1

If a pair is detected, a jump is made to OK to delete the second character,
the appropriate value having been assigned to T1. If a pair is not detected,
a jump is made to EX leaving the second character set up in T2 until the
next entry to the Reader. If there were more pairs than tabulated above,

it would be preferable to use a single section to process character pairs,
using a preset table of combinations.

Comparators

The six possible comparators are treated as identical symbols syntactically.
As it does not affect the syntax for comparison which comparator is used,
they are all assigned the same terminal symbol value of 4. The variable
RELOP is however set to one of six values depending on which comparator

has been used.

T Ty
A .
D e

g -
v

TS TP

There are two alternative representations for each comparator, either a
single character or character pair (see above), or a two letter "language
word". In the first case the sections GS, ES, & LS are entered via CHARACTER,
and in the second case the section RO is entered via ULWORD.

The representations of the comparators, and the associated value of RELOP,
are as follows:

Representation Alternative RELOP
> 'GT! -2
<= 'LE! -1
<> 'NE! 4]
= 'EQ 1
< ‘LT 2
>= 'GE! 3

These values have been carefully chosen. The two negative values represent
comparators for which there is no equivalent machine instruction, but by
reversing the order of the expressions to be compared (and adding 4 to
RELOP) use may be made of available machine instructions. In the case of
the four non negative values, the appropriate machine function code is
obtained by adding octal twenty. This gives an if-false~jump instruction,
whose sense may be reversed as required.

Shift Operators

The four shift operators are itreated as identical symbols syntactically,
and are assigned the terminal symbol value of 3. These are recognised by
RECOG and the section SH entered via ULWORD. This calculates the function
code number from the value assigned to the symbol, which is stored in T1.
This number is then stored in FUI'CTION.

Shift Operator FUHCTION (octal)
'SRA' 30
1SLA!Y 31
'SRL' 32
'SLC! 33

Spaces and Newlines

Spaces are ignored in two ways. If a space is read and used as an index to
CHARACTER, the entry is SP which causes the next character to be read.
Where READT2 is used, this procedure specifically tests for the space
character, and if it is found, reads the next character. Newlines are
removed by READ.

Comments

Three types of comment are allowed, end comment, bracketed comment, and
explicit comment.

After reading and packing an identifier, a check is made to see if the last
terminal symbol was 'SND'. This is performed by testing whether T contains
the terminal symbol number for 'END', which is 8. If it does, the identifier
is discarded and a jump back made to process the following character, which
will be held in T2.

35

%y

After each unquoted semicolon, occurring as a terminal symbol, or as the
terminator of a 'DEFINE', 'DELETE', 'COMMENT' or 'PAGE' item, a call is
made of SEMICOM.

This procedure checks for, and reads if present, bracketed comment. It
keeps a count of the bracket level, so that matched round brackets are
allowed within this type of comment.

Explicit comment, prefixed by °'COMMENT' (or 'C') is read in and ignored,
up to and including the terminating semicolon. 'PAGE' comment is a
special case of this type of comment. It is treated in the same manner,
but where LEVEL is non zero, it is printed on the monitor printer.

Optional Items

The use of the unquoted ? character allows a limited form of compile time
selection from the source program. If handswitch 1 is up, the character
is ignored, and the following characters processed. If handswitch 1 is
down, the ? is treated as if it were 'COMMENT', and the following
characters up to and including the following semicolon ignored.

Code Instructions

Except in identifiers, and hexadecimal constants, a letter following a

digit can only occur in code. This allows the fields of a code instruction
to be used without intervening separators such as commas. Where an octal
digit is followed by a letter, the digit is stored in ACCUMULATOR and a

call made to RECOG to process the following three ietter function code, the
value returned being stored in FUNCTION. The {lexibiliity of RECOG would
allow function mnemonics to be of varying leri th, but the three letter groups
are used to ensure as near as possible conformity with Astral. An
accumulator-function pair has a terminal symbol value of 6.

Where an accumulator is to be used as an operand or modifier it is represented
by the symbol @ followed by a single digit accumulator number. This has
AMARK added and is stored in NACC. This representation has a terminal

symbol value of 32.

Strings

Strings are processed by the section ST which is entered when the opening "
is read. The string is assembled in MCID and subsequently moved to NAME,
from where it is accessed by the compiling actions. As the string is
terminated by another " it is necessary to have an alternative representation
for this character within a string. This is achieved by representing the
symbol as "". Thus to represent a string containing A"B it is necessary to
write "A""B". A string is packed in standard Argus form and may contain up
to 63 characters.

A string has a Terminal Symbol wvalue of 5.

36

Constants

The Reader processes all constants completely, before passing a Terminal
Symbol code representing the type of constant to the syntax analyser.
Constants may be in one of four forms; Character, Hexadecimal, Octal and
Decimal. In the first two cases the constant is an Integer, but in the
last two it may be either Integer or Real. A zero constant, whatever its
form, is treated as a special case. The constant is assembled in NUMBER
and its scale factor is placed in NUMBERSCALE for subseguent use by the

compiling actions. The types of constant and their Terminal Symbol values
are tabulated below.

Type Terminal Symbol value (T1)
Zero 0
Integer 1
Real 2

Character Constants

The official definition only specifies one form of character constant.
This takes the form:

'LITERAL'(c)

where ¢ is any printing character. 1In this implementation this may be
abbreviated to $c. In either of these cases the standard internal
character value is stored in NUMBER and the constant treated as an
integer constant.

As a further extension, up to four characters may be used. These are
packed right justified in a similar manner to Alpha constants in Astral.
In this case the constant takes the form:

'LITERAL'n(cce)
where n is in the range 1 = 4 and specifies the number of characters ccc.
'LITERAL' may be abbreviated tq 'LIT'. These constants are processed by
the sections CH (§), and LI ('LIT').

Hexadecimal Constants

These constants have only one form of representation, the symbol 'HEX'
followed by one or more hexadecimal digits (0=C, A-F). These are assembled
by the section HX as a right justified integer constant in NUMBER. A
hexadecimal constant is treated as an Integer constant.

Qctal Constants

These constants may be represented in a number of ways.

1 # ddd

2 '0CTAL' ddd

3 *OCTAL' (ddd)

4 A ada

5 'OCTAL' J ddd

6 #ddd.ddd

7 'OCTAL' ddd.ddd
8 *OCTAL'(ddd.ddd)

37

Y|
. \~.

where ddd represents from one to eight octal digits, and 'OCTAL' may be
abbreviated to 'OCT'. Forms 1, 2 & 3 are treated as right justified
Integer constants,and forms 4 & 5 as left justified Integer constants.
The remaining forms 6, 7 & 8 are treated as Real constants, and in this

case the integer part must be less than #40000000. The Official Definition
only permits forms 3 & 8.

Decimal Constants

These constants may be represented in a number of ways.

1 ddd

2 ddd.ad

3 &sd

4 ddd&sd

5 ddd.dd&sd
Where:

ddd represents 1 -~ 7 decimal digits whose value is less than 8388608
dd represents 1 = 6 decimal digits

sd represents a single decimal digit, optionally preceded by a
sign (+,-).

The first form is treated as an Integer, the remaining forms as Real. The

character & replaces the symbol 10 and is used to indicate powers of ten.

The real and fractional parts of a Real constant are stored as a fixed point

mixed number in NUMBER.FRAC prior to normalising to discover a suitable

scale factor. Thus if a small number is represented in form (2), as a zero .
integer part and a fraction with leading zeros, accuracy will be lost. In

this case it is better to use form (5), with a negative decimal exponent.

eg 1.2 3 will give a more accurate constant than 0.001200.

Macro Definijition

Macro definitions are processed by the section DF which is entered when the
symbol 'DEFINE' is recognised. This reads the macro definition and stores
it in the area of the compiler's stack reserved for macros. The record of !
the macro definition consists of the following information stored in
sequential locations.

1 A chain pointer to the previously defined macros.
2 The number of parameters required. !
3 The macro name, in standard string form.
4 The parameter identifiers (if any), in standard string form.
5 The body of the macro, stored as packed characters, four to a word.
gge"?haracter " is represented by "", and the-body is terminated - t
?

38

It should be noted that no attempt is made at this point to recognise the
occurrence of the identifiers of the parameters within the macro body.
Although the body of a macro is enclosed in quotes and is similar in
appearance to a string, it is not stored as a standard string as this would
restrict the number of characters in the body to 63. Advantage is taken of
the fact that the representation of the quote symbol within a macro body,
as in a string, is by a pair of quotes. A macro body being terminated by

a single unpaired quote, followed by an arbitrary character, semicolon being
used for convenience. Unlike a string, where paired quotes are reduced to
a single quote whilst packing, paired quotes are reduced to a single gquote
whilst unpacking a macro body.

Macro Deletion

Macro deletions are processed by the section DL which is entered when the
symbol 'DELETE' is recognised. If the macro to be deleted is on the top of
the macro stack, and macro expansion is not in progress, the macro is
deleted by unchaining its record and recovering the space occupied. Its
record is thereby lost.

Otherwise the macro is deleted by setting the first word of its identifier
string to zero, thereby rendering its record inaccessable. In this case
the space occupied is not recovered, as a "garbage collector" is not
incorporated. Thus to ensure that the macro stack does not overflow, the
following rule should be observed:

Delete all macros in the reverge order to their definition.

It should be noted that the scope of macros does not follow the block
structure of the language, all macros being effectively global irrespective
of the block level at which they are defined. It is therefore suggested
that the following rule be observed:

All macros defined within a program segment should be deleted

at_the end of the segment.

Identifiers and Macro Expansion

An identifier commences with a letter A~Z, a £, or a %; and is followed by
letters and digits. The identifier is assembled in MCID by the section ID
calling IDENT.

If the identifier follows the symbol 'END' it is ignored as comment. If
the identifier is not the name of a currently defined macro, or of a current

macro parameter, it is moved to NAME and a Terminal Symbol value of 46
placed in T1.

Otherwise a new level of macro expansion is set up. If the macro requires
parameters, the identifier must be followed by the correct number of
parameters, separated by commas and enclosed in round brackets. Each of
these parameters is used to form the body of a temporary macro which is given
the name of the appropriate parameter, which is obtained from the record of
the macro being invoked. Thus no special test is required for the occurrence
of a macro parameter within a macro body. If a macro requires no parameiers
(and this applies also to parameters within macros) it may be optionally
followed by a ! character, which is ignored.

Once a macro expansion level has been set up, characters are read
sequentially from the macro body until the terminating unpaired quote is
read. This sequence can only be interrupted by the setting up of a
further level of macro expansion. When the terminator of a macro body is
read, the macro expansion level is reduced, which deletes any macros
declared within that level. The input is resumed from the next lower
level, at the point at which it was interrupted, after restoring 72, if
relevant. This case will only occur where a parameterless macro, or
parameter, is not followed by the ! character.

Example of Macro Expansion
Consider the following portion of a program:

MACK

'BEGIN' 'INTEGER' ALPHA;

'DEFINE' LDX(ACC,ADD)"ACC!LDXADD1";
'CODE' 'BEGIN' LDX(7,ALPHA);

After storing the definition of LDX and reading the following *CODE' 'BEGIN',
the identifier LDX would be recognised as being that of a macro. After
increasing the level of macro expansion by stacking the current values of
MCCHAIN,T2,MCSOURCE,MCBODY and MCLIST, temporary macros would be set up for
the two parameters. This would be equivalent to reading:

*DEFINE' ACC"T";
'DEFINE' ADD"ALPHA";

The body of LDX would then be read as the current input, and when the
identifier ACC was recognised as being that of a macro a further expansion
level would be set up, and the ! discarded. At this point, the next character
to be read would be 7. The state of the macro stack at this point is given

in the diagram below.

After reading the 7 the level would be reduced and the LDX would be read.

As this occurs after an octal digit it would be treated as a function mnemonic
and not an identifier. The letters ADD which follow would be treated as an
identifier, which would be discovered to be a macro, and replaced by ALPHA.
The expansion level would then be reduced twice, and the semicolon read.

This would terminate the identifier ALPHA, which not being a macro would be
passed on.

It should be noted that the occurrence of second parameter ADD in the body
of LDX is followed by an ! character. This may at first sight =eem to be
superfluous. If it were not present however, the recognition of the
termination of the occurrence of ADD as an identifier would only be
achieved after the semicolon had been read; by which time the macro
expansion level would have been reduced to zero, and the temporary macro
for ADD deleted !

In fact, had the semicolon not been present, and the next characters were
say X+, the effective identifier would have been ADDX, for which no
definition or declaration exists.

A general rule for macro parameters, which is an oversimplification of the
facilities available, is:

Name all macro parameters %!,%2,%3 etc, and in the body of the macro
refer to them as %1!,%2!,%31 etc.

This rule is guaranteed to avoid confusion, and render macro definitions
more legible.

40

Macro Stack state during expansion of macro

Input Tape: LDx(7,ALPHA);
1
Level 1: ACC! LDXADD!
t
Level 2: 7

t next character to be read

- MCLIST Stacked
MCBODY workspace
MCSOURCE during
-1 T2 replacement
’hﬁ MCCHAIN of ACC
* : |0 Definition
PR Macro body [of
DD Macro name parameter
0 Number of parameters ADD
of Pointer to next macro
: |0 Macro body [Definition
cic Macrc name of
0 Number of parameters parameter
oI Pointer to next macro ACC
o+ MCLIST Stacked
X 0 MCBODY workspace
0 MCSOURCE during
- =1 | T2 expansion
O _MCCHAIN v of LDX
3101010 p
DID|t "
SL]D[X[A Nacro body Definition
AICICY of
|5]A|D{D ;econd parameter? macro
3[A(C]|C irst parameter |strings| LDX
3{L|D]X _Macro name b
2 Number of parameters
Pojnter to next macro v

READER: MODULE DESCRIPTIONS

Label AC:

This section is entered, via the switch CHARACTER, when the character @ is
encountered. The following character must be an octal digit specifying an
accumulator number for use in code. This number has AMARK added and is
stored in NACC. A jump is then made to 0K, leaving the value of T1 (32)
unaltered.

'PROCEDURE' ADDCHAR;

This procedure is used to append the current character held in T to the
standard string being formed in the MCID area at the base of the stack. The
count field, in the first character position, is first incremented, and if

it overflows (sets carry) a jump is made to FT. All identifiers are
assembled in MCID in order that they may be tested to determine whether they
are the identifiers of macros, or current macro parameters. If they are not,
the string will subsequently be moved to NAME. For convenience, this process
is also used for quoted strings, but in this case the completed string is

not treated as a potential macro.

Label AM:

This section is entered, via the switch CHARACTER, when the character & is
encountered. This denotes a Real constant which is the specified power of
ten. NUMBER is set to 1024 and NUMBERSCALE to =10. This is equivalent to
the constant 1, but guards against loss of significant accuracy. A jump is
then made to EXPT to read the required power of ten.

Label AS:

This section is entered, via the switch CHARACTER, when the character * is

encountered. The following character is read, using READT2, and if it is a
second * , the * in Tl is replaced by t, and a jump made to OK. Otherwise

a jump is made to EX.

Label CH:

This section is entered, via the switch CHARACTER, when the character g is
encountered. The following printing character is treated as an integer
constant, and the value of its internmal representation placed in NUMBER. A
Jump is then made to INTX via INTY, which reads the character following,
into T2,

Label CM:

This section is entered, via the switch ULWORD, when the symbol 'COMMENT'
(or 'C') 1s recognised. The following characters, up to and including the
terminating semicolon, are read and ignored. A call is then made of SEMICOM
to test for following bracketed comments, and a jump mede to SP, to process
the character left in T2 by SEMICOM.

This section is also used by PG (T1=83) to process page titles, and is
slightly more complex than would otherwise be the case.

Label CN:

This section is entered, via the switch CHARACTER, when the character : is
encountered. The following character is read, using READT2, and if it is
the = character, the : in Tl is replaced by « and a jump made to OK.
Otherwise a jump is made to EX.

Label DD:

This section is entered, via the switch CHARACTER, when a digit is
encountered. If this digit is followed by a letter, a call is made of
RECOG, to process the three letter function code mnemonic, and return its
number. The initial digit is stored in ACCUMULATOR, and the function number
in FUNCTION. Tl is set to 6, the terminal symbol value for a code
instruction, and a jump made to EX.

Otherwise a call is made of NOASSY to assemble the integer part of a

decimal constant. If this is followed by the symbol for a decimal exponent
(&), & jump is made to EXPT. Otherwise if the following symbol is not a
decimal point, a jump is made to INTX. If a decimal point is present, a czall
is made of NOASSY to assemble the following fractional part, as an integer.
This is then divided by the appropriate power of ten, to obtain an unsigned
fraction which is stored in FRACTION. If the following symbol is not a

decimal exponent symbol (&) a jump is made to NORM, otherwise the section
EXPT is entered.

A flowchart covering the whole of the assembly of decimal numbers is given.

Label DF:

This section is entered, via the switch ULWORD, when the symbol 'DEFINE' is
recognised. This section sets up the definition record of a new macro.

MCFLAG is set to indicate that a macro definition is in progress, and
MCMAKE ,MCIDENT and MCMOVE called to read the name of the macro and initiate
its record. If this is followed by an open round bracket, the macro has
parameters, and the names of these are read and added to the record. The
parameter identifiers are separated by commas, and the list is terminated
by a close round bracket.

The macro body, which must start with a quote symbol, is read and added to
the record, character by character, up to and including the last unpaired
quote and the following mandatory semicolon. The macro definition is now
complete, and MCFLAG is cleared. Calls are made of MCTIDY and SEMICOM. 1In
the latter case this causes any following bracketed comment to be ignored.
A jump is then made to SP to process the character left in T2 by SEMICOM.

A flowchart is given for this section.

Label DL:

This section is entered, via the switch ULWORD, when the symbol ‘'DILETE' is
recognised. This must be followed by the identifier of a current macro, which
is followed by a semicolon.

43

N

GO

V& NExT Nes
cHARACTER A
LETTER T

No

SET NceMBsR
To oNg

ASSEMOBLE
WWTEGER CaRT
NGine NOASSY

7

<
N

W!
Yes \$ CHARACTCER
£ 1

No
4

9
1S CHARACTER
- 7

Ves

SET ACCUMULATOR
To di\qT

| pead FomcTiown
MUEMO N C LSING RECOG
SET Ty 7Tob

)

SET NUMBERSCALE To
TYPE (NTEGER ‘i TH
MM oM NUMBGR O
Samnfic At Bits To
HoL) <CoNeETORNT
Sev _TiL To 2

e

A No

\\
18 NusEBeR

Z.ERo 7 /

280 Y Yes

LNTX

ASSEMBLE FRACTION
PART AS NTEQER
D DividE BY PoweR
oF \© To ofTerin
UNSIGNED FRAcCTiou

SET Ne~RBReRschALE To
INTEQER TYPE LIiTH
OME SiquiRcANT BT

SET T2 To ©

-©

1S cARACTCER No
g7

exet | Ves

.

READ FogsoNuNC‘ i
CwaRAcC TER

—

4

1S NEXT
CHARACTER
+ o’ -~

Nes

N

Neo /'S charAcTeR
a B\q\‘\’ 7

Y

y

SCALE NUMAERR
DY SePec\Fiad

PoweER OF o '

44

2&Ro

ANES

S NUMRER
zeRo

, Ne

m

LEFT SHFT NUMBER
D SET WmuMBERScME

To TWPE Fixed wiitw

MNITHMU M NOMBER OF

INTEQER BITS

SET TI To 2

-

SET NCFLQC‘
PrePARE RecorRD
Lead MACRO W AME
M) NMAME To Record

4

'S cwarActer \ N /\s cuaRacTER \ g
¢ ' l

Y Yes
READ CHARACTER

aud ADD 1T Ta
Recor)

Y Yes

4

Yes /'S cHaracTee

s ?

READ wnNExT
CraracteR

Y

was ceaeac ter \ No @
-
H

L, Yos

CLeAR McrLAg

ChALL HeTIDY

CAw S&eMicoM

7

*QoTo P

Label DL/

The reference to the record of the macro is obtajined using MCLOOK. If the
macro does not exist, the reference will be zero, and this is treated as an
error. If there are no macros currently being expanded and the macro- to

be deleted is the top macro on the stack, the macro is deleted by unchaining
its record, and recovering the space occupied. Otherwise the macro is
rendered anonymous by clearing the firat word of its identifier string.

The apace occupied by its record is not recovered in this case. If however
the macro is defined within a macro expansion, or is a temporary macro set
up for a parameter, this space will subsequently be recovered. Thus as a

. general rule: delete macros in the reverse order to their definition.

Label ES:

This section is entered, via the switch CHARACTER, when the character = is
encountered. T1 is set to 4, to indicate a relationsl operator, and RELOP
set to 1. A jump is then made to OK.

Label EX:

This is the exit point from the reader in those cases where the character
look ahead facility READT2 has been used, and an unprocessed character
remains in T2. This will be processed on the next entry to reader.

Label EXPT:

This section is entered from AM and DD when the & character is encountered.
This may optionslly be followed by a sign (+,-), and then must be followed
by a single decimal digit. The double length number NUMBER.FRAC is then
repeatedly multiplied (+) or divided (=) by ten, the number of times being
specified by the digit.

To improve the numerical accuracy, by preserving as many significant bits

as possible, the calculation is carried out in a degenerate form of floating
point arithmetic. To multiply by ten, the number is actually multiplied by
0.625 and 4 added to its exponent held in NUMBERSCALE. To divide by ten,
the number is multiplied by 0.8 and 3 is subtracted from its exponent.
Because of the use of multiplication in both cases, there is no possibility
of overflow, and intermediate normalisation is not required.

The section NORM is then entered.
Label FI:

This section is entered, via the switch ULWORD, when the symbol 'FINISH' is
recognised. T1 is set to 48, the value representing the symbol, and T2

is set to an arbitrary value selected from the set of characters which are
terminal symbols in their own right. This ensures that no more tape is read
after the syntax analyser has accepted the 'FINISH'. A jump is then made to
EX which leaves T2 set.

Label FT:
This section is entered on the discovery of an illegal character, or

combination of characters. Compilation is terminated with the message
"CHARACTER FAULT".

IS R s BE abiads 20 g
LA L)

11

'PHOCEDURE' GENOCT;

This procedure processes the general case of octal numbers. These may have
simply an integer part, in which case they are treated as Integer constants.
Or they may have both an integer and a fraction part, in which case they are
treated as real constants.

The integer part is first assembled by OCTALNO, and assigned to NUMBER. If
this is not followed by an octal point, T1 is set to 1 to denote an Integer
constant. Otherwise a check is made to ensure that the integer part appears
positive, and T1 set to 2 to denote a Real constant. The fraction part is
assembled by OCTALFRAC, the result assigned to FRAC, and NUMBERSCALE cleared.

Label GS:

This section is entered, via the switch CHARACTER, when the character > is
encountered. Tl is set to 4, to indicate a relational operator, and the
following character read, using READT2. If this is =,RELOP is set tvo 3 and
& Jjump made to OK. Otherwise RELOP is set to -2, and a jump made to EX.

Label HA:

This section is entered, via the switch ULWORD, when a 'HALT' directive is
recognised. A call is made of HALT with "DIRECTIVE" as the parameter. On
return, READT2 is called to read the next character, and a jump made to SP
to process it. This causes the 'HALT' directive to have no syntactic
effect.

Label HX:

This section is entered, via the switch ULWORD, when the symbol 'HEX' is
recognised. It assembles hexadecimal integers in NUMBER. After the last
character, a jump is made to INTX.

Label ID:

This section is entered, via the switch CHARACTER, when a letter, or £, or
%, occurring as the first character of an identifier is read. The remainder
of the identifier is then read by IDENT.

If this identifier follows the symbol 'END', it is ignored as this is an
allowable form of comment. Otherwise MCLOOK is used to test whether the
identifier is that of a current macro. If it is not, the identifier is
MOVEd to NAME, the value (46) for an identifier assigned to T1, and a
jump made to EX.

If the macro is parameterless, it may optionally be followed by ! , which is
then ignored. (If this facility were not available it would be impossible
to specify the accumulator field of a code instruction as a macro parameter.)
If the macro requires parameters, they must be supplied, and in this case
the macro identifier must be followed by an open round bracket.

After this check, a new macro expansion level is set up, by MOVEing the
variables of the previous level onto the macro stack. A temporary macro is
then set up for each parameter. These are parameterless macros having the
parameter identifier, and their body consists of the actual parameter supplied
by the call. These macros will be automatically deleted when the macro
generation level is subsequently reduced at the end of the expansion.

The starting address of the macro body is set into MCSOURCE, and a Jjump made
to SP to process the first character.

A flowchart of this section is given.
47

Y

ASSEMGBLE
TDENTIFIER

S IDeNTIRER

ne NAng OfF
A CORAENT

Hove IDENTIFIER

EXx

ToNAME AND SET T2

STACK MACRO
wWoRKSPACE
(inceud, NG -rg__)

Y

PoesS TweE
HACRo QEQULIRE
' fARAMETERST)

SET Me Seuaceaq
PoinTER To HACRS
BoDY AMdCLEAR T2

A

N

b
>

PreParE TENPoRNRY

A MAcRo REcoRD,

i INSeRT PARAMETER
IPENT FIER QS

:' HAcRo naME, ﬁ‘l
CoPyY mcTuaL Prehue
NTo a‘ob\' Amd

: ; TERMINATE witH "3

Yes PNy FURTHER
PaRAMETERS
ReEQu.Re)

e

'PROCEDURE' IDENT;

This procedure is used to assemble identifiers, after the first character
has been checked. The identifiers are assembled into the area at the base
of the stack, starting at MCID. This area is used as each identifier
(except those following 'END', 'DEFINE' and ‘DELETE') have to be treated
as potential macro calls.

The area is first initialised as an empty string, and the first (checked)
character inserted. Subsequent characters are read into T1 and also T2, and
if the character is a letter or digit, it is added to the string by ADDCHAR.
When a character is found which is not a letter or digit, this procedure is
terminated, leaving the character in T2 for subsequent examination.

Label INTX:

This section is entered from DD,0C and INTY. In all these cases an integer,
but not necessarily numeric, constant has been read. If this is zero, a
jump is made to ZERO. Otherwise the integer is shifted left to discover
the number of significant bits required to represent it without loss of
accuracy. This number is required in certain cases of scaled arithmetic.

T1 is set to 1 to indicate a non-zero integer constant, and NUMBERSCALE

is set to indicate an integer constant requiring the number of significant
bits determined above. A jump is then made to EX.

Label LI:

This section is entered, via the switch UL./ORD, when the symbol 'LITERAL"

is recognised. This is then followed by a single printing character,
enclosed in round brackets. - As an extension in this implementation, more
than one character, but less than five, may be included between the brackets,
provided that their number is specified by a single digit placed before the
opening bracket. The characters are assembled as a right justified integer
to base 64 in NUMBER, and a jump made to INTX via INTY which reads the
following character into T2.

Label LS:

This section is entered, via the switch CHARACTER, when the character < is
encountered. T1 is set to 4, to indicate a relational operator, and the
following character read, using READT2. If this is =,RELOP is set to O1,
or if it is >, RELOP is set to zero; in either case a jump is then made
to OK. Otherwise RELOP is set to 2, and a jump made to EX.

'INTEGER' 'PROCEDURE' MCCHAR
(*VALUE' 'INTEGER' CHAR);

This procedure is used to append the character CHAR to the body of the macro
currently being defined. It uses MCTOP as a character modifier, (m.s. 2
bits give character position within word) which is incremented by one
character position each time. The character CHAR is returned as the result
in case subsequent examination is required.

This procedure is functionally the inverse of NEXTCHAR, but whereas the
parameter of NEXTCHAR refers to an absolute core location, the implied
parameter MCTOP, of MCCHAR refers to a core location relative to the start
of the stack.

'PROCEDURE' MCIDENT;

This procedure is used to read and assemble the identifier of a macro which
must follow 'DEFINE' and 'DELETE', and also the parameter identifiers in a
macro definition. The first character is read intec Tt1. If it is not a
letter (A=2), nor either of the characters £ or %, a jump is made to ME.
Otherwise the identifier is read in using IDENT.

'INTEGER' 'PROCEDURE' MCLOOK;

B Sl
h)

This procedure is called to test whether the identifier held in the

. locations starting with MCID, is the identifier of a currently defined
macro. If it is, a pointer to the macro definition record is returned,
this value also being assigned to MAC., Otherwise a zero result is returned.

R - e

Using MAC as the control variable, with an initjial value of MCLIST, a scan
is made down the list of macros, comparing the macro identifier string with
>) that at MCID, using TESTSTRING. The scan terminates either when equality

: is found, or the list is exhausted. The current value of MAC serves as the
result in either case,

'"PROCEDURE' MCMAKE;

This procedure is called to prepare for the definition of an additional
macro. This may be a macro explicitly defined by the 'DEFINE' symbol, or

a temporary macro defining the parameter of a macro as the actual parameter
supplied.

Two locations on the top of the macro stack are reserved and initialised.

The first is used as the macro chain, and is set to the current contents

of MCLIST, which is then set to point at the new macro. The second word will
be used to contain the number of parameters required by the macro, and is at
this point set to ~1. This two word record will be followed by the string
giving the macro identifier, the parameter identifiers (if any), and

finally the macro body.

'PROCEDURE' MCMOVE
('LOCATION' 'INTEGER' FROM);

This procedure is used during the definition of a2 macro, to allocate space
for and to insert identifier strings into the head of the macro record. For
each record, the first call is used to insert the macro name, and any
subsequent calls insert the names of the parameters. The second word of

b the macro record has one added to it each time by this procedure, and as its
] initial value is -1, it may be seen that this location will contain a count
- of the number of parameters.

- When setting up a record for an explicitly defined macro, the parameter FROM
3 will be the location of MCID, which contains the current identifier. When
setting up temporary macros defining the parameters of a macro, the parameter
FROM will point at the identifier string of the parameter in the record of
the called macro.

'PROCEDURE' MCTIDY;

¥
This procedure is called to ensure that the macro stack pointer MCTOP,
starts on a word boundary, (it is used as a character modifier during macro
definition) and that its value does not exceed the size of the macro stack.
If its value exceeds STACKSTART, the value for the starting point for
declarations on the stack, compilation is terminated by a call of GIVEUP
with "MACRO STACK OVERFLOW" as the parameter.

Label ME:

This section is entered when an error is discovered in the definition,

deletion, or expansion of a macro. Compilation is terminated with the
message "MACRO . -T0R".

"PROCEDURE®' MOVESTRING
(*LOCATION®' 'INTEGER' FROM,TO);

This procedure moves the string whose first location is given by the
parameter FROM, to the area of core whose location is given by the
parameter TO. The number of words to be moved is calculated from the
count character of the string, this number being used as the first
parameter of the call of MOVE which performs the operation.

'INTEGER' 'PROCEDURE' NOASSY
('VALUE' *INTEGER' BASE,LIM);

This procedure is a general number assembly routine. It assembles up to

LIM digits of a number to base BASE, where BASE may be in the range 2 to 10.
On entry the first digit must be in T1, and the second character ?which

may not be a digit) must be in T2. The assembled number is returned as the
result, and the number of digits processed is placed in NODS. If the first
character is not a valid digit, or the number of digits exceeds the specified
limit, a jump is made to FT.‘ This procedure is used to assemble both the
integer and the fractional parts (as integers) of octal and decimal numbers.

Label NORM:

This section is entered from DD, EXPT, and 0C. A double length number is
supplied in NUMBER.FRAC with a binary scale factor in NUMBZRSCALE. The?®
number is shifted left as far as possible without overflow, NUMBERSCALE
being adjusted according to the number of places of shift. Provided that the
number is non zero, (if it is a jump is made to ZERO) the appropriate 'FIXED'
scale is calculated for the number. This scale may subsequently be inserted
in the TYPEBITS field of an Arithmetic Operand. The CON marker is set, the
TYP field set to 1 (fixed), and the SGB field set to 24. The PVL field is
calculated from the value of NUMBERSCALE. This gives a scale with the
minimum number of integer bits required to hold the number. This is then
stored in NUMBERSCALE.

Provided that this scale lies within the range allowed by the implementation,
T1 is set to 2, to indicate a Real constant, and a jump made to EX.

51

Label OC:

This section is entered, via the switch ULWORD, when the character # is
encountered. This denotes an octal constant. It is also entered at 0Q
and O0X from OI.

If the following character is J, the! number is a left Justified integer.
This is read using OCTALFRAC, which left justifies it, and a jump is made
to INTX. .

Otherwise a call is made to GENOCT to read an Integer or Real octal
3 constant., If the constant is an integer, a jump is then made to INTX,
F otherwise a jump is made to NORM.

'INTEGER' 'PROCEDURE' OCTALFRAC;

This procedure returns a 24 bit (unsigned), left justified octal number.
It is called after the octal point to assemble the following octal fraction,
- N and after the symbols #J to assemble a left justified octal integer.

The first digit is read by a call of READT1, and the number assembled,
right justified, by OCTALNO. This is then shifted left, the number of
places of shift being calculated from the number of digits NODS, and
returned as the result.

B b o
.

'INTSGER' 'PROCEDURE' OCTALNO;

This procedure is used to assemble octal numbers of up to eight digits.
L On entry the first digit must be in T1, and the next character is obtained
- . by means of a call of READT2. NOASSY is then used to assemble the numbver.

Label 0OI:

This section is entered, via the switch ULWORD, when the symbol 'OCTAL' is
recognised. In this implementation the following octal number may be
unbracketed, if required, and in this case a jump is made to 0Q. Otherwise,
after the opening round bracket has been read, a call is made to GENCCT to
read the number, and the closing round bracket checked. After reading the
character following the closing brackets, a jump is made to O0X. This
redundant character read operation is required as an exit will subsequently
be made via EX, which does not clear /2.

1 Label OK:

. This is the exit point from the reader in those cases where the character
2 held in T2 has been processed. T2 is cleared, by setting it negative, so
that on the next entry to the reader a further character will be read.

K | Label PG:

& This section is entered, via the switch ULWORD, when the symbol 'PAGE' is
: recognised. If LEVEL is non-zero, "PAGE:" is printed on a new line, and
followed by the characters supplied by READ, up to but not including the
terminating semicolon. This is the followed by two newlines. If LEVEL is
zero, 'PAGE' is equivalent to 'COMMENT'.

eeandecre

Label PR:

This section is entered, via the switch CHARACTER, when the starting '
character of a "language word" is read. A call is made of READT2 to read
the first letter, and then RECOG called, with a parameter of *, to identify
the symbol. The result of RECOG is assigned to T1, and if this is less
than 72, it represents the value allocated to a terminal symbol, and a

jump is made to OK. Otherwise the value is used to select an entry in the
switch ULWORD.

Label QM:

This section is entered, via the switch CHARACTER, when the character ? is
read. This is the starting symbol of an optional item. If Handswitch 1 is
up (0), the ? symbol is ignored, and the following item processed in the
normal manner. Otherwise the ? symbol is treated as the 'COMMENT' symbol,
and the following characters, up to and including the terminating semicolon,
ignored.

tINTEGER' 'PROCEDURE' READ;

This procedure is the source of characters for the pre-processor. They are
obtained either from the input tape or from the expansion of a macro.

If there are no macros currently being expanded, READTAPE is called to read
the next character from the input tape. If this character is the newline
character, it is ignored, and the call repeated.

Otherwise, the next character is unpacked from the body of the current macro
definition, using NEXTCHAR. 1If this character is the quotes character ("),
the next character is also read. If this second character is also a quote,
this is allowed to stand. Otherwise the macro expansion level is reduced
by the use of MOVE to restore the "MC" variables of the next lower level,
and to restore T2. Note that although these variables are only used in
READER, they are declared in the global data, as their values are required
to be preserved from one call of READER to the next. If a macro is currently
being defined, MACFLAG will be set, and it is not possible to reduce the
macro expansion level at this point. If the restored value of T2 is a valid
character, this is allowed to stand as the next character. Otherwise a jump
is made to the start of this procedure to obtain the next character.

After the character has been obtained, it is used to form part of the common
checksum CSUM if a 'COMMON' segment is currently being compiled.

A flowchart for this procedure is given.
'INTEGER' 'PROCEDURE' READT1;

This procedure is used as a one character look—ahead facility in cases where
it is known that the following non-ignored character, if legal, must form

part of a composite symbol. (e.g. a decimal point must be followed by at
least one decimal digit.)

This procedure calls READT2 to obtain a character, which it stores in T1,
and also returns as the result.

53

et

Y

> -

Rend curracTE

Y

FRom TAPE v

s '

Neut.udeg

1! No

34 \TJ
3

Y \‘¢S

! READ NEXT

| CHARACTER FROM
Maceo Gody

2

'S A MAacRo

3€1N§
DEFINED(

y Neo

REDUCE +~AacRo
LEVEL AwD

Restore T2

Y

N /\Jo /is <z @A
© \cHanacTer?

A

Y

4

1% CoMMHON
CHECKSUM
Reaaep !

L}

¢ Yas

INCRGHENT
Cotiron
CHECK SUM

, RETURN
\\‘_ LHARACTER
)

A

'INTEGER' 'PROCEDURE' READT2;

This procedure is chiefly used to give a one character look—ahead facility
in cases where the next non-ignored character may, or may not, form part of
composite symbol with the previous characters. (e.g. the character
following two integer decimal digits may be another digit, a decimal point
(.)y or an exponent symbol (&;; in which case it forms part of the number.
Any other character does not.

This procedure repeatedly calls READ until a non—space character is obtained.
This is stored in T2 and also returned as the result. Unless overwritten,
the character stored in T2 will be processed at the next call of READER.

' INTEGER' 'PROCEDURE' RECOG
(*VALUE* 'INTEGER' ULW);

This procedure is a recogniser for alphabetic symbols vwhich are members of
two fixed groups. The first of these groups (ULW=1) being the larger group
consisting of the "language words". (e.g. "BEGIN' , 'END'.) 1In this second
case the use of unambiguous abbreviations is allowed in all cases, and the
use of a few specified ambiguous abbreviations is also permitted. (e.g. 'E!
for 'END' (not 'ELSE')). Certain of these language words have other
representations, which are not the concern of this procedure. (e.g. 'NE!
and <>, 'STEP' and :).

This procedure operates by interpreting one of the two fixed arrays FUNCTIONS
and ULWRDS. These consist of six bit characters, packed four to a word;

and have been automatically generated from lists of the allowable symbols.
Bach letter in a symbol is represented by its internal code value (range

33 to 58, A to Z). Values in the range 60 to 63 represent terminating
characters, and together with the following character give the number allotted

to the symbol (0-255). Values less than 33 are "jump" characters, and are

used in the selection of alternative routes.

These arrays are a one dimensional representation of a two dimensional list
structure. This procedure moves through the structure, comparing the stored
letters with the letters read in, and taking the appropriate action. Where
differing symbols have a common starting letter or letters, no backtracking
or scanning is required. In order to speed up the recognition process, and
because of the limit on the "jump" size, each structure is entered via a
small "hash" table stored at the start of the array. This is indexed by the
least significant one (FUNCTIONS) or two (ULWRDS) bits of the first letter.
The structure of FUNCTIONS is illustrated as follows:

Hash 0} —] 7
Hash1_1') i ! :
be — — _ —
T R
SEREEREEERE
| - .
vV ¢ X B X ¢ S S E T Z E
TTTTY T —
E M A o $
I T — -
X P N D R U VvV s 0 R T L
R N i N A R B A
c Y D D S P T R B B A L N O A € L V

55

The procedure moves across the diagram to select alternatives, and downwards

to select successors. The diagram for ULWRDS is too large for simple
representation. In this case the incoming symbol is terminated by a '
character, and if it is an unambiguous abbreviation, the rest of the route
through the structure must not contain any branches. Part of the structure,
of the entries for C, of ULWRDS is illustrated below:

T
o]
——

On entry to the procedure, the array CHOOSE is used to select the array to
be used, according to the value (O or 1) of ULW. CHOOSE also contains the
masks required to select the hashed entry into the selected table. The
character address of the current character is stored in SI, which is

used by the procedure READS, which uses NEXTCHAR to unpack successive
characters.

On successful recognitiom of an alphabetic symbol, a result in the range O
to 255 is returned. This is formed by the two least significant bits of
the terminator (60 to 63) and the six bits of the following character. In
all cases of unsuccessful recognition, a jump is made to the label FT.

A detailed flowchart is given for this procedure.

Label RO:

This section is entered, via the switch ULWORD, when one of the relational
operator symbols ('GT','LE','NE','EQ','LT' or 'GE') is recognised. The
value assigned to RELOP is calculated from the symbol number, held in T1,
which is set to 4. A jump is then made to OK.

Label SC;

This section is entered, via the switch CHARACTER, when a semicolon,
occurring as a terminal symbol, is read. SEMICOM is called to process any
following comment, and a Jump is made to EX.

56

e

T TNATr

CALCULCATE s-vmu-..ﬂg
CHARACTER Pos\Tion

N GELECTED TEAQLE

—— > \’
vy
N
CLEAR TLMP
FuAq IT
y
S N —
N
r CLEAR Tump
PistTance I
y ., .
2 <
UNPACK NEXT SET TumP
CHARACTER To S FLAq 33
Y A
15 8 A Tome Yes CePY Tom®
CHARRCTER? bisTAncE 8T T
No
‘s s A Yes Yes
TeRMInATOR >-
A cHaRAcTer ¢
Yes Does s T A Mes

READ NEXT 1NPUT
CHARAMCTER Yo T2

sxiP PoinTeR
L(-—{ FoRwARY BY

TOMP DisTHNCE

Yes 1S Towmp \ P

PRimME
CaPRACTER
/

Distance I serd/ N\
N
No

Y

'S FumcTiow \‘es

MNemon ¢ BEG
PRocessad T

No

]

w TomP O\ VYes

Y

¥

UNDALK NG KT
CHARACTER RAnd
ICALC L A T 2 RCYULT

Yes

% S A
TERQMiNATOR
CHARACTER

No

CHRARACTG R

Ex\v

FLng XX SeT ?/ - cn:;Acsr:R
A
—— -~

'PROCEDURE' SEMICONM;

This procedure is called to check for, and to skip over, bracketed comments
following the semicolon symbol. One or more of these comments may follow the
symbol, and these are detected by the outer 'FOR' loop, which reads the
opening bracket, if present. The inner 'FOR' loop counts the bracket

F level B, as a side effect of the 'WHILE' clement, and terminates when the

E | matching closing bracket is found. On return from the procedure, T2 will

: contain the character following the last closing bracket.

Label SH:

This section is entered, via the switch ULWORD, when one of the shift
. operator symbols ('SRA','SLA','SRL' or 'SLC') is recognised. The required
b) function code number is calculated, using the value associated with the
' symbol which is held in T1, and stored in FUNCTION. T1 is then set to 3,
to indicate a shift operator, and the section OK entered.

Label SP:

This section is the starting point of the reader. If a valid character %
has been left in T2 by a previous call, then this character is copied into '
T1, otherwise READ is called and its result stored in Ti. This character
is then used to select an entry in the switch CHARACTER. This jumps to the
section appropriate to the character. The characters may be categorised as
follows:

1) Characters which are terminal symbols (e.g. +)
2) Characters which start terminal symbols (e.g. &)

3) Characters which may alone be terminal symbols, or may be
part of a composite symbol (e.g. <)

4) Illegal Characters in this context (! and .)
5) Ignored characters (Space)
As the entry for Space causes this section to be re-entered, all Spaces

supplied by READ are effectively ignored. It should be noted that T2 must
never contain the code for Space.

o Label ST:

! This section is entered, via the switch CHARACTER, when an (opening) quote

: is read. The string is assembled, character by character, in the MCID area

at the base of the gtack using ADDCHAR, after this area has been initislised

as an empty string. Paired quotes cause a single quote to be stored, and the
- string is terminated by a single unpaired quote. The string is then moved

=4 from the MCID area to the NAME area by MOVESTRING. The terminal symbol value

; of 5, the value for a string, is set into T1; and a jump made to EX, which

does not delete the character in T2.

Label ZERO:

v This section is entered from NORM and INTX when it is discovered that
f- NUMBER is zero. For optimisation purposes a zero constant, whatever its

form, is treated as a special case syntactically. T1 is set to zero to
indicate this, and NUMERSCALE is set to indicate an integer constant requiring
one significant bit only (sign bit). A jump is then made to EX.

IS, o s s

A -
,“'

S 4 59
¢k

COMPILER STRATEGY

dntroduction

The strategy of the compiler is intimately tied up with the "working syntax"
used to drive the syntax analyser. This syntax is based on the syntax of the
Official Definition after it has been processed by Foster's SID (syntax
improving device) program to reduce it to a "one track" form. This process
introduces a number of auxiliary rules into the syntax, and these are named
by appending one or more digits after the letter Q.

Into this syntax are embedded the names of the compiling actions required to
be carried out at that point. The syntax has also been expanded in places to
enable optimisations to be carried out. Some use has also been made of
Simpson's "Semantically Selected" rules. In this case the alternative chosen
at the start of the rule depends not on the incoming terminal symbol, but
upon the result returned by a previous compiling action.

In each section of the strategic description the relevant part of the syntax
will be quoted. The basic notation used is that of SAG, but with the
following identifier conventions.,

1 Rule Names First letter in upper case, subsequent
letters in lower case. The rule name is
underlined where semantic selection is
carried out.

2 Terminal Symbols Lower case letters.
3 Compiling Actions Upper case letters. The action name is
underlined where it delivers a result to

be used as a semantic selector.

Recapitulations will be enclosed in square brackets and dots used to denote
alternatives irrelevant in the context.

Compiler Activation
Run=(Compileitem,Q70)

. Q70=(finish)
z . (semi,Run)
p ! When the compiler is first loaded and entered, it initialises certain words
_ of workspace, and then enters the syntax analyser. The first rule is named
Run, and represents a list of items separated by semicolons and terminated
3 by the symbol 'FINISH'. These are processed one by one, the compiler
‘ terminating awaiting re~activation after the last.

b ent
3
Compileitem=()

, Program)
i §Connondec)

1ibrary,Q69)
oxternal,orb,Extlist.crb;
(absolute,orb,Abslist,crb
, (Leveldec)
' Yesno,Tracetype,trace)
-~\$ test,SETTEST,Q68)

| U U,

E

TP
B, 1)

-~y s o Y
—

b i v g'

Q68=(Program)
(Commondec)
(1ibrary,CLEARTYPE,Q66)

Thus the list of items to be compiled may be split into three main
categories:

1 Segments to be compiled
2 Communicators specifying identifiers external to a segment
3 Trace and diagnostic directives

Segments may be processed in a test mode by prefixing them with the symbol
'TEST'. This causes the action SETTEST to be executed which inhibits the
paper tape output for the duration of the following segment.

Program Segments
Program=(1id,BEGINPROG,begin,Body,ENDPROG ,end)
Body=(D1,ENDDECS,S1)

D1=(STARTDEC,D,semi,Q50)

Q50=()
(p1)

After the initial identifier giving the name of the segment, the action
BEGINPROG is executed. This uses the identifier as part of the segment
header output on tape. This must be followed by the symbol 'BEGIN', one
or more declarations (each being terminated by a semicolon), one or more
statements (separated by semicolons), and finally the symbol 'END’.
Immediately before this final symbol the action ENDPROG is executed.

Before each declaration is processed the action STARTDEC is executed, and
after the final declaration the action ENDDECS is executed. These are both
involved with the housekeeping of storage allocation.

Declarations

D=(Type,Q47)
(Tabledec,Presetlist)

iswitch,ADDst,TrpE SWITCH,Newid,becomes,Swlist)
Specialdec
(Overlaydec

Valproc,Newid,BEGINPROC,colon,Newid ,NEXTPSET,Procrest)
SETYES,TYPEPROC,Q48)
(no,SETNO, Tracetype,trace)
(Leveldec)
Thus a declaration list may consist of:
1 Data declarations, which may be preset in certain cases.
2 Overlayed data declarations which may not be preset.
Switch declarations.

Procedure declarations.

LC B SN

Trace and diagnostic directives.
61

It should be noted that at this point in the analysis, a declaration of a
typed procedure cannot be distinguished from a simple data declaration, this
being resolved in rule Q47. Similarly a declaration of an untyped procedure
cannot be distinguished from a 'PROCEDURE' 'TRACE' directive, this being
resolved in rule Q49 which is entered via rule Q48.

The declaration of each identifier causes an Identifier Specification Record
to be generated, and placed on the compiler's main stack. This record is
generated at the base of the stack, and consists of five words plus the
string of the identifier. This information is built up incrementally using
the overlayed names of the locations. Thus the information which will occupy
the TYPEBITS word of the record on the stack is built up in the location
named IDTYPE, chiefly by the actions named TYPE==~-. This information is
usually complete by the time the identifier is read, and can be moved bodily
onto the stack.

Data Types
(D1=(STARTDEC,D, . . .

D=(Type,47)

Type=(integer,359)
(fixed,orbosb,int,NOBITS,comma,Sgint,NOAFTER.crbcsb)
(floating, TYPEFLOAT)

Q59=(0sb,int ,NOBITS,csb,PARTINT)
(TYPEINT)

Sgint=(int)
(plus,int)
(minus,int ,NEGNUM)

The action STARTDEC clears IDTYPE prior to a number type being read. If the
following symbol is 'FLOATING' the action TYPEFLOAT is executed, which sets
the TYP field of IDTYPE to 2, the PVL field being left clear.

Alternatively if the following symbol is 'FIXED' this must then be followed

by the specification of the number of significant bits, and the number of
fractional bits. At the request of Ferranti this specification may be enclosed
in either round or square brackets. (orbosb = (or [, crbesb =) or]).
After the integer constant specifying the number of significant bits, the
action NOBITS is executed. This inserts the number of significant bits into
the SGB field of IDTYPE. This is followed by a comma and a (signed) integer
giving the number of fractional bits, which may be zero or even negative.

(If the number is preceded by a - sign it is negated by NEGNUM). The action
NOAFTER is then executed, which sets the TYP field of IDTYPE to 1, and calculates
the scaling factor PVL.

The third possibility is the symbol 'INTEGER'. This may optionally be followed
by a specification of the number of significant bits. This is only required
where an integer is to be used in mixed arithmetic. In this case NOBITS is
executed. This integer may only be enclosed in square brackets, as an
ambiguity may arise concerning typed primaries if round brackets were allowed.
After the closing bracket the action PARTINT is executed. This is in fact the
same action as TYPEINT, which inserts the scale for integer into the PVL

field of IDTYPE, (#67, P23) and leaves the TYP field set to gero.

62

R o "
.

The rule Type is used in many places in the syntax, and in all cases the
relevant fields of IDTYPE will have been cleared before its use, often by
the use of CLEARTYPE.

Simple Data Declarations
[D=(Type,Q47)

Q47=(Q21 ,Presetlist)
(TYPETPROC, procedure,Newid, BEGINPROC ,Procrest)

Q21=(Id1ist,DECSIZE)
(array,TYPEARRAY ,Arraylist)

Idlist=(Newid,Q52)

Q52=()
(comma,Idlist)

Newid=(id ,NEWNAME)

This set of rules states that a declaration of one or more simple variables
consists of a data type followed by a list of identifiers, separated by
commas.

The rule Type sets up IDTYPE and the action STARTDEC has previously inserted
the current data address into DIRADD[O]. After each identifier, the action
NEWNAME is executed. This checks that the identifier is unique at this bdblock
level, and moves the Identifier Specification Record onto the main stack.
After this, it then increments DIRADD{O].

At the end of the list of identifiers, DECSIZE is executed, which copies the
current value of DIRADD [0] back into DATAMAX, and hence allocates the
storage for the variables.

Presetting Data Declarations
[Q47=(Q21,Presetlist)

Presetlist=()
(becomes,SKIPDTA,Presets)

Presets=(Presetnum,Q40)

Q40=()
(comma,Presets)

Presetnum=(Pnumber, UTPRESET)
(orb,Presets,crb)
(string,PRESETSTRING)

Pnumber=(pconst)
(plus,pconst)
minus,pconst,NEGNUM)
ZERONUM)

€3

i

Y

Camli . diuta T —— T e VNI P " o "y

Data declarations occurring at the head of a program may be preset. In this
case the declaration is followed by a becomes (« , := g symbol and a list of
preset values. These are separated by commas and may be arbitrarily grouped
within matched round brackets, to any depth. The number of items in the

list must not exceed the number of items declared in the declaration.

When the becomes symbol is read, the action SKIPDTA is executed. This
ensures that the loader will skip over any unpreset locations in the data
area. The preset values are ocutput by OUTPRESET after rescaling to the
required scale. If this is not possible an error message is output.
(Integers cannot be preset with real constants.) With the above restriction,
any type of number, signed or unsigned, may be included in a list of presets.
If a number is omitted (e.g. two commas occur in succession) ZERONUM is
executed to give the effect of a zero constant.

As an extension, quoted strings may occur in the presetlist. In this case
the variable is preset with the address of the string which is output by
PRESETSTRING. This should only be used to preset integers. This gives the
same effect as the assignment of a string.

N S A

Array Declarations
[D'—'(TYPe 3Q47)

Q47=(Q21,Presetlist)

Q21=(array,TYPEARRAY ,Arraylist)

Arraylist=(ZEROARRAYS,Idlist,osb,Boundpair,Morebounds,csb,ENDARRAY,Q42)

Q42=()
(comma,Arraylist)

Boundpair=(Sgint,SETLB,colon,Sgint,SETUB)

Morebounds=(ONEDIM) ;
(FIRSTDIM,comma,Boundpair,Arraytail) i

Arraytail=(LASTDIM)
(MIDDIM,comma,Boundpair,Arraytail)

When the symbol 'ARRAY' is read following a data type, the action TYPEARRAY
is executed, which sets the AYM marker of IDTYPE. This ensures that the
Identifier Specification Records of the following identifiers are flagged as
being those of arrays, and will require subscripting in normal usage.

As a number of groups of arrays'of the same data type but with differing
dimensions and bounds may be declared within one declaration, each group is
treated as virtually being a separate declaration by the rule Arraylist.

ZEROARRAYS is first executed, which clears the location ARRAYS used for
counting numbers of arrays. (This is overlayed on DECLIST[O] and is
incremented by NEWNAME.) The list of array identifiers is read by Idlist,

and the Identifier Specification Records created, which do not at this stage
have their address field correctly set, placed on the stack. The identifier(s)
are then followed by a list, enclosed in square brackets, of vairs of integers

giving the bounds of each dimension of the array(s). These integers may be g
signed, and are separated by a colon. The second must not be less than the '
first. After the firat integer SETLB is executed, and after the second of the
pair, SETUB. These calculate the size and offset of the dimension.

; If the array has only one dimension, ONEDIM is then executed. This inserts
| the addresses of the arrays into the Identifier Specification Records on b
E the stack.

&) If the array has more than one dimension, the action FIRSTDIM is executed]

2 after the first pair of bounds. This inserts the addreases of the first

- level Iliffe vectors into the Identifier Specification Records. After each

subsequent pair of bounds except the last, MIDDIM is executed. This outputs

(to Special Data) the Iliffe vector refered to by the previous level, and

referring to the next level. After the final pair of bounds LASTDIM is

_ executed. This outputs the final Iliffe vector, which refers to the actual
L data addresses of the arrays.

At the end of a group of arrays ENDARRAY is executed. This uses the total
data requirement (stored in ARRYS) to allocate data space.

- Expressions

] The compilation of expressions forms a very important part of the operation
3 of the compiler, and probably accounts for the vast majority of the code
1 generated. A very loose description of an expression is a collection of
] operands separated by operators. The syntax rules which follow express this
T in more detailed and rigorous terms. The priority of the operators expressed
2 oy these rules is as follows:
’ [Highest] 1 Shifts "SRA',SLA',SRL', 'SLC'
3 2 Logical AND YMASK!
3 Logical OR 'UNION!
4 Non~Equivalence 'DIFFER'
5 Exponentiation 1, **
6 Multiply/Divide *,/
[Lowest] 7 Add/Subtract + , -
Within the compiler each of these operators has its associated compiling L
action. These operate on the two top Arithmetic Operand records on the stack,
. generate the appropriate instructions, and leave one Arithmetic Operand record

on the Stack which gives the details of the result. These actions are
T invoked as soon as possibdle (bearing in mind the priorities of the operators),
v thus there is no reordering or regrouping of expressions. This is not very
. disadvantageous on a multi accumulator machine, and allows the programmer
control over the order of evaluation.

- Each expression is assigned an accumulator (PREFACC) in which the result is
e to be evaluated if possible. Further, if the scale to which the expression
is to be evaluated is known, a marker (SCALEFIRM) is set, and the required
scale placed in EXPSCALE. Otherwise the scale to which the expression will
be evaluated depends only on the operands.

A L 65

\ '

1 Simple Expressions

Expr=(Cexpr)
(Axp;?
(zero,CONSTANT,SCALETERM)
(string,STRINGEX,SCALETERM)

Axpr=(Term,Q6)
(Axpra)

Axpra=(plus,Term,Q6)
(minus,Term,UNARYMINUS,Q6)

Q6=()
(Q6a)

Q6a=(plus,Term,ADD,Q6)
(minus,Term,SUB,Q6)

Ignoring, for the moment, the special cases, an expression consists of at
least one Term, optionally preceded by a unary + or =, possibly followed
by one or more temms, each being preceded by a + or - sign.

If the first term is preceded by a plus sign, this may be ignored. If
however it is preceded by a minus sign, the Term requires negation, after
evaluation. The action UNARYMINUS is executed in this case.

After each subsequent Term, the appropriate action ADD or SUB is executed.
These output instructions for addition and subtraction.

2 Terms
Term=(Factor,25,SCALETERM) .

Q5()
(mult,Factor,MPY,Q5)
(div,Factor,DIVIDE,Q5)

These rules give the next level of expression. It should be noted that the
action SCALTERM is executed after each Term. In cases where no required
scale is demanded, this action determines the scale to which the expression
will be evaluated, after examining each term in turn. In cases where a
scale is mandatory, its action is limited to the output of instructions for
fixed to floating, and floating to fixed conversions. It is preferable that
these conversions are performed as soon as possible, as they involve calls
on Library procedures, and may require the temporary storage of intermediate
results.

66

3 Factors

Factor=(Difference,q24)

Q24=()
(power,Difference ,RAISE,Q24)

This rule introduces the exponentiation operation into this implementation.
Care should be taken however, as unless the right hand operand is the integer
constant 2, the result will be in floating point form, and may cause the

rest of the expression to be evaluated by floating point arithmetic. The
special case is treated as squaring, and is performed by multiplication.

4 Word Logic
Difference=(United,Q4)

Q4=é)

differ,United,NEQ,Q4)
United=(Collation,Q3)

Q3=§)
union,Collation,ORF,Q3)

Collation=(Tert,Q2)

Q2=(mask,Tert ,MSK,Q2)

These rules govern the priority of word-logic operators. It should be noted
that the results of these operations are regarded as being of type integer

(of unspecified significance) regardless of the types of the operands,
which strictly should be typed primaries.

5 Shifts

Tert=(Sec,Qt)
(Pri,Qt)

Q1=()
(shift,SETSHIFT,Shifts,DOSHIFT,Q1)

Shifts=(Sec,PLUSSUB)
(Tpri,SCALETERM,PLUSSUB)
(orb,Subex,crb)

Because of the nature of the shift functions, the right hand operand must be
of type integer. Furthermore, if it is a variable or an expression, it is
required to be held in a modifier before use. Thus it may be seen that the
operand giving the number of places of shift has a similarity to a subscript,
and in this implementation uses many compiling actions in common. The left
hand operand may be of any type. and the result is regarded as being of type
integer.

€7

6 Word Slicing
Sec=(Bitset,BITSIN,Pri,RHSBITS) :

Bitset=(bits,CLEARTYPE,o08b,int,Oneormore, FIELDPOSN,UNSFIELD,csb)

Oneormore=(NOBITS,NOSIG,PARTINT ,comma,int)
(ONEBIT)

The compiling actions in the rules Bitset and Oneormore cause a data
specification to be calculated in IDTYPE, and a part word specification to

be calculated in BITSPEC, in a similar manner to those required for an unsigned
integer table field. These values are stored by BITSIN for subsequent use

by RHSBITS. This latter action does not usually involve the generation of

any instructions at this point. Unless the PARTWORD field of the Arithmetic
Operand of the Primary is non-zero, the two values are simply inserted into

the TYPEBITS and PARTWORD fields of the record.

If instructions have to be generated at this point, it usually indicates bad
programming practice, e.g. taking a part of a table field which is itself a

part of a word. (This should be avoided by specifying a field consisting of
the relevant bits.)

The result of this "operation" is of type integer, having the number of
significant bits (plus one for the (zero) sign bit) given in the bit
specification. Where the number of bits is one, this (and the following
comma) may be omitted, thus allowing 'BIT' [9] etc.

7 Untyped Primaries

Primaries are the building blocks from which expressions are constructed,
operators being the mortar. These may be divided into two main categories,
typed and untyped. The untyped primaries do not have an intrinsic scale,
this having to be determined by the compiler.

Within the compiler, the net result of processing a primary is to leave on
the stack an Arithmetic Operand record giving type and address information
for the primary. (This is usually also the case when processing the special
cases of expression.)

Pri=(Tpri)
(realcon,CONSTANT)
(orb,STACKEXPR,SETPREF,Expr,crb,OFFSTEXPR)

In the case of a Real constant (ie containing . or &) there is no definite
scale associated with the constant. A scale may however be chosen which has
the minimum number of integer bits required to hold the number. This scale
is supplied by READER, and is used by CONSTANT when setting up the Arithmetic
Operand record. As constants are a special case of this type of record, the
marker CON (m.s. bit) of TYPEBITS of the record is set to denote that the
DIRADD field contains the actual constant and not an address. After any
subsequent rescaling, when this record is used as an operand record for the
output of an instruction, this constant is converted to an "address" by
OUTWCONST.

In the case of an untyped bracketed expression, the scale to which it is
evaluated is determined by the terms of the expreasion itself, following the
rules for expressions occurring in an undefined context, irrespective of the
scale of the expression of which it forms a part. (It should however be noted

that a bracketed expression following a shift operator is implicitly typed
Integer.) The action STACKEXPR is executed to set up a new "level” of
expression evaluation. As the scale to which this level is to be evaluated
is undefined, SCALEFIRM is cleared, and EXPSCALE initially set to zero. The
preferred accumulator PREFACC, which will be used if possible for the
evaluation of the expression, is set by SETPREF. After processing the
following expression, the action OFFSTEXPR is executed, which reduces the
expression level by restoring the variables concerned with the evaluation of
expressions to their previous values, and also "floats" down the stack the
Arithmetic Operand record left by the expression.

8 ed Primaries
[Pri=(Tpri)

Tpri=(intcon,CONSTANT)
(id,LOOKUP,Q28)
(NONAME,Singlesubs)
(CLEARTYPE,Type, TYPEXPR,0rb,Expr,crb,EXPRTYPE)
(location,orb,Locvar,LOCACT,crb)
(13bel,°rb’id’Q32 ’crb)

Q28=(Subscript,VARCHECK)
(RESPTEST ,Rhspsel)

Rhspsel=(VARCHECK)

%Proccall)
The simplest case of a typed primary is a (non zero) integer constant. In
this case CONSTANT is executed to set up an Arithmetic Operand record, as it
is for real constants in untyped primaries, but in this case however, the
scale supplied by READER is of integer typed, but with the number of
significant bits specified in SGB.

An identifier occurring as a primary may be the identifier of either a simple
variable, an array or table (field) name, or the name of a procedure. Before
this is resolved, LOOKUP is executed. This action searches through the whole
of the list of Identifier Specification records until one is found with a
matching identifier string. The first five words of this record are then
copied onto the top of the stack to form the Arithmetic Operand record, and the

first word of this (SPIEL) is set to point at the identifier string on the
stack.

If the identifier is followed by a subscript (starting with [) rule 428 selects

the first alternative. The actions associated with subscripts check that the
identifier may validly be subscripted, and VARCHECK check that its type is
Arithmetic. (It could have been a switch identifier). Otherwise the action
RASPTEST is executed. This returns a result of one if the identifier is that
of a typed procedure, and zero otherwise. This value is used to select the
appropriate alternative of Rhspsel. If the result supplied by RHSPTEST is
zero, VARCHECK is executed to check the type of the identifier further
switch and untyped procedure illegal) and that no subscript is required

AYM clear). Otherwise, if the result is one, the rule Proccall is selected.

69

T

An anonymous reference consists of a single expression enclosed in square
brackets. In this case NONAME is executed, which sets up an Arithmetic
Operand record, with no name or address information, but of type integer
array. The actions associated with subscripts will insert the address
information, and delete the array marker, leaving the type set to integer.

Whare a bracketed expression is preceded by a data type, the expression

will be evaluated to the type specified. CLEARTYPE is executed before

the type information is processed by Type, this clearing IDTYPE in readiness.
The action TYPEXPR is then executed, which sets up a further expreasion
level, in a similar manner to STACKEXPR, but setting SCALEFIRM to denote
that EXPSCALE (which is set from IDTYPE) contains a mandatory scale. At

the end of the expression, EXPRTYPE reduces the expression level in a
similar manner to OFFSTEXPR, but only after ensuring that the expression

has been evaluated to the required ascale.

9 Address Primaries

[Tpri: ¢« o o o
(location,orb,Locvar,LOCACT,crb)
(1abel,orb,1id,Q32,crb)]

Locvar:(id,LOOKUP.Q29;
(NONAME,Singlesubs

Q29=(Subseript)
(AYmancxg

Q32=(LOOKUP ,Singlesubs,LABSK)
(LABL)

The address of any item of data may be obtained by the use of 'LOCATION'.
(In this implementation this includes special data, and in particular the
locations of pointers to procedures, and of entries in switch lists.)

Although the type of the identifier is immaterial, it must be subscripted
if a subscript is normally required, and unsubscripted otherwise. The
actions associated with subscripts check the first case, and AYMCHECK the
second. After this, the action LOCACT is executed. This changes the type
of the Arithmetic Operand record to Integer, and except in certain optimised
cases, sets the marker LCM to denote that the address itself is to be used
as the operand instead of a reference to an operand.

As an extension, the address of a labelled statement may be obtained by

the use of 'LABEL'. This must be followed by an opening round bracket and

an identifier. At this point it is not yet determined whether the identifier
is that of a label (which requires looking up in the label list) or that of
a switch (which requires looking up in the main declaration list). This is
resolved in rule Q32. In the case of a label, no subscript follows, and

the action LABL is executed. This looks up the label in the (local) label
list, and forms an Arithmetic Operand of type Integer for it. This has

the marker LBM set to denote that the direct address contains a pointer to
the label record (at this point the label may not be set), and the marker
LCM also set. This reference to a label record will subsequently be converted .
to an "address" by USELAB.

70

If the identifier is subscripted, LOOPUP is executed, and the subscript
processed by Singlesubs. The action LABSK is then executed, which checks
that the Arithmatic Operand record is that of a switch, and changes its
type to Integer. Note that LCM is not set, as the label address will be
copied from the switch list.

(*LaBEL'(S(k]) = [‘'rocarToN'(sS[k])] !)

Special Cases of Expressions

(Expr= . . .
(zero,CONSTANT,SCALETERM)
(string,STRINGEX,SCALETERM)]

These two cases are chosen because, although they are similar to typed
primaries, their explicit use in conjunction with an arithmetic operator
is extremely obscure.

The detection of a zero constant as a special case enables useful
optimisations to be performed in Assigmments and Comparisons. In cases
where these optimisations are not required zero is treated as an integer
constant by CONSTANT, and its type (trivially) changed to that required
by the context by SCALETERM.

The inclusion of strings is principally to allow them to be used as

parameters of procedures, there being no operators which act on the individual

characters of a string. The action STRINGEX outputs the string and sets
up an Arithmetic Operand record of type integer, with the LCM set so that
the address of the string is obtained.

Subsgeripts
Singlesubs=(Substart,csb,KILLEXPR)

Subscript=(Substart,Moresubs,csb,KILLEXPR)
Substart=(osb,SETUPSUB,Subex)

Moresubs=()
(comma ,SUBCOMMA , Subex,Moresubs)

Arrays may have more than one dimension, but switches and anonymous
references are strictly one-dimensional. This is reflected in the first
two rules above.

After the opening square bracket has been read, the action SETUPSUB is
executed. This checks that the Arithmetic Operand record on top of the
stack is flagged as requiring a subscript. A new level for expression
evaluation is set up, requiring a mandatory integer scale, the preferred
accumulator being a modifier.

After each comma separating subscript expressions, the action SUBCOMMA is
executed. This outputs an instruction to copy an entry in an Iliffe vector
into a modifier. In this way, any number of dimensions may be processed.

At the end of a subscript, the action KILLEXPR is executed to reduce the
expression level. (Note that this discards any result of the expression,
this will be explained below.)

Subex=(Subterms)
(Cexpr,PLUSSUB)
(Term,PLUSSUB,Subexcont)
(zero)

Subexcont=()
(Subterms)

Subterms=(plus,Term,PLUSSUB,Subexcont)
(minus,Term ,MINUSSUB,Subexcont)

A subscript expression is not evaluated as a normal expresajon, but is
processed Term by Term by the actions PLUSSUB and MINUSSUB, which both

use the procedure SUBTERM. This optimises subscript expressions containing
only one integer variable and constants for a one dimensional non-parametric
array, or only integer constants for a parametric or two dimensional array.
As each Term is processed, its record is discarded, as the information
resulting from the Temm is stored in the address fields of the record of

the operand being subscripted. Thus there is no Arithmetic Operand record
left on the stack as the result of a subscript expression. Note that in

the case of a subscript expression consisting of a zero constant, no action
need be executed.

Conditional Expressions

(Expr=(Cexpr)

e o & o

Cexpr=(if,IFEX,Conditionlist,then,THENEX ,Expr,else,ELSEFI,
ELSEX,Expr,ELSEFI,FIEX)

As a conditional expression is an alternative case of expression it does

not need to set up a further level for expressions, even where a conditional
expression occurs within a conditional expression. A further level will
however be temporarily set up for the evaluation of the conditions(s).

If the expression level at which the conditional expression is to be
evaluated has SCALEFIRM set, i.e. a definite scale is required, both the
consequence and alternative expressions will be evaluated to this scale.
If however, it is not initially set, it will be set after the consequence
expression has been evaluated, to ensure that the alternative expression
is evaluated to the same scale. In either case however, the result of
each expression will be evaluated in the accumulator specified by PREFACC.

After the symbol 'IF' has been read, the action IFEX is executed. This

sets up a level for conditionals, and dumps any Arithmetic rands

existing only in accumulators. The following condition(list) is then
processed, and the symbol 'THEN' read. The action THENEX is then executed,
this being concerned with the output of a jump over the consequence expression,
and setting the DUECHAIN if the symbol 'OR' occurred in the conditionlist.

T2

The consequence expression is then processed, and ELSEFI executed after

E the symbol 'ELSE' is read. This action ensures that the result of the

4 expression is in the accumulator specified by PREFACC. The action ELSEX
is then executed, which outputs a jump over the alternative expression,
sets the chain for the jump to the altermative expression, and sets

: SCALEFIRM. After the alternative expression has been processed, ELSEFI

L) is again executed. The final action is FIEX. This reduces the conditional

. level, and creates an Arithmetic Operand record for the result of the

51 conditional expression. This record will have its TYPEBITS set from

g | : EXPSCALE, and its direct address will be that of the accumulator specified

. by PREFACC.

Conditions
L Conditionlist=(Condition,Q31)
& Q31=() ,
: (and,0UTCJ,Conditionlist)
(or,ORACT,Conditionlist)

Condition=(Yesno,overflow,OVRTEST) §
(STACKEXPR,ANYPREF,Lcond ,Rcond,Relation)

Yesno=(no,SETNO)
(SETYES,TYPEPROC)

A In the interests of efficiency, it is required that conditions are evaluated
B only as far as is necessary to determine their truth or falsity. Thus,
following the occurrence of the symbols 'AND' and 'OR', the associated
actions output the appropriate jump instruction to test the preceding
condition. This enables inconsequential tests to be skipped.

The above syntax does not need to express the relative priority of these
two "Boolean operators", as this is obtained as a consequence of the
operation of the tests output by the compiling actions.

Following the occurrence of the symbol 'AND', the action OUTCJ is executed.
This outputs an if-false-jump instruction to skip over the following
condition, or conditions if more 'AND's follow. Unless the symbol 'OR'
intervenes, the Jump will be made to the alternative, if any.

Following the occurrence of the symbol 'OR', the action ORACT is executed.
y This outputs an if-true~jump,directly to the consequence (statement or
Y expression as appropriate). The deatination of any preceding 'AND' jumps
. is then set to the following condition.

) In this implementation an extra type of condition is introduced, this
. being a (destructive) overflow test. "he symbol 'OVERFLOW' ('OVR') may be
preceded by 'NO', in which case SETNO is executed setting ACCUMULATOR to
- 0, or 'NO' may be absent in which case SETYES is executed setting
o ACCUMULATOR to 1. The execution of TYPEPROC is irrelevant in this context.

13

Y

Following the occurrence of the symbol 'OVERFLOW', the action OVRTEST is
executed, which sets FUNCTION to #24. Thus it may be seen that tests are

prepared as if-false-jumps, this being the test normally required following
'THEN', and are reversed as required (by REVCJ).

Comparisons

[Condition= « . . .
(STACKEXPR , ANYPREF,Lcond , Rcond ,RELATION)]

Leond=(Axpr)
(zero ,CONSTANT)

Reond=(r0,Q30)
(SETNEZ)

Q30=(Condterm,Condterms)
(zero ,ZEROCOMP)

Condterm=(Term,CONDPLUS)
(plus,Term,CONDPLUS)
(minus ,Term,CONDMINUS)

Condterms=()
(plus ,Term,CONDADD,Condterms)
(minus,Term,CONDSUB,Condterms)

Instead of evaluating the expressions on either side of the comparator,
and the performing the comparison by means of a subtraction, the two
expressions are evaluated as one expression. In a simple case this is
performed by effectively reversing the signs of all the terms of the right
hand expression. This results in less instructions being generated, and
usually one less accumulator being used. As the scale to which the
expression is to be evaluated is not specified, it is determined by the
compiler, using the normal method (see SCALETERM).

The expression to the left of the comparator is processed by the rvle
Leond, and that on the right hand side by Q30. The first Term of this
second expression causes either CONDPIUS or CONDMINUS to be executed, and
subsequent Terms cause either CONDADD or CONDSUB to be executed. If
however this second expression is a zero constant, the action ZEROCOMP is
executed instead. This optimises cases of comparison against zero.

In this implementation, the comparator and second expression may be omitted.
This allows the use of "pseudo" Boolean expressions, zero being false, and
non-zero true. Thus the symbols <>0 are effectively assumed. This allows
such conditions as :

'IF' 'BIT'(9])X 'THEN' . .
In this case the action SETNEZ is executed.
When the comparison is complete the action RELATION is executed. This sets

up ACCUMULATOR and FUNCTION in preparation for a subsequent call of OUTCJ,
and optimises tests of partwords against zero.

74

Y

4

Statements

{Program=(. . ,Body, . .)
Body=(D1,ENDDECS,S1)]
S1=(St,Q39)

Q39=()
(semi,S1)

St=(S,ENDST)

S=()

(1d,938)
STATUSCHECK,Q26,A1)
Ifstat)

Forstat)

Gotostatg

Compound
code,STATUSCODE,begin,Q35)

(Answerstat)

Q38=(SETLAB,colon,S)
(LOOKUP,STATUSCHECK ,Q33)

After processing each statement in the body of a program, the action ENDST
is executed. This frees any store used temporarily during the statement.
Statements are separated by semicolons (Q39), and may be void (S).

Where a statement commences with an identifier this mey be e label, or the
start of an assignment or procedure call. The first case is resolved in
rule Q38. If the identifier is followed by a colon (:= having been
converted to «) the action SETLAB is executed before the colon is read.
This action looks up the record of the label in the label list, and inserts
the current address in this record, setting a marker to denote that this
label is now set.

Assignment Statements

[Sz LI L
(1d,Q38)
(STATUSCHECK,Q26 ,A1)

Q38= e o o
(LOOKUP , STATUSCHECK,Q233)]

Q33=(Q25,41)
(LHSPROC,Proccall ,BEHEAD)

Q25=()
(Subscript)

Q26=(Bitset,Lhsb)
(NONAME,Singlesubs)

Lhsb=(1d ,LOOKUP,LHSBITS,R25)
(NONAME , LHSBITS,Singlesubs)

A1=(becomes, VARCHECK ,SETASS,A2,STORE,BEREAD)

75

The rules for the left hand side of an assignment are complicated by the
necessity to remove the cases of label settings and procedure calls, and
the number of possibilities available.

The action STATUSCHECK is executed once, irrespective of which route is
chosen, this completes any deferred actions associated with conditions and
Answer statements, and checks that the statement can be entered.

An arithmetic operand record will have been set up, either by LOOPUP if

an identifier has been processed, or by NONAME if an anonymous reference
has been used. If the identifier was subscripted, or an anonymous reference
has been used, the address fields of this record will have been processed
by the actions associated with subscripts, and in a non-optimum case code
may have been generated to evaluate the subscript expression(s).

If 'BITS' has been used the PARTWORD field of the record will have been
set to the partword specification generated by Bitset, and after checking,
its type will have been changed to integer, by LHSBITS. (Note that the
assignment to a part of a partword table field is illegal.)

{Al=(becomes, VARCHECK ,SETASS,A2 ,STORE ,BEHEAD)]

A2=(a3)
(Expr)

A3=(Cexpr)
2string,STRINGEX)
zero,STOREZERO)

(Term,ADDA,A4)
(plus,Term,ADDA,A4)
(minus,Term,SUBA,A4)

A4=(SIMPLEASS)
(SELOPTA,A5)

A5=(Q6a)
(Axpra)

After the left hand side of an assignment statement has been processed, the
symbol becomes is read and the action VARCHECK executed. This ensures that
the type of the left hand side is a data type, and that a subscript has
been supplied where required.

The action SETASS is then executed. This sets up the variables required for
an assignment, and also sets up the lowest expression level to the type of
the left hand side. If 'ASSIGNMENT' 'TRACE' is required, the right hand
expression must be evaluated in accumulator 7 and assignment optimisation
inhibited. In this case SETASS returns a result of 1 to be used as a
selector by A2.

If trace is not required, SETASS returns a result of gero, which causes
Tule A2 to select rule A3,

The assignment of zero is a special case which causes STOREZERO to be
executed. Strings and conditional expressions are processed in the normal
manner., The remaining cases are equivalent to those represented by the rule

Axpra.

After the firat Term has been processed its Arithmetic Operand record is
compared with that of the left hand side, by ADDA or SUBA as appropriate,

to detect whether an add to store type of assignment may be used. If no more
Terms follow, the action SIMPLEASS is then executed to optimise certain cases
of simple assignments. Otherwise the action SELOPTA is executed. This
returns a zero result if an add to store assignment is-not appropriate, and
the rest of the expression is processed using rule Q6a. If however, an add
to store assigmment is to be used, a result of { is returned. This causes
rule AS to select the rule Axpra, which processes the reat of the

expression, without using the previously processed first Term. (The
difference between these two alternatives is vital to this optimisation.)

After the right hand side of the assignment has been processed the action
STORE is executed. This outputa the instructions to perform the assignment,
using the instruction number set up in ASSFUN, after generating trace
instructions if required. The final action BEHEAD, removes the Arithmetic
Operand record of the left hand side from the stack.

Conditional Statements

Ifstat =(if,IFS,Conditionlist,then,ENDST,St,else,ELSES,S,FI)
f{if ,IFS,Condi tionlist,then,ENDST,St,FI}

In this implementation, the syntax of a conditional statement differs from
the Official Definition in that a conditional (or for) statement is allowed
to follow 'THEN'. This avoids the necessity to use a 'BEGIN' = 'END' pair to
surround the consequence statement in these cases. As processed by the syntax
analyser generator, only the firat alternative of the above rule is used.
After checking the syntax, and generating the SYNTAX array, a one word
overwrite introduces the second alternative.

(Overwrite #70450000 with #70450000+(*SELF'+3~-STYNTAX[0]))
This would seem to allow:

‘IF* . . 'THEN' 'IF* . . 'THEN' . . 'ELSE' . .
to be interpreted as either:

'IF* . . 'THEN' 'BEGIN' 'IF' ., . '"THEN' . . 'ELSE' . . 'END’ ;

or:

‘IF' . . 'THEN' 'BEGIN' 'IF' . . 'THEN' . . 'END' 'ELSE' . .

we

This is the pathological "dangling else" from Algol 60. As implemented, the
first interpretation is invariably chosen by the compiler. In cases of
doubt, the user is advised to use 'BEGIN' - 'END' to remove apparent
ambiguity.

After reading the symbol 'IF' the action IFS is executed. This prepares for
the processing of the following condition, setting STATUS to 4 for jump
optimisation. The action ENDST, which is executed after thc symbol 'THEN'

is read, serves to recover any workspace used temporarily during the
evaluation of the conditions. The consequence statement is then processed.

If this is followed by the symbol 'ELSE', the action ELSES is executed, and
the alternative statement processed. At the end of the conditional statement,
the action FI is executed. This ensures that any jump around the alternative
statement will subsequently have its address set.

L

Goto Statements
Gotostat=(goto,1d,Q27)

Q27=(GoToL)
(LOOKUP,STATUSCHECK,Singlesubs,LABSK,GOTOSK)

The destination of a Goto may be either a label or a switch entry. This is
resolved by rule Q27.

If the destination is a label, the action GOTOL is executed. This looks

up the label identifier in the local label list, and optimises such cases

as 'THEN' 'GOTO', as the final test inatruction of the condition has not yet
been output.

The second case, that of a switch entry, is treated in a manner analagous

to that of an expression. An Arithmetic Operand record is created by LOOKUP,
and has subscript optimisation applied to it by the actions invoked by the
processing of the subscript by Singlesubs. This record is then checked

for type by LABSK, and finally the action GOTOSK is executed. This action
outputs the indirect jump instruction, using the output procedure normally
used for Arithmetic instructions, INST. This is not surprising, as the
address used for this instruction will normally lie in the (special) data
area of the segment.

For Statements
Forstat=(for,STARTFOR,Locvar,CHECKCV,becomes,F1)
F1=(43,ASSCV,F2)

Fo=(F3)
(while,Conditionlist ,WHILEL,F3)
(step,Expr,STEPUNT,until ,Expr,STEPUNT ,F3)

F3=(do,DOCS ,S,ENDFOR)
(comma ,MOREFOR,F1)

In regard to the structure of the code generated, for statements may be split
into three categories, depending upon the complexity of the for-list. The
simplest, and very common case, is where there is a single step~until element
with three constants. 1In this case the initial value is first assigned to the
control variable, the controlled statement executed, the control variable
incremented, and finally its wvalue tested against the limit value. A
conditional jump back to repeat the controlled statement is made if the 1limit
is not exceeded. This is the only case where the instructions for incrementation
and testing of the control variable follow those of the controlled statement in
core. In all other cases they precede those of the controlled statement, thus
involving the requirement for a jump round the controlled statement when the
for list is exhausted, and a jump back at the end of the controlled statement.

In the second case, the for list consists of one element of any type, or two
elements where the first is simply an expression and the second a while element.
In this case there is only one destination required for the jump back which is
made at the end of the controlled statement.

In the last case, there 1s more than one destination required for the jump back
at the end of the controlled statement. This statement is compiled as an
anonymous procedure, which is called from the code generated for the for—-list,
and returns using the link supplied by the call. The detection and selection
of these three cases is made using the variables FORSTATE (complexity) and CCC
(detection of three constants).

After the symbol 'FOR' has been read the action STARTFOR is executed, which
sets up and initialises a new for level. It also sets up a block level for
labels, to ensure that the controlled statement cannot be illegally entered.
The control variable is then processed by Locvar, which checks that it is
correctly subscripted, if required. The control variable is further checked by
CHECKCV which ensures that it is either a 'FIXED' or 'INTEGER' and is not a
partword. This action also sets up the variables used by assignment
optimisation, and expressions.

The first expression of each for element is processed by the rule A3, which
optimises the assignment, where possible, which is output by the action ASSCV.

Where the element is of the form step~until, the two expressions are processed
by the rule Expr, and after each, the action STEPUNT is executed. This ensures
that these expressions are converted to the type of the control variable, and
are stored in temporary locations if required.

Where the for element is of the type while, the following condition is processed
by the rule Conditionlist, the final jump being output by WHILEL.

Where there is more than one for element, the action MOREFOR is executed following
the comma. This releases any temporary locations used by step-until elements,

and resets the variables for the following expression. This action also outputs
the instructions required for the call of, or jump to, the controlled statement.
In the case of a step~until element, this is preceded by a test of the control
varieble, and followed by its incrementation.

Pollowing the symbol 'DO' the action DOCS is executed. In cases where the
controlled statement is an anonymous procedure, this outputs the instruction to
store the link., If 'LOOP' 'TRACE' is required, the instructions for the
printing of the control variable are output at this point.

After the controlled statement has been processed the action ENDFOR is executed.
This outputs a jump back as required, or the incrementation and testing of the
control variable in the single element three constant case. All store used
temporarily during the execution of the for statement is now released, the
label block level reduced, and the for level reduced.

Blocks and Compound Statements
Compound=(STATUSCHECK,begin,Q37)

Q37=(S1,end)
(BEGINBLOCK,Body,end ,ENDBLOCK)

The distinction between blocks and compound statements is that, although they
both start with 'BEGIN', this is only followed by declarations in the case of
a block. This is resolved by rule Q37. There are no specific compiling actions

associated with a compound statement, the 'BEGIN' and 'END' merely acting as
"statement brackets".

19

In the case of a block however, the action BEGINBLOCK is executed after the
symbol 'BEGIN' has been read. This increases the block level, and prepares

for the following declarations. At the end of the block the action ENDBLOCK

is executed. This reduces the block level, removes any records of identifiers
declared within the block, and releases any data space allocated. Note however
that the value of DATAMAX is not reset to its value prior to the block, if this
value was smaller than its value at the end of the block.

Code Statements

[S:ooc
(code,STATUSCODE ,begin,Q35)

Q35=(Csl,end)
(BEGINBLOCK,DI,ENDDECS,Csl,end,ENDBLOCK)

Cs1=(Cs,Q34)

Q34=()
(semi,Csl)

Cs=()
(Compound,STATUSCODE)
(inst,INSTTYPE,Npart,OUTCODE)
(14 ,CODELAB,colon,Cs)

A code statement is bracketed by 'CODE' 'BEGIN' . . 'END'. In this
implementation the 'BEGIN' may be followed by declarations, causing the code
statement to be treated as a block, following the usual rules. This enables
local workspace to be obtained without having to resort to the use of labelled
locations, this being forbidden.

After any declarations, an item in a code statement can only be a code
instruction, a compound statement, or a block. These may be labelled in the
usual manner. It is not possible to include constants as code items. The
'SPECIAL' 'ARRAY' facility is provided to give an alternative method of including
preset constants, possibly containing address information. The advantage of

this is that not only is it more efficient, (no jump over being required) but

it allows programs to be run with different 0 and N relativiser settings.

The Npart of a code instruction is not treated as an address but as an operand,
in much the same manner as a primary. The actions which process the Npart leave
on the stack an Arithmetic Operand record which is used by OUTCODE to output

the instruction. This is provided for the convenience of the Coral programmer
who wishes to use code (perhaps innocently by macro) rather than for the Astral
programmer who wishes to use Coral.

e anpgN At ol

[cs: e o o
(inst,INSTTYPE,Npart,O0UTCODE)

Npart=(Nread)
(Nwrite)
%Nshifg)

N
(Nigﬁg

Nread=(Nwrite)
(Sgint,CONSTANT)
(CLEARTYPE,Type sorb,Pnumber,SCALECON ,crb ,CONS TANT)

Nwri te=(anyacc,NISACC)
(id,LOOKUPD,Nw1)
(NONAME,Nw2S

Nw1f§£2)

Nw2=(osb,Nw3,INCTOS,csb)

Nw3=(Sgint)
(modacc ,NISMOD,Zint)

Zint=(Sgint)
(ZERONUM)

Nshift=(int,CODESHIFT)
(modace,Zint ,CODESHIFT ,NISMOD)

Njump=(ID,LABL)
(self,Zint ,RELADD)

Nloc=(Nwrite)
(string,STRINGEX)

The syntax of the allowable Npart of an instruction depends on the type of the
instruction. The class to which an instruction belongs is returned as the
result of INSTTYPE and is used as the selector for the rule Npart.

Where a constant is allowed as an operand, this is treated as a reference to a
constant and not as a numeric address. The constants are optimised by the
Where a constant is
prefixed with a data type, the constant is converted to this type by SCALECON
before being inserted in the Arithmetic Operand record set up by CONSTANT.

loader, which uses the functions 04~07 where possible.

Where an identifier is used as the operand of a non-jump instruction, this is
used by LOOKUPD in the usual manner. This may be followed by a modifier and/or
a displacement, enclosed in square brackets, this construction also being

Thus to obtain a numeric
address, this must be enclosed in square brackets in exactly the same way in
vwhich it would have to be if it were used in a normal Coral expression.

allowed as the equivalent of an anonymous reference.

The destination of a (direct) jump instruction can only be a label identifier,

or a relative jump.

81

forifUr s -y st

SO

oA s

Table Declarations

Tabledec=(table,TYPEINT ,TYPEARRAY ,Newid,osb,int,TABLESIZE,csb,
Tabledetail ,CLEARTYPE, TYPEINT)

Tabledetail=(osb,TABADD,Fieldlist)
Fieldlist=(CLEARTYPE,id,Fieldtype,TYPEARRAY ,NEWNAME,Q60)

Q60=(csb)
(semi,Q602a)

Q60a=(260)
(Fieldlist)

After reading the symbol 'TABLE' the actions TYPEINT and TYPEARRAY are
executed to set the type of the following table identifier, which is
processed by Newid, to that of an integer array.

In the Official Definition both the number of words per entry, and the number
of entries has to be specified. This implies that all subscripts must be -
multiplied by the width of the entry each time a field is referred to. This

was felt to be an unjustifiable overhead for the Argus. Instead, only the total
space required for the table is specified, and subscripts must be arranged to
have the appropriate factor applied. This may often be done with no overhead.
If for example, a for statement is used to scan the table, the step would be

the entry width, instead of one. If entries are referred to by pointers,
variable length and mixed record types may be kept in the same table.

(As in the Compiler)

After the single bracketed integer specifying the size of the table has been
read the action TABLESIZE is executed, this action reserving the required amcunt
of data space. This is followed by the description of the fields, enclosed in
square brackets. At the end of the declaration the actions CLEARTYPE and
TYPEINT set IDTYPE to integer in case the table is to be preset.

Fieldtype=(Type,Sgint,FIELDDISP)
(Partfiel§§
(unsigned,Partfield,UNSFIELD)

Partfield:(orbosb,int,NOBITS.NOSIG.Intfixfield,crbcsb,
Sgint ,FIELDDISP,commab,int,FIELDPOSN)

Intfixfield=(comma,Sgint ,NOAFTER)
(PARTINT)

A table field may occupy a whole word. In this case the field identifier is
followed by a data type and a signed integer giving its word position in the
entry. The action FIELDDISP calculates the address required for the field

using the address TABLED and TABLEI stored by TABADD, and inserts it into the

appropriate locations at the base of the stack in readiness for the subsequent
call of NEWNAME.

A table field which occupies part of a word may be stored either with a sign
bit, or without, in which case 'UNSIGNED' is specified. The type of the field
is either integer or fixed, this being resolved by rule Intfixfield. It should
be noted, particularly in the case of an integer field, that the number of
significant bits is taken to be the number of bits occupied, plus one in the
case of an unsigned field. The action FIELDPOSN is executed after the integer
specifying the starting bit position has been read, this completing the part
word specification. It should be noted that Ferranti bit numbering is used, and
the starting bit position specifies the most significant bit of the field.

At the request of Ferranti, either square or round brackets may be used in the
specification of the field type.

Switch Declarations

[D:.o.ooo.- ’
(switch,ADDRSW,TYPESWITCH,Newid,becomes,Swlist) !

Swlist=(id,SPECLAB,Q41)
Qa1=()

(comma,Swlist)

A switch declaration sets up, in the segment's Special Data area, a set of
sequential locations containing the addresses of the labels, one per entry. .
Where a label is external to a segment, the address will be that of the indirect]
jump to the label, set up at the end of the segment. The action ADDRSW sets the
direct address of the record being formed, to the current special data transfer
address minus one. Its type is set by TYPESWITCH, and is effectively Label Array.

After each label identifier in the switch list, the action SPECLAB is executed.
This looks up the label in the (local) label list, and outputs either zero or
its chain address to special data. (The label cannot yet have been set at this
block level, except in the special case of label parameters.)

Overlay Declarations
Overlaydec=(overlay,Base,with,0VERON,Datadec,OVEROFF)

Base=(1d4,L0OKUPD,Q43)
(NONAME,0sb,int,INCTOS,csb)

Q43=()
(osb,Sgint,Inctos,csb)

Datadec=(Type,Q21)
(Tabledec)

Any data location may be overlayed with a data declaration. The base defines
the starting point of the overlaying data. As an extension, this may be an
(absolute) anonymous reference, thus giving a limited local equivalent of an
'ABSOLUTE' communicator.

An arithmetic Operand record is created by either NONAME or LOOKUPD. In the
second case, if the direct address is zero, the indirect address replaces it.
The action INCTOS increments the direct address by the integer constant.

',"‘,._

The data declaration is preceded by the execution of the action OVERON, which
deletes the Arithmetic Operand record stores its direct address in OVERBASE,
and sets the OVERLAY flag. This flag is cleared later by OVEROFF.

The following points should be noted:

1 Where a multi-dimensional array is overlayed, the actual area
overlayed is its first level Iliffe vector. It is usually better to
overlay a single dimensional array with multi-dimensional array(s).

2 There is no check to ensure that the space required by the
overlaying data declaration does not exceed that of the overlayed data
area.

3 Where a procedure parameter is overlayed, the base is taken as the
location occupied by the parameter within the data space local to the
procedure, even if the parameter is a 'LOCATION' or 'ARRAY' pointer.

4 Where the base is a field of a table passed as a parameter, the
effective address is the displacement of the field relative to the start
of the table.

Special Declarations
Specialdec=(special,array,TYPEINT ,TYPEARRAY ,ADDRSPEC,Newid ,becomes,Speclist)
Speclist=(Specitem,Q46)

Q46=()
(comma ,Speclist)

The Special Array facility is introduced as an aid to the production of software
and not as a facility for everyday use. Its introduction compensates for the
restriction that constants may not be embedded within code. A special array is
classed as an Integer Array, with a zero lower bound, and must be completely
preset. The normal restrictions on presetting do not apply. The preset values
may contain address and numeric information packed into one word (10/14 vit
packing). It is usually bad practice to alter the contents of a special array
during the execution of a program.

Specitem=(Zint,q45)
string,SPECSTRING)
CLEARTYPE,Type,orb ,Pnumber,SPECNUM,Morespec)

Morespec=(crb)
(comma ,Pnumber ,SPECNUM,Morespec)

Q45=(SETTEN,Specadd)
(CLEARTYPE, TYPEINT , SPECNUM)

Specadd=(colon,1d,SPECLAB)
(se1f,Sgint ,SPECREL)
(aiv,Q44)

Q44=(Sgint ,NONAME, INCTOS ,SPECCON)
(Base,SPECCON)

]
!
i
I
i
!
!

A special item may be either a packed word, a string, or a numeric constant.
If the constant is not to be stored as an integer, one or more constants,
enclosed in round brackets may be preceded by a data type. These constants
will be rescaled by SPECNUM before being output. In the case of a string, the
actual standard string, occupying one or more words, is stored in the special
array at the point of its occurrence by SPECSTRING. This differs from
presetting an integer witha string, where the preset value is its address.

Where a packed word occurs, the action SETTEN is executed to store the ten bit
constant temporarily in TOPTEN. This constant, which may be void, is then
followed by either a colon, the symbol 'SELF' (*), or an oblique stroke. The
colon must be followed by an identifier, which is taken as that of a label by
the action SPECLAB, and the label address subsequently stored.

In the case of a relative address ('SELF' or *), the symbol is followed by a
signed integer, the action SPECREL treating the address as relative to the
current special data transfer address. (NB not the current program transfer
address.) In the third case, the fourteen bit field may be either a second
integer constant, or a data address, as processed by the rule Base. The
Arithmetic operand record set up in this case is used by the action SPECCON.

Level Directives

[Compileitem= e & o o
(Leveldec)

(Leveldec)]
Leveldec=(level,int,SETLEVEL)
A level directive sets the level of diagnostic information required at

compile time, and required to be output to the loader. After the unsigned
integer giving the level required, the action SETLEVEL is exscuted.

Trace Directives

[Compileitem= ¢ o o o
(Yesno,Tracetype,trace)

D= o ® [] []
}SETYES,TYPEPROC.Q48)
no,SETNO,Tracetype, trace)

Tracetype=(assignment ,ASSTRACE)
loop,FORTRACE)
label ,LABTRACE)
procedure ,PROCTRACE)

Q48=(assigrment ,ASSTRACE, trace)
(100p,FORTRACE, trace)
Elabel.LABTRACE.trace)

procedure,Q49)

Q49=(Newid,BEGINPROC,Procrest)
(PROCTRACE, trace)

85

T A N e AN MR ¥ W M AR B it

Trace directives govern the amount of instructions specifically generated

to enable the action of a program to be traced. Trace is split into four
categories; assignment, loop, label and procedure. Each type may be turned
on or off as required, the trace state following the block level. At the

end of a block the state is reset to that of the outer block, but at the
start of a block it is initially that of the outer block. Normelly it is off.

The actions SETYES and SETNO set the value of ACCUMULATOR to 1 and O,
respectively. (These actions also being used for overflow tests.) The
actions ASSTRACE, FORTRACE, LABTRACE and PROCTRACE setting the appropriate
bit of TRACE from the value of ACCUMULATOR.

Because of the clash (starting vith same symbol) between 'PROCEDURE' 'TRACE'
directives and the declaration of untyped procedures, the rules have been
expanded by SID, and the action TYPEPROC is always executed in conjunction
with the action SETYES. A manual transformation of the above rules could
reduce their size.

Trace instructions are generated by the actions STOREAWAY, DOCS, SETLABEL,
and PROCENTRY & EXITCHECK.

Procedure Type Declarations

[D=§Tm.q47)
Valproc,Newid,BEGINPROC,colon,Newid, NEXTPSET,Procrest)
(SETYES, TYPEPROC,Q48)

L] L4 L L . L)

Q47= s e o
(procedure,Q49)

Q49=(Newid ,BEGINPROC,Porcrest)

Valproc=(value,TYPEVPROC,procedure)

The above rules "untangle" the start of a procedure declaration. Before the :
procedure identifier is read, the type information in IDTYPE is complete, so s
that NEWNAME can move the Identifier Specification Record onto the stack. At
this point however, the PARAMSPEC pointer has not been set, and the DIRADD

field contains the address of the location which will subsequently be used

to hold the link. DIRADD[O] is set correctly however for allocating a location)
for the first parameter.

After the procedure identifier has been read, the action BEGINPROC is executed,
this completing the procedure's Identifier Specification record, and initiating
its Parameter Specification record. A location in special data is allocated as
a pointer to the procedure, and the address of this inserted into the DIRADD
field of its record. 1In preparation for the following parameters, if any, the
PAC field of IDTYPE is set to 7.

If the procedure is a 'VALUE' procedure, its name is followed by a colon, and

the identifier of the "context" parameter, which is processed by Newid. This

is followed by the execution of NEXTPSET to clear the typé and special markers
from IDIYPE, leaving the PAC field set to 6.

86

VT M A

—rr

Procedure Parameter Declarations

Procrest=(Parameterpart,semi,Procbody,ENDPROC)

Parameterpart=()
(orb,Parameters,crb)

Parameters=(Parameterset,Q65)

Q65=()
(semi ,NEXTPSET,Parameters)

Parameterset=(Type,Q63)
(1ocation,TYPELOC,Q62)
label,TYPELAB,Idlist)
switch,TYPEISWITCH,Id1list)
table,TYPEINT ,TYPETARRAY,Newid,osb,int,csb,PARAMTAB,Tabledetail , PARAMTAB)

(value,Q64)
(SETYES, TYPEPROC, procedure ,Procparamlist)

Q64=(Type,Idlist)
(TYPESPEC,Pairlist)
(TYPEVPROC,procedure ,Procparamlist)

Pairlist=(Newid,colon,Newid,Q61)

Q61=()
(comma,Pairlist)

Q62=(Type,Idlist)
(TYPESPEC,Pairlist)

Q63=(array, TYPEIARRAY,Id1list)
(TYPETPROC, procedure ,Procparamlist)

Procparamlist:(Newid.Paramlev?.QSS)
Q58=()

(comma,Procparamlist)

The type of a set of parameters is built up incrementally in IDTYPE, the PAC
field having been previously set. In particular, where the location of an
object is to be passed as a parameter the marker LCM will be set. Each
parameter identifier will cause the action NEWNAME to be executed. As well
as adding the Identifier Specification record to the DECLIST, in the case of
parameters NEWNAME will call NEXTPARAM to add the specification of the
parameter to the procedure's Parameter Specification record.

When the procedure has been compiled, the Identifier Specification records
of the individual parameters will be deleted, as they are then out of scope.
The Parameter Specification record of the procedure will however remain until
the procedure itself goes out of scope. This record, and not the records of
the individual parameters, is required for the generation of calls of the
procedure.

B s

e e e =

e s %, LGN

In the cases of typed 'VALUE' & 'LOCATION', 'ARRAY', 'SWITCH' and 'LABEL’
parameters the specification is followed by a list of parameter identifiers,
gseparated by commas. In the case of untyped 'VALUE' & 'LOCATION' parameters,
the identifiers occur in pairs, the second of which is used to pass the type/
scale of the first. 'TABLE' parameters require the asize of the table to be
specified, even though this is ignored. This is followed by the specification
of the individual fields.

In the case of typed or untyped 'PROCEDURE!' parameters, the parameter
identifier is followed by a specification of its parameter requirements, if
any. This enables a Parameter Specification record to be formed for each
'PROCEDURE' parameter, this being required when a call of the parametric
procedure is to be compiled.

After the semicolon separating sets of parameters has been read, the action
NEXTPSET is executed, clearing the type information from IDIYPE in readiness
for the next set.

Procedure Parameter Specifications

Paramlev2=(BEGINPSPEC,Q57)

Q57=(orb,Paramtypelist,crb,ENDPSPEC)
(ENDPSPEC)

Paramtypelist=(Paramtype,NEXTPARAM,Q56)

Q56=()
(comma ,NEXTPSET,Paramtypelist)

Paramtype=(Type,Q54)
§location,TYPELOC,Q53)
label ,TYPELAB)

(switch, TYPEISWITCH)
table,TYPEINT,TYPEIARRAY)
value,Q55)
SETYES,TYPEPROC,procedure)

Q55=(Type)
TYPESPEC ,NEXTPARAM)
TYPEVPROC, procedure)

Q53=(Type)
(TYPESPEC ,NEXTPARAM)

Q54=(array,TYPEIARRAY)
(TYPETPROC, procedure)

Where a procedure is specified without being declared, this occurring in the
case of 'PROCEDURE' parameters in a procedure declaration, and also where
procedures are specified in communicators, its parameter requirements must
also be specified if the procedure requires parameters. This enables a
Parameter Specification record to be prepared, and a reference to it inserted
in the PARAMSPEC field of the Identifier Specification record of the procedure.
This record is required even if the procedure (apparently) has no parameters.
(NB A "parameterless" 'VALUE' procedure has the "context" parameter.)

R S TR L <

X4

In the rule Paramlev2 the action BEGINSPEC is executed to initiate the
Parameter Specification record, tentatively reserving eight words for this.

The rule Q57 detecting the case where the procedure requires no parameters.

In this case the action ENDPSPEC being immediately executed. These two actions
setting up 2 null record.

Where parameters are required, an opening round bracket will be read. This is
followed by a 1list of parameter types, separated by commas, and terminated by
a closing round bracket; after which the action ENDPSPEC is executed.

The type of each parameter is built up incrementally in IDTYPE, and added to
the record by the action NEXTPARAM. After each comma the type information is
cleared from IDTYPE by NEXTPSET. In the case of untyped 'VALUE' & 'LOCATION'
parameters the action NEXTPARAM is effectively executed twice, to insert the
specification of the context parameter. Where procedures are specified at
this level, a specification of their parameters is not required.

The Procedure Body

Procbody:(code.be n,KILLPARAMS ,0d41 ,ENTERPROC,Cs1,end)
(SETPARANS, Q51

Q51=(begin,0d1 ,PROCENTRY ,S1,end ,EXITCHECK)
(ENDDECS , PROCENTRY , S8 , EXITCHECK)

0d1=(D1,ENDDECS)
(ENDDECS)

Ss:g)
Ifstat)

Forstat)

Answerstat)

Gotostat)
1d,LOOKUP,STATUSCHECK,Q33)
STATUSCHECK,Q26 ,A1)

Where the body of a procedure is a code statement, the normal parameter
machanism is inhibited by the action KILLPARAMS. This cancels the allocation
of data space for the parameters, and deletes their Identifier Records.

Otherwise the action SETPARAMS is executed, which confirms the allocation of
the data space required to hold the parameters. If the procedure body is a
block, a new block level is not set up, as one has already been set up for
the procedure. This prevents the redeclaration of the identifiers used for
parameters, at the outer level, thus rendering them inaccessable.

When the firat statement of the procedure body is reached, the action PROCENTRY
is executed. This outputs instructions to store the link and the parameters.
At the end of the procedure the action EXITCHECK is executed. This ensures
that a result is returned if a result is required.

Y

re l!!l!!!Il-llHllull!ll!llll'!lllllllHlUIII'lllllll"lllll!.llllll.l-lll!

Ansver Statements

Answerstat=(STATUSCHECK,answer ,SETANS, Expr,ANSCHECK)

This statement is only allowed within the body of a typed procedure. After
the symbol 'ANSWER' has been read, the action SETANS is executed. This sets
EXPSCALE to the type required for the result, and sets SCALEFIRM. If however
the procedure is a 'VALUE' procedure, these are both cleared.

At the end of the expression delivering the result, the action ANSCHECK is
executed. This ensures that the result has been evaluated in accumulator 7,
to the scale given in EXPSCALE. The variable STATUS is set to 2 to denote
that an exit instruction is required.

Procedure Calls

[Tpri:- « o o o o
(id,LOOKUP,Q28)

Q28= e o o o o o
(RHSPTEST ,Rhspsel)

Rhs 891: e e e ¢ o
EProccall)
s= o o o o o

(14,Q38)

Q38= e & o o @
(LOOKUP ,STATUSCHECK,Q33)

Q33= e o o e »
(LHSPROC,Pro-call ,BEHEAD)]

Proccall=(SETUPPROC,Selparams , CALLPROC ,FINISHPROC)

Selparams=()
zorb.Paramloop)

Paramloop=(NEXTPTYPE,Selptype ,ANYMORE,Selmore)

id,Q32)

Selmore=(Multitest)
icomma,Paramloop)

Multitest=(crd)

(comma ,CALLPROC,MULTICALL ,Paramloop)

When the requirement for a procedure call is detected, the rule Proccall is

entered and the action SETUPPROC executed. This prepares for the call of the a
procedure, and raises the expression level in readiness for the evaluation of
parameters. If the procedure requires parameters a result of one is returned,
otherwise zero. This value is used as the selector for the rule Selparams.

After the call of the procedure has been generated the action FINISHPROC]
reduces the expression level, and alters the type of the Arithmetic Operand i
record set up for the procedure identifier, to the type of the result of the
procedure.

Before each parameter is processed, the action NEXTPTYPE is executed. This
prepares for the evaluation of the parameter to the required scale, in the
required accumulator. It returns a result, given by PARAMCLASS, which is used 1
as a selector by the rule Selptype. This selects the syntax for the parameter,
choosing the rule containing the actions appropriate to the type required.

1
After each parameter has been processed, the action ANYMORE is executed. This
checks that the parameter is of exactly the required type. It returns a result
of zero if no more parameters are required, and a result of one otherwise.
This is used as a selector by the rule Selmore. ;
If more parameters are supplied than are required, this case being detected by
the rule Multitest, it is assumed that a multiple call of the procedure is
required. The call is output by the action CALLPROC, which in this case is
followed by the action MULTICALL, which prepares for the second and subsequent
calls.
Common Communicators
[Compileitema ¢« o o o
(Commondec)
Commondec=(common,orb,COMON,Commonlist,COMOFF,crb) j

Commonlist=(STARTDEC,Commonitem,Q23)

Q23=()
(semi,Commonlist)

A common communicator is compiled to produce a loadable segment. This consists
of two main parts, a common data part providing data space accessible to all
the segments, and a reference part containing references to switches, labels,
and procedures accessible to all the segments, each being provided by only one
segment.

In this implementation, a means of checking that all these references have been
set before the programs are entered is provided by the "common check tape".
¥Within the common segment all internal references are made by means of D and

S address tags, but all references by segments to the common segment are made
by means of C tags.

A checksum is formed from the characters of the common communicator to ensure
that a segment is loaded with the correct common.

o1

Y BeAdERd 2o

RUTRFETIET Ve R T
. e N

i Al s
.

Common Dgta

Commoni tem=()

(Type,Q22)
Tabledec,Presetlist)
Overlaydec)
Specialdec)

Q22=(Q21 ,Presetlist)

[Q21=(1d1ist,DECSIZE)
(array,TYPEARRAY ,Arraylist)]

Data declarations withir. a common communicator are handled in exactly the same
manner as data declarations in a program segment. Where multi-dimensional
arrays are used, the Iliffe vectors are set up in the special data area in
the usual way. This also applies to strings and Specialdecs. The identifiers
of these items of data are originally addressed relative to the D and S areas
of the common area, these addresses being subsequently changed to addresses
relative to the C area. It is important to note that this re-addressing
assumes that the S area of the C area immediately follows the D area.

Common References

Commonitem:(g
(Type,Q22

évalproc,Comprocs)
label,TYPELAB,Comspecidlist)
(switch,TYPEISWITCH,Comspecidlist)
(SETYES,TYPEPROC, procedure ,Comprocs)

Q22=oooo.
(TYPETPROC, procedure ,Comprocs)

Comspecidlist=(Comspecid,Comspecidcont)

Comspecidcont=()
(comma,Comspecidlist)

Comspecid=(ADDRSPEC ,Newid ,SPECONE)
Comprocs=(Comspecid,Paramlev2,Q20)
Q20=()

(comma ,Comprocs)

Each identifier referring to an item to be provided by a segment, is processed
by the rule Comspecid. This addresses the identifier with the current value

of the special data transfer address, and after the identifier has been processed

by Newname, outputs a preset value of zero to the allocated location by the
execution of the action SPECONRE.

Where an identifier is used in a label context in a special array in a common
communicator, this reference is chained up to the previous specification or
reference if one exists. In the case where one does not, an implicit
specification of the identifier as a common label is made.

92

nmim ek el o

1
H
M

Absolute Communicators

[Compileitem=
(absolute,orb,Abslist,crb)]

Abslist=(CLEARTYPE,Absitem,Q11)

Q11?£2mi,Abslist)

Absitem=()
gTy'pe »Q10)
Valproc,Absprocs)
label,TYPELAB,Absidlist)
(switch,TYPESWITCH,Absidlist)
(table,TYPEINT ,TYPARRAY,Absid,osb,int,csb,Tabledetail)
(SETYES, TYPEPROC, procedure ,Absprocs)

Q10=(Q9,Absidlist)
(TYPETPROC,Absprocs)

Q9=é)
array,TYPEARRAY)

Absidlist=(Absid,qT)

Q7=§)

comma,Absidlist)
Absid=(id,div,int,ABSADD,NEWNAME)
Absprocs=(Absid,Paramlev2,q8)

Q8=()
(comma,Absprocs)

The purpose of the absolute communicator is to communicate to the compiler the
specifications and addresses of items which may be regarded as having fixed
core store locations. Each identifier is followed by its absolute address,
this being processed by the rule Absid. This communicator may be used to
enable peripherals to be referred to by an appropriate identifier.

The interpretation of the absolute address in the case of single word
variables, and single dimensional arrays and tables is straightforward. 1In
the case of multi-dimensional arrays, the absolute address is taken to be that
of the zeroth element of the first level Iliffe vector. In the case of
switches the address is taken to be that of the zeroth, not first, entry in
the switchlist, and should therefore be set one back if the switchlist is
regarded as having a lower bound of one.

In the cases of labels and procedures the absolute location specified is
regarded as containing a pointer to the appropriate point in the program.

Library Communicators
[Compileitem=(1ibrary,Q69)]

Q69=(orb,Liblist,crdb)
(CLEARTYPE,Q66)

Liblist=(CLEARTYPE,Libitem,Q19)

Q19=()
(semi,Liblist)

Libitem=()
(Type,Q18)
Valproc,Libprocs)
SETYES,TYPEPROC , procedure,Libprocs)

Q18=(Libidlist)
(TYPETPROC,procedure,Libprocs)

Libidlist=(Libid,Q16)

Q16=()
(comma,Libidlist)

Libid=(id,div,int,LIBADD,NEWNAME)
Libprocs=(Libid,Paramlev2,Q17)

Q7=()
(comma,Libprocs)

The purpose of a library communicator is to communicate to the compiler the
names, specifications, and reference numbers of procedures and preset
variebles available in the library. Thus library procedures explicitly
referred to do not have to be built-in to the compiler, necessitating its
alteration each time the library is extended. Private libraries may be built
up as required without difficulty. Treating library procedures in exactly the
same manner as any other procedure avoids the necessity for placing
restrictions on the use of library procedures as parameters of procedure calls.
The special library procedures for tracing and floating point arithmetic are
never explicitly referred to by the user, and do not need specification in a
communicator.

Library Compilation
[Compileitem=(Library,Q69)

Q69=oon¢c
(CLEARTYPE,Q66)

Libid=(id,dir,int,LIBADD,NEWNAME)]

Q66=(TYP° 1Q67)
(valproe,Libid,SETLIBSEG,colon,Newid ,NEXTPSET ,Procrest, FINISHSEG)
(SETYES,TYPEPROC,procedure,Libid,SETLIBSEG,Procrest , FINISESEG)

Q67=(Libid,becomes,Pnumber,SCALECON,SETLIBVAR)
(TYPETPROC,procedure,Libid,SETLIBSEG,Procreat, FINISHSEG)

94

AD=ADBY 068 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) F/6 972
THE CORAL 66 COMPILER FOR FERRANTI ARGUS 500 COMPUTER. (U}
JUN 78 B GORMAN

UNCLASSIFIED RSRE=TN=799 DRIC~BR=67199

flg s
=5z
"m Lros s
— e
22 s e
= == ==

) .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-1963-%

. R)

A library procedure referring only to previously compiled procedures and
variables, may be compiled when required. The RLB output tape in this case

‘ should be spliced on to the front of the library tape. After the procedure

E or variable has been compiled its specification remains set up for the duration
of the run of the compiler. For subsequent runs however, its specification

should be added to the library communicator. .

Each new item added to ths library is required to be allocated a reference
nmumber in the range O to 16383. This is the number by which it will be
referred to by the loader, and is required by the rule Libid to follow the
identifier of the library item in communicators and when compiling library
items. The user however refers to the library item always by its identifier
only.

PO St e J

The only two compiling actions specific to library compilation are SETLIBSEG
k- for procedures, and SETLIBVAR for variables. The action LIBADD is used in
2 both library compilation and library communicators, and is the only action
specific to the second case.

External Communicators

[Compileitem= e o o o
(extenral,orb,Extlist,crb)]

Extlist=(CLEARTYPE,Extitem,Q15)

Q15=()
(semi,Extlist)

= Extitem=()
(Type,Q14)
3 Valproc,Extprocs)
. label,TYPELAB,Extidlist)
switch,TYPESWITCH,Extidlist)
(table,TYPEINT,TYPEARRAY ,Extid,osb,int,csb,Tabledetail)
(SETYES,TYPEPROC, procedure,Extprocs)

Q14=(Q9,Extidlist)
(TYPETPROC,procedure,Extprocs)

Extidlist=(Extid,Q12)

Q12=()
(comma,Extidlist)

Extid:(id,div,SETTEN,int,Zint.EXTADD.NEVNAHE)
Extprocs=(Extid,Paramlev2,Q13)

Q13=()
(comma,Extprocs)

A Y

95

e

PO -

i P ——— e o mmte oA ek bty LTl R Ml Ao bk N

An external communicator is similar in function and form to an absolute
communicator. The difference being that whilst the address of an item must
be specified before compilation in the case of an absolute communicator, it

need only be specified before load time in the case of an external
communicator.

This is performed by allocating 32 "external bases" (numbered 0-31) and
allowing an item to be addressed up to X255 from the specified base. This
is specified in the rule Extid.

The first integer specifies the base, and the second optional integer the
displacement. Care should be taken that a reference to an item such as an
external array does not exceed the displacement as there will be overflow
into the field used for the base number. If this case occurs, it may be
necessary to set sufficient adjacent bases at interwvals of 512.

96

T

THE SYNTAX ANALYSER

The syntax analyser is the main controlling routine of the compiler. By
interpreting the proceased syntax stored in SYNTAX, together with the
auxiliary information stored in BOOLWORD, it not only checks the incoming
source program for validity but invokes the required compiling actions at
the requisite points.

These two tables have been produced automatically by the use of the SID and
SAG syntax processing programs. These both check that there is no possible
ambiguity in the definition of the syntax. The original syntax rules have
been reduced to "one track form™ by the use of SID, this obviates the
requirement for backtracking, which can be time consuming. This producea

a legible transformed syntax, which is used as the actual working syntax by
the compiler writer, in this case, and has been edited as the compiler
developed. The working syntax is checked and transformed into the two
*SPECIAL' 'ARRAY'S by the use of an Argus version of SAG (#BSAG) which runms
on an ICL 1900.

The syntax table produced can be regarded as the machine code of a special
purpose machine. In this interpretation, the syntax analyser is the machine,
the syntax its "high level” language, SAG its compiler, and the Coral compiler
its assembler. The importance of this approach lies in the fact that the
syntax rules input to SAG are not merely used as the bare bones of the
language definition, but are used as a high level language to express the
overall compiling strategy.

A flowchart is given for the syntax analyser. This expresses unambiguously
vhat its operations are, but should be used in conjunction with the
following definition of the interpretive code in order to gain a fuller
understanding of its operation.

“4
E

START

'

THITIALRE
sYntar PoimTaR
Ard

Stck foimtaR
pd

SYNTAX ANALYSER : FLOWCHART

'S A Sym@oL
T@ST Qeauvie,

~

asauecd?

v

COPY AWD SWIFT

1Y

1S ToMP (F
SYHGoL MATCH
QEQQ\QGD?

Iump To
AcCT o

1
,CouNuNc\ !
* []

L

] NCTioms

Y
Yes STACcK
OovVeRF Lo».\?
> > e

wYes

&AL DRecadue

ComPlLinGg i
AcTon
QEQ\J\R.GD? \

L

Yes

e
-

CoPY DEST i ATian
T sYNTAY FoinrgR

. I
.

'S NEXT

IYMBoL To
ReAd?

Yes

4 Y

jcoPy caLL OF
e JREADBR TroM
~ JarerT ©F

SYNTAY TABLE

% SCGHANTIC
SELECTIOn
Requiee) ?

v o

CoPY DESTINATION

S Tomep ¢
FAL To MaATCH
Reauizey?

+1u

ICofY DESTIMATION
[To SViTAx POINTER

'8
DESTINATION
Z€Rot

» STeRS RESULT - - >
e Y s meed SEMANT TEECTe 4’ [To SYNTAY CoinTER
! a
L] }
ABD SEHMANTIC
3 36 LE8CTOoqQA To
-
g SYNTAX PoinTER
’ A
, . A
o - NQ . - -
L. 7 7 > r o
Fl
.é"
e 98
N
\!
) i

i Mt LML+ i)

i aid st

L ome.

e er

THE INTERPRETIVE CODE

The interpretive instructions fall into two groups, symbol tests
(m.s. bit=1), and unconditional operations (m.s. bit=0)

Unconditional Operations
In these operations the most significant two octal digits specify the
operation, and the least significant five octal digits the "address".

This may either be an address relative to the start of the syntax (s). or
a core location (n).

Operation Code Action

00
04

10

14

20

30

34

The actual representation of these operations in the output of SAG is as
follows, where dd represents a decimal integer and id an identifier.

Operatjon Code Representation

00
04
10
14
20
30
34

There are three special cases generated:

1

Goto syntax at s

Select one of the following (s) alternatives depending
on the value stored in SSEL

Goto the labelled action n, taking the stacked
interpretive link on return

Call the procedure whose address is stored at n, storing
its result in SSEL and taking the stacked interpretive
link

Call the rule s, stacking the interpretive link for return

Goto the labelled action n, continuing with the following
interpretive instruction on return

Call the procedure whose address is stored at n, storing
its result in SSEL and continuing with the next interpretive
instruction

#000/dd
#100/dd
#200:1d
#300/id
#400/ad
#600:id
#700/14

#600: READER to call the reader, at the start of the syntax to
initialise T1, and subsequently to read further symbols.

#200:EXIT to exit from the end of an alternative of a rule.
(Uses stacked 1ink)

#200:FAIL to indicate syntax failure.

99

CONDITIONAL OPERATIONS

In these operations the most significant octal digit specifies the operation,
the next three digits a terminal symbol or symbol group (v), and the least
aignificant four octal digits an address relative to the start of the syntax
(s). A special case occurs where the s field is zero, a successful jump in
this case indicating the discovery of a syntactic error in the source program.

Where b is less than 72 a symbol match is defined to occur if the value of
b equals that of the terminal symbol stored in T1. Where b is 72 or greater
(in steps of three) it refers to a three word group in BOOLWORD. A symbol
match is defined to occur if the T1 th bit of this group is set.

As s side effect of a conditional operation; a terminal symbol may be
"accepted". This causes the next symbol to be read, by means of a jump to
READER. This is not done directly, but by interpreting a type 30 instruction
stored at the start of the syntax. This is done in order to reduce the size
of the syntax analyser, although it is slightly slower.

Operatjion Code Actjon

If symbol match jump to s.
If symbol match read next symbol and jump to s.
If no symbol match jump to s

-1 0N\

If symbol match read next symbol, otherwise jump to s.

All operations of this type are represented by eight digit octal numbers.
(f#cbbbssss)

The Working Syntax JIntroduction

The syntax which follows is the actual syntax used by the compiler. It
has been transformed from the original syntax by SID. This has introduced
the auxiliary rules Q=-. The following convention has been used for the
identifiers, to aid the reader:

1 Rule Names First letter in upper case, subsequent J
letters in lower case. The rule name is
underlined where semantic selection is
carried out.

2 Terminal Symbols Lower case letters
3 Compiling Actions Upper case letters. The action name is

underlined where it delivers a result to
be used as a semantic selector.

In the notation used for terminal symbols, lower case letters are used.
Most of the aymbol names are self explanatory, but a list of the more
cryptic and composite symbols is given below.

3 zero zero constant (of any form)

3 int integer constant, including gero
intcon integer conmstant, excluding zero
realcon real constant, excluding zero and integer constants
peonst zero, integer, or real constant

) shift shift operator (eg 'SLA')

o : ro comparator (eg =, 'EQ')

3 inst accumulator and function of code (eg 7 ADD)
colon :
semi H
orb z
orbosb (,
crb g
crbesb s)

: mult *

| self 'SELF' , *

‘ div /
step 'STEP' , :

: until YUNTIL® , :

8 osb [

5 csb]

L power 1, ¥*

S becomes -, 3=

- commab 'BIT' or ,

; ' id identifier

]

§ ' duryh ot

.o

g

%

Syntax 1 Segments

Run=(Compileitem,Q70)

Q70=(finish)
(semi,Run)

Compileitem=()
Program)
Commondec)

library,Q69)
external,orb,Extlist,crb;
absolute,orb,Abslist,crb
Leveldec)

Yesno,Tracetype,trace)
test,SETTEST,Q68)

Q68=(Program)
(Commondec)
(1ibrary,CLEARTYPE,Q66)

Progra.m:(id,BEGINPROG,begin,Body,ENDPROG,end)
Body=(D1,ENDDECS,S1)
D1=(STARTDEC,D,semi,Q50)

Q50=()
(p1)

102

Syntax 2 _ Declaratjons

D=(Type,Q47)
Tabledec,Presetlist)
switch,ADDRSW, TYPESWITCH,Newid ,becomes,Swlist)
Specialdec)
Overlaydec)

Valproc,Newid,BEGINPROC,colon,Newid ,NEXTPSET,Procrest)
SETYES,TYPEPROC,Q48)

no,SETNO,Tracetype,trace)

Leveldec)

Type=(integer,Q59)
(fized,orbosb,int ,NOBITS,comma,Sgint ,NOAFTER,crbcsb)
(floating,TYPEFLOAT)

Q59=(0sb,int ,NOBITS ,c8b,PARTINT)
(TYPEINT) .

Sgint=(int)
(plus,int)
(minus,int,NEGNUM)

Q47=(Q21,Presetlist)
(TYPETPROC,procedure ,Newid ,BEGINPROC,Procest)

Q21=(1d1ist,DECSIZE)
(array,TYPEARRAY ,Arraylist)

Idlist=(Newid,Q52)

Q52=()
(comma,Idlist)

Newid=(id ,NEWNAME)

Presetlist=()
(vecomes ,SKIPDTA,Presets)

Presets=(Presetnum,Q40)

Q40=()

(comma,Presets)

Prese tnum=(Pnumber, 0UTPRESET)
orb,Presets,crb)
(string,PRESETSTRING)

Pnumber=(pconst)
plus,pconst)
minus,pconst,NEGNUM)
ZERONUM)

Arraylist=(ZEROARRAYS,Idlist.osb,Boundpair.ﬂbrebounds.cab,ENDARRAY.Q42)

Q42=()
(comma,Arraylist)

Boundpair=(Sgint,SETLB,colon,Sgint,SETUB)

Morebounds=(ONEDIM)
(FIRSTDIM,comma,Boundpair,Arraytail)

Arraytail=(LASTDIM)
(HIDDIM.comma.Boundpair.Arr?%3a11)

T ey ees - T

tax Expressions

Expr:(Cexpr)(Axpr)
2610 ,CONSTANT +SCALETERM)
(etring,STRINGEX.SCALETERM)

Axpr=(Tern,Q6)
(4xpra)

Axpra=(plus.Term,Q6)
(minus.Tem.UNARmmus.Qs)

QG:?%Ga)

Q6a=(plus,Term,Add,Q6)
(minus,Term,SUB,QG)

Tem:(Factor,QS.SCALETERM)
Q5=§)

mult,Factor.MPY,Q5)
div.ictor,DIVIDE,QS)

Factor=(Difference,Q24) H

Q24=()
(power,Difference,RAISE.Q24)

Differenee:(United.Q4)

Q4=§)
differ,United,NEQ,Q4)

United:(Collation.QB)

Q3=() ' ?
(union,Collation.ORF.Q3) ;

Collation=(Tert,Q2)

Q2=()
(mask.Tert,MSK,Q2)

Tert=(Sec,Q1)
(Prian)

Q1=g)
shift,SETSHIF'P,Shifts,DOSHIF'I' »Q1)

Shit‘ts=(Sec,PLUSSUB)

Tpri.SCALETERM.PLUSSUB)
orb,Subex,orb)

Sec=(Bitset ,BITSIN.Pri.RHSBITS)
Bitset:(bits,CLEARTYPE.osb,int,Oneomore.FIELDPOSN.UNSFIELD.csb)
Oneormorea(NOBITS,NOSIG.PARTINT.comma.int)

(oNEBIT)

104

Syntax maries

Pri=(Tpri)
(realcon,CONSTANT)
(orb,STACKEXPR,SETPREF,Expr,crb,0FFSTEXPR)

Tpri=(intcon,CONSTANT)
(id,LOOKUP,228)
, . (CLEARTYPE,Type,TYPEXPR,0rb,Expr,crb,EXPRTYPE)
£ (NONAME,Singlesubs)
- (location,orb,Locvar,LOCACT,crb)
(1abel,orv,id,Q32,crb)

Q28=(Subscript, VARCHECK)
(RHSPTEST ,Rhspsel)

Rhspsel=(VARCHECK)
Proccall)

Locvar=(id,LOOKUP,Q29)
(NONAME,Singlesubs)

Q29=(Subsecript)
(AYMCHECK

Q32=(LOOKUP,Singlesubs,LABSK)
(rABL)

= - Singlesubs=(substart,csb,KILLEXPR)
Subscript:(Substart,Moresubs,csb,KILLEXPR)
Substart={osb,SETUPSUB, Subex)

Moresubs=()
(comma , SUBCOMMA , Subex ,More subs)

Subex=(Subterms)
(Cexpr,PLUSSUB)
(Term,PLUSSUB,Subexcont)
(zero)

'«' Subexcont=()
- (Subterms)

Subterms=(plus,Term,PLUSSUB,Subexcont)
, (minus,Term,MINUSSUB,Subexcont)

b 105

\.

Synt Conditions

i Cexpr:(if,IFEX,Conditionliat,then,THENEX,Expr,else,ELSEFI.
| ELSEX,Expr,ELSEFI,FIEX)

Condi tionlist=(Condition,Q31)
Q31=()

ga.nd.OU'l‘CJ,Conditionlist)
or,ORACT ,Condi tionlist)

oot i AL AR

E
R

Condi tion=(Yesno,overflow,0VRTEST)
(STACKEXPR,ANYPREF,Lcond ,Rcond , RELATION)

Yesno=(no,SETNO)
(SETYES ,TYPEPROC)

Leond=(Axpr)
(zero ,CONSTANT)

A e e I
B - ——— b

Reond=(r0,Q30)
(SETNEZ)

Q30=(Condterm,Condterms)
(zero,ZEROCOMP)

Condterm=(Term,CONDPLUS)
2 plus,Term,CONDPLUS)
minus,Term,CONDMINUS)

E Condterms=()

(plus,Term,CONDADD,Condterms)
(minus,Term,CONDSUB,Condterms)

h "

g

Syntax 6 _Assignment

s1=(st,Q39)

Q39=()
(semi,Z1)

St=(S,ENDST)

S=()
(1d,Q38)
§STATUSCHECK.Q26,A1)
Ifstat)
(Forstat)
Gotostat
Compound
code , STATUSCODE ,begin,Q35)
Answerstat)

Q38=(SETLAB,colon,S)
(LOOKUP,STATUSCHECK ,Q33)

Q33=(Q25,41)
(LHSPROC,Proccall,BEHEAD)

Q25=()
(Subscript)

Q26=(Bitset,Lhsb)
(NONAME,Singlesubs)

Lhsb=(id,LOOKUP,LHESBITS,Q25)
(NONAME ,LHSBITS,Singlesubs)

A1=(becomes, VARCHECK ,SETASS ,A2,STORE ,BEHEAD)

A2=(A3)
(Expr)

A3=$Cexpr)

string,STRINGEX)
2ero ,STOREZERO)
Term,ADDA,A4)
plus,Term,ADDA,A4)
(minus,Term,SUBA,A4)

A4=éSIMPLEASS)
SELOPTA,A5)

A5=€Q6a)
Axpra)

Ifstat=(if,IFS,Conditionlist,then,ENDST,St,else,ELSES,S,FI)
Gotostat=(goto,1d,Q27)

Q27?(LOOKgP.STATUSCHECK.SingleBubs.LABSK,GOTOSK)
GOTOL

107

Syntax 7 _Statements

Forstat=(for,STARTFOR,Locvar,CHECKCV,becomes,F1)
F1=(A3,ASSCV,F2)

F2=§F3)
while,Conditionlist,WHILEL,F3)
(step,Expr,STEPUNT,until ,Expr,STEPUNT,F3)

F3=§do.DDCS,S,ENDFORg
comma , MOREFQOR ,F1

Compound=(STATUSCHECK ,begin,Q37)

Q37=(S1,end)
(BEGINBLOCK,Body yend , ENDBLOCK)

Q35=(Csl,end)
(BEGINBLOCK,D1,ENDDECS,Cs1 ,end ,ENDBLOCK)

Csl=(Cs,Q34)

Q34=()
(semi,Csl)

CS:()
§Compound,STATUSCODE)

inst, INSTTYPE,Npart ,0UTCODE)
id,CODELAB,colon.CsS

Npart=(Nread)
Nwriteg
Nshif§
Njum
(n1oc§
Nread=(Nwrite)
(sgint ,CONSTANT)
(CLEARTYPE,Type,orb,Pnumber,SCALECON,crb,CONSTANT)

Nwrite=(anyacc,NISACC)
(id,LOOKUPD,Nw1)
(NONAME,Nw2)

i ?r(:x)vz)

Nw2=(osb,Nw3,INCTOS,csb)

Nw3=(Sgint)
(modacc,NISMOD,Zint)

Zint:(Sgint;
(ZERONUM

Nshift=(int,CODESHIFT)
(modacc,2int ,CODESHIFT,NISMOD)

Njump=(id,LABL)
(self,Zint,RELADD)

Nloc=(Nwrite)

(string,STRINGEX) 108
S *--u-nu-.nn-u-nn--uu-lu.nh-u---nmnn-------n---n-un---i--n-uu-ill‘

Syntax 8 Table Declarations

Tabledec=(table,TY PEINT,TYPEARRAY ,Newid,osb,int ,TABLESIZE,csb,
Tabledetail ,CLEARTYPE,TYPEINT)

Tabledetail=(0sb,TABADD,Fieldlist)
Fieldlist=(CLEARTYPE,id,Fieldtype,TYPEARRAY ,NEWNAME,Q60)

Q60=(ch)
(semi,Q60a)

Q60a=(Q60)
(Fieldlist)

Fieldtype=(Type,Sgint,FIELDDISP)
(Partfield
(unsigned,Partfield,UNSFIELD)

Partfield=(orbosb,int,NOBITS,NOSIG,Intfixfield,crbesd,
Sgint ,FIELDDISP,commab,int, FIELDPOSN)

Intfixfield=(comma,Sgint ,NOAFTER)
(PARTINT)

Swlist=(id,SPECLAB,Q41)
Q41=()

(comma,Swlist)
Overlaydec=(overlay,Base,with,0VERON,Datadec ,0VEROFF)

Base=(id ,LOOKUPD,Q43)
(NONAME,0sb,int ,INCTOS,csb)

Q43=()
(osb,Sgint,INCTOS,csb)

Datadec=(Type,Q21)
(Tabledec)

Specialdec=(special ,array,TYPEINT ,TYPEARRAY ,ADDRSPEC,Newid ,becomes,Speclist)
Speclist=(Specitem,Q46)

Q46=()
(comma,Speclist)

Specitem=(Zint,Q45)
string,SPECSTRING)
CLEARTYPE,Type ,orb,Pnumber,SPECNUM,Morespec)

Morespec=(crb)
(comma ,Pnumber,SPECNUM,Morespec)

Q45=(SETTEN,Specadd)
(CLEARTYPE, TYPEINT ,SPECNUM)

Specadd=(colon,id,SPECLAB)
(se1lf,Sgint,SPECREL)
(div,Q44)

Q44=(Sgint ,NONAME , INCTOS ,SPECCON)
(Base ,SPECCON) 109

Syntax 9 Procedure Declarations

Leveldec=(1level,int,SETLEVEL)

Tracetype=(assignment ,ASSTRACE)
1 loop, FORTRACE)
. label,LABTRACE)
procedure ,PROCTRACE)

Q48=(assigmnment ,ASSTRACE,trace)

- loop,FORTRACE, trace)

! label,LABTRACE, trace)
procedure,Q49)

Q49=(Newid ,BEGINPROC,Procrest)
(PROCTRACE, trace)

Valproc=(value,TYPEVPROC,procedure)
Procrest=(Parameterpart.:vemi ,Procbody,ENDPROC)

Parameterpart=()
(orb,Parameters,crd)

Parameters=(Parameterset,Q65)

Q65=()
(semi,NEXTPSET ,Parameters)

E Parameterset=(Type,Q63)

4 (1ocation,TYPELOC,Q62)
(1abel,TYPELAB,Id1list)
(switch,TYPEISWITCH,Idlist)

table,TYPEINT,TYPEIARRAY ,Newid ,08b,int,csb,PARAMTAB,Tabledetail , PARAMTAB)
value,Q64)

SETYES,TYPEPROC, procedure,Procparamlist)
Q64=(Type,Idlist)

TYPESPEC ,Pairlist)

TYPEVPROC,procedure,Procparamlist)
Pairlist=(Newid,colon,Newid,Q61)

" Q61=()
T (comma,Pairlist)

Q62=(Type,Id1ist)
' (TYPESPEC,Pairlist)

Q63=(array, TYPEIARRAY,Idlist)
(TYPETPROC,procedure ,Procparamlist)

%4

Procparamlist=(Newid,Paramlev2,Q58)

. Q58=()
i (comma,Procparamlist)

Paramlev2=(BEGINPSPEC,Q57)

‘ ' Q57=(orb,Paramtypelist,crb,ENDPSPEC)
: (ENDPSPEC)

A\ Paramtypelist=(Paramtype,NEXTPARAM,Q56)
E Q56x()

s iR

Syntax 10 _ Progedure Calls

Paramtype=(Type,Q54)
location,TYPELOC,Q53)
label,TYPELAB)
switch,TYPEISWITCH)
table,TYPEINT,TYPETARRAY)
value,Q55)

(SETYES,TYPEPROC,procedure)

Q55=(Type)
TYPESPEC ,NEXTPARAM)
TYPEVPROC, procedure)

Q54=(array ,TYPEIARRAY)
(TYPETPROC,procedure)

Q53=(Type)
(TYPESPEC ,NEXTPARAM)

Procbody=(code,begin,KILLPARAMS,0d1 ,ENTERPROC,Cs1 ,end)

(SETPARAMS,Q51)

Q51=(begin,0dl ,PROCENTRY,S1,end,EXITCHECK)
(ENDDECS ,PROCENTRY ,Ss , EXITCHECK)

0d1=(D1,ENDDECS)
(ENDDECS)

SS:()
Ifstat)
Forstat)
Answerstat)
Gotostat)
1d,LO0KUP,STATUSCHECK,Q33)
STATUSCHECK,Q26,41)

Answerstat:(STATUSCHECK.answer,SETANS,Expr.ANSCHECK)
Proccall=(SETUPPROC,Selparams ,CALLPROC,FINISEPROC)

Selparams=()
orb,Paramloop)

Paranloop=(NEXTPTYPE,Selptype ,ANTMORE,Selmore)
Sel

; (Expr)
Locvar)
id,LOOKUP)
id'Q32)

Selmore=(Multitest)
icomma,?aramlooP)

Multitest=(crb)
(comma ,CALLPROC,MULTICALL,Paramloop)

1M

gy ey s

tax 11 n Co cators

Commondec=(common,orb,COMON,Commonlist,COMOFF,crb)
Commonlist=(STARTDEC,Commonitem,Q23)

Q23=()
(semi,Commonlist)

Commonitem:(g

(Type,Q22
Valproc,Comprocs)
Tabledec,Presetlist)
Overlaydec
Specialdec
label ,TYPELAB,Comspecidlist)
switch,TYPEISWITCH,Comspecidlist)
SETYES, TYPEPROC ,procedure ,Comprocs)

Q22=(Q21,Presetlist)
(TYPETPROC,procedure,Comprocs)

Comspecidlist=(Comspecid,Comspecidcont)

Comspecidcont=()
comma,Comspecidlist)

Comspecid=(ADDRSPEC,Newid ,SPECONE)
Comprocs:(Comspecid,ParamlevZ,QZO)

Q20=()

(comms.,Comprocs)
Abslist=(CLEARTYPE,Absitem,Q11)

Q11=()
(semi,Abslist)

Absitem:()
(Type,Q10)
Valproc,Absprocs)
label,TYPELAB,Absidlist)
switch,TYPESWITCH,Absidlist)
table,TYPEINT,TYPEARRAY ,Absid ,o8b,int,csb,Tabledetail) '
SETYES,TYPEPROC, procedure,Absprocs) {

Q10=(Q9,Absidlist)
(TYPETPROC, procedure ,Absprocs)

Q9=()
éarray,TIPEARRAY)

Absidlist=(Absid,Q7)

Q7=§)

comma,Absidlist)
Absid=(1d,div,int ,ABSADD ,NEWNAME)
Absprocs=(Absid,Paramlev2,Q8)

Qe.s)

comma,Absprocs)

YT T g — ’ o o E— WO N

Syntax 12 Libra

Q69=(orb,Liblist,crb)
(CLEARTYPE,Q66)

Q66=(Type,Q67)
(Vhlproc.Libid.SETLIBSEG.oolon.Newid,NEXTPSET.Procrest,FINISKSEG)
(SETYES, TYPEPROC , procedure ,Libid, SETLIBSEG,Procrest ,FINISHSEG)

Q67=(Libid,becomes,Pnumber,3CALECON,SETLIBVAR)
(TYPETPROC.proce&ure,Libid,SETLIBSEG.Procrest,FIRISHSEG)

Liblist=(CLEARTYPE,Libitem,Q19)

Q19=()
(semi,Liblist)

Libitenm=()

Type,Q18)
Valproc,Libprocs)
SETYES,TYPEPROC, procedure ,Libprocs)

Q18=(Libidlist)
(TYPETPROC,procedure,Libprocs)

Libidlist=(Libid,Q16)

Q16=()
(comma,libidlist)

Libid=(1d,div,int,LIBADD,NEWNAME)
Libprocs=(Libid,Paramlev2,Q17)

Q17=()
(comma,Libprocs)

Extlist=(CLEARTYPE,Extitem,Q15)

Q15=()
(semi,Extlist)

Extitem=()
Type,Q14)
Valproc,Extprocs)
label ,TYPELAB,Extidlist)
switch,TYPESWITCH,Extidlist)
table,TYPEINT ,TYPEARRAY,Extid,osb,int ,08b,Tabledetail)
SETYES ,TYPEPROC, procedure ,Extprocs)

Q14=(Q9,Extidlist)
(TYPETPROC, procedure ,Extprocs)

Extidlist=(Ext1d,Q12)

Q12=()
(comma,Extidlist)

Extid=(1d,d1iv,SETTEN,int,Zint ,EXTADD,REWNAME)
Extprocs=(Extid,Paramlev2,Q13)
Q13s()

(comma ,Extproos) ,
113

*INTEGER' 'PROCEDURE' ACCOF
(*VALUE' 'INTEGER' REF);

This procedure is used to find out whether the Arithmetic Operand referred
to by REF, is held in an accumulator. If it is, then the result is the
nunber of the accumulator, otherwise zero.

*PROCEDURE" ACCPICK
(*VALUE' 'INTEGER' REF,ACC);

This procedure copies the Arithmetic Operand referred to by REE into the
specified accumulator ACC. If it already exists in that accumulator, then
no action is taken; but if the accumulator is occupied by another operand,
then this is first stored. This procedure is used exclusively with float-
ing point operations.

'PROCEDURE' ACCUPDATE
('VALUE® 'INTEGER' REF);

If the Arithmetic Operand on the stack, referred to by REE is not a
constant, then a check is made to see if either the direct or indirect
address is an accumulator.

If one is, then the appropriate entry is made in ACCS to keep it up to date.
'INTEGER' 'PROCEDURE* ADDADD
('VALUE' 'INTEGER' ADD,INC);

This procedure adds an increment INC, to the index field of an address ADD,

ensuring that any carry from the index field (14 bit) does not overflow
into the other fields.

*PROCEDURE' ADDRARRAY
(*VALUE' 'INTEGER' START);

This procedure is called to insert the addresses into the identifier records
of one or more arrays declared with the same bounds. It is called from
ONEDIM in the case of single dimensional arrays, and from FIRSTDIM in the
case of multi-dimensional arrays. The procedure operates by calling DODIM
with the local procedure MINE as the procedure parameter. This procedure
parameter is applied to each identifier record, in the reverse order in
which the identifiers were declared. Thus the parameters supplied to DODIM
have to ensure that the highest address is supplied to MINE first, and the
lowest last. The number of identifier records to be addressed is given in
ARRAYS.

A Y

j
i

*PROCEDURE' ADDSUB
('"VALUE' 'INTEGER' FUN);

This procedure is called from ADD with a value of FUN of 2, and from SUB
vith a value of FUN of 3. This procedure generates the instructions
required to perform addition and subtraction operations. The scale to
which this will be carried out is given by EXPSCALE. The left hand operand
is copied into an accumulator, unpacked, and rescaled as required by means
of a call of PICK with GOODACC providing the accumulator number. If the
right hand operand is a constant then it is rescaled if required. Otherwise
it is copied into a second accumulator if it requires unpacking or rescaling.
The instruction with the function code FUN is then output. The top operand
record is removed from the stack and the type of the other operand record
changed to that given by EXPSCALE.

'"PROCEIURE® ANSLINK;

This procedure is called in the case where an 'ANSWER' statement is not the
last statement of a procedure. If the use of the procedure trace facility
is not required, an exit instruction is output by means of OUT27, and the
fact recorded by setting EXITCH to one. If however trace is required, an
unconditional jump to the end of the procedure, where the call of 16 is made,
is output. This jump is chained up using EXITCH as the address, which is
then updated.

'INTEGER' 'PROCEDURE' ANYMORE;

This procedure is a selector action called directly from the syntax, after
each parameter of a procedure call. If the procedure requires further
parameters, a result of 1 is returned, otherwise 0. Before returning to the
syntax analyser, however, a check is made to ensure that the parameter Jjust
processed is of the correct type.

If the parameter required is an untyped 'VALUE' or 'LOCATION', the type of

the actual parameter is copied into EXPSCALE. A switch is then made, using
PARAMCLASS, to check the type of the parameter. In the case of 'VALUE'
parameters, if the type of the actual parameter is not that of the formal
parameter, the type of the actual parameter is changed to that required.

If the parameter is a constant, then this is simply rescaled. Otherwise the
parameter is evaluated and rescaled, the result being left in an accumulator,
which will be the one required for passing the parameter, unless it is already
in use.

In the case of 'LOCATION' parameters a check is made to ensure that the actual
parameter is not a partword or array, and is of exactly the required type and
scale.

In the case of 'ARRAY' and 'SWITCH' parameters a check is made that they are
of the exact type required.

If the actual parameter is any type of procedure then a check is made that it

is not being used in a potentially recursive situation. This is detected by
exsmining the sign bit of its PARAMSPEC, which will be set if the procedure

115

e e T — T T

'INTEGER' 'PROCEDURE' ANYMORE

is not yet complete, i.e. the use of the procedure identifier occurs within
the procedure body.

4 check is then made to ensure that the procedure supplied is allowable. If
the formal parameter is an untyped procedure then the actual parameter may
be any type of procedure except a 'VALUE' 'PROCEDURE', otherwise the actual
parameter must be exactly of the right type. No check is made that its
parameter requirements match, as insufficient information is kept to enable
this to be done.

If the formal parameter is a 'LABEL' then no checking is required, as it is
done elsewhere.

After the type checking has been completed, the parameter Arithmetic Operand
is processed by LOCACT if a location is required to be passed. If the
parameter has a non zero indirect address then the parameter is copied into
an accumulator. The parameter specification pointer, PSP, is incremented.
If the next parameter is the second, type, parameter of a non~standard
parameter (pair) then a call is made on MAKEPARAM to set up an Arithmetic
Operand record for this second parameter. A flowchart is given for this
procedure.

'INTEGER' *'PROCEDURE' ARRAYBASE;

The result of this procedure is the address of first location of the (last
dimension of the) array currently being declared. In the case of a non-
overlay declaration this is given by the value of DATAMAX, or in the case of
an overlay declaration, OVERBASE. At this point the appropriate variable
has not yet been incremented by the total data requirement of the array.

'PROCEDURE' BEGINBLOCK;

This procedure is called at the start of a block and performs the house-
keeping associated with the block structure. It is called directly from the
syntax for blocks within a segment. It is also called from PROCSTACK to
make up the dbody of a procedure a block, even if it has no declarations at
its head, and also from BEGINPROG.

This procedure starts with a call of BEGLABBLOCK to set up a block level for
labels. This is followed by a call of ONSTACK to place on the stack the
values of the following variables whose values will be reset at the end of
the block:

BLOCKCHAIN,LEVEL,TRACE,LOCALLIMIT ,DATASTART ,DATAPTR, DATAMAX, and PRESETOK.
The value of LOCALLIMIT is set to the value of DECLIST at the start of the
block. The variable DATAMAX will be used to allocate workspace to the
declarations following, and is set to the value of DATASTART of the outer
block at this point. (See also ENDBLOCK)

YPROCEDURE' BEGLABBLOCK;

This procedure begins a block as far as the administration of labels is

116

Is actual

parameter a

constant?

valuate

rescale
arameter

Rescale

constant

 Z

Is formal
arameter an

untyped value
orig%at on

/

Y
Is actual

s ‘
ac
parameter

4

parameter a
string?

Set marker

in expscals

unty

parameter an

d
proceggre?
No

Print error
nessage

v

A

LS locAaT 0N
REQUIRED FoR
PAR AMETER?

‘Ye,s \‘“ »

: chpanGe PaRAKer
¢ Paeamerid
s - To TYPe
To LocATwoNn IwteceR
>. L
<

Y
tS PARAMETER

CvAaLunTE
INBIRECT LY | PARAMETER
ABDRESSED? N ACCUMULATOR

y

[EuserT eoarAMereRr
ACcomMuLATe R
NUhBeR In

PARAMETER REcORD

Move PomaTter To
NEXT Folu Nt
thRAMETOR

enerATE

ConTa xT
Cony TexT
PARAMETER FaRaneteR
Ne
>l
~
Y

fRE AwY
FURTHER
Fﬂenheroag

REQUIRED !

118

YPROCEDURE' BEGLABLOCK :

concerned. It is called from BEGINBLOCK at the start of a normal block, and i
also from STARTFOR to prevent the possibilit; of a jump being made to a label {
within a 'FOR' statement from a point outside. The current values of :
LABDECLIST and LABSTACKPTR are stacked using a LABCHAIN. LABDECLIST is then {
set to zero, thus labels set or referred to in the enclosing block are ;
rendered inaccessable.

'PROCEDURE!' BEHEAD;

This procedure removes the top Arithmetic Operand from the stack and deletes !
any reference to it in ACCS. ILH and FH are reset. This procedure is called
from the syntax, and from other compiling actions.

'PROCEDURE! CALLLIB
(*VALUE® 'INTEGER' LNO,SPIEL); i

This procedure is used to set up a call of the Library Procedure whose referaonce
number is given by LNO. This procedure is used by the compiler to set up calls
on tracing and floating point arithmetic procedures, it is not used to set up
calls of Library Procedures explicitly referred to. The procedure forms the
required address by adding an L tag to the LNO and calling OUT27.

'INTEGER' 'PROCEDURE' COPYINACC

('"VALUE' 'INTEGER' REF);
This procedure is used to find out whether the Arithmetic Operand referred
to by REF is in an accumulator, or if there is a suitable copy of the operand
in an accumuiator. If the Operand is a constant, or is a location, or is
indirectly addressed then the result is zero, otherwise a call is made on
FINDOUT and its result taken.
'PROCEDURE' DIAG

("VALUE' 'INTEGER' TA,TB);

This procedure is used to output, on the printer, a commentary of important
points reached during compilation. The current program address PTA is printed
out, followed by the two strings TA and TB separated by " : ". This is used
to indicate the positions of labels and the starting point of procedures and
loops. If the value of the variable LEVDL indicates that this information is
required at load time, then the string TB is output as part of the relocatable
binary output, together with the appropriate directive tag (35).

'INTEGER' 'PROCEDURE' DIRINDADD

(*VALUE 'INTEGER' REF);
The result of this procedure is the direct address of the Arithmetic Operand
referred to by REF., If however this is mull then the result is the indirect

address. This procedure is used where it is known that one address has a
value, and the other is null. A similar action takes place in LOOKUFD.

119

Riod e o 5
. ..

S g

et ol bt it
[

'PROCEDURE' DODIM

('VALUE' 'INTEGER' START INC;
'PROCEDURE' ACT('VALUE' 'INTEGER'));

This procedure is used for processing array declarations. When called at
the first (or only) dimension, the mmber of array identifiers declared with
the same bounds is given by ARRAYS. If there is only one dimension then
DODIM is called by ADDRARRAY which is called by ONEDIM. The effect is to
proceed down the list of identifier records inserting the direct address.
The total store requirement for the arrays is calculated by ARRAYS * NUMBER.

If however there is more than one dimension, each dimension except the last,
requires the setting up of Ijjffe vectors in Special Data. In this case the
first dimension causes FIRSTDIM to call ADDRARRAY and hence DODIM to insert
the addresses of the first level of the Iliffe vectors into the identifier
records. If there are three or more dimensijons then further levels of Iliffe
vectors are set up by MIDDIM calling DODIM with OUT1014CS as the parameter ACT.
This outputs all but the last level of vector. In this case the vectors point
at the next level vectors. For the last (or second) dimension LASTDIM calls
DODIM, again with OUT1014CS as a parameter, to output the highest level of
vector. This level point at the actual data area occupied by the array data.
Note that even if the arrays are declared as part of an overlay declaration
separate vectors are set up as required.

'PROCEDURE' DOSTRING

('VALUE' 'INTEGER' STRING;
'PROCEDURE' PROC('VALUE' 'INTEGER'));

This procedure applies the procedure PROC to each word in turn of the string
STRING. The parameter RROC will be either OUT24CS or OUTCONT. '

'PROCEDURE' DUEERR;

This procedure is called in the case where a statement is not labelled, and
not directly entered from the previous statement. If in this case DUECHAIN

is mll, the statement cannot be (legally) entered, and a message is output
to this effect.

"PROCEDURE' DUMMY;

This procedure does nothing. It is used as a dummy parameter in a call of
STATUSTEST by STATUSCODE.

'*PROCEDURE' DUMPACC
(*VALUE' 'INTEGER' A);

This procedure outputsan instruction to dump the contents of the specified
accumulator A in an anonymous temporary workspace, allocating this as
required. The direct address of the relevant Arithmetic Operand is set to
the address of the workspace and flagged as being temporary. The entiry

in ACCS for the accumulator A is cleared. This procedure is called when it

is required to preserve an Arithmetic Operand which exists only in an accumulator.

120

N

YPROCEDURE' DUMPACCS;

This procedure outputs instructions to store in anonymous temporary workspace
all Arithmetic Operands which exist only in accumulators.

*PROCEDURE' ENDBLOCK;

This procedure is called at the end of a block and performs the housekeeping
associated with the block structure. It is called directly from the syntax

for blocks within a segment. It is also called from ENDPROC at the end of a
procedure, and also from ENDPROG.

The value of DATAMAX at the end of the block is temporarily stored in MAX,

and DECLIST reset to its value at the start of the block, this value being
held in LOCALLIMIT. OFFSTACK is then called to reset the values of BLOCKCHAIN,
LEVEL,TRACE ,LOCALLIMIT , DATASTART , DATAPTR,DATAMAX, and PRESETOK. This also

has the effect of removing from the stack the identifier records set up inside
the block, as these identifiers are now out of scope. If the value of MAX,
i.e. the highest numbered data space allocated within the block, exceeds the
restored value of DATAMAX, i.e. the highest numbered data space allocated so
far, then DATAMAX is set to this larger value. Finally a call is made on
ENDLABBLOCK to compact the label stack and remove any labels now out of scope.

'PROCEDURE® ENDLABBLOCK;

This procedure ends the compilation of a block as far as the administration
of label records is concerned. It is called from ENDBLOCK and ENDFOR. The
previous values of LABDECLIST and LABSTACKPTR are unstacked from the main
stack, and the list of label records previously referred to by LABDECLIST
processed. These may be divided into three categories:

ag Labels set in the inner block.

Labels unset in the inner block and referred to in the
outer block.
c) Labels unset in the inner block and not referred to in the
outer block.

In the case of (a) the record is simply discarded, and in the case of (b) the
chains are joined with JOINCHAINS before the record is discarded. In the case
of (c) the record is moved up, and joined on to the label list of the outer
block. A flowchart is given for this procedure.

*PROCEDURE' ENDSEG;

This procedure is called at the end of a segment. It outputs an end of
segment tag(39) with the checksum for the characters forming the segment.
This is then followed by a tail of blank, a stop directive, erases and blank
by means of a call of TTAIL. The variable TEST is set to zero in case it
had been set by a 'TEST' directive, or a call of STOPOP.

'PROCEDURE' ENTERPROC;
This procedure is called when the entry point of a procedure is reached. A

call is made on SETDUE to set the entry address of the procedure. In the case
of a Library Procedure this address is set into the L area by the loader,

121

- — g T T O P S T T P eV PERY RO o Gl

. (emdLaasLock)

cofy PoinTER
p ; To LAGGL L\ST

Y

UNSTACK VALULES

of LABDECLIST

E AnD LadsTAcK Fo R
! .

— N

anyY ReEcoRkds Vo

E - CEFT on RQETLRN

oLd wsT

LAREL
SET

No

Ddoes LABCL \ Ne
MATCH REcoRD
O™ NNECW ST

s

HoveE RecoRd

[To ~N&w LS T

o
“AREL

CHAINS

REH°“E QRECOR)
FRoM g

122

'PROCEDURE® ENTERPROC

clearing the unsatisfied reference, and in the case of a procedure within a
segment this address is set into the location allocated within the Special
Data area. STATUS is set to O to indicate that control is passed to the
first statement of the procedure.

'PROCEDURE' EXCPSPEC;

This procedure exchanges the values of IDTYPE and IDTYPE2, and also PARAMPTR
and PARAMPTR2. This action is required in the case of the parameter
specifications of a 'PROCIDURE' parameter in the heading of a procedure
declaration. As the action of the procedure is symetrical, separate procedures
are not required to store and restore the values of IDTYPE and PARAMPTR.

INTEGER 'PROCEDURE' FINDACC
(*VALUE' *INTEZGER' A);

This is the main accumulator allocation algorithm for finding free accumulators.
Starting with the accumulator specified by the parameter A, a scan is made,
with a decreasing index of the array ACCS to find a suitable accumulator.

A mapping function is applied to each entry of ACCS to produce a 24 bdit "value"
for that accumulator. The accumulator with the least value, or the higher
mumbered one of equal values, is chosen. The mapping function is simple

and arranges that accumulators are chosen in the following order:

a) Free accumulators

b) Accumulators containing a copy of a stored word

¢) Accumulators containing (the only copy) an
Arithmetic Operand.

If an accumulator of category'(c) is chosen, its contents are dumped using
DUMPACC. Within this category the accumulator holding the Arithmetic Operand
furthest down the stack will be chosen. Within category (b) data local to
the segment is regarded as having a greater "value" than data external to it;
and within a segment, data having a higher address (i.e. declared nearest)
is regarded as having a higher "value".

The result of the procedure is the number of the chosen accumulator.
YINTEGER! 'PROCEDURE' FINDCOUT

(*VALUE' *INTEGER' ADD);

This procedure is used to find whether the address given by the parameter ADD
is an accumulator address or if there is a copy of the word already in an
accumulator. If the address is an accumulator addresss the result is the
number of the accumulator. Otherwise a search is made through ACCS, starting
with the lowest numbered accumulator. If the entry in ACCS matches ADD them
the result is the accumulator number. If no match can be found the result is
zero. As a safeguard a zero result is returned for a gero address.

123

'INTEGER' *PROCEDURE' FINDPREF;

This procedure is used to find a free accumulator. If the preferred
accumulator for the expression, whose number is given by PREFACC, is free
then this one is taken. Otherwise a call is made on FINDACC.

'PROCEDURE' FINISHPSPEC;

This procedure is called to complete the parameter specification record of

a procedure identifier record on the stack. Any unused space in the parameter
specification record is handed back to the stack, and the anti-recursion marker
in the PARAMSPEC field deleted.

'PROCEDURE! FINISHSEG;

This procedure is called from ENDPROG at the end of & program segment, and
from COMOFF at the end of a *COMMON' segment. It is also called from the
syntax at the end of a 'LIBRARY' 'PROCEDURE' segment. If any labels remain
unset in program or library segments, (LABDECLIST is not used in 'COMMON')
then a warning is printed and the labels set to calls of L2 with the label
identifier string as a parameter. ENDSEG is called to output the end of
segment directive and tail on the tape. This is then followed by the "size
block” output on tape, giving the size of the Program,Data, and Special areas;
this information also being printed. A tail is punched on the tape, and

"END OF SEGMENT" printed.

'PROCEDURE® FIXCON;

If the operand on the top of the stack is an integer comstant, then this is
converted to a fixed constant with the minimum number of integer bits required
to hold the number without loss of significant bits. This number is given by
SGB~1.

*PROCEDURE' FIXLABEL
('VALUE' 'INTEGER' LAB);

This procedure ls used when the label specified by the pointer LAB is to be
set to the current program address. If the label record indicates that it
has been previously set then a call is made on STOPOP to print a message.
Otherwise calls are made on SETCBAINTOPTA to set the program area andarspecial)
data area chains, if any. The two addresses in the label record are set to
the current program address and marked (sign bit set) to indicate that the
label is now set. A call is made on ZEROACCS to clear the accumulator record
ACCS, even though this might also be called by SETCHAINTOPTA. Finally a call
is made to DIAG to print out the label identifier and the current program
address, FIXLABEL is called from SETLABEL to set labels mormally, f rom
FINISHSEG to set labels unset in a segment, and from CODELAB to set labels in
code.,

124

B

'PROCEDURE! FLOATIT
{ "WALUE® 'INTEGER' REF)

This procedure ensures that the Arithmetic Operand referred to by REF is of
type floating. If the operand is a constant then it is rescaled using
SCALENUM. Otherwise if a conversion is required, a call is set up to L10
to float the value.

'"PROCEDURE! FLOATOP
('"VALUE' 'INTEGER' OP);

This procedure outout the instructions to load the operands into @7 and @6,
and to call the appropriate Library procedure. If the right hand operand

is already in @7, then a procedure which expects the operands to be reversed
is called. A table is given below showing the relation between the operators,
the value of OP, and the Library procedure called.

Operator OP Normal Reversed
* 1 AR L11
+ 2 L12 Li12
- 3 L13 L17
/ 4 114 L18
t 5 L15 L19
t (integer) 6 L16 120

After the instructions have been output, the top operand record is removed
from the stack, the type of the other operand record changed to floating, and
the accumulator record updated.

'"PROCEDURE' FORCOM;

This procedure is called at the end of each element of a forlist containing
more than one element. After masking the bottom two bits, FORSTATE will de
zero for a simple expression, and two for a step-until; otherwise the element
is a while.

If the element is a step-until a call is made on FORTEST to output the
instructions to test the control variable against the limit. A call of the
controlled statement, as an anonymous procedure, is then output. If the
element is a step~until, a call is then made on FORINC to output instructions
to increment the control variable. Unless the element is of the form
Expression, a call is then made on UJBACK to output an unconditional jump
back to the step-until or while test. FORSTATE is then set to four prior
to processing the next element.

YPROCEDURE!' FORINC;

This procedure outputs the code to increment the control variable in a step~
until element of a For statement. ASSFUN is set to OCTAL(12) and a call made
on STOREAWAY. This causes instructions to be output which copy the step value
into an accumulator and add into atore.

125

"INTEGER' 'PROCEDURE' FORMMASK
('VALUE® 'INTEGER' REF);

This procedure is used to form the masks (bit patterna) required for the
packing and unpacking in part word operations. The parameter REF is a
reference to an Arithmetic Operand on the stack, whose PARTWORD field
specifies the location of the required part word within the whole word.
This information is obtained from the two fields LSS and MSS of PARTWORD.
LSS specifies the number of shifts required to align the field with the
least significant end of the word, and MSS the number of shifts required
to align the field with the most significant end. Thus for whole word
fields these are both zero.

The result of the procedure FORMMASK is a bit pattern consisting of all
ones in bit positions corresponding to the specified field, and all zeros
elsewhere,

YPROCEDURE! FORTEST;

This procedure outputs the instructions for the testing of the control
variable against the limit value of a step~until element of a for statement.
This test is always performed using accumulator 7, and the test instruction
is alvways a jump~if-negative; this Jjump taking place when the element is
exhausted. This procedure is used in all step-until cases except where the
for statement has only one element, which is a step~until with all three
expressions being constants.

If the step is a negative constant, an instruction is output to copy the
control variable into accumulator 7; otherwise an instruction is output to
copy it negatively. Provided that the limit is not a gzero constant, a
further instruction is output; if the step is a negative constant, this
subtracts the limit value, otherwise it adds it. If the step is not a
constant, an instruction is output to multiply the result by the step value.
The test instruction is then output, its address being recorded in
SKIPCHAIN. Finally the Arithmetic Operand for the limit is deleted from
the stack. The code generated is summarised below:

If 1imit is not zero constant
If step not g congtant (Limit-Controlvar)*Step
If step a +ve constant +Limit-Controlvar
If step & ~ve constant +Controlvar-Limit
If 1imit a zerp constant
If step not a constant -Controlvar*Step

f step a + congtant =Controlvar

If step a -ve constant +Controlvar

126

A

'PROCEDURE! GIVEUP
('VALUE* 'INTEGER' S);
This procedure is called in case of irrecoverable errors. The contents of
the input buffer are printed using PRINTBUFF. This is then followed by
the characters "FAILED : " and the string S. The procedure does not return
control to the point of call but jumps to the label STARTUP to re-initialise
the compiler.
'INTEGER' 'PROCEDURE' GOODACC
('VALUE' *INTEGER' REF);
This procedure choses a suitable accumulator for use with the Arithmetic
Operand referred to by REF. If the operand exists in am accumulator, then
this is chosen. Otherwise a call is made to FINDPREF to find a free
accumulator.
'INTEGER' 'PROCEDURE' GOODONE
('VALUE' 'INTEGER' REF,LIM);
This procedure choses a suitable accumulator number for the evaluation of a
subscript expression incorporating the Arithmetic Operand referred to by REF,
vhich is less than or equal to the value LIM. A detailed flowchart is given.
YPROCEDURE' GOODPICK
('"VALUE' 'INTEGER' REF,NEG);
This procedure loads the Arithmetic Operand referred to by REF, into a
suitable accumulator. The operand is not rescaled but unpacked if a partword.
If NEG is non zero then the operand is negated.
YINTEGER' *'PROCEDURE' GRABSTACK
('VALUE' *INTEGER' N);
This procedure allocates the number of words given by N, of workspace on the
compiler's main stack. The result is the starting point of this space. A
call is made on STACKCHECK to test for stack collision.
'PROCEDURE' GRABVAR:
This procedure obtains five words on the top of the stack to form a new
Arithmetic Operand. This area is initialised by setting the PARTWORD,DIRADD,
and INDADD words to zero.
'PROCEDURE! HALT
(*VALUE' *INTEGER' STRING);

This procedure outputs the characters "HALTED = ", the string STRING, and a
newline, It then waits for Handswitch 0 to be moved from O to 1.

N

e oPaRAND \‘(c.s

& cComsTANT?

S NDRECT

V! CA-L FimbouT
wWTH LN RECT
= ADDRESS

] I

~

ADDBRESS wauLt?

V‘LS

\S “OCATIOwN

wpRKER SET

No

y

CALL FimadoouT
wWiTH DiRECT
ADPDRESS

RETURN RESULT
o F F'Nbgg“-

RETUAR™N
PREFACE

Q/
Is THWE

RESVO-T

zeRo

LS THE QesulT

LREATER
TARN u\Mg

e FERAed

NecuMULATOR
EREE

\{

Ts 1T
CREATE R THAN
LlH?

¥ Yes

]

AL Fiubace
wiTH LM AS
Tve fARAMeTER

ARETURN RWSULT
oF Finahace

'PROCEDURE' INACC

('"VALUE® 'INTEGER' ACC,REF);
This procedure updates the Arithmetic Operand on the stack whose reference
is REF, to show that it is now held in the accumulator whose number is given
by ACC. A call of ACCUPDATE is made to update ACCS.
'"PROCEDURE' INST

("VALUE' *INTEGER' REF,ACC,FUN);

This is the general procedure for the output of instructions whose address
and modifier parts are derived from an Arithmetic Operand record on the stack.
The required accumulator and function number are passed as ACC and FUN, and
the parameter REF refers to an Arithmetic Operand. The required modifier is
obtained by the use of ISMOD. The address is obtained from the direct
address, but in certain cases an intermediate transformation is required.
Where the Arithmetic Operand is a constant, this is output by OUTWCONST and
the address supplied by it (Wo) used. Where the address is a label address,
LBM is set, and USELAB is called to obtain the actual or the chain address.
Where a location is required, LCM will be set, and four is added to the
function code. In this case the function code will always be less than four.

L S —

[S——

TTe TR TE e wm—
.

! 'INTEGER' 'PROCEDURE' INSTTYPE;

T R e 0~

This procedure is a selector action called directly from the syntax analyser,
after the three letter function in code. The procedure returns a number in
the range 0 to 4 as follows:

A

Function

i : LDX
: NLX
. ADD
y SUB
LoC
LAB*
; STO
Te STN
‘ ADS

[97]
2
o]
]
Ednd VAV AT AV AV AN No No Ne ll Xt JE R AV F_NeNeolNeoNe] §

*INTZGER' '"PROCEDURE! INSTTYPE
Function

SRA
SLA
SRL
SLC
SLL
SLV
MPY
DIV

QO-=NNNNMNN g

Note: LAB is initially given the function code 05, to differentiate it from
LOC. This procedure changes the code to 04.

*INTEGER' 'PROCEDURE' ISINACC
(*VALUE* 'INTEGER' REF);

This procedure is used to find out whether the Arithmetic Operand referred
to by REF is in an accumulator or if there is a suitable copy of the operand
in an accumulator. If there is the both the Arithmetic Operand and the
accumulator record,ACCS, are updated. A call is made on COPYINACC whose
result is made the result of ISINACC. If this is non zero, a call is made on
INACC to update the record.

'PROCEDURE' ISMOD
(*VALUE® 'INTEGER' REF);

The result of this procedure is the number of the modifier holding the
indirect address of the Arithmetic Operand referred to by REF. If the indirect
address is null, the result is zero. If the indirect address is a modifier
number, or if there is a copy of the required location already in a modifier,
the result is this modifier number. Otherwise a call is made on FINDACC to
obtain a modifier, and an instruction output to load it. Where the modifier
contains a copy of a store location then the appropriate entry in ACCS is
updated, otherwise it is cleared. ISMOD is called from INST, (the most
common case) from SUBTERM in evaluating subscript expressions, and from
STOREAWAY in the case of assignment and 'FOR' statements. A flowchart is
given for this procedure.

'PROCEDURE* JOINCHAINS

(*VALUE' 'INTEGER' CHAIN;
'LOCATION' 'INTEGER' MASTER);

This procedure joins the two jump chains, the chain CHAIN being joined on to
the end of the chain MASTER. If the chain CHAIN is mull, the procedure has
no effect, and if the chain MASTER is null it is assigned the chain CHAIN.
Otherwise a two-part directive is output to the loader, instructing it to
join the chains. If however the chain MASTER is marked (-ve) this represents
a label which has been set, and the chain CHAIN is set to this address.

130

I —

1§ INDIRELT

ABDRESS NILL

)
<

s T ALREADY

N meb\FIeER

D FREE

HebiFIER

Y

CofY 1NTe

HoBIFIER

wWeasS T '
ANOTHER
Actc VU LATD

L es

..) .

CLEAR Reco)

IN Accs

—€

X cLeAR ubhaTE GCPBATE
- Recolkd 1y
4 ccs Cralb _
T fecs fccs (hok] necs
! CLERAR > <
Recond
‘N ACLS v

ANnsweR

Mod

131

'PROCEDURE® KILLEXPR,

This procedure is called at the end of nested expressions in cases where the
result is no longer required. It is called directly from the syntax at the
end of subscript expressions, from RZILATION at the end of expression in
conditions, and from DOSHIFT in the special case of expressions following
shift operators. The stacked values of EXPRCHAIN,PREFFACC,EXPSCALE,SCALEFIRM,
and BITSHIFT are restored by means of a call of OFFSTACK, and the pointers

LH AND RH reset by means of a call of SETLHRH.

'INTEGER! *PROCEDURE' LHACC;

This procedure is used to find whether the Arithmetic Operand next to the
top of the stack (ie the LH operand) is held in an accumulator. If- it is,
then the result is the number of the accumulator, otherwise zero.

'INTEGER' 'PROCEDURE' LHEQRH;

This procedure is called after the first Term of the right hand side of an
assignment statement. If the Term is identical to the variable on the left
hand sjide, and it is neither floating point nor part-word, then the result

is 1, otherwise the result is zero. This is used to detect cases such as:

aca+b,

'PROCEDURE' LIBTRACE
(*VALUE' 'INTEGER' LNO,ADD,SPIEL);

This procedure is used to set up calls on trace procedures having one
parameter, usually a string. The address of the string (ie run time address)
is passed as the parameter ADD, LNO being the procedure reference number, and
SPIEL the commentary. An instruction to load t:e address into accumulator 7
is output, followed by a call of CALLLIB to output the call of the procedure.

'PROCEDURE' LOCACT;

This procedure acts upon the Arithmetic Operand on the top of the stack. It :
alters the record, so that when used, the location of the operand rather than

its value is obtained. LOCACT is called from the syntax in the case of the

ugse of 'LOCATION'(), and also from ANYMORE in the case of 'LOCATION'

parameters. !

If the direct address is non—-zero then the type is changed to integer, and
the marker bit LCM set. Otherwise the indirect address is copied into the
direct address, the indirect address set to zero, ar i the type changed to
integer, but without the location marker set. This second case optimises
occurrences of anonymous references in location parameter positionms.

132

*PROCEDURE® LOOKUP;

This is the procedure for looking up the records of non-label identifiers
in a non-declaration context. This procedure forms an Arithmetic Operand
on top of the stack and copies into it the four full word fields: TYPEBITS,
PARTWORD/PARAMSPEC,DIRADD and INDADD., The commentary pointer SPIEL is set
to the address of the identifier string in the stored record. If the
identifier is used, but undeclared, a warning message is output, and the
Arithmetic Operand set to type Integer, with a SPIEL of "(UNDECLARED)".

'INTEGER* 'PROCEDURE' LOOKUPLAB;

This procedure is used to scan the label list of the current block to find
whether there is a label record with the same identifier string as that

held in NAME. If there is not, then a new record is formed and added to

the list by means of ONLAB. Thus the result of LOOKUPLAB is always a pointer
to a label record.

*INTEGER' 'PROCEDURE' LOOKUPNAME
(*VALUE' 'INTEGER' LIMIT,REF);

This procedure is used to search down the main declaration 1list, starting
with the value held in DECLIST, and stopping when the value of the chain
equals that of LIMIT. The identifier string of each record is compared with
that of the record referred to by REF. If a match is found, then the result
is a pointer to that record, otherwise zero.

'PROCDURE' MAKEPARAM
('VALUE' 'INTEGER' TYPE);

This procedure is used to create the "hidden" type/scale parameters for
untyped parameters and 'VALUE'! procedures, and also for the result of
intermediate calls of a multiple call of a typed procedure.

An Arithmetic Operand is created on the stack by means of a call of GRABVAR.
Its TYPEBITS are set to 'INTEGER' and the accumulator number field inserted.
This is obtained from the parameter specification record, the relevant entry
of which is pointed at by PSP, which is incremented. The commentary is set
to "(TYPE)".

If the parameter TYPE is zero, the record being set up is that of the result
of an intermediate call of a multiple call. In this case the direct address
of the Arithmetic Operand, and the appropriate entry in ACCS are updated by
means of a call of TOPACC. Otherwise the typebits are marked to denote that
the Arithmetic Operand is to be treated as a constant, and the direct address
field set to the type/scale. If the parameter TYPE is two, this occuring for
untyped parameters, the type is obtained from EXPSCALE. Otherwise (TYPE=1)
the type/écale is obtained from the type of the procedure being called, which
will have been changed to that of the context.

133

-

'PROCEDURE* MAKESPEC;

This procedure prepares a parameter specification record for a procedure
identifier record. It is called from PROCSTACK jn the case of a procedure
declaration, and also from BEGINFSPEC in the case of a procedure specification.

The address of a seven word area of stack is set into PARAMPTR2, and th's
«"dress plus the marker MARK set into the PARAMSPEC word of the procedure
identifier record on the head of DECLIST. The marker indicates that the
procedure has not yet been completely processed, and is used in the detection
of recursion. The PAC field of IDTYPE2 is set to 7, and if the procedure is
a 'VALUE' 'PROCEDURE' the fields SPB and PVL are also set for the context
parameter. The values set up in PARAMPTR2 and IDTYPEZ2 will be placed in
PARAMPTR and IDTYPE by a subsequent call of EXCPSPEC. This precaution is
required in the case of a 'PROCEIJURE' parameter of a procedure declaration.

'PROCEDURE' MASKINST
('VALUE' 'INTEGER' REF,ACC,SZNSE);

This procedure is used to output mask instructions (function 15) for the
packing and unpacking of deta. The parameter REF is a reference to an
Arithmetic Operand on the stack which is required to be packed or unpacked
using the accumulator specified by ACC. The parameter SZX3E is either all
zeros, in which case the required field is uraltered, and the rest of the
word cleared; or the parameter is all ones (~1), in which case the rejuired
field is cleared and the rest of the word unaltered.

'PROCEDURE' MOVE

(*VALUE' 'INTEGER' N;
'LOCATION® 'INTEGZR' FROM,TO);

This procedure moves the number of words given by the parameter N, from
successive locations starting from the location given by’ the parameter FROM,
to successive locations starting from the location givén by the parameter TO.
The higher numbered locations being moved first. This is essential in the
case where MOVE is called from ONLAB which is called by ENDLABBLOCK. In
this case the areas given by TO and FROM may overlap, the data being moved
upwards.

*PROCEDURE' NEVLINE;
This procedure outputs a newline (CrlLf) using OUTCHAR
'INTEGER' *PROCEDURE' NEXTCHAR
('LOCATION' 'INTEGER' Z);
This procedure unpacks one six~bit character, packed four characters to a word.
The parameter Z specifies the location of a pointer to the packed characters.
This pointer is incremented by one character position each time a character
is unpacked. The two most significant bits of the pointer being used as an

index to the character within the word. The bit pattern 00 specifies the
character in the most significant six bits of the word.

134

'PROCEDURE' NEXTPARAM;

This procedure is used to build up the parameter specification record which
is pointed at by the PARAMSPEC in a procedure identifier record. This record
is a summary of the parameter requirements of a procedure, and is required

to be available when a call of the procedure is to be compiled. This should
be distinguished from the identifier records of the parameters themselves,
which are only required whilst compiling the procedure; and are afterwards
deleted.

NEXTPARAM is called directly from the syntax when dealing with procedure
specifications, from NEWNAME when dealing with procedure declarations, and
from BEGINPSPEC to set the (hidden) context parameter.

If, on entry, IDIYPE is marked negative (seventh parameter), then a call is
made on XSPARAMS with a zero parameter. This causes a diagnostic message

to be printed out using the current (procedure parameter) identifier. If
IDTYPE is zero, there have been more than seven parameters, and no action is
taken. Otherwise the current value of IDTYPE is added to the parameter
specification record, the pointer PARAMPTR incremented, and the following
word in the record set to MARK (end of record marker). The parameter
accumulator field PAC of IDTYPE is decremented in the following sequence
T365553,251,0. If the value O is reached, IDTYPE is set to MARK to indicate
that no further parameters are allowed. If the parameter is an untyped
parameter (pair) then the field SPB of IDTYPE will be non zero. If it has
the value 1, it is set to 2 and the bit LOM cleared. If it has the wvalue

2, it is set to 1 and the bit LCM set to the value of the bit LM2. This

bit will only be set in the case of 'LOCATION' parameters.

YINTEGER' 'PROCEDURE' NEXTPTYPE;

This procedure is a selector action, called directly from the syntax. It
returns an integer in the range O to 3 depending on the type requirements
of the next parameter. This is obtained by means of a call of PARAMCLASS,
but after the values of SCALEFIRM and EXPSCALE have been set up.

If the parameter is untyped, these are cleared, otherwise EXPSCALE is set
to the type of the parameter, and SCALEFIRM set to 1.

'"PROCEDURE' NONAME;

This procedure forms an Arithmetic Operand on the top of the stack primarily
for use with Anonymous References.

GRABVAR is used to set up the Arithmetic Operand, the commentary field SPIEL
set to "(ANON)", and the TYPEBITS field set to Integer(Array). This
procedure is called from the syntax and from other compiling actions to
form an anonymous Arithmetic Operand.

135

*PROCEIURE' OCTLOOP
('VALUE' 'INTEGER' WORD,DIGITS);

This procedure is the basic octal print routine, it outputs the specified
number of octal digits from the least significant end of the value supplied.

The parameter WORD is first shitted cyclically left so that the first octal
digit to be printed is moved to occupy the most significant three bits.
This is then repeatedly shifted three places left cyclically, and octal
digits extracted from the least significant end. These are output using
OUTCHAR. The number of digits to be output is specified by the parameter
DIGITS.

'PROCEDURE' OFFSTACK

(*VALUE' 'INTEGER' N;
'LOCATION' *INTEGER' START);

This procedure moves the number of words of data specified by N from the
main stack to the area of core starting from START. Before the data is
moved the variable whose location is passed as START points at the block of
data on the stack. This procedure is essentially the inverse of ONSTACK
and is used to "unwind" a level at the end of a syntactically recursive
situation. After the data has been moved, the value of the variable
STACKPOINTER is updated, as the area on the stack occupied by this data (and
any data held above it) has now been relinquished.

'PROCEDURE' ONLAB
(*VALUE' *INTEGER' FROM);

This procedure moves a label record from the part of the stack whose
location is given by the value of FROM, on to the end of the label stack,
chaining it up to the chain LABDECLIST. This is used to move the record

of a label on to the label stack, on its first occurrence within a hlock,
and also during label stack compaction at the end of a block. It should
be noted that the label stack is inverted, ie the "top" record on the stack
occupies the lowest location.

The size of the record is first calculated, and then the new value to be
assigned to the label stack pointer. The record jis then moved. If
LABDECLIST is gzero, it is set to point to the record, otherwise the record
below is set to point at the top record. Finally the label stack pointer
LABSTACKPTR is set to its new value.

136

YPROCEDURE' ONSTACK

(*VALUE' 'INTEGER' N;
*LOCATION' 'INTEGER' START);

This procedure moves the number of words of data specified by N, from the
area of core starting from START, on to the compiler's main stack. The
variable location is passed as START is updated to point to the word on
stack containing its previous contents. This procedure is used to stack the
compiler's workspace in syntacticslly recursive situations, eg nested 'FOR'
statements. It is also used to move declarations of new identifiers on to
the stack and chain them up.

'PROCEDURE' OPERATE
(*VALUE' 'INTEGER' FUN);

This procedure is used to apply logical and shift operators between the two
Arithmetic Operands on top of the stack. No rescaling takes place prior
to the specified operation, and the scale of the result is set as 'INTEGER'.

After ensuring that the left hand operand is in an accumulator, and that the
right hand operand is unpacked if required, the instruction with the function
code FUN is output using INST. The top operand is removed from the stack,
and the type of the remaining operand changed to integer.

*PROCEDURE® QUT1014

('LOCATION' 'INTEGER' TA;
*VALUE' *INTEGER' TEN,ADD);

This procedure forms a 24 bit word from the ten bit group TEN and the least
significant fourteen bits of the address ADD. This is then output using
OUT24 with the transfer address given by TA and the address tag of ADD.
This procedure is used to output instructions (Program), and constants
containing address information (Special).

*PROCEDURE! OUT1014CS
(*VALUE' 'INTEGER' ADD);

This procedure is used to output constants containing address information
destined for the special constants (Special) area. The ten bit group to be
packed in the most significant end is obtained from the variable TOPTEN.

'*PROCEDURE' OUT24

('LOCATION' 'INTEGER' TA;
'VALUE' 'INTEGER' WORD.TAG);

This procedure is the basic output procedure for 24 bit words which are to

be relocated and loaded to core by the loader. The parameter TA specifies
which transfer address is to be used to load the word (Program,Data or
Special), and the address tag TAG specifies how the word is to be modified.
The relocatable binary tag is formed from the sddress tag of the transfer
address and the address tag from the parameter TAG. The appropriate transfer
address is incremented by one.

137

('VALUE' *INTEGER' CONST);

This procedure outputs whole word constants destined for the special
constants (Special area. These constanta do not require relocation.

*PROCEDURE' OUT27
('VALUE' 'INTEGER' ADD,SPIEL);

This procedure is used to output instructions with a function part of
OCTAL?27). an accumulator part of 4 and the address and commentary
specified by ADD and SPIEL. This procedure is designed to be used to set
up procedure calls, the link being set in accumulator 4. This procedure
is also used for procedure exit,jumps to label parameters, and jumps to
'EXTERNAL', *ABSOLUTZ' and 'COMMON' labels. In these cases there is no
need to set a link, but it is simpler to do so.

*PROCEDURE® QUTS
('VALUE' 'INTEGER' TAG,YORD);

This is the basic output procedure for relocatable binary. It outputs a
five character group. The first six bit character is given as the parameter
TAG, and the following four characters are unpacked from the parameter 'JORD.
Before the first character is outout OUTDIV is changed to OCTAL(107) to
select the punch, and after the last character is output QUTDEV is reset to
0CTAL(106). A checksum TSUM is formed of all characters output. If the
variable TEST is non-zero then the procedure does nothing.

'PROCEDURE' OUTCHAR
(*VALUE® 'INTEGER' CHAR);

This procedure converts the character whose internal representation is given
by the parameter CHAR to the appropriate ISO7 character. This is then output
to the peripheral vhose address is given by the variable OUTDZIV. The internal
representation for newline is 64, this being output as Carriage Return
followed by Line Feed.

YPROCEDURE' CUTCJ;

This procedure is used to output all conditional jump instructions associated
with conditions, except those of the form 'THEN' 'GOTO' Label, these being
output by GOTOL, OUTCJ is called directly by the syntax to output a jump

(if false) foliowing the symbol 'AND'. It is called from ORACT, after the
jump has been reversed, following the symbol 'OR' (jump if true 5 It is
also called, following the symbol 'THEN' from STATUSTEST and from THENEX.

This procedure uses the previously calculaied values of ACCUMULATOR and
FUNCTION, the address part being obtained from SKIPCHAIN, which is updated.

138

*PROCEDURE! OUTCONT
('VALUE' 'INTEGER' WORD);

This procedure outputs the value passed as the parameter WORD as a five
character relocatable binary group. The tug in this case is zero, signifying
to the loader that this group forms part of a multi-group element. OUTCONT
is often used as a parameter for DOSTRING.

'PROCEDURE! OUTI
('VALUE' 'INTEGER' XFM,N,SPIZL);

This is the basic procedure for the output of instructions (Program). The
accumulator, function, and modifier field are passed as a packed ten bit
field XFM. The address is passed as the parameter N, and a string for
conmentary as SPIEL.

Where the address is the address of an accumulator, it is converted to
absolute form (X+4096) and a string formed of the form "@x" which replaces
the string passed as SPIEL. Otherwise if the address is flagged as being
the address of temporary workspace the string passed as SPIEL is replaced
by "(TEMP)"-

The instruction is output using OUT1014, and if the value of the variable
LEVEL indicates that a detailed commentary is required, then this is output
using DOSTRING to output SPIEL.

*PROCEDURE! OUTPRESETD
('VALUE' 'INTEGER' N,T);

This procedure is used to output preset data in data declarations. It is
called from OUTPRESET to output numeric data, and also from PRESETSTRING
to output the addresses of strings. (eg In the case of: 'INTEGER' S-"STRING";)

A check is made thut presetting is allowed at this point, and also that there
have not been more presets than data space allocated by the declaration. The
rreset value N is output by means of a call of OUT24, and relocated according
to the address T, (Relocation is only required in the case of strings,
which are stored in Special Data)

"PROCEDURE! OUTUJ;

This procedure is used to output unconditional jumps following 'ELSE', and
also over procedures where required. The address part for the jump is
obtained from SKIPCHAIN, which is updated.

*INTEGER' 'PROCEDURE! OUTWCONST
(YVALUE! 'INTEGER' CONST);

This procedure outputs the constant CONST and returns the run—time address

of the constant. As the loader optimises and allocates storage for the con-
stants the address returned is always the same (Wp). The procedure outputs
the constant as a prefix—continuation to the following instruction by the use
of OUTCONT. The use of OUTWCONST as a separate procedure allows other methods
of dealing with constants to be used if desired.

139

'PROCEDURE" OUTXFMN

(*VALUE! 'INTEZGER' X,F,M,N,SPIZL);

This procedure is used to output instructions (Program) where the fields of
the instruction have been obtained separately. It packs the accumulator (X),
function (F), and modifier (M) fields as a ten bit group. This together with
N and SPIEL are passed to OUTI for subsequent output.

1 'INTEGER' 'PROCEDURE' PARAMCLASS;

‘ This procedure returns an integer, in the range O to 3, depending upon the
f; class of the parameter currently being pointed at, in a parameter specification
record, by PSP. The classification is as follows:

. Result Parameter Type
) 0 '"VALUE' (type)
1 'LOCATION'y-?type)
. 2 'ARRAY','SWITCH', anq 'PROCEDURE'
3 'LABEL!

'"PROCEDURE' PZRI;

This procedure exchanges the top two Arithmetic Operands on the stack

b (ie the LH and RH operands), and updates the accumulator record, ACCS, by
3 means of calls on ACCUPDATE.
' tPROCZDURE! PICK
L
= , (*VALUE! 'INTSGER' REF,ACC,SCALE,NEG);

This is the procedure responsible for the output of instructions for copying b
the Arithmetic Operand referred to by REF, into the accumulator ACC. It is

unpacked, if required, rescaled to the itype/scale SCALE, and negated if NZG

is non zero. Conversions from 'FIXED' to 'INTEGER' are rounded.

This procedure is not used with 'FLOATING' operands.
Detailed flowcharts describing the operation of the procedure are given.
Y INTEGER' 'PROCEDURE' POWERTWO;

If the top operand on the stack is a positive integer constant which is a
positive power of two, then the result of this procedure is the power of two,
otherwise the result is zero.

This procedure takes advantage of the fact that such a constant, 2, requires
n+2 significant bits to be represented as a signed integer. This value is
obtained from SGB. The cyeclic shift used is equivalent to a division by 28,
but with the remainder placed in the top of the word. Only if the constant
is positive, and a power of two, will the result be one.

140

(e)

\S OPERAMD No

A CoONSTANT

V\"—‘

: QRESCALE To
& REQuired
SCAVE

; Y
% 4
CALCLULATE
o RﬁSCQLqu
! SWIFTS

€s cPERAMD
ReawviRE
umtacking?

Yos

/ No

S NGRATION Nes derLeTE

NEGAT oM

REQ\:\R—&b? MARKER

v No

Y

VT PLT LwmstRUCTIO CUTPLT NSTRUC T
© cofY obterAMD To P oPLRAND
NEQATINELY dT>
t \NMTe REQuieaed REQU.Red
hecumuLAToR AtcumuLnToR

—

e
-——

141

Dboes sPerAnd

No

QE-Q\\\Q.Q
\\NPﬂC—KINC‘? /

4 Yes

OLTPROUT MAsK

INSTROUCT I8

1S FLELD
QEQU\lEb
Te ‘e

Wes

Ts T ALREADY
AT Tof ofF
WOoRDP

CUTPUT CNCLE SHIFT
INST RUCTION To
MOVE Sign BT To
ToP oF WeRd

\'[——————J

CAI-CULATE SthetTsS
REQUL.RED To

a"-‘ﬁﬂ Ftég,)

Y

A AcigmMenT
Red D Q.E,Schutuc‘
SHtFTS

-

(f)

142

L L

Y

1S SWiFTvwGg \ \'*lo

Rew v reEd ?/ >

SWFT >
«ep?/ |
CHose

) No ARITMME TG

N
/—_— LeeT SWifFT
1S ofeRAND
< Jos UNnSigued ’
\/ \ ?\ﬁl—)?
CitosSe

LagicAaw Y
QigrHT BWnFT

Cwose
ARTHMET (S
AUGHT SHiET

Ye_s \S NUmMBER OF \ o
CLTPVT PLAaces ©

WARN N oF smeT > ouT POT
S GXCESS\WVET S ET
Messhqe .
~

3 TNSTRLCT IO
, L

'S ComyERS\ON
FRoM wixed
To INTeqe R y

v \’o.s

' ocuTPLT
Rouwmb: LN
! [TNSTR yeTion

Y
A YeRnATE
ACCOMULATO R
t AND ofeRaw)
RecoRDdDS

Y

'S
NES ATIoN No

Re@oieedl

¥ .. v Yes

oLTPLT
TNETRLL TN
To NESATE
fCeLuMULATOR

‘g ! \ 4

‘:.\\“.v ! < RETURW > i

'PROCEDURE! PRINTADD i
('VALUE' 'INTEGZR' ADD);

This procedure prints the address. given as the parameter :iDD in the form of
a single letter representing the tag type, and five octal digits representing
the index. This is followed by the characters ": ". 1

'"PROCEDURE' PRINTBUFF;

This procedure is used, after the detection of an error, to print the contents
of the cyclic buffer INBUFF. This contains the last 64 non ignored characters
read from the input tape. If less than 64 chzracters have been read, then
only those will be output. The output consists of the characters "? . . ",
the contents of the buffer, and the characters'««<", ‘/here the buffer
contains a newline, this is followed by the character "?". This is therefore
the first character on any line output by this procedure.

'PROCEDURE' PROCSTACK;

This procedure is called to perform the housekeeping required at the start
of a procedure declaration. It is called from BIGINPROC for procedures
within a segment, and also from SETLIBSEG for Library Procedure segments.
STATUS is set to 1, as the procedure is entered by a jump, and a paramcter
specification record prepared by means of a call of MAKEPSPZC. A call is
made on ONSTACK to move the current values of PROCCHAIN,PROCPTR,PARAIMFTR,
PARAMDECS ,LINK ,PROCSTRING,ZX1TCH, and DUECHAIN. This is only necessary
vhere a procedure is declared within a procedure, but is carried out in all
cases for the sake of simplicity. BIGINBLOCK is then called to set up an
outer block for the procedure which encloses the parameters (if any).
PROCPTR is set to point to the procedure identifier record, and LOCALLIMIT
moved one record beyond this. This, and the call of BIGINBLOCK, prevent the
redeclaration of the procedure and parameter identifiers within the outer
block of the procedure, thus rendering the parameters inaccessible. EXITCH
apnd PROCSTRING are set to zero to inhibit procedure trace unless specifically
required.

'PROCEDURE' PUNCHLOOP
("VALUE' 'INTEGER' CHAR,TINES);

This procedure outputs the binary character CHAR directly to the punch, the |
number of repetitions being given by the parameter TIMES. This is used only |
to obtain blank tape and groups of erases. No characters are output if the
variable TEST is non gzero.

'INTEGER' 'PROCEDURE' READTAPE;

This procedure is the basic input procedure of the compiler. It reads one
character at a time from paper tape and converts it to intermal representation.
Line feed is treated as newline (64), all other control characters and erase
being ignored. Lower case letters are mapped onto the corresponding upper
case letters. After conversion the character is also deposited into a 64
character cyclic buffer INBUFF, using an integer INCTR as the pointer to the
current character position. This pointer always has a value in the range

0 to 63 inclusive. A flowchart is given for this procedure.

144

i 1
v .
;u
o
‘ \'8
1
E | Nes ts coaR e Tel
k : ERASE? !
f Y wo !
. i
CONVERT LoweER i
t cAse To ;
. LPPER caseE P
. b
;. ' r ,
: Y .
L !
P .
f COMVERT To i]
b - INTERNAC
}.J' code
1 \b
u- T Tore carACTER
: "
cicvie BourreR

i ' (Qeruml)

145

"INTEGER' 'PROCEDURE' RESCALE
(*VALUE' 'INTEZGER' NUMBER,OLDSCALE,NEWSCALE);

. This procedure rescales the constant NUMBER whose type/scale is given by

o OLDSCALE to the type/scale required by NEWSCALE. Type changing from 'INTZGER'
Y to 'FIXED' or 'FLOATING', or from 'FIXED' to 'FLOATING' is allowed, other

i . type changes are not. This means that constants with a decimal point cannot

:ﬁ! be used in a strictly 'INTEGER' context, eg as a subscript. The number type
b+ is given by 'BITS' [3,10] and the scale by 'BITS' [6,18] of OLDSCALE and
= NEWSCALE.

Provided that rescaling is required, the number is first normalised and its
scale adjusted as required. If a 'FLOATIIG' result is required then the
- number is truncated, rounded, and packed. Otherwise the number is fixed to
F) . the required scale, provided this can be done without totzl loss of
significance; and rounded. A flowchart is given for this procedure.

§ "PROCEDURE' REVCHAIN; !
This procedure exchanges the chains DUZECH' "N and SKIPCHAIN. ‘
'*PROCEDURE' REVCJ;

This procedure is used to reverse the type of conditional jump instruction
calculated but not yet output. PFunction 20 is changed to 21, and function 22
to 23 and vice versa. In the case of function 24 the accumulator number is
changed from O to 1, or from 1 to 0. This reversal of the test is required
following the symbols 'THEN' 'ELSE','THZN' 'GOTO', and 'OR'.

VINTEGER' 'PROCEDURE' RHACC;

This procedure is used to find whether the Arithmetic Operand on the top
of the stack (ie the RH Operand) is held in amn accumulator. If it is, then
the result is the number of the accumulator, otherwise zero. i

VINTEGER' 'PROCEDURE' RHSPTEST;

This procedure is a selector action called directly by the syntax, after the
3 occurrence of an unsubscripted identifier in an expression. If the identifier
e is the name of a procedure, a result of 1 is returned to the syntax analyser,
] otherwise a result of 0 is returned. This allows the case of procedures
T without parameters to be detected, and differentiated from simple variables.

g 'INTEGER' 'PROCEDURE' SCALECON;

- This procedure rescales the constant held in NUMBER, and whose scale is held
w4 in NUMBERSCALE, to the scale required by the current context which is held in
S IDTYPE. This procedure is called by the syntax to rescale Library Preset
- variables and scaled constants occuring in the operand field of code
instructions. It is also called from other compiling actions which output
preset values.

146

Reruecn

Y No

NORHMA LWLISE v
NLOMBER awd f.

i
ADTLST SCcALE

o 1S TYPE CHANGE ;i
Aompare

"h.s

Y

1S A FLOAT ~NQ
Point ResulT
ReQuirey

Qovnd Awmb

[No PACK MUMEBER]

Y
/"_—AN_N_UMQGQ
No RE REscavLe)
\W TP OT ereok,
< RETLRN)

Fix maongeR
To RE@u.ead
scae

N

: ‘ RETLR N }

PRINT ERROR
HessheE

’ - (ReETURN)

N 147

'PROC JDURE' SCALENUM
(*VALUE* 'INTEGER' R:F,SCALE);

This procedure rescales the constant held in th- Arithmetic Opersnd record
referred to by REF, to the type/scale SCALZ; changing the TYPZBITG of the
record to the required scale. This is performed by means of a call of RESCALL.

'PROCEDURE' SCALETEST

(*VALUR' 'INTEGER' A,B;
'SYTTCH' S);

This procedure is supplied with two scale/type words A and B. It checks these
for compatability, and jumps to the appropriate entry of the switch S
according to the mode of the result of an operation with two operands of the
specified types. If the four types considered are represented as follows:

To = 'INTEGIER' of unspecified significance
Is = '"INTEGER' of specified significance
Fx = 'FIXED!

F1 = 'FLOATING'

then the operation of the procedure may be described in the table below:

Case Result Entry of S
To,Io Io 1
To,Is & Is,Io Io 1
Is,Is Is 2
Is,Fx § Io,Fx* g Fx 3
Fx,Is Fx,lo* Fx 4
Fx,Fx Fx 5
F1,Any F1 6

Where the two scales are Jo and Fx, in either order, a warning message is
output as the result of the operation may be ill defined because the number
of siguificant bits in the Integer Operand is not kmown, and hence its
tolerance to rescaling cannot be predicted.

"INTEGER' 'PROCEDURE' SCANLAB
('VALUE' 'INTEGER' PTR),

This procedure scans the label 1list of the current block to discover whether
there is a label record with the same identifier string as that of the record
on the main (declaration) stack pointed at by PTR. If there is, then the
result is the pointer to the label record, otherwise zero. This procedure is
called by LOOKUPLAB to deal with the normal use of labels within a segment.
It is also called by ENDPROG to check whether labels unset within a segment
are 'COMMON' labels.

148

'INTEGER' 'PROCEDURE' SELOPTA;

This procedure is a selector action called by the syntax, after the first,
but before the second» term on tie right hand side of an assignment statement.

If the assignment function, ASSFUN, is marked negative, this marker is deleted,
and if the resulting value is OCTAL(10) a call is made on UNARYMINUS. This
case occurs where the right hand side commences with an unary minus sign, and
the first term is not identical to the left hand variable.

If, now, the value of ASSFUN is OCTAL(10), then assignment optimisation is

not required, and a result of zero returned to the syntax analyser. This
causes it to chose the rule for the continuation of the expression in the
normal manner. If however assignment optimisation is invoked, the top
Arithmetic Operand record is deleted from the stack, and the result 1

returned to the syntax analyser. This causes it to chose the rule which
effectively restarts the expression at the second Term, to evaluate from this
Term onwards, ignoring the first. The result of this expression will be added
to, or reverse subtracted from, store.

'INTEGER' 'PROCEDURE' SETASS;

This procedure is a selector action called by the syntax after the Becomes
symbol in an assignment statement.

The value of ASSFUN is set to its initial wvalue of OCTAL(10), the required

scale for the right hand side, EXPSCALE, obtained from the scale of the left
hand side, and SCALEFIRM set to 1, to indicate that this scale is mandatory.

If assignment trace is required then PREFACC is set to 7, as the trace procedure
requires it in this accumulator. The result 1 is returned to the syntax
analyser. This causes the rule for expression which does not have assignment
optimisation actions embedded to be selected.

If no trace is required then PREFACC is set to a value supplied by FINDACC,
and the result zero returned to the syntax analyser. This causes the rule
for expression which includes assignment optimisation actions to be selected.

'PROCEDURE' SETCHAINTOPTA

('"VALUE' 'INTEGER' CHAIN);
This procedure sets the jump chain CHAIN to the current program address. As
this represents a point which will be jumped to in the object program, the
array ACCS is cleared. The chain is set by outputting the appropriate
directive tag (17) to the loader. If the chain is null the procedure has no
effect.

'"PROCEDURE' SETDUE;

This procedure is used to set the chain DUECHAIN to the current program address.
After the chain has been set DUECHAIN is set to zero.

oxm

.

'PROCEDURE! SETLABEL
(*VALUE' *INTCGER' LAB);

This procedure is used when the label specified by the pointer LAB is to be
set to the current program address. This is done by means of a call of
FIXLABEL. If label tracing is required = call is set up on L3 with the
label identifier string as a parameter, by means of a call of TRACESTRING.

SETLABZL is called from SETLAB to set labels explicitly set in a segment,
from ENDPROG to set labels which are supp’ied by a communicator, and from
PROCZNTRY to set labels within a procedure which are supplied as ‘TABSL!?
parameters.

'PROC..DURS' SETLHRH;

This procedure sets the pointers LH (left hand) and RH (right hand) to the
two top Arithmetic Operands on the stack. This procedure is used frequently,
to ensure that these pointers are always up to date whilst compiling
expressions.

'PROCEDURE! SETRT;

This procedure is used in the compilation of For statements. It is called
when it is discovered that the For statement is of such complexity that the
controlled statement is required to be treated as an anonymous procedure.
This condition occurs where the for-list is more complex than the form.

expression comma expression while.

If the first element of the for-list is a simple expression, then the
assignment of this value is followed by an unconditional jump whose address
is recorded in RTA. If on entry to the procedure, RTA is non zero, a special
directive (35) is output to the lozder requesting it to change the
unconditional jump into a Jjump-setting-link instruction. A location is
allocated in the Special Data area, its address being recorded in RTA, and
the location initially set to zero. This will later be set to the entry
address for the controlled statement.

'INTEGER' 'PROCEDURE' SETUPPROC;

This procedure is a selector action called directly from the syntax, after
the occurrence of an identifier which has been found to be the name of a
procedure. If the procedure requires parameters, a result of 1 is returned,
otherwise 0.

Before returning to the syntax analyser, the opportunity is taken to perform
the housekeeping required to prepare for the generation of a procedure call.

If the call is recursive an error message is output. The values of

EXPRCHAIN,PREFACC,EXPSCALE ,SCALEFIRM,BITSHIFT ,PNP,PSP, and FPP are placed on
the stack by means of a call of ONSTACK. This protects the workspace of any
enclosing expression or procedure call. PNP (procedure name pointer) is
set to point at the Arithmetic Operand record of the procedure to be called,
FPP (first parameter pointer) set to point to the place on the stack where

150

[|

ARG i ¢ s

*INTEGER' 'PROCZDURE' SETUPFROC/

the record for the first parameter will be created, and PSP (parameter
specification pointer) set to point (one back) at the first entry in the
parameter specification record of the procedure. The_type of the procedure
held in the Arithmetic Operand record is then changed to the type of the
result of the procedure. If ti.e procedure is a 'VALUE' 'PROCEDURE' this type
will depend on the context in which the eall is made. This is determined from
the variables of the enclosing expression context, which at this point have

not yet been altered. If the scale is firm, then this scale is used, otherwise
the type 'FLOATINL® is used. A call is made on MAKEPARAM to create an
Arithmetic Operarnd record for the context parameter.

'INTSGER' 'PROCEDURE' SFECSTRING;

This procedure outputs the string held in the base of the stack, starting in
the location overlayed with the identifier NAME. This string is output
destined for the special constants (Special) area. The result of the procedure
is the value of the Special Transfer Address (STA) before the string had been
output. This procedure is called from the syntax analyser in cases where a
string occurs in a 'SPECIAL' 'ARRAY'. In this case the result is irrelevant.

'"PROCEDUR=' STACKCHECK;

This procedure checks whether the main stack, which extends upwards, has
collided with the label stack, which extends downwards. If a collision occurs
the compilation is halted.

'PROCEDURE' STACKEXPR;

This procedure is called where it is required to nest expressions. It is
called from the syntax in the cases of untyped bracketed expressions and
expressions in conditions, from TYPEEXPR in the case of typed bracketed
expressions, and from SETUPSUB in the case of subseript expressions. It should
be noted that a bracketed expression following a shift operator is treated

as a subscript expression, as the result is required to be of integer scale,
and be in a modifier if evaluated.

The values of EXPRCHAIN,PREFACC,EXPSCALE,SCALEFIRM and BITSHIFT are stacked by
means of a call of ONSTACK. EXPSCALE and SCALEFIRM are then cleared in case the
expression to be evaluated is untyped.

'"PROCEDURE® STARTSEG

('VALUE* INTEGER' TYPE);
This procedure is called at the start of Program (TYPE=1), Library (TYPE=2),
and Common (TYPE=3) segments. It punches the segment header on tape, and
prints a start of segment message. The transfer addresses PTA,DTA,STA, and

the allocation variables DATASTART and DATAMAX set to their respective initial
values. ZEROACCS is called to clear ACCS.

151

'*PROCEDURE' STATUSCHECK;

This is a compiling action which is called directly from the syntax, and also
from other compiling actions.

It is called at the start of every statement except 'CODE' and *GOTO*
statements. STATUSTEST is called, with DUEERR as a parameter, so that if
STATUS is 1 or 2 and DUECHAIN is null, then an error is reported. If STATUS
is 243, or 4 then the deferred action is carried out.

YPROCEDURE' STATUSCODE;

This is a compiling action which is called at the start of 'CODZ' statements.

It ensures that any deferred action associated with values of STATUS of

2,35 or 4 are carried out. This is performed by means of a call of ST.TU3TEST
with DUMMY as a parameter, as a code statement need not be entered at the
beginning. A call is also made on ZEROACCS to clear the accumulator record ACCS.

STATUSCODE is also called from SETLAB as the above actions are required at this
point, but for different reasons.

'PROCCDURE' STATUSTEST

('*PROCEDURE* PROC);

é" This procedure is called at the start of every statement except 'GOTO!
statements. The value of the varizble STATUS indicates the type of the pre—
ceding statement, as follows:

L STATUS Preceded By
4 'THEN' (or 'THEN' 'ELSZ')
; 3 'ELSE!
2 'ANSWER' statement
1 'GOTO' statement (also certain

cases of 'DO' statement, and also where the
statement is the first statement of block
containing the declaration of a procedure)

0 All other cases. (And also where the statement
is labelled)

The use of this method emsures that the number of unconditional jumps generated
is reduced as far ar possible. In this case it is necessary to defer the
actions asson:iated with certain symbols until the following symbol(s) have been
Y processed. & value of 2,3, or 4 for the variable STATUS indicates that an
] actiom has bzen deferred. A value of O indicates that control is passed
i normally to the statement, but a value of 1 indicates that control is not
. passed norally to the statement, and if in this case DUECHAIN is null then
: the statement is inaccessible. In this case a call is made on the procedure
parameter PROC. STATUSTEST is called from STATUSCHECK with DUEERR as a
- parameter, and from STATUSCODE with DUMMY as a parameter. In the latter case
. it is assumed that a code statement which is not directly accessible, is
3 entered via a relative jump.

'"PROCEDURE' STOPOP

(*VALUE' 'INTEGER' TA,TB);

This procedure is called in cases where a_recoverable error, but of
sufficient gravity to prevent the compiled program from running safely,
is discovered. This procedure outputs the two strings TA and TB
separated by " : ". If the variable TEST is gzero then it is set to one
and the message " : COMPILATION INHIBITED" output. The effect of setting
TEST to a non zero value is to inhibit further output on the punch until
the end of the segment.

f"”‘!";""'

This is followed by a newline, and PRINTBUFF is called to print the
contents of the input buffer.

*PROCEDURE' STOREAWAY
(*VALUE' 'INTEGER' TFLAG);

This procedure is the procedure that generates the instructions to assign
an expression to a variable. It is called from STORE in the case of an
assigmment statement, and from FORINC and ASSCV in 'FOR' statements. The
parameter TFLAG indicates whether assigmment trace is required, and is

zero in the second two cases. The variable ASSFUN indicates which function
is to be used for the assignment. Where this is marked negative, the
agssigmment ie of zero, and is treated as a special case. Where ASSFUN is
zero, no code is generated; this occurs in the case of dummy assignments,
e.g. 'FOR' I~I 'WHILE' . .

Provided that ASSFUN is non zero, the procedure starts by detecting whether
the assignment is of the form partword becomes constant, and that trace is
not required. If this case is detected then FFLAG is set. Next an address
ADD, is calculated. This will be inserted into the entry in ACCS of the
accumulator used for the assignment. If the left hand variable is not
partword and not indirectly addressed then this address is used, otherwise
the address of the right hand side is used if possible. A suitable
accumulator is then chosen, bearing in mind that the right hand side may
already be in an accumulator. If trace is required then the accumulator
must be 7, otherwise if the assignment is of the form wholeword becomes
zero, then accumulator O is chosen.

If the indicator FFLAG is clear then the expression on the right hand side
is copied into the chosen accumulator, unpacked, and rescaled as required.
This is omitted if the accumulator is zero. Otherwise if the left hand
side is indirectly addressed the entry in ACCS for the chosen accumulator
is set to all ones to inhibit the possible choice of this accumulator as

a modifier.

If trace is required then the instructions required are output. If the
index of the left hand side is in a modifier, this is first dumped. A
call on L7 is then output, with the result in accumulator 7, the type/scale
in accumulator 6, and the addresa of the string, which is output to

Special Data, in accumulator 5.

If the assignment is to a wholeword then the assignment instruction is
then output; this will use one of the four functions ST0,STN,ADS, or SSB.
Otherwise a modifier is chosen, (this being zero if modification is not
required) and the number of shifts to align the expression to the field
in which it is to be stored, calculated. If FFLAG is clear then
instructions are output to perform the assignment. The expression is
first shifted, if required, then1;§sked. and exchanged with the word of

*PROCEDURE' STOREAWAY/

store. This is then masked to clear the field to which the expression

is being assigned, and the remaining fields replsced by adding them back
to store. Otherwise if FFLAG is set, the constant is shifted and masked
to fit the field. If the left hand side is not already in the accumulator
then instructions are output to copy it into the chosen accumulator.
Provided the assignment is not of all ones to the field, an instruction

is then output to mask the field. Provided the assignment is not all
zeros, then an instruction is output to or the constant in to the field.
Finally the word is stored.

At the end of the procedure the record of any previous copies of the

left hand side is deleted, the right hand Arithmetic Operand deleted from
the stack, and the accumulator record for the accumulator ACC updated
with the address ADD.

A simplified flowchart is given.
*PROCEDURE' SUBTERM
('VALUE' 'INTEGER' NEG);

This procedure is called after each Term of a subscript expression. From
PLUSSUB with NEG equal to zero, and from MINUSSUB with NEG equal to one.
This deals with each Termm individually in order to reduce the amount of
code generated. When the procedure is called, the pointer RH points at the
Arithmetic Operand which is the Term of th: subscript expression, and
the local pointer LH is set to point at the Arithmetic Operand of the
variable, %which may be anonymous) which is to be subscripted. If the
Term is a constant then this is incorporated in the direct address of the
variable. If the temm is not a constant, but the indirect address of the
variable is null, then this is set to the direct address of the term,
which is evaluated in a modifier if required. Otherwise a suitable
modifier is chosen, and the termm added or subtracted from this modifier.
A detailed flowchart is given.

'PROCEDURE* SUSPIEL;
This procedure is called after the expressions for the step and until
elements of a For statement have been processed. This alters the
commentary of the two top Arithmetic Operands on the stack to »(STEP)"
and "(LIMIT)".
YPROCEDURE' SWOP

(*LOCATION' 'INTEGER' X,Y);

This procedure exchanges the variables whose locations are passed as the
parameters X and Y.

'PROCEDURE' SWOPOPT;

This procedure is called before the application of reversible operators,
to reverse the order of the two Arithmetic Operands on top of the stack,
if this would reduce the amount of code subsequently generated. The aim
is to have the LH operand in the preferred (or any) accumulator, and to

avoid having to unpack or rescale the RH operand.

154

o

g e A

Storeaway

[

C:::f% Delete
8881@#‘4 ?;E;So
dumny? stack

No

Y

Calculate field
optimisation flag
(FFLAG)

y

Calculate address

to be stored in

accumulator re
(ADD)

v

Select
accumulator
(acc)

Y

Output instruction
to copy R. H. S.
into accumulator

if required

J

Output trace
instructions if
required

/ Is \
N si « JYes

Is Yes
assignment
to partwcn'd?/

Y No

Output store or

add/subtract fro
store instruction

7 \et oougtantr/
No
Y

7

Output instruc-
tions to:
shift
mask
exchange
mask
add back

. J

Y

[Shift and mask
constant. Output
instructions to:

copy LHS

mask

insert constant
store

|

Delete record of
copies of LHS
Delete RNKS from
stack

Update accumulator
record

Exit

155

A

Yes

/ns ofeATcn)

¥

Yes

No

e

adp 7
Nes
AdD ComsTALT
o DIReCY
DY RESS ©F
vakia@L e
v

7

SLATRACT
CoONMETANT
FQQN ».QecT
ADIRESS ©F
VORI\A ALGE

Y

.
7

S(ALVA TE TeRM N
ODI1F I E R ANd 10aseRT]
MODIFIGR mumEeR

Y

. Ves

™ NDiRCCT APDRESS]

b—

oF VARG Lz

'L;Nf,au-v Adpee:

F TERM (NTS

| N PAaCK
TeRkw

Més

NNDIRGL T ADIRESS|
ofFf VAR \AGBLE

PDPRESS of Tert4

1/

AnD ' DiQecT

A 655 oF
v%-ﬁ%u&

keCecT wod i Fis
oo mdieEeT
RBDRESS OF

VARIABLE

N

Nes

*No

cuTPaT
NITRLCTI O

TS SORTRACT TRM

o

[
MOI\FIER

Y

owLT LT
TS TRLCTION
fo ABD TCRM

o> HobIFER

INSERT MLDIFICR
NUMBE R W
bR aeT
ADDAGSS of
VAR IARLE

Y

QRAETLRN

*INTEGER' 'PROCEDURE' TESTSTRING
(*VALUE' *INTEGER*' S1,S2);

This procedure compares two strings, pointers to which are passed as the
parameters S! and S2. If the strings are identical the result of the
procedure is zero, if they are not identical the result is non zero.

'PROCEDURE' TEXT
("VALUE' 'INTEGER' STRING):

This procedure outputs the string whose address is given by the parameter
STRING. The length of the string is obtained by use of the procedure
NEXTCHAR, the first character of the string being its length. The
characters forming the string are obtained by the repeated use of
NEXTCHAR and output by use of the procedure OUTCHAR. It should be noted
that the use of NEXTCHAR alters the value of the parameter, STRING.

This does not of course alter the actuzl parameter passed from the

point of call, or the string itself, but merely the local value of the
parameter. Zero length strings cause no characters to be output.

'PROCEDURE' TEXTLINE

(*VALUE* 'INTEGER' S);
This procedure outputs the string S, followed by a newline.
'PROCEDURE* THEAD
This procedure outputs ten inches of blank tape on the punch, using
PUNCHLOOP. It also resets the checksum for the characters output
on the tape, TSUM, to zero.
'*PROCEDURE' TOPACC

(*VALUE' 'INTEGER' ACC);
This procedure is used to update the Arithmetic Operand on the top of
the stack (i.e. the RH operand), to show that it is now held in the
accumulator whose number is given in ACC. This is performed by means
of a call of INACC.
'INTEGER' 'PROCEDURE' TOSADD;

The result of this procedure is the direct address of the top
Arithmetic Operand on the stack, which is deleted.

*PROCEDURE' TRACESTRING
(*VALUE' 'INTEGER' LNO,STRING);

This procedure is used to set up calls on trace procedures having a
string as a parameter. The library reference number is passed as the
parameter LNO, and the compile time address of the string as the
parameter STRING. The call of the trace procedure is output using
LIBTRACE and then the string is output, destined for the special
constants area (Special), using DOSTRING with OUT24 as a parameter.

157

YPROCEDURE® TTAIL;

This procedure outputs a tail on paper tape. This consists of ten
inches of blank tape, a stop directive (7sTor), twenty erases, and
another ten inches of blank tape.

'PROCEDURE® UJBACK;

This procedure outputs an unconditional jump using the variable BJA
(vack jump addressg as the address. This is output where it is
required to jump back and repeat after testing the condition for
continuation.

'PROCEDURE' UNARYMINUS;

This procedure is called where it is required to negate the Arithmetic
operand on the top of the stack. If it is a constant then it is
negated within the compiler. OQtherwise instructions are output to
negate it and leave the result in an accumulator. This procedure is
called from the syntax, and also from SELOPTA,SUBA, and SIMPLEASS

in the case of a unary negation operator; and also from CONDMINUS

and ZEROCOMP when compiling conditions.

*INTEGER' 'PROCEDURE' USELAB
(*VALUE' 'INTEGER' LAB);:

This procedure is called, where it is required to use the address of the
label whose record is specified by LAB, as the address part of an
instruction to be output. The result is either the address of the label,
if it is set, or the chain address of the label if it is not. If this is
the first reference to the label in the current block then the result is
zero, but this requires no special action at the point of call. If the
label is unset then the label record is updated, to include the
instruction about to be output, on the chain for the label.

'PROCEDURE' WARN
(*VALUE® 'INTEGER' TA,TB);

This procedure is called in cases where a recoverasble error, but of
insufficient gravity to prevent the campiled program from running
safely, is discovered. This procedure output the two strings TA and TB,
if non zero, separated by " : ". This is followed by a newline, and
PRINTBUFF is called to print out the contents of the input buffer.

'PROCEDURE' XSPARAMS
("VALUE' 'INTEGER' PTR);

This procedure is called if the procedure identifier whose declaration
record is pointed at by PTR is specified to have more than the number of
parameters allowed by the implementation. After the sixth parameter,
IDTYPE is marked negative. If there is a seventh parameter, a call is
made to XSPARAMS which prints out a warning message; and also clears
IDTYPE so that no further calls are made for the eighth and subsequent
parameters.

158

1

%,

!

'PROCEDURE' ZEROACCS; i

This procedure is called to clear the array ACCS, which holds a memory of :
the current contents of the accumulators of the object program., This is :

necessary where there is a flow of control which invalidates the i
contents of ACCS. :

Label ABSADD:

This section is called in 'ABSOLUTZ' communicators, after the integer

constant specifying the absolute address for the preceeding identifier
has been processed. This address is inserted into the direct address

field of the identifier record being formed at the base of the stack.

"he address is masked to ensure that it does not overflow into the

tag field, which in this case is zero.

Label ADD:

This section is called to output instructions for the addition of two
terms. This is performed by means of a call of ADDSUB with the function
code 02 as the parameter. As this function may be applied with its
operands in either order, a call is first made to SWOPOPT for
optimisation purposes.

Label ADDA:

This section is called after the first term of the expression on the
right hand side of an assignment symbol, if the term is unsigned or
preceded by a + symbol. If the term is a variable, and is the same
variable as the one on the left of the assignment symbol, and is not

a partword or of type floating, ASSFUN is set to function 12, so that
an "add-to~store" assignment will be used. This section is not called
if assignment trace is required.

Label ADDRSPEC:

This section is called to insert the current special data address into
the direct address of the identifier record being prepared at the base
of the stack. This is used in all cases of 'SPECIAL' 'ARRAY's, and also
for 'COMMON' ‘'LABEL's, 'SWITCH'es, and 'PROCEDURE's.

Label ADDRSW:

This section is called after the occurrence of the symbol 'SWITCH' in
a switch declaration. The address of the (virtual) zeroth element of
the switch is calculated, and stored in the base of the stack in
preparation for generating the identifier record. The variable TOPTEN
is cleared to ensure that the top ten bits of each entry in the switch
list are clear.

Label ANSCHECK:

This section is called at the end of an 'ANSWER' statement, to ensure
that the expression is evaluated to the reguired type and scale, given
by EXPSCALE, in accumulator 7. Before returning to the syntax analyser
via BEHEADEXIT, to delete the Arithmetic Operand record of the
expression; STATUS is set to 2 to indicate that the exit instruction
has not yet been output.

Label ANYPREF:

This section is called to select an accumulator for the evaluation of
Comparisons within Conditions. An accumulator number is supplied by
FINDACC, and stored in PREFACC.

- g v———rITRy

N — T eI g

Ny

Label ASSCYV:

This section is called after the (first) expression of a for element.

CCC is set to the TYPEBITS of this expression, only the sign bit
(constant marker) being relevant. The instructions to assign this
expression to the control variable are ocutput by means of a ocall of
STOREAWAY with a parameter of sero, as trace is not required at this
point. If this is the second for element, and the .irst was simply an
expression, FORSTATE will have a value of 2. In this case, if the next
symbol is not '"WHILE', a call is made of SETRT, to cause the controlled
statement to be treated as an anonymous prooedure; and FORSTATE is reset
to 4. (If the following symbol is *WHILE', PORSTATE will be set to 3

by WHILEL.) In order to avoid the inefficien y of treating the controlled
statement as a procedure in cases where the for list is of the form:

Expression Comma Expression While

if the first element is an expression, the decision to treat the controlled
statement as an anonymous procedure is delayed until after the expression
of the second element.

Label ASSTRACE:

This section sets 'BIT'[3])TRACE to the value of ACCUMULATOR. It is called
in the case of a 'NO' 'ASSIGNMENT' °'TRACE' directive, in which case the
value of ACCUMULATOR will be sero; and also in the case of an 'ASSIGNMENT'
*PRACE' directive, in which case the value of ACCUMULATOR will be 1.

Label AYMCHECK:

This section is used to check that an identifier, which is used without
a subscript, does not require one. If it does, a warning message is
output.

Label BEGINPROC:

This section is called at the start of a procedure declaration. If the
procedure body requires a "jump round” this is output, or if there is a
defered 'ANSWER' action, this is completed. PROCSTACK is called to
perform housekeeping on the variables used for procedure declarations.
The LIKK address is set to the data location which had been allocated

to the procedure identifier record, this direct address entry is changed
to the current value of the Special Data allocation address, DUECHAIN
being also set to this address. This location, which will be used to
hold the entry point of the procedure, is allocated, and cleared by
0UT24C3. 1If procedure trace is required, the procedure identifier string
is output, destined for the Special Data area, by SPECSTRING, and its
address stored in PROCSTRING, which acts as a trace flag.

Label BEGINPROG:

This section is called at the atart of a program segment. The heading
for the paper tape is output by STARTSEG, and STATUS and DUECHAIN are
set to zero. Thus it is expected that a program segment will be entered
at its first instruction, even though this will normally be an
unconditional jump around procedure bodies. BEGINBLOCK is called to

set up an outer block level for the program.

Label BEGINPSPEC:

This section is used to initiate the creation of a parameter specification
record of a procedure specified in a communicator, or a procedure parameter
declared within a program or Library segment. Calls are made on

MAKEPSPEC and EXCPSPEC to accomplish this, If the procedure is .a 'VALUE'
procedure, a call is made on NEXTPARAM, and a jump made to NEXTPSET, to

set up the first (context parameter) entry inthe record.

Label BEHEADEXIT:

This section is used by a mmber of compiling actions to remove the
top Arithmetic Operand record from the compiler's main stack, before
returning to the syntax analyser. This record, which is no longer
required, is removed dy calling BEHEAD. When the record is removed,
the operand pointers LH and RH are updated by SETLHRH.

Label BITDECFAIL:

This section is used by NOBITS,NOAFTER,FIELDPOSN, and UNSFIELD if the
values of the integers used in field specifications exceed the allowable
range., This section prints a warning message, and returns control to the
syntax analyser.

Label BITSIK:

This section is called where a 'BITS' operation is used in an expression,
before the expression to which the operation is to be applied has been
processed. This section packs the partword and type information, held
in BITSPEC and IDTYPE, into BITSHIFT; as these variables msy be used
during the following Expressjion. The information packed in BITSHIFT
will subsequently be used by RHSBITS.

Label CALLPROC:

This section is called when the appropriate number of parameters of a
procedure call have been processed. This number may be gzero. Starting
from the position on the stack given by FPP, there will be a five word
Arithmetic Operand record for each parameter. The types of these will
have been checked by ANYMORE, and they will all have gero indirect
addresses., Thus the actual object to be passed will either be in an
accumulator, or obtainable by means of a call of PICK, which may involve
unpacking, but which will not require the use of a modifier.

162

Label CALLPROC:/

Each record is examined in turn, (left to right) and the number of the
accumulator required, obtained from the PAC field. If this accumulator
is already holding another parameter, an instruction is output to
exchange this with the accumulator in which the other parameter is
required to be passed. This is repeated until the accumulator specified
in the current record is either free, or contains the required parameter.
A call of PICK is made to copy the parameter from store, if required,
and to unpack if necessary.

After this scan has been completed, the required parameters have been
placed in the required accumulators with the minimum number of
instructions. The call of the procedure is output by 0UT27, and ZEROACCS
called to clear the accumulator record ACCS; as it is assumed that the
contents of all the accumulators (except 7 if typed procedure) will be
undefined on return from the procedure.

Label CHECKCV:

This section is called after the control variable of a for statement has
been processed. If the variable is a partword, or is not of type
integer or fixed, or is an unsubscripted array identifier, an error
message 1s output, and its type changed to integer to allow compilation
to continue. The exclusion of floating point control variables is an
implementation restriction. In this case it is always faster to
increment and test a fixed point variable, and subsequently float it
each time, than it is to carry out the whole operation in floating point
arithmetic. It also requires fewer instructions, and is often more
accurate, as it avoids cumulative round~off and truncation errors.

After checking the type of the control variable, this type and scale is
stored in EXPSCALE, and SCALEFIRM set, to ensure that the expressions of
the for list are evaluated to the type and scale of the control variable.
PREFACC is set to an arbitrary number, and ASSFUN set to function 10.
This may subsequently be modified by assignment optimisation. A pointer
to the Arithmetic Operand record of the control variable is placed in
CV, and a call made of DIAG to output diagnostic information. This
section returns to the syntax analyser via FORESTORE, to store the

index expression of the control variable, if one has been evaluated.

Label CLEARTYPE:

This section is called to clear the variable IDITYPE, prior to assembling
type and scale information, in declarations, specifications, and typed
primaries.

Labsl CODELAB:

This section is called after the occurrence of a label preceding an
instruction in code. This action is performed by ocalling FIXLABEL with
the result of a call of LOOKUPLAB as the parsx:ter. This is similar in
action to SETLAB, but does not generate any label trace instructions,
even if 'LABEL' 'TRACE' is specified at this block lavel.

163

Label CODESHIFT:

This section is called to set up an anonymous Arithmetic Operand for a)
shift instruction in code. A call is made to NONAME to set this up,
and the commentary of this record changed to "(SHIFT)". This section
returns to the syntax analyser via INCTOS which deals with any integer
constant specifying the number of places of shift.

Label COMOFF:

This section is called at the end of a 'COMMON' segment. A check is
first made to ensure that the (hopefully) unique checksum for this
common sSegment is not zero, this checksum then being output to the
loader. The output is completed by a call of FINISHSEG, and the COMMON
flag cleared. A scan is then made of the DECLIST to re-address the
common entries, and to output a common~check tape. Whilst a 'COMMON'
segment is being compiled, all addresses within it are allocated with
respect to its Data and Special Data areas (tags D and S). When the 3
size of these are known, the addresses may then be relocated relative
to the start of the segment (tag C). N.B. The compiler assumes that

the Special Data area of a common segment immediately follows the Data
area.

Label COMON:

This section is called at the start of a 'COMMON' communicator segment.
A check is first made to ensure that no other common specifications
exist for this run of the compiler; program segments being only allowed
to be compiled using one common segment. After this check, the COMMON
flag is set, and the heading output by STARTSEG.

Label CONDADD:

This section is called after the second, and each subsequent, term of
the expression on the right hand side of a comparator has been processed;
if the term is preceded by a + symbol.

In the interests of efficiency, the expressions on either side of the
comparator are evaluated as one expression and the result tested against
zero. Provided that the comparator is neither > nor <=, the Terms on
the right which are preceded by a + sign are subtracted, and those which
are preceded by a - sign are added. Otherwise the left hand side is
negated, and the expected add and subtract operations used.

This section jumps to either ADD or SUB depending on the comparator used.

Label CONDMINUS:

This section is called after the first Term of the expression on the right
hand side of a comparator has been processed; if the Term is preceded by

a - sign. In the interests of efficiency, the expressions on either side

of a comparator are evaluated as one expression, and the result tested
against zero.

If the comparator is neither > nor <=, this section jumps to ADD to output
instructions to add this term to the expression.

(Addition being taken as being equivalent to negation and subtraction)

Otherwise the expression on the left is negated by means of a call of
UNARYMINUS, the operand records interchanged by PERM, and a jump made to SUB.

164

Label CONDPLUS:

This section is called after the first Term of the expression on the
right hand side of a comparator has been processed; if the Term is not
preceded by a ~ sign. In the interests of efficiency, the expressions
on either side of a comparator are evaluated as one expression, and the
result tested against zero.

If the comparator is > or <= PERM is called, to exchange the Arithmetic
Operand records of the left hand expression, and the right hand term.
This changes the type of test required to one which is available in the
machines instruction set. A jump to SUB is made, to output instructions
to subtract the two operands.

Label CONDSUB:

This section is called after the second, and each subsequent, Term of the
expression on the right hand side of a comparator has been processed; if
the Term is preceded by a - sign.

(See CONDADD above)
Label CONSTANT:

This section is called where a numeric constant occurs in an expression,
and also as an operand in code. It sets up an Arithmetic Operand record
on the stack. The commentary is set to "(CONST)", and the TYPEBITS word
gset to the type of the constant, NUMBERSCALE, which has the sign bit
already set. This denotes that the operand is a constant whose value is
stored in the DIRADD field of the record.

Label DECSIZE:

This section is called after declarations of single word variables, to
record the number of Data locations required.

Label DIVIDE:

This section is called to output the instructions for the division
operation. The scale and type to which a division operation is carried
out depends on the scales and types of the opsrands, and alsc the context
in which the division ocours. The local procedure ENVIEST is used for
teasting the "enviromment" of the division. If the division occurs as the
last operator in a Termm ococurring in an expression which is required to
be evaluated to a specified scale, or the proposed scale SCALE has fewer
integer bits than the current value of the expression scale EXPSCALE this
returns a result of 1, otherwise O.

Before the calculation of the scale to which the division will be performed
is carried out, a check is made on the operands. A call is made to ISINACC
in case there is a copy of the left hand operand in an accumulator. If

the right hand operand is a location, or requires unpacking, a call is
made on PICK to copy it into an accumulator. The syntax of this imple-
mentation specifically prohibits multiplication or division of addresses,
but this may still be performed, if the address is within a bracketed
expression.

165

— Y

Label DIVIDE/

If either of the operands, or EXPSCALE, is of type floating, then the
division is carried out in floating point arithmetic, by means of a]
call of FLOATOP, with a parameter of 4.

If the right hand operand is an integer constant which is a power of two,
the division will not be performed using a divide instruction. If the

left hand operand is of type integer, this will be performed by shifting,
which will be combined with any shifts required for unpacking and rescaling.
If ENVIEST returns a sero answer, the result is evaluated to integer

scale, otherwise the integer is rescaled to the (fixed) scale given in
EXPSCALE. If the left hand operand is of type fixed, the division is
carried out by adjusting the scale field of its operand record. In]
this case the number of significant bits remains unchanged.

If both operands are of type integer, the division will be carried out
as an integer division, unless ENVTEST indicates that there is an
overriding scale requirement. The number of significant bits of the
result will not be specified unleas both the operands have the number of
significant bits specified. In this case the number of significant bits
is given by the number of significant bits of the left hand operand minus
the number of significant bits of the right hand operand plus one to
make allowance for the range of the result, plus one for the sign bit.

If this is negative, it is set to zero (unspecified) and is otherwise
subject to a limit of 24.

If the left hand operand is of type fixed, and the right hand overand of
type integer, the division is evaluated to the scale of the left hand side,
unless ENVTEST indicates that there is an overriding scale requirement or
the integer is a constant. In this case the integer constant is converted
to the equivalent fixed constant, and the division performed as a division
of a fixed by a fixed. The use of the left hand scale is based on the
assumption that the integer will be small. If this is not the case, the
division should be bracketed and typed.

If the left hand operand is of type integer, and the right hand operand

of type fixed, and there is no overriding scale requirement, the scale

to which the division will be performed is based on the scale obtained

if the left hand operand were to be converted to fixed, and the division
treated as a division of a fixed by a fixed. The rescaling is not performed
at this point.

The final case is the division of a fixed by a fixed. Unless ENVIEST
indicates that EXPSCALE should be used, the scale of the result has the
smaller number of significant bits of the two operands, and the number
of integer bits is the number of integer bits of the left hand operand
minus the number of integer bits of the right hand operand. In a simple
case of division this will not give rise to rescaling.

When the scale to which the division will be performed has been decided,
the number of shifts right prior to the division, SHIFTS, is calculated.
If this is less than 23, an instruction is output to clear the auxiliary
register. If the mumber is negative (shift left required), this is
combined with any rescaling and unpacking required, by means of a call
of PICK. Otherwise a call is made of GOODPICK to ensure that the left
hand operand is in an accumulator, this being followed by a separate
right shift instruction. In certain cases this may lead to slightly
inefficient code.

Label DIVIDE/

The instruction to perform the actual division is then output. If the
right hand operand is in the preferred accumulator the two operand
records are now interchanged by PERM. The final instruction output is
to copy the result of the division, which is in the auxiliary register,
into the accumulator whose number is given in the left hand Arithsetic
Operand record. This section returns to the syntax analyser via
BEHEADEXIT, which removes the top Arithmetic Operand record from the
stack.

Label DOCS:

This section is called after the occurrence of the symbol 'DO’', which
terminates the Forlist of a Forstatement. The value of FORSTATE, on
entry, indicates the type of the last element and the complexity, of the
Forlist. If FORSTATE is greater than three, the controlled statement

is to be treated as an anonymous procedure, and instructions will be
required to store, and exit on, the link.

This section outputs any instructions required for the testing of
step~until elements, and for the calling of, or jumping round, the
controlled statement. It also reserves any locations required for

1 The index of the control variable, if subscripted.
2 Holding step and 1imit values, if they have been evaluated.

3 The link, if the controlled statement is treated as an
anonymous procedure.

Any other workspace, temporarily used in the evaluation of expressions
in the Forlist, is relinquished. DATASTART,DATAPTR, and DATAMAX are
updated as required. The locations reserved will be returned at the
end of the controlled statement, and the above variables reset. If
'LOOP' *TRACE' is required, a call of L9 is generated, with the value,
type, and identifier string, of the control variable as parameters.

If the value of FORSTATE is greater than four, on entry, it will be set
to four by FORCOM. The value of five is then used to indicate that the
special case of a single step-until element, with three constants, has
been detected. This will result in the test and incrementation of the
control variable taking place at the end of the controlled statement,
and consequently more efficient code being generated. A flowchart for
this section is given, and the values of FORSTATE and the corresponding
of Forlist is tabulated below:

FORSTATE
Entry Exit

0 0 Expression

1 1 Expression 'WHILE'

2 2ors$S e« 'STEP' .. 'UNTIL' ..

3 3 Expression,Expression 'WHILE'

4 4 vece o Expr.ﬂs‘.on

5 4 sese » Expression 'WHILE'
(Excluding case 3)

6 4 [X NN p oo 'STEP' LR J .mIL' (X]

167

T

‘ Pocs)
’
)

RESET
DATASTART

{ DWIATCH

— ~—fo . > >
ow V
\ FoksSTATE 3
< ~ ! Yy > >
& _>___3 . ,
A
1 4
< Y Y Y o cAaLL
)
3 ! 4 FoRcomMm
v Y y
. o
CEx0PRESSI\ONS Yes SET FoRmARD m:::;\'srzum. chACL
= \) . AT _
JUMP ITNsTRUCTION Tomp FoRcom
. Y
Y Y
\y \
] Y
] SET FoRWARD
E‘ A% Y TJoMP canarn
3 ¥
i
L cAaLL <eT FolSTATE cOTPUT SToRE N
l Fo ATesT o 9 LiNK TNSTRUCTON
¥
\NCREMGN T
‘ AT
¥ 4 y DATASTART
¥
L 4

L 4
)
N

Y

uPDATE DATAPTR
A DaTtAmAx

' 1S TRACE No
ReE@uiRed

V Yes

oVTPLT TRACE
TNStRLCTIoONS

\ Y

bis

T e e e

Label DOSHIFT:

This section is called to apply shift operators ('SRA','SLA','SRL', and
'SLC') using the top two Arithmetic Operands on the stack. Before this
can be accomplished, a call has to be made to KILLEXPR to remove the
expression level set up for the optimisation of the expression giving
the number of places of shift. The instructions for the shift operation
are then output by OPERATE, which is passed the required function, held
in BITSHIFT, as its parameter.

Label ELSEFI:

This section is called after both the consequence and the alternative
expressions of a conditional expression. It ensures that each is
evaluated to the acale given by EXPSCALE, in the accumulator given by
PREFACC. A call is made to REVCHAIN so that the chain of the jump to
skip over the expression will be set by the next action. (ELSEX or FIEX)

Label ELSES:

This section is called following the ‘'ELSE' in a conditional statement.
A call is made on REVCHAIN, as the chain which holds the jumps to skip
over the first part of the 'IF' statement is now due to be set. If
STATUS is 4, then the statement between the 'THEN' and the 'ELSE' is
void, and the condition is reversed using REVCJ.

If STATUS is 3, the statement is of the form:
*IF' ., . 'THEN® 'GOTO' label 'ELSE!

in this case a jump is not required to skip over the following statement;
STATUS being set to O to indicate this.

If STATUS is 0, the statement preceding the 'ELSE' is a normal statement,
and a skip is required over the following statement; STATUS being set
to 3 to indicate this.

The remaining two cases, STATUS of 1 and 2, require no action at this
point.

Label ELSEX:

Thia section is called following the occurrence of the symbol 'ELSE' in
a conditional expression. It outputs a jump around the alternative
expression, by means of a call of OUTUJ. The chain from the jump(s)
around the consequence expression is set by SETDUE.

SCALEFIRM is set to ensure that the alternative expression is evaluated
to the same scale as the consequence expression. This section returns
to the syntax analyser via BEHEADEXIT, to remove the Arithmetic Operand
record for the consequence expression from the stack.

Label ENDARRAY:

o This section is called after the end of a set of arrays having common
bounds. This may be followed by a further set. If the declaration is
not overlayed, the total data requirement for the arrays, which is the
product of the number of arrays and the sizes of all the dimensions, is
glven in ARRAYS, which is used to increment DATAMAX. If the declaration
is overlayed, OVERBASE is incremented by ARRAYS.

Label ENDDECS:

F o This Section is called after the end of the declarations at the head of

‘ a block. DATAPTR and DATASTART are set to the current data allocation
address held in DATAMAX. These variables will be used for the
allocation of anonymous workspace for temporarily dumping the contents
of accumulators. DATAPTR will contain the next address to be allocated,

- and will be reset between statements; its maximum value being recorded

& in DATAMAX. After the declarations at the head of a block, normal

- presetting (if allowed at this level) is no longer allowed, and the
flag PRESETOK is cleared.

Label ENDFOR:

This section is called after the completion of the controlled statement,
to output the instructions required to complete the loop. The action
required depends on the value of FORSTATE set up by DOCS, which indicates
the type of the last element and the complexity of the Forlist.

If FORSTATE is one or three ('WHILE'), an unconditional Jump back, to
repeat the assignment and test the condition, is output. If however
STATUS is non-zero, this jump is not required, and is suppressed. Any
chain due to be set after the controlled statement is set to the
repetition address, held in BJA.

If FORSTATE is two ('STEP' 'UNTIL'), the instructions are output to
increment the control variable and to jump back to the test against the
limit.

If FORSTATE is four the controlled statement is treated as an anonymous
procedure, and an instruction to return using the stored link is output.

If FORSTATE is five, this indicates the special case of 'STEP' 'UNTIL'
with three constants. If a copy of the control variable does not exist
in an accumulator, then an instruction is output to copy it into accumulator
7. Instructions are then output to add the step value to the control
variable and to store the result. An instruction is them output to
T subtract the limit value, if non zero, and a test instruction output.
) The sense of this test instruction depends on the sign of the step. If
. the step is positive, a jump if zero or negative is required. As this
is not available, the limit has one added to it, so that the zero case
- is included in the negative test. The final part, common to all cases,
! s completes the housekeeping for this level of 'FOR' statement. The
g SKIPCHAIR, which is used by the final test, is copied into DUECHAIN, and
SKIPCHAIN reset to its value before the statement, which is held in
COPYSKIP. DATASTART is reset to release any anonymous locations used,
k- and the previous values of any enclosing 'FOR' statement reset by means
iy of a call of OFFSTACK. Finally, a call is made to ENDLABBLOCK, to remove

T S T T B 5 A e g W= £ [0 oo . T Ty e gtz T

f the label block level which prevented illegal entry to the controlled
. statement.
\ 1 170

Label ENDPROC:

This section is called at the end of the body of a procedure declaratiom,
in program and library segments.

EXCPSPEC is called to prepare for the completion of its parameter
specification record, and STATUS is set to 1 to indicate that the
following instruction is not directly entered. LOCALLIMIT is reset to
; point at the procedure identifier record, this value being set into

Ji . DECLIST by the call of ENDBLOCK, to complete the block forming the

: | procedure body. The values of the eight locations used by procedure

F declarations, and chained up by PROCCHAIN, are restored by means of a

- call of OFFSTACK, and finally the parameter specification record is
completed by means of a call of FINISHPSPEC. It should be noted that 1
once a procedure body has been compiled, only its parameter specification
record remains, and not the identifier records of its parameters.

F Label ENDPROG:

This section is called before the final 'END' symbol of a program segment.
If the program does not end with a jump, but "drops off the bottom", a
call of L1 is generated.

A scan is then made of all the communicator specification records. This
detects entries required to be inserted in the 'COMMON' segment, and
labels used which are external to this program segment. In this latter
case, the label is set to the current program address, and an indirect
Jump to the label output. ENDBLOCK is then called to perform the normal
end of block actions. After this call, DATAMAX will hold the total data

] . requirement for the segment, and LABDECLIST will point at a list of any

E unget labels. These are dealt with by the call of FINISHSEG, which also
completes the paper tape output for this segment. A flowchart is given
for this section.

Label ENDSPEC:

This section is used to terminate the generation of a parameter
specification record of a procedure specification. This is accomplished

s by means of calls of EXCPSPEC and FINISHPSPEC. This resets the values

! of IDTYPE and PARAMPTR, which will be required if the procedure (parameter)
specification forms part of a procedure declaration.

Label ERDST:

" This section is called at the end of each statement compiled, to reset
- the variable DATAPTR, used for the allocation of anonymous workspace, to
| its "home" value, held in DATASTART. As anonymous workspace is not
. required to be carried from one statement to the next, it may be re-used
' in following statement.

Label EXITCHECK:

This section is called at the end of compilation of a non-code procedure.
If the procedure is untyped, i.e. does not deliver a result directly, a
check 1s made to test whether the last instruction of the procedure was
- an unconditional Jjump, and that a return jump is not required. If this
4 . is the case no action is taken by this section; otherwise a call is made
{ on SETDUE to set any chains. If, on the other hand, the procedure is
- typed, and is therefore required to deliver an answer; a check is made

\ ' 171

boes PRogoaM \ Mo
EWND LnTH
ToMb? oF Lt

oOuTeyT chLL

v Yes)

AN

Y

TARKE

RacoRd OoF
CommunICATORS

FI\RST

N \
7
v
No /'S v A \ \{
< —fREL > &3
EcoRd
N _‘L—_/
1S TUE LABE
No _ No
> *\(- - wsEd . Twns
\ SEQMENT?
Y Y
> Ns o, [is Tne Ret
4 SCT v TS
g T SEGMEnT) saque.&ff
) Yes Y y Yes
ouTluT BiAECTWE SET LAGEL Awd
T® BT EwtRY VTPUT INDIRECT]
COMMMON SEGMENT o ACCLMULATR
y
L 4
Y 15 THEe LOBEL
A > A Common
\ —aBEL
A 4
Y Yes
oUTPUT DrEcCTive
To SET SuTRY
ComMon SEGMENT
]
Y
¥ N
A pray
- TAKE NExT Yes /communicaTeR
< CoMMuNicATeR RECORDS
Record LEFTY

ANALYSE R

172

Y

%

Label EXITCHECK/

to ensure that the procedure contained at least one 'ANSWER' statement,
and that the last effective statement of the procedure was either a
'GOTO' or an 'ANSWER'. If this is not the case, an error message is
output. If the procedure is typed, and trace is required, a call is
made on L6 with the result and its scale as parameters. In the case of
a 'VALUE' procedure, the scale is obtained dynamically from the first
(context) parameter, which must therefore not be altered by the procedure.
If there is more than one 'ANSWER' statement, these will be chained up
using EXITCH, which is set to the call of L6. Irrespective of whether
the procedure is typed, if trace is required, a call on L5 is output,
with the procedure identifier string as the parameter. It is assumed,
in the case of typed procedures, that L5 will reset @7 to the value
supplied to L6. Finally, an exit instruction is output, using LINK as
the address.

Label EXPRTYPE:

This section is called after the completion of a typed bracketed
expression, to ensure that the expression is evaluated to the specified
type and scale. This may not have already been performed if the
expression did not contain addition or subtraction operations. The
expression is evaluated to the required scale by means of a call of
PICK. The section OFFSTEXPR is then entered to remove the expression
level from the stack.

Label EXTADD:

This section is called, in 'EXTERNAL' communicators, after the integer
constant(s) specifying the external relocator (and displacement) have
been processed. The fourteen bit address is formed from the five bit
relocator number, and the nine bit displacement to which is added 256.
This address is masked, and the external tag(6) added. The address is
then inserted into the direct address field of the identifier record
being formed at the base of the stack.

Label FI:
This section is called at the end of a conditional statement, irrespective
of whether it had an 'ELSE' part. If STATUS is 4, then the statement is
void, and the test instruction is only output if FUNCTION is 24, the
statement being of the form:

'IF' 'OVERFLOW' 'THEN' ;

which may be used to clear overflow. If STATUS is 3 or 4, the 'ELSE'
part has been omitted, and STATUS is set to O.

The SKIPCHAIN is joined to the DUECHAIN, if required, by means of a call

of JOINCHAINS. The stacked value of SKIPCHAIN, chained up with IFCHAIN,
is restored to its value prior to the 'IF'.

173

Label FIELDDISP:

G T T

? This section is called after the integer giving the Wordposition of a
table field has been processed. The address of the table field is
calculated and stored at the base of the stack in preparation for the
identifier record for the field being moved onto the main stack

, declaration list by NEWNAME.

e

Label FIELDPOSN:

& This section is called when the integer specifying the starting bit
. position (Bitposition) of a partword is processed. This integer,
together with the result held in BITSPEC allows the two shift fields of
the partword deacriptor to be calculated. These fields are packed in
BITSPEC, and are respectively:

) MSS (most significant shift)
shifts to align field to top of word

1SS (least significant shift)
shifts to align field to bottom of word
and are calculated as follows:

MSS := Bitposition (of most significant bit)

. 1SS := 24 ~ Totalbits ~ Bitposition
] using Ferranti bit numbering, sign bit = bit O.

If, after the above calculations are performed, LSS is negative, the
E partword specification is illegal, i.e. a field has been specified which
: "hangs off" the word. In this case the error is reported by BITDECFAIL.

Label FIEX:

This section is called at the end of a conditional expression. The
instructions to evaluate both expressions in PREFACC will have been
output by ELSEFI. The chain holding the jump around the alternative
expression is set by SETDUE. The variables of any enclosing condition
are restored by OFFSTACK, and DUECHAIN is reset.

An Arithmetic Operand record for the result of the conditional expression
is set up by a call of GRABVAR, and the TYPEBITS field set to EXPSCALE.

‘ The commentary is set to "(IFEX)", and a call made to TOPACC, with

P PREFACC as the parameter, to update the DIRADD field and also ACCS.

Label FINISHPROC:

This section is called after the call of a procedure has been generated,
or after the final call of a multiple call. It reduces the procedure
call level by a call of OFFSTACK. The PARAMSPEC field of the arithmetic
operand record for the procedure is cleared, to avoid its interpretation
as PARTWORD. This record and ACCS are updated by a call of TOPACC with
a parameter of 7, to indicate that the result (if any) of the procedure
is in accumulator 7. The TYPEBITS of this record will have been set by
SETUPPROC. If the procedure is untyped, this record will be nonsensical,
but will be immediately deleted by BEHEAD.

N

Label FIRSTDIM:

This section is called to process the first dimension of multi-dimensional
arrays. ADDRARRAY is called to insert the addresses of the firat level
Iliffe vectors in the identifier records on the stack. The number of
records to be processed is given in ARRAYS. After the call of ADDRARRAY
the number of entries required in the first level Iliffe vector is given
in ARRAYS, which has been multiplied by NUMBER in DODIM.

Label FORSTORE:

This section is entered from STEPUNT and from CHECKCV. It arranges to
store in anonymous workspace the index of the control variable, if
subacripted, and the values of the atep and limit expressions if they
are required to be evaluated. These are stored by means of a call of
DUMPACCS, which is a brute force method of storing any information held
in the accumulators. If an anonymous location is used by DUMPACCS,
DATAPTR will be incremented. This value is copied into DATASTART so
that this location will not be overwritten if space is required
temporarily during the evaluation of the next expression. After each
expression, DATAPTR i= reset to the current value of DATASTART to free
any location so used. RTL (routine link) is set to the maximum value
attained by DATASTART, in case the controlled statement is to be used as
an anonymous procedure. The current program address is recorded in BJA
(back jump address), for use as a point to jump back to, in order to
perform the required test before each repetition of the controlled
statement. As a jump may be made to this point, a call is made of
ZEROACCS.

Label FORTRACE:

This section sets 'BIT'[2]TRACE to the value of ACCUMULATOR. It is
called in the case of a 'NO' 'LOOP' 'TRACE' directive, in which case
the value of ACCUMULATOR will be zero: and also in the case of a
TLOOP' 'TRACE'! directive, in which case the value of ACCUMULATOR will
be 1.

Label GOTOL:

This section is called to process a 'GOTO' statement, where the
destination is a label identifier and not a switch entry. The action
depends on the value of STATUS, which is used as an index of the switch
S. The actions taken in this section are designed to reduce as far as
possible, the number of redudant unconditional jumps generated. These
actions depend on the context in which the 'GOTO' statement occurs.
(See 'PROCEDURE' STATUSCHECK). A flowchart is given for this section.

Label GOTOSK:

This section is called to output the jump instruction in the case of a
'GOTO' statement, where the Destination is a switch entry. This is
performed by means of a call of INST with the RH arithmetic operand
giving the address, and using function 27. Note that accumulator 4 is
used, this is not necessary, but is in conformity with the other uses
of function 27. The type checking of the switch identifier has previously
been carried out by LABSK. The Arithmetic Operand Record created is
treated in a similar manner to any other record, thus allowing the
application of subscript optimisation. Before returning to the syntax
analyser via BEHEADEXIT, to delete the record; STAUS is set to 1 to
indicate that the following statement is not directly entered.

Label TFEX:

This section is called following the occurrence of the symbol 'IF' at
the commencement of a conditional expression. Any partially evaluated
results held only in accumulators are dumped by DUMPACCS. The chain
DUECHAIN is stored in COPYDUE, and a call made of ONSTACK to stack:

IFCHAIN,SKIPCHAIN,COPYDUE and RELOP.

This is only required if the conditional expression occurs within another
condition, but is carried out in all cases. DUECHAIN and SKIPCHAIN are
then cleared in preparation for the following condition.

Where a conditional expression occurs in a context of defined scale,
SCALEFIRM is non zero, and both the consequence and alternative
expressions will be evaluated to this scale. Where the scale is not
defined, the alternative expression will be evaluated to the final scale
of the consequence expression. In either case, the expressions will be
evaluated in the accumulator whose number is given in PREFACC.

‘ GoTo L)

, SwiTtcd ow ‘
\

4
4
3
§>
.i
]

< \ -
< STATUS [
\ 3 3
$33
v -
, «eT STAYTUS
v Te ©
. o Y
’ 'S duecuaind No
; . ¢
NLLu
: S4%
;- REVERSE Towe
i y Yes v
. AP combd '\ Tion
ouTPLT ExiT
gie INSTRQUCTIION Y
_ \‘Q.S outT fuT
. S DUGCHAN ComdiTiomAL
e ? TUmp
X No \
Y
Y PRINT ERRoR SET sSTatus
MESSAGE Te 3
. - VY
So.
] o P2 >
} - Y
\V \/
OJTPLT
v ONCONDITIoN AL JL
TP
r'
: y
QET STATUS
| <To \
L]
> WVF <— <

Toir Dhuescwminl
To LABEL RECORD

CLsAR
DuecHann

b

Exi1T To
ANALY S G R

177

e e TR ot it O e AT G e 3.

Enddh s

Label IFS:

This section is called at the start of an 'IF' statement. A call is made
on STATUSCHECK to complete any deferred actions, and to ensure that the
statement can be entered. STATUS is then set to 4 to ensure completion
of the following Condition.

The current SKIPCHAIN is stacked using IFCHAIN, and SKIPCHAIN set to
zero. (DUECHAIN has been set to zero by STATUSCHECK). This clears the
chains in readiness for the following Condition.

Label INCTOS:

This section is called to increment the direct address field of the
Arithmetic Operand record of a code instruction by the integer constant
held in NUMBER. This is performed by means of a call of ADDADD.

Label KILLPARAMS:

This section is called when it is discovered that a procedure body is a
code statement. The allocation of the data space to hold the parameters
and the link is cancelled, the parameter identifier records removed from
DECLIST, and LINK and LABDECLIST (which hold records of 'LABEL' parameters)
cleared.

Label LABL:

This section is called following the symbols 'LABEL'(Identifier) and
after a Jump instruction in code. It creates an Arithmetic Operand
record of type integer, with the marker LBM set, to denote that the
direct address contains a pointer to a label record.

Label LABSK:

This section is called after the occurrence of a subscripted identifier
in a label context, to check that the identifier is the name of a switch.
After the check, its type is changed to integer to allow its use in
expressions by the use of 'LABEL’.

Label LABTRACE:

This section sets 'BIT'[O]TRACE to the value of ACCUMULATOR. It is
called in the case of a 'NO' 'LABEL' 'TRACE! directive, in which case
ACCUMULATOR will be gzero; and also in the case of a 'LABEL' 'TRACE'
directive, in which case the value of ACCUMULATOR will be 1.

Label LASTDIM:

This section is called to process the last dimension of multi~dimensional
arrays. It uses DODIM to set up an Iliffe vector in Special Data, the
number of entries of which is given by the current value of ARRAYS, which
is the product of the number of arrays and the sizes of all previous
dimensions. This Iliffe vector is required to be relocated with respect
to the starting address of the Data area.

2t

fadie}

Label LHSBITS:

This section i3 called where it is required to assign an expression to &
partword field of a variable. A check is made to ensure that the variable
is not itself a partword table field, and is not of type 'FLOATING'. If
this is discovered, an error message is output. (In the first case the
assignment is inefficient and ambiguous, and in the second case could

give rise to unnormalised numbers. In the first case the required
sub-field should be specified as a separate field, and in the second the
overlay facility may be used, if this action must be carried out.)

The type of the variable is changed to the integer type set up in IDTYPE,
and the required field specification inserted in its PARTWORD field.

Label LHSPROC:

This section is called where a statement commences with an identifier
which is not followed by a colon (1abel) or a becomes symbol or
subscript (assignment). It checks that the identifier is the identifier
of a procedure \of any type). If not, a warning measage is output, and
the PARAMSPEC field set to point to the appropriate dummy parameter
specification record at the base of the stack, in order to avoid a
subsequent syntax failure.

SCALEFIRM is cleared in case the procedure is a 'VALUE' 'PROCEDURE’'.
Although the result is not required, in this case it will be evaluated
to type floating for the sake of consistency.

Label LIBADD:

This section is called in 'LIBRARY' declarations and communicators, after
the integer constant specifying the Library reference number for the
preceding identifier has been processed. This number is masked to ensure
that it does not overflow into the tag field, which is set to 5. This
address is inserted into the direct address field of the identifier
record being formed at the base of the stack.

Label LOOKUPD:

This section creates an Arithmetic Operand record for a variable, and
ensures that its address is placed in the DIRADD field. This section
is called to obtain an address to be used either as an overlay base, or
as an address part of a code instruction.

Label MIDDIM:

This section is called to process all the dimensions except the first

and last of three or more dimensional arrays. It uses DODIM to set up

an Iliffe vector in Special Data, the number of entries of which is given
by ARRAYS. This Iliffe vector is required to be relocated with respect
to the starting address of the Special Data area.

179

Label MINUSSUB:

This section is called, in a subscript expression, after each Term
preceded by a = symbol. This section calls SUBTERM, which performs
subscript arithmetic and optimisation.

Label MOREFOR:

This section is called after the occurrence of each comma separating
elements in a for 1ist. The value of FORSTATE gives the type of the
preceding element(s).

If FORSTATE is zero, this occurring if the preceding element consists
simply of an expression, and is the first element; an unconditional
Jump instruction is output, its address recorded in RTA, and FORSTATE
is set to 2. Otherwise, if FORSTATE is less than four, the controlled
statement ias to be treated as a procedure, and a call is made of SETRT.

A call is made to FORCOM to output a call of the controlled statement,

and other associated instructions. This is followed by calls of REVCHAIN
and SETDUE to set the SKIPCHAIN, which is used when the previous element

is exhausted, to the current program address. The current program address
is recorded in BJA, for use if the following element is a while element,
and ZEROACCS is called. ASSFUN is reset to its initial value of function
10, and DATASTART reset to its starting value, making allowance only for
the index of the control variable. If the control variable is subscripted,
and the subscript has been evaluated and stored in an anonymous location,
the "hole-marker" flag in its indirect address will be set.

Label MPY:

This section is called to output instructions for the multiplication of
two operands. As the operation may have the operands in either order,

an attempt is made to have them in the order which would generate the

least number of instructions. If the left hand operand is a constant

the order is reversed, because the operand will not require to be unpacked,
and may be an integer constant which is a power of two. Otherwise SWOPOPT
is called. An accumulator is then chosen, using GOODACC.

The type and scale to which the multiplication is carried out depends

only on the types and scales of the operands, and not on the context. It
is probably better, with fixed point operands which are held left justified,
to multiply first and then rescale if required.

If either operand is of type floating, then the operation is carried out
in floating point arithmetic, by means of a call of FLOATOP, with a
parameter of 1.

If the right hand operand is an integer constant which is a power of two,
the multiplication will not be performed using a multiply instruction.

If the left hand operand is of type integer, this will be performed by
shifting, which will be combined with any unpacking shifts required. The
number of places of shift will be added to the number of significant bits
of the operand if this is non zero. If the left hand operand is of type
fixed, the multiplication is carried out by adjusting the scale field of
its operand record. In this case the number of significant bits in the
record remains unaltered.

Label MPY/

If both operands are of type integer, the multiplication will be carried
out as an integer multiplication, delivering an integer result. This

is unfortunately rather inefficient if overflow is to be correctly
detected. If the number of significant bits of both operands is given,
the number of significant bits of the result is given by the sum of their
significant bits, with allowance being made for the sign bit, subject to
the restrictions on the word length. Otherwise, the number of significant
bits of the result is unspecified.

If one operand is of type integer, and the other of type fixed, the
integer operand is converted to the equivalent fixed scale. This is
performed by reascaling, if the operand is a constant, or by shifting
if the operand is not. In this case the number of significant bits of
the integer operand must be specified.

If both operands are, or have been converted to, type fixed, the scale
of the result is calculated from their scales and numbers of significant
bitas. The number of significant bits of the result is taken to de the
smaller number of the two operands, and the scale calculated has its
number of integer bits equal to the sum of the integer bits of the two
operands. As this may exceed the range allowed by the implementation, a
check is made, and a warning message output if required.

After the type and scale of the result has been calculated, the actual
instructions for the multiplication are then output. The left hand

) operand is copied into the chosen accumulator, and if the right hand

= operand is required to be unpacked, or is marked as being a location,

this is copied into another accumulator. The instruction is then output
to perform the multiplication. If the type of the result is integer, three
instructions are output to shift the result back into the accumulator.

This section returns to the syntax analyser via BEHEADEXIT, which removes
the top Arithmetic Operand record from the stack.

Label MSK:

This section is called to apply the 'MASK' operation to the two top
Arithmetic Operands on the main stack. This is performed by means of a
call of OPERATE, with function 15 as the parameter. As the function is
reversidble, i.e.

K A 'MASK' B = B 'MASK' A
‘! for all values of A and B, a call is first made on SWOPOPT to reverse

the order of the operands, if this would result in less code being
generated.

181

A

Label MULTICALL:

This section is called after each call of a multiple call of a procedure,
except the final call. It resets the STACKPOINTER, to delete the previous
set of parameters, and resets the PSP pointer to the parameter
specification record.

If the procedure is typed, the result of the previous call will be used as
the first (explicit) parameter of the next; and the type of this parameter
must exactly be the same type as the type of the procedure, which must

have more than one parameter. If the procedure is not a *'VALUE' procedure,
the record for this parameter is set up by a single call of MAKEPARAM, with

a parameter of zero. In the case of a 'VALUE' procedure, three calls are made
to MAKEPARAM with parameters of 1, O, and 1. This sets up three parameters
vwhich are, the type required for the result, the result of the previous

call, and its type. Note that when compiling a call on a 'VALUE' procedure,

a marker is set in PNP by SETUPPROC.

Label NEGNUM:

This section negates the variable NUMBER. It is called, in cases where a
signed constant not occurring in an expression is preceded by a minus sign,
after the number has been assembled.

Label NEQ:

This section is called to apply the 'DIFFER' operation to the two top
Arithmetic Operands on the main stack. This is performed by means of a
call of SWOPOPT, for optimisation purposes, followed by a call of
OPERATE, with function 16 as the parameter.

Label NEWNAME:

This section is called after the occurrence of an identifier in a
declaration. It creates an Identifier Specification Record on the stack.
A check is made to ensure that this is the only occurrence of the
identifier at this block level, and that it is not the (illegal) seventh
parameter of a procedure. The record is then placed on the stack by
ONSTACK, the relevant information being held in the "declaration breeding
ground" at the base of the main stack. If the identifier is an indirectly
addressed parameter of a procedure, the direct and indirect addresses in
the record are exchanged, and the location marker deleted.

If the identifier is a parameter, a call is made to NEXTPARAM, to
increment the Parameter Specification record for the procedure; and if
the parameter is a 'LABEL', a label record is created by LOOKUPLAB, its
reference being temporarily stored in the INDADD field of the parameter
identifier record.

182

o~ -

Label NEXTPSET:

This section is called between sets of parameters in procedure
declarations, between parameters in parameter specifications, and after
the context parameter in declarations of 'VALUE' procedures. This
section clears the type and other fields of IDTYPE, leaving only the
parameter accumulator field PAC, and the sign bit marker, unchanged.
This allows the type of the following parameter to be built up in the
usual manner.

Label NISACC:

This section is called where the operand of an instruction in code is
an accumulator. An Arithmetic Operand record is set up by NONAME, and
the accumulator number (with AMARK added) is inserted in the DIRADD field.

Label NISMOD:

This section is called where the operand of an instruction in code
contains a modifier. After checking that the accumulator specified is the
number of a modifier, this number (with AMARK added) is stored in the
INDADD field of the Arithmetic Operand record of the instruction.

Label NOAFTER:

This section is called after the integer specifying the number of bits
after the binary point has been processed. This occurs in 'FIXED!
numbertypes, and also in table fields. The scale is calculated and
ingserted into the PVL field of IDTYPE, the TYP field being set to the
value for 'FIXED' variables (1). The scale (or P value + 32) is given
by: .

Total bits = Number after point + 31

a check is made to ensure that this lies within the allowable range for
this implementation. (0 to 63)

Label NOBITS:

This section is called after the Integer specifying the number of bits

has been processed. In the case of normal declarations this specifies

the number of significant bits required to hold the number (although a
whole word will be used), and in the case of table fields and 'BITS'
operation this specifies the number of bits in the partword. After
checking that the number of bits is within the allowable range, the number
is inserted into the SGB field of IDTYPE.

Label NOSIG:

This section is used in the formation of a partword descriptor held in
BITSPEC. It is called after the occurrence of the integer specifying the
number of bits required by a table field and also by a 'BITS' operation.
The number of bits is subtracted from the number of bits in the computer
word, and stored in BITSPEC. No check is made at this stage. The
nunber held in BITSPEC will be subsequently used by FIELDPOSN.

Label OFFSTEXPR:

This section is called at the end of an untyped bracketed expression,
and is also entered at the end of a typed bracketed expression. It
removes one stack level for expressions, resetting the five variables
starting with EXPRCHAIN. The top Arithmetic Operand record is moved
down, and a call made on SETLHRH to reset the LH and RH pointers.
STACKPOINTER is updated, and a call made on ACCUPDATE to update ACCS.

Label ONEBIT:

This section is called where the number of bits specified in a 'BITS'
operation has been omitted, and is assumed to be one. The action of this
. gection is identical to the actions carried out by NOBITS,NOSIG and

p PARTINT where NUMBER is one. BITSPEC is set to 23, the SGB field of

‘ IDTYPE set to one, and the PVL field set to integer scale.

¥ Label ONEDIM:

This section is called to process the sole dimension of single dimensional
arrays. ADDRARRAY is called to insert the addresses of the Data space
allocated to the arrays, in the identifier records on the stack. The
numoer of records to be processed is given in ARRAYS.

V¥
.

e

Y "

Label ORACT:

3 This section is called following the symbol *OR' in a Condition. It
- outputs the test instruction, reversing the test, with the address part
‘ chained on the DUECHAIN; and sets the SKIPCHAIN. REVCHAIN is called

(twice) to ensure that the procedures -OUTCJ and SETDUE operate on the
N required chains.

Label ORF:

This section is called to apply the 'UNION' operation to the two top
Arithmetic Operands on the main stack. This is performed by means of a
call of SWOPOPT, for optimisation purposes, followed by a call of

OPERATE, with function 17 as the parameter.

Label OUTCODE:

This section is called at the end of each instruction in code to output
the completed instruction. The accumulator number is held in ACCUMULATOR,
: and the function mumber in FUNCTION. The top (RH) Arithmetic Operand record
¥ . on the stack contains the information required for the N (address) and
- M (modifier) fields. The instruction is output by INST after the LCM

i field of the record has been cleared, as this may have been set by LABL or

- STRINGEX. This section returns to the syntax analyser via BEHEADEXIT
vwhich removes the top Arithmetic Operand record from the stack.

Label OUTPRESET:

This section is called after each numeric value or void in a Presetlist.
The constant is rescaled, if required, by SCALECON, and output by
OUTPRESETD.

Label OVEROFF:

This section is called at the end of an overlay declaration, and clears the
OVERLAY flag.

Label OVERON:

This section is called after the symbol 'WITH', in an overlay declaration.
The address of the start of the area to be overlayed is held in an
Arithmetic Operand on the top of the stack, and is obtained using TOSADD,
which deletes the operand. This address is held in OVERBASE and is
inserted into the required location at the base of the stack, and the
OVERLAY flag set.

Label OVRTEST:

This section is called following the symbol 'OVERFLOW' in a condition.
FUNCTION is set to 24, the overflow teat function; ACCUMULATOR being
previously set, depending on the presence (0), or absence (1), of the
symbol *'NO'.

Label PARAMTAB:

This section is called before, and after, the specification of the fields
of a table parameter. It stores, and later restores, the current values of
IDTYPE and DIRADD[O]. The information held in these (parameter accumulator,
parameter addréss) is required for any subsequent parameters, and would be
destroyed by the field specifications if not preserved. The variables
IDTYPE2 and PARAMPTR2 are used for this purpose. (See EXCPSPEC)

Label PARTINT:

This section is called after the specification of a partword integer. It
inserts the scale for integer (P=23) into the PVL field of IDTYPE.

Label PLUSSUB:

This section is called, in a subscript expression, after each Term
preceded by a + symbol, and also after the first Term if unsigned. This
section calls SUBTERM, which performs subscript arithmetic and optimisation.

Label PRESETSTRING:

This section i1s called after each quoted string in a Presetlist. The
string is output, deatined for the Special Constants area, by SPECSTRING,
and tho address of the string output, destined for the Data area and
relocated, by OUTPRESETD.

As it 18 allowed to assign (the addresses of) strings to variables, the
extension has been made to allow this asaigmment to be preset.

Ny

Label PROCENTRY:

This section is called when the entry point of a non—-code procedure is
reached.

The local procedure SCAN applies its procedure parameter PROC to each
parameter identifier record in turn (if any), using the pointer P, which
is non~local to tbe procedures.

The procedure LABPARAM is designed to be a parameter of SCAN. If the
parameter record is that of a label parameter, an indirect Jjump instructionm,
with the Data address of the parameter as its address, is output, and a
label with the same identifier as the parameter, set to this instruction.

The other procedure, DUMPPARAM, is also designed to be = parameter of SCAN.
This procedure outputs an instruction to store a parameter, of the procedure
being compiled, in the Data location allocated for this parameter. The
number of the accumulator is obtained from the parameter identifier record,
as is the address. No action is taken if the accumulator number is gzero,

as in this case the identifier record will be that of a field of a table
parameter.

PROCENTRY starts with a call of SCAN, with LABPARAM as a parameter. This
outputs one instruction for each label parameter, and creates a label
identifier record. This enables (conditional) Jumps to be made to the
label parameter in the normal manner, using the STATUS optimisations. It
is expected that each label parameter will be used at least once in the
procedure body, and most probably in a conditional jump. (Error exits etc.)
A call is then made on ENTERPROC, which causes the loader to set the
contents of the location containing the entry point to the current program
address. An instruction is then output to store the link; this being
followed by a call of SCAN with DUMPPARAM as a parameter, to output the
instructions to store the parameters. If procedure trace is required, a
call on 14, with the procedure identifier atring as a parameter, is then
output.

Label PROCTRACE:

This section sets 'BIT'[1]TRACE to the value of ACCUMULATOR. It is called

in the case of a 'NO' '"PROCEDURE' 'TRACE' directive, in which case ACCUMULATOR
will be zero; and also in the case of a 'PROCEDURE' 'TRACE' directive, in
which case the value of ACCUMULATOR will be 1.

Label RAISE:

This section is called to apply the exponentiation operation (1) to its
operands. If the right hand operand is not of type integer, the operation

is carried out in floating point arithmetic by means of a call of FLOATOP
with a parameter of 5. If the right hand operand is not the integer constant
2 or the left hand operand is of type floating, the operation is carried out
by (fast) floating point arithmetic, by means of a call of FLOATOP with a
parameter of 6.

The remaining case, squaring a fixed point number, is carried out by fixed
point multiplication. The left hand Arithmetic Operand record is duplicated,
replacing the right hand record (of the constant 2); if the operand exists
only in an accumulator, an instruction is output to dump a copy of this
operand into a temporary workspace. The section MPY is then entered.

186

Label RELADD:

This section is called vhere the operand of a jump instruction in code is a
relative address, using 'SELF' or *. An Arithmetic Operand record is created
by NONAME, and its commentary set to "(SELF)". The relative address is
obtained by adding the current program address PTA, and the displacement

held in NUMBER. This is performed using ADDADD, to avoid the possibility

of overflow changing the tag field. The result is stored in the DIRADD

field of the record.

Label RELATION:

This section is called after the second of the two expressions in a
Comparison have been processed. It calculates the jump instruction
required, which is stored in FUNCTION; and ensures that the result is
in an accumulator, whose number is stored in ACCUMULATOR.

Where the test involves a single variable, its address, where possidble,
is used to update the acoumulator record ACCS. If this variable is a
partword, it will be unpacked without shifting where possible.

Label RHSBITS:

This section is called where a 'BITS' operation is used in an expression,
after the expression to which the operation is to be applied has been
processed. If the expression is an address, or is a partword field, or a
constant; an instruction is output to copy it into an accumulator. This
will provide redundant instructions, but will enable the operation to be
carried out in an unambiguous manner. The partword specification and type
information, which has been packed into BITSPEC by BITSIN is unpacked and
inserted into the TYPEBITS and PARTWORD fields of the Arithmetic Operand.
The actual bits operation being later carried out by PICK.

Label SCALETERM:

This section is called after each Term of an expression. If SCALEFIRM is
set, the scale required for the expression has been defined, and the action
of this section is confined to changing the type of the Terms to or from
'FLOATING' as required. If the required type is floating, a call is made
on FLOATIT to ensure that the Term is of, or will be converted to, type
floating. Otherwise, if the type of the Term is floating, a call to L21

is output, to convert the Term to the required fixed point scale.

On the other hand, if SCALEFIRM is not set, the scale of the expression

is determined Term by Term. EXPSCALE is initially set to szero, and as
each Term is processed, it is progressively modified according to the

types and scales of the Terms. The type of the expression progressively
goes through the sequence 'INTEGER' to 'FIXED' to 'FLOATING' according to
the "strongest" type found. A comparison between the current value of
EXPSCALE and the SCALE of all Terms except the first, is made by the use of
SCALESTEST to switch to the appropriate label. In the case of the first
Term, EXPSCALE is taken as the SCALE of the Term. Using the notation given
in the descri-‘ion of SCALETEST, the action taken for all Terms after the
firat 1s summarised below.

187

vitetne,

——

A

Label SCALETERM/

1 IO’IO & IO’IS & Is,Io
The scale is taken to be integer, with unspecified significance.
2 Is,Is

The scale is taken to be integer, with the larger number of significant
bits.

3&4 Is,Fx & Fx,Is

The scale of the integer type is converted to the equivalent fixed scale
(provided that the number of signific-nt bits is known) and the scale
determined as in section 5.

Note however, that when an integer is treated as a fixed, it is regarded as
having an infinite number of (zero) fraction bits.

5 Fx,Fx

A new fixed scale is calculated, which has the larger number of integer
bits, and the smaller number of fraction bits, of the two scales. If this
would exceed the wordlength, fraction bits are dropped.

6 Fl,Any & Any,Fl
In this case the type ias taken as floating.
Label SETANS:

This section is called after the occurrence of the 'ANSWER' symbol. It

checks that an answer statement is allowed, and sets EXPSCALE and SCALEFIRM
for the following expression. If the procedure is a 'VALUE' procedure, these
are both cleared, thus allowing the type to be determined by the following
expression, it being assumed that the context parameter is used to dynamically
determine this. On the other hand, if the procedure is typed, the expression
following the 'ANSWER' symbol is evaluated to the type of the procedure. 1In
this case EXPSCALE is set to the type and scale of the procedure, and the

flag SCALEFIRM is set. An answer statement is not allowed:

A. In an untyped procedure
B. In a 'CODE' procedure
C. Outside a procedurs.

Note that this section starts with the declaration of DUMMYBLOCK, which
makes this section a block, and allows the use of FAULT as a local label.

Label SETLAB:

This section is called after the occurrence of an identifier setting a
label. STATUSCODE is called, to complete any deferred action associated
with STATUS, to set it to zero, and to set any chain held by DUECHAIN.
SETLABEL with LOOKUPLAB as a parameter, looks up and creates a label
record if required, inserts the current program address into the record,
and sets any chains of previous usage of the label.

188

Label SETLB:

This section is called after the integer constant giving the lower bound
to a dimension of an array has been processed. The number is stored
negatively in OFFSET. :

Label SETLEVEL:

This section sets the value of the variable LEVEL, to the value of NUMBER.
This section is called after a 'LEVEL' directive, to set the diagnostic
level of the compiler output. At present, as implemented there are four
diagnostic levels, 0 to 3, the default value being 1. The effects are as
follows:

Level Diagnostics
0 None
1 Page titles, labels, procedures and for statements

printed at compile time.

2 As above, plus output of label, procedure, and for
statement information to the loader.

3 As above, plus detailed commentary on each instruction
output to the loader.

Label SETLIBSEG:

This section is called at the start of a Library procedure segment. The
segment header is output by STARTSEG, and the housekeeping procedure,
PROCSTACK, called. The DUECHAIN is set to the procedure address (containing
the reference number), and marked for the convenience of the loader. The
firast Data location is allocated for the link, subsequent ones being used
for the parameters and local workspace. TRACE is cleared, as procedurds
requiring trace should not be placed in the Library.

Label SETLIBVAR:

This section is called for the (trivial) compilation of Library variables.
A check is first made to ensure that the preset value of this variable is
greater than (in integer convention) =8372225 (=223+214~20). This allows
all floating point numbers, and most fixed and integers.

A tape is then produced giving the following information to the loader:

a) The Library Number of the variable
b) 1Its Preset value

c) Its Identifier string

d) A directive tag (4) and checksum.

This information is repeated on the printer.

189

Label SETNEZ:

This section is called where the comparator and second expression have been
omitted in a comparison. In this case it is assumed that the comparison is
against zero, with a zero value counting as "false", and a non-zero value
counting as "true", This allows conditions such as:

IF 'BIT'(9]A 'THEN' . . .

RELOP is set to zero, which is the value it would have received if the
comparator < > had been read.

Label SETNO:

This section sets the value of the variable ACCUMULATOR, to 0. It is
called in cases where the symbol 'NO' is optional, and is present. Examples
of such cases are:

'*IF' 'NO' 'OVERFLOW' 'THEN' . .
'NO' 'PROCEDURE' 'TRACE';

Label SETPARAMS:

This section is called when it is discovered that a procedure body is not
a code statement. This confirms the allocation of the data space required
to hold the parameters and the link, and records the position on the stack
of the identifier record of the last parameter (if any) in PARAMDECS.

Label SETPREF:

This section is called to select a suitable accumulator for the
evaluation of bracketed expressions. An accumulsgtor number is supplied
by FINDPREF, and stored in PREFACC. If the preferred accumulator of the
previous expression level is free, this will be chosen.

Label SETSHIFT:

This section is called after the occurrence of a shift operator in an
expression, to prepare for the optimisation of the expression giving the
number of shifts required. The required shift function is copied into
BITSHIFT, and an anonymous Arithmetic Operand record created. The section
SETUPSUB is then entered.

Label SETTEN:

This section copies the constant held in the variable NUMBER into TOPTEN.
It is called where two integer constants may occur in close succession.
The value of the first is held in TOPTEN until the second has been
processed. This section is called in the case of packed address constants
in 'SPECIAL' 'ARRAY's, and in the case of the base and displacement of
'EXTERNAL' specifications.

Label SETTEST:

This section sets the value of the variable TEST, to 1. It is called in
cases where the symbol 'TEST' is optional, and is present. This allows
test compilations to be performed. The effect of setting TEST is to
inhibit the paper tape output on the punch. TEST is reset to zero at the
end of each segment.

190

AD-AOB‘O 068 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) F/6 972

THE CORAL 66 COMPILER FOR FERRANTI ARGUS 500 COMPUTER.(U)
JUN 78 B GORMAN
UNCLASSIFIED RSRE=TN=799 DRIC-BR=-67199
. ..l... ‘
o

O 22 jz
= v I g2

Ty

b
— S

22 i e

¢

. .
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-I%]»]‘!

Label SETTEST/

'TEST' may also be used where a 'COMMON' communicator has been previously
compiled, and it is required to set up the compiler for the compilation
of a segment referring to it, without producing an output tape.

Label SETUB:

This section is called after the integer constant giving the upper bound
to a dimension of an array has been processed. The size of this dimension
is calculated in NUMBER, and if less than 1, an error message is output,
and NUMBER set to one.

Label SETUPSUB:

This section is called after the occurrence of the starting symbol of a
subscript ([), and is also entered from SETSHIFT.

A check is first made that the Arithmetic Operand on the top of the stack
may be legally subscripted, if not an error message is output. A new
expression level is created by a call of STACKEXPR, and this level set to
indicate that an integer expression is mandatory. A suitable modifier is
chosen as the preferred accumulator.

Label SETYES:

This section sets the value of the vzriable ACCUMULATOR, to 1. It is called
in cases where the symbol 'NO' is optional, and has been omitted. Examples
of such cases are:

'IF' ('NO') 'OVERFLOW' 'THEN' . .
('No') 'PROCEDURE' 'TRACE';

This section is also called at the start of the declaration of an untyped
procedure. Until the symbol following 'PROCEDURE' has been processed, it
is not possible to determine whether a procedure declaration or a trace
directive is to be processed. The call in these circumstances is harmless.
As a consequence of this, the section TYPEPROC is also called.

Label SIMPLEASS:
This section is called where an assigmment takes the form of:

Variable Becomes (%) Term

to optimise the cases of:

Variable Becomes (f) Variable.

If the variable on the right is the same as the variable on the left, and

is unsigned or preceded by a + symbol, ASSFUN will have been set to function
12. 1In this case ASSFUN is cleared, and no instructions will be output.
This case may occur as follows:

'FOR' A « A 'WHILE' . . .

If the Term on the right is preceded by a -~ symbol, and is not the same as
the variable on the left, and neither is of type floating; function 11 will
be used for the assignment where appropriate, otherwise a call is made of
UNARYMINUS, and function 10 used. This section is not called if assignment

trace is required.

191

Label SKIPDTA:

This section is called following the Becomes symbol in a data declaration.
Provided presetting is allowed, a directive is output, if required, to the
loader, to skip the Data transfer address forwards, over unpreset areas of
data.

Label SPECCON:

This section is galled after the occurrence of an integer constant or
jdentifier, preceded by a / symbol, in the presetlist of a 'SPECIAL'
'ARRAY'. An Arithmetic Operand record will have been created on the top
of the stack, this is deleted and its direct address field obtained by
TOSADD. This addreas is packed and output by OUT1014CS.

Label SPECLAB:

This section is called after the occurrence of an identifier, preceded by
a : symbol, in the presetlist of a 'SPECIAL' 'ARRAY'. This identifier is
treated as a label identifier, and its treatment differs in program and
common segments. This section is also used to process entries in switch
lists.

In a program segment, the label record is accessed using LOOKUPLAB, and
this reference to the label chained up. It should be noted that the label
cannot have been set at this block level before its use.

In a common segment the label may or may not have previously been explicitly
specified, or used in a special array. A scan is made of the identifier
records of the common segment. If a record does not already exist, a new
one is created, as if the label were being explicitly specified. Otherwise,
after checking that the record is that of a common label, this reference to
the label is chained up to the previous reference.

In either case, the chain address of the label is output using OUT1014CS.
Label SPECNUM:

This section is called after the occurrence of a numeric constant in the
presetlist of a 'SPECIAL' 'ARRAY'. The constant is rescaled to the scale
held in IDTYPE and output by OUT24CS. It should be noted that, although
the scale of a 'SPECIAL' 'ARRAY' is integer, preset numeric constants may
be stored to other scales if specified.

Label SPECONE:

This section is called after each identifier of a label, switch, or
procedure, declared in a common segment. A location in special data, whose
address will have been obtained using ADDRSPEC, is reserved, and set to an
initial value of gero. The loader will subsequently insert the requisite
address into this location.

Label SPECREL:

This section is called after the occurrence of a relative reference

(*SELF' or *) in the presetlist of a "SPECIAL' 'ARRAY'. The displacement,
held in NUMBER, is added to the current Special Data address STA, and
output by OUT10104CS, which inserts an integer into the top ten bits if
required.

192

St A i i 1 e el

Label STARTDEC:

This section is called before all declarations, to initialise the
"declaration breeding ground” at the base of the main stack.

Label STARTFOR:

This section is called after the occurrence of the symbol 'FOR'. A call is
made of STATUSCHECK to complete any deferred actions, and to ensure that
the statement can be entered. A call is made of BEGLABBLOCK to ensure that
the controlled statement cannot be entered by means of a jJump to & label
from a point outaide. The values of the working variables used for the
compilation of for statements:

FORCHAIN, FORSTATE ,CV,COPYSKIP,DATAADD,BJA,RTA,RTL, and CCC

are stored by a call of ONSTACK, in case the for statement occurs within
another. COPYSKIP is set to the current value of SKIPCHAIN, which is then
cleared, as this is required for use in Conditions following *WHILE' and
also for the jump made when a for element is exhausted. The current value
of DATASTART is recorded in DATAADD, so that it may be reset at the end of
the for level. This value is alse recorded in RTL.

FORSTATE, which will be used to determine the complexity of the list of for
elements, and the type of each, is set to its initial value of zero.)

Label STEPUNT:

This section is called after the expressions following the *STEP' and 'UNTIL'
symbols in a 'FOR' statement have been processed. CCC is used to detect
the case where all three expreassions are constants, and is calculated by a
logical and ('MASK') of the constant markers of the three expressions. The
type of the expression is changed, if required, to the type of the control
variable. If the expression is a constant, this is performed by means of
a call of SCALENUM, otherwise a call is made of PICK. One is added (twice
per Forelement) to FORSTATE, to indicate that the for element is of the
form step=~until. This section returns to the syntax analyser via FORSTORE,
which stores the expression in an anonymous workspace if it has been
evaluated.

Label STORE:

This section is called at the end of an assignment statement, to output the
instructions for the assignment. This is performed by means of a call of
STOREAWAY with the assignment trace flag, stored in TRACE, as the parameter.
Label STOREZERO:

This section is called when it is discovered that an assignment takes the
form of:

Variable Becomes Zero.

If the variable is a Wordreference, a marker is set in ASSFUN to indicate
that accumulator O is to be used with the assigmment function (10). 1If

the variable is a partword, then the optimisation will be carried out using
FPLAG in STOREAWAY. This causes the field to be set to szero by masking

the rest of the word. This section is not called if assignment trace is
required.

o o

Label STRINGEX:

This section is called after the occurrence of a quoted string as an
expression, or in code, to create an Arithmetic Operand of type integer
for the string. The string is output by SPECSTRING, and its address
placed in the DIRADD of the record.

Label SUB:

This section is called to output the instructions for the subtraction of
one Term from another. This is performed by means of a call of ADDSUB
with function 03 as the parameter.

Label SUBA:

This section is called after the first Term of the expression on the right
hand side of an assignment symbol; if the Term is preceded by a = symbol.
If the Term has already been evaluated in an accumulator, a call is made of
UNARYMINUS to output an instruction to negate it. Otherwise, if the temm
is a variable, and is the same variable as the one on the left of the
assignment symbol, and is not a partword or of type floating, ASSFUN is

set to function 13, so that a "negate~store~and~add-to-store" assignment
will be used. A mark is then set in ASSFUN, to indicate to SIMPLEASS or
SELOPTA that the term was preceded by a minus sign. This section is not
called if assignment trace is required.

Label SUBCOMMA:

This section is called after the occurrence of a comma in a subscript. A
local pointer(LH) to the Arithmetic operand of the variable being subscripted,
is calculated. If the indirect address of this variable is zero, this only
occurring after the firast comma where the previous expression consisted of
an integer constant, the direct address is transferred to the indirect
address of the record, and the direct address cleared. Otherwise, a
suitable modifjer is chosen, and an instruction is output, to copy the
contents of the address so far calculated, into it. (This instruction

may itself be modified.) The modifier number and accumulator marker (AMARK)
are placed in the indirect address field of the Arithmetic Operand record,
and the direct address field cleared. Finally a call is made on ACCUPDATE
to update the accumulator record, ACCS.

Label TABADD:

This section is called before the fields of a table are specified. It
stores the direct and indirect addresses of the start of the table in
TABLED and TABLEI, for subsequent use by FIELDDISP. If the direct address
of the table is null (Table parameters) it has a marker set to ensure that
all table fields are treated in a consistent manner by LOOKUPD.

Label TABLESIZE:
This section is called after the occurrence of the Integer constant giving

the number of locations required for a table. Provided that the table is
not being overlayed, the number of locations is added to DATAMAX.

Label THENEX:

This section is called following the occurrence of the symbol 'THEN' in a
conditional expression. The final test instruction is output by OUTCJ,
and any chain resulting from the use of 'OR' set by SETDUE.

Label TYPEARRAY:

This section is called to set the AYM of IDTYPE, to denote that the
following identifiers are identifiers of an array. This occurs in the

case of arrays declared within a program or ocommon segment, in the case of
arrays specified in external and absolute communicators, and also for every
table field.

Label TYPEFLOAT:

This section is called, following the symbol 'FLOATING', to insert the
type number for floating point (2), into the TYP field of IDTYPE.

Label TYPEIARRAY:

This section is called in the case of array and table parameters. It
sets the AYM and LCM bits of IDTYPE to denote that the location of an
array or table is required to be passed as a parameter.

Label TYPEINT:

This section is called after the occurrence of the symbol 'INTEGER' in the
specification of an integer of unspecified significance. It is also used
in 'TABLE' and ‘'SPECIAL' 'ARRAY' declarations, both of which are treated
as integer arrays.

This section inserts the scale for integer (P=23) into the PVL field of
IDTYPE.

Label TYPEISWITCH:

This section is called following the symbol 'SWITCH' in common
communjicators, and in procedure declarations and specifications. It
sets the TYP field of IDTYPE to the type number for labels (3), and
sets the AYM and ILCM flags. The LCM flag indicates that the switch is
to be indirectly addressed.

Label TYPELAB:

This section is called, following the symbol 'LABEL' in declarations, to
insert the type number for labels (3), into the TYP field of IDTYPE.

Label TYPELOC:

This section is called following the symbol 'LOCATION' in procedure
specifications and declarations. It sets the marker ICM in IDTYPE, to
denote that a location is required as the actual parameter. The marker
LM2 is also set, this being used for non-standard parameters.

O T T TR
L - .- 4’-—-‘ ‘! [}

Label TYPEPROC:

This section is called, preceding the symbol 'PROCEDURE', to insert the
type number for untyped procedures (4), into the TYP field of IDTYPE.

Label TYPESPEC:

This section is called in the case of non-standard (untyped) parameters,
in a procedure declaration or specification. In this case the symbols
'VALUE' and 'LOCATION' are not followed by a Numbertype. The SPB field
of IDTYPE is set to 1, to denote the first parameter of the pair (the
second being the type/scale), and the PVL field is set to the default
scale. (Integer)

Label TYPESWITCH:

This section is called following the symbol ‘SWITCH' in switch declarations,
and 'EXTERNAL' and 'ABSOLUTE' switch specifications. It inserts the type
mmber for labels (3) into the TYP field, and sets the array marker AYM,

of IDTYPE. Thus a switch is treated as an array of labels.

Label TYPETPROC:

This section is called, following & Numbertype, and preceding the symbol
PROCEDURE!, to convert the TYP field of IDTYPE, from a type number for a
variable, to a type number for a typed procedure.

Kumber Type Variable type number Procedure type number
' INTEGER' 0 5
'FIXED' 1 6
'FLOATING® 2 7

Label TYPEVPROC:

This section is called between the symbols 'VALUE' and 'PROCEDURE' to
insert the type information into the TYP (5) and SPB (3) fields of IDTYPE,
for a variable~type procedure.

Label TYPEXPR:

This section is called following a Numbertype preceding a bracketed
expression. In this case the expression is required to be evaluated to
the type and scale stated, even if the context demands a differing type or
scale. (In this case the value will be rescaled to the type demanded by
the context after the evaluation of the bracketed expression.) A new
expression level is created by a call of STACKEXPR, and the EXPSCALE of
this new level set to the required scale. SCALEFIRM is set to indicate
that this scale is mandatory. The section SETPREF is then entered.

Label UNSFIELD:

This section is called to complete the partword descriptor BITSPEC, and

to make appropriate adjustments to IDTYPE, in the case of ‘UNSIGNED' table
fields, and 'BITS' operations. A check is made to ensure that a 24 bit
unsigned field is not being specified; and the UNS marker of BITSPEC is
then set. One is added to the SGB field of IDTYPE, and if the scale is
'PIXED', one is added to the PVL (scale). This makes allowance for the
sign bit, which although not present, is allowed for when unpacking and
aligning the field.

Label VARCHECK:

This section is called to check that an identifier, used as a variable,

is an arithmetic variable; i.e. is of type integer, fixed, or floating.
If it is not, a warning message is output, and its type changed to integer
to allow compilation to continue. This section returns to the syntax
analyser via AYMCHECK to ensure that a subscript is not required, or has
already been supplied.

Label WHILEL:

This section is called after the Condition following a *WHILE' symbol in a
'FOR' statement has been processed. The final jump~if-false is output by
a call of OUTCJ, and the destination of any jump~if-true instructions, set
by means of a call of SETDUE. One is added to FORSTATE to indicate that
the for element is of the while form.

Label ZEROARRAYS:

This section is called at the start of a set of arrays having common bounds.
The location, ARRAYS, which keeps count of the number of arrays is cleared.
TOPTEN is also cleared so that the top ten bits of any addressing vectors
generated will be clear.

Label ZEROCOMP:

This section is called where the expression on the right of a comparator is
zero. In this case two expressions do not require comparison. If the
comparator is > or <=, the left hand expression requires negation, as the
instruction set of the machine does not contain the appropriate jump
instructions.

Label ZERONUM:

This section clears the variable NUMBER. It is called in cases where a
constant is optional, and has been omitted. In this case its value is
assumed to be zero.

ARGUS 500 CORAL COMPILER

List

Page:
Procedure:
Line:
After:

Insert:

Page:
Procedure:
Line:
After:
Insert:
Line:
Replace:
By:

Page:
Label:
Line:
Before:

Insert:

Page:
Label:
Line:
Replace:
By:

of Errors

ARITHMETIC

FLOATOP

3

ACCUPDATE (LH) ;
TYPEBITS([LH]+«//10000;

ASSIGNMENT AND FOR
STOREAWAY

4

PARTWORD] RH) =0

'AND' PARTWORD[LH] =0

20

24-SHIFT) "MASK' FORMMASK(RH)
24+SHIFT) "MASK' FORMMASK(LH)

TABLES AND SPECIAL
SPECLAB

3

'COTO' NEWNAME
OUT1014CS(ADD) ;

CALLS AND CODE

CALLPROC

6
PICK(LH,A,TYPEBITS[LH] ,0)
PICK(LH,A,STB[LH] ,0)

R

Bl e 4

s
M
M

%
.

1pAE" DEFINITIONS:

SEXTRRNAL CYINT! ERY1/9,EXT2/2,8XT73/3))

¢ TYets)

1OEFINE" INTEGER “0%;
IHEFINE' FIXED 1%
IDEFINE' PLOATING 2%
YOFPINEY LABEL "3:
REFINE' PROCEDURE “4°;
YREFINE® INTPROC *5°;(C FIXPROC = ¢, FLOATPROC s 7)}

 CONSTANTS)

SOEFINE® MARK "#40000000";
*DEFINE' ANARK “#77740000";

t FORMULAE)

IREFINE' CYCLE(AAA,ND "CCAAA) tRLCH (BBB)) "
TOEFINE! CHECKSUMCAAA,BBB) "AAAGLAATSLC'Y 'DIFFER' (888)°}

(AREBAS)

INEFINEY NMCSTARY “'(0C*(EXTY)™}
VOEFINE' STACKSTARY ='L0C'(EXT2)";
IDEFINE' STACKFINISN “fLOC'(EXTI} "}

IPAGE' STACK) z

COMBLLER2O
IRFAIN" STARLE' STACK(IPN

CHATN *INY' 03(CHAIN OF STACKED IvEMS)
SPIEL *INT' Q03 STRING FOR COMMENTARY)

TYPPOITS CINT' 93(DETAILS OF IYEM ON STACK)
CON TUNSHL1) 1181T'0; (CONSTANT MARKER)

AYH CUNSTCY) 1'81T793 (ARRAY WARKER)

LEM CUNSTCT) 178IT?2; (LOCATION MARKER)

PAC "UNSTES) 9'RIT S) (PARAMETER ACCUMULATOR)
LMZ TUNSICT) 17BIT'6: ¢ COPY OF LCM)

LM PUNSECTY VRITIY) ¢ TLAD' WARKER)

YUNSIL2) 1901781 (VARIABLE TYPE)
TUNSIC14)90 SCALE AND TYPE)

YYPE)

869 'UNIT(S) 1telriis NO OF S1GNIEICANY B17S)
PVL PUNSI(E) 1'BIT18:¢ SCALE FACTOR)

PARAMSPEL YINTY 21¢(POINTER YO PROC PARANETER SPECS)

PARTWORD 'INT' 2’(';ll7 WORD SPECIFICATION)
o

UNS ‘UNSI(1y 2 ¢ MARKER FOR UNSIGNED FIELD)
LSS 'UNSP(S) 2°817'14:C SNIFTYS TO ALIGN AT 60TTOW) 5
MES TUNSH(S) 20BITI49;(SHIFTS TO ALIGN AT TOP)

-

pINADD 'INT! 31 DIRECT ApORESS)
ACD 'UNSTC1) 3'BITI0) ¢ MARKER FOR DIRECT ADDRESS 18 AcCC)

<
NMO 'UNST(1) S'BIT*4} (WARKER FOR HOLE) t
PTF 'UNSICE) S'BIT'2) (PARANRYRIC TABLE FIELD) ©
TED 'UNST(3) 3'BIT'6; (TAG OF pIRECY ADDRESS)

DAD 'UNST(I4IBIBITIIOS(DIRECT DISPLACEMENT) E

TNOADD YINT! 43¢ INDIRECY ADORESS) @]
ACT 'UNSSCT) 6'BIT'0) (MARKER FOR INDIRECT ADORESS IN ACC ? i: Eg
' ,

>

[]

HMI YUNSICT) A'BITYAS (WARKER POR WOLE -~
TRT CUNSI(3) A'OITIE} ¢ TAG OF INIRECT AppRess)
1AD TUNSICIAIAIBITIS02C INDIRECT DISPLACEMENT) ;7

STRING CINTY S1C TOENTIFIEN WELD AB STAING)
wDS 'UNST(4) SIBITIO; C NUNBER OF WORDS~1 VEED BY STAINE)
cHs 'UNBI(6) STAITIOr (NUNBEA OF CWARS IN BTRING) ¢
1COMMENT! LABEL DECLANATION L1STS) 5'5’ ;
PEN TINTY 11 (PROGRAM CWAIN) NG} 3

DEN 'INTY 20 (DATA CNHAIN)
LLE 'UNBTCA) 301707 € LENGTN OF LABEL STRING (1))
)

LADID VINY! S7C LAGEL 1pENTIPIgR
1¢0,0,0,0,0,0,9,0,0,0,0,0,0,070,0,0,0,0,0,0,0,0,000,040,0,09,0,0,0,0,0,0,0,0,#07010000,%)

a,
TOVPRLAY! STACKIO) *WITHY *INT' DECLIST.IDYYPE/SITOPRC, ARRAYS) :3
TOVPRLAY' STACKIS) tWITHY PINT! NAMEITOVERLAY' STACKI29) °*WITH' VINT' meiD) Es

E
¥

YPAGE' GLOBALE

VINTY CARRAV' ACCELO¢7);'INTEGER® OUTOEVeR106)

VINYEGER" ToTV,ACCUMULATON, FUNCYION, NACC/ NUMBER NUMBERGCALE ;STACKPOINTER LN xM STATUS TYERY AggFUN}
t TRANSFER ADDRESSES)

SINYEGER' pYA,DTA,STA;

¢ DECLARAYIONS)

PINTEGER" TOPTEN,OFFSET, COMMON, TABLED, TABLET ,OVERLAY, OVERBASE, 1DTYPER, PARANPTRZ, TSUN, CEUNS
¢ BLOCKS)

VINYEGER! BLUCKCHAIN, LEVEL TRACE,LOCALLIMIT DATASTART (DATAPYR, DATAMAK,pRESETOK

¢ LASEL BLUCKS)

VINTEGER® LABCHAZN,LABDECLISY,LABSTACKPTR;

¢ PROCEDURE DECS)

TINTEGER® PROCCNAIN,PROCPTR, PARAMPTR PARAMDECS, LINK, PROCSTRING EXITCH, DUECKAIN;

¢ CONDITIONALS)

SINTEGER® 1FCHNAIN,SKIPCRAIN,COPYOUE,RELOP;

¢ FxPRESSIONS AND PROCECURE CALLS)

SINTEGER® EXPRCMAIN,PREFACC, EXPSCALE, SCALEFIRM,BITSHIFY, PNP, PSP, FPP;

t EOR STATEMENTS)

VINTEGER' FORCHAIN,FORSTATE,Cy,COPYSKIP,DATAADD,BUA,RTA, RTL,CCC)

t MaCROS)

PINYEGER® MCCHAIN, v2,MCSOURCE,MCBODY,MCLISY, MCTOP, MCFLAGS

1BARE' WASTY CUDE; 4

CTINTEGER! INCTR;'INT' "ARRAY' INBUFF(0363);

TINTEGER? *PROCFOURE® READTAPE;'CODE' 'BEGIN®

Ed
>

DA BB YA N UVNNVUNNNY VNN

JUS R;

LoX [S5)3
AND #177;
SUl 8123
JIE %3

SUR #26;
FIS N ¥

Sup B0}
Ly 3

SUR #37;
JIE N}

sun 9

ADD w40:
JGE #2;
NEQ 202
AND #4601
LOX INCTR;
STO INBUFF(81):
ADD 1

AND #7735
STO INCYR}

JCS 94
TEND' READTAPE;
TORNC’ DUMMY]'CODE' *SEGIN' QJCS84 *END' DUMMY)
TPRNCY SyOPCTLOC' 'INT' x,v)J'CODE’ YREGIN' 1LOXO7IZLON06!7LOXCOT1)IPEXCIO2IITSTOLOTIIAICEOE 1END® Sudr:

TRROC' FOVEC VALY 'INT' NI'LOC' 'INTY FRON,70))'CODEY tREGIN' 1LDx0612LDX8%19A0DATIZADDE?}
TSUBTI25UB117SUBIIOLONCAY) I4STOLRZ)IPINT =S 10.C04 END' MOVE;

PINTY CPROCY NEXTCHAR('LOCT VINTY 2),9CODE' *DESIN® RLOXSTIVLONLO2)I7LONCAIIFIJLTO2)PEALI2I1SLEYIILYO2;3TRRLE;
PANDATZ USLEY ;1ADDY ;ISLEQ2;18TOLN21700C804 YEND? NEXTCHAR;

TINTY ¢PROCY TESTSTRING(IVALY +1NTs §9,82);0C0DE *OREIW) TLOKBP;2L0R06;6LONSTACKIBY) 03RLLD)
7L°IIYAC¢II1)SINIGSTACK(l!ll'Jll'!l1A°D'l'l'b'l"“lll.J‘I"QI'JCl.G ‘ENd' TESTSTRING:

3.
.

itk e SRR, 3Lk R AR | Ehae o Lol

EHEOT

'pASE" OUTRUT 4}

YPROCEOURE' OUTTHAR(VALY "INT! CHAR)I'CODE' *BEGIN'

tus #1003

NLE #9633 ¢ 9400 - CR)

JEE OUY; ¢ CR LF REQUIRED)
ABD #40;

JOE o231

NEQ 9205

29003
LoX #322646206;
svo (2):
Lo #2263
Lo 873
ass
AND #2001
ang an

PO WOOONIYNINNEN
»
>
o

LpX OUYDEV)
Lex 8133
JLY #=1;
outT (81)3

S0 OCOdNS
-
-
-
-
~

JTE oUY
TEgD' QUTCHAR;

YoRoCEDURE"® TEXTC VAL' 'IxT' STRING)S
SBEGING FPINTEGER' J;¢FORY Jet i ;NEXTCHARCSTRING) DO¢ OUTCHMAR(NEXTCMAR(STRING)) ‘EnD* TEXT;

tPROCEDUNE" NEWLINE)QUTCHAR(S100);
SOROCEDURES TEXTLINBC'VALY VINT® S);*BEGIN® TEXT(S);NEWLINE *END' TEXTLINE;

TRROCT HALY('VAL® VINT® STRING)I'GEGIN® TEXT(MALTED o =) TEXTLINE(STRING);
CrfLF? [4JC0 "THEN? *GATO? LiMg/IF° R41>40 PTHEN' *GOTO' M 'END' HALT;

YRROL® OCTLOOPCIVALY INT! WORD,DIGITS);IBEGIN' WORDECYCLE(WORD, (B-01GITS)Y);
YEOR® DIGITSODIGITS~y 'WHILE® DIGITE>S0 DO *QEGIN' WORDOCYCLE(WORD,3);OUTCHAR(WORD *MASK® 7) 'END' 'END'

TAROCT PRINTADDC VALY *INT® ADOI'QEGIN' *SPECIAL' YARRAY' TAGESA $P,3D,8$S,3C, 8L .SE.8u;
QUTCHARCTAGL DTS (3,6)ADD]);OCTLOOPIADD *MASK' #STT77,S) TEXT(": °)
TEND' PRINTADD;

'BROCEQURE' PRINTBUFF; *BEGINY 'INYY I,CITEXT(™Y , , %)
TEOR' TOINCYR, (Joq) "MASK'#27 'WNILE' IC>INCTR 100°
YBEGIN' CeyNBUFFLL)I'1F' CO>u0 *YuEN®' OUTCHAR(C))'1F? Col100 *THEN' OUTCWARCS?) ‘END' For 3:
TEXTLINE("oee")
TENS" PRINTRUFE,

TPROCEDURE® GIVEUPCIVAL® "INT' $)7'BEGINY PRINTBUFFITEXT("FAILED : ") TEXTLINE(S):*GOTD® STARYUP *END' GIVEUP:

TRAGE' OUTPUT 2

6

IPROCEDURE' OUTSC*VAL® *INT' TAG,WORD)I'IF* TESTeO 'THEN' PBEGIN' *INT' 1;OUTDEVemIO7:'FOR® Jebk:e1:0 *DO°
SOEGIN' OUTCHARCTAG) JCHECKSUMCYSUM, TAG) INOROSCYCLE(WORD6) S TAGHNORD *‘MASK® #T7 'ENp! LOOP;

OnTPEVES106 *END' OuTs;

TPROCEDURE® OUTCONT('vAL!' 'INT' WORD);OUTS(D,NO0RD)?

IPROCEQURE! QUT24C'LOC’ "INT' TAI'VAL' 'INT! yORD,TAG); 'BEGIN’ TAeTAe);
QUTSC'BITS [3,61TAce*BITS (3,6)TAG/VORD) TEND! OUT24}

TPROCEDUREY OUTIONIAC LOCY TINTY TAJO VALY "INT' TEN,ADD);
OUTZ4CTA, CYCLECTEN, 14) 'HASK? #T?760000 + ADD 'MASK' RI7277,A0D):

TPROCEDURE' OUTYIOT14CSC VAL "INT' ADD) JOUTI014(STA:TOPTEN,ADD)
TPROCEDURE® OUT24CSC'VAL' 'INT' CONST)IOUTZ4(STA,CONET,0);

YOROCEDURE® PUNCHLOOPCTVAL® TINT! CHAR,TIMES)S'CODE' tQEGIN! SLOXTEST:ISINIOUT;
SLOXI#107)15)LTemt;70UT(#107]1:68UB1;6UNZo~4T0UT:0JCSB4 "ENDT PUNCHLOOP:

1PROCEDURE' THEAD;'SEGINY PUNCNLOOP(0,100) 1 TSUNeD *END+ THEAD]
1PROCEBUREY TTAIL)'BEGINY THEADJOUTS(7,003645760) ;PUNCNLOOP(W3T77,20) s THEAD "ENDY TTALL;
tPRNCEDUNET ENDSEG; IBEGIN' OUTS(3D,TSUM) JTESTeO; TTALL YEND! ENDSES;

YOROCEDURE' STOPOP(IVAL® "INT! TAAD))1'RECING TERTCTA) ;YEXT(™ 1 *):TEXT(TO):
116 TESTeQ YTHEN' 'BEGINY TESTeq TEXTLINEC™ ; COMPILATION INNIBITED™) 'ENDY TELSEY NEWLINE:
PRINTAVSF

tenp’ SYOPOPR)

YPROCEOURE' WARNC YAL® PINT? TA, TD)1'SEGIN' TEXTC("WARNING 1 “)ITEXT(TA)}
STEY TRRO YTHEN! MEWLINE 'ELSEY *BEGIN' TEXT(™ ¢ ") ;TEXTLINE(TD) *'END';
PRINTOUPF

fENnt WARNG

ocrLoor;

Ty

%

e

YPARE' OUTPUT 31

IPROCFOURE® DOSTRING(VALY *INT® STRIKG;'PROC* PROC(IVAL® PINT*))]
TEOR' STRINGOSTRING;1:STRINGe 'BITS'{4,0)1(STRING) '00' PROCCISTRING)):

VINT! 'PROCY SPFCSTRING: 'BEGIN®' *INT'ANS)ANSeSTA:DOSTRINGCILOC (NAME) (OUT24C5); ANSY ANS 'END* SPECSTRING;
YOANCEDURE® OUTILPVAL' *INT® XEM,N,SPIEL)I'BEGIN® *INT' STRAING)
TIF' W€D "THEN' 'REGIN' SPIELS'LOC'(STRING) (NeNesN00300001STRINGENSRUS174000 'END' aCC
TELSEY CIF' "BIT'[1IN<D0 'THEKR' SPIELe"(TEmP)“}
QUTTUNACPYA XFM,N) 3" IF® LEVEL>S3 °THEN' fBEGIN' pOSTAING(SPIEL, OUTCONT);OUTS(36,PTA=Y) 'END'
tennt Opyls
ToRNCEQURE" OUTXFMNC VALY 'INT' X FeMonsSpIEL) JOUTIC(NRS20F)0bon, N,SplEL);
tpaNCEOURE® OUT27C'VAL' YINT' ADD,SplEL)IOUTI(#Y134,ADD.SpLEL);
'PRANCEDURE' CALLLIG(VALY "INT® LNO,SPIEL)JOUTL7(N00500000¢LNO,SPIEL):

TPRNCENURE® LIBYRACEC'VAL® *INT' LNO,ADD,SPIEL);
TREGIN' OUTI(WIGR0,ADD,SPIEL);CALLLIOCLNG, “(TRACE)") TEND! LIRVRACE;

tPRNCEQURE® TRACESTRINGCIVAL® *INT! LNO,STHING);
1BEGINY LIBTRACE(LND,SYA,STRING) ;DOSYRING(STRING,0UT24CS) *END' TRACESTRING;

SENTY tPROC® OUTWCONSTC('VAL® 'INTY CONST);'BEGIN' OQUTCONTC(CONST);*ANSWER' p00700000 *END! QUTWCONST;

TINTS CPROC' FORMMASK('VAL® VINT' REF):
YCODE' “BEGIN' 1LOXJ7qLOXPARTWORDID1);PLOX=9:7SRLOY;qSRLSI7SRLAY:P2SLCO1:0JCSD, "END® FORMMASK]

TPROCEDURE® MASKINSTC('VAL' "INT' REF+ACC/SENSE) IOUTXEMNCACC,#15,0,0UTWCONSTC(FORMMASK(REFI'DISFERYSENSE) ., " (MASK) ") :
TPRNCEDURE® DIAGC'VAL' "INT' Ta,TBY;'IF' LEVELC>0 "THEN' 'gEGIN'
PRINTADD(PTA) JTEXT(TA)ITEXT(" ¢ ") ITEXTLInE(TD);

C1FY LEVEL>®2 YTHEN' 'BEGIN® DOSTRING(TS,OUTCONT);OUTS(33,PTA) 'END'®
tEND' DIAG;

YpAGE’ RESCALE:

YyNT' YPROC' RESCALE('VAL® "INT' NUMBER,OLDSCALE,NEWSCALE);1CODE® 'DEGIN'

? J2€ EXIT ¢ NUMBERaY)

6 AbD #NQ014077 (MASK SCALES)

S AND 200014077 ;

6 NEG @5 iC DIFFER)

6 JZE EXITY $C TYPES/SCALES EQuUAaL)

& NFO as it RESTORE)

0 sYo [2) it CLEAR Q)

0 OVR i $0 CLEAR OVERFLOW)

? SV a% iC NORMALISE,@3¢32-SHIFTS LEFT)
? SRA 1 H

7 NFQ #40000000 (¢ RESTORE SI1GN)

3 sus 3¢ 30 93¢TOTAL LEFT SHIFTS)
3 ARD 36 it 3+0LDSCALECCORRECTED)Y)
A LOX 23 H

6 AND #77 $C 8640LD P yALUE 32)

$ $s8 a3 $(G3CNEWSCALE~OLDSCALE)
3 JLT FalL iC TYPE/SCALE MISSMATCH)
S ste 1 :

§ SLY FLOAT JC FLOATING REQUIRED)

3 AND #777 H

3 sus 24 H

3 JGE FAIL ¢ RESCALE>23 PLACES)

7 SRA 33924 3¢ RESCALE)

7 apd (1) ¢ ROUND)

EXIT 2

0 Jes ¥ 3¢ EXIT)

ELOATY

n NVe ey 10 CLEAR OVERFLOW)

7 apd 840 30 ROUND)

1 0ve o3 10 1F NO OVERFLOW)

? seL % H

A ADD ¢ $(CORRECT SCALE)

P AND B?P777700 3(MASK M, S, 18 BIYS)

7 sty (p) 30 TEST BOR =1,0)

4 nvR o3 PCNOT =1,0)

7 sma H

LI H

? a0d 36 3¢ PACK)

6 AND 877777700 ;

6 JI8 EX1T i EXPONENT NOT OUT OF RANGE)
BATL ¢

7 LAl “wUMBEW"

& LNC “CANNOT BE RESCALED":
noJcs sSTor0P

CENN' RESCALE:

TINTY CPROCT SCALECON; *AEGIN® NUMBERGRESCALE(NUMBER, KUMPERSCALE, IDTYPE) ; *ANSUER® NUMBER 1ENDY SCALECON:

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COrY FURNISHED TQ DDC

"=

1; IPAGE® ACCUNULATORS)

BN YPROCEDURE" ZEROACCSI'GEGIN' *INT! A)'FOR' Ae111t7 00! ACCOLA)eD 'END' ZEROACCSS 2

tPROCEDUREY DUMPACCEIVAL!Y "INTY A)J*BEGIN' OUTXFMNIA,#90,0/0ATAPTR, " (DUNP) ") ;STACKIACCSTA)IeDATAPTR¢$20000000;
k. ACCSTAISO0SDATAPTRODATAPTRSY VI DATAMAKSDATAPTR 'YHEN' pATAMAXeDATAPTR
<) YEND' OyYMPACCS

TPROCEDURE? DUMPACCSI'BEGIN® 'INT® As'FOR' Aety1;7 00+ +1FY ACCGLAICD '"THEN' DUMPACC(A) 'END' DUMPACCS)

. VINTY YPROCY FINDACCC'VAL® 'INTY A);OMEGIN' *INT® ANS,TEST,MIN;WINe=1;'FOR' AeAseis! ¢0O¢
VBEGINY TESTC'IF' ACCS[AIS0 'THEN' O YELSE' ACCE{A} 'DIFFER® §20500000)=MIN;
l TIEY [3)<>0 'THEN' TBEGIN' MINGMINSTESTIANSeA tEND! LF .
» VEND! SCAN OF ACCS: 2
)

YTB® MINCO "THEN' NUMPACCCANS) 'ELSE' ACCSLANSIeD) :
VANSWER? ANS 'END' FIKDACC:

v, - VINT' YPROCY FINOPREF;'ANSWER® *IF' ACCSIPREFACC)=0 PTTMEN' PREFACC 'ELSE' FINDACC(TYS

Rk i G

. TINT' CPROCY FINDOUT('VAL' *INT' ADD)I'IF' ADDS) 'OR' ADDu('THEN' 'ANSWER® ADD 'MASK' 7 ‘ELSE'
L}

« 3 GINY YINT' AJ'FOR® A®Y;1:7 DO’ 'Ip’ ACCSIAISADD 'THEN! 'ANSWER' A:'ANSWER' O 'gND* FINOOUT) H
YPROCEDURE' ACCUPDATEC'VAL' 'INT' REF)JTIF' TYPEBITSLREF)>20 fTHEN' é
SIF® DIRADOIREFICO "YHEN' ACCSIDIRADDIREF)}eREFeSeMARK VELSE® 3
Y18 INDADO(REFICO 'THEN' ACCS[{INDADDLREFIISREFOLeMARK; B
TPROCEDUREY INACC('VAL' INT' ACC,REF);*BEGIN® DIRADD{REF)SACCOAMARK; INDADD[REF)e0;ACCUPDATE(REF) TEND* INACC; s ;
1PROCEDURE® TOPACCCIVAL® *INT' ACC);INACC(ACC.RH); E
VINT' *PROCY ACCOFC'VAL® 'INT' REF);'ANS® '1F' TYPEDITSCREFI>®0 *ANO' DIRADDIREFICO *THEN?! DIRADD{REF}-aMAR. *ELSE' 0;
] TINT® 'PROCY LWACC:'ANSWER® ACCOF(LM)}
VINT! *PROCY RMACC;'ANSWER' ACCOF(RM);
X VINT' 'PROC! COPYINACCC*VAL' 'INT® REF);'IF' YYPEBITS[REF)<O 'OR* LCM[AEF)<>0 *OR' INDADO[REF)I<>0 'THEN® °*ANSWER ¢
.’ - TELSE! TANSWER' FINDOUT(DIRADDIREF));
VINTt 1PROCY ISINACC('VALY 'INTY REF);
b . TREGIN®' VINT' A;ACCOPYINACCC(REF)Z"1F? A<>O0 'TMEN' INACC(A,REF);'ANSWER’ A 'END' 1SINACC; E
1PROCEDURE?Y PERM;
SBEGIN' FINTY I1;9FO0R' 1€0;134 DO SWOP(STACKILWeT),STACKIANeT]) JACCUPDATECRN) ;ACCUPDATECLM) *END PERN;]
.
>
YPASE' SYACK AND LABELS: 1 0
; 1PROCEDURE STACKCHECK:'IF' STACKPOINTERDLABSTACKPTR 'THEN' GIVEUPC™STACK COLLISION®)?
LINT® 'PROC' GRABSYACK('VAL' *INT' w);
'BEGIN' STACKPOINTER®STACKPOINTEReNISTACKCHECK: *ANSWER® STACKPOINTER=N *END' GRABSTACK!
TPRACEOURE' ONSTACKC(VALY *INT® M:*LOC* 'INT' START)}
IBEGIN' NOvE(N.SVAIY.IYAC([S'ACKDOINYEI));ITA!VOGIAOSVAC((N) TEND' ONSTACK:
IPROCEDUREY OFFSTACK('yAL' 'INY’ N;'LOC* 'INT' START);
TBEGIN' STACKPOINTERGSTARY ;MOVE(N, STACK[STACKPOINTER),START) 1ENDY OFFSTACK)
IPROCEDURE! SETCMAINTOPTAC'VAL® °*INT* CHAIN))'IFt CNAINCYO 1THEN® 'BEGIN® OUTS(17,CHNAIN) ;ZEROACCS TEND' SETCH;

YPROCEDURE! JOINCHAINSCIVAL® 'INTY CNAINZ?LOC' *INTY MASTER) ;PIF' CHAINGHO 'THEN® 'IF' MASTERSD 'THEN® MASTEReCHALN 4
YELSE' 'BEGIN' OUTCONT(MASTER)JOUTSC'IF' MASTERCO 'THEN' 48 "ELSE® 20,CHAIN) TEND® JOINCHAINS:

1OROCEQURE! BEGLABBLOCKIPBEGIN' ONSTYACKIZ, LABCNAIN) JLABDECLISTSD '£ND' BDEGLABBLOCKS

" YPROCEOURE' ONLABL'VAL® 'PINT' FROM)I'BEGIN' *INT® SIZE,NEWSP}
SIZEeLLS(FROMI 44 ;NEWSPOLABSTACKPTRSIZE;CHAINCFROMICOIMOVE(SI2E, STACK[FROM],STACKINEWSP)))
'IF® LABDECLISTSO ITHEN' LABDECLISToNEWSP *ELSE! CNAINCLABSTACKPTRIGNENSPILABSTACKPTReNEWSS
° FTEND' ONLAD}

TPROCEDURE® ENDLASOLOCK1BEGIN® ' INT' NEXT,DECS,0LOSP, T NEXTOLARDECLIST OFFSTACK(S, LABCHAIN) jOLOSPELARSTACKDPTRS
1FORY DECSeNEXT TWHILE® DECS<Y0 00 'BEGIN' NEXTOCHAINIPECSI;IFC PCHN(DECSIPR0 TTHEN!
"OEGIN' TOLABDECLISTY;'FOR' TeT ‘WHILEY! TO>mOLDSP *0O0°' '1F! TESTSTRING(Te3,DECSeI)n0 'TNEN'
‘ TBEGIN' JOINCHAINS(PCHIDECS),PCHIT)) JJOINCHAINSC(OCHIDECS),DCNIT)); GOTOY SKIP "END' 'ELSE’ TelWAINIT):
ONLAB(DECS)
YEND! LABEL UNSET}
SKXIPL'END’ FOR DECS
- 1ENDT ENDLABBLOCK;

i" VINT' 'PROCY SCANLASC'VAL® 'INT' PTo)s'BEGIN' 'INT' LAB:LASCLABDECLIST!
L ":I' LABOLAB 'WHILE' LABCIO 'AND' TESTSTRING(LAGI PTReS)CP0 *DO' LARCCHAIN{LAD);'ANSVER® LAR
5 1END' SCANLAB]

TINT' "PROC! LOOKUPLA
. ONLAB(2) IPCHILA
, TENd’ LOOKyPLAS

TOEGIN' VINT' PTRIPTRASCANLABCO)I'TF? PTRC>Q *TNEN' 'ANSWER' PTR:
ACKPTR)SO;pCHILABSTACKPTR)®OSTACKCHECK) 'ANSHER® LARSTACKPTIR

o ting? "PROC' LOOKUPNAME('VAL' "INTY LIMIT,REF))'REGINY TINT! PrR;PeReDECLIgYI*FOR' PrRePyR "yRILE' PyRCOLINTY *0O*
; SIFY TESTSTRING(REFOS,PTReS) a0 ITHEN' 'ANSWER' PTR 'ELSE' PTROCHAIN[PTR);

45 . TANSWER' O 'END' LOOXUPNAME}

f TPROCEOURET FIKLABEL('VAL! TINT! LAB) 16" PCNTLARICO YTHEN! STOPOP('LOC' CLABIDLLABY) »*LABEL SET TWICE™)

TELSE' 'BEGIN' ZEROACCSISEVCHAINTOPTA(PCHTLADI};SETCHATNTOPTACOCHILAB]) JPENLLAGIEPTACMARK;OCHILAB) #PTACMARK]
DIAGC LABEL", *LOC CLADIOLLAD]))
TEND' FINLADEL!

IPRNCEOURE® SETLAREL('VAL® 'INT® LAB);
A TBEGING BINUABELCLAB) ;169 *BITH(0)TRACECHD *THEN! TRACESTRING(3,'LOCTCLABIDILABYI) *ENDY SETLABEL;
1
] . SINTY CPROCY USELABC'VALY *TNT® LAB);*BEGING *INTY ANS ANSOPCRILAB))
1 1 TIFY ANSCO 'TWEN' ANSOANSeMARK 'ELSE' PCHILABIOPTAY -
) TANSVERT ANS CEND' USELAB; nts PAGE IS B g
) S BEST QUALITY PRACTICABLE

FROM COPY FUKNISHAD TO DDC

TRARES EHAINS AgD DLQCKSS 11
7 epanee SETDUR;IREGING SETCHAINTOPTACDUECHAIN) ;DUECHAINGD 'END' SETQUE;
l PNt REVCNAIN;SWOP(DUEBCHAIN.SKIPECHALIN)}
-4 VPRACY DUTCI:*BEGINY OUTXFMN(ACCUMULATOR, SUNCTION O/ SKIPCHAINS “CTEST) ") 1SKIPCNAINGPTA 1ENDI OUTCS:
IPRACY OUTUJ;'EEGINY OUTIC(g100,8KIPCHAIN, “(SKIP)*) ;SKIPCHAINGPTASY 1END® OUTUY;
1BRNCY REVCJ'TF' FUNCTION=y26 'TNEN' ACCUMULATORGACCUMULATOR *DIFFE®® 9 PELSE' FUNCTIONGFUNCTION 'DIFFER® §;
, IRRAC! DUEERR;*1F® DUECHAINSQ *THEN® 'BEGIN' PRINTADD(PYA) ;STOPOP(Q,“STATENENT CANNOT BE ENTERED®) 'END* DUEERR]

- TPRNC' ANSLINK;'IF* PROCSTRINGSO 'THEN' °*BEGIN' OUT27(LINK,"(ANSYER) "} ;EXITCHE! TEND®
ok TELSE® *BFGIN' OUTICNI00,EXITCH, "(ANSWER) ™) JEXITCHePTA=Y SEND® ANSLINK;

'ORNC' STATUSTEST('PROC' PRUC)*BEGIN' 'SWITCH! S¢50,51,32,83,84;'6070¢ S{STATUS+1))
81 S4:0UTCY;'GOTO" 508

- S3:0UTLy GO0 505
£l S2:ANSLINK
2 §1;PROC

B SOsSETYDUE:STATUS»y

YPEND' STATUSTEST;
tPRAC' STATUSCHECKISTATUSTESTC(DURERR):
rRNC STATUSCODE; *BEGIN' STATUSTEST (DUMMY)J2EROACCS 'END' STATUSCODE;

- YINTY tPAOC' DIRTNDADOC'VAL' *INT' REF):CANSWER® 'IFt QIRADD(REF]I<H0 'THEN' OIRADOCREF) VELSE' INDADDINEEY)

TPANCEOURE® BEGIWNBLOCK; *NEGIN® BEGLARRLOCK;ONSTACK(S,0LOCKCHAINY ; LOCALLINITEDECLIST DATAMAXSDATASTART YEND! BEGINSLOCK;

(PROCEDURF® ENDRLOCK; *REGIN® *INVT MAX;MAXGDATAMAX;OECLISTeLOCALLINIT;
UFFSTACKCR NLOCRCAAING ;Y IF® DATAMAXRCMAX *THEN® DATAMANGMAN:ENDLABSLOCK
PENR' ENDRLOCK:

- TPROCENURE' FINISNSEG:'WEGIN' 'INT' DECS;'IF' LABDECLISTC>Q 'THEN' *QEGIN' TEXTLINEC(“UNSET LAQELS"™):
TEOR' LASRECLISTOLABRECLIST(CHAINILABRECLIST] 'WAILE® LABDECLIST<O) 'po!
TBEGIN' FIxLABEL(LABOECLIST) ;TRACESTRING(Z,/LOCICLABID(LARDECLISTI)) *END® FOR;
N LABSTACKPTROSTACKFINISH 'END' UNSETS:
ENDSEG;THEAD;'FOR® DECSePTA,DATAMAX,STA ¢DO* *PEGIN' OUTCONT(DECS) ;PRINTADD(DECS) (END!;
TEXTLINEC"END OF SEGMENT")JOUTSC(1,TSUN)TTALIL YEND' FINISNSEG:

tPRACEDURE® STARTSEGC'VAL® 'INT® TYPE);'DEGIN' 'INT' STRINGISTRINGe'SF' TYPEa3 'THEN' “(COMMON)®™ *gLSE’
THEADIDOSTRING(STRING,OUTCONT) JOUTS(606TYPE, ' 1F' TYPEB2 *THWEN' pIRAppLDECLIST) *tgLSE? CSUM);
I TEATC'IF? TYPES®Y 'THEN' “PROGRAM™ *ELSE' YIF* TYPE®2 'THEN' “LIBRARY™ °*ELSE' "COMMON *);
. TEXT(" SEGMENT : ") TEXTULINELSTRING)
PTA#OUIUQUU0SOTA*S002000003 DATAMAXSDTAIDATASTARTCDATAMAXK;STA«R00300000;2ERDALTS
; TENR' STARTSEG:

"LOC ' (NamE):

toang’ STACK and PROCS:

12

VINT' 'PROC' ADDADDC'VALY 'INT' ADOD,INC)I'ANSWER® ADD 'MASK! #77740000 ¢ (ADD+INC) 'MASKY 2377770
YORNCEDUREY SETLHRM;'BEGIN' RHESTACKPOINTER=S;LHeRH=3 'END' SETLHRN}

[YORACFOURE® BENEAD;*BEGIN' "1F* TYPERITSIRNI>EQ 'THEN'

' TIF* DIRADOLRM)<O PTHEN' ACCS{OIRADDIRHI}«0 *ELSE' *IF' INDADOCRNICO 'THEN' ACCSLINDADDIRMI)e0;
. STACKPOINTERCRN;SETLMRM "END' BENEAD)

TINT' 'PRNC’ TOSADDI'SEGIN® *INT’ A AGDIRADDCRMIIBENEAD:'ANSWER! A TEND' TOSADD?
TPRNCEOURE' GRARVARI'SEGIN' GRABSTACK(S)ISETLHRAIPARTHOND(ANICO)IDIRADDIANICOIINDADDIRNICD YENDY SRADVAR)
YPANCEDURE' NONAME;'REGIN® GRABVAR;SPIELIRM) & CANON)";TYPEBITSINN]e#20000067 *END' NONANE;

TPRNCEOURE® LOOKUP;'REGIN' "INTEGER' PTRIGRABVARIPTReLOOKUPNAME(D,0) 1
YIF' PTRC>0 'THEN' *BEGIN' SPIELIRMIGILOC (STRINGIPTR])IMOVE(L, TYPEBITSIPTRY, TYPERITSIAK]) ‘gNp*

- TELSE' 'BEGIN' TYPEBITSIAN]}eR00NU0087 SPIELIRM] e (UNDECLARED) ") TEXT(' LOC CnANE))STEXTLINEC™ | UNDEBCLARED®) tEnD*
| TENRY LOOKUP;

1ORACEDURE® XSPARAMS{TYALY 'INTt PYIR)}
TREGIN® STOPOP('LOCY(STRINGIPTRY),“HAS TOO MANY PARAMETERS™) ;IDTYPESIDTYPE=MARK 'END' XEPARAMS;

*BANCEDURE' NEXTPARAM Y IFt IDTYPEQO tTHEN' NSPARAMS((O) tELSEY sTF PACLOICOD 'THEN® +QEGINY
STACKIPARAMPTRIIDTYPEIPARAMPIRGPARAMPTROY JSTACKIPARAMPYR] ¢}
PACLO)*PACLOJ =11 IF" PAC(O)mé *THEN' PACLOJe3 CELSE' 1P PACLO)S0 *THKEN' IDTYPECIDTYPEenARKS
- *IF* SPOLOJEY 'THEN' 'BEGIN' SPR[OJeZ;LCMIO)e0 'END’ TELSE?
CIFY SPR[N)®2 'THEN' 'BEGIN' SPA(O)e);LEMEO)IoLM2[0) *END*
" TEND' NEXTPAMAM;

YPRNCEDURE' LOCACT;'BEGIN' PARTWORD{RHIeU;*IF' DIRADDIRNICI0 *THEN' TYPEBITSIRN)en10000067 *ELSEY
TAEGIN' OIRADDIRHISINDADDLRH]);INODAODIRHICO; TYPEQITSIAN]#00000087;ACCUPDATECRN) YEND! TEND' LOCACT)

3 tORNCEDURE' OUTPRESETD(*VAL®

TINTS N, TY 'IFt PRESETOXSQ 'ORY OTADBDATAMAX *THEN® STOPOP(YLOCT(NAME} "TLLEGAL PRESET"}
TELSE' OUT24(DTA,N,T);

o TERNCEDURE' EXCPSPEC;*OEGINY SWORCIDTYPE,IDTYPER) ;SWOP(PARAMPTR, PARANPTRZ) 'END' EXCPSPEC)

t) 'PROCEOURE’ MAKEPSPECT 'BEGIN' PARAVPTRISGRARSTACKI?) IPARANSPECIDECLISTICPARAMPTRZCMARKISTACKIPARAMPTR2) ¢}
.J IDYYPE2#' 15’ SPRI01<20 *THEN' #07100087 ‘E se' NOT000000 *'END' NAKEPSPEC)
1y

*PRNCEDURE' FINISHPSPEC)'OEGIN' STACKPOINTERCPARANPTRZY [PARANSPECIOECLISTIepARANSPECIORCLISTI=nARK YExD® FINTISNpSpEC:

'pRACEOURE’ PROCITACK; 'BRGIN' STATUSSY ;MAKEPSPRCIONSTACK(B)PROCCHATY) ;BEGINBLOCKIEXCOSPECIPROCPTRSDECLISTY)
LOCALLIMITOCHAINCORCLIST) EXITCHeO;PROCSTRINGED 'ENDY PROCSTACK:

4 tORNCEOURE! ENTERPRNG;

: TREGINY SETOUEISTATUSS0; TFY LEVELCO *THEN® PRINTADDCDIRADDLPROCPTR)) ;DIAGL PROC *, 1LOCH(STRING(PROCOTR)))
TENN' ENTERPROCH

.\ THIS PAGE IS BEST QUALITY PRACTICABLRE
s COFY FURNISHED IO DDC

p——

*tPAGE? ARRAYS AND FXPRESSIONS: 13

YINTY "pROC ARRAYBASE;"ANSWER' '1F' QGVERLAYCOV "THEN' OVERBASE 'ELSE’ DATAMAX;

'ornCEOURE® DODIM{'VAL® ‘YINT' START,INC:'pROoC’ ACTCO VAL "INT'));'QEGIN® *INTEGER’ 1iSTARTOADDADDISTARY QFFSEY)}
"EORY JeY Y ARRAYS *DO' 'REGIN' ACT(STARY):SVARTEADOADD(STARTY,INC) 'END* FOR I
ARRAYSSARRAYSONUMBER; 'GOTO® EXIY

*END’ DODIN

VORNCEOURE’ ADDRARRAY('VAL' 'INT’ STAQT)I'SEGIN® 'INTEGER' PTy:
YPROCEDURE* MINE('VAL® 'INT’ ADD)II*BEGIN' UIRARD(PTRIGADD;PTReCHAIN[PTR) 'END® MINE;
M PTRDECLIST;O00IMCSTART ¢ (ARRAYS~1) *NUMRER, »NUMBER, NINE)
TENR® ADDRARAAY}

YORACEDURE ' STACKEXPR; “BEGIN' ONSYACK(S, EXPRCHAIN) SEXPSTALESD;SCALEFIRMeD "END® STACKEKPR:

YOROCEOUREY KJLLEXPR;'BEGIN® OFFSTACK(S EXPRCHAIN) ;SETLHAN tEND* KILLEXPR;
. TTNTT PPROC ISMOD('yAL® *INY' REF);'BEGIN® 'INT® MOD,ADD;ADDCINDADD(REF); 1F' ADDSO 'THEN® tANSWER' O
MODeFINPOUT(ADDY s *1F MODs() ‘OR*' MOD>sé *THEN!
TREGIN' MODSFINDACC(I)JOUTXFMN(MOAD,00,0,ADD,"CINDEN)I ") IF' ADOCO °THEN' ACCS[ADDI«0 *END’ LOADNOD:
ACCSIMODIe! 1F* 'QITS'(2,0JADDK>0 "YHEN' O 'E SE' ADDI'ANSWER' wOD '"EnD' 1SMOD:

YOROCEDURE' TNSTC'VAL® 'INT' REF)ACC,FUN) JOUTKFMUNCACC, Funett1F' (CMIREFICOD *THEN' & '€ §E* 0),1SpQD(REF),
*1Er TYPESITS(REF)CO *THEN® OUTUCONSY(DIRADO(REF)) 'ELSE* *1F' LOM[REF}<>0 *THEN' USELAB(DIRADD{REF)Y,
YELSE® DIRADDIREF),SPIELIREF));

1PROCEOURE® SCALENUM('VALY SINT' RES,SCALE);
YOEGIN' DIAADDIREF)CRESCALECDIRADDIREF) (TYPERITSIREF) SCALE);TYPEBITS{RECICSCALE ‘UNION' MARK TEND' SCALEWUM;

TPROCEDURE" PICK(*VAL® 'INT® REFIACCSCALE/NEG) I 'BEGIN' TINT' FUNSNIFT: 3
1150 TYPERITSIRFFICH 'THEN® SCALENUMC(REF SCALE) ;SHIFT I BITS (6, 981SCALE="0LTS (6., 18)TYPERITSIREF):

t1Er COPYINACCCREF) C>ACE
TTHEN' CAEGIN' *IF' PARTWORDIREEICOQ *OR* NEGPD *TwgN' gUN®O "pLSE' 'OGIN' FUNGI;NEGED *gND';INST(Rgs, ACC,FUN) *gnD':

V36t PARTUORDIREFIC>0 'THEN' 'HEGIN® MASKINST(REF,ACC,0)3 {
150 PARTUORD[REFI<O "THEM' SHIFTOSHIFTe('IF* TyP(QFFInINTEGER CTHEN' LSSIREF] 'ELSE’ 1«MSS[RFF]) -
TELSE' 'REGIN' VIF' MGS(REFICO0 ‘YMEN' OyYTXFMNCACC,#33,0,MSSIREF), “(ALIGN)"); :

TIF YYPINEFISINTEGER *THENY SHIFTOSHIFTOMSSIREF)CLSSIREF) "END

TEND' PART WORD UNPACKINGS

SHEY SHIFTCOQ ‘THENC ‘BEGIN’ "TF? SHIFTCO *THEN' "BEGIN® SHIFTenSHIFT FUNERSY 'END' COULD DIAG POSSIBLE OVR
TELSE' FUNC'T¢' PARTWORDIREF)I<O *TWEN® #32 'ELSg'! #30;
18 SHIBT>®24 YTHEN' WARN("EXCESS SMIFT",“TO RESCALE") JOUTXFMN(ACC,FUN,0,SHIFT,“(SCALE)I");
'IEY ‘OIS [3,90)SCALERINTEGER *AND' TYPIREF)RFIXED *ANR' SGRIREF)>PVLIREF =937 ‘THEN' OUTKEMN(ACC 024001, (ROUND) ™)

TrEhO® SHIFTING;

ACCSCACCOF(REF)1o0;TYPERITSIREF)SCALE:PARTUORDIREF) @0 INACCCACC, REF);*1F' NEGKD 'FMEN' INST(REF,0,013)

TEND® PICK UNPACK AND RESCALE;

'PAGE' SURSCRIPTS AND SCALING!

14

1INT' 'PROC! GOODONE('VAL' *INT' REF,LIM);'BEGIN® 'INT* ANg}
ANSeFINDOUTC*IF? TYPERITSTREFICO "TNEN® AMARK YELSE' 'IF* INDADD[REF)C>D 'THEN' INDADDIREF)
VELSE® *IF' LCMIREFI®0 *AND® DIRAODIREF)C>Y 'TWEN® DIRADDCRES] 'ELSE' AMARKY:
TaNS' PIF’ ANSCO0 'AND' ANSKOLIM 'THEN' ANS 'ELSE' 'I1F¢ ACCS(PREFACCY®O 'AND® PREFACCCULIM 'THENW'
PREFACC "ELSE’ FINDACC(LIM) °‘END’ GOODONE;

'PROCEDURE’ SUBTERMEIVALY *INT" WEG)2'BEGIN' fynT' A, N; NeENPRCHANS:(LW 1S LOCAL POINTER)
CIFY TYPESITSIANICO 'THEN®
TOEGIN' SCALENUMIRN,D1767) IDIRADDILN]ICADDADD(DINADDILN],*15° WEGEQ *THEN' DIRADDLAM] 'ELSE' «DIRADDIRH]) 'END* i
CELSE’ 'IE' [NOADOLLWI®O *THEN®
TIF* NEGC>0 *OR° TYPIRHICOINYEGER *OR' PARTWORDIRNIC>0 'OR* LOMIRHICH0 *QR' LCMCRN}C0 'AND® TGDLLMICHO
YOR' LCMIRN)®O *AND' INDADOIRNIC>0 ‘THEN® :
*BEGIN® A*GOODONE(RH,3) iPICK(RN, A, 01767, NEG) [INOADOLLNI ¢ASAMARK ‘END’
TELSE® PIF' (CMIAM)CP0 'THEN' 'BEGIN® DIRADD(LMI-ADDADDCDINADDIRN),DIRADDLLMIIZTNDADDE M) IuDADDIRN]) "END* OC
TELSE® INDADDILN]eDINADDIRN}
SELSE® TREGIN'
TIF' PARTWORDIANICO "OR* TYPLRNICHINTEGER *THEN!
TOEGIN' ACGOODONECRH, "IF' NEGCHT *OR’ INDABOLLNICAMARKOL *THEN' P 'ELSE' 3);PICK(RN A #1787,0) ‘END*;
TIF' NEGRO YAND® DIMADDIRHIQAMARKeL *THEN® SWOP(DIRADOLAN], INDADDILNY);
ACISMODCLUI F TR INDADDILMICOINDADOLAN] *THEN' ACCS{A)SSTACKPOINTEROMARK:
INST(RM,A,NEGo02) ; INDADDLLN) sAeAMARK
TENDY ADD SUBTRACT:
SENFADSACCUPDATEILNY 1°GOTO" EXIT TEND' SURTERM;

TINT' 'PROC’ GOOPACCC'VAL' “INT' REE);'ANSWER' *3F" ISINACCCREF}C>Q *THMEN' ACCOF(REF) "ELSE’ FINDPREF:

IPROCEDURE® QOUDPICKI 'VAL® “INT' REF,NEG) ;PICKC(REF ,GOODACCIREF) , STOIREF)NEG):

TPROCEDURE® SWOPOPT;
BTL lfncc EFACC 'OR’ LNACCHO *ANp® RWACCS>O "OR' [SINACCCLNI®D 'AND' ISINACCCRNICDO *OR' TYPgBITS(LMIO
THEN? PERM;

TPROCEOURE' OPERATE('VA Y *INT' FUN)IJ*DEGIN' GOODPICKILN,0))
, VIEY PARTLORD(ANICDO YOR? LEMIRMICO0 *THEN' GOODPICK(RN,0);
TNST (RN LNACC FUN) ITYPEBITS[LNTeRE717G0TO" BENEADEXTT
1ennt OPERAYES

TOROCEDURE? BCALETESTC VAL® 'INT® A, BI'SWITCH® S)7TgEGIN' *EINTY T,v;
To(A THASK?! W3TQ0)e(8 'MASK’ #3700 1A RITEILI, 100A 84000178 13,1020 VeA ‘UNIDN® B;
i TIPS yR0 CyMEN® CTF’ pe0 YyNEN' 'GOYO0" S(1) CELSE' rGOTO! S(2):
. . 16 VDOPLOATING 'THEN® '60T0° $(0);
TIEY TRO TYHEN' TREGIN® WARNCTOPERATION VITH INT OF UNSPECIFIED SIGMISICANCE®,023°GOTOC ${6] ‘ENO’ OFFAULT RLOAT;
140TH! S(Acaedel)
TENp' SCALETEST)

TANNCEOURE' UNARYMINUS)I'IF' TYPIRYICOFLOATING 'Tykn'
T1F TYPERITE(ANICO ‘THENT DIRADD(AMJonDIRADOLAN] *ELEE? GOOOPICK(RN,)
TELSE' 1R TYPERITS{RNICO 'THEN' DIRADDCANICDIRADOIRNIIDIRFEN ' A77777700eM100
TELSE' 'OEGIN' GOODPICKCAM,0) JOUTXEMN(RNACC ,#14,0, QUTWCONST (=R100) + " (UNARY)I™) !
OUTREMNCRNACC, #O8,0, 9100, (nINUSI™)
YPNB' UNARYMINUS]

W8 PAGE 15 BEST QUALITY PRACTICARLE
TEQM COFY FUIKALSHED 10 DDC —

TPAGE" ARITHMETIC: 15

IPROCEDURE® ACCPICKC(IVALY *INT' REF,ACC)S

TRESIN® V1F' TSINACC(REF)COACC *AND® ACCSLACCICO *THEN' DUMPACC(ACC)!
PICKCAEF, ACC/)STBIREF),0)1ACCE(ACC)*0

et ACCPICK!

POROCEDURE' FLOATITC'VALY CINT' REs)IPIFY TYPLACFICOELOATING 'THEN' 167 TYPRQITS(REFICO "THEN' BCoALENUN(REP, F10000)

TR SE' *BEGIN' ACCPICK(REF,?)50UMPACCS IZEROACCEIOUTI (#9420, 8TULREF), " (TYPEI®)}
CALLLIBCIO,“CFLOAT)) i TYPERITS(REF)«N#10000IACCUPDATECREF)

1eNBY FLOATIT;

TORACEDURE' FLOATOP('yAL! "INT® OP);'BEGIN' 'IF' OP<>6 'THEN' FLOATIT(RN) JFLOATIT(LN)}
YIS AMACCS? TTNEN® VREGIN' PERM;'IF' OPpel 'TNEN! QPeOPel IEND' JACCPICK(LM.?)IJACCPICK(RN,6))
OUMPACCSIZEROACCS;CALLLIBCI0®OP, “CFP OP) ") JACCUPDATE(LN}I'GOTO" RENEADEXLY

TEND' FLOAYOP:

TPROCEDURE® ADDSUBCIVAL' "INT' PUN)IJ'IF' EXPSCALE®NT10000 'THEN' FLOATOPCFUN) 'ELSE?

TQERINT PICK(LH,GOODACCILN) +EXPSCALE,)}
STFY TYPERITEIRMICO 'THEN? SCALENUM(CRN,EXPSCALE) (ELSE*
VIF' PARTWORDIRNIC>0 'OR’ 'BITSI{6,18)CTYPESITSIRN] 'DIFFER® EXPSCALE}C>0 *THEN' PICK(RN,$000ACC(RN) ,EXPSCALE,OQ);
TNST(RUsLNACCPUN) STYPEQITSILNICEXPSCALES 'GOTO" DEWNEADEXTTY

YEuot ADDSUB;

YENT' 'PADCY POWERTWO; 'ANSWER®
VIFY TyPERITSIRNICO *AND® TyP(RH}®0 TAND! CYCLECDIRADDCAN],Z26=SGBIRN]I)uTCTHEN® SEDIRH)-2 I1ELSE’ OF

PROCEDURE® FIXCONZ'IF' YyPEBITS{RN)CO 'AND! TYP(RW]80 *THEN' SCALENUM(RN,B7037¢3GBLRN)))

YT YPAOCY SETASS)'BEGIN' ASSFUNGN10JEXPSCALECSTBIANY:SCALEFIRMeY)
SIF' 'QIT'[3)TRACEC>Q 'THEN' "QEGIN' PREFACCOP;'ANSUER' 9 'END!
YELSE' YPEGIN® PREFACCOFINDACC(7)J"ANSWER' O 'ENDY

renp’ SETASS)

YPROC! LHEQRAJSANSYER® T1F' TyPESITSILUICOTYPERITSIRN) 'OR' TyP(LNISFLOATING ORI PARTLORD(LK) <O

[ETS A
+ PARTWURDERN)<>0 *ORY DIRADO(LHIC>DIAADDLRMI tORY INDADOCLHI<>INDADDLRH] 'THENY O 'ELSE' 1)

[

TINT? (PROCY SELOPTA; ‘BEGIN'
YIFT ASSFUNCD PTHNEN' tREGINY ASSFUNCASSFUNSMARKITFY JBEsuNeg10 1 THEN! UNAAYNINUS 1ENDY
SIF) ASSFUNERIQ "THENY YANSWER: O *ELSEt tDEGIN' BEWEAD; tANSWERY 9 tENDY

tgnp' SELOPYAS

-
'PAGE" ASSIGNMENT AND FOR: 16
IPRACEDURE' STOREAWAY('VAL® 'INT! TELAG) 16! ASSFUNSO 'TMEN' BEREAD 'ELGE® 'OBEGIN' *INTY ADD,ACC,FFLAG)
FELAGOITF! TFLAGEO 'AND® PARTWORDLLNIC>O 'AND® TYPERITS(MHICO 'THEN' Y ‘ELSE' 0
ADDe'TFY FFLAGSO 'AND' PARTWORDILMIC>0 'OR' INDABDLLHI<>0 'OR* ASSFUNCH#10 ‘THEN'
CLF’ TYPERITS(LNIETYPEGITSIAN] *AND? INDABO(RKISQ 'AND! PARTWORDIRNISO *AND' DIRAPDIRNI>SD I1THEN! BIRABDIAN)
. YELSE' 0) 'ELSE® BIRADDLLMI:
XX ACCH IFY TFLAGC>O *THEN® P YELSE' "IF' ASSFUNCO '"YHEN' O 'ELSE® *1F' COPYINACC(AN)<>0 *THEN! COPYINACC(RN)
PELSE® YIF® COPYINACCCLNI >0 PTHEN! COPYINACCCLN) tELSE! EINDACC(?))
PLEY FELAGED0 ‘THEN' 'GEGIN' 'TF' INDADBDLLNIC>C TTHEN' ACCSTACC)e=1 'END’
TELSE® '1F' ACCS>0 YYHEN' pICK(RM, ACC,STOILHI,0)3
\ TIFY TELAGSDO 'THEN' "gEGIN' *1£* INDADDLLNICO 'THEN! QUMPACC(INDADDLLNI=AMARK) IZERCACCS)
OUT{ (#1420, EXPSCALE, “(TYPE)) JOUT1(B1220,STA,Sp1a L HI)I00STAINCCIPTRLILNIOUT2ACEIICALLLIBCT,"CTRACED®) *End")
SIEY PARTWORDLLMI=Q YTHEN® INSTC(LN,ACC,ASSFUN tMASK' #37) .
VELSE® *BEGING VINT' SHIFT,MODyMODSISMOB(LMY) ;
SNIPTO'IF! TYPILMIOINTEGER 'THEN' LSSILHY "ELSE' ('TF' PARTWORDILMICO *Tugh' 4 ‘ELSE?! 0)=mESILN])
VEF? FELAGRO 'THEN® 'BEGIN® *JF' SHIFTC>0 'THEN' i
OUTKEMNCACC, *1F! SHIFT>S0 'THEN' £33 'ELSE! #32,0,'1F" SHIFTIE0 STHEN' SHIFT TELSE' «SHIFY, (ALIGN)®)}
MASKINST(LM,ACC,0) jOUTXFMNCACC) g14.MOD DIRADDOILKI SPIELILIEY
MASKINSTY (LM ACC,=1) JOUTXEMNCACC#12,M00,D3maDDELN], " (PACK)®) J
. TENDt PACKING "ELSE" 'BEGIN' *INT' PIFCCYC ECRESCALECOIRADDIRN] . TYPERITS RN), EXPSCALE),
N CIE) SHIBTSE0 'THEN' SHIFT VELSEY 24aB01BT)IMASK' FOAMMASK(RN) !
SIEY COPYINACCCLM)CYACC 'THEN® OUTXEMNCACC,00,MOD,OTRADDLLMI SPIELILNY)) {
. SIFY FCOFORMMASKCLM) TTHEN' MASKINSTCLN/ACC wq))
f TEE? FCO0 CTHEN' OUTXEMNCACC, #17,0,0UTWCONSTLE) " (LONST) ")}
QuTXFMNCACC,#10,M00,DIRADDILNY,SPIELLLN]Y
TEND' FIELD BECOMES CONSTANT)
TENDY PARTWORD ASSTGNMENY;
¢ TREGINY *INTY A 'FORY ASCOPYINACCC(LM) 'WHILE' A<»0 00t ACCS{A)eQ *END' KILL OLD :OPLES)
SEMEADIC XILL RN) ACCSLACCI®ADDI (UPDATE)
TEND' STOREAWAY)
- *PROCEDURE® SETRT;*DEGIN' *I6' RTACHO *THENY GUTS(SS,RYA)IRTASSTAIOUT24C8(0) "END' SETRT)
X & YORACEDURE! UJBACKIOUTI(RI00,8JA"C(REPTI")}
' YPROCEDURE? SUSPIELI'PEGIN' SPICLILHI® " (STEPITISPIELIRNIO " CLIMITY™ TEND' SUSPIEL)
FPROCEQURE! FORTEST)IRECIN' SUSPIELIINSTICV, P, 1B TYPERITSILN] YMASK' DIRADDLLNI>®D *THgN'! Q1 tgise® 00)) -
R S16Y TYPEDITSEAN]IDS0 TOR' OTRADDIRMIC>0 'THEN' INST(RN,7,'UF' TYPESITS(N} 'mAS® DIRADD{LN])>e0 PYNEN' 02 'EL3E' 03):
1 CEFY TYPEGITSILNIDN0 TTHEN! INST(LN,?,036))
SKIPCHAINGPTAPQUTI(FIT714,0,"CTEST) ") JBENEAD
ce TENA' FORTEST:
I4
TPROCEDURE! PORINCI'OEGIN' ASSEUNGII2ISTOREAWAY () "END' FORINC)
-

TPROCEDURE' FORCOMITBEGIN' FORSTATELFORSYATE 'WASK' 3)01p' SORSYATEaR 'THEN' FORTEST:
QUT2P(ATA,*(p0) ") s ZgROACCES T 'Tp" pORSTATER2 'Tugh! gORINCI'Ip' pORSTATECD0 'Tugn! UJBACKIgORSTATEO4
TENp? PORCOM;

MIS PoGy
ISBRsT
{ WROM coi v ST QUALITY PRACPI
) Ot 3 et O DDG ICABLR .’

1ARE" PROCEDURE CALLY) 17

VINY' CPROCY ANSPTESTICANSWER' "1F* TYP{RNIDQINTAROC 'THEN' 9 ‘ELSE' O3

YPROCEDURE® MAKEPARAMCIVAL' YINT! TYPE) 1 'OEGIN'
CRABVARIYYPEBITS[RUIOTYPERITELPSP) 'NASK' BOT000000 * SO7IPSPePSPet SR IgLIRNIC (TYPE)")
TIF° yyPRaD ‘rHEN' YOPACC(T)
TELSEY "HECINT YYPEBITS(RNIOTYPEBITSTANIOMARKIDIRAGOIRNICIIF? TYPESZ 1THEN' EXPSCALE "ELSEY YYPERITE(PNP) 'END'

VEND! MAKEPARAN}

VINT® *PROC! SETYUPPAOCI'BEGIN® DUMPACCSI*TF) PARAMSPECIAN]ICO ' THUEN' STOPOP('LOCY (NAME) ,"RECURSIVE CALL")!
ONBTACK (B EXPRCHAIN) [PNPORN FPPOSTALXPOINTER ; SETLNRN; PSPEPARANSPECIPND)Y,
PIF' SPRLPNPISO PTHEN' 'VD!Il'S(Dlll’lYl('l"-llﬂooo TELSE!
YOEGIN' TYPERITS(PNP)@?IFY SCALEFTRMCI0 'THEN' EXPSCALE *E SE' FI0000)PuPePuPoNARKINAKEPARANCT) "END'
CANSWER?Y 'TFt TYPEPITES(PSPICO 'THEN' O TELSE' Y
1END' SETURRROC}

VINT' PPROCY PARAMCLASS'ANSYER? (1F* LCHIPEP)<>0 'THEN'('IF® AvMIPSPICO0 'THEN® 2 'ELSE! 1)
YELSE! 'IFY TYPCPSP)ISLADEL 'THEN' 3 1RLSE* YIFt YYP(PSPI>uPROCEOVAE *THEN® 2 *ELSE! 0;

YINT' *PROCt NEXTPTYPE;'BEGIN' PREBACCOPACIPSP);'1F ¢ SPBLPEPICHY 'THEN!
IQEGINY SCALEFIRMGY JEXPSCALECSTRIPSP) TENDY 1ELSEr oREGING SCALEFIAMeyY;EXPICALECD *END'
TANSMER! PARAMCLASS '"END' NEXTHTYPE;

VINT' *PAOC’ ANYMORE]'REGIN' "SWITCH® CLASS#C00C1,C2,C3)
V16" SPBLPSPISY THEN! *BEGIN' EXPSCALECSTOIRNIItIE! TS *Tugh' gXPSCALECEXPSCALE*ANARK ‘gup'
1GOTOF CLASSEPARAMCLASS1]:
ERSTOPOP(SPIELLAN], 1S WRONG PARAMETER TYPE"){'GOTOr (3)
CortIF' C(YYPEBITSIAK] *DIFFER' EXPSCALE) *MASK® #34gF7 <3 o 'TNEN' '1F° TYPERITSIRNICQ "THEN' SCALENUNIRN,EXPSCALE)
TELSE! PICK(RN,GOODACCCAN) ,eXPSCALE,O); 'GOTO €3}
€2101F* TYPIRNI>EPROCEDYRE 'THEN' (REGIN' YIF' PARAMSPEC[RNICO ITHIN' STOPOP(SPIELIRN), “RECURSIVE SE*) 1 PARANSPEC(RH] ey
SR SPRIANICOSPBIPSP) *THENT 1GOTOY ER VELSE: 1yFr TYPEPSP)oPROCEOURE +THEN' 1GOTO® €3 *ENDI
CTIPIR® STOLANICOERPSCALE 'OR* AYMEPSPICXAYNIAN] "ORY PARYNORDIRNICID *THEN' *GOTO' gR}
C3:01FY LCHIPSPICOO 'THEN' LOCACY;
tIF' INDADD(ANICO 'THEN' GOODPICK(RN,0)) PACIRN)ePREFACC)
PSPePSPeY S TFE SPALPSP] YTHEN' MAKEPARAN(2) prANSWER® *IFc TYPERITS(PSP)CO *THEN® O 'ELSE* 1
PEND' ANYNORE:

TINY' "PROC! INSTTYPE;'SEGIN' 'SPECIAL' 'ARRAY' $¢#00004000¢ 911111000, #33333311,022222100¢
VIE' PUNCTIONSS *TWEN' 'BEGIN' FUNCTION®A;PANSWERY 3 PEND'
SANSWERT '8ITSVES, 211CYCLECSE'ITSIL2, 193 FUNCTION], 'R1TS T3, 21)FUNCTIONSeY)

1eND? INSTTYPE;

TPABE' SYNTAX 1) 18

VINTEGER! SSEL,SSPTRICINTEGER' 'ARRAY' 55(0:199);

TSPECIALY 'TARRAY' SYNTAXe#600:READER,#600/5,#50602027,950130001,02005FAIL,#605000746,840560530,041061526,850621550,870700
045,#70300000,#400/907,950312027,820035A1L,#70710023,470300000,9400/955,950312027,02001FAIL,#71070067,4600 1SETTEST, #4050
0074, #60560530,570620000,#5001CLEARYYPE, #61130047,8400/107,460560041,8400/902, 470770000, 9400/174,#700/5CALECON, #20025ETL
18VAR #6001 TYPETYPROC, #70550000,#400/902, #6001 SETLIBSEG, #600/387,#300/FINISHSEG,860660060,0400/227,8400/502,860015ETLI0SE
6,970120000,#400/148,#600 tNEXTPSET,#400/387,#300/FINISHSEG,W600 SETYES, #8001 TYPEPROC, #70550000,#600/902,#6001SETLIBSEG. Y
400/387,#300/FINTISHSEG,#61102027,8400/580,#400/857,#50172027.#2001FA1L,#70500000,870300000,86001CONON,#400/67,8600:CON0F
£, 850312027, #2005 FATL, 600 STARTDEC, #400/71, 450130103, #200 1EXIT, 84607204625, #40270653,870540116,#600: TYPELAS, #600/224,4303
©0913,82001EX1T,#70610121, #6001 TYPEISHITCH,#000/75;061130140,#600/107,961210132,8400/132,070772027,#600:5K1PDTA,8400/166
#50340127, #2004 EX1T,#600; YYPETPROC, #70550000,9400/224,8400/182,450340136,8200:EX17,#60660143,8400/227,4000/92,960640146
+#600/231,8000/85,#60552027 /#6001 SETYES /#600: TYPEPROC,#50550734,#2001FATL, #50510167,970520168,471270000,871960000,8600:1%
OBITS 870340000, H400/125, 600 INDAFTER,#524622027,92001FATL.#70530000.#2001TYPEFLOAT,#70730174,871160000:86001N0RITS, #7073
0N00,#200:PARTINT, 9200 TYPEINT, #51162027,#70330201,951162027,#2001FatL,070350000,#79160000,82003NpGNUN,#70490217,8600:TY
PEARRAY, NO00; ZEROARRAYS, #400/145,870730000,8400/150,8400/155,#70750000,8600:ENDARRAY, #50340206,0200:Ex1T,#400/165,8200:0
ECSTZE, ne00/148,950340221,#200:EXIT,070500000,8200 NEWNAME#4600/925,#600:SETLE.270120000,8600,/125,9200;8ETUB,060340245%,¢
600, FIRSTOIN, #70340000,4400/150,480340244, 4800, MIDDIM,#70340000,8400/150#900/159,8200,LASTOIN, #200 ONEDIN,#70050250,020
O PRESETSYRING, #70300254,8400/87/#50312027,02001FA1L,#400/176,820010UTPRESET, 859242027, #70330242,951242027,020008A1L,970
380265, 871240000, #200:4EG\ UM #2003 ZERONUM, #6001BEGINpSpEC, #70300273,44007188,870310000,9200;ExDespEC,#200:EDPSPEC, 8600/
993,8700/NEXTPARAM, #70342027,#600:NEXTPSET, #000/988,#50660331,870250307, 8600 TYPELOC, #61130153,4000;:TYPESPEC,#300/NEXTPA
RAM,HT70540399,02001TYPgLAB, #T70690393, 82001 TYPEISWITCN, #70640316,9600 ~YPEINT, #200:TYPsIARRAY, #69930325,0400/107,87041032
2,0200 TYPETARRAY, #600: TYPETPROC, #50552027, #2001 FATL, #600:SETYES, #6001 TyPEPROC, #50552027,8200,FAIL,#41130153,0060550336,¢
600 TYPEVPROC, 950552027, w2001 FATL #6001 TYPESPEC, g300/NEXTPARAM, g6001 ADDRSPEC, #4600/ 148,9200:SPECONE ,#70660000,86001 TYPEVD
ROC,#50532027,82001FAIL, #70660000¢#600 TYPEINT 16001 TYPEARRAY,#400/148,070730000,#71160000:96001TA

J262,86001CLEARTYPE #2001 TYPEINT,#70730000,060017ApApD,#600ICLEARTYPE #70580000,8400/252,#0001TYPe
732027,#50130422,0200:FATL, #41270403,870570400,8400/259, 92005 yNgFIELD, #400/107,8600/125,8200,F1ELDDI, 1270000,#711600
00,0600 NOBITS, 9600 INOSTG, #400/270,472420000,#400/125,46001FTELDDISP, #72340000,#71160000,#200;:FIELOPOSN, g70360621,9600/1
2*.lzoo-nonFTEl:'zoo:FAIYXHY.Oii120!71.lsoioosoill:oouvAlL.a?orzsooo.-aoo/¢ls.a71oooooo.leuo-avthn.lcoo/zve.lzog:ovluov
P, 070360642,06005,00KUPD,#70732027,#400/925,#60051NCT0S, #50752027,8200:¢,11,#700/NONAME, 070730000, 079160000,9600,1ncT0S,
#80752027, #2001 FALL,840640347,8400/107,8#000/132,#70270000,870610000,8600:TYpEINY, #600 1TYpEARRAY,#6001A00RSpEC,0400/148, 8
70770000 ,#400/3509, 450340462, 0200 1EXIT,#70050467,0300/8PECSTRING, 61150504, #6001CLEARTYPE,4400/107,870300000.0400,174,400
0, $PECNUM,#50312027,870340000%#400/174,0000,SPECNUN,#000/317,#4600/335,#61400514,8600 . SETTEN,#50370521,970120511,87036000
0,82001SPECLAR,#71430000,0400/125,#200¢SPECREL,#6O00ICLEARTYPE, #400) TYPEINT, #2001 SPECNUN, #41350175,020012ZERONUM,#g13505¢¢
s 0600/125,8700/H0NANE #8301 INCTOS, #2001SPECCON #400/283, 4200, $PECCON, #70360000,860010EGINPROS, #70420000,8400/351,0600:En
DOROG, 830102027 ,#2001FALL,#400/356,0000s ENDDECS, #400/524, 450130541, #2001 EX1Y, 86001 STARTOEC,#400/361,870130000, 841540344,
92001EXIT, 540720425, 940270653, 941061526, 970160561, 4600 SETHO, 9400/ 857, ¢50172027,200:FATL, 970810572, 46001 AOORSY: 600 TVH
ESW1TCH, #400/148,070770000,#70560000,#60031SPECLAR, #30340568,0200:EXIT,#61130607,#400/907,#869210577,4#400/132,9000/85,8600
§TYPETOROC, #70550000,8400/148,060019EGINPROC, #400/617,070130000,9600/477,82001ENDPROC, 960600697,9400/227,0600/148,960013
EGINPROC, #70120000,8400/148,4600 NEXTPSET, #000/387,960640622,#400/231,0000/85,860018ETYES,0600;TYPEPROC,#50551541,470200
6%, #6001ASSTRACE, #50172027.82001FA1L/,970210635,0600)FORTRACE,#50172027,42001FA1L,#70540000,96001LABTRACE,#50172027,0200
P FATL,B70302027,8400/629,#50312027,9200FA1L,#400/425,870132027,0600, NEXTPSET,#O00/421,#50060724,#70290665,8600, TYPELNC,
541130157,5‘00/107,l0001165.'50011YD!S!!C;150011k‘,er\?OOOO.DAOOI\bl:liolibtgopIZOOx!ll'ol?b"b‘ro.lgbﬂlf"!LAl,loonlib
S, 870610673,#600 TYPRISWITCH,#000/145,870640705,0600 TYPEINT #6000 TYPEIARRAY,#600/148,870730000,#71160000,070750000,0600
IPARAMTAR, $400/242, #2001 PARANTAS, 561130720, #600/107, 870410742, 0600 TYPELARRAY, #000/145, #6001 TYPETPROC, 70550000, 04007148
#600/182,950340714,4200(EXIT 60|SGVV!l.nsoo.vvreoloc.csosso?\t.lzoo.cAlL.oo1150127.05001107.-00011bs.ueosooviz.cooo|1
YPESPEC,#000/632,R6005 TYPEVOROC, 50550714, 02001 FATL, #70430743, 070420000, 9500 1KILLPARANS,#400/49¢,#700/ENTERPROC, #400/500
’ !oiozoz7ul100||AlL.nlooxs:vannns.arubzorsa.lhoo/soo,aooo.nlocguflv.lLOSI!ss,aro1ooooo.a!00:tl|Tcn.cn.liooleuoocc:.tco
0)PROCENYRY,#400/862,82001EXTTCHECK, #61340763,9400/356,8200)ENDDECS, #2001 ENDDECS, #400/503,050130764,8200:€x1y,070060773,
#8700/ INSYTYPE, 0400/1023,020010UTCO0E,070360777,46001CODELAD,#50120767, 92003 FATL, #80422027,0400/514,0300/3TATUSCODE, #7007
STYATUSCHECK, 70420000, 961579010.,0400/393,#50102027782001FATL,#700/0EGINGLOCK, #400/339.970100000.9300/ENDBLOCK,.P60n/526,8
200)EN0ST 40111052, 940602103, 040741443, 040471450,040421002,030961461,870431041,0700/78TATUSCODE,#70420000,002121033,0400
7%00,#50102027,4200 1 FATL,#700/8EGINBLOCK, #400/356,0600:ENDDECS,#400/500,870100000,#300/ENDBLOCK, #61622027,9700/g7ArugCNE
€K, 0600/831,870770000,86001VARCHECK, #700/SETASS, #4600/9060,060018T0RE,#300,8ENEAD, #70110000,9600:3FS,#400/564,870940000.0
N0, ENDSY, 8400/524,870439063,8600,ELSES,PC00/526,0200,F1,8000/571,870221070,8700/0UTCJ,P000/364,870232027,9600,00ACT,000
A/7664:R61451077,#600/580,#70120000,820010VRTEST #700/STACKEXPR, #5001ANYPREF, #400/584,R600/782,8200,RELATION, 870Y4910p,82
0018E TN (4800 1SFTYES, 82001 TYPEPROC, #41731113, 470000000, 42001 CONSTANT /962011117, 8630/ 598, 442011406, 0200 1 EX17,870591122, 04
80/398,0000/389,070330000,8600/398, 5700/ UNARYMINUS, #000/309,#400/661,0400/766,820013CALETERN 970564133, #700/L00KYP #4073
1!61.lzoOxAvltnlcxolvooINO‘ll!v'i00161!.l707!0000.l!oo/llLtilrn,cAoOIQvs.aloolosz.lvovsoooo:l:oo/:|t;clvl.'rorsoooo-looo
LRETUPSUS, #O2011140,850002027,240191154,8600/432,92001pLU83UB,#400/500,0a001p USSUB, #s2011940,8200;¢X1Y,

17%

dadld A L

3

PN

THIS PAGE I Spocy

~ mcnm’s
v A

FROM COPY Fuauis:

1PARE" SYNTAX 2} 19

870931166,0400/598,9600:PLUSSUS,#000/622,870350000:5400/598,86001MINUSSUS,0000/622,070110000760015FEX.#600/366:87014000
N, 0600 THENEXR, 9400/644,870630000,8600 5 L8EF!,00001ELSEXN, 9400/664,0000 ELSEFT,200:F1EN,#60111970,061731143,870001211,060
OcCANGTANT, ¥2005gCALETERM, 870050000, 8600 5TRINGEN 8200 ,5CALETERN, #T0362027,#000:15UBCOMNA,0600/615,8000/652,860731224,070
0,L00KUP,#4600,606,82001LA0SK,02001LABL,0400/660,870762027,8400/666,86001RALSE,8000/662,08400/671,870072027,0400/671,66000
NEQ, 8000/ 607, 8500/0676.870242027,8400/676,0600,005.,8000/872,9400/681,870262027,8400/689,0600;#8K,8000/677,061021260,0600/
690, 870032027, 4600 SETSHIFT,0600/756,8600:008HIFT.0000/083,0400/711,8000/683,#4600/494,0600:01T810,0600/791,820010188178,
#71020000,9600:CLEARTYRE,#70730000,871160000,0#400/703,86001F3ELDPOEN, #O001UNSFIELD,#50752027,0200¢FAIL, #60361506,8600:00
B17S,#600:NOS1G, #6001 PARTYINT,#705340000,#59162027,4200¢FA1L,#20010NEBIT,902071320,470021312,02005CONSYANT,870500000,8700/
SYACKEXPR, W6Q0 SETPREF, H400/6464,870310000,8200,0FFSTEXPR, #70011322,8200,CONSTANT, #70561336,8700/L00KUP,060731327.0400/60
Q, 8200 VARCHECK, #700/RUSPTEST, #100/2,82001 VARCHECK . #700/SETUPPROC, #400/1011,9600:CALLPROC, 52001 FINISNPROC, #70251344,8703
00000,#400/601,8700/L0CACY,#503512027,8200:5A3L,870541352,070500000,870560000,8400/656,050312027,5200 139362,0600

ICLEARTYPE,#400/107,8600 1 TYPEXPR,#70300000,084600/044,870310000,8200,EXPRYYPE, ¢700/NONAME.H000/606,0
12027,#200, FAIL,861021373,0400/690,0200,PLUSSUB,#400/720,#000,SCALETERN, #200 PLUSSUD, #70321402,8400/061,8600,1MPY . 2000/76
6,070372027,4400/661,8600;D1VIDE, 4000/766,470531412,5400/598,0600:400,5000/589,470350000,8400/598,0600,30U0,0000/589,4300
41620, 82003SETNEZ, WT0001422, 92003 ZEROCONP, 8400/ 795, 9P0331427,9400/598,86001CONDAOD,8000/787,970352027,9400/398,0600:C080
§1B,#000/787,870351436,8600/598,08200:C0NDPLUS, #70359441,0400/598,02001CONDNINUS,#400/598,02001CONDPLUS,8700/8TATUSCHECK,
870740000, #6001 SETANS, #4600/ 645, 52005ANSCHECK,#70470000,0#70560000,960731460.0700/L00KUP,#7T00/8TATUSCHECK,0400/606,8600144
ey, #200160TOSK, #2001GOTOL, #60129465,0000:SETLAB,#50921016,8200,FALL,#700/L00Kup,#700/STATUSCHECK, #62151472,8400 [T
07568,8600LNSPROC,8400/730,0300/8EHEAD, 040731141, 8200:EX1T,#61021510,0400/696,870561505,8700/L00KUP,8600:LHSB1ITS,.8000/8
20,8700/ NONAME, #600,LHSO1TS,8000/606,#700/NONANE, #Q00/606.840117052,060402108,0607694643,040671450.870561522,#700/L004UP,
#P00/STATUSCHECK, #000/823,061622027,#700/STATUSCHECK ,#400/831,4000/548,#71040000,#71140000,5200,8ETLEVEL.I70201533,02009
ASSTRACE, #70211535,04200: FoRTRACE, 870541537, 8200 LABTYRACE, 870550000, #2001pRoCTRACE, #60561545,0400/148,8600¢8¢614py0C, 2000
,!e?.nooo;rnocvnnci.asoionzrwnZOOxrAlL:l7o!0\555,-£oo/arl.-sol|loz'.-zno:'AlL.loooaCL!Alvvre.oooolzs..ooe:CL!AI'vpt.gbo
n/882,#50131556,#209,EX1T,881131373,8400/107,840561603,0600,TYPETPROC,970550000.8400/902:8400/182.0#50341567,8200,EX17,86
0661575,0&001227.l005/057.l¢0552027.1300|S!7V!I.looolvvilrlot-lsﬂsg1ger,l100|FllL:l600/901;050l£1‘0!,llOOIIlIYulros.oooo
LH70370000,871140000,#6001L18A0D, 200 nEWNAME, #6001 CLEARTYPE, #400/911, 050131613, 0200:ExIY,870561624,0600:7vpELAD,8400/94
8,850341021,#2003ExTy,#70611627,08600:yYPESYIyCH, #000/913,870641637,960017YPEINT, 06001 7YPEARRAY,#4600/948,4570730000.871160
00, 850750362, 5200:FA1L,061131652,4400/107,969211044,0400/966.,9000/913.9600;:TYPETPROC,570550000.0400/948,9400/182,039369
646,92001EX1T,860661555,8400/227:8000/936,060352027.#6001SEYVYES,86001TYPEPROC, #505516466,82001FPA1L,8704192027,02001TYPEARR
Av,#70560000,#70370000,4000:SETTEN, #71160000,0400/335,#6000pXTApp,8200:NEWNANE, #6001CLEARTYPE,#400/959,450131673 €
11, 870561704, #6003 TVYPELAD, 8400/994,850341709,08200:ExIy,070641707,8600:7YPESUITCN, #000/961,870641717,0600,9vPEINY, 860011y
PFARRAY, 8400,994,#70730000,#71160000,050730362,04200;5FATIL,069131732,9400,107,961211724,0400,/946,4000,9641,4500,TYPETPROC,s
24550000, #600/994/8400/182,850361726,8200,EX1T,#60069735,0600/227,0000/982,060552027,8600,8CTYES,#600,TYPEPIOC,N#50359726
JH2001FAIL 70560000, 970370000,971140000,4600:ABSADO,#200 I NEUNAME, $700/NEXTPTYPE, #400/1015,¥700/ANYMORE, #100/2,9000/100¢
50361767, 820016A8L,#50312027,#70340000,#600:CALLIROC, #600 1uULYICALL, #000/999,0100/2,02001Ex1T,850301747,82021PALL, 0108
14,800070464, 80007601, #000/1021,#50561220,0200¢FA1L7470380000,0300/100KUP,#100/5,200071058,0000/1042,900074036.9000/1031,
#62232022,970050000,#200STRINGEX,#70562019,#200,LABL,#71430000,#600/333,8200,RELADD,071162016,0200,CO00ESNIF 0400000,
#400/335, #6003 CODESHIFT,N2001NISHOD, #70402024, 8200 1NISACC, #70562050,9600:L00KUPD,#60732031,9200EXTIT,#700/NONANE, 8207300
00,8400/1054, #6001 INCTOS #50752027,02003FATL,#61350175,870400000,4600:415400,#000/335,042232022,961332046,0400/125,0200:
CANSTANT ¢ #0600 CLEARTYPE, #600/07,#70300000,#4600/1746,#700/SCALECON, #7039000U, #2005 CONGTANT,8100/2,8000/1072,8000/644, 9401
11170,#70052063, 8200 1 STRINGEXY#70002005, #2003 STOREZERC, #70332076,8400/598,8600:AD0A, 862012075,#700/SELOPYA,#100/2,0000/7
P4 #0007/591, 0200, SIMPLEASS,#70352102,4400/598,7600,SUBA, #000/1080,0400/398,8600,A00A,8000/1080,870460000,0600:STARTFOR,S
4N0/601,96003CHECKCY, 70770000, #600/1072,#6001ASSCV,0422p2120,970472127,8400/554,8600:WHILEL,#70642124,8600100C,8400/52
6,0200:ENDFOR, 70360000, #8003 MOREFOR, #000/1098,#72510000,#400/646,960038TEPUNT, #T2370000,04600/644,0600,8YEPUNT,NG00/1104
s

ISPECIALY ‘ARRAY! 800LWORD+#00001300,#00000014,9400000000,800000000,000000160,#00000000,96¢ +80 00,800000000,
#40000000,#000640002,400000000,#70000000,#00000000,#00000000,800000000,9#40000000,000010000,#00010000,800000000,#00002000,
#60000000,#05000000,#00000000,400020000,#10600000,#00000000,900000000,410400000,#00000000,800000000,800000002,#00010000,
#00000390, 830000014, #00000000:#20001301,#00000174,#224620002,#00150000,#00031402,200014040,800000000,800000000,000010040,
#90003000,#00000000,#00000000,#70000004,#65000172,000010040,430000004,#463000172,000010040,#30000004,#40000172,000010040,
#00000000, 805000000, 400000000 #30000004,#40000172,800010000,#20000006,000000172,#00010000,800510000,900020002,800000000,
200000000, 400000000, #00010400,400000000,#00000164,800400000,#00000000,#00100002,#00010000,200000000,002004000,#00000000,
#00020000,8V0000000,#04000000,#00000000,#02000000,400000040,4#00020000,400000000,#01000000,500000000,4#20000000,#000020007

(ense}

IPAGE' IMITLALISATION; 2"

STARTUP ;CSUMeO: LINK®O;DECLISTO0)LOCALLIMIT@0;8ITSPECED;INDADDEO) 00 INCTOPSMCSTART;
STACKPOINTERGSTACKSTART IMCCHATINGO IMCEOUACECD; MCBODY 0 IMELISTo0INCF LA DT
LADSTACKPTROSTACKFINISHIPRESETOK®] JCOMMONSOJOVERLAY«QITEST S0}

TRACESD; LADDECLISTOILEVELOYTJIFOR? INCTReS3 o111 DOt INPUFFLINETR)ent

HALY("GO TO COMPILE®);:T2¢=1}

= s e

YPASE" ANALYSER)

TeOoDE' 'ORGIN’
Lok

1 [T} ¢ SYNTAX POINTgRe))
0 s10 sgovh) ¢ SYNTAR STACK POINTER®D)
RPPT; 7 LDX SYRTAX(RY): ¢ COPY WORD OF SYNTAX)
T ADD Y C STEP POINTER)
CHEATY ¢ LOX &%) tc WORD)
7SN € 01T 1 Y0 SIGN)
2 Jsg wovEsT) ¢ JuMp 1F NOT TEST OF T,5,)
& 10X 82; { COPY wOAD)
4 AND 02777 ¢ MASK DESTINATION FIELD)
2 sl V)
2 AND 87773 C MASK B FIELD)
3 L0a az;
5 SUB T4 ¢ SINGLE SYMBOL TEST)
S JzE veS: t JuM® 1F Tys8)
2 sus ?2; ¢ SUBTRACT BOOLEAN O14AS)
e LT MOy { JUMP 1F SINSLE SYMBOL TESY)
3L C.INCOMING SYMBOL)
3 saL 23
3 0ty 243 C XSSHIFYS, QUOISPLACEMENY)
2 ARd t21:
S LOX BOOLWORDL@2)i¢ COPY BOOLEAN wORD
3 SLE W
5 J6E MOy ¢ 1F BIY Os. TESTY FAILS)
Yes, ? JLT €2 € SKIP IF BIT 1 SETY (1R)
4 LOX A4 ¢ COPY DESYINATION TO SYNTAX POINTER)
I TURT] ¢ BIT 2 TO Si6N)
? JOE NEPT € CONTINUE 1F NOT ACCEPY 11)
7 LOX SYNTAX(OS? £ COPY goQO/READER)
0 JIE CHEATS ¢ INTERPREY 87 AS CALL ON READER)
NO 7 J6E NEPT ¢ CONTINUE IF (17)))
& JNZ OK; FAIL3'BEGINY GIVEUP("SYNTAX FAILURE=) 'END*
0K,y 1 0LoX @45 ¢ COPY DESTINATION TO SYNTAX POINTER)
0 J2E REPTS ¢ CONTINVE)
NOTEST: 2 AND #37777: C MASK DESTINATION/ADDRESS)
7 J6E 6OTO; ¢ IF NOT CALL)
3 L0X SSPTRy ¢ SYNTAX STACK POINTER)
9 STO S8(83); { STORE SYNTAX POINTER IN STaCK })
3 app (]
3 810 ssptay [
S SUs 1007 € TEST AGAINSY (ImIY) 3
3 JLT GOTO; BEGIN' GIVEUP("SYNTAX STACK OVERFLOW™) 'END';
[1.0 1] 7 SLC 1) (81T 2 YO SIGN)
? JLY ALTS L JUMP TP ACTION)
T SLC 13 € 8IT 5 TG SIGN) 3
1 ADD SSEL) ¢ IN CASE OF SEMANTIC SELECTION) g:
? 4\ REPT: ¢ SEMANTICALLY SELECTED WULE) et
1 LoX 823 (COPY DESTINATION TO SYRTAX POINTER)
0 JIE reeT; C CONTINUE) ﬁ 8
Acty 7 SLC 12 € 01T S TO SIAN) =
7 JeE) ¢ JUMP 1F LaBEL) fe 2>
2 Lbx (8213 ¢ COpY paOCEOYRE ADDRESS) = s
6 JCS a2y ¢ CALL/GOTO ACTION) o
7 ST0 SS¢EL; C STORE RESULY POR SEMANTIC SELECTION) £} o~
EXITI 2 LOX SSeYA) ¢ SYNTAX STACK POINTER) m
2 sup 11 .
1 PX sste2)y ¢ RESTORE SYNTAX POINTER) Iz
2 S10 s30Ty =3
2 46t mepT) ¢ CONTINUE IF SYNTAK wOT FINISHED) B ng
VEND' ANALYSER;TEXTLINE("COMPILATION COMPLETE"2:'GOTO! STARYYP; (&) A,
T
A 3
4
&
&

1PABE' READER 1)

22

READER(TOECIN' TINTEGER® SRAC/NOOS,maCT
TRWITCHY ULWORDSRO, RO, RO, PO, NO RO, SH SH SH, SN, CM PO HA,0F s DLIFT.OL, LT NK;

TANTITENY CHARACTENGDD,D0/D i 0r0D DD DO/DBIDOIDDICNBL LEIES ES, AN, SPFT,STIOC 10, IDsAM) PR, OK,0K,45,0K, 0K 0K, FT,0K,
AC.tpelpitoripsloelpelosto tpeTpeto ipetpotoetp,toelpstpelnsl0s20etpstnstoeipslp,0K,CH,0K,0K,0K;}

TINTEGEN' "PROCEOURE® MgADI'BEGIN' *InT' ANS}
Ryt16Y MCSOURCESO 'YHEN! TBEGIN' ANSEREADTAPE)'IF* ANS>ERI100 *THENT 1GOTOC R ‘END' NO NACRO ExPANSION
CELSEY 'BEGINY ANSeNEXTCHNAR(MCSOURCE) ! ANSES® TAND' NEXTCHAR(MCSOURCE)C»S™ 'THEN®
TREGIN® Y1FY NCFLAGKI0 'THEN' GOTO' MEIMOVE(SHIBTACKIMCTHATN] (MCCHATND JANSET21 TE® ANSCO THEN® 'GOTO® R
TEND! 60 DOWN A LEVEL WOT PERMITTED [F DEFyNING WACRO OR PARAMETER
CENDY MACRO EXPANSION)
1B COMMONCGYO FTUEN® CHECKIUMCCSUM,ANS)) 1TANSWER? ANS
tEnpt READS

VEINTESER! 'PROCEDURE' READT2)'OEEIN' REPY TReREAD;'IF* 72016 "THEN' 'GOTO' REPTICANS' T2 TEND' READT2:
TINTESERD *PROCEDURE! READTYII'OEGIN' TIGREADT2J'ANSWER' T1 PEND! READTY!
TINTEEERT FPROCEDUAR?Y RECOGCIVAL' TINT' ULW))*BEGIN' PINTEGER® 6,81,J,JJ5(ULWeO FOR FUNCTION, 1 FOR 'WORD')

SEPECIALY TARRAY! ULURDSe008,512042,2560072,0099, 012500345, 070753241,056647524,023600474,855064947,945752382,057434544,
B656246374,095346401,074040445,063647307,004504556,074140541,002544574,0060024943,045749740,044025774,064046333,000750400,
931484643, 902740745, 9054651567045752534, 045644575, 926340174, 825026475, 914054142, 045547454,010450175,411664534,075061731,
0004626241,002717462,0044962417954753137,003614475,003035760,074214349,004315736,474250555,061635374,920173101, 074510246,
70415664, 085474562,0743930655001745756, 004345756, 874240404,05156740635,063514756,065467457,033650974,090020175,013035644,
476900450,003457448,870044362/0350415674,0870610176,849086262,001717441,010626357,0456656463,074791254.,002647422,863674302,
WT6766363,091475455,945560474,020075602,045739257,074748106 357 45627505,811660174,066415483,045766617,062017462,
204916443,0735024947 1967442,040097452,803376274 4323631 3307527, 016670451,
$07300,930513. 7154 8056051, #56457309,095035736,
1904752236 230543046,841547330 026274, 815456204 CANTITA, 72465487, 007741563,001740104,065344078,

430439
W36046443,000746300,007396443,850746107,050026975,017637321,007604943,091615474,027620249,079165679,520000000;

*

CCTALY YARRAY? PUNCTIONS®002,768096,004445166,074371156,803436174,810847074,801903003,041427409,803647074,000374374,
904320342, 065742303,045637427,0034P4374,022039464,074230356,072742172, 045742004, 865704374,094045560,071749893, 061035644,
074436402, 04A7800263,974921057,0036240746,517036304,074266602,974246303,063427413,503654274,003076202,949743054,074320766,
WRRSTATY, 097749054,002497439,002437433,902547434,006743300

TEPRCIALY TARRAY' CHOOSESO/FUNCTIONS,0/uLWADS.1,3)
TINT! PROC’ READS)

EGIN® SONEXTCHAR(SI) 1 1ANSWER® § 'END' READS)

||o¢u:osllu;u.v; THASK® CHOOSECULW@2))5CI1r) S1e0 "THEN' '6OTO" FT})
L1J900s

negels
WettF' READBCSD "THEN' COESIN' Jo8;JJe); 06070 N TEND?
TELSEY 1P S3m60 'TNEN! *BEEINT TLEY yLwEd 10R! TRegr TTHEN' 1GOTO' ANS CEND!
TELSRY *DEGINY YIFt TRuE PTNEN' 1EGINT READT2'G0T0Y | VTEND' TEND*
TERY Ja>0 'THEN' 'CGIN' SIeCYCLE(CYCLE(ST,2)¢4,22)9160T00 M 1ENDY ¢
et g>e00 '0R' ULw TORY T2¢28' *OR' JJ<»0 'THEN! +140Y0Y §T)
0pfyf' READSASD *THEN' *GOTO! FT " SE' V1FY S<o0 'THEN' t9070' O

ANSIPANSVERY CYCLECS00,6)+nEADS "END' RECOS)

A Abmaim s e e,

'pAGE" READEA 2} 23

SINT) ANS)IANSOTIINODS@0)7IFe ANSPSBASE ‘TNEN¢ 160700 #Y}

. VENYY SPRDCY NOASSYEIVALY s1NTY BASE,LINDIBEGIN:
TREGIN' ANSOANSOQASECTZ NEADTZ 'TEND! FOR}

VEOR'. NODBONODSeY "WHEILE®' TZ<RASE 'AND' NODS<LIN 1p0°
VIF' T2<BASE ‘TAEN' ‘GoTo' FY 'ELSE' 'AnSVER' ANS
VENDY NUMBER ASSENSLY;

YPROC’ ADDCHARZYCODE® *BEGIN' *SPECIAL' 'ARRAY! SHIFTS¢24,78,12,6:1L0XNCI0I1ADDS01000000140VRFY1STYONCID]S
1SAL20J2LNXN0;28LL2JPLORMCIDIQT1) 2JNZe2;7L0X#20202020520L0XSHIPTYE a2} 70RLQ2;6L0XT1;68R(6;78LLQ2;

PSTOMCIDIRY);0JCSB4 "END' ADDCHARY
SINTY 'PROCY OCTALNO; 'SEGIN® READTZ;*ANSWERY NOASSY(B,8) ‘END' OCTALNO)
TINY' 'PROC® QCTALFRACI'BEGIN' READTYII'ANSWER! CYCLECOCTALNG, (8-NODS)*3) 'END' OCTAL FRACTION)

YPAOCEDURE' GENOCT;'SEGIN' NUMBERCOCTALNOZ'IF' T2<»8, *'TMEN! Tiel 'ELSE’ ‘IF' NUMRERCO °*THMEN® 1GOTQ¢ Y
VELSE® 'BEGIN' NUMBERSCALECO;FRACOOCTALFRACIT102 VEND! ‘END’ GENOCT:

YPROCEQURE' SEMICOMy'FOR! T2eREADT2 'yHILE! T28g(00! *REGIN' 1INT! 0
Re0;VFOR? BeBe('TF* AEADT2uS{ 'THEN' @9 TELSE' 'IF! T2s8) 'THEN' «1 'ELSE' O) 'WNILE' B>®) tpO'
YENpt SEMICOM;

tPRNCEDUREY MOVESTRING('LOC® 'INT' FROM,TO)INOVEC'SITS! (4, UIFROMeq) FRON, TO))

YPROCEDURE® MCTIOY:'QEGIN® MCTOPGCYCLE((CYCLE(MCTOP,2)e3) 'MASK (=4)s22)8
Y15t MCTOP>ESTACKSTART *THEN' GIVEUP("MACRO STACK OVERFLOW™)

tFwD' MCTIDY)
*BROCEDUNEY MCMAKE; 1BEGIN' STACK[MCTOP)eMCLISTISTACKIMCTOP®E)eet) HCLISTONCTOPINCTOPOMELISTe2 YEND' MEMAKE;

10aNCEDURES MCMOVE('LOC® *INT' FROM);
TREGIN' MOVESTRINGCFROM, STACKIMCYOP)) jMCTOPOMCTOP+ gl TSY L4, 03 FROMOY STACKINCLISTOTIeSTACKINCLISTO)01 SEND HCMOVE;

SINTY CPROCY MIULNOK)'BEGIN' MACOMCLIST;'IF' MACC<>D *THEN!
LEORY MACOMAC,CHAIN[MAC) *MHILE' MACKYO 'DO' *1F' TESTSTAING(NMAC®2,29)80 *THEN® '6OTD' ANS;

! ANG 1 YANSHERT MAC 'END' MCLOOK:

i YPROCEDURE® JDENT
'BEGINY ncxn-u101010:';on' TISTIREADYZ TuplLE® T2¢10 ‘ORY T2>83A SAND' T2<s32 DOV ADDCyAR tgyd' yDgY:
tpROCEDURE® MCIDENT)'IF' READTI>BSA 'AND' T1<e3Z 'OR' TiuwSE ‘ORt TI®$X *THEN' |DENTY 'ELSE' 'g0T0' wEy

.
: trNT? PPROCY MCCHARC'VALY "INT' CHAR);'COOE' "BEGIN' 'SPECIAL® VARRAY' Se¢24,18,12,6;
. ALOXMCTOP j2LDXMCTOP; 2SRL22:2LOXS(A2]76LOXSTACKIOI Y 6SALO2ISLOXD?!?
) SSRLOJOSLLAZ:6STOSTACK[S1)I1ADD#2000000051ADO[31195T0NCTOP;OJCSa4

TEND' MCCHAR)

T
-

IICABL

,
1
.

-T JUALITY PRA

IPAGE? READER 3; 24

TeTe: SPITIelIF' T2>00 *THEN' T2 'ELSE' READ} 'GOTO' CHARACYERITIN)y

i

[RV

¢ mALT DIRECTIVE)
MATWALTC"DIRECTIVE") JREADT2;°GOT0" Sp;

COPY FUKMISHLD TO DDC

t MACRO FORMAT ERRORS)

ME GIVEURPI™"MACRD ERROR™Y)

MMIS PAGE
PROM

¢ DFFINITION OF MACROS)

DEYMCFLAGEY JMCMAKE I MCIDENT (MCMOYE(MCID) s 116 Y2ug(!THEN?

UPy PBEGINY MCIOENT ;MCMOVE(MCID) " 1FY T2mg, CTHEN' 'GOTO! MPJ'IF! T2<>83) ‘'THEN'
TIF' T2<>$” 'TMEN' '60TO' ME!

HRpPTF" MCCHAR(READ)C>S™ SOR' MCCHARCREADT2)®S™ "THEN' 'GOTO' MBJ'IF' T2€>$: 'THEN' 'GOTO' Mg}
MCFLAGEOIMCTIOYSEMICOM]*GOTO" §9)

160TO0* ME)READT2 'ENDY ;

¢ PELETION OF MACROS)
! : OLyMCIDENTILF® MCLOOKSO 'OR' T2<>3; 'THMEN' 'GOYD® ME)
P1F MACOMCLIST PAND® MCCMAIN®D *THEN' *DEGINT MCLISTOCMAIN(MCLIST]I;NCTOPOMAC TEND' "ELSE! STACK(MACsQ)e0t
SEVICOM;1GOTO" $Py

'
" STRINGS =)
b ST MCIBOS202020) ' FONY TIGREAD SUNILE' T1<>3* *OR' READT2es™ *DOV ADDCHARJMOVESTRINGIMCID,NANE) ;T103;'6070" EX;

- (QRACKETED COMMENT AFTER ;)
o SCISEMICOMIIGOTO §X)
¢ TOENTIFIERS AND MACRO EXPANSION)

IR TOENT P IE? Tag PTWMEN! 1GOTOY SPy(COMMENT AFTER *END')
TIF0 MCLOOKAS P TUgh! TREQIN' MOVESTRINGIMCIO, NAMED JTIOSNI*GOTOS EX “END® IDENTIFIER NOT MACRO)
TOEGINT YINT! CTR,LEVICTROSTACK(MACT);
TIBY CTROOY 'YHEN® PIF! TI<3$('THEN' 'GOTO' ME SELSE! TIeed 'ELSE' 'UF' T208('THEN' Tea9:
novz(o.nccnnlu.l'lcltncrnpx)ynccnnluoncvou,ncvoionccnAlnoo;HCloov»'ll't'|b.0)nclnoanO!sICSLACollﬂc'lb':
) YIF CTRC>) 'YMEN' "REAIN’ s
H y wcnnxgnncuovg(!vnc«lncnoovl);ncoo°Voncoo°vo'l|||'ts.oxsvnc:tnclopv1o1:Lgvoo'
. TEOR' T2oREAD 'WHILE' LEy<>0 'ORY' T2¢38, (AND' T24>3) 100°
YIF' MCCNAR(T2)=8" 'THEN'
TOEGIN' MCCHARCS) 'FOR® T20MCCNARCREAD) 'WNILE®' T2<»$" 'DO'INCCNARCS™) "ENOD’
TELSE 1480 Y2088 CTHEN' 'BEGING 180 mCCHAR(READ)BS® ‘T)ENt WLCHARCS®) ‘EndY
VELSEY LEVeOLEVO('I#' T2a8(*OR' T208[*THEN' of 'ELSE' '[6' T208) 'O T208) 'THEN' «1 tELSE* 0))
MCCHARCS™) gMCCHARCS I sMCTIOYICTROCTR St 1F! CTRCO "THEN' V1F* T2mg, 'THEN' *SOTOT BN 'ELEE® '40TO0¢ wg)
SIRY T2€>8) 'THEN' 'GOTO' MEJSTACKIMCCHAING2TemMESOURCE
TENDY PARANETERS)

R«
MCIOURCESnCRODY» 1 LOCT (STACKLO)) 1 T20=1NCPLAGOD)140TO! SP
i TENDY MACRO EXPANSIONS
l i ¢ WEXADECINAL WUMNSERS)
]

N JuynBERed}
Wy rEF READT2>910 YTHEND t1F0 Tidqgh 'ORY T2>0F THENY 1GOTOY JNTR YELSE' T20T2.23 NUMBERECYCLECNUNDER, 4)o T2 80T0 Ny,

Ty

tPAGE" READER &) 25

€ o UNDERLINED WORDS *)

PRIBEADTZ; TASRECOGL(Y) ;*1P¢ T1<72 'THEN' *6OTO! OK 'ELSE' 'GOTO' ULWORD[TI=P1);
¢ OPTIONAL LTEMS, IGNORE FROM ? TQ ; LF KEViay)

QMetIEY PRITILITL40€>0 PTHEN' 'GOTO® CHIREADY2)'GOTOt go¢

{ FROM 'COMMENT® AND 'PAGE' TO 7)

PGIYIF' LEVELCOD ‘THEN' TOEGIN® NEWLINEITEXKT("PAGE:"™) '(ND' 'ELSE' Tie0;
CMEPORT T2OREAD 'WHILE' TQ2€>3; ,64,64 '00' *16°' V183 *THEN' OUTCHARCT2):SENMICON;:'60T0" 89

{ TESY FOR =)

CHa'IF' READT24>$® I'THEN! 'GOTO' EX ‘*ELSE' Tee$e;'GOYO" OK!
¢ TEST FOR ee)

AS Y1FY READTZA>S* TTWENY 'GOTOY EX SELSE® TYed2; ‘GOTO* 0Ky
¢ TEST FOR <8 AND <>)

LSyT1¢b) 'IF? READT2ugw 'THEN® 'QEGIN' RELOPea1;'60T0* OK 'END?
TELSE® VYIF' T2egy> YTHEN' 'BEGIN' RELOP#Q;1G0TOr Ok vEND' 'ELSE? RELOPe2;'60TO0¢ EX)

ES Tieds RELOP®1;°GOTO' OK;

¢ TEST FOR >)

681Tve6) 1P READY2<>Sw STHENT TDEGIN® RELOPe=27:GOT0: EX 1ENDY 'ELSE+ RELOPe3:'GOYOr OKI
¢ UNDERLINED RELATIONAL OPERATORS)

ROGNELOPOTI®TL T164;060T0¢ OK;

(DECIMAL NUMBERS AND XF OF CODE)

DO tIF' READT2>S$A VAND' T2<8$Z 'AND' T148 YTHEN' 'DEGIN' ACCUMULATORSTYJFUNCTIONCRECOG(D)iTtes:'GOT0" €Xx 'END’ XF:
NUMBERSCALE®D 3 FRACEOINUMBERONOASSY(10,7) 50 1F¢ NUMBERCO "THEN! *60T0* FT§01F* TRugl tTHEN® 1GOTOY EXPT,
TIFY Y2¢>8, YTHEN' "GOTO' INTX YELSE' READTYIREADT2wO0ASSY(10,6)3
1CODEY 'DEGIN' 'SPECIAL' 'ARRAY' X¢5,50,500,5000,350000,500000;
OSTOLR)I;TLOXNODS; 7DIVXI1-1)37LDXC2)IPSTOFRAL 1END'}
TIF! T2<>$8 'THEN' 'GOTO* NORN;

YPAGE! READER 5! 26

EXPYy SEGINY VINT! ALE;°IF? READTZaS- STHEN! 'BEGIN' READT2rAe#31463146;:(0,8) Eve3 'END®
PELSE! *BEGIN' Y1F' T2e%e 'THEN' READTZ;A¢0240000005¢0,625) Eek 'END' ;
'TFY 122810 'TMEN' 1GOTO! FYJYFOR' 720721911 '00¢ YBEGIN' NUMBERSCALECNUNBERSCALECES °*CODE' 'DEGIN'
PLOXFRACIPSRLYZMPYAITSLLY (6LOXNUMBERSMPYAIPAon(2114ADNLI)I7STOFRACIGSTONUNBER *END® CODE 'ENp' §OM)
READT2 '"END' DECIMAL EXPONENT)

NOAM) PCODE® *REGIN' SLOXFRAC;SSYO0I2);6LOXN40007000;6EXCNUMBERSCALEISADD23;7LOXNUMIER;
TINZe3IPSLL23;6SUB23100VR«) ;7S LVISI6ADDYS; PSRLY27ADO(1)16ADDY;74LT e8]
TSTONUMBER; 7JZEZEROFGADSNUMRERSCALEIGANON?ZT77700:6JINZFT 'END® KORM COOE;T14231G0TO0" EXS
ZEROINUMBERSCALEC#,00001677T10021GOTO! EX}
INTYIREADT2)
INTXPCODEY TREGIN' PLDXNUMBER)7JZEZEROSUSTOC2);00VReY ;7SLVE6368LL616A0DRI/ 777167 68STONUNBERSCALE TENDY ; T101;°GOTO EX}
¢ EXPONENT PART ONLY)
AV NUMBERCTOZ4IFRACHOINUNBERSCALES=10) 600! EXPY;
€ # OCTAL NUMSERS)
OCIREAPTY;
0Qyt1F! Tiegy 'THEN' 'BEGIN' NUMBERCQOCTALFRACI*GOTO! INTK 'END' LEFT JUSTIFIED 'ELSE' GENOCT)
OX3t3F? Thal *THEN' 1GOTO® INTX VELSE' ¢GOTO! NORM; ‘
(tOCTAL! NUMBERS)
OFyPIF! READYICOS(PTHEN' 1G0T’ 0Q 'ELSE' READTI;GENOCT;'1F' T24>8) *THEN' 160T0" FT YELSE' READTR2:'6OTO' Ox:

2 o o A AT O VS PP O TY 1 T BT T, e €.

¢ TLITERALS!

LIg*IF¢ READT24S "THEN' I1DEGIN' NODSOTZ READT2 TEND' YELSE! NODSSI NUMBERCO;TIFY T2¢r8(*'THEN' 1640TO" F1;

TFORY NODS#NODS =911 1DO' NUMBERCCYCLECNUMBER,6)oREAD) IF! READES) *THEN' 'GOTO' INTY VELSE® *GOYO' Vg .

3

()

£

C s CONSTANTS) S
~3

J

~

CHINUMBERSREADTQOTO! (NTY) s 8
 ACCUMULATORS) :-3)’ .
ACLYIFY READT2>68 'THEN® 1GOTO! BT CELSE! WACCoT20ANARK 60700 OK; :; ‘
I T)
FyiT1e481 720635140700 X3 ::5

¢ CHARACTER FAULTS) o
FYIRIVEUPCTCHARRETER FAULT")) §§'

¢ SHIFT OPERATORS) QQ
SHIPUNCTIONOTIo54 T3, E

¢ Common EXTY YO CLEAR T2)

o v2e=1y}

(extr 1P 12 387)

Exe'END? READEN?I'GOTQ' ExIT)

Ll

T QUALITY tka

Friod CUi'Y FUKKISHED 10 DPC

[
BN

GEISB

LHIS PA

TPAGE' THACE AND STATUS:

27

2ENONUM NUMBEReQ]'GOTO" EXIT)
KEGNUMINUMBERL=NUMBER: *GOTOY EXIT)
SETTENITOPTENSNUMBER]'GOTO" EXIT)
SETVEStACCUMULATORSY }'GOTO EXIT)
SFTNOLACCUMULATORS0I'GOYO! EXIT}

SFTTESTITESTeY 5070 EXIT;
SFTLEVELSLEVELeNUMBER; 'GOTO' EXIT:
LABYRACE:'OLT ' (OJTRACESACCUMULATORI'GOTO? EXIT)
PROCTRACE: "BIT [Y)THACECACCUMULATOR;GOTO?Y EXIT;
EORTRACEL'BIT {2)TRACECALCUMULATOR) 'GOTO? EXITS
ASSYRACEI'BIT ' {SITRACECACCUNULATOR;'GOTO! EXIYS
SETLADISTATUSCOPEISETLANEL(LOOKUPLAR) I *GOTO! EX1T)

GOYOLI"BEGIN® *SUITEN' Se50,51¢52+53,8431G0T0" S{STATUS+Y)}

S4IREVCI;OUTHFMNCACCUMULATOR, FUNCTION, 0, USELABCLOOKUPLAS) , 1LOCY (NAME)) ISTATUSES;'GOTO" §81
$31STATUS®03'GOTO" 383
S2:11Ft OQUECHAINGID *yMEN' *GOTO' S5 'ELSE’ ANSLINK;
S1111FY DUFCHAING>O *TNEN' ¢GOTO' SS *ELSE' DUEERR)
SQIOUTIC(W100, USELABCLOORKUPLAB), *LOCI(NAME)) 1STATUSSY;
SStJOINCHAINS(DUECHATIN, PCHILOOKUPLAS)) JOUECHAINGD

TEND® GOTOLI'GOYO' EXIT)

1SS STATUSCNECKISTATUSCLIONSTACK(2, 1FCHAIN) ISKIpCHATN®DI1GOT0 EXITS

SLSPSIREVCHATNIPIFY STATUSSA 'THEN' REVCY 'ELSE' *1F1 gTATUSSS TTHEN' STATUSOD "ELSE® '"IF' SYATUSSO 'THEY' STATUg®S)
GOTOY EXIT;

Flet1Fe STATUSEL *AND' FUNCTION®®24 'THEN' OUTCJ;*IF! STATUS»®Y 'THEN' STATUSeO;
JOINCHAINS(SKIPCHAIN,DUECHAIN) JOFFSTACKS2, IFCHAIND1GOTO EXIT)

NRALTREVCHMAIN;REVCJJOUTCIJSETDUEREVCHALINS 16070 EXIT)
OVRTEST:FUNCTIONGN24LGNTO! EXIT)

TRAGE" SEGMENTS] 28

ENDPROG) 'BEGIN' "INTEGER! DECSIDECSELOCALLINIY)
TIEE STATUSCDY "ON' OQUECHAINGDD 'THEN! *GEGIN' SETOUEICALLLIBCY,"CEND)™) 'END' PROG}
1EOR' DECSeDPECS 'WHILE' DECS>) 'DO' 'wEGINY VINTY TESY,CYEST;CTESTocBITS {3,6)01RINOADD(OECS)=4; TESTETYPIOECSI=LABEL,
VIFY TESTEO 'ANO' AYM(DECSI®O "THEN'
TBEGIN' VINT! LADSLAQOSCANLABCDECS) I IF® LABCPO "THENY '15' PCHILAGI>SD "THEN'
*MEGTN' SETLABELCLAS) JOUT27(OIRADOIDECST, “CEXTLARY™) *END' *ELSE® *IF+ CTESTS0 'PHEN'
TEEGIN' OUTCONT(PCHCLLARI) FOOSTRINGC'LOCY (LABIDILABY) ,OUTCONT) ;OUTS(23,DIRADDIDECS)) *ENDY
TENDY CASE OF LAOEL
YELSE® PIFY TEST>m0 'ANOY CTESTSO 'THEW!
IREGIN' YINT® AESIREFSLOOKUPNANECLOCALLINIT,0ECS) g IFT REFCDO "AND' TYPESITS(REFIRTYPEBITS[DECS) 'THEN®
TOEGIN' OUTCONT(OIRADDIREF]) JDOSTRING(!LOC' CBYRINGIREF)) OUTCONY);
TIF' TESTS0 'THgN' OUTSC(22/INpApplpeCS)) 'ELSE' OUTS(21,plnApplpeCS)) 'gNp!
YEND' CASE OF SWITCHN AND PROC:
DECSECHAIN{DECS)
TENp! FOR DECS; ENOBLOCK;PINISHSEG 'END' ENOPROG)1GOYO® EXIT)

REGINPAOGISTARTSEG (1) ;STATUSOOIOVECHATNGD BEGINGLOCK) ' GOTO! EXIT)
COMONgtTF® CSUNCHD PTNENT GIVEUR(TTUD COMMONS®);COMMONGY sSTARTSEG(S) 16070 EXIT;

CANOEF *BEGING YINTI PTR,ADDJ'IFt CSUMBO *THEN! CSUMeat;
OUTCONT(CSUM) JFINISHEEG;COMMONGD; THEAD JOUTS(,COUNY
TROR' PTRDECLIST,CHAINIPTRI 'WHILE® PTRCD '0O* '|!Gll' ADDSDIRINVADD(PTR))
PR 'BITSI02,6)A0089 YYHEN' 'REGIN?
ADOCADDADD (900600000,ADDe(*1F1 1DITS(B)ADOCHD *THENI DATAMAX tELSE® 0)))
PIFY DIRADOLPTRIC>D (THEN® DIRADDIPTRICADD *ELSE" INDADDLPTRICADDS
VIE' TYPLPTIRI>BLABEL 'THEN
"DEGIN' oosvo;ne(-;oc'(svnluoluvnx).ouvcou1$rOUVS(SO.Ano) YEND' OUTRUT
VEND?Y COMMON [DENT
TEND! FOR PYR;
ENDSEG
tENp’ COMOGF)*60TO" EXIT)

SPTLIBVARSITF® NUMBER 'MASKY A77740000 = MARK 1THEN' $TOPOP('LOC® (NANE),~1S OUT OF RANSE*))
PRINTADD(OIRADDEIOECLISTI) JTEXT(LOCY (NAME)) TEXT(® » 973 0CTLONP(NUNDER, §) s NEWLINE}
THEADIOUTCONT(DIRAODLDECLISY)) JOUTCONT (NURRER) SDOSTRINGCTLOC' (NAME) JOUTCONT) ;OUTSCA TSURIITTAILIEOTO ERITY

LOOXUPD | LOOKUPIOIRADDIRNICDTIRINDADOCRH) JENDADOLRN) O '6OTO? EXIT}

NEWNAP:

IPIFY LOOKUPNAMECLOCALLEMIT,0) €20 *THEN' STOPOP(*LOC! (NANE), "DECLARED TWICE"))

180 pTYPECO TTHEN! KEPARAMS(PROCATR) |
ORBTACE (oudT 1015 BECLEBT) 1D1RADDLO) 6ADDAOD(DIRADDEOD 1) {8 LTSPECHO; INDADDDI o0}
VIR LEM01¢»0 *THEN® 'REGIN' LCWEOECLIBT)e0sSWOP(DIRADDCDECLIST], INDADDCOECLIST)) *END?
1100 Pactol 0 1TuEN' tREGINY NEA

18070° EX(Tt

PARAMIILEY TYPLOIOLABEL 'AND' AYM(O)eO *THEN® lHllhb(.ltkl!'l.lﬁ.t“'t!l L

-

"PAGE" OECLARATIONS)

29

LABLIGRABVARIDINADOIAKI@LOOKUPLABITYPERITSIRUI 0010200067 1SPLELIRNICTLOC CLABIDCDIRABDIANIIIIIGOTO EXIYy

LABSK (1P TYPURANICOLADEL 'THEN' STOPOP(SPIZLIAK), ™18 &OT A SHITCH) ITYPEBITSIRN] 9000000673 14070 EXIT)
'7lll‘lllGIA'VAIIS’I!LllMIO’tl'lllﬁ)'IYV'!Il'l(ln)'.qooéooi'lblllbb!lul‘i’(tl'ilnﬁt'0070' EX11}
SKIPDYAIYIF! PRESETOKCO0 YANDY DTACHDATASTART PYNEN' 'QEGIN' DYAGOATASTARTIOUTS(3qsDTA) 'END! SKIPDTAI‘SOTO! €XIT:
STARTDECIIOTYPECOINITSPRCO0IDATASTARTCDATAMAR IDIRADDIO)¢DATASTARY I INOADDIO) @0 COTO? EXIT;

DECSIZEINIF! OVERLAYSO 'TNEN' DATAMAXCDIRADPLO)I'6GOTO! EXIT)

OVEAON ;OVERBASE4TOSADDIDIRADDTO)COVERDASE ;OVERLAY S 1GOTO" EXITy

OVEROFF1OVERLAYeO0I80TO" EXIY;

TAGLESIZEI'UFY OVERLAY®O PTHEN' DATAMAXGADDADD(OATAMAN NUNQER)IGOTO® EXKITS

CLEARYYPEIIDTYPESO;1GOTO! EXIT}

TYPEINTIPARTINT s IDTYPECLDTYPECSST;'GOTO" €XITy

TYPRPLOAT: IDVYPECIDTYPES#00040000;'60YO" EXIY;

TYRELADY FOTYPECLDTYPESN00014000;°60T0! EX3T;

TyPEPROL) I10TyPECLDTYPE+#000200007'GUTOY EXIY;

TYPETPROC: IDTYPECTIDTYPE+500024000;¢GOTOY EX1T;

TYPEVIROC: IDTYPESIDYYPESN00164000:'GOTO" EX1T;
TYPpSULTCNT TpTYPEeLpTYRPE+020014000:"6OT0" EXIT;

TYPELOC J10TYPEeLDTY x1v;
TYPESPEC: 10TYPESIDTY EXIv;
TYPEARRAY: IDTYPEeIDTY (233 ¢

TYPRIARRAY: JpYVPECIpTYPE 6OTO' gX17;
TYPEISWITCH) IOTYPECIDTYPEC#30014000;°6070" Exlv;

WOBITS ¢ IFt NUMBEREO 'OR! NUMDER>®25 'THEN' GOTO! BSTDECFAIL *ELSEY IDTYPESIDTvPECNUMBEReS4 'GOTOY ExIT)

NOAFTERG PBEGINT SINTY P)petBITSt[S,13) 10Ty PECNS7ToNUNBER; IDTYPESIDTyPE«P+R00004000;
YIF' P<O 'OR* Pyep100 *THEN' 'GOTO! BITDECFAIL *END® NOAFTER;*GOTO+ EXIT;

ENDOECS | DATAPTRGDATAMAKIDATASTARTEDATAPTR,) PRESETOKe0,1GOTO! EXIT)
ENDSTIDATAPTRGDATASTART ;16070 EXIT:

VPAQE' TABLES AND SPECIALS
30 |
PARAMTABISWOPCIDTYPE, 10TYPE2) JSUOPC(DIRADDLO), PARANPTR2) 1 1GOYO® EXIT)
NOSTGIBITIPECER4mNUMBER) 1GOTO! EXIT;
FIELOPOSNIDITSPECO(BITSPEC-NUMBER) o S2oNUMBER; 116" BITSPECOS0 'THEN' GOTO* EXIT;
OITDECFALLISTOPOPC "RITS/SCALE",“OUT OF RANGE~);*6OTOY EXIT;
UNSPIELD:* 17 DITSPECEQ 1THEN® 1GOTO' NITDECFAIL *ELSE® 1BECIN' BITSPL. PRITSPECOMARKIDTYPECIOTYPEGG]

YIFY YYPLOICOINTEGER YTHEN?! ¢BEGIN® TOTYPECIDTVYPEeq; 11F ! PVLIO)eg *THEN® 1GOTO' SITPECRALIL *END®
TEND' UNSPIELDI'GOTO' EXITY 1
TABADDITABLEDDIRADDIDECLISTY 'UNION' #100000007TADLESoINDADDTDECLIST)I?GOTO! EXIT) i
FLELOCISPIDIRAOOLOTLADDADDITABLED NUNBER) JINDADDLOIoTARLEIIIGOTO EXIT)
OUTPRESETIOVUTPRESETO(SCALECON0)) 'GOTO! EXIY)
PRESETSTRING IOUTPRESETOCIBITE {14,90)SPECSTRING,STA))'GOTO! EXIT; o
ARSADD)DINADDLO)@NUMBER IMASK! B37777)°GOTO1 EXIT; : ‘

T,

LIBADD ¢ OIRADDIOIeNURDER 1MASK! #3I7777 +#00500000;760T00 EXIY,]

&
&
EXTADD)OIRAODLOI&(TOPTENSNIO000 (NUMBERSLO0) YMASKINTT?) YRASK! #37777¢800600000;°60T0" EXIT, &
SPECCON,OUT1094CS(TOBADD) 160TO1 EXIT; E
SPEEREL,OUTIQ014CS(ADDADO(STA/NUNBERY)Y j G Y .1 ERIT; b

L]

SPECHUM OUT24CSCICALECON) ;760TO EXIT;

TRYADD 15+ COMMONGYO *THEN? AT
€00, 00 ;ADOSU; 11F1 PTRAO 'THENT p=u
EGINY DIRADO(O)OSTAZIDTYPECRO0014000100Y0! NEWNAME "END' FIRSY TinMg . j
TELIRY PIFY TYPERITSIPTR)ICOA00014008 'ORY TGO(PTRICHS *THEN' STOPOPC'LOC' (NAME) s *NGT COMMON LASEL®) ey 3
TELSE? 'REGINY ADDeDIRAODIPYR);OIRADDIPTR]«STA 1END! CHATNING ‘{, 3
TEND' CASE OF LAB IN SPEC ARRAY (N COMMON 3]
TELSE? tOEGIN' PTReLOOKUPLAD)ADOSDCHIPTR] 11§ ADD 80 *THENT OCHIPTRICSTA *END*;OUTIQIACECADD) m
1enp’ SPECLAS:'GOTO! EXIT} (%]

[N
ABORSWOTRADDIO10ADDADDCETAL =1} ITUPTENCDI GOTO" ERIT; é, *
ANORSPECIDIRADOLOI«STAI1GNTO EXITy o
SOBCONEOUT24CS(Q) 110070 ¢XIT)

ol

YpAGE" PROCEDUAES AND ARRAYS} 31

DRGINPSPECIMAKEPSPECTEXCPSPECI ' IF! SpRI0)n0 'THEN' '6070! EXITINEXTPARAM}

NEXTPSETIIDIYPECIOTYPE 'mASK® 047000000:1260Y0" EXIT)

ENDPSPECIEXCPSPEC)FINTISNPSPRC;*GOTO! £XITV)

SDOROC I EXCPSPECISTATUSSY ;LOCALLIMTIToPROCPTRIENODLOCKIOFFSTACK(S, PROCCHATN)I SFINISHRSPEC:1GOTD" EXITS

REGINPROCI'IF® STATUSHO PYNEN' *BEGIN' REVCHAIN;OUTUJIREVCHAIN TEND! ;
PROCSTACK;LINKSDIRADD[PROCPTR] ;DUECHAINGSTA; DIRADD(PROCPTRICDUECNAINIOUTR4CS(0)
SIPY CBITV(1JYRACECOD "THEN' PROCSTRINGOSPECSTRING) ' GOTOY EXIY;

SEYPARANS ; PARAMDECSODECLISTIOATANAX«DINAOD(0)F1GOTU? EXIT:
KILLPARANS 1 DECLUSTOPROCPTAJLABDECLISTD;DATAMAXeLINK ;LINKe0}°GOTO0" EXIT;

PROCFNTAY (BEGIN' INT' P,A;

PROC SCANC'PROC® PAOC))

VREGING PoBARANDECSI VEOR' Pep ‘WHILE' PCOPROCPTR 'DO° *BEGIN' AePALIP);

VPFY A€>Q 'THEN' PROCIPOCHAINIPY 'EnD' 'EnD’ SCANJ

CPROC' LABPARAMI'IF' TYPIPIWLABEL "AND! AYM[P)®0 'THEN'

SREGINY SETLABELCINDADOLPI) ;INDAODI{PY«Q;0UT27(OIRADDCPY,"PARAMLAB™) 1ENDY LADPARAM;
CPROC' DUMPPARAM]'RERIN' TINT! ADD?

ADDeOIRINOADDCP) JACCSTA)SADDIOUTAEMNLA) #1000, ADD, LOCY(STRINGLP)I) 'END' DUMPPARAN;

SEANILABPARAN) JENTERPROCIOUTI(MIVAL0, LINK,“CLINK) ") iSCANCDUNPPARAN) ;
161 PROCSTRINGCHD YTHENY ‘BEGIN' ZEROACCSILIDYMACEC(AH,PROCSTRING,“(PNANE)") ‘END*®
veun® PROCENTRY'GOTO' EXIT}

EXJTCHECKI'IF' TYPI(PROCPYRISPROCEDURE ‘THEN'
YPF' SYATUS<>0 *AND' DUECWAIN®D *THEN® 'GOTO Exyy '€ SE' SETDUE
tELSE’ P18 DUECWAING>O (OR' STATUSay 'OR' EXITCHS0 YAND! STATUSCZ *THEN'
SYOPOPCILOC (STRING(PROCPTRI), “EXIT WITHOUT ANSWER®)
CELSE' 16’ PROCSTRINGSPO 'THEN' YQEGIN' SETCHAINTOPYA(EXITCH):
€16 SPRTIPROCHTRING PTMENS OUTI(HICZO,STRIPROCPTRYI=H24000,"(TYPEI") YELSES OUTI(AIA00, LTNKeY, " (TYPEI™)}
CALLLIB(S,"(PTANS)™) 'END!
TELSE" "Bt STATUSEY ITWEN! 1GOTO! EXIT)
P1ET PENCSTRING €0 PYMEN) LIDTRACECS,PROCSTRING, *LOCICSTRING[PROCPTR])); OUT27CLINK,“(EXIT)™),;1GOTO? EX1T;

SETLINSFG STAR SEG(2) :PROCSTACK DUECNATNGDIRADDIDECLISTIMARK, LINKeDATASTARY ;DIRADOLOI¢LINKS TRACECD: 160TOY EXIT;
TEROARRAYS ARUAYSe0TOPTYENCD}1GOTO EXIT)
CETLBIOFFSETeahUNBER] GOTO" EXIT]

CPTUD: UMBENCNUNBERGOFFSETOY)
T1EY NUMBERCT 'THEN' 'BEGIN' NUMBERe1;STOPOR('LOCY (NAME), "ARRAY GOUND ERROR"™) (END* ;'GOTO! EXIT;

“ipRIM;DODIN(ADOADD(STA, ARRAYS) , NUMBER,OUT1014LS);
LASTOIM 0NOLMCARRAYRASE RUNBER,OUTTIO014CS);
ANENIMADDRARRAY (ARRAYBASE))

EERSTDI“ ADDRARRAY(STA);

FuDARRAY) OVERLAYC<>O *THEN® OVERSASECADDADDCOVERDASE,ARRAYS) 'ELSE! DATAMAXeADDADOCDATAMAX,ARRAYS);160Y0Y EXIT:

1ea6E' ARITHMETIC 1)

32

PLUSSUNISURTERM(DO)

wINUSSUBISUBTERM(D1)}

SHRCOMMA L TQEGIN® FINT! LHJLHOEXPRCHAIN=SI¢1F1 INDADO[LHI®O 'THEN' INDADD[LN)¢DIRADOLLN)
TELSE® YREGIN' TINT? MODIMODSCOODONECLH,3) JINSTCLN,MQD,00);INDADDILH) #MODOAMARK *END!}
DIRADDILMI®N;ACCUPDATECLN) 'END® SUBCOMMA;'GOTO! EXIT:

SHTANIETINITSHISTEFUNCTIONINONAME ;SPTELIRNI @ (SHIFTI®}

SETUPSUB I IFY AYMIRNICIO 'THEN' AYMIRN)®0 'ELSE' STOPOMCCHAINTRME,“1IS NOT AN ARRAY®);
STACKEXPA;EXPSCALECRITAT7;SCALEFIRN®T ;PREFACCEFINDACC(S):'GOTO" EXITY

“QK 1 SHOPOPTIOPERATECNIS)
NEOISVOPOPTIOPERATE(SIE))
ORFSHOPOPTIOPRRATECSTI?))
AASHIFTIKILLEXPRIOPERATE(BITSNIFT)
ONFRTTIBITSPECO23; [OTYPESR147;¢6OTO" EX1T;

LHSRITS T IEY PARTUORD(AM}COD 'OR' TYPIRMI>ELOATING 'THEN! STOPOPCSPIELIRNI/“ILLEGAL BITS ASSTIGNMENT™)!
STACRNJ@INTYPE | PARYWORD{RN]I ¢S ITSPEC; 1GOTO EXIT)

ANSATTS 11F) TYPERITS(AN]ICO 'OR! LCMLRN)ICO0 *OR' PARTWORDLRK)I<>O 'THEN' GOUOPICK(RK, Q)1
PARTWORDIANICOITSHIFT TYPEBITSIRN)@rOITS IS/ 1I0ITSHIFT GO0 EXITY

BITSINGRITSHIFTOCYCLECIDTYPE,10)*0ITSPEC)1GOTO! EXITy
TYPEXPRISTACKEXPATENPSCALECIOTYPEISCALEFIRNey)
SEYPRES 1 PREFACCHFINDPRESJIGOTO" EXITY

ANYPREF | PREFACCOFINDACCE?))'GOTO! EXIT}
EXPRTYPEIPICK(RN,GOODACCCRN) JEXPSCALE, 0}

OFFSTEXPRIOPFSTACK (S, EXPRCHATN) FMOVECS STACKIRN] STACK{STACKPOINTERY)
STACKPOINTEROSTACKPOINTERSSISETLNRNIACCUPOATRCRN) 116070 EXIT)

SCALETERMI TR SCALESTRNSO TTHEN' 'ggGINT YINT! SCALE,DISWITCNY Sel10, IT.1F KL PR FLS
GOrSCALECSTO{RN] o (¥’ EXPSCALESD 'THEN' '"60T0! g1 "ELSE' SCALETEST(SCALE,EXPSCALE,S);
10,EXPSCALECRST711G0TO! EX}

P10 0F? EXPICALECSCALE *THEN' EXPSCALEOSCALE;160TO" EX)

SLyPAPSCALESE10000;60TOY EX}

$18WOPCICALE, EXPICALE)Y

191SCALEORT703? V!'(!:;JISCALEI
ER 0o DyTe (6, 18JEXPSCALE="D TSI (6, 18ISCA B cF® DCO *THEN! *DESN' CesDISVWOPCSCALE, EXPSCALE) 'End!
oot'itl(l,‘)-(ll'lCltl- ALEY'PMASKY@PPPPP7001 16! D40 'YHEN' EXPSCALESEXPICALED;

FXTEND® FREE SCALE TELSE! 15" AXPSCALESMI0000 *TRENY FLOATIT(RN)
TELAQY VIR0 TYPLRN)SFLOATING ‘THEN' TREEIN' ACCPICR(RN,?)IDUNPACCSIZEROACCS)
QUTE(R1420,EXPSCALE, “(TYPE)*) 1CALLLIN(2Y,"(F1XFP)Y*))
A4 119(RN)olxPRCALETACCUPOATECAN)
ERMpIGOTO EXIT}

1rup! SCA

i a2

nad

1PAGE" ARITHMETIC 2¢

33

ADD ¢ BHOPOPTIADDIVS (D)
SUSADDSUBI(OD)

RATSEISIFY TYPCRNICOINTEGEN STHEN FLOATORIDY;
YIFC TYPLLNIOFLOATING 'ORY TYPegITS[RNI>®0 *ORY pIRADPIRNICO2 'THEN' FLOATOP(6))
NOVE(S,STACKILN] , SYACKIRN]) JHIFY LHACCC>U 'THEN' *SEGIN' DYMPACC(LWACC) JPERM 'END® ALC $03

MOV TREGLRY TINT! ACC, BCALEL!SUITCHY Se10,31,18,81,5F,FL)

LR TYPEDITSELWICO "THEN' PEAM JELSE! SWOPOPT;ACCGOODACC(LN) JSCALETESTCTYPERITSLLN),TYPERITSRH] 5);
FLIFLOATOR(Y))
1038CALEeROT I GOTO" 1Cs
LUagCALEOSTRLLATOSTRIRRY-N167 1 161 SCALEDSN3067 *THEN! SCALESS3067;
1CPTICK (LI ACC) 867=POUERTWO,0) ;1 2F' POWERTWORO 'THEN! 1GGTO! MPITYPERITS(LN)eSCALE;1GOTO! EXy

tVTFY SOWERTHOKOO0 PTHEN' 'BEGIN' YYPERITSILMNICTYPERITSILK)oPOVERTWO:'GOTO® £ 'END’
TIFY PYPEQITSIAN)ICO YTHEN? *REGIN' FIXCON;'GOTO® FF *ENO' JPERM;ACCOGOODACCILNY S
TFePICKCLN,ACL, #703745GO(LH],0)7%GOTD! FC;
FEIPICKELN,ACC,STRILNY,0))
PCASCALESPVLILNIOPVLIRNI=#40}

YREY YBITEY(18,0)SCALE<>D "THEN' WARNC*MULY SCALE OUT OF RANGE~,0);

SCALECSCALES('1F? STA[LNICSTR(RH) PTNENT TYPEQITS[LM) 'ELSE' TYPESITS(RWI)'MASK' #37700:¢
MP 181 PARTWORDIRKICHO tORY LCMIRNI<>D TYNENT GOOOPICKCRN,0);

INSTURN,ACCo 362 ITYPERITSILRICSCALEZ P! SCALECHL000 'THEN!

TBEGIN' OUTXFMNCACC, 831,0,23, (SHIFTI")I0UTXFMN(0,832,0,1," (SNIFT)) JOUTXFMNC(ACC,802,0,2,°(ADD'Q)%) *END' ynT:

ExatEND! MULTIPLY)'00TO" SENEADEXIT;

DIVIDE; 'OEGIN® VEINT! SCALE,SHIFTS; IS ITCHY $e10, L1, 1F, F1,FF,FLILINTPIPROC? ENVTEST;
TANSWER YIF' Timge 'OR' Tiag/ 'OR' SCALEFIRME(*AND! *'BITS*{6,18)SCALESE 'BITS ' [6,98)EXPSCALE *THEN® O TELSE® 1;
ISINACCCLNDZYIF® LCMERNIC>0 VOR' PARTWOROLRNICOO 1THEN' GOODPICKIRNH,0):
SIEY EXPSCALECON10000 YINENY SCALETESTCTYPERITST NI, YYPERITSIAN] S)}
FLIPLOATOP(4):
TEoSCALESSTBILN)~STYOLRN)@#267 17 1F! SCALECO YTHEN® ¢GOTO* 104
VEIFY SCALE>=#3067 '"THEN' SCALE«#30673'60T0" I1C}
1013CALESRO7]
1CytIFY POUBATHOWO THEN? 16070 DC;
TYPESITS[LH)TYPERLTSLLH]=POVERTWO; PICK (LK, GOODACCILII P TE? ENVTESTCOU *THEN® EXPSCALE *ELSE' SCALE,0);'GOTO* EX;
TR 1SCALECTYPERITSIRN] 'NASK ! #37700+#770SGBLLN)=PVLLANYI*GOTO! PCy
FIellF? POWERTWQO 'THEN' "BEGIN' TYPEBITSLLHICTYPEQITS(LHI~PONEATWO: *GOTO" EX *End'
SEIFY TYPERITSLRAHI>E0 PTHEN' CREGIN' SCALECSTR[LK) 'GOTO! OC 'END?) SMALL:
PIXCON;
FEoSCALECCPTF® STRILHICSTBIRND YTHEN® TYPESTITSILA} TELSE' TYPEDITS[RN)) 'MASK ' 57700ePVLILNI-PVLIRR}«gé0;
0CIYIF? ENVTESTC>0 1THEN? SCALECEXPSCALE!
SHIFYSeIBITSI(6,18)SCALECPVLIRNI=PVLILHI=g&U; [5? SHIFTSC2S 'THEN® DUTI(#60,2, C(CLEARI)
PLEY SHIFYSCO "THEN' PICK{LN,GOODACCCLN),STBILHIegHIETS,0)
VELSEY fBEGINY GOODPTCKCLHYO0) Y IF? SHIFTSC>O0 'TNEN' OUTXFMNCLNACC,#30,0+SHIFTS, "CSCALE)"™) 'END' ;
INST(RH, LNACE, #37) 015! RNACCEPREFACC YTNEN! PERN;
OUTXENNCLHALE,00,0,2,°CQUOTI) ITYPERITSCLN)®SCALES
EXJVEND? DIVIDEICGOTO' BEMEADEXIT:

1PASET ANSWER AND FOR;

3

GOTOSKSINSTIRN 4, 02P);STATUSST1GOTO" SENEADEXTT:

SEVANS s *OEGIN' 'INTEGER' DUMMYBLOCK:PREFACCeP ;16 LINKSQ PYNEN! *GOYO' FAULY;
EXPSCALECSTR{PAOCPTR)I=H24000)"1F* EXPSCALECD 'THEN' *GOTO' FAULT;
1150 SPBIPROCPTRICOO +THENT 16OTOY WEAKISCALEFTRMOY;1GOTOY EXIT:
FAULTISTOPOPC ANSWER",“ROT ALLOWED®)}
NeAKY EXPSCALECDsgCALEFIRMeO GOTO" EXIY
TEND' SETANS

ANSCHECK) PICKCRN, 7, EXPSCALE Q) ;STATUSS2{1GOTOr BEHEADEXTY;

STOREZERO1LF' PARTWORDIAN]I®O 'THEN' ASSFUNGASSEUNSMARK;

CANSTANT JGRAOVAR ;SPIELINNI ™ (CONST) " TYPEQITS(AN) eNUMBERSCALEJOIRADDLRNI GNUNGER | 1GOTQ? EXIY;
APDAL'IFY LNEQRNCYO 'THEN' ASSFUNeN12;'GOTOt gX1T;

SUBAS'LIFT TYPEBLITSIRNICO 'THEN' UNARYMINUS YELSE®
SAEGINY *1FY LWEQRNCOD YINEN' ASSFUNGEIIJASSFUNSASSFUNORMARK 'END' SUBA:'GOTO' EXIT}

SIMPLEASS I 1P ASSFUNSAIZ TTHEN! ASSFUNED TELSE* 'IFt ASSFUNOMARKeS10 *THEN®
PIPY TYPLLMIWFLOATING *OR' TYP{RM)ISFLOATING 'OR' PARTWORD[LM)I<>0 'OR* PARTWORD(RW)ISO *AND' TNDADD{ H]e0
EANDY COPYINACC(RANISO STHENS SREGINY UNARYMINUSIASSPUNCNI0 'END' *ELSE' ASSPUNe#t1;°60TO" EXIT;

STORESTOREANAY (1BITI(SITRACE)) *GOTOY €XIT)
VUNLLELLOUTCIISETOUE L FORSTYATECFORSTATESS 1G0T EXIT;
STEPUNTIECCOCCC TuASy® TYPERITS(ARI Y IR TYPERITSIRNICO *THEN® ltltluun(llr!lPSCA#E’ tELSE

TEFT STBLANICOEXPECALE 'TOR' PARTUORD({RNI<>0 1OR® INDADDLIRNICO ‘OR! LCM{RNI<>0 *THEN® PICK(RN,GOODACC(RN) ,EXPSCALE, 001
FORITATECFORSTATESY;

FORSTOREJOATAPTRODATASTART JOUMPACCS ;OATASTARTCOATAPTR I\ IF! ATLCOATASTART ITHEN' RTLEDATASTARY;
ZERDACCE;DJACPYA1GOTO" EXIT)

STARTPOR STATUSCHECK) DEGLABDLOCKIONSTACK(B, FORCHATN) jCOPYSKIPSKIPCNALN;
SKIPCHATNGOIRTAGOIFORSTATESOIDATAAODSDATASTART IRTLEDATAADDI1GOTO EXITY?

ASSEVICCCOTYPEOITSIAN] JSTOREANAY(0);
YIFY POASTATREZ TANDY TICOSM CTHEN' 'SESgN' SETRTIFONSTATECL 'EnD' ASSCVI'CaTO' EXpT)

CHECKCY T IF® TYPLANIDRFLOATING *OR' PARTWORDIRN]ICOO 1OR® AVMIRNICOQ *THEN®
TBECIN® TYPEBITSIAN)@BA7PARTWORD{RNIS0ISTOPOP(SPTELIRN) “1S UNSUITABLE") 'END' ;
IIPSCALIOITI(.“)t‘tltlllllb1)'QE'ACC07|A‘Sivn&l\Oltvollphll‘(‘lbl *+SPIELICV));*GOT0 FORSTORE;

MAREFOR, I EFY FORSTATEND 1THEN® 1DEGINY RTAGPTAJOUTIC(NIO0,0,"C00)") FORSTATESD rEND?
PELIE® YBEGIN' 'IF' PORSTATEAL 'THEN' SETRT;FONCOMIREVENAINJSETOUE 'END' ¢
ASSFUNSRIOIRIASPTAIZEROACCS IOATASTART@DATAADDNNTILLY) I 00T EXIT)

VAREWECK ' IFY TYRCANIDFLOATING toNln?
TOEGIN' TyPEATTSCAN)oRATIPARTWOROLIRNIGOIBTOPOP(SPIRLIAN), 18 NOT A VARIABLE®) 'END' NOT vaR)

AyMEHECK P TFY AyMEAK)COO PTHENT STOPOP(BPIELCRN), 18 NOT SUBSCRIPTED") ;16070 X1 T

{ FRavTiCABLE

C

~

Iz

™
4

AMIS PAC

Lk

U-Lu-.t.g“__“_, ey,

FROM COFY &

+PAGE" DO AND IF} 35

OnCS:PBEGIN' *SAIVCHT Se50,50/82,53,56,85,8510ATASTARYeRTLIIGOTO! SIFORSTATE1)}
$2,"1FY CCC<O 'THEN' FORSTATESS VELSE' FORTEST;'GOTOr §0) .
SY,SETCHAINTOPTACRTA);G0TO! 80,

$41F0RCOM;OUTUIIIGOTO® 88)

$S sONCOM;

SCISETCNAINTOPTACATA) ;OUTICSI040,RTL, " (LINK)") JOATASTARTODATASTART 1]

$A(PATAPTRODATASTARY ;' 1F) DATAMAKCDATAPTR YTHEN' DATAMAXNGDATAPTR;
VIFY YRITYC2ITRACES>O 'THEN! YREGIN® INST(CV,7,00))10UT (914620, EXPSCALE,"(TYPE)) JOUTI(g1220,8TA,SPIELICV]):

DOSTRING(SPIEL{CV]I OUTRACEI SCALLLIB(O,“(TRACE)I ™) JZEROACCS "END!
tENDt ONCSIYGOTO! EXITY
ENDFONpTWEGIN' YINTH Ag'SWITCH' S¢80,31,32,81,54,S518ET nRN)'GOTO' S{FORSTATE1);
TIPCDUECHAINGD *THEN' STATUSCHECK:

ST '1F' STATUSSO 'THEN® TBEGIN' UJRACKISTATUS®Y *ENDY 1ELSE!
STFY DUECHATNGYQ *THEN' "MEGIN' OUTCONT(BJA) JOUTS(18,0UECHAIN) 'END' J'GOTO’ $O;

$218TATUSCHECKIFORINC; UJBALKISTATUSe41'GOTO! $0;

SLISTATUSCHECK OUT2P(ATL,“(REPT) ") jSTATUSS17GOTO" 01

SCISTATUSCHECKISUSPIELI'TF' DIRADO(LNI>®O 'TREN' DIRADDIRWICOIRADD(RN)«1)
Ae73INSTICY,7,00) 'END*

AeCOPYINACC(CYYJ*IF® A0 ‘THEN' *QEGIN'
INSTCLM AL 02 TINSTCCY A, 8Y0) 1 18" DIRADDIRAICOC 'THEN! INSTC(RN,A,03))

OUTXFANCA,*1FY DIRADDLLMYID>SO 'THEN' #23 VELSE' #22,0,8JA,(REPT)I");ACCSLA}eO)
SN BUECHAINCSKIPCHAIN; SKIPCHAINGCOPYSKIPIDATASTARTCDATAADDIOFFSTACK(S, FORCHATIN) JENDLASSLOCK

YEND' ENDFORJ'GOTO' EXIT)

SETNEZIRELOPeQI*GOTO! EXIT)
CTHEN' UNARYMINUSITGOTYO' EXIT}

TELSE' 'GOTO! ApD: