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noisy data
filter, the
poor at low (€7
ignal-to-noise ratios. This occurs for at least
first, the statistics of the image

When an image is estimated from
using 2 linear shift-invariant (LSI)
;ubJective improvement is relatively

WO reasons:

) are markedly space-variant and second, the sye is

= very sensitive to blurring of adges.
e

However sdap-
tive filtering techniques can be apolied to improve
the subjective quality of noisy images even at low
signal-to-noise ratios. This is accomplished in

the present work by using multiple models to match
the space-variant statistics and by using oriented
edge models to prevent edge blurring in the filtered
result.

INTRODUCTION

In the past several years variocus methods have
been provosed for the recursive estimation of images
and other two-dimensional (2-D) data. Most of these
methods have been tied %o first order or separable
models that do not match image statistics very well,
Also most of these methods are restricted “c the
homogenecus case where the model coefficients are
constant.

Since many 2-D ata fields, including images,
are markedly non-homogenecus, there is a need for
general recursive estimation procedures which can
take this cropersty into account. The 2-D Kalman
filtering methods can ‘heorstically take “his into
account, however the practical problem remains of
obtaining the spatially vrarying model coefficients.
Thus recent work has been concerned with the
development of various adaptive estimators which
will provide a practical means of estimating “he
model coefficients. A common property of these
adaptive estimators is that they separate intc two
parts: one par%t estimates the model coefficients
based directly on “he noisy data and a second pars

iiters the data using the sstimated model coeffi-
cients.

Qur original approach was based on the use of
continuously urdated mcdel parameter astimates to
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readjust the Kalman gain (Ref. 1).
approach was not very fruitful for the following

However this

reesons: Conventional one-dimensional (1-D) re-

cursive least squares identification algorithms do
not readily extend *o 2-D recursive identification
algorithms. Secondly, in order ‘hat the recursive

of identification algorithms be able to track space

varying parameters, the =ffective bandwidth must be
large enough that the wvariations are not smcothed
over. This in turn makes the algorithm more sus-
ceptible to noise effects. Thirdlr, the existence
of process noise with an unknown v iance and meas-
urement noise as well, can resul® in biased estimates
if general leest squares regression is performed
directly on the measurements.

Presently it appears that the most favorable
adaptive approach is a multiple model doubly stoc=-
hastic procedure (Ref. 2),which combines a set of
local Markov models of the field itself with a
lower level 2-D Markov chain for the model parameter
transitions. This development differs from pre.
viously published procedures in that it takes into
account the need for transi tion probabilities be-
tween local models, rapid edge detection to prevent
blurring, and near optimal local recursive estima-
tion for general AR models.

2=D RECURSIVE ZSTIMATION

Barly attempts to achieve 3 truely recursive
2=D Xalman filter were of only limited success due
to both the difficulty in establishing a suitable
2-D model and also the high dimension of the re-
sulting state vector. In {Ref. 15) Woods and
Radewan presented two new algorithms wnich, %o a
large extent, overcame the >omputational problems
which had precluded the use of 2-D Kalman like pro-
cessors. Both wvactor and scalar scanning methcds
were considered, but emphasis was placed on the
scalar scan because it leads %0 processors which
are recursive in both dime:usions, i.ea. 2-D recursive
filters. These Xalman based algorithms allow the
use of space-variant models which can provide a bet-
ter match to local sSource statistics leading to a
greater noise reduction with less signal distortion.

QOther approcaches to recursive image estimation
include the work of 3trintzis (Ref. L), Jain (Ref.
5) and Murphy and. Silverman (Ref. 6). 1In (Ref. &),
Strintzis presents an.ARMA modeling aporoach to re-
cursive processing coupled with an interesting
additive rather than multiplicative based spectral
iecompositicn. The addition of a moving average
o the AR model of Kalman filtering can provide
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some modeling advantages, however in (Ref. 4) the
developed model is for the correlation functionms,
not the field itself, thus simulation is not pos-
sible. Further only the steady state is considered,
where the image filtering problem can be embedded
in the class of cyclic processes. Unfortunately
this embedding cannot be done if non-homogeneous
image models are considered or if random boundary
conditions are explicitly treated, as is done in
(Ref. T).

In (Ref. 5), Jain considers both implicit and
explicit partial difference equation models for
images. The models are compared and evaluated
for mean-square improvement on representative
images. This method is not suitable for space-
variant or non-homogeneous image models. In (Ref.
6) Murphy and Silverman consider a vector scanning
approach to image restoration. A constrained or
reduced update vector processor is developed which
nicely compliments the scalar reduced update filter
of Woods and Radewan (Ref. 23).. The problem of
image restoration rather than simple noise filter-
ing is considered in (Ref. 6). In (Ref. 7), , .
Woods and Ingle extend the reduced update filter
to the deconvolution case.

ADAPTIVE ESTIMATION

Develorment cf a procedure for online parameter
identification requires either a recursive type
algorithm in which each 2stimate is 2 simply evalu-
ated function of the previous estimate and the
current measurement,or a non-recursive algorithm
which can be executed in a time frame significantly
less than a single pixel scanning period.

With regard to develcping recursive algorithms
suitable for use cn 2-D fields, some type of approxi=-
maticn is desiraple because of the nonlinear nature
of simultaneously estimating both states and para-
meters. Tor example, a recursive least squares or
weighted least squares algorithm (Refs. 8, 9) mignt
be applied directly to the measurements in order
to obtair parameter estimates which can then be
used for Kalman gain adjustment. However, decause
these procedures give biased parameter estimates,
Sen and Sinha (Ref. 10) have proposed a revised
least squares procedure which results in approxi-
mately uncorrelated residuals. Alternate least
squares %type methods for reducing the bias include
algorithms based on correlating the measurements
(Raf. 11) and those based on correlating the
astimates (Ref. 12).

An alternative %o the above estimation tasel
procedures wnich appears to be very powerful in
risw of recent results in adaptive contral (Refs.
13, 14, 15), is based on “he use of a bank of
multiple models as per Lainiotis Partiticning
Theorem (Ref. 16). Basically the Theorem says that
under cer<ain assumptions the nonlinear adaptive
filter can te decomposed intc “wo parts: a linear
nonadaptive part consisting of a2 bank of Kalman
filters, =2ach conditioned on a predefined model,
and a nonlinear adaptive part which evaluates the
a posteriori model probabilities and forms the a2p-
propriate state estimate as a weighted sum of the
filver outputs.

Below we summarize the development of a corres-
ponding multiple model procedure for the estimation
of images and other 2-D fields. For more details
the reader is referred to (Refs. 2, 17, 18).

MULTIPLE MODEL RECURSIVE ESTIMATION

Following the notation in (Ref. 3), the dymamic
model of the image formation is given as,

s(m,n) = c.
iJ
b

where the coefficients are the model parameters,

R'+ is the non-symmetric halfplane support of the

model, and w(m,n) is a white Gaussian noise having
zero mean and variance 0. The scalar observation

s(m-i, n-J) + w(m,n) (1)

model is given by:
r(m,n) = s(m,nX*v(m,n) (2)

where, v(m,n) is a white Gaussian noise with zero
mean and known variance 0j. Then using the global

state vector s(m,n) as shown in Fig. 1, the vector
equations for Eq. 1 and Eq. 2 can be written as:

s(m,n) = C s(m-1,n) + w(m,n) (3)

r{m,n) = _?g(m,n) + v(m,n) (L)

where, C is the system propagation matrix determined
by {Cle and the ordering of the global state vector,

Tt O RSN (5)

and
#(m,n) = (v(m,n), 0y 0, " v oy O]r g (6)

Let s;(m,n) be the local state vector as shown
in Fig. 1, and let gi(m,n) and zi(m,n) be the ob-

servation vector and white Gaussian noise vector
respectively having the same suppor% as that of the
local state vector il(m,n). Note that the scalars

r(m,n) and v(m,n) in eq. 2 are the leading elements

of the vectors r,(m,n) and y, (m,n) respectively.

Then from eq. 2,
£, (myn) = 3, (m,n) + v, (m,n) (1)

BASIC ADAPTIVE ALGORITHM

Now we make the following hypotheses to arrive
3t a basic multiple model description of an image:

1. At each pixel (m,n), there are L a-priori known
L

J=1
by their direction of predominant correlation.

classes (65} of local state vectors distinguished

2. The probability distribution of the classes

{p(® 1Y is xnown n=priori.
3 4=

3. The conditional distridution of the local state
vector of a given class is Gaussian i.e.,
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p (_3_119‘,) X (2m) ngl 'l/zexp(-l/z _s_fgj 5)
(8)

where .& = dimension of S
Hence in light of these hypotheses, the dynamical
equation becomes

s(m,n) = c(8) s(m-1,n) + w(m,n) (9)
where 6 takes on one of L values at each (m,n).

Now a bank of reduced update Kalman filters
running in parallel and each designed based upon
the statistics of one of the L models can be de~
signed (Ref. 3). Using the results developed in
(Ref. 17), the decision logic is: Select model

eJif::
1/2 gf(g J+ 03 3.’_)'1;1 *ey /2 gf(gi + 031)'1g1+ci,
i#) (10)
where ey § l/22nl§3 + 03 Il- lnP(GJ) (11)

are constants which can be precomputed.

The above adaptive approach to the use of
multiple models may be improved upon by introducing
a spatial doubly stochastic Gaussian model as dis-
cussed next.

DOUBLY STOCHASTIC GAUSSIAN ESTIMATION

To introduce a doubly stochastic model, it is
necessary *to have a description for the underlying
process which determines the elementary model to be
used at each pixel. Such 2 description is the 2-D
Yarkov chain which generates a discrets valued
random field l(m.n)e{SJ] specifying which of the L

models is to be used at pixel (m,n).

The simplest example of sufficient generality
would be a 2-D Markov chain with local state as
shown in Fig. 2. Such a local state would require
an L*xL stochastic matrix “o specify its transition
probabilities. TFor the experimental cases to fol-
liow, L=5 was found to work rather well. In %his
case the transition matrix is 625x5. Zach row of
the transition matrix indicates the conditional
probability of going from =ach of the L® possible
present local states at (m-l,n) %o the ~onditionally
vossible local states at (m,n). The 2-D Markov
chain is %thus specified by giving the support of the
local state and its transition matrix 2.

Using the 2-D Markov chain to specify an under-
1lying structure, one may generate a doubly stochastic

}
i
to generate the random signal field. The resulting
signal model would beconme

model by using L different sets of parameters fc

s(m,n) = ; ::gm’")s(m-i,n-J) + u(m,n) (12)

2+

where %(m,n) is the 2-D Markov chain field with
local state support consisting of a finite extent
NSHP region similar to the local state support of
Eq. 1. Thus given {&(m,n)}, the resulting signal
model is space-variant Gaussian.

The filtering for such compound models can use-
fully be thought of asa two step process; at a
given pixel one first estimates the local state of
the underlying Markov chain, then one chooses the
most likely model to do the estimation of the higher
level random field. This will lead to a processor
similar to the basic adaptive algorithm but with
the added advantage that the local state of the

-underlying Markov chain can alter the likelihood of

the various model transitions and hopefully improve
upon model switching decisionms.

Accordingly assume that s and 2 are known for
the past at pixel (m,n). The probability of 2(m,n),
conditioned on the noisy observation of the local
state gl(m,n),can be written as

P(2(m,n){z, (m,n), past L] =
p[gl(m,n)lﬁ(m,n), past Z]P[l(m,n)lgi{m-l,n)]

L (13)
! plr, (m,n) |2, past uP(ngi(m-l.n)l
2=1

where use has been made of the conditional probabi-
lity of the 2-D Markov chain. The function P(+|)
then is just given by the corresponding row of the
probability transition matrix of the chain. The
conditional probability density of 51(“’“) is

Gaussian with mean zero and covariance determined
by the past and present chain data . If we assume
all nearby points are in the same state %, “hen we

may approximate the conditional density of 51 as

x(g,§%+ci.;). If we replace ﬁl(m-l,n) by its
estimate 2, (m-1,n), we obtain the tollowing
decision directed rule:

Choose % such that

T, 2 eyel Min | T
/2 » r, +c, L_(ma =
1/2 .I(Rz*o L) Ty te,! 4 (m 1,n)) 1<x<n /2 rl(gk

2 gyl g
+0, 1) % (&(m-1,0))  (14)
where
/

c,(2y) 8172 ta|red 1] - ta P2 2 (m1,m)] (25)

This decision rule can bYe compared with Zq.
10 and 11, the decision rule for basic algorithm.
The difference is the replacement of the a-pricri
probabilities P(ei) by the conditional probabili-

ties of the Magkov chain given the decision-directed
present state Ei(m-l,n). If the recent decisicns

have been good, this has the effect of improving
the probability of “he correct decision on the 2
value at the present pixel.
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. RESULTS

The results of statistical measurements on
sections of real images show that a good description
of the images can be obtained with as few as five
models. Four of the models correspond to the pre-
dominant correlation links in four directions making
angles of 0°, 45°, 90° and 135° to the horizontal,
for the images sampled and processed as rectangular
arrays. The fifth model describes the parts of
the image with isotropic structure. To test our
algorithm we used a geometric image having the
above mentioned four predominant edges and an
isotropic structure.

This geometric- image was a2 (128x128) density
domain image, quantized <o 8 bits (256 gray-levels),
(Fig. 3a). For simulation purposes a signal-to-
noise ratio of 3dB was set up with signal variance
of unity and mean of zero (Fig. 3b). Second order
steady state filters were designed for 21l models
by using the reduced update error covariance equa=-
tions. Fig. 3c_shows the estimate obtained by the
doubly stochastic Gaussian algorithm. The signal-
to-noise ratio of ¥ig. 3c is 13.86 dB, thus the
improvement with respect to the 3dB input image is
1=10.86 4B.

We also processed a face image (Fig. bLa) at
signal-to-noise ratio 3 dB. The noisy density
domain image is shown in Fig. Yb. The five models
wers determined from the noise-free data of Tig. La
using a mask determined by using the Jecision logic
of Zq. 10 based on the geometrical image models.
Thus this is the result of the first step in a pos=-
sible iterative procedure which can tune the 2dge
and isotropic models %o a particular image. The
result is seen in Fig. Y¢ which has a2 signal-to-
noise rat‘o of 12.4% dB which is equivalent to an
improvement I=9.l4 dB.

Txample comparisons with constant coefficient,
linear estimate results are contained in references
(2, 17, 18) and the reader is refarred there to see
those pictures.

CCNCLUSTIONS

The recently developed doubly-stochastic
Gaussian estimator has been summarized and presented
15 a logical outgrowth of a basic adaptive algorithm
based cn the Partitioning Theorem and the 2-D re-
duced update filters.

Experimental results were presented using the
new estimator for two test images. The subjective
and numerical resul%s demonstrate the utility of
the adaptive approach.

RETERENCES

1. 4. Xaufman and A. Radpour, "Adaptive Estimation
cf NYonstationary Image Processes”, Proc. 1279
Conf. on Inform. Sci. and Sys., Johns Hopkins
University, saltimore, D., March 28-39, 1079.

2. 3. Xaufman, J. W, Woods, V. K. Ingle, R.
Mediavilla and A. Radpour, "Recursive Image
Sstimation: A Multiple dodel Approach”, Prac.
18th Conf. on Jec. and Contr., Fort Lauderdale,

Florida, December 12, 14, 1979.

J. W. Woods and C, H. Radewan, "Kalman Filter-
ing in Two-Dimensions", IEEE Trans. Inform. Th.,
Vol. IT-23, July 1977, pp. L73-LB2, and
"Correction to 'Kalman Filtering in Two Dimen~
sions'", Vol. IT-25, Sept. 1979, pp. 528-€29.

. M. G. Strintzis, "Dynamic Representation and

Recursive Estimation of Cyclic and Two-Dimen=-
sional Processes", IEEE Trans. Auto. Control,
Vol. AC~23, October 1978, pp. 801-309.

A. K. Jain and J. R. Jain, "Partial Differential
Equations and Finite Difference Methods in Image
Processing - Part II: Image Restoration", IEEE
Trans. Auto. Control, Vol. AC-23, Oct. 1978,

pp. 817-83L.

M. S. Murphy and L. M. Silverman, "Image Model

‘Representation and Line-by~Line Recursive

Restoration", 1976 Conf. Decision and Control,
Clearwater, Florida, December 1976, also in
IEEE Trans. Auto. Control, Vol. AC-23, Oct.
1978, pp. 809-316.

. J. W. Woods and V. K, Ingle, "Kalman Filtering

in Two-Dimensions: Further Results", Submitted
to IEEE Trans. Accust., Speech and Sig. Proc..
P. Berry and H. Kaufman, "Adaptive Flight

' Control Using Optimal Linesr Regulator

10.

11.

12,

3.

1k,

15.

16.

17.

18.

Techniques", Automatica, November 1976, pp565-576.

. S. Kotob and H. Kaufman, "Analysis and Applica-

tion of Minimum Variance Discrete Time System
Identification”, IEEE Trans. Automatic Control,
October 1977, pp. 80T7-815.

A. Sen and N. K. Sinha, "A Generalized Pseudo-
Inverse Algorithm for Unbiased Parameter Esti-
mation", Int. J. Systems Sci., Vol. &, No. 12,
1975, po. 1103-1109.

J. Makhoul, "Linear Prediction: A Tutorial
Review", Proc. of IETE, April 1975, pp. 561-580.
B. R. Musicus and J. S. Lim, "Maximum Likeli-
hood Parameter Estimation of Noisy Data", Proc.
1979 IZET Conf. Acoust., Speech and Signal Proc.
April 1979, pp. 224-227.

M. Athans, st. al., "Stochastic Control of the
F-9 Aircraft Using a Multiple Model (MMAC)
Method - Part 1: Equilibrium Flight", IEEE Trans.
on_Automatic Control, October 1977, pp. 768~780.
G. Stein, G. L. Hartmann, R. C. Hendrick,
"Adaptive Control Laws for F-8 Flight Test",
IEEE Trans. on Automatic Control, October 1977,
pp. T58=THT. '

H. Van Landingham and R. L. Moose, "Dizital
Control of High Performance Aircraft Using
Adaptive Estimation Taechniques”, IEEE Trans on
Aerospace and Electronic Systems, March 1977,
pp. 112-119.

D. Lainiotis, "Optimal Adaptive Estimation:
Structure and Paerameter Adaptation”, IZEE Trans.
on_Automatic Contr»l, April 1971, pp. 16L-170.
V. XK. Ingles and J. W. Woods, "Multiple Model
Pecursive Estimation of Images", Proc. ICASSP'70,
Washington, D.C., April 2-4, 1979, pp. su2-645,
J. W. Woods, "Two-Dimensional Kalman Filtering",
Chapter 7 in Two-Dimensional Tramsforms and
Filters, edited by T. S. Huang, Springer-Verlag,
in press,

S —




i (0,0) (m-M) (n:fM) (N,0)
]
|
(n-M+1) // e | (n-M)
‘ , // / %
2 Kz n-i
' : (m,n)
L)
m,n
|
Fig. 2 Local State of Markov Chain
(O,N) (N,N)
Fig. 1 Global and Local State Vector Support
3
1
| . l
: :
(a) original (b) noisy (c) estimate
Fig. 3 Geometric Image
o
4
|

(a) original (c) estimate

% Fig. U Face Image




T

N ———

UNCLASSIFIED

SECURITY CL ASS[FICATIO}N OF THIS PAGE ('When DalaLEnlemd)‘

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

ADAPTIVE IMAGE ESTIMATION USING REDUCED UPDATE

S. TYPE OF REPORT & PERIOD COVERED

__InteFin

FILTERS

6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s)

J. W. Woods
H. Kaufman

8. CONTRACT OR GRANT NUMBER(s)

AFOSR 77—3361/

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Rensselaer Polytechnic Institute
Electrical and Systems Engineering Dept.

/

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Troy, NY 12181 61102F 2304 /A6
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Office of Scientific Research/NM March 1980
Bolling AFB,Washington, DC 20332 "-F'_‘”“““ DY RAGES
ive

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

15. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in.Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

J

}0. ABSTRACT (Continue on reverse side If necessary and identify by block number)
When an image is estimated from noisy data using a

ratios. This occurs for at least two reasons:
blurring of edges.

tios.

linear shift-invariant (LSI)

filter, the subjective improvement is relatively poor at low signal-to-noise
first, the statistics of the
image are markedly space-variant and second, the eye is very sensitive to
However, adaptive filtering techniques can be applied to
improve the subjective quality of noisy images even at low signal-to-noise ra-
This is accomplished in the present work by using multiple models to
match the space-invariant statistics and by using oriented edge models to

oD ':2:"” 1473 €0ITION OF ' NOV 65 1S OBSOLETE

5

: - g T geiai s ket S FCERY
fo ) hs Tt Gk e s it 2 et e - S ra

_UNCLASSIFIED

.»/Ew

,\I

- e




N N RN G ORI N R PR 0 Vo S M MO 7 1T s PRI ST ey

UNCLASSIFIED

© * " SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. Abstract cont.

) prevent edge blurring in the filtered result.

UNCLASSIFIED




