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readjust the Kalman gain (Ref. 1) . However this

~~ / ~~ atproa~h was not very fruitful for the following
__________________________ 

reasons : Conventj~nal one—dimensional ( 1— 0) re—
____ is estimated from noisy data cursive least squares ~dent~ fication algorithms do
~~~~ using a linear shift—invar i ant (t ~ i)  f i l ter , the not readily extend to 2—P recursive identification

jubjective improvement is relatively poor at low 
~ 

algorithms . Secondly, in order that the recursive
~~~~~ignal—to—noise r3tios. This occurs for at least tdentiftcation algorithms be able to track space

reasons : f i r s t , the statistics of the ~~~~ varying paremete rm , the effective bandwidth must be
C )are markedly sPace—variant and second , the eye ~ large enough that the variations are not smoothed
~~~~ver; sensitive to blurring of edges. However adap— ever . This in turn makes the algorithm more sue—

~~tive filtering techniques can be spoiled to improve ceptible to noise effects. Thirdlr, tne existence
the sub~ectlve quality of noisy images even at low of process noise with an unknown v iance and mets—
signal—to—noise ratios . This is accomplished in urernent noise as well, can result in biased estimates
the present work by using multiple models to match if general least squares regression is performed
the space—variant statistics and by using oriented directly on the measurements.
edge models to prevent edge blurring in the filtered
result. Presently it appears that the most favorable

adaptive approach is a multiple model doubly stoc—
I~1TRODUCTIOU hastic procedure (Ref. 2)~ whi~h combines a set of

local Markov models of the field itself with a
In the past several years varIous methods have lower 1~vel 2—0 Markov chain for the model parameter

been proposed for the recursive estimation of images transitions . This deveLopn~ent differs from pre .and other two—dimensional (2—0) data. Most of these viously published rrocedures in that it tc.i~~s intomethods have been tied to first order or separable account the need for transition probabilities be—
• models that do not match image statistics very well. tween local models , rapid edge detection to prevent g4
• Also most of these methods are restricted to the blurring, and near optimal local recursive estima—

homogeneous case where the model coefficients are tion for general AR models .
constant.

2-0 RECURSIVE ESTIMATION
Since many 2—0 data fields , including images ,

are markedly non—homogeneous , there is a need for Early attempts to achieve a trud y recursive
general recursive estimation procedures which can 2— 0 Kalman filter were of only limited success due ~take this property into account. The 2—0 Kalman t~ both the difficulty in establishing a suitable ~~~

‘ 
-

filt er ing methods can theoretically take this int o 2—0 model and also the high dimension of the re— u~account , however the practical problem remains of sulting State vector . In (Ref. 15) Woods and
obtaining the spatially varying model ~oeffi.cjents. Rade’~an presented two new algorithms which , to a
Thus recent work has been concerned with the large extent, overcame the computational problems ~development of varIous adaptive estimators which which had precluded the use of 2—0 Kalinan like pro—
will provide a practical means of estimating the cessors. Eoth ‘rector and scala? scanning methods
model coefficients. A common property of these were considered , but emphasia was placed on the ~adaptIve estimators Is that they separate Into two scalar scan because it leads to processors which
parts: one part estimates the model coefficients are recursive in both djme:~slons , i.e. 2—0 r,cursive~~based directly on the noisy data and a second part filters . These Kalman based algorithms allow the ~fI~.ters the data using the estimated model coeffl— use of space—variant models which can provide a bet—
cients. tar match to local source statistics leading to a

Q greater noise reduction with less signal distortion.
~ur ~ri~ina~ approach was based on the use of

continuously ipdated model parameter estimates to Other a~proaches to recursive image estimatton
________________________ include the work of Strint:is (Ref. Ii) , Jam (Pet.

4~~~~~ ‘This research sponsored b~ the Air Force ~ft ice of ~) and ~4urphy and Silwermart (Ref. 6) .  In (R e f .  ~) ,
~~j Scientific Research, Air Force Systems Command USA?, Strintzis presents an APMA modeling approach to re—

~~~~ 
under Grant Mc. 17—3361. The United States cursive processing coupled with an interesting
Government ~s authoriced to reproduce and distribute additIve rather than multiplicative based 3pectr%l
reprI nts for Oo~ernmental purposes notwithstanding decomposition . The addition of a moving average

a any copyright notatIon hereon . to the AR model ~f Kalman filtering can provide
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• some modeling advantages , however in (Ref.  ~) the Below we summarize the development of a corres-
developed model is for the correlation functions, pcriding multiple model procedure for the estimation
not the field itsel f , thus simulation is not poe— of images and other 2—3 fields. For more details

• sible. Further only the steady state is considered , the reader is referred to (Refs . 2 , 17, 18).
where the image filtering problem can be embedded
in the class of cyclic processes . Unfortunately MULTIPLE MOPEL RECURSIVE ESTIMATION

• this embedding cannot be done if non—homogeneous
• image models are considered or if random boundary Following the notation in (Ref .  3) , the dynamic

conditions are explicitly treated , as is done in model of the image formation is given as ,
(Ref. 7).

• s(m ,n) 
~ 

c., s(m—i , n—i ) + w(m,n) (1)
In (R ef. 5), Jam considers both implicit and

• e colicit partial difference equation models for
images. The models are compared and evaluated where the coefficients are the model parameters ,

• • for mean—square improvement on representative R~~ is the non—symmetric haltplane support of the
images. This method is not suitable for space—
variant or non—homogeneous image models. In (Ref. model, and w(m,n) is a w ide Gaussian noise having

6) Murphy and Silverman consider a vector scanning zero mean and variance 0v~ 
The scaler observation

approach to image restoration. A constrained or model is given by:
reduced update vector processor is developed which
nicely compliments the scaler reduced update filter r(m,n) = s(m,n )4.v(m ,n) (2)
of Woods and Radewan (Ref .  3 ) . .  The problem of
image restoration rather than simple noise filter— where , v(m ,n) is a white Gaussian noise with zero

• ing is considered in (Ref. 6). fl~ (Ref. ~), . • mean and known variance cT~. Then using the global
• Woods and Ingle extend the reduced update filter state vector s(m,n) as shown in Fig. 1, the vector

to the deconvolution case. —

• equations for Eq. 1 and Eq. 2 can be written as:

ADAPTIVE ESTIMATION
_______________ - s(m,n) C s(m— l,n) ~ v(m,n )  (3 )

Oevelopment of a orocedure for online oarameter T
identification requires either a recursive tyoe r(m ,n)  = h s(m ,n) + v (m ,n)  (Ii )

algorithm ~n which each estimate is a simnly evalu-
ated function of the orevious estimate an~ the 

where , C is the system propagation matrix determined

current measur ,rtent , or a non—recursive algorithm by and the ordering of the global state vector,

which can be executed in a time frame significantly h - ~1 ~ ( 5 )less than a single pixel scanning period. — 
— 

‘ ‘ ‘ 

Wi th regard to developing recursive algorithms and
• suitable for use on 2— 0 fields some type of Iporoxi— w(m ,n )  L v( m n ) ,  0 , 0 . . ., Gi . ~6)mation is desiracle because of the nonlinear nature —

of simultaneously estimating both states and para— Let s (m n)  be the local state vector as shownmeters . ~or example , a recursive least squares or
weighted least squares algorithm CHefs . 8, 9) might in Fig. 1, and let r1(m ,n) and v1

(m ,n) be the ob—
be applied directly to the measurements in order
to obtain parameter estimates which can then be servation vector and white Gaussian noise ‘reotor

used for Kalman gain adjustment. However because respectively having the same support as that of the

these procedures give biased parameter estimates , local state vector s1(m,n). Note that the scalars

Sen and Sinha (Ref. 10) have proposed a revised r(m ,n) and v(m ,n) in eq. 2 are the leading elements
least squares procedure which results in approxi— of the vectors r,(m,n) and ‘r. (m ,n) respectively.
mately uncorrelated residuals. Alternate least £

• squares type methods for reducing the bias include Then from eq. 2 ,
algorithms based on correlating the measurements
(Ref .  11) and those based on correlating the r1(m ,n)  31(m ,n )  + v,(m ,n) (7)
estimates (R e f .  12).

BASIC ADAPTIVE AL~ORIT~ -!
An alternative to the above estimation base-i

procedures which topears to be very powerful In Now we make the following hypotheses to arrive
view of recent results in adaptive control (Pets. at a basic multiple model description of an image :
13, 114 , 15) , is based on the use -of a bank of
multIple models as per Laint~tis Partitioning 

1. At each pixel (m ,n), there are L a—priori known
Theorem (Ref. 16). Basically the Theorem says that classes (~ )

L of local state vectors di~tingu1shedunder certain assumptions the nonlinear tdaotive I i 1
filter can be decomposed into two parts: a llnear by their direction of predominant correlation.
nonadaptIve part cons is t ing ~ f a bank -of 2CeLcan
filters, each conditioned on a predefined model , 2. The probability distribution of the classes
and a nonlInear adaptive part which evaluates the (p(e )}L is known a—priori .
a pcsteriori model probabilities and forms the ap— i j1
propriate state estimate as a weighted sum of the 3. The conditional distribution of the local state
filter outputs, vector of a given class is Gaussian i.e.,

— ~~.- — ----— — .— ~~~~~~ ~~~,— —‘— —rn — — ~—~-—---- ~~
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T1 ~~ 
where t (m ,n) is the 2-b ~~rkov chain field with
local state support consisting of a finite extent
NSKP region similar to the local. atate support of
Eq. 1. Thus given {L(m,n)}, the resulting signal

where a dimension of . model is space—variant Gaussian. -j
Hence In light of these h~~otheses, the dypamical The filtering for such compound models can use—
equation becomes fully be thought of asa two step process; at a

given pixel one first estimates the local state of
a c(e) 3(m—l,n )  + v(m ,n) (9) the underlying Markov chain, then one ~h~~ses the

-
• most likely model to do the estimation of the higher

where 8 takes on one of L values at each (m ,n). level random field. This will lead to a processor
similar to the basic adaptive algorithm but with

Now a bank of reduced update Kalman filters the added advantage that the local state of the
running in parallel arid each designed based upon • underlying Markow chain can alter the likelihood of
the statistics of one of the L models can be dc- the various model transitions and hopefully improve
signed (Ref. 3). Using the results developed in upon model switching decisions.
(Ref. 17). the decision logic is : Select model

Accordingly assume that s and L are known for
the past at pixel (m ,n). The probability of Q (m ,n),

1/2 r~ (R + 0~~ +cj <1/2 r~ (fi
1 

+ O~I)~~r1+o1, conditioned on the noisy observation of the local
state r1(m ,n), can be written as

i
~
j (10)

past LI
where c~ ~ l/ 2tn J ~~ + o~ ~j — ~

nP (e
1

) (11) p(r 1(m ,n)~ L(m ,n ) , past Z] P [L(m ,n ) j ~ 1( m—i ,n ) 1
L (13)are constants which can be precomputed. ~ p (r~ (m ,n )~ L , past Z~P (& f  L1

( m—l ,n ) )

The above adaptive approach to the use of
multiple models may be improved upon by introducing where use has been made of the conditional probabi—

cussed nezt. then is just given by the corresponding row of the
probability transition matrix of the chain. The

DOUBLY STOCNASTIC GAUSSIAN ESTIMATION conditional probability density of r1(m ,n)  is

a spatial doubly stochastic Gaussian model as dis— lity of the 2—b Markov chain. The function P (.f .)

To introduce a doubly stochastic model , it ~ 
Gaussian with mean zero and covariance determined

necessary to have a description for the underlying by the past and present chain data L. If we assume
all nearby points are in the same state t, then weprocess which determines the elementary model to be

used at each pixel. Such a description is the 2—b may approximate the conditional density of r
1 as

Markow chain which generates a discrete valued 
~T(o,~~s r). If •se replace L1(m—l ,n) by its

random field L(m,n)~ [31
] specifying which of the L 

estimate L1(m— t,n ) ,  we obtain the following
models is to be used at pixel (m ,n ) .

decision directed r,sle:
The simplest example of sufficient generality

Dhooae L such that• 
- would be a 2—b Markov chain with local state as

• shown in ?ig. 2. Such a local state would require Mm
an L.

CXL stochastic matrix to specify its transItion 1/2 r~ (R g,~~~ I ) 1
L1 +c~,’L 1(m—1 ,n) ) =  ~~~~~~~~ r~(~~

• probabilities. For the ec~erImental cases to fol— —

lOW , L 5  was found to work rather well. In this
ca3e the transition matrix is 625x5. Each row of ~~~~•, ~

)
~~~l

+ck(~
(m_l ,n)) (114)

the transition matrix indicates the con~itional ‘~thereprobability of going from each of the L possible
present local States at (rn—l ,n) to the conditionally c9,(~1) ~ 1/2 Ln~R~+ 1! — ?.n P(Z ~1(m—l ,n)J (15)
possible local states It (m ,n). The 2—b Markov

This decision rule can be compared with Eq.chain is thus specified by giving the support of the 
10 and 11, the decision rule for basic algorithm.local state and its transition matrix P.• The difference is the replacement of the a—priori

• probabilities P(OUsing the 2—b Markow chain to specify an under— ~) by the conditional probabili—
lying str,scture, one may generate a doubly stochastic ties of the Ma~kcv chain given the decIsion—directed

present state Z
1(nz—1 ,a), If the recent decisionsmodel by using L different sets of parameters

to generate the random signal field. The resulting have been good , this has the effect of improving
signal mo’~el would become 

the probability of the correct decision on the ~value at the present pixel.
s(m ,n )  ~

Z (m ,n)
~~~~~~~~ ) + •i(m ,n) (12)- i-i

‘4
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- RESULTS • Florida, December 12, 114, 1979.
3. J. W. Woods and C. H. Radevan, “Kalman Filter—

The results of statistical measurements on ing in Two—Dimensions”, IEEE Trans. Inform. Th.,
sections of real images show that a good description Vol. IT—23, July 1977, pp. 1473—1482, and
of the images can be obtained with as few as five “Correction to ‘Kalman Filtering in Two Dimen—
models. Four of the models correspond to the pre— 

~~~~~~~~~~ VOl. IT—25, Sept. 1979, pp. 628—629..
dominant correlation links in four directions making 14~ M. 0. Strintzis, “Dynamic Representation and
angles of 0° , 145°, 90° and. 135° to the horizontal , Recursive Estimation of Cyclic and Tvo—Dimen—
for the images sampled and processed as rectangular - sional Processes ”, IEEE Trans. Auto. Control,
arrays. The fi f th  model describes the parts of Vol. AC—23, October 1978, pp. 801—809.
the image with isotropic structure. To test our 5. A. K. Jairi and 3. R. Jam , “Partial Differential
algorithm we used a geometric image having the Equations and Finite Difference Methods in Image
above mentioned four predominant edges and an Processing — Part II:. Image Restoration”, IEEE
isotropic structure. Trans. Auto. Control, Vol. AC—23, Oct. 2.978 ,

pp. 817—8314.
This geometric- image was a (128x126) tensity 6. M. S. Murphy and L. M. Silverman, “Image Model

domain image , quantized to 8 bits (256 gray—levels), Representation and Line—by—Line Recursive
(Fig. 3a). For sImulation purposes a signal—to— Restoration” , 1976 Conf. Decision and Control,
flOi3e ratio of 3dB was set up with signal variance Clearvater, Florida, December 1976, also in

• of unity and mean -of zero (Fig. 3b). Second order IEEE Trans. Auto. Control, Vol. AC—23 , Oct.
steady state filters were designed for all models 1978, pp. 809—816. —

by using the reduced update error covariance equa— 7. J. 4. Woods and V. K. logic, “Kalman Filtering
tions . Fig. Ic shows the estimate obtained by the in Two—Dimensions: Further Results” , -Submitted
doubly stochastic Gaussian algorithm . The signal— t~ IEEE Trans. Acoust.. Speech and Sig. Proc..to—noise ratio ~f Fig. 3c is 13.86 dB, thus the 8. P. Berry and H. Kaufman, “Adaptive Flight
Improvement with respect to the 3dB input image is Control Using Optimal Linear Regulator
IaiO.86 18. Techniques”, Automatica , November 1976, pp565—576.

9. 3. Kotob and H. Kaufman, “Analysis and Applica—
We also processed a face image (Fig. !~a) at tion of Minimum Variance Discrete Time System

signal—to—noise ratio 3 dB. The noisy density Identification”, IEEE Trans. Automatic Control,
domain image is shown in Fig. ~b. The five models October 1977, pp. 607—815.
were determined from the noise—free data of Fig. 14a 10. A. Sen and N. K. Sinha, “A Generalized Pseudo—
using a cask determined by using the decision logic Inverse Algorithm for Unbiased Parameter Esti—
of Eq. 10 based on the geometrical image models. mation”, Int . J. Systens Sci., Vol. 6, No. 12.
Thus this is the result of the first step in a pos— 1975, pp. 1103—1109.
sible iterative procedure which can tune the edge 11. J. Makhoui, “Linear Prediction: A Thtorial
and isotropic models to a particular image . The Review” , Proc . of I~~~, April 1975, pp. 561—560.result is seen in Fig. 14c which has a signal—to— 12. 8. B. Musicus and 3. S. Lim, “Maximum Likeli—
noise rat io of l2.~’ dB which is equivalent to Sit hood Parameter Estimation o~ Noisy Data”, Proc .
improvement 1a9.14 lB. 1979 IEEE Cont. Acoust . • Speech and Signal Proc .

April 1979, pp. 2214_227.
Example comparisons with constant coefficient , 13. M . Athans , et. al., “Stochastic Control of the

linear estimate results are contained in references F—9 Aircraft Using a Multiple Model ( t’V’tAc)
(2 , 17 , 18) and the reader is referred there to see Method — Part 1: Equilibrium Flight”, IEEE Trans.
these pictures , on Automatic Control , October 1977, pm . 768—780.

i14. 0. Stein , 0. L. Rartmann, B. C. Hendrick ,
CONCLUSIONS “Adaptive Control Laws for F—S Flight Test ” , - 

—

IEEE Trans . on Automatic Control , October 1977 , —

The recently developed doubly—stochastic pp. 758—767. -

Gaussian estimator has been s~~~iarIzed a~d presented is. s. Van Landingham and H. L. Moose , “Digital
as a logical outgrowth of a basic adaptive algorithm Control of High Performance Aircraft U sing
based on the Partitioning Theorem and the 2-b re— Adaptive Estimation Techniques”, IEEE Trans on
duced update filters. Aerospace and ~lectronic Systems, March 1977,pp. 112—119 .

Experimental results were presented using the i6. D. Lainiotis, “Optimal Adaptive Estimation:
new estimator for two test images. The subjective Structure and Parameter Adaptation”, IEEE Trans .
and numerical results demonstrate the utility of on Automatic COntrol , April 1971, pp. 1614—170.
the adaptive -approach. 17. V. K. Ingle and 3. W . Woods , “MultIple Model

Recursive Estimation of Images” , Proc. ICASSP’79,
REFERENCES Washi ngton , D . C . ,  April 2—14 , 1979 , pp. 6142—6145,

18. 3. U. Woods , “Two—Dimensional !Calman Filtering”,
1. H . Kaufman and A . Padpour , “Adaptive Estimation Chapter 7 in Two—Dimensional Transforms and

of Monstattonar/ Image Processes ” , Proc . 1979 Filters , edited by T. S. fluang, Spr inger—Verlag ,
Conf. on Inform . 3 d ,  and ~YL ,  Johns Ropk .os in press.
University,  BaltImore , ~~~~. ,  March 28—39 , 1979.

2. H. ~autean , J. U. Woods , 1. K. Ingle , H .
Meiiavilla and A. Radpour , “Recursive Image -

Estimation : A MultIple Model Approach” , ~~~c. 
-

18th Coot, on Dec. and Contr., Fort Lauderdale ,
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