

DISPOSITION INSTRUCTIONS

- :

H

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

د يوه ا

 \mathcal{A}_{i}

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPOR	RT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER	2. GOVT ACCESSION N	. 3. RECIPIENT'S CATALOG NUMBER
RD-80-2	AD - 4083 970	THE TYPE OF REPORT & REPORT COVER
CALCULATION OF	THE LAMINAR VISCOSITY OF A GASEOU	The had and the State
MIXTURE FOR GAS	DYNAMIC MIXING COMPARISONS FOR A	
REACTING SHEAR	LAYER	5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(+)		6. CONTRACT OR GRANT NUMBER(*)
B.J./Walker		
	ZATION NAME AND ADDRESS	10. PROGRAM ELEMENT. PROJECT, TAS
Commander US Army Missile	Command	AREA & ORR UNIT HUNDERS
ATTN: DRSMI-RD Redstore Arsena	K 1. Alabama 35809	
11. CONTROLLING OFFIC	CE NAME AND ADDRESS	12 REPORT DATE
US Army Missile	"Command (~	1) October 1979 /
Redstone Arsena	1, Alabama 35809	71
14. MONITORING AGENC	Y NAME & ADDRESS(If different from Controlling Office,	ID. SECURITY CLASS. (Of this report)
		SCHEDULE
	and the second	
Approved for pu	EMENT (of the abetract entered in Block 20, 11 different	from Report)
Approved for pu Approved for pu 17. DISTRIBUTION STAT	EMENT (of the Report) blic release, distribution unlimit EMENT (of the obstract entered in Block 20, 11 different DTES	rom Report)
16. DISTRIBUTION STATE Approved for pu 17. DISTRIBUTION STATE 18. SUPPLEMENTARY NO 18. KEY WORDS (Continue Laminar Viscosi Gas Dynamic Mix Reacting Shear Gubic Spline In	EMENT (of the Report) blic release, distribution unlimit EMENT (of the obstract entered in Block 20, if different DTES on reverse side if necessary and identify by block mini- ty Molecular Vi ing Turbulent Fi Layer terpolation	rom Report)
16. DISTRIBUTION STATE Approved for pu 17. DISTRIBUTION STATE 18. SUPPLEMENTARY NO 19. KEY WORDS (Continue Laminar Viscosi Gas Dynamic Mix Reacting Shear Cubic Spline In 2. ABSTRACT (Continue	EMENT (of the Report) blic release, distribution unlimit EMENT (of the obstract entered in Block 20, if different DTES on reverse side if necessary and identify by block numb ty Molecular Vi ing Turbulent Fi Layer terpolation	red. from Report) Lescosity Low e)
 Approved for put Approved for put DISTRIBUTION STATE IN. SUPPLEMENTARY NO 	EMENT (of the Report) blic release, distribution unlimit EMENT (of the obstract entered in Block 20, 11 different EMENT (of the obstract entered in Block 20, 11 different DTES on reverse side 11 necessary and identify by block manual ty Molecular V: ing Turbulent F: Layer terpolation mereverse side 21 necessary and identify by block manual ion determined the laminar viscos: he technique to accomplish this is hod for calculation of viscosities compared to the calculational met peratures. A cubic spline interpy treatment of the end points is for	wer) iscosity low wer) iscosity low wer) lities of NO ₂ and O ₃ at elevant is relevant to other gases and is of other gases is presented thod of Svehla {2} for CO ₂ blation routine using a Lagra brownlated and coded.
Approved for pu Approved for pu 17. DISTRIBUTION STATE 18. SUPPLEMENTARY NO 18. SUPPLEMENTARY NO 18. KEY WORDS (Continue Laminar Viscosi Gas Dynamic Mix Reacting Shear Cubic Spline In AMSTRACT (Continue This investigat temperatures. T generalized met The results are at elevated tem gian polynomial	EMENT (of the Report) blic release, distribution unlimit EMENT (of the obstract entered in Block 20, 11 different EMENT (of the obstract entered in Block 20, 11 different DTES DTES DTES DTES DTES DTES DTES DTES	www www iscosity low www whites of NO, and O, at eleval is relevant to other gases and s of other gases is presented thod of Svehla {2} for CO ₂ olation routine using a Lagra brownlated and coded. Unclassified
Approved for pu Approved for pu 17. DISTRIBUTION STATE 18. SUPPLEMENTARY NO 18. SUPPLEMENTARY NO 19. KEY WORDS (Continue Laminar Viscosi Gas Dynamic Mix Reacting Shear (ubic Spline In ADSTRACT (Continue This investigat temperatures. T generalized met The results are at elevated tem gian polynomial DD 1 JAN 79 1473	EMENT (of the Report) blic release, distribution unlimit EMENT (of the obstract entered in Block 20, If different EMENT (of the obstract entered in Block 20, If different or reverse side if necessary and identify by block man ty Molecular V: ing Turbulent F: Layer terpolation mereres and H messes and identify by block man ion determined the laminar viscos: he technique to accomplish this is hod for calculation of viscosities: compared to the calculational met peratures. A cubic spline interpo treatment of the end points is for EDVICEN OF ! NOV 65 IS OBSOLETE	Arom Report) Arom Report Arom Report) Arom Report Arom Report Arom Report) Arom Report Arom Arom Arom Arom Arom Arom Arom Arom
 Approved for put Approved for put DISTRUBUTION STATE III. SUPPLEMENTARY NO IIII. SUPPLEMENTARY NO III. SUPPLEMENTARY NO 	EMENT (of the shetred antitred in Block 20, 11 different EMENT (of the obstract entered in Block 20, 11 different EMENT (of the obstract entered in Block 20, 11 different DTES on reverse side 11 necessary and identify by block manual ty Molecular V: ing Turbulent F: Layer terpolation mereverse side 21 necessary and identify by block manual ion determined the laminar viscos: he technique to accomplish this is hod for calculation of viscosities: compared to the calculational met peratures. A cubic spline interpo treatment of the end points is for EDVITON OF ' NOV 65 IS OBSOLETE SECURITY (rom Report) from Report) iscosity low a) ties of NO, and O, at elevat s relevant to other gases and s of other gases is presented thod of Svehla {2} for CO blation routine using a Lagra ormulated and coded. Unclassified LASSIFICATION OF THIS PAGE (Then Determined)

CONTENTS

Section

Page

1. Introduction 3 11. Cubic Spline Interpolation 3 11. Molecular Viscosity of NO2 and O3 10 1V. Comparison of Results of This Method with Other Methods for Calculating Molecular Viscosities 19 V. Interpolation for μ _i = μ _i (T) 23 VI. Calculation of the Molecular Viscosity of a Mixture of Gases 23 VII. Conclusions 26 Appendix A 29 Appendix B 35 Appendix D 43 Appendix E 47 References 51 Symbols 53		Introduction	2
II. Cubic Spline Interpolation 3 III. Molecular Viscosity of NO2 and O3 10 IV. Comparison of Results of This Method with Other Methods for Calculating 10 Nolecular Viscosities 19 V. Interpolation for μ _i = μ _i (T) 23 VI. Calculation of the Molecular Viscosity of a Mixture of Gases 23 VII. Conclusions 26 Appendix A 29 Appendix B 35 Appendix C 39 Appendix E 43 Appendix E 51 Symbols 53	1.	Introduction	3
 III. Molecular Viscosity of NO2 and O3 IV. Comparison of Results of This Method with Other Methods for Calculating Molecular Viscosities V. Interpolation for μ_i = μ_i (T) VI. Calculation of the Molecular Viscosity of a Mixture of Gases VII. Conclusions VII. Conclusions<td>11.</td><td>Cubic Spline Interpolation</td><td>3</td>	11.	Cubic Spline Interpolation	3
IV. Comparison of Results of This Method with Other Methods for Calculating Molecular Viscosities 19 V. Interpolation for μ _i = μ _i (T) 23 VI. Calculation of the Molecular Viscosity of a Mixture of Gases 23 VII. Conclusions 26 Appendix A 29 Appendix B 35 Appendix D 43 Appendix E 43 Symbols 53	III.	Molecular Viscosity of NO2 and O3	10
Molecular Viscosities19V. Interpolation for $\mu_i = \mu_i$ (T)23VI. Calculation of the Molecular Viscosity of a Mixture of Gases23VII. Conclusions26Appendix A29Appendix B35Appendix C39Appendix D43Appendix E47References51Symbols53	IV.	Comparison of Results of This Method with Other Methods for Calculating	
V. Interpolation for $\mu_i = \mu_i$ (T)23VI. Calculation of the Molecular Viscosity of a Mixture of Gases23VII. Conclusions26Appendix A29Appendix B35Appendix C39Appendix D43Appendix E47References51Symbols53		Molecular Viscosities	19
VI. Calculation of the Molecular Viscosity of a Mixture of Gases 23 VII. Conclusions 26 Appendix A 29 Appendix B 35 Appendix C 39 Appendix D 43 Appendix E 47 References 51 Symbols 53	V .	Interpolation for $\mu_i = \mu_i$ (T)	23
VII. Conclusions26Appendix A29Appendix B35Appendix C39Appendix D43Appendix E47References51Symbols53	VI.	Calculation of the Molecular Viscosity of a Mixture of Gases	23
Appendix A 29 Appendix B 35 Appendix C 39 Appendix D 43 Appendix E 47 References 51 Symbols 53	VII.	Conclusions	26
Appendix B 35 Appendix C 39 Appendix D 43 Appendix E 47 References 51 Symbols 53	Append	lix A	29
Appendix C 39 Appendix D 43 Appendix E 47 References 51 Symbols 53	Append	lix B	35
Appendix D 43 Appendix E 47 References 51 Symbols 53	Append	tix C	39
Appendix E 47 References 51 Symbols 53	Append	lix D	43
References 51 Symbols 53	Append	tix E	47
Symbols	Referen	10es	51
	Symbo	ls	53

Acces	sion For	
NTIS	GRA&I	
Unann	ounced	H
Justi	fication	
By		
Distr	lbution/	
Avai	lability C	odes
	Avail and, special 23	/or

ł

- 3

25 3

51

TABLES

Table

Page

1.	Functions for Prediction of Transport Properties of Gases
	at Low Densities 4
2.	Results of Cubic Spline Interpolation Routine for $\Omega\mu$ ($\kappa T/\epsilon$)
	Given in Table 1
3.	Molecular Viscosity of NO ₂ as a Function of Temperature
4.	Molecular Viscosity of O ₃ as a Function of Temperature
5.	Molecular Viscosities for Gases Involved in the NO + $O_3 \rightarrow NO_2 + O_2$
	Reaction in a N ₂ Carrier Gas
6.	Comparison of the Viscosity Calculated by the Present Method and that of
	Svehla
7.	$\mu_i = \mu_i$ (T) for N ₂ , O ₂ , NO, NO ₂ , and O ₃
8.	$\mu_{mix} = \mu_{mix}$ (T) for Various Mixtures of N ₂ , O ₂ , NO, NO ₂ , and
	O ₁ (Mole Fractions)

2

4 **3**0 5

I. INTRODUCTION

In the process of evaluating various turbulent mixing models, the question kept arising of how the turbulent flow differed from the laminar flow. A comparison of two different turbulence kinetic energy models is given in Walker [4] and, in addition, the use of a laminar viscosity model for comparison with the turbulence models is discussed. This was accomplished for a reacting shear layer for which experimental results had been obtained. Therefore, the techniques and results presented herein were utilized to make qualitative comparisons.

Additionally the techniques presented in this work are directly useful in the chemical laser program because of the fine scale mixing in the nozzles and the low pressure operation in the laser cavity. The coding presented herein is applicable only for a N_2 , O_2 , NO, NO_2 , and O_3 system but minor coding changes will make these results applicable for any gas at low pressure.

II. CUBIC SPLINE INTERPOLATION

In order to determine the laminar viscosity of the various gases involved as a function of temperature, it is necessary to interpolation *Table 1* for temperatures not given. This could be done utilizing a simple linear interpolation scheme. However, a more accurate scheme which does not take an excessive amount of computational time is cubic spline interpolation. This is a piecewise cubic interpolation scheme that matches the function and its slope at each of the known points given in *Table 1*. Cubic spline interpolation is currently very popular and will be utilized here.

The only problem with this scheme occurs at the end points of the interval. The requirement that the slopes be matched at this point between the piecewise cubic sections cannot be met since no other point is available from which to calculate the slope. Therefore a special treatment for the end points was necessary and the use of a Lagrangian polynomial was chosen.

The Lagrangian polynomial is given by

$$p(\mathbf{x}) = \sum_{k=0}^{n} f(\mathbf{x}_{k}) \mathbf{1}_{k}(\mathbf{x})$$
(1)

TABLE 1. FUNCTIONS FOR PREDICTION OF TRANSPORT PROPERTIES OF GASES AT LOW DENSITIES [3]

ίŢζε	α ^η	кТ⁄є	Ωµ	κ Τ/ε	υμ	KT∕€	a
		1.25	1.424	2.50	1.093	4.50	0.9464
0.30	2.785	1.30	1.399	2.60	1.081	4.60	0.9422
J.35	2.628	1.35	1.375	2.70	1.069	4.70	0.9382
0.40	2.492	1.40	1.353	2.80	1.058	4.80	0.9343
0.45	2.368	1.45	1.333	2.90	1.048	4.90	0.9305
0.50	2.257	1.50	1.314	3.00	1.039	5.0	0.9269
0.55	2.156	1.55	1.296	3.10	1.030	6.0	0.8963
0.60	2.065	1.60	1.279	3.20	1.022	7.0	0.8727
0.65	1.982	1.65	1.264	3.30	1.014	8.0	0.8538
0.70	1.908	1.70	1.248	3.40	1.007	0.6	0.8379
.75	1.841	1.75	1.234	3.50	0.9999	10.0	0.8242
0.80	1.780	1.80	1.221	3.60	0.9932	20.0	0.7432
.85	1.725	1.85	1.209	3.70	0.9870	30.0	0.7005
.90	1.675	1.90	1.197	3.80	0.9811	40.0	0.6718
.95	1.629	1.95	1.186	3.90	0.9755	50.0	0.6504
8.	1.587	2.00	1.175	4.00	0.9700	60.0	0.6335
.05	1.549	2.10	1.156	4.10	0.9649	70.0	0.6194
.10	1.514	2.20	1.138	4.20	0.9600	80.0	0.6076
.15	1.482	2.30	1.122	4.30	0.9553	0.06	0.5973
.20	1.452	2.40	1.107	4.40	0.9507	100.0	0.5882
					-		

4

Area Mar

2

÷.,

, all

$$l_{k}(x) = \frac{g_{k}(x)}{g_{k}(x_{k})} \frac{\prod_{i=0}^{n} (x - x_{i})}{\substack{i \neq k}{i \neq k}}$$
(2)

For the end points shown.

*1. S.

$$p(x) = f(x_0) l_0(x) + f(x_1) l_1(x) + f(x_{k-1}) l_{k-1}(x)$$

$$+ f(x_k) l_k(x)$$
(3)

$$1_{o}(x) = \left\{ \frac{x - x_{1}}{x_{o} - x_{1}} \right\} \left\{ \frac{x - x_{k-1}}{x_{o} - x_{k-1}} \right\} \left\{ \frac{x - x_{k}}{x_{o} - x_{k}} \right\}$$

$$1_{1}(x) = \left\{ \frac{x - x_{o}}{x_{1} - x_{0}} \right\} \left\{ \frac{x - x_{k-1}}{x_{1} - x_{k-1}} \right\} \left\{ \frac{x - x_{k}}{x_{1} - x_{k}} \right\}$$

$$1_{k-1}(x) = \left\{ \frac{x - x_{o}}{x_{k-1} - x_{o}} \right\} \left\{ \frac{x - x_{1}}{x_{k-1} - x_{1}} \right\} \left\{ \frac{x - x_{k}}{x_{k-1} - x_{k}} \right\}$$

$$1_{k}(x) = \left\{ \frac{x - x_{o}}{x_{k} - x_{o}} \right\} \left\{ \frac{x - x_{1}}{x_{k} - x_{1}} \right\} \left\{ \frac{x - x_{k-1}}{x_{k} - x_{k-1}} \right\}$$
(4)

Now

$$f(x_k) = const$$

 $x_k - x_i = const$

hence

$$\frac{dp(x)}{dx} = f(x_0) l_0'(x) + f(x_1) l_1'(x) + f(x_{k-1}) l_{k-1}'(x) + f(x_k) l_{k-1}'(x)$$
(5)

Now

4-8 B &

$$l_{o}(x) = \frac{1}{(x_{o} - x_{1})(x_{o} - x_{k-1})(x_{o} - x_{k})} * \{(x - x_{1})(x - x_{k-1})(x - x_{k})\}$$

hence

$$\begin{cases} 1_{o}(x) = (x - x_{1}) \frac{d}{dx} (x^{2} - xx_{k-1} - xx_{k} + x_{k-1}x_{k}) * \\ \left\{ \frac{1}{(x_{o} - x_{1}) (x_{o} - x_{k-1}) (x_{o} - x_{k})} \right\} + (x - x_{k-1}) (x - x_{k}) * \\ \left\{ \frac{1}{(x_{o} - x_{1}) (x_{o} - x_{k-1}) (x_{o} - x_{k})} \right\}$$

$$l_{0}^{+}(x) = \frac{1}{(x_{0} - x_{1})(x_{0} - x_{k-1})(x_{0} - x_{k})} \left[(x - x_{1})(2x - x_{k-1} - x_{k}) + (x - x_{k-1})(x - x_{k}) \right]$$

and

C

$$1_{0}'(x) = \frac{(x - x_{1})(2x - x_{k-1} - x_{k}) + (x - x_{k-1})(x - x_{k})}{(x_{0} - x_{1})(x_{0} - x_{k-1})(x_{0} - x_{k})}$$
(6)

$$l_{1}(x) = \frac{1}{x_{1} - x_{0}(x_{1} - x_{k-1})(x_{1} - x_{k})} *$$

$$\left\{ (x - x_{0})(x - x_{k-1})(x - x_{k}) \right\}$$

$$l_{1}'(x) = \frac{1}{(x_{1} - x_{0})(x_{1} - x_{k-1})(x_{1} - x_{k})} \left[(x - x_{0}) - \frac{d}{dx} \left\{ x^{2} - xx_{k-1} - xx_{k} + x_{k} - x_{k-1} \right\} + (x - x_{k-1})(x - x_{k}) \right]$$

$$l_{1}'(x) = \frac{1}{(x_{1} - x_{0})(x_{1} - x_{k-1})(x_{1} - x_{k})} \left[(x - x_{0}) + (x - x_{k-1})(x - x_{k}) \right]$$

$$\left\{ 2x - x_{k-1} - x_{k} \right\} + (x - x_{k-1})(x - x_{k}) \right]$$

$$I_{1}(x) = \frac{(x - x_{0})(2x - x_{k-1} - x_{k}) + (x - x_{k-1})(x - x_{k})}{(x_{1} - x_{0})(x_{1} - x_{k-1})(x_{1} - x_{k})}$$
(7)

$$l_{k-1}(x) = \frac{1}{(x_{k-1} - x_0)(x_{k-1} - x_1)(x_{k-1} - x_k)} \left[(x - x_0) (x - x_1)(x - x_k) \right]$$

$$(x - x_1)(x - x_k) \left]$$

$$l_{k-1}'(x) = \frac{1}{(x_{k-1} - x_0)(x_{k-1} - x_1)(x_{k-1} - x_k)} \left[(x - x_0) \frac{d}{dx} \left\{ x^2 - x_1 x - x_k x + x_1 x_k \right\} + (x - x_1)(x - x_k) \right]$$

$$\frac{1}{(x_{k-1} - x_0)(x_{k-1} - x_1)(x_{k-1} - x_k)} \left[(x - x_0) (x_{k-1} - x_1)(x_{k-1} - x_k) \right]$$

$$(2x - x_1 - x_k) + (x - x_1)(x - x_k) \right]$$

$$1_{k-1}'(x) = \frac{(x - x_0)(2x - x_1 - x_k) + (x - x_1)(x - x_k)}{(x_{k-1} - x_0)(x_{k-1} - x_1)(x_{k-1} - x_k)}$$
(8)

$$l_{k}(x) = \frac{1}{(x_{k} - x_{0})(x_{k} - x_{1})(x_{k} - x_{k-1})} \left[(x - x_{0}) (x - x_{1})(x - x_{k-1}) \right]$$

$$(x - x_{1})(x - x_{k-1}) = \frac{x_{0}}{x_{0}}$$

$$l_{k}'(x) = \frac{1}{(x_{k} - x_{0})(x_{k} - x_{1})(x_{k} - x_{k-1})} \left[(x - x_{0}) - \frac{d}{dx} \left\{ x^{2} - xx_{1} - xx_{k-1} + x_{1} - x_{k-1} \right\} + (x - x_{1})(x - x_{k-1}) \right]$$

$$l_{k}'(x) = \frac{1}{(x_{k} - x_{0})(x_{k} - x_{1})(x_{k} - x_{k-1})} \left[(x - x_{0}) - \frac{d}{(x_{k} - x_{0})(x_{k} - x_{1})(x_{k} - x_{k-1})} \right]$$

$$(2x - x_{1} - x_{k-1}) + (x - x_{1})(x - x_{k-1}) \right]$$

$$l_{k}^{\prime}(x) = \frac{(x - x_{0})(2x - x_{1} - x_{k-1}) + (x - x_{1})(x - x_{k-1})}{(x_{k} - x_{0})(x_{k} - x_{1})(x_{k} - x_{k-1})}$$
(9)

Hence the end point slopes are given by:

$$\frac{df(x)}{dx} = f(x_0) l'_0(x) + f(x_1) l'_1(x) + f(x_{k-1}) l'_{k-1}(x) + f(x_k) l'_k(x)$$
(10)

where:

Sectors.

ЧŶ

Contraction of the second

. M. .

स्व

$$l_{0}'(x) = \frac{(x - x_{1})(2x - x_{k-1} - x_{k}) + (x - x_{k-1})(x - x_{k})}{(x_{0} - x_{1})(x_{0} - x_{k-1})(x_{0} - x_{k})}$$

$$l_{1}'(x) = \frac{(x - x_{0})(2x - x_{k-1} - x_{k}) + (x - x_{k-1})(x - x_{k})}{(x_{1} - x_{0})(x_{1} - x_{k-1})(x_{1} - x_{k})}$$

$$l_{k-1}'(x) = \frac{(x - x_{0})(2x - x_{1} - x_{k}) + (x - x_{1})(x - x_{k})}{(x_{k-1} - x_{0})(x_{k-1} - x_{1})(x_{k-1} - x_{k})}$$

$$l_{k}'(x) = \frac{(x - x_{0})(2x - x_{1} - x_{k-1}) + (x - x_{1})(x - x_{k})}{(x_{k-1} - x_{0})(x_{k} - x_{1})(x_{k} - x_{k-1})}$$

9

. .

ŝ

a stalle

愛

Now when these equations are used to calculate the left end point slope

$$x_{k-1}$$
 Becomes x_2
 x_k Becomes x_3

and when they are used to calculate the right end point slope

$$x_{o}$$
 Becomes x_{k-3}
 x_{1} Becomes x_{k-2}

as shown in Figure 1.

The special end point treatment was incorporated with a cubic spline interpolation routine developed by Conte and de Boor [1]. The program listing is given in Appendix A. As a test for this generalized routine, the viscosity function Ω_{μ} was interpolated at several points including input points to determine how well the cubic spline interpolation program was working. Table 1 gives the known input data for Ω_{μ} as a function of $\kappa T/\epsilon$.

The results of the use of the cubic spline interpolation program are given in *Table 2*. Note that the interpolation scheme gives very smooth results. Also note that the input data is under no restriction as to the regularity of the input function interval i.e., $\Delta(\kappa T/\epsilon)$ varies from 0.05-5.0.

III. MOLECULAR VISCOSITY OF NO2 AND O3

S.A.

The reacting shear layer that calculations were made for contained the following reaction:

 $NO + O_3 \rightarrow NO_2 + O_2$

10.

Since the mixed stream includes a combination of these gases, it is necessary to know the laminar viscosities of each of the component gases as a function of temperature. These have

TABLE 2. RESULTS OF CUBIC SPLINE INTERPOLATION ROUTINEFOR Ω_{μ} ($\kappa T/\epsilon$) [GIVEN IN TABLE 1.

Salar Salar Salar

	_			-	
PT_NO_#	1	X=	•3000000E+00	F(X)= .	.27850000F+D1
FT_NO.*	7	¥ #	.31000000E+00	F(X)= ,	.275144058+01
PT_NO_#	3	¥#	320000005+00	F(X)# .	27190614F+01
PTINDIE	Ā	Ϋ́́	330000000+00	Fiyim	268774215401
PT PO.S	Ē.	Yz	3400000F+00	1 1 2 1 2	24574010F+01
DT NO .	ž		350000005.00	21613	242400405.01
E	7	62	36000005.00	2:0/2 4	364344636.41
			• 3500 00000 +000		• []]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
P1 * 80 * #	- <u>6</u>	12	• ***************	<u>(7)</u> = ,	20110082E+01
PT_NA=	9	X.#	•3600000E+00	F(Y)= .	.25445140E+D1
PT_10_#	10	X =	.390000002+00	F(X)# .	.25180759E+01
PT NO. #	- 11	Υg		Fexi#	24920000F+01
PT NO.*	12	X≠	4100000E+00	Fixia	24662947F+01
PT.NO.X	- i h	X =	4200000F+00	FIYSE	244 A4840FA81
DT NO S	17	¥ #	4300000F+00	Fivia	241613786+01
DT NO H	ìš	¥	A400000F+00	E /Y LE	2201704-5-41
DT 40 *	12	¥.e	45000006400	E 1	22-400005-01
	13		44.000000000000000000000000000000000000	11111	
544042	42		47000000000000		·/····································
	12		· · · · · · · · · · · · · · · · · · ·		-232612216+84
PT POPE	17		••••0000005+00	F(X)=	•53060108£+01
PT NO.2	50	18	****************	F(X)# .	227N3104E+01
PT Nn z	21	X×	. 50000000E+00	F(Y)# .	.22570000F+01
PT_N0.*	52	¥Ξ	.5100000E+00	F(X)= .	.2236037HE+01
PTNA	- 23	¥ =	.52000000E+00	FIX)=	2215433KF+01
PTIMOLE	24	Хж	-5300000000000	Fiyi#	21952109F+01
PT.NO.E	25	¥ =	5400000F+00	Fixim	2174342nF+01
PT.).0.2	26	¥ =	-5500000F+00	F / Y 1 #	215600066.01
DT NO -	37		56000005.00	E 10(2)	315784766.41
5440042	54	- 22	576000000000000000000000000000000000000	E1012 -	
P1+N0+4	52				• ~ 1 1 7 3 9 7 7 5 • 9 1
H1 .N0.2	- 27	<u>, , , , , , , , , , , , , , , , , , , </u>	• 240000005 + 00	F (7)=	210034566+01
HI HU *	. 10	7 =	*#4000004#+00	F(X)=	.208252175+01
PT_NC.*	- 31	7 z	.606000E+00	F(X)= .	,2065 <u>9000</u> E+D1
PT_NC_=	- 32	X =	.A1000000F+00	F(X)= .	.204775466+01
PT NO. 2	• 33	X.	-6200000E+00	F(Y)=	203040326+01
PTING	3.	XE		Frisa	201417468+01
PT NO.2	16	7.2	.6400000F+00	FIVIE	100746735
GT NO	36	¥.	450000005400	Firis	19-200006-01
07 A.O.	55	52	6600000E.00		104450170.01
		- 62	• • • • • • • • • • • • • • • • • • •		• 1 70 7 20 1 7 5 • 0 1
#1•70•=	20		• • • • • • • • • • • • • • • • • • •	<u> </u>	•[3]]96546+0]
MI • 40 • =	32	**	**************************************	P (1) = 4	•123051516+61
PT_NO_#	40	¥ Z	-440000F+00	F (X)=	•14551v15E+01
PT_NO_K	- 41	¥ R	.70000000E+0C	-F(X)= .	.190 <i>4</i> 00000 E +01
PT.NG.=	- 42	¥=	•1100000000000	- デ(メ)= .	_18041026E+01
PT_PA_=	43	¥ =	.72000005+00	Fixi= .	188045458+01
PT.NO.=	44	Уz	_73000000F+00	F(X)= .	_18470450F+01
PT.NO.#	45	X#	-740C0000F+00	Fixia	1N5391378.01
PT.A0.#	46	¥ #	75000000F+00	6 1912	1441000AF401
GT NO. #		¥ =	.74000000F+00	FIYIS	142831606.01
DT IN T	- ĂĂ	Ye	770000005400		1415HTGAT AL
DT NO	10	- 22	79000000000000000	11112	-101201200
DT NA	ZĂ	- 22	100000000000	- £36(E	••••••••
	21	52	80000000000	- 21212 -	• [[]]]]]]]]]]]]]]]]]
	57	- 22		<u></u>	•1.1.2.8600.0F+01
	25		A.C. J. D.	<u> </u>	•!!?????!?!!!!
	22		· · · · · · · · · · · · · · · · · · ·	F(X)=	•] <u>/>/</u>]/ <u>>E</u> +C1
PT,NO.*	22		*M3000000E+00	F(X)#	.T7463280F+01
PT.M.#	- 25	¥ s	•P4000000E+00	F(X)*	.17355591E+01
PT .NQ .*	56	Y X	*#2000000£+00	-F(¥)# .	.17250000E+01
PT .NO.=	57	X=	*86000000E+00	F{X}#	.17140404F+01
PT_MO.=	58	Χs	*8700000E+00	F{X}=	.77044704E+01
PT_NO_#	59	X=	*##00000E+00	F(X)=	.1+944801E+01
PT_NAS	60	X=		F(X)#	168465996401
PT_NO_=	61	X =	.90000000E+00	Fixi#	-16750000F+01
PTIND	62	X=	_91/0000F+00	Fixia	166549256+01
PT.NO.=	63	Ϋ́Ξ.	-92000060E+00	Fiyim	145613718401
PT MA =	- 64	¥2	9300000F+00	Fisia	144643546401
DT NO T	64	¥.m.	9400000F+00	F / Y	142788025.AI
64 1.0 -	44		65000005400	61612	1624000005-01
6+ NO -	27	5	96000000000	1)0(2	143034076+4
5+ NA		52	GTARARARELAA	1111	*****
51 NA -	40	- 22	0000C000C+00	21012	* 1 7 1 1 1 0 1 60 + 0 1 * * * * * *
	57			E (K) #	•120367666 •01
	42	T Z	**************************************	<u>_</u>	•127200335+01
<u> <u> </u></u>	11	XX	• Incaaaab + 0]	<u>r (7)</u> *	+128/0000E+01
MI • MU • E	13	東帯	•1010000E+01	ディア)キー	•157Y1066E+01
MI+M2+#	13	XX	+10700000E+D)	<u> 2 (7) =</u>	+12713774F+01
PT .NO. =	<u>74</u>	¥ =	*16366600E+01	E(7)=	.156379196+01
PT PR. E	75	¥ =	+10+0000E+01	F(X)=	.15963376F+01
PT NO. #	76	¥ #	.10500000E+01	F (¥)#	.1549000E+01
PT NO.=	77	¥ #	*1000000E+01	f (X)=	.154176₽Ö₹+ÓI
PT.MO.E	78	X =	.1070000E+01	Fixje	.15346451E+01
PT_MALE	79	X #	.10H00000F+01	F(X)=	15276382E+01
PTANE	' A0	Υg	.)0900000F+01	F (7)=	-15207+41E+01
PT_M0.# `	- M I	¥ #	.11000000E+01	F(X)#	15140000F+01

11

and shares

R

Š

Allast St.

<u>.</u>

		DLE	6	. (1 114	IVE			
PT_NT.=	82	X=	.1	110	60	00E	+01	F (x)=	. 1	5073743F+01
PT NO.=	63	X=	1	150	00	ŌŌĒ	+01	ΕĊ	x j =	1	500HP22++01
PT.+10.=	BA AE	<u>. 1</u>	• !	130	00	005	• 11	E I	313	•]	A444955E+01
PT-NO-E	86	Ŷ.	: ;	150	00	ŎŎĔ	÷òi	- Fi	ŷía	1	4820000E+01
PT NO.	97	X=	.í	160	00	ŎŌF	+01	- Fi	¥j=	i	4758667F+01
PT NO.=	88	Ya .	•1	170	00	00E	•01	- E (<u>;;</u> ;=	- !	46980202+01
PT.NO. =	90	72	• {	120	00	000		- 29	×) =	•	4578706F401
PT.NO.=	9ï	¥=	:1	200	90	ňŏĕ	+01	Ē	Ŷj=	:	4570000E+01
PT.NO.=	9Ž	X=	<u>.</u> }	210	20	QÓE	•01	ΕĊ	x)=	- 1	4461940E+01
PT.NO.	3 3	X =	•]	220	00	10 P	-01			•	A 3484675401
PT NO	9 5	x=	1í	240	00	ÖŇĔ	+01	F	xý=	1	4243417E+01
PT.HA.E	96	X=	ij	250	00	DOF	+01	Ē	Xj=		42400002+01
FT.NP.=	97	72	• }	270		005	+ 11			•	14149034F+01 141974276401
PT NO .=	99 -	¥=	: j	260	nö	ŇČĔ	•01	F	xj=		40HTTT3E+01
PT.NO.=	100	¥=	-1	290	00	00H	+01	Ē	*)=	•	403874AE+01
PT-NO-		X =	• !	310	00	005	101	- 21		•	34700002+01
PT NO =	iŏ3	х.	:i	320	00	ÖÖÈ	+01	F	ÿj=		3692712F+01
PT.HO.=	04	Ύ≡	•]	330	00	0 QE	+01	- E1	(X)=	•	138445005+01
PT NO. #	107	7 -	• ;	35/		000	101			•	375000000001
PT NO =	107	ΧΞ	:i	361	00	ŐŐĔ	+01	Ē	xj=		3704096E+01
PT.NO.=	0.4	У=	• 1	370	00	DOF	+0)	E	2)=		136591658+01
PT_MO_E	107	X H	• }	30	000	000	+01			•	136121202+01 136721386+01
PT.N0.=	iiĭ	X=	11	104	000	ŏňŧ	E+01	Ē	¥j=		3530000E+01
PT.NO.=	112	Х=	•1	410	000	000	• 01	E E	(X) =	•	13488734E+01
PT.NO.=	113	J.	•]	12	000	0.01	+01		(Q) =		13447/247.401
PT NO. =	115	ÿ=	. i	44	000	ŏŏ	•01	F	ixj=		13364990E+01
PT.NO.=	116	X=	-1	450	, u u	000	+ 01	. E	i X) =	•	13330000E+01
PT NO #		7 =	•	47	000	000	•01				132524415+01
PT_NO.=	i 19'	Ŷ.	1	AR	00	ŏŏ	Ĕ+Ŏĵ	F	125-		1321482AE+01
PT.NO.=	150	Уш	•	44	0.0	001	<u>[</u> +0]	F	(2)=	•	13177163E+01
PT NO	151	7=	•	51) "] []) 	001					
PT.NO.	í23	Ŷē	1	52)Òn	ŌŇ	E+0)		ižj=	- 1	1306704AF+01
PT.NO.=	124	<u>X</u> =	-	153	000	00	E+01	L FI	(7) -	•	13031136-11
PT.NO.2	} Ω		•	36			5 • U		KR -		24473474444
PT NO.=	í27 -	Ŷ.		156		İÖĞ	È+ñi		(X)		12924476F+01
PT.NO.=] <u>25</u>	ys.	•	1570		00	E+01	E	(2)3	. •	124897295+01
PT_MO.E	156	ý=		-	nòn	00	F • 0	F	1213		120221066+01
PT .NO.=	<u>191</u>	¥=	-	60	00i	ÖÖ	F+0]	Ē	iy j =	۲. I	12790C00E+01
PT_N0.2	133	12	•	123	0 0 0	100	E+01 E+01		(8):		127592645601
PTNO	13ĭ	ÿ=	1	63		00	Ë+0	i F	66	1	12700054E+01
PT.NO.=	135	.¥= -	•	64	001) Ó Ņ	F.+0]	F	ixiz		12670420F+01
PT NO. 4	136	72	•	122	n () (E+03		<u>,,,</u> ,	•	12640000000000
PT MD =	136	11	:	j 67	ññi	nöñ	F.+O	F	ixi		12574039E+01
PT.NO.=	132	X=		168	001	000	E+0	ן ב	(2)		125434615+01
PT.NO.E	121	Y =	•	150	000	000	F.0		1213		12711237E+01
PT NO.=	142	X=	:	i7ĭ	Öni	hõõ	Ě+0'	i F	ins		1245012HE+01
PT.NO.=	143	X=	٠	172	001	ngo	E+0	1 F	(\mathbf{x})		12471487E+01
PT.NO.S	145	Ý.	•	174	60.		Ë + Ö	1 F	1213	- 1	12366720E+01
PT.NO.=	146	X=	:	<u>j 75</u>	000	nöð	Ë+0	S È	ixi	- :	12340000000001
PT.NO.=	147	12	٠	175	000	000	E+0	ן ד	<u>(2)</u>	•	12313399F+01
PT 10 =	149	ýź	:	144	e e e	nöö	E+0	1 7	221	::	12260++6F+01
PT NO.=	150	¥=		174	<u>n n</u>	ñŏŏ	Ë+D	i F	ixi		12235146E+01
PT NO.=	121	X =	•	120	() () () ()	n 0 0	E + 1)] [<u>(?)</u> :	. •	17210000E+01
PT NO.	135	x.	:	in?	00	rða	Ē.Ö	i ř	121		121614256+01
PT.NO.=	154	X=		ja3	<u>0</u> 0	nóğ	£•0	ĮĒ	(*)		121376346+01
97.NO.=	125	72	•	185	00	700 607	201	ĮĘ	{ X }		121135456+01
PT	157	Ϋ́Ξ	:	jÄÄ	öö	ñŏŏ	E+0	i F	13	- 1	12065F12E+01
PT HO.=	158	¥2		127	00	ņģģ	F+Ó	<u>1</u>	(X)	•	120414AAE+01
PT.NO.S	129	72 72		180	በ ጠ ስ ስ	000 000	2+0 F+0	łĘ	152	- -	120172586+01
PT NO.	161	X=		190	00	000	E+0	i F	15		1197000F+01
PT NO. 2	167	Y Z		101	ñŇ	0ŐŐ	E+Ó	ĩ F	ixí	• 7	<u>j</u> 1947355E+01

-

12

Tari a star

the second

i,

41.NG.= PT.NG.= PT.NG.= PT.NG.= PT.NG.= PT.NG.=	163 164 165 1667 168	X = X = X = X = X = X =	.192000005+01 .143000005+01 .194000005+01 .195000005+01 .195000005+01 .197000005+01	F(Y)= .11925264E+01 F(Y)= .11903494F+01 F(Y)= .11841417E+01 F(Y)= .11860000F+01 F(Y)= .11837087E+01 F(Y)= .11837087E+01
PT NO = PT NO = PT NO = PT NO = PT NO = PT NO =	170 171 172 173 173	x = x = x = x = x = x = x = x = x = x =	-19500000E+01 -19900000E+01 -20100000E+01 -20100000E+01 -20200000E+01 -20300000E+01	$F(X) = \frac{11793405F+01}{1793405F+01}$ $F(Y) = \frac{11771461E+01}{1771461E+01}$ $F(X) = \frac{11750000E+01}{1729105F+01}$ $F(X) = \frac{11729105F+01}{1700407E+01}$
PT NG = PT NG = PT NG = PT NG = PT NG =	175 176 177 178 179 180	X = X = X = X = X = X = X = X = X = X =	20400000F+01 20500000F+01 20600000F+01 20800000F+01 20800000F+01 20900000F+01	F(x) = .11670118F+01 F(x) = .11651248E+01 F(x) = .11651248E+01 F(x) = .11632755F+01 F(x) = .11614440E+01 F(x) = .11596262E+01 F(x) = .11596262E+01
PT NO = PT NO = PT NO = PT NO = PT NO = PT NO =	181 182 183 184 185 185	X = X = X = X = X = X = X = X = X = X =	-21000000F+01 -21100000F+01 -21200000F+01 -21300000F+01 -21400000F+01 -21500000F+01	F(x) = .115600000E + 01F(x) = .11561777E + 01F(x) = .11541777E + 01F(x) = .11505190E + 01F(x) = .11505190E + 01F(x) = .11486909E + 01F(x) = .11486909E + 01
PT NO = PT NO = PT NO = PT NO = PT NO = PT NO =	187 188 189 190 191 192	X X X X X X X X X X X X X X X X X X X	-21600000E+01 -21700000E+01 -21800000E+01 -21900000E+01 -22000000E+01 -22100000E+01	F(X) = .11450579E+01F(X) = .11432613E+01F(X) = .1144335+01F(X) = .11397783E+01F(X) = .11380000E+01F(X) = .11380000E+01
PT.NO.= PT.NO.= PT.NO.= PT.NO.= PT.NO.= PT.NO.=	193 194 195 196 197	X = = = = = = = = = = = = = = = = = = =	• 22200000E+01 • 22300000E+01 • 22400000E+01 • 22500000E+01 • 22500000E+01 • 22700000E+01	$\begin{array}{l} F(x) = & 113463327E+01\\ F(x) = & 113294846+01\\ F(x) = & 11329485+01\\ F(x) = & 11334455+01\\ F(x) = & 112976945+01\\ F(x) = & 112818475+01\\ F(x) = & 112662405+01\\ \end{array}$
PT NO = PT NO = PT NO = PT NO = PT NO = PT NO =	200 201 202 203 204 205	*****	• 22900000E+01 • 23000000E+01 • 23100000E+01 • 23200000E+01 • 23300000E+01 • 23400000E+01	<pre>F(X) = .11250724F+01 F(X) = .11250724F+01 F(X) = .112204741F+01 F(X) = .11204741F+01 F(X) = .11174397E+01 F(X) = .11174397E+01 F(X) = .11174397E+01</pre>
PT NO.= PT NO.= PT NO.= PT NO.= PT NO.= PT NO.=	206 207 208 209 210 211	X X X X X X X X X X X X X	-23500000E+01 -23600000E+01 -23700000E+01 -23500000E+01 -23500000E+01 -24000000E+01	F(X) = .11144263F+01 F(X) = .11129313F+01 F(X) = .11129313F+01 F(X) = .1114399E471 F(X) = .11099543F+01 F(X) = .11084743E+01 F(X) = .11070000E+01
PT NO = PT NO = PT NO = PT NO = PT NO =	213 214 215 216 217 218	, , , , , , , , , , , , , , , , , , ,	• 74100000E+01 • 24200000E+01 • 24300000E+01 • 24500000E+01 • 24500000E+01 • 24500000E+01	$\begin{array}{l} F(X) = & 1105531 \text{AE} + 01 \\ F(X) = & 1104071 \text{AE} + 01 \\ F(X) = & 11026727 \text{F} + 01 \\ F(X) = & 11011 \text{A7} \text{AF} + 01 \\ F(X) = & 10997673 \text{F} + 01 \\ F(X) = & 10993663 \text{F} + 01 \\ \end{array}$
PT NO = PT NO = PT NO = PT NO = PT NO =	219	¥= X= X= X= X= X= X= X=	24800000E+01 -24900000E+01 -25000000E+01 -25100000E+01 -25200000E+01 -25300000E+01	F(X) = .000594064F+01 F(X) = .10956304F+01 F(X) = .109300007F+01 F(X) = .109300007F+01 F(X) = .10917297E+01 F(X) = .10992665F+01
PT.NO.= PT.NO.= PT.NO.= PT.NO.= PT.NO.= PT.NO.=	225 226 227 228 229 230	X = X = X = X = X = X = X = X = X = X =	25400000F+01 25500000F+01 25600000F+01 25700000F+01 25700000F+01 25400000F+01	F(Y)= .10880644F+01 F(X)= .10868773F+01 F(X)= .10856946F+01 F(X)= .1085574F+01 F(X)= .1085574F+01 F(X)= .1083563F+01 F(X)= .10831820F+01
PT NA	232 233 234 235 236 237	X = X = X = X = X = X = X = X = X = X =	-261000000000000000000000000000000000000	F(X)= .10810000F+01 F(X)= .10798073E+01 F(X)= .107786055E+01 F(X)= .10773973E+01 F(X)= .10761857F+01 F(X)= .10769733E+01
PT NO. = PT NO. = PT NO. = PT NO. = PT NO. =	238 239 241 242 243	X = X = X = X = X = X = X = X =	• 267000000000000000000000000000000000000	F(X)= .107255796.01 F(X)= .107136046.01 F(X)= .107136046.01 F(X)= .10701735F.01 F(X)= .10690000F.01 F(X)= .1066995F.01 F(X)= .1066995F.01
PT.NO.= PT.NO.=	245 245 246	X= - X= -	•27300000E+01 •27400000E+01 •27500000E+01	F(X)= .10655713E+01 F(X)= .10644565E+01 F(X)= .10633543E+01

<u>.</u>

Ľ

- 44

4

4 20

-

£

WE SALES

Arch D.

R

A

÷.

13

. *

NA 🐮

Sec. Conto

1

10 A

PT.NO.T	247	X=	.27500000E+01	- (X)=	*100CS030E+01
PT_NO.3	24H	¥ =	27700000F+01	F(X)=	_10511840E+01
PT NO =	249	ΧΞ	27H00000F+01	F(X)=	10601141++01
0T NO -	250	¥ e	279000005+01	Fixim	10540530F+01
DT NO -	251	02	28000006+01	FIXIE	10580000F+01
07 00 -	565	02		E 19(2	105695435+01
	255	02	-292000005-01		105591666401
M1+N0+=	62.2	<u></u>	•202000005+01	:	* 10737100E TV1
PT.NO.=	254	YR	·2#300000F+01	F (7) =	+10232227555
PT.NO.=	255	X =	.2840C000E+01	F(7)=	*102360638+01
PT_NO.3	256	Хz	_28500000E+01	F(X)=	10528593E+01
PTING	257	X =	28600000E+01	F(X)≓	_10518616F+01
PT NO. 2	ŻŚA	Ϋ́Ξ	128700000E+01	F(X) =	10508760E+01
DT NO -	250	Y =	28H00000F+01	Fixim	10499033E+01
	540	52	2890000F+01	FIXIE	104694446401
	521	- 65		- 235(2)	104800005+01
P 1 + P11 + E	271	-01		110(2	* 104707055 - 01
PIANDAE	<u></u>		•241000000000000000000000000000000000000		104416406-01
PT+NO+=	203	χΞ	*5450000nr+01	<u>r (A)</u> =	-10-017-90F-911
PT.NO.=	264	¥=	.24300000E+01	<u>►</u> (X)=	+104724H1E+01
PT.NO.=	265	¥ #	.294000005+01	F(X)≍	.10443504E+01
PT.NO.=	266	X =	29500000E+01	F(X)=	_10434584E+01
PT.NO.=	267	XE	29600000E+01	F(X)=	_10425697E+01
OT NO +	268	¥ #	297000005+01	Fixia	10416820E+01
	340		3040000E.01	E / Y \ =	104079276+01
PI-000-	222	62	*2000000E-01	2.17(2)	10300066.01
<u>81+80+</u>	210	X =		21012	
21.NO.=	211	2 2 2	• 30666666666666666666666666666666666666		• 1 V J 7 V I V I V I
PT.NO.=	212	18	•361600668+01	<u></u>	•183683636481
PT.NO.#	273	Уz	-30200000E+01	F(X)=	+10311145F+01
PT.NO.=	274	Уж	- 3030000E+01	F(X)=	-10302428E+01
PT_NO_=	275	Υr	.30400000E+01	F(X)=	.10353461E+01
PT NO. =	276	Υs	130500000000000	F (¥) =	10344321E+01
DT NO -	277	Υ±	3060000F+01	Fixia	_10335234E+01
	376	¥.e	20700000F+01	Fixim	103262316+01
P1 - N() - =	518		- 30 / 00 00 00 00 00 00 00 00 00 00 00 00	10012	103173306.01
PI chile =	614		- 1000000 - UI		103006866.01
PT.NO.=	280	12	•30400000F+01		• ! ! ? ! ? ? ? ? ? ? ? ! ! !
PT_NO_=	281	¥ =	-3100000 <u>+</u> +01	<u> </u>	-10300000E+01
PT_NO_=	282	X≠	.311000005+01	F (X) =	•105AT#05F+01
PTING	283	X =	_31200000E+01	F(¥)≖	-10283370E+01
PT_NO.=	284	X=	1313000005+01	F(X)=	.]0275276E+01
OT NO E	285	Ϋ́Ξ.	31400000F+01	Fixi=	10267291E+01
DT NO	586	. ¥ .	3150000E+01	Fixim	10259384F+01
	527	192	316000000-01		102515268+01
51 • NO • T	506	÷2		· ::::::::::::::::::::::::::::::::::::	102436HAF+01
MI SHILLS	200	02	· · · · · · · · · · · · · · · · · · ·	- 210(2	*102358416-01
PT NO.=	244	X=	•3180000E+01	- <u></u>	•106320215101
PT.NO.Z	540	X 3	*31400000E+01		• 106619777 • 01
PT_N().=	291	· ¥#	.32000000E+01	F(X)=	*)0550000F+01
PT.NO.=	- 292 -	X #	.32100000E+01	F(X)=	-10211958E+01
PTINO	293	X#	.32200000F+01	F(X)=	10203847E+01
PTINO	244	¥ #	323000006+01	F { X } =	_10195696F+01
PT.NO.E	295	× ×	172400000F+01	F (X) =	_10187536E+01
PT.NO.	20%	`¥≢	32500000F+01	Fixia	_10179395E+01
PT NO T	207	Ϋ́Ξ	326000000 +01	Fixia	10171302E+01
DT NO -	204	Y #	327000006+01	FIYIE	.10163287E+01
	566	0	228000005.01	- F) V (-	111553705.01
	577	- C.I.	- 22600000000	- 21012	101476076-01
PI NO.	200	- <u>2</u> .	· 32 7000000. • 91	C(C)	10140005-01
P1.NO.=	361		+33000000000000		- 101-00000E-01
PT.NA.=	305		•33100000F+01		•101363/36781
PT_NO_E	303.	X=	*33500000E+01	- F(X)=	• 1016036 1F • 01
PT.NO.=	304	y z	.33300000E+01	F (X) =	+101102046+01
PT.NO.=	305	X=	.33400000E+01	F(X)=	-101112055+01
PT_NO.=	306	ХŦ	.33500000000000000000000000000000000000	F(X)=	+1010+286E+01
PT.NO.E	307	· X =	-,33600000000+01	– E(X)=	-10097425E+01-
PTINO	308	X=	_33700000E+01	F(X)=	.10090593E+01
PT NO. #	309	Χ×	33800000E+01	F(X)⊐	.10083763E+01
PT NO. =	310	Χs	13900000F+01	F (X)=	10076908E+01
PT NO -	žiï	¥ #	34000006401	Fixia	F+01.
DT NO -	315	¥.	341000005+01	Fixia	10063019F+01
DT NO -	315		342000005401	FILE	100559726+01
ST NIL -	312		-34300005+01	- 600(E	100484745401
PI MARE	- 212	- <u>0</u> =	2440000000000	1212(2)	100417405401
MI ND T	317		-34HUUUUUUUUUUU	- 23012	100745945-01
MI*NO*	215	X#	+3+20000000000	- 동생간은	· 100377535*01
PT+N0+#	317	X =	*34F00000E+01	는 <u>[(전)</u> 프	• INAE 142 CE +01
PT.NN.=	318	X=	-34700000E+01	. <u>+</u> (7)=	• 100<0%04F+01
PT.NO.₽	319	X =	.34800000F+01	F(X)=	. 10013136E+01
PT_NA_=	320	X =	_34900000 <u>E+01</u>	– E(X)=	.10006047E+01
PT_NO.=	321	Χz	3500000000000	F(X)=	.09990000E+00
PT.NO.=	322	Υs	19910000F+01	F(X) =	.99920221E+00
PT.NO.=	122	¥ =	35200000F+01	F(x) =	-99851096E+00
DT NO	334	¥ =	353000006+01	Fixia	- 99782612F+00:
	352	ý,	364000006401	F / 2 1 =	09714754F+00
	356		3650000E+01	- F19(3	99647510F-00
	357	· 61	356000001-01	E1012	
PT + PD + Z	321		3570000005401	210/2	005144056+00
21 • NO • 2	357	34		E10(3	GUIA9317EAN
MI + NIL +	- 763	78		- 236/2	
PT-NO-=	730	X =	•37700000 <u>0</u> 401	E { []] =	00+3175706
971.NA #		72		r (*) =	A 77 J C V I I I I C 7 I U

14

State of the second
n an an Annaith

				_	
PT.NO.T	332	X=	_36100000F+01	⇒ F (X) ≄	_99256140E+00
DT NO -	222	¥ =	-262000006401	Fixim	_uui92779F▲AA
- I + P/I	333		• 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 1 NO 1 T	
PT_NO_=	134	χΞ	*3#3600006+C1	- P (X) =	*AA152446+00
DT NO =	335	Хz	-36400000F+01	F(X)=	_99067474E+00
	334	¥	74500006.01	E / Vie	000053645+00
P1 .NII .=	552		• 27 20 00 00 20 20 1	- 10/E	
PT_NO_=	337	X 2	.366000000000	► (X) =	*494#3010£+00
DT NO E	118	Υz	36700000F+01	FIXI=	-98882330E+00
	220	¥ -	348000005401	E / Vis	088212805.00
M 1 . MI1 . M	137		*		
PT_NO_=	340	X=	_36900000E+01	- F { X } =	_98760523E+00
DTNOT	241	¥ =	370000000F+01	FIXIE	94700000F+00
	374	22	37100000E.01	- E J V (-	044304085.00
PT_NO_=	196		• 31100000E+01	r (/ / /	• 200320205 • 0 •
PTING	343	X #	_3720PP00E+01	F(Y)=	.985796295+00
DT NO -	344	¥	273000006+01	Fixiz	98519812F+00
P1.NU		62		11212	001400516.00
PT_NO_=	345	X X	*3/#00000F+01	- <u>r</u> (x) =	*44400<115+00
PT. NO. Z	346	X z	.37500000F+01	F(X)=	-98401027E+00
	317		376000005.01	E / V 1 -	003421016400
M.L. WILLE	1.1.1		• 17000000 • 01		+
PT_NO_=	348	Xz	_37700000F+01	- F(X)=	-98283514E+00
DT NO #	270	Υz	3780000000000	FIXIE	_9H225287F+00
		52			001474495.00
PT_NO_=	120		• 41,400000.+01	. <u>r (a)</u> =	***************
PT NO.=	351	¥ ±	_38000000F+0}	F(X)=	_9A110000E+00
07 10 -	363	V.	291000005.01	Eivis.	04052970E+00
<u></u>	2.76	07		11212	030063108.00
PT_NO_=	353	X H	-34506000 <u>6</u> +01	<u>P(</u> , ,) =	**/AAU210C+00
PT NO. =	354	X =	.38300000F+01	F(X)=	_97939968E+00
	266	× -	39400005-01	E / V	070830015.00
PlaNUs=	200		*3C#04000E+01		
PT_NO_=	356	1.8	.385000005+01	P (Y) =	**/MC8023E+00
DT.NO.=	357	X =	_38600000F+01	F(X) ≠	.97772317E+00
	ăe o	÷-	39700000		077167125.00
<u>, ₩1.+₩0.+</u> =		<u>, , , , , , , , , , , , , , , , , , , </u>	• 22 (665665 • 61	<u></u>	• 2713 7513 522 488
PT_NA_=	759	.¥₩.	_3M800000E+01	F(X)≖	.97661162E+00
DT NO -	360	¥ 🗢	38900000000	Fixi=	.97605608F+D0
<u></u>		62		20012	67550000E.00
PT.NO.=	501		• 44000005+01	<u> </u>	•41330000E+00
PT_NO_=	362	X≃	_ 39100000E+01	• F(X)=	_97494304F+00
DT NO -	363	¥ ÷	302000005+01	Fixia	~~~~~~~~~~~~~~~~~~
				210/2	070034746.00
PT.NO.=	.104	1 2	-34300000×+01	<u>r (x) ÷</u>	************
PTING	365	: X =	-39400000E+01	F(X)#	_973272P6E+00
DT NO T	366	· ¥ •	295000005+01	FIXIE	07271874F+00
	200		•	- 10 C I	***********
=_0M_T4	367	X 4	*'4AU00000E+01	r (A) =	-41610113E+00
PT_N0_=	368	X=	. 39700000E+01	F(X)=	_97161873E+00
DT NO -	360	Y 🗢	39600006-01	Fixim	_47107426F+A0
F 1 + 117 + T	222	- 22		- 10/2	
PT.NO.ª	.570	X =	*'44AU0000.+01	- r (4) *	**************************************
PT_NO_=	371	X=	_40000000000000	F(X)=	•97808890F+00
DTNOS	マフク	¥ ±		F1X1=	_96947143E+00
			1020000E.01	- E / V	049449405.00
P1 . MIT	575	0.7	••••••••••••••••••••••••••••••••••••••	10/T	
PT_NO_=	374	ᆺᆂ	_403009000++01	► (X) =	*404420246+00
DIND	375	Y =		F/X)=	_967916P7F+00
DT NA -	374	¥ 🕶	40500000F+01	FIYLE	06740724F+00
	318			110/2	044001125.00
PT,NO,=	311		***************	<u>e (x)</u> =	• 707701135 + 00
PT_NO_=	378	X±	_40700000E+01	- F(X)=	.466397866+00
DT NO P	370	¥ 🕿	A0#00000F+01.	· F/Y)=	Q4589693F+00
		52			041 307035.00
PI,NU,=	.300		••••••••••••••••••••••••••••••••••••••	· • • • • • • •	4 7033710,E YUN
PT_NO_=	381	, X≍	_43000000E+01	_`F(X)=	_9649B000E+00
	282	Y 2		FIXIE	
51+02+7	305	0T	112000005.01	- 20012	04 290 70 76 400
PT.NII.	.10.5 .	A 44	**! Cnnnnnt+AT	E 141-	•
PT_NO_=	384	X 🕿	_#1300000E+01	F(X)=	-9634122HE+00
DT NO #	385	X =	41400000F+01	Fixis	AAF00
51 + C 4 - T		02		1012	049437105.00
PT_NO_=	300	, <u> </u>	•41200000 <u></u> +01	<u> </u>	• 79676119E • 99
PT_NO.=	387	X z	_41600000E+01	F(X)=	-961937155+00
OT NO E	388	¥ ±	41700600F401	Fixis	.961449255+00
	200	- 22-	110000005.01		040043415.00
P1 *****	277		**160000C+01	<u></u>	• • • • • • • • • • • • • • • • • • • •
PT_NO_=	340	12	**************	₩ {X}=	- ************************************
PT_NO_=	391	Х=	_42000000E+01	F(Y)*	_96000000E+00
DT NO -	202	¥ 🛥	42100000F+01	Fillis	_95952236F+00
	275	62		- 210(2	0E004731E.00
PT+ND==	19.5	X=		<u> </u>	+72702/216400
PT_NO_=	394	X×	_42300000E+01	— F(X)=	.9585/451E+00
OT NO B	345	Y 👳		Fixia	-95H10362F+00
	264	V -	435000005.01	- i -) V (-	057634325.444
PT 6 917 6 =	120		•••••••••••••••••••••••••••••••••••••••	<u></u>	+7210373CE 100
PT_NO_=	397	X #		- F (X) =	*421100 <u>61</u> 6+00
PT NO. =	398	Υz	. #2700000F+01	- F(Y)=	_95669915E+00
DT NO -	200	¥ =	4280000F+01	Fixia	95623262F+00
	222	<u>5</u> 2		;;;(I	061744355 AA
HI WU a	400	* #	•=< <u>zonunne</u> +01		• 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
PT_NO_=	401	Y۲	_4300000F+01	<u>F(X)</u> #	. . 95530000F+00 <u></u>
PTINOIE	402	Χz	_43100000F+01	F(X)=	-95483339E+00
DT NO -	¥ 0 3	¥ =	432000005-01	Fixi=	395436689F+00
	- 25		•725.00000 <u>0</u> 2501	- 230/2	053001000.00
PT NO *	4 Q 4	KH	++.75000002+01	<u> </u>	• 2222241976 • 68
PT_NO_=	405	X =	.43400000F+01	— F(X)#	.45343024E+00
PT.NO	406	Υz	43500000F+01	- F/X1=	.95297312E+00
	784	v=	12600000E	- i j Ç (I	663612188.AA
#1+NU+#	+U [······································	- 51273	****
PT_NO_=	408	Хæ	0000000F+01	- <u>+</u> (X)#	*ASPAN000E+00
PTING	409	X=	_6000000F+01	E(X)=	_P9630000E+00
DT HO -	416	¥.	700000005-01	Fixi-	872700005-00
51•N2•=	218	<u>.</u>		- E3012	DESEAAAAE AA
<u>₩</u> 1 • ₩0 • =		12	••••••••••••••••••••••••••••••••••••••		•
PT_NA_=	412	y =		- ₽ {X}#	**31.4000E+00
PT NO.=	413		·10000000F+02	- F(X)=	_A2420000E+00
OT NO	A I A	¥ #	11100000F+02	Fixia	_R1196920F+00
	712	52	12000005-02	- 200CE	1400456005400
D7 NA -	~ ~ ~ =				

PT_NO_=	- 416	X=	-1300	COODE+02	FIVIS	2 701044035.00
PT NO.=	417	. X≖	1400	00005+02	- F)0(3	792122046.00
PT_MO.=	41A	¥=	1500	00005-02	- E10(3	
PTING	419	X =	1600	0000F-02	. <u>210</u> (1	
PTINO	42ń	Υ±	1700	0000E+02	E 1013	• 1000310/1+00
PT.NO.=	421	Ý=	1800	00005.03	E 1012	• <u>/p/celint+nn</u>
PT.NO =	422	- ¥I	1000	000005.007	$\Gamma(X) =$	+75415388E+00
PT NO =	755	-02	• 1 - 00	00005+02	<u>r</u> (x)=	-74851761E+00
D1 NO -	- 752	- 62		00005+02	<u>r(x)</u> =	•74320000E+00
DT NO	- 262	. <u>.</u>	-2100	00005+05	<u> </u>	5 .73810636E+00
PI NO.=	- <u>475</u>	<u>x</u> =	•5500	0000£+05	' F(X)≂	-73321267F+00
PT-NO.=	476	X=	,7300	000E+02	- F(X)=	-72851259F+00
PT.NO.=	427	¥ =	- 2400	000E+02	F(x)=	72399977F+00
PT.NO.=	428	X=	.2500	0000E+02	Fris	719667975.00
PT.NO.=	429	¥ =	.2600	6000E+02	Fixi=	715510576.00
PT.NO.=	430	X =	2700	0000E+02	Fixi=	711521425-00
PT.N∩.=	. 431	. X =	2800	0000F+02	Fixia	707694205.00
PT_NO_=	432	X=	2900	0000F+02	F / V (=	704032505.00
PT NO.=	433	∵ ¥=	3000	00005+02	- E)0(E	7005000000000
PTING =	474	Ϋ́Ξ	3100	00005-02	- E1073	• / UU JU DU DU DU E + UU
PT.NO.=	435	• ¥=	3200	00005402	- 20072	40297/015.00
PT.NO.=	436	ŶŦ	3300	00005.02	- 21022	+243614415+00
PT NO =	437	- ¥Ξ	- 24 0 0	00005.02		• • • • • • • • • • • • • • • • • • •
PT NO =	236	- QE	3500	00005+02	<u> </u>	+58//5678E+00
DT NO -	738	01	• 2200	00002002	<u>r (x)</u> ≂	. 6H4H5769E+00
DT NO -	440		*3000	00005+02	- (X)=	+HZ08119E+00
	779	5 <u>=</u>	• ដំណើច	00005+05	- <u>F(x)</u> =	+67938923E+00
	741	¥ =	• 1400	00007+05	<u> </u>	+67678374E+00
	<u> 992</u>	XE	.1900	0000E+02	_ F(X) ≈	.67425668F+00
MI .NO. R	443	X=	.4000	DD00E+02	— F(X)=	.67180000E+00
MI .NO.=	444	X=	.4100	0000E+02	F(X)=	.66940671F+00
PT.NO.=	445	X =	.42000	000E+02	Fixi=	-66707410F+00
PT.NO.=	446	·X=	4300	0000F+02	Fixia	66480052F+00
PT_NO_=	447	¥ =	-44000	0000E+02	Fixia	662586325.00
PTNOS	448	X =	4500	000F+02	FIVE	660622465.00
PTINOIS	449	X =	4600	000F+02		*EH31740E.44
PTINCE	450	Ŷ=	4700	00006-02	- 20012	454343575.400
PTNOR	451	Ϋ́Ξ		0005402	- 210(2	• <u></u>
PT NO.E	452	Ŷ=	4000		- 210/2	* <u>72*200**E+00</u>
PT.NO.=	153	ŶŦ	• E 6 6 6 6			• 5723UN4 / E+00
PT NO -	464	÷=	- 50000	1000E+07	7.1273	•• <u>•</u>
DT NO -	222	- 62	* - 1 000	100000+07	r (x) =	+64853930E+00
	722	<u>.</u>	*22000	10005+02	F(X)=	+64672230E+00
	722	1.E	*24666	000E+02	_ <u>F</u> (X) ≈	-64494684 <u>6+00</u>
	721	<u>x=</u>	• <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	000E+05	E(X) =	.64321075E+00
PT NO.	458	X=	.55000	1000E+02	F(X)=	-64151187F+00
PT.NO.2	459	X=		1000E+02	F(X)=	-63984804F+00
PT_NO_=	460	X=	,57000	1000E+02	F(x)=	-63821710F+00
PT.NO.=	461	X =	.58000	1090E+02	Fixia	-63661689F+00
PT.NO.=	462	¥ =	\$9000	000E+02	Fixia	63504524F+00
PT.NO.=	463	XΞ	-60000	000E+02	Fixi=	633500006+00
PT.N0.=	464	`X =	-61000	000E+02	FIXIA	431979386+00
PT.NO.=	465	Χ±	-62000	000F+02	Firia	67048700F.00
PTNOT	466	X 🕿	-63000	COOF+02	FINE	420011225 A
PTINGE	467	·¥ =	64000	000F+02	E 1012	437543995.00
PTING	468	Χz	65000	0.005+02	- 200CE	+02130300E+UU
PTINOLE	469	Ϋ́Ξ	66000	0005-02	20012	• <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
PTINO	470	¥ =	67000	0005-02	E10(1	+CC#/431#E+UU
PT NO. 3	471	¥ =	49000	0005-02	-21012	+25333336F+00
PT NO. =	472	¥ =	69000	0005-05	61825	+755V515VE+00
PT NO.=	Ā75	ŶŦ	70000	0005.02		•D20D3220E+00
PT NO	474	Ŷ=	71000	0005+07	불값꾼	+01340000E+00
PT NO.=	476	ŶŦ	72000	0005-02		+01013070E+00
	112	÷.	- 75000	1005+02		+6168/735E+00
	- 749	02	• 7	0002+02	F (X) =	+61505076F+00
	246	X =	+[+000	0005+02	F(X)=	-61444571E+00
	148	X =	•12000	0005+02	F(X)=	.61326099E+00
	- 17	X =	•10000	0006+02	F(X)=	+61209539E+00
	490	XI	• <u>77000</u>	000E+02	F(X)=	+41094771E+00
PI NOLE	491 		.78000	000E+02	F(X)=	-60981672F+00
PI .NO.Z	482	X 2	•79000	0002+02	'F(X)=	-60870122F+00
SI AND A	483	X=	•40000	000E+02	F(X) =	-60760000E+00
MI.NO.*	<u>484</u>	X=	.81000	0005+02	F(X)=	+60651204F+00
PT.NO.=	485	X=	.82000	000F+02	F(x) =	-60543710F+00
PT.NO.=	486	X=	.93000	0002+02	Fixi=	-60437513F-00
PT.NO.=	487	¥= .	_R4000	000E+02	Fixi=	603326075100
PT_NO_=	488	X=	85000	000E+02	Fixia	-60228687E.00
PT NO. =	449	X=	86000	000F+02	Fixia	-601266685.00
PT .NO. #	490	Y#	87000	000E+02	FIRE	
PT.NO.=	49Ï	X=	. A8600	000F+02	FIXIE	500257035104
PTINOT	492	X=	89000	0005+02	F19(2	500272448 AA
PT_NO_#	493	X=	90000	0005+02	F)0(2	
PTINOIE	494	X=	91000	0008-02	F)9(2	604336838 AA
TINO	495	X=	92000	NONFINS	11111	-770337631400
TNO	496	X=	93000	NOOF AS	21013	• ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬
TING	Å47	Ŷ.	94000	006205	£101Ξ	•27923202E+00
					r (X)#	■コンゴコゴロや1E+00

16

TABLE 2. (CONCLUDED)

PT_NO.=	498	¥=	-950000000000	F(X)≖	. 59251703E+00
PT_NO_=	499	Уz	S0+30000006+	F(X)=	.59171388E+00
PT_NO_=	500	Χ=	-9700000E+02	F(X)=	_59082098F+00
PT.NO.=	501	χz	198000000E+02	F(X)=	_58993796E+00
PT NO.=	502	XΞ	199000000000000	. F (X) =	58906443E+00
PT.NO.=	503	X=	10000000E+03	F(X)=	58820000E+00

IXXXO8L

been calculated by Svehla [2] for O_2 and NO. However, a literature search did not reveal viscosities of O_3 and NO_2 at elevated temperatures.

A method for the calculation of the viscosity of gases is given by Bird, et al. [3]

$$\epsilon/k = 0.77T_{c} \tag{11}$$

$$\sigma = 2.44 \left(\frac{T_c}{P_c}\right)^{1/3}$$
(12)

or

$$\sigma = 0.841 \quad (\tilde{V}_c)^{\frac{1}{3}} \tag{13}$$

where these functions are utilized in the Lennard-Jones potential

$$\phi(\mathbf{r}) = 4\epsilon \left[\left(\frac{\sigma}{\mathbf{r}} \right)^{12} - \left(\frac{\sigma}{\mathbf{r}} \right)^{6} \right]$$
(14)

For O₃

$$T_{c} = 268^{\circ}K$$
 $P_{c} = 67$ ATM
 $\tilde{V}_{c} = 89.4$ cm³/gm mole MW = 48.000

For NO₂

$$T_{c} = 431.0 {}^{O}K \qquad p_{c} = 100 \text{ ATM}$$

MW = 46.008

Utilizing (11) and (13) for O_3 and (11) and (12) for NO_2 produced the following potential functions for O_3 and NO_2 :

GAS	€/k	σ	MW
NO2	331.8	3.97	46.008
0 ₃	206.4	3.76	48.000

The viscosity for each of these gases is then calculated using:

$$\mu = 2.6693 \times 10^{-5} \quad \frac{\{(MW) \ T\}^{\frac{1}{2}}}{\sigma^{2}\Omega_{\mu}}$$
(15)

Utilizing the potential functions given in *Table 2*, Equation (15), and the program developed in the previous section to calculate Ω_{μ} gives the viscosities of O₃ and NO₂.

A program was written to accomplish this called MUCALC and a listing of this program is given in Appendix B.

Table 3 gives the results of these calculations for NO_2 as a function of temperature while similar results for O_3 are given in Table 4. Finally results for the other gases of interest that have been taken from the literature are presented in Table 5. These gases are N_2 , NO, and O_2 . These results are given over the narrower range of temperature of interest for these reactions.

IV. COMPARISON OF RESULTS OF THIS METHOD WITH OTHER METHODS FOR CALCULATING MOLECULAR VISCOSITIES.

In order to determine the accuracy of the technique utilized to calculate molecular viscosities that were presented in the last section, a calculation was made for CO_2 , results for which can be found in the literature. Hence, the properties for CO_2 were introduced into the program presented in the preceding section and the molecular viscosity for CO_2 was calculated. The program listing for this is presented in Appendix C. Note that this program is

TABLE 3. MOLECULAR VISCOSITY OF NO₂ AS A FUNCTION OF TEMPERATURE

T=	200-0	DEG H	Y MH=	7446715 04	0.01.000
T=	300.0	DEC H	VVII-	1166775 00	PUISES
τ ₌	400 0	DEC K		+1170722-03	PHISES
T=	500 0	DEC K		•1242625-03	POISES
Ť-	500.0		X 311 -	·142864F-03	POISES
+-	700.0		x = 0	•230845E-03	Prises
	700.0	DER K	X ~(]=	•263323E-03	POISES
· • • =	800.0	- DF.G K	X MIL=	.293947E-03	POISES
[=	900.n	DEC K	× ►(J=	·3258552-03	POISES
<u>T</u> =	1009-0	DFG K	X M:[]=	-350062E-03	POTSES
T=	1100.0	DEC K	X 1411=	-376161F-03	Phicks
. ∓=	1200-0-	DFG K	XMIJ=	401048F-03	POICES
T=	1300.0	NEG K	X M(I)=	425035F-03	Potere
T=	1400.0	DEG K	XMII=	446172E-03	POICES
T=	1500.0	OFG K	Y MII=	4705535-03	
.T=	1600.0	DEG K	Y MILE	4633716 43	201252
T=	1700.0		V MIL		POISES
Ť=	1800.0	DEGK	Y ku	• 3 I 3 3 / LE = C 3	POISES
T=	1900 0	DEC Y		•========	POISES
T →	2000 0			• 22400/E-03	POISES
7-	2100 0	DEC K	200-	•213622F+03	POISES
	2200 0		x = U=	-5-2402E-03	POISES
1 - T	2200.0	112 G K	y ~11=	•611763E-03	POISES
	2300.9	UEG K	X M()=	-630257E-03	POISES
	2400.0	DEGK	X MH=	.64 8407 E-03	POISES
1=	2200.0	UEC K	X #{}=	•6662365-03	POISES
<u>1</u> = .	2600.0	DEC K	X MI]=	.663773E-03	POTSES
<u>T</u> =	2700.0	DEG K	YM()=	·701051E-03	PAISES
T=	2300.0	DEG K	x ~U=	.718091E-03	POISES
T =	2900.0	DFG K	X 141)=	7346937-03	PhicFe
T=	3000.0	DEG K	X 441=	7514798-03	PATER
T=	3100.0	DEC K	XMU=	767844F-C3	Priere
T=	3200.0	DEGE	X MIT=	764009F-03	001056
T=	3300-0	DFG Y	X MH =	7466676-63	
T=	3400.0	DEGK	YMUE	6165245-02	PO1050
T=	3500.0	DEGK	X MII=	6316105-03	
T=	3600.0	DEG K	Y MII=	8470445.47	P101555
T=	3700-0	DEG K	Y NII=	-+C4/V405-U3	PUISES
T=	3800.0	DEG K	Y 4411=	877603E AD	PRISES
Ť=	3900 0	DEG		•2112035-03	RUISES
Ť=	4000.0		V MI I -	• C7C1005-03	POISES
T =	4100 0		2	• 3611235-03	POISES
†=	4200 0			• • • • • • • • • • • • • • • • • • • •	POISES
Ť=	4300 0		X 70 4	• 43(2025-03	PULSES
Ť-				· 7514555-03	PUISES
			X70≓	- YON242E-03	POISES
+=	4500 D		ㅈ메나드	-280531E-03	POISES
+=			포렌디프	• 794690E-03	POISES
+-	+/UU.0		XMU=	-100872E-02	POISES
I≓	4000.0	DEG K	X∾U=	•105593E-US	POISES
	9400-0	DEGK	XMUE	.103641E-02	POISES
1=	5000.0	UEC K	X MU=	-105007E-02	DATCES

IXXXOEQ

20

TABLE 4. MOLECULAR VISCOSITY OF O₃ AS A FUNCTION OF TEMPERATURE

\$

ě.

T.

T -	200 0	DEC V	V Mill -	1167315 63	DOTOEC
1 -	200.0	UE T	N - U -	+11+/CIC=V3	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
T=	300.0	DEC K	X M(1=	.1701435-03	POISES
Ť	400 0	DEG K	YMUE	2201055-03	PAICEC
			~ # • • • • • •		
T=	500.0	{1F(2, k)	પ્રમ્ય⊖≂	·202010E-03	POISES
T=	600-0	DECK	X MH=	_305933F-03	POISES
					DOTOTO
1=	100.0	DEC K	=UM X	.3434632-03	POISES
T		-DFG_K	XMII=		POISFS-
÷	00000		S 841 1 -		DATESE
	700+0		A COM	•41500055403	201929
Τ=	1000.0	DFG K	×⊻(j=	.4435695-03	POISES
ŤΞ	1100.0	DEC K	Y MH =	4737155-03	POISES
	1 1 0 0 1 0	DECK		5007000 00	Det of o
<u>=</u>	-1/00.00	UP ILLE	. XMU	• <u>302123E</u> =03-	P01555
T=	1300.0	DEC K	X M () =	.5307445-03	POISES
Ť=	1400.0	DEC K	Ý MII=	557867E-03	POICEC
+					001000
1 =	1260.0	UP G B	2 201 -	• 204 107C=03	PULLES
]600.0	- NE G . K	. X≦411≡.		POISFS
Ť=	1700.0	DEG K	X MITE	634666F-03	POISES
42	1000 0	DEC P	·	46005-56-03	POICEC
1 =	1600.0		X™U+	• mp 40 m mr = 0.3	PUISES
T=	1900.0	DECK	> MU=	.68251dE-03	HUIZES
Τ=	2000-0	DEG K	X MH=		POISES
		DEC K	V - 111 -	7000705 03	DOTOCO
<u>.</u>	2100.0	DE OFIN	2 PUL -	•1676175-03	201503
Τ =	SS60°0	DEG K	X M()=	.75190/E-03	POISES
T=	2300-0	DEC K	x2411=	-774195E-03	POISES
T	2600 0	NEC K	VMIL-	7041525-02	DATCEC
	2400+0	.Dr. G G.	A 1947		501253
T=	2200.0	DECK	X MU =	.81//81E-03	POISES
T=	2600-0	DEG K	X MII=	_839083E-03	POISES
÷-	2700 0	DECK	V MIL	8400816-03	DATEE
1-	2/04.0		1-0-	•000001E=03	<u><u><u> </u></u></u>
	5800*0	DEGK	XMU=	.880/65E-03	RUISES
T=	2900-0	DECK	\mathbf{X} MI I =	-901149F-03	POISES
÷-	2000 0	DEC K	VNII	6212205-02	PATER
1-	3900.00			• 7212375-03	
T=	3100.0	PFG K	XMUE	.9410442-03	POISES
T=	3200-0	DEC K	XMU=	-9605735-03	POISES
T -	3200 0	DEC V	V MALL-	0709245-02	DATCEC
1-	3.300.00	122	A (-) () -	+717030C=03	511253
Τ =	3400.0	DECER	X M() =	•998845E-03	POISES
T=	3500.0	DEG M	X MII=	-1017615-02	POISES
T =	3600 0	DEC K	V MII -	1024155-03	DAICEC
	. 3nu +	·	_A=U=	· ··• Ingelacens ·	
T=	3700.0	DFC K	x ~()=	-10544/5-02	POISES
T=	3800.0	DEC K	: XM()=	-10726UE-02	POISES
Ť=	3000	DEC Y	YMUE	1000545-03	DATCEC
12	J700+0			• 1 0 7 0 2 4 5 4 0 6	201223
↓ =	4000.	_D⊩G.≝_	XMUS≡	*110631F=0S	POISES
T=	4100.0	DEC K	X M11=	-112594E-02	POISES
Ť=	4200 Å	DEG K	Y MIL=	1123446-02	PATERE
				**************************************	001000
1 =	4300.0	DEG K	지만한국	•11000CC-02	POISES
. I.=	_4400_0_	DEG.K	<u>. XMU=</u>		POISES
T=	4500.0	DEG K	YMUE	1195248-02	PATCEC
+=		DEC F	V M11		
1 =	+000.0	116.12	(=1)=	•1C1CC0E=0C	201225
T=	4700.0	DEG K	X 341)=	.122920E-02	PUISES
Ť=	4800.0	DEG M	X MI I =	1246025-02	POTSES
	4004 0		V MILL	1969795 49	DOTOCO
1 =	+>00+0	1.1.1.1	A 791 -	• ICECISE - 9C	<u><u><u>r</u>u</u><u>></u>,</u>
T=	5000.0	DEG K	X**U=	.1279335-02	POISES

IXXXOEQ

21

1.84.5

......

TABLE 5. MOLECULAR VISCOSITIES FOR GASES INVOLVED IN THE NO+ $O_3 \rightarrow NO_2 + O_2$ REACTION IN A N₂ CARRIER GAS.

Œ

TEMPERATURE °K	μ × 10 ⁶ -POISES N2	μ x 10 ⁶ -POISES O ₂	μ × 10 ⁶ -POISES NO	μ x 10 ⁶ -POISES NO ₂	μ × 10 ⁶ -POISES 03
200	131.3	147.9	136.5	78.0	1 4 4 7
300	177.7	206.4	10.00		1.4.1
400	217.2	256.5	030 7	1.01	1.0/1
500	252.7	301.0	282.0	100.0	22U.1
600	285.4	341.4	200 E	8.081 0.000	0.002
200	315.6	370.1	266.0	230.6	9.005
800	344.0	414.8	380 0	203.3	343.5
006	371.0	448.5	0.000	6.062	3/8/8
1000	397.1	480.6	6.124 A CAA	0.225	412.0
		0.00	1.201	220.1	443.5

22

Γ.

٤

Ş.

identical to the program presented in Appendix B except for the input conditions which are shown highlighted.

The comparison of the results from this method and that of Svehla are shown in Table 6 for CO_2 . The differences between the results range from 1.4 percent at 200 degrees K and increase monatonically to 3.3 percent at 5000 degrees K. Hence the conclusion is that the calculational method results in small deviations from accepted results for gases for which the more vigorous treatment has been exercised.

V. INTERPOLATION FOR $\mu_i = \mu_i(T)$

Having now established an interpolation routine for specie viscosities and having calculated specie viscosities for NO₂ and O₃ plus estimating the general magnitude of the error involved it was necessary to establish that the interpolation procedure was working correctly for individual species. This was accomplished by programming MUSPEC which is given in Appendix D. This program utilizes the viscosities of N₂, O₂, NO, NO₂, and O₃ as input and calculates the viscosities of these species at various temperatures between 500 degrees K and 600 degrees K.

The results of these calculations are shown in *Table 7*. These results can be compared with the data presented in *Table 5*. This comparison shows that the calculations are consistent and reasonable. Hence, the procedure for the calculation at the individual viscosities has been verified before proceeding to the mixture of these gases given in the next section.

VI. CALCULATION OF THE MOLECULAR VISCOSITY OF A MIXTURE OF GASES

Having established the calculational procedure for individual viscosities of gas species, the remaining task is to calculate same for the mixture resulting from the chemical reaction. The viscosity of the mixture of gases is not simply a mole fraction average of the individual viscosities but depends on the individual species in a more complex manner. The mathematical model due to Wilke is given [3] as follows

$$\mu_{\min} = \sum_{i=1}^{n} \frac{x_i \mu_i}{n}$$

$$\sum_{j=1}^{\sum x_j \Phi_{ij}}$$
(16)

TABLE 6. COMPARISON OF THE VISCOSITY CALCULATED BY THE PRESENT METHOD AND THAT OF SVEHLA.

MOLECULAR VISCOSITY OF CO2 AS A FUNCTION OF TEMPERATURE

			*			**
T,=	200.0	DEG K	YMII	-1013735-03	PATEEC	1028 E-03 BUTSES
T=	100.0	DEG K	X MII=	1443746-03	Potecc	1520 E-03 POISES
T≍	400.0	DEC K	XMUE	1420235-03	Potere	1960 E-03 POISES
T=	500.0	DEG K	XMII=	2302025-03	POTOSC	2354 E-03 POTERS
T=	600.0	DEC K	XMII=	2646365-03	Sofee:	2714 8-03 901888
T=	700.0	DEG K	XMII=	-2469445-03	Potere	3048 F-03 POISES
T≠	400.0	OFG M	X MII=	3265065-03	POTEEE	1359 F-03 BOTERS
T≠	900.0	DEG #	YMUE	3551545-43	POTCEC	3653 8-03 001020
T ≠	1000.0	DEG	XMUE	3620216-03	501262	3931 E-03 POISES
T=	1106.0	DEG V	X ++++=	4077415-03	PATRE	A197 F-03 POTSES
T.=	1200.0	DEG K	X +11=	4325676-03	POTEE	AASA T-01 BOTERS
T=	1300.0	DEG K	X MII=	4-64135-03	Potere	· 4702 E-03 BOTSEE
T=	1400.0	DECK	X Mij=	474537F-03	POTEEE	4942 E-01 MOTORS
T=	1500.0	DEG K	Y M()=	-C1477F-03	POTERE	5176 8-03 POTERS
τ≠	1600.0	DEC K	YM()=	523845E-03	POTEEC	5402 F-03 BOTSES
TF	1700.0	OFG K	Y Mile	5451958-03	PATERS	5623 #-01 BOISES
T=	1800.0	OFG P	X ~11=	-566058E-03	POTEES	5837 F-01 BOTERS
T=	1900.0	DEG K	YMUS	- H6498F-03	POTEFE	-6046 E-03 POISES
T=	2000.0	066 #	YMII=	+C4568E-03	POTCEC	.6251 E-03 POTRES
T=	2100.0	DEC K	¥401=	-626351F-03	POTOFE	6450 F-03 POTERS
⊺ ≠	2200.0	DEC K	XMI1=	645794F-03	POTERS	6646 F-03 BOTER
T=	2300.0	DEGK	YMI)=	+++4922F-03	POICES	.6838 E-03 POTRES
T≠ .	2400.0.	DEG M	XMUE	++3741E-03	POTOFS	.7027 E-03 POTSES
<u>T</u> # .	2500.0	DEC K	XMIIS	-7022596-03	POTEES	.7213 E-03 POTSES
<u>T</u> \$.	2600.0	UF.C K	X Mi I=	.720482E-03	POISES	.7398 E-03 POISES
<u>T</u> =	2700.0	DEG K	X M() =	-73441HE-03	POTEES .	.7580 E-03 POTEES
T≠	2800.0	DEC K	YMII=	-756075F-03	PRICES	
T =	2400.0	DEG #	XM(I≠	.773461F-03	POISES	.7942 E-03 POISES
1=	3000.0	NEC K	***()=	-790588E-03	PRISES	8122 8-03 POTSES
T=	3100.0	DEG M	X M(1=	.*07465E-03	POISES	8302 E-03 POTRES
	3200.0	DEG #	¥ MI] =	+24107E-03	POISES	.8478 E-03 POISES
13	3300.0	DEG M	A w(1=	**40525E- n 3	POTSES	.8651 8-03 POISES
15	3400.0	DEC M	X MI I =	+56736E-03	POISES	.8821 E-03 POISES
	3500.0	DECK	XM()=	.A72753E-03	POISES	.8990 E-03 POISES
(= t =	100.0	DEG M	¥ M()=	. PHP596E-03	POISES	.9157 E-03 POISES
1 =	3700.0	DEG W	X~11=	.904262E-03	POISES	.9322 E-03 POISES
	3400.0	DEG K	Y M(J=	.919831E-03	POISES	.9485 E-03 POISES
	1400.0	DEGK	Y M(1=	+935261E-03	POISES	.9647 E-03 POISES
	4000.0	DER K	XWUZ	-050574F-03	POISES	.9807 E-03 POISES
	*100.0		XMUE	+ <u>2657H3E-03</u>	POISES	.9966 E-03 POISES
	4200 0		J M115	-9K0479E=03	POISES	.1012 E-02 POISES
	4400 0		7.4(13	-445867E-03	POISES.	.1023 E-02 POISES
	4500.0		x mij#	+101022E-05	POISES	.1043 8-02 POISES
T =	A600.0		X	+196224-05	POISES	.1059 E-02 POISES
- -	4700.0	DEG	· · · · · · · · · · · · · · · · · · ·	*104050E-05	POISES	.1074 E-02 POISES
-	4800.0			+1074/85-02	POISES	.1089 E-02 POISES
1 =	4900.0	1 23		•105353F=05	MOISES	.1104 E-02 POISES
.	5000.0	556		+1003035-02	MOISES .	.1119 E-02 POISES
		PL 12 14	~ m() +	· +104/41F=05	POISES	.1134 E-02 POISES

* PRESENT METHOD ** METHOD OF SVEHLA {2}

- S. S.

The Act

IXXX01v

TABLE 7.	μ] =μ] (T)	FOR N ₂ ,	0 ₂ , NO,	NO2, AND O3
M(([] = V() (2) = H(((3) = V() (4) = H((5) =	. 25270000 . 3010000 . 2420000 . 14590000 . 26500000	E+03 AT E+03 AT E+03 AT E+03 AT	τ = τ = τ = τ = τ = τ =	500.00FG K 577.0356 K 577.0356 K 577.0356 K 507.0356 K 507.9356 F
>11(1)= >(1(2)= >(1(3)= >(1(4)= >(1(5)=	.25608927 .30520190 .28600164 .19949847 .25925554	E+03 A1 E+03 A1 E+03 A1 E+03 A1 E+03 A1	1 = 1 = 1 = 1 = 1 =	510.09FG K 510.0)FG K 510.0)FG K 510.0)FG K 510.0)FG K
_HL(1)= H((7)= H((3)= H)(4)= <u>H)(5)=</u>	25945206 30436333 28996722 20307346 27347355	E+03 A1 E+03 A1 E+03 A1 E+03 A1 E+03 A1	T = T = T = T = T =	520. 10EC K 520. 10FC K 520. 10FC K 520. 10FC K 520. 10FC K 520. 00FC K
ML(1)= MI(7)= FI(3)= MI(4)= MI(5)=	. 26278847 . 31348699 . 29389742 . 20652494 . 27765432	E+03 A1 E+03 A1 E+03 A1 E+03 A1 E+03 - A1	T= T= T= T= T=	530.00FG K 530.00FG K 530.01FG K 530.00FG K 530.00FG K 530.00FG K
. MII/])= ki!(7)= ki!(3)= vi!(4)= ki!(5)=	. 26609841 31757172 . 29774374 . 21015231 . 24174810	F+03 A1 E+03 A1 E+03 A1 E+03 A1 E+03 A1	T = T = T = T = T =	540.00FG K 540.00FG K 540.00FG K 540.00FG K 540.00FG K
M(1())= M(())= M(())= M(())= M(())=	. 2693A185 .32162197 .30165645 .21365555 .21365555 .23590520	E+03AT E+03 AT F+03 AT E+03 AT E+03 AT	T= T= T= T=	550. 00FA K 550. 00FA K 550. 00FA K 550. 00FA K 550. 00FA K 550. 00FG K
M(1())= M1(7)= M1(3)= M(1(4)= _M(L(5)=	. 27243473 32563837 . 30542645 . 30542645 . 31713445 . 21713445 . 28997548	E+03 AT F+03 AT F+03 AT E+03 AT E+03 AT	T = T = T = T =	560.9000 K 560.9000 K 560.8000 K 560.8006 K 560.8006 K
M(1{)}= V(1{7}= M(1{3}= M(1{4}= M(1{5}=	• 27586903 32962273 • 30925522 • 220592552 • 29401042	F+03 A1 F+03 A1 F+03 A1 F+03 A1 E+03 A1	T= T= T= T= T=	570. qufr k 570. qufr k 570. qufr k 570. qufr k 570. qufr k 570. qufr k
>11/2)# >11/2)# >11/3)# >11/4)# >11/4)#	. 27907271 33357664 31305304 . 22401764 . 29800910	E+03 AT E+03 AT E+03 AT E+03 AT E+03 AT		580.00FG K 560.00FG K 560.00FG K 580.00FG K 580.00FG K
M() ()) = M() ()) = M() () = M() () =) ((() =	. 24224471 • 33750] 84 • 3] 6751 01 • 22742] 67 • 30] 47220	E+03 A1 F+03 A1 F+03 A1 F+03 A1 F+03 A1		550.00F6 K 590.0746 K 550.0746 K 540.0766 K 540.0766 K

WJWDK4N

25

2

ž

where '

$$\Phi_{\mathbf{ij}} = \frac{1}{\sqrt{8}} \left\{ 1 + \frac{MW_{\mathbf{i}}}{MW_{\mathbf{j}}} \right\}^{-\frac{1}{2}} \left\{ 1 + \left(\frac{\mu_{\mathbf{i}}}{\mu_{\mathbf{j}}} \right)^{\frac{1}{2}} \left(\frac{MW_{\mathbf{j}}}{MW_{\mathbf{i}}} \right)^{\frac{1}{4}} \right\}^{2} (17)$$

Equation (16) has been shown to reproduce measured values of μ_{mix} to within 2 percent for certain gases. The dependence of μ_{mix} on composition is extremely non-linear for certain gas mixtures, however.

Nevertheless, it is the best available technique and will be utilized here.

A test program was written to compute the viscosities of various mixtures of gases. The listing of this program is given in Appendix E. This program utilizes subroutine LAMVISC which performs the mixture calculations for the laminar viscosities according to the technique of Wilke given above. It also utilizes the subroutine MUSPEC which is a variation of Program MUSPEC discussed in an earlier section.

The results utilizing these methods are given in *Table 8* for various mixtures of N_2 , O_2 , NO, NO₂, and O₃. Comparing *Table 8* and *Table 5* will convince one that the results are reasonable.

VII. CONCLUSIONS

A computer code has been generated to determine laminar viscosities of gases as a function of temperature. This method is approximate but it provides results useful in making engineering analyses. The specific gases for which laminar viscosities were determined included NO_2 and O_3 , but the method is applicable for other gases.

TABLE 8. $\mu_{mix} = \mu_{mix}$ (T) FOR VARIOUS MIXTURES OF N₂, O₂, NO, NO₂, and O₃ (MOLE FRACTIONS)

FOR THE	FOLLOW ING GAC . 146712456 + 03	PTYTHPE AT TE	-A2= 7	00 02= F.+03	.300	N()=	0.000	N05=	0.000	03=	0.000	
FOR THE	FOLLOWING GAS .18859141F+03	MTYTURF	.30560600	00 02= E+03	• 050	N0=	•150	N05=	•050	03=	.050	
FOR THE	FOLLOWTHE GAS +20532745F+03	NTYTUPF AT T=	-12= .7 .35000u0u	00 02= 2+03	•100	N∩≖	.100	NU5=	•050	03=	.050	
FOS THE MUNIXE	FOLLOWT 6 445 22854949495+03	NTXTHRE	.40000000	00 02= F+03	.100	N()=	.050	N05=	.200	03=	.050	
FOR THE MUNTY=	FOLLOWING 645 • 26701965F+03	~T¥TUPF ^T T=	.50000000	00 02= E+N3	.100	N()=	.100	NOS=	.100	n3=	.100	
FON THE	FOLLOWING GAS •2760288668+03	MIYTURE AT T=	-N2=	00-02= E+03	.050	N0=	.050	N05=	•500	03=	.100	
FOF THE MINTY=	FOLLOFING 645	~ J Y TIIGE AT T=	-N2= ,7 .30000009	00 02= E+03	.300	N0=	0000	N02=	0.000	03'=	0.000	
FOP THE	FOLI OWING 645 .184591415+03	: [XTIIDF AT T=	-N2= .7(,30500000	00 02= [+03	.050	N0=	.150	N02=	.050	03=	.050	
FOP THE MUMTY=	FOLLOWING GAS	* TXTHPE AT T=	-N2= .7 .2500000	E+03 00 02=	.100	NO=	.100	N()?=	.050	n3=	.050	
FOR THE	FOILONTNG GAS	MTXTIIRF AT T=	-N71 .4 .400(0000	00 02≈ E+03	• 1 D 0	NQ=	.050	N02=	.200	n3=	.050	
FOD THE	FOLLOWING GAS .267019655+03	MIXTURE	.5000000	00 02= E+D3	.100	NO=	.100	N02=	.100	03=	.100	
FOR THE	FOLLOFING GAS _2760286655+03	КТУТЮРF Ат т=	-N2= .6	00 02= E+03	.050	N0=	.051	N02=	•500	03=	.100	

WJWDK45

27

. الم

APPENDIX A PROGRAM LISTING FOR TEST - A ROUTINE TO CHECK THE ACCURACY OF THE CUBIC SPLINE INTERPOLATION ROUTINE

31

r.

X+(C(5+I)+DX+(C(3+I)+DX+C(++I))

30

15

32

L, r

APPENDIX B

PROGRAM LISTING FOR MUCALC - A ROUTINE TO CALCULATE THE MOLECULAR VISCOSITY OF NO₂ AND O₃ FROM 200 DEGREES K - 5000 DEGREES K

	,	

PPOGRAM MICAL C 74/74 NUTEI IXXXX0EQ FTN 4.6+433R

06/18/79

ADD FORWATCHI-IX+4MOLECULAR VISCOSITY OF 03 AS A FUNCTION OF TEMPERAT IN . IX . ANDLECHLAR VISCOSITY OF NO2 AS A FUNCTION OF TEMPERA 000 FOW 69

1000. STÃP FUD

We are

C S

W. Ant

وروم المجتول المحدمة

SUBROUTINE CALCCF - IDENTICAL TO CALCCF IN APPENDIX A SUBROUTINE ENDPTSL - IDENTICAL TO ENDPTSI. IN APPENDIX A FUNCTION PCUBIC - IDENTICAL TO PCUBIC IN APPENDIX A SUBROUTINE SPLINE - IDENTICAL TO SPLINE IN APPENDIX A

APPENDIX C PROGRAM LISTING FOR MUCALC SPECIALIZED FOR CALCULATION OF THE MOLECULAR VISCOSITY OF CO₂

41

TRECEDING PAGE NOT FILMED

i.

Γ

42

FUNCTION PCUBIC - IDENTICAL TO PCUBIC IN APPENDIX A SUBROUTINE SPLINE - IDENTICAL TO SPLINE IN APPENDIX A APPENDIX D PROGRAM LISITNG FOR MUSPEC - A ROUTINE WHICH CALCULATES $\mu = \mu_i(T)$ FOR N₂, O₂, NO₂, NO, AND O₃ AT TEMPERATURES BETWEEN 200 DEGREES K AND 1000 DEGREES K

SUBROUTINE CALCCF - IDENTICAL TO CALCCF IN APPENDIX A SUBROUTINE ENDPTSL - IDENTICAL TO ENDPTSL IN APPENDIX A FUNCTION PCUBIC - IDENTICAL TO PCUBIC IN APPENDIX A SUBROUTINE SPLINE - IDENTICAL TO SPLINE IN APPENDIX A

 $\overline{\mathcal{I}}_{\mathcal{I}}^{\mathcal{U}}$

APPENDIX E **PROGRAM LISTING FOR LVSCTST - A ROUTINE TO** CALCULATE $\mu_{MIX} = \mu_{MIX}(T)$ FOR MIXTURES OF N₂, O₂, NO, NO₂, AND O₃

£.

Stor MAN

04/20/79 12/02/40 MOLF CIIL AD N>-WTVFI -WFVFI - DATA FND OF SAMPLF DATA CALL ANVISCINS.MPST.WTVP.XMULD DO AD KED.FC CALL ANVISCINS.MPST.WTVP.XMULD CALL ANVISCINS.WORLAND COLONATIIX./WEAD CALL ANVISCINS.WORLAND CALL ANVISCINS.WINTXEMEDATA COLONATIIX./WEAD CALL ANVISCINS.WINTXEMEDATA CALL ANVISCINS.WINTXEMEDATA CALL ANVISCINS.WINTXEMEDATA COLONATIIX./WEAD CALL ANVISCINS.WINTXEMEDATA COLONATIINTXEMEDATA COLONATIINTXEMEDATA COLONATIONATION COLONATIONATION COLONATIONATION COLONATIONATION COLONATION COL SINHONITTINE LAWVISC (A S. NOSI. * TVD * XMIIL) DIXENSION YUII (50) • YYF (75. 50) • T (50) • WIMOLE (75) • AL PHA (75. 50) • JXWISS • PHI (25. 75) COMMON/I VISC/T • WIMOLE • AL PHA PPDGRAM LVSCTST (OUTPUT, TAPE6=OUTPUT) PPDGRAW TO CHECK DUT SUBMOUTINE LAMVISC WHICH CALCULATES THE VISCOSITY OF A WIXTURE OF GASES AS A FUNCTION OF TFWFEPATUPE DIMENSION WINE (25), XMUL (5) AL PHA (25.50) T (50) DATA (WIVDLE (1), T=1.51, 7PH, 02.32, 00.30, 01.46, 00A, 4F, 00/ DATA (WIVDLE (1), T=1.51, 7PH, 02.33, 00.30, 01.46, 00A, 4F, 00/ DATA (T 1), 1=1.4, 7, 7PH, 02.33, 00.30, 01.46, 00A, 4F, 00/ DATA (T 1), 1=1.4, 7, 7PH, 02.33, 00.30, 01.46, 00A, 4F, 00/ DATA (T 1), 1=1.4, 7, 7PH, 02.33, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.33, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.35, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.35, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.35, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.35, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.35, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.35, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.35, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.35, 00.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.500, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.500, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.500, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7PH, 02.400, 0.575, 7 DATA (T 1), 1=1.4, 7, 7, 7, 1=1.4, 7, 7, 1, 1=1.4, 7, FTN 4.64434 FTN 4 . . . 434 WJWDK45 WJWDK45 DO JO KEL WOST WHII (Y) EA DO ZO JEL SS DO A JEL SS DO A JEL SS ALL WISEF (NT, NS, T(N), YNU) SUMEA [=Lau run (r)=)+in (r)+240 (=T4) 74/74 11/11 41 704.0 FRU SUMBOUT THE I ANVISC PPOGRAM LVSCTST 520 50 70 70 4 υu U C 5 Š 5 _ <u>ي</u> ຼີ ي 20 Ř

ŝ,

and the second second

F

See.

31.M.L

sı A

49

6.85

61/02/50

ri

REFERENCES

- 1. Conte, S.D. and Carl de Boor. *Elementary Numerical Analysis: An Algorithmic Approach*, McGraw Hill, Second Edition 1972, New York pp. 230-240.
- 2. Svehla, Roger A., "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures" NASA Technical Report R-132, Lewis Research Center, Cleveland, Ohio, 1962.
- 3. Bird, R.B., Stewart, W.E. and E.N. Lightfoot, *Transport Phenomena*, John Wiley, New York, 1960.
- 4. Walker, B.J., "Turbulence Model Comparisons for Shear Layers and Axisymmetric Jets" MICOM Technical Report TR-RD-80-1, Redstone Arsenal, Alabama, October 1979.

وی شدت

SYMBOLS

Ωμ -	Viscosity potential function of $(\kappa T/\epsilon)$
£ -	Characteristic energy of interaction between molecules, erg/molecule
r -	Intermolecular distance, cm
σ-	Collision diameter of a molecule, Å
T _c -	Critical temperature, degrees K
p _c -	Critical pressure, atm
V _c -	Critical volume, gm/gm-mole
K -	Boltzman constant, 1.3805 erg/molecule-degrees K
¢ (r) -	Lennard-Jones potential, Equation (14)
MW _i -	Molecular weight, i th specie, gm/gm-mole
μ	Molecular viscosity, i th specie, poise
X, -	Mole fraction, i th specie, dimensionless
Ф іј -	Viscosity weighting function, Equation (2)

DISTRIBUTION

S. 9

-

.

	No. of Copies		No. of <u>Copies</u>
University of Illinois Dr. A. L. Addy 208 Mechanical Engineering Labora Urbana, IL 61801	1 atory	Aerochem Research/Princeton Dr. Hartwell Calcote PO Box 12 Princeton, NJ 08540	1
BMDATC ATC-14, Dr. Larry C. Atha PO Box 1500 Huntsville, AL 35807	1	Rockwell International Rocketdyne Division Attn: Code D/536, Mr. R. Campbel 6633 Canoga Avenue Canoga Park, CA 91304	1 1
Rockwell/Downey Mr. Harold J. Babrov Space Information Systems Divisio 12214 Lakewood Blvd Downey, CA 90241	1 on	Aerojet Solid Propulsion Company Attn: Mr. James P. Coughlin Mr. A. W. McPeak PO Box 13400 Sacramento, CA 95813	1 1
Bell Aerospace Corporation Mr. Arthur H. Blessing PO Box 1 Buffalo, NY 14240	1	ARAP/Princeton Attn: Dr. Sanford M. Dash Dr. E. S. Fishburne PO Box 2229	1 1
Attn: Dr. Donald W. Boyer Dr. Paul V. Marrone Dr. Walter H. Wurster	1 1 1	Grumman/Bethpage Grimman Aerospace Incorporated	
PO Box 400 Buffalo, NY 14221 Physics Dynamics/La Jolla		Attn: Dr. Paul D. Del Guidice Dr. Stanley Rudman S. Oyster Bay Road Bethnage LL NV 11714	1 1
Dr. Frederick P. Boynton PO Box 556 La Jolla, CA 92038	1	ARC/Alexandria Dr. Mark Director	1
Naval Weapons Center Attn: Code 3245, Mr. Stuart Brei Code 3241, Mr. Andrew Victor	1 1 or 1	5390 Cherokee Avenue Alexandria, VA 22314 Hercules/Cumberland	
China Lake, CA 93555 Naval Ordnance Station		Aerospace Division-Allegany Ballistics Laboratory Attn: Mr. Thomas E. Durney	1
Attn: Code 5252E, Mr. G. A. Buck Code 5233D, Mr. H. Hodgkin Indian Head, MD 20640	le 1 s 1	Mr. Robert C. Foster PO Box 210 Cumberland, MD 21502	1
Spectron/Costa Mesa Dr. C. W. Busch 3303 Harbor Blvd Costa Mesa, CA 92626	1	AFATL/DLMQ Dr. D. E. Ebeoglu Eglin AFB, FL 32542	1
AFRPL/PACP Dr. David Mann Edwards AFB, CA 93523	1	SAI/Woodland Hills Attn: Dr. Raymond Edelman Dr. Thomas Harsha 20335 Ventura Blvd (Suite 423) Woodland Hills, CA 91364	1 1

55

Succession . Anthe at

N	o. of		No. of
<u>C</u>	opies		Copies
University of Tennessee Space Inst	itute	United Technologies Corporation	
Attn: Dr. W. Michael Farmer	1	Research Center	
Dr. James M. Wu	1	Dr. Roy N. Guile	1
Dr. Kenneth E. Harwell	1	400 Main Street	
UTSI/Tullahoma		East Hartford, CT 06108	
Tullahoma, TN 37388			
		McDAC/Huntington Beach	
United Technologies Corporation		Attn: Dr. Donald W. Harvey	1
Chemical Systems Division		A3-328, Library	1
Mr. B. R. Felix	1	Dept 204/13-3,	
PO Box 358		Mr. George F. Greenwald	1
Sunnyvale, CA 94088		5301 Bolsa Avenue	
		Huntington Beach, CA 92647	
Ford Aerospace & Commercial Corpor	ation		
Aeronautic Division		Martin-Marietta Corporation	
Attn: Mr. Alson C. Frazer	1	Mr. Milton A. Hetrick	1
Mr. L. E. Horowitz	1	PO Box 129	
Ford & Jamboree Roads		Denver, CO 80201	
Newport Beach, CA 92663			
		AFAPL/RJA	
Photon Research Associates, Inc.		Mr. Norman A. Hirsch	1
Attn: Dr. G. Newton Freeman	1	Wright-Patterson AFB, OH 45433	•
Dr. Claus B. Ludwig	1		
PO Box 1318		Naval International Interpretati	onal
La Jolla, CA 92038		Service Center (NISC)	
		Code 452, Mr. James Hyland	1
Aerodyne Research, Inc.	_	4301 Suitland Road	
Attn: Dr. Michael E. Gersh	1	Washington, DC 20390	
Dr. James S. Draper	1		
Crosby Drive		Thiokol Chemical Corporation	
Bedford Research Park		Wasatch Division	_
Bedford, MA 01/30		Mr. M. J. Janis	1
		Brigham City, UT 84302	
Johns Hopkins University			
Applied Physics Laboratory-		Aerospace Corporation	
Chemical Propulsion Information Ag	ency	Attn: Dr. Richard H. Lee	1
Attn: Mr. Theodore M. Gilliland	Ţ	Dr. Duane Nelson	1
Mr. Andreas V. Jensen	T	Dr. Ronald R. Herm	T
Johns Hopkins Koad		PU Box 92957	
Laurel, MD 20010		Los Angeles, CA 90009	
NASA_Marchall Space Plicht Center		Lincoln Laboratory/MTT	
Atta Code ED-33 Dr. T Creenwood	1	Dr I Lowder	٦
Technical Library	1	PO Box 73	-
Mr. Joseph L. Sime	1	Levington WA 02173	
Hunteville, AL 35812	-	Dealigeon, na 021/J	
HWILDVILLE, AM JJUIL		4 FSC / FTD	
SEA. Inc.		Attn. Mr. S. Mamica	1
Mr. G. R. Nickerson	1	Mr. D Paranal4	1
1740 E. Gerry Street	-	Wright_Pattarenn AFR OH 45422	-
Santa Anna, CA 92705			

Č.

تنك ا

22

	No. of Conjes		No. of
	copres		<u>Copies</u>
Naval Missile Center		Remtech, Inc.	
Mr. D. E. Papche	1	Dr. John S. Reardon	1
Code 3351 Roint Marine CA 020/0		2603 Arties Street	
Forne Mugu, CA 93042		Huntsville, AL 35805	
Aerojet General Corporation		ARO, Inc.	
Aerojet Electrosystems		Arnold Engineering Development Co	ontor
Dr. Sheng Y. Peng	1	Attn: Mr. Robert P. Rhodes	1
PO Box 296		Dr. Wheeler K. McGregor	1
Azusa, CA 91702		Dr. Charles C. Limbaugh	1
Techhood Mtesta to a		Mr. W. D. Williams	1
Attal Ma Maanda M Dave Company		Mr. R. C. Bauer	1
Mc Boyorloy I Audeb	1	Dr. C. E. Peters	1
Mr. I. Ping	1	Technical Library	1
PO Box 1103	T	Arnold AFS, TN 37389	
Huntsville, AL 35802		NASALISC	
-		Code EX-3. Mr. Barney B. Poberte	1
Block Engineering, Inc.		Houston. TX 77058	Ŧ
Research & Engineering Division			
Mr. M. J. Persky	1	ARDC	
19 Blackstone Street		CPT William E. Rothschild	1
Cambridge, MA 02139		Code XRB	
Environmental Research Institute		Eglin AFB, FL 32542	
of Michigan		Army Rollistic Possensh Tabamatan	
Dr. L. M. Peterson	1	Atta · DPDAP_FIL My F Cobudde	1es
PO Box 8618		Aberdeen Proving Ground MD 21005	T
Ann Arbor, MI 48107		1001-101 1100 Ling 010 Ling 110 21005	
		AEDC/DOT	
General Dynamics-Pomona Division		Dr. Herman E. Scott	1
Technical Library	1	Arnold AFS, TN 37389	
PO Box 2507	1	4 70 7 7	
Pomona, CA 91766		AFUSR	
		El Robert F. Sperlein	1
Chrysler Corporation Michoud		Boiling AFR	
Defense Space Division		Washington, DC 20332	
Mr. E. A. Rawls	1		
PO Box 29200		Naval Weapon Space Center	•
New Orleans, LA 70189		Code 5042, Dr. J. E. Tanner	1
Physical Colonas Tot		Crane, IN 47522	
Wr. Curt Bay	1		
30 Commerce Way	T	Armament R&D Command	
Woburn, MA 01801		Attn: DRDAR-IC, Mr. Jesse Tyroler	1
		20061, NJ 0/001	
AFGL (OPR)		Thiokol Chemical Corporation	
Mr. B. P. Sandford	1	Mr. Roger H. Whitesides, Jr.	1
nanscon AFB, ME 01731		Huntsville, AL 35807	

÷.

1

1020

are e

New June

	No. of		No. of
	<u>Copies</u>		Copies
TRW, Inc.			
Attn: Mr. Orvil E. Witte	1	Arth, Mr. M. A. Dalad	-
Dr. John T. Ohrenberger	1	Toobpicel Library	1
One Space Park	-	Cleveland ON 44215	1
Redondo Beach, CA 90278		creverand, on 44315	
		Sandia Corporation	
Institute of Defense Analysis		Sandia Base Division 9322	
Dr. Hans G. Wolfhard	1	Mr. W. Curry	1
400 Army-Navy Drive		Box 5800	1
Arlington, VA 22202		Albuquerque, NM 87115	
Defense Advanced Research		7 - han - 17 - 1 4 - 19 - 4	
Projects Agency		Johns Hopkins University	
Dr. Stephen Zakanycz	1	Applied Physics Laboratory	
1400 Wilson Blvd	-	Di. L. Cronvicn Silver Spring ND 20010	1
Arlington, VA 22209		STIVEL Spring, MD 20910	
		University of Notre Dame	
Commander		Department of Aerospace Engineer	inc
Air Force Armament Laboratory		Dr. T. J. Mueller	1
Mr. C. Butler	1	Notre Dame, IN 46556	-
Eglin AFB, FL 32542			
Adm Barros Midsha ha a s		Naval Air Systems Command	
Att Porce Flight Dynamics Labora	tory	Mr. William Volz	1
Wright-Pattoreen APR ON (5/22	1	Air 320-C, JP-1	
wright-recterson Arb, On 45455		Washington, DC 20361	
Commander		Nielcen Freisenster (Deservel	-
Naval Surface Weapons Center		Dr Jack N Niclass	Inc.
White Oak Laboratory		850 Maude Avenue	1
Attn: Code WA-41, Dr. W. Yanta	1	Mountain View CA 94040	
Code WO, Mr. E. Elzufon	1		
Silver Springs, MD 20910		Director of Defense Research	
MAGA T T T		and Engineering	
NASA-Langley Research Center		Room 3C128, Technical Library	1
Actn: code M5423, Mr. R. Gomberg	1	The Pentagon	
Technical Ithnem	1	Washington, DC 20301	
Nempton VA 23665	T		
namp con, VA 25005		US Air Force Academy	
Commanding Officer and Director		CAPT Brilliant, DFAN	1
Naval Ship Research and		USAF Academy, CO 80840	
Development Center		Burdue Independent	
Attn: Aerodynamic Laboratory	1	Propulsion Contor	
Craderock, MD 20007	-	Dr. J. Hoffman	,
		Lafavette. TN 47007	T
NASA-Ames Research Center		,,,,,,,, _	
Attn: Technical Library	1	University of Alabama	
Moffet Field, CA 94035		Department of Aerospace Engineeri	no
		Attn: Dr. Zien	
		Dr. J. O. Doughty	1
		University, AL 35486	-

58

1.1.4

. .

· No Co	o. of opies		No. of <u>Copies</u>
Jet Propulsion Laboratory California Institute of Technology Attn: Mr. R. Martin Mr. R. Kenneth Baerwald 4800 Oak Grove Drive Pasadena, CA 91109	1 1	Northrop Corporation Electro-Mechanical Division Mr. E. Clark 500 East Orangethorpe Y20 Anaheim, CA 92801	1
University of Missouri at Columbia Department of Mechanical Engineerin Dr. D. E. Wollersheim Columbia, MO 65201	ng 1	United Aircraft Corporation Missiles and Space Division Research Department Mr. H. McDonald East Harford, CT 06108	1
Boeing Company Attn: Library Unit Chief Mr. R. J. Dixon Mr. H. L. Giles Mr. J. M. Barton	1 1 1 1	Auburn University Department of Aerospace Engineer Mr. R. N. Culberson Auburn, AL 36830	ing 1
PO Box 3707 Seattle, WA 98124 Vought Corporation		Princeton University Forrestal Research Center Professor S. Bogdonoff Princeton, NJ 08540	1
Attn: Mr. C. R. James Mr. D. B. Schoelerman Mr. Richard Summerhays Box 5907 Dallas, TX 75222	1 1 1	Rockwell International Columbus Aircraft Division Mr. Fred Hessman 4300 East Fifth Avenue Columbus, OH 43216	1
Lockheed Aircraft Corporation Missile and Space Division Attn: Technical Information Center Dr. Dwayne A. Sheets, Org 62-13, B-104 PO Box 504	1 1	Hughes Aircraft Company Missile Systems Division Mr. J. B. Harrisberger Canoga Park, CA 91304	1
Sunnyvale, CA 94086 Martin-Marietta Corporation Orlando Division		IIT Research Institute Attn: GACIAC 10 West 35th Street Chicago, IL 60616	1
Attn: J. Burns L. Gilbert Dr. L. Sakell PO Box 5837 Orlando, FL 32804	1 1 1	US Army Materiel Systems Analysis Activity Attn: DRXSY-MP Aberdeen Proving Ground, MD 2100	5 1 5
McDonnell-Douglas Corporation Attn: Technical Library PO Box 516 St. Louis, MO 63166	1	Defense Technical Information Cer Cameron Station Alexandria, VA 22314	nter 12

7

145

1

Ē

DISTRIBUTION (Concluded)

...

	NO. Of
	Copies
DRSMI-LP, Mr. Voigt	1
DRSMI-R, Dr. Kobler	1
-RK	1
-RL	1
-RR	1
-RN	1
-RS	1
-RDK	1
	1
-KDK, DI. WAIKET	20
-RPR	3
-RPT (Reference Copy)	1
(Record Copy)	1

1

É.

SIN.

. Antopy