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m rotational harmonic number

M rotational Mach number

Mdd drag divergence Mach number

Me effective Mach rumber

Mf forward flight Mach number

Mt rotational tip Mach number

n mB, harmonic number x number of blades

N number of blades

N rotor speed, RPM

P sound pressure in harmonic mB, Ib/ft2

PNL Perceived Noise Level, PNdB

PNLT tone-corrected Perceived Noise Level, PNdB

r distance from rotor center to field point, ft

R blade radius, ft

RHP rotor horsepower, HP

s olade loading harronic number

51/3 one-third octave band correction (Fig A-1), dB

SPL sound pressure leve! - dB re 2 x 107> N/m?
1 t blade thickness
T rotor thrust, |b
. Vt rotor tip speed, ft/sec

ej Fourier coefficients in blade torque loading

e angle between disk plane and field point, deg.
i

ix




Xs

Vo
Ay

SYMBOLS (continued)

air loading harmonic number
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rotor solidity

blade loading spectrum function
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rotor rotational speed, rev/sec
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I. SUMMARY

This study investigated the effect which exterior noise standards will have on
helicopter design and costs. The study investigates case histories of the
four helicopters shown in Figure 1, for which design and development were
compiete, and in three cases, have undergone substantial flight testing. The
developmental background, therefore, has been well documented on eadh
aircraft. The approach to quieting each helicopter was an incremental reduc-
tion of each source as required to obtain reductions in flyover noise with
modifications to other secondary systems only as necessary. The methodology
used to predict the effects of the design modifications on acquisition, mainte-
nance, and operating costs were typical of those employed by roturcraft
manufacturers.

The reduction of helicopter flyover noise generally was achieved through
reductions in rotor tip speed, and for single rotor aircraft this sometimes was
accompanied by modification of the tail rotor placement. Secondary reduction
in noise was derived by system modification or acoustic treatment of other
aircraft systems (engine inlets, rotor transmissions, advanced airfoils, etc.).

Performance characteristics were maintained to specified minimums fer each
aircraft in the study. Rotor speed reduction, for example, generally was
accompanied by an increase in rotor solidity and strengthened drive train
components. Where performance capability was initially substantially above
specified requirements, margins over these minimums were reduced without
modifying the system.

The major findings of the study are:

The acquisition and operating costs of new aircraft are substantially less
affected by modifications than helicopters already in production.

The impact of reducing flyover noise on helicopter acquisiticn and opera-
tional costs is strongly influenced by ihe production quantity over
which the modification costs are spread.

Each helicopter must be studied as an individual case and generalization
of cost trends of noise reduction should be avoidea.
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It. INTRODUCTION

The past few decades have seen the helicopter industry grow steadily from its
infancy primarily as a supplier of military vehicles in the 1940's and 1950's to
the present, where the inventory of civil helicopters in the United States and
Canada exceeds 8000 vehicles. (1) The helicopter has found widespread use
in such diverse applications as emergency transport, logging, executive and
business transport, firefighting, heavy equipment installation, transmission
line installation, traffic reporting and newscasting. The number of active
heliports has increased by an order of magnitude to currently more than 3400
sites. (1) The next decade is expected to see an unprecedented growth in
the civil helicopter industry and estimates of one market forecaster (2) indi-
cate that the commercial helicopter inventory of the free world by 1987 will
increase 154 percent over the previous ten years to over 25,000 units.

in response to the 1968 amendment to the Federal Aviation Act, the FAA is
proposing noise standards for helicopter certification. These rules are
intended to assure the orderly control of community noise due to helicopters,
commensurate with "economic reasonableness and technical practicability".
This study investigales the impact which these noise rules will impose on
rotorcraft cost.

In the earlier stages of development, virtually all helicopters were designed
for military usage. Some of these subsequently were FAA certified and used
in civil applications. Due to the growth of the civil demand for small to
mid-sized helicopters, manufacturers have found i worthwhile to design
helicopters specifically for commercial applications. Larger sized helicopters,
however, are both in less demand and require substantially more capital to
develop. It therefore appears that these aircraft will continue to be derived
from military models for the foreseeable future. Although it may be possible
to design helicopters with acceptably low noise signatures, it is often not
possible to do so while also complying with somz of the performance require-
ments which are imposed on military models. Therefore, it can be anticipated
that larger civil helicopters will have to be derived by making modifications to
their military parents.

The approach taken for this program was to utilize the noise reduction analy-
ses and cost estimating procedures used by a major helicopter manufacturer,
using both the methodology and personnel who would normally perform these
functions. The helicopters which were selected for study were all ones which
had been designed primarily to performance, flying qualities, and strength
criteria, with noise as a secondary consideration. In this manner, the 'real
world' constraints, which often limit the amount of noise reduction which can
actually be achieved, and the changes required to secondary systems, because

L3

(1) "Aerospace Facts and Figures - 1979/1980" published by Aerospace
Industries Association of America, Inc., Washington, D.C., July 1979.

~~
no
~r

Deferise Mar keting Systems, Inc., "World Helicopter Forecast to 1987",
Published by DMS, Inc., 100 Northfield St. Greenwich, Conn. 06830.

LTS




E AL TR e

because of changes to the noise generating components, will be encountered.
It is the above considerations, which are not encountered with 'paper design'
aircraft and are usually only recognized by the manufacturer of an actual
aircraft which often have major impact on the cost of accommodating noise
reduction design changes.




1. METHODOLOGY

General Approach

Figure 2 presents an overview of the steps which were taken to arrive at
reduced noise configurations and the associated acquisition cost and direct
operating cost for each helicopter. More detailed descriptions of the individ-
ual procedures used are contained in the remainder of this section.

Available acoustical data for each baseline helicopter were analyzed (1) and
used in conjunction with analytical predictions (2) to ideniify the individual
component noise sources and spectra (3). This information was then used to
identify those components of the acoustical signature whose reduction would
be required in order to reduce the Effective Perceived Noise Level (EPNL) of
the aircraft (4). The required design changes were determined (5) and
reviewed for adherence to good design practice (6). The changes in weight
(7) and performance (8) were also predicted.

Estimates of the nonrecurring man-hours required for design, design support,
and testing were made (9). This information, along with the estimated weight
changes (7), become input for determining the preduction costs of the com-
pleted aircraft (10). This information then was utilized as input for comput-
ing direct operating costs (11) for the baseline and alternate designs.

Acoustics

Three major sources generally contrioute to the exterior acoi.stical signature
of helicopters: main and tail rotors and the powerplants. For some helicop-
ters, dynamic system noise (transmissions, shafting, etc.) and airframe noise
also may be significant.

Each of these individual sources creates noise by several acoustical mecha-
nisms which are not all equally influential in determining the flyover noise of
the helicopter. Figure 3 illustrates key mechanisms which contribute to the
total noise signature of the helicopter. The contribution of each of these
components to flyover ncise has been determined from measured data and
identified from source frequencies based on the prediction methodology
described in following sections.

Noise sources on each of the baseline aircraft were determined by analysis of
measured data as well as predictions for each of the source components. The
flow chart of Figure 4 illustrates the procedure. The magnitude and frequen-
cy of each source were identified in 1/3 octave spectra and sound levels were
converted to NOY values to determine the contribution of each source to the
Perceived Noise Level (PNL) at selected instants in time during flyover. The
largest magnitude NOY values were identified and reduced selectively to
obtain incremental reductions in PNL. Appropriate configuration changes
were developed to achieve the desired noise reduction for each source. In
most instances, trends available from test data were used to determine the
magnitude change of the operating variable, such as rotor speed effects on
flyover noise.
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Where flyover noise measurements were available (CH-47C, Model 179, BO-105),
a determination of EPNL was made using recorded data input to an analog-to-
digital converter interfacing a mini-computer. From this analysis, the magni-
tude of the flyover EPNL was determined and an assessment of the status of
each aircraft with regard to proposed exterior noise standards was made.
The general requirement for noise reduction of each aircraft type was defined
and the procedure of noise source identification initiated.

The process for identifying noise sources on each aircraft consisted of compar-
ing an analysis of flyover noise both in 1/3 octave bands and narrowband
spectra with predicted signatures for each aircraft flyover in order to identify
source components. The initial step comprised a determination of the instant
of maximum amplitude PNL on the magnetic tapes as an approximation of
maximum perceived noise level during flyover. The tapes were then marked

at two-second intervals from this PNL-Max point for both approach and depar-
ture.

The analyzer used to obtain 1/3 octave band spectra was a General Radio 1921
Realtime Digital Analyzer. A 1/8 second integration was employed to identify
flyover spectra at each interval. The 1/8 second integration time was utilized
for the source identification process since vehicle angular position changes
rapidly particularly near the overhead locations (determination of flyover
EPNL was performed using the normally specified interval of 1/2 second).
The individual spectra were converted to equivalent NOY values, and these
flyover spectra are illustrated for each aircraft in Section V, Aircraft Cost/
Benefit Trade Investigation.

Narrowband spectra were developed by a similar procedure using a Federal
Scientific (Nicolet) Model 500 Ubiquitous Analyzer. The narrowband spectra
were used primarily in identifying sources such as main and tail rotors as
well as engine tones that are not discernable using 1/3 octave or wider filters
which are also shown in Section V.

identification of helicopter noise sources from data for separating discrete
frequency from broadband sources is of little assistance in separating the
several sources of periodic rotor noise listed in Figure 3, and analytical
prediction must be used. For example, Figure 5A shows that for the CH-47C
at an airspeed of 141 knots, the measured data at frequencies below 250 Hz
are due to blade-vortex interaction, while Figure 5B indicates that at 157
knots the thickness noise has increased to vilues greater than that due to
blade-vortex interaction.

The rotor prediction methods used in this study are described in the
Appendix, but have been reported in greater dJdetail by Pegg(3) who has
adapted several procedures into a convenient format for estimating flyover

(3) Pegg, R. J. , "A Summary and Evaluation of Semi-Empirical Methods for
the Prediciion of Helicopter Rotor Noise," NASA TM 80200, December
1979.
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noise. For engine noise, the procedures used were as pubolished in three
NASA(reports treating fans and compressors, (4) core noise, (5) and jet
noise (6). T

Aerodynamics

The @eredynamic/performance methods used to compute the performance data

shown in this report for the BO-105, CH-47, Commercial UH-61A (Model 179)

and Heavy Lift Helicopter are described in this section. In generai, the 3
information presented is based on power required data measured in flight test

and corrécted for configuration differences. In areas where flight test data

were lacking or insufficient, trim and power analyses, which were correlated .
with the available test data, were used to extend the data base.

Engine power-available data were based on manufacturers uninstalled power
and fuel flow corrected for test-measured installation effects. Transmission
power losses were based on test derived values.

Sutsequent paragraphs describe the basis for the performance data presented
elsewhere in this report for each of the aiicraft (and their derivatives) under
study. The hover performance computer program uses an Explicit Vortex
Influence technique. This technique uses a prescribed wake approach which
is basically an extension of fixed wing lifting line theory where each blade is
represented by a lifting line and trailing vortex wake. This wake is com-
posed of an infinite number of weak vortex filaments which the theory mathe-
matically approximates by a finite number of vortices streaming from various
radial locations. The positioning of the vortices below the rotor is dictated
by a semi-empirical prescribed rate of wake contraction since the vortex
filaments must travel at the velocity of the surrounding fluid. The contrac-
tion rate, specified as a function of the thrust coefficient C. = T/an2 Vtz, is
determined by analytical studies of finite-core vortex ring flows and by cor-
relation of calculated and measured propeller and rotor static performance.

The strength of the vortices is determined by the section lift (Cg) distribu- ]
tion using the Kutta-Joukowski theorem. The angle-of-attack and, hence, the
Cy, distribution is determined by the downwash velocity induced by the vor-
tices defined by the Biot-Savart law. An iterative technique is used to
obtain a mutually consistent C, and downwash distribution. Once an agree-
ment is achieved, the C, and section drag (C,) disticutions are integrated
taking into consideration the local downwash %ngle, thus thrust and power
required are obtained. If the computed thrust and the desired thrust do not
agree, the collective pitch angle setting is changed and the entire process is

repeated.
; (4) Heidmann, M. F., "Interim Prediction Method for Fan and Compressor |
] Source Noise", NASA TM X-71763, NASA Lewis Research Center,
June 1975. '
(5) Huff, R. G., Clark, B. J., and Dorsch, R. G., "“Interim Prediction j
Method for Low Frequency Co~e Engine Noise", NASA TM X-71627, ]
NASA Lewis Research Center, November 1974. 1
(6) Stone, J. R., ‘"Interim Prediction Method for Jet Noise", NASA !

s TM X-71618, NASA Lewis Research Center. i
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The iterative calculations described above require the use of a high-speed
computer. The inputs required are:

o Airfoil section Cy and Cd characteristics
0 Rotor Geometry

0 Ambient condition

0 Required thrust

Figure 6 shows the excellent correlation between the theory and CH-47C flight
test data in hover.

Aircraft trim for forward flight conditions is determined by solving the six
steady-state equations of motion developed from a force and moment balance
about the center-of-gravity. The computer program was formulated in such a
way that the flight conditions, gross weight, speed of flight (horizontal),
sideslip angle and aircraft geometry are input. At

Iterative solution techniques are required because of the complexity of the
rotor analysis needed to compute the rotor forces and moments. The rotor
analysis is a subroutine in itself and uses a numerical approach for solving
the :otor flapping and force equations. Blade stall, reverse flow, and com-
pressibility effects are taken into account by the use of two-dimensional
airfoil section data. However, in order to simplify this analysis, the following
assumptions were made:

1. Induced velocity distribution is assumed to be uniform.

2. Blade lag and all elastic degrees of freedom are neglected.

3. Unsteady aerodynamic and spanwise flow effects are ignored.

4. Three-dimensional compressibility effects at the blade tip are not

considered.

Once the trim has been established, corrections to the powar required for
nonuniform downwash and parasite nowers are added to the basic trim power
required predictions. Figure 7 shows the good correlation between the power
computed by the trim anulysis and CH-47 flight test for various weights and
velocities.

Weights

The parametric relationships from Boeing Vertol's Semi Empiricai Weight Trend
expressions (see Figures 8, 9 and 10) were used to assess the weight effects
of changing rotor speed, blade design and number of blades. Weight changes
due to redesign of other parts of the aircraft were estimated using standard
procedures.

Costs

In the past, civil helicopters were mainly derived from aircraft that already
had accumulated substantial flight experience that typically stemmed from an
extensive military background. In this study these are referred to as
'in-production' aircraft. More recently there has be2n a growing trend for

13
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manufacturers to design helicopters specifically to meet the needs of the
business and commercial market without a military parent. Examples of this
are the Sikorsky S-76, Bell 222, Augusta 109 and smaller single model devel-
opers such as Enstrom and Robinson helicopters. For this study helicopters
in this category are called 'new' aircraft.

In developing the cost impact of noise reduction for 'in-production' helicopters
all development costs nov associated with noise reduction are charged to prior
production. The costs associated with noise reduction, which may include
redesign and retesting of previously qualified components, are written off
against the projected quantity of remaining aircraft to be sold after modifica-
tion.

In the case of 'new' aircraft it is assumed that all low noise design features
are identified during the preliminary design stage of development. The only
effect which noise constraints will have on the cost of a 'new' helicopter is in
the degree to which the aircraft may be more complex to design and test, or
more expensive to manufacture than one which did not consider noise.

Helicopter Pricing

Commercial helicopter prices are established by the manufacturer at a level
which will provide the manufacturer a reasonable rate of return on his invest-
ment commensurate with the risks undertaken. The risks involved are techni-
cal risks, cost risks and market risks. Market risks can be defined as the
ability to predict the market size and the ability to penetrate the market and
achieve the predicated share of the market. Naturally, price has a large
influence on the market's acceptance of the product and at times a manufac-
turer may have to establish a lower price which, in turn, increases his risk
and results in a breakeven point further into the production quantity.

The breakeven point or breakeven quantity is the number of aircraft that
must be sold at a given price tv equal the sum of the non-recurring costs
(development, testing, tooling, etc.) plus the recurring cost to produce the
quantity of aircraft sold. Generaliy, the breakeven point should be reached
within three to five years into the production cycle.

Since this study investigates a wide range of production quantities and vehicle
sizes, it was not feasible to calculate breakeven quantities in the above
described manner for each condition, so & simplified method was needed.

The method or procedure adopted for this study set the breakeven point at a
percentage of the expected production quantity as an inverse function of
helicopter gross weight as shown in Figure 11. Generally, the market for
smaller aircraft is larger than for the heavier helicopters and the expected
market share or production quantities would be greater and at a higher rate,
thus permitting the breakeven point to be a greater percentage of the
expected production quantity. Such relationships are snowa in Figure 71 and
should be representative of pricing practices.

In this study, development costs for noise modifications to an in-production
aircraft or for a new development aircraft were spread over the breakeven
quantity. It was estimated that a new type helicopter could be designed to
meet any of the noise level limits studied herein at the same development cost
because the design differences within each type were small.
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For production pricing, the helicopter was divided into airframe, dynamic
system, avionics and engine. For each baseline configuration, the Unit.#1
and learning curve slope was estimated for each of these subsystems using
industry average rates. Production cost changes for each noise configuration
were also estimated by subsystem based on the detail description of the
change and the associated weight estimate. These costs were then used with
the assumed production quantities to calculate the cumulative average produc-
tion price. To this was added the amortized development cost to give the
flyaway price.

Direct Operating Costs

Direct operating costs (DOC's) include:
o Flying Operations

Flight crew
Fuel oil
Insurance

o Maintenance

Labor
Material
Burden

o Depreciation

A modified AIAA Method (7) was used in this study to calculate DOC's. The
advantages of this method are that the VTOL flight profile is recognized, and
that the effects of inflation are calculated for personnel expenses, aircraft
price and fuel price before entering the formula. Modifications to the formula
adopted for this study were in the areas of flight crew expenses and mainte-
nance burden, where Boeing procedures reflecting mcre recent air carrier
history were applied. In addition, a 0.65 factor on mairitenance costs was
used to reflect current technology.

A significant share of seat-mile operating costs are represented by aircraft
flyaway cost which, in turn, rests in large measure on the actual numbers of
aircraft that will be produced. Since this factor is a variable for each air-
craft program, the subject study evaluated seat-mile costs over the range of
production quantities from 50 to 1000, producing a corresponding range of
operating costs.

The costing methodology is based on an annual utilization rate of 1800 flight
hours per year. Industry averages were used for flight crew and ground
crew salaries and insurance rates. Depreciation was assumed over a 10-year
period to zero residual. Fuel costs used were $1.00 per U.S. gallon. All
costs were in 1980 dollars.

{7) "Revised Standard Method of Estimating Comparitive Direct Operating
Costs of Turbine Powered VTOL Transport Aircraft", Aerospace
Industries Association of America, Washington, D.C., December 1968.
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Final results are presented in terms of flyaway cost and available seat-mile

operating costs. In each case, the cost impact is shown in percent change
from the baseline configuration.

Figure 12 illustrates a sample of the cost program output evaluated for each
helicopter and production quantity in the program. Each output sheet con-
tains the following information as noted: (1) the flyaway cost, (2) the flight
profile, and (3) the operating costs in terms of air-mile, seat-mile, flight
hour and block hour costs.
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IV. NOISE REDUCTION TECHNOLOGY

Achievement of targeted noise levels for minimum penalties of performance,
weight and cost requires a balanced acoustical design in which the noise
source establishing the Perceived Noise Level is reduced initially followed
successively by each next more important source. Identification of each of
the noise sources combined with an assessment of the flyover time history of
the NOY values for each aircraft, described in the previous section, was the
initial task.

It was then necessary to define noise reduction trends for each of these
sources and to quantify the reduction in noise available for each approach.
A discussion of the methods available for reducing helicopter noise is pre-
sented in the following sections.

1. Tip Speed Reduction. The most effective method for reducing rotor noise
for many helicopters is the reduction of rotor tip speed. Rotor tip speed
reduction is effective in controliing rotational noise, broadband noise, thick-
ness noise, and noise due to blade-vortex interaction, on both main and tail
rotors. The sensitivity of each of these noise components to tip speed,
however, is different and therefore the effect of reducing tip speed is very
dependent on the relative levels of the various noise sources for a given
helicopter. These effects were evaluated for each helicopter studied.

In order to preserve the performance of a rotor, it is necessary to maintain
the design lift coefficient:

6T
Cy =
Vi rAp
where
T thrust

Vt Tip Speed

P Air Density

A Total Blade Area

b
Hence any reduction in tip speed will require the blade area to increase as a
second order function. This can be achieved either by increasing the blade
chrd or the number of blades.

2. Rotor Design. A second technology area involves the design of the rotor
blade, including blade thickness and planform, shape, airfoil, twist and
stiffness. Of these, the thickness effect, particularly at high tip speeds, is
most important. The methodoiogy for predicting the effect of both blade
thickness and compressibility nn noise level is presented in the Appendix.
Figure 13 (reproduced from Re erence (8)) illustrates the effect of rotor opera-
tion above drag divergence on PNLT as well as flyover EPNL. When the tip

(6) Sternield, H. and Wiedersum, C. W., "Study of Design Constraints on
Helicopter Noise", NASA CR 159118, July 1979.
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Mach number becomes greater than the drag divergence Mach number for a

given airfoil (M - Mpp s negative), rotor noise levels increase substan-
tially. The trer%) iIIustrlates that an airfoi! with higher drag divergence Mach
numbers delay the onset of drag divergence effects on rotor noise.

Tip shape changes have been shown to demonstrate reductions in sound
pressure levels of 2-3 dB, although these noise reduction are sometimes
accompanied by increases in power required resulting from increased tip
losses. Advanced airfoils have also demonstrated reductions in noise that can
be attributed to their sections and modified chordwise pressure distributions.
Recent tests of an advanced airfoil on a tandem rotor configuration have
demonstrated noise reductions of a least 5 dB when compared with an older
design airfoil.

3. Main/Tail Rotor Separation. A significant source of noise on some helicop-
ters arises from the interaction of the wake shed by the main rotor with the
tail rotor. These interference effects due to inflow turbulence and the trailed
tip vortex of the main rotor result in an impulsive or buzzing acoustic signa-
ture of the tail rotor that is not present when the tail rotor operates in an
isolated environment. Tail rotor noise resulting frem this disturbed inflow
can dominate helicopter flyover noise including Perceived Noise Levels.
Investigations into reducing this component of taii rotor noise have been
reported in References (9) and (10). Levine (9), has shown analytncally that
separation of the main and tail rotors by a distance equivalent to 12% of the
tail rotor diameter rasults in a tail rotor noise signature that is equivalent to
an isolated, free rctor. It was shown in the same study that main and tail
rotor separation by lateral offset of the tail rctor produced minimum interfer-
ence effects for all flight conditions. Vertical and longitudinal separation
were less effective approaches in terms of the number of flight conditions for
which noise was reduced. Balcerak (10) reporting the results of a model test
program, showed a reduction in tail rotor noise of up to 10 dB when the tail
rotor was moved one-tenth of the tail rotor diameter to the left of the fin.

4. Tandem Helicopter Rotor-to-Rotor Separation. Rotor-to-rctor wake inter-
ference on an overlapped tandem rotor helicopter can be reduced by separa-
tion of the rotor disc planes in two ways. The first approach involves selec-
tion of longitudinal cyclic pitch on each rotor such that the tip path planes in
the overlapped region are separated by at least two feet. The major disad-
vantage to this approach is that increased rotor flapping generally increases
rot~~ shaft bending moments and thus reduces component life. In additicn,
fuseizge trim attitude changes and may result in increased drag forces.

(9) Levine, L. S., "Analytic Investigation of Techniques to Reduce Tail
Rotor Noise", NASA CR-145014, 1 July 1976.

«10) Balcerak, J. C., "Parametric Study of the Noise Produced by the Inter-
action of the Main Rotor Wake with the Tail Rotor", kASA Division,
Systems kKesearch Laboratories, Inc. RASA Report No. 76-14-01.
NASA Contract NAS1-13690.
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A second approach involves both a reduction in rotor overlap as well as disc
plane separation by extending the length of the fuselage and increasing the
height of the aft rotor pylon. This method of rotor disc separation requires
an airframe modification which results in increased vehicle weight and drag.

5. Drive System Component Noise Reduction. For some low noise configura-
tions defined in this study, noise levels of main and tail rotors have been
reduced to a level where normally inaudible noise so.rces contribute to a
portion of the flyover noise spectra and thus the EPNL for that aircraft.
This is frequently found to be noise radiated from drive system components.
Such a case involved a main rotor transmission on the BO-105.

6. Engine Noise Reduction. Review of data from the aircraft under study
indicates that at the present time the only component of engine noise which
occasionally causes problems is compressor inlet noise. This is particularly
important if the pure tone level is sufficient to generate a correction term in
the PNLT calculation. Combustion and core noise, for the aircraft studies,
did not appear to be an important factor, but could become so if further
reductions in rotor noise had been achieved. Noise due to the jet is of little
concern due to the very low exit velocities encountered with turbo-shait
engines.

The engine noise reduction treatments used for helicopters are similar to
those employed on subsonic jet airplanes. Tuned honeycomb absorbative
inlets may increase the complexity of anti-icing provisions, however.

Limits of Applicability of Noise Reducton

In many cases, the chariges to ar 'in-production' aircraft may be more exten-
sive than only the modifications to noise generating components. Any modifi-
cation tc an aircraft component or system increases the risk to the operation
of that system and represents a potential iimitation to the operation of the
helicopter. For example, a reduction in rotor speed reduces the frequency of
the rotor forces transmitted to the airframe and this may require retuning of
vibration reduction systems and requalification of mechanical instability tests.
Reduction of rotor speed will cause the transmission speeds to decrease and
may then require modifications of gear driven electrical generators, pumps
and other accessories.

During an autorotative maneuver the kinetic energy of the rotor is expended
during the flare just prior to touchdown by increasing coilective pitch, thus
reducing rotor speed by generating thrust to slow the descent rate. Any
modification to the helicopter which reduces rotor kinetic energy will result in
increased rate of descent. As a result, the strength and dynamic characteris-
tics of many parts, as well as the flying qualities of the total aircraft, would
have to be checked, and possibly modified due to a change of an ‘in-produc-
tion' helicopter.
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V. HELICOPTER COST/BENEFIT TRADE INVESTIGATIONS

In order to present the cost/benefit trade investigation in a concise manner,
each aircraft is described in separate subsections of the report in terms of its
noise sources, configuration chianges, the impact which these configuration
changes have on performance, weight and cost, as well as a discussion of any
other factors which could limit normal operation of the helicopter.

BO-105

Vehicle Description

The BO-105 is a five-place, twin turbine, single rotor helicopter with a maxi-
mum gross weight of 5070 pounds. A three-view is shown in Figure 14. The
BO-105 has a four-bladed rigid rotor with glass fiber reinforced plastic blades
and has been flying since 1967. A description of the configuration is pre-
sented in Table 1.

Noise Sour~ces

Identification o’ noise sources of the BO-105 was determined from measured
flyover inoise data for a centerline microphone with the aircraft at an altitude
of 500 feet and an airspeed of 108 knots (0.9V,,). The initial analysis was a
determination of the PNL time history from tontycorrected spectra. The nar-
rowband spectra and 1/3 octave spectra also were produced at two-second
intervals for the flyover and main rotor, tail rotor, turbine and other sources
identified as shown in Figures 15 and 16.

As shown in Figure 15, the dominant noise source on the BO-105 is the tail
rotor which also determines PNL for flyover noise. For a perind of ap-
proximately four seconds prior to"the overhead position, the Noy-max value is
set by tail rotor noise on each of the 1/3 octave band spectra. Also identifi-
able are main rotor harmonics of blade passage although the Noy value for
these frequencies are not main contributors to the PNL. The input pinion
bevel gear mesh frequency can be identified in Figure 15, varying from ap-
proximately 1900 Hz on approach to just over 1400 Hz for the departing heli-
copter.

Configuration Changes - Tradeoff Variables

Two confia''ration changes have been defined for the B0O-105 with respect to
the baselii,. aircraft which displays a flyover noise level of 89.5 EPNdB as
measured by I|CAO procedures. These charges are identified in Table 2.

The configuration changes to the BO-105 to achieve noise reductions are illus-
trated in Figure 17. Modification (Mod) 1 reduces tail rotor tip speed from
722 ft/sec. to 702 ft/sec. by the use of an advanced airfoil and by increasing
tail rotor blade twist. The advanced airfoil also allows the reduction in tip
speed without loss in performance of this rotor. The existing airfoil is a
NACA 0012, and this was changed to an airfoil producing a higher rotor i/D
w.th 2 revised twist schedule. The reduction in tip speed would be obtained
with a modified pinion gear in the tail rotor transmissicn located at the rotor
hub. Thke hub itself would require strengthening due to the lower rotational
speed. Data obtained by Messerschmitt Boelkow Blohm, on a tail rotor test
stand indicates a noise reduction of the order of 3 EPNdB is achievable.
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Tabie 1. BO-105 Characteristics

Maximum Takeoff Gross Weight 5070 Pounds
Operating Weight Empty 2949 Pounds
Engines Allison 250-C20
Main Rotor
Type Hingeless
Number of Blades 4
Radius 16.09 Feet
Chord 10.6 Inches
Tail Rotor
Type Teetering
Number of Blades 2
Radius 3.1 Feet
Chord 6.8 Inches
i Normal Cruise Speed 125 Knots
l Main Rotor RPM (100%) 425
Tail Rotor RPM 2224
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MAIN ROTOR

vV, (ft/sec)
RPM

No. of Blades
Airfoil

Chord (ft)

TAIL ROTOR

V, (ft/sec)
RPM

No. of Blades
Airfoil

Chord (ft)
Flyover EPNL
Dynamic System

Airframe

Powerplant
Weight Change (Ib)

Table 2.

Baseline

716
425

23012
0.883

122
2224

0012

0.58
89.5
Basic

Basic

Allison 250-C20

BO-105 Configuration Changes

Modification 1

716
425

23012
0.883

702

2162

2

Advanced airfoil,
higher L/D,
increased twist.

0.58

86.5

New T/R speed,
T/R gearbox.

Basic

Allison 250-C20
1.5

Y O SIS AP TS T 3

Modification 2

700
415

23012
0.97

702

2162

2

Same as Mod. 1
plus 10% increase
in solidity.

0.61

83.5

M/R transmission
acoustical treat-
ment.

Tail Rotor offset
laterally by
1.77 ft.

Allison 250-C20
56.5




Mod 2 has been altered more substantially in order to achieve flyover noise
levels 6 EPNAB below the baseline helicopter. In addition to the changes of
Mod 1, main rotor tip speed has been reduced from 716 ft/sec. to 700 ft/sec.
to obtain a required reduction in broadband noise. Also, the tail rotor as
defined for Mod 1 has been modified further by laterally offsetting the tail
rotor disc an additional 1.77 feet to the left. This offset provides additional
clearance between main and tail rotors and has been incorporated into the
design to reduce both the amplitude and impulsive characteristic of tail rotor
noise. The criteria for this offset was developed in References 9 and 10.
The impact of this design change on aircraft flying qualities and handling is
discussed in the following section. The final change required directly for
aircraft noise reduction is an acoustical treatment of the main rotor transmis-
sion to reduce the noise of this component in the direction of forward flight.
This would require an enclosure of the transmission case and would be fabré-
cated as a molded elastomeric product with a surface density of 1-2 Ib/ft™.
Several manufacturers of acoustical products currently market such a material
and since the input pinion gear tooth mesh is in the higher frequency range,
reduction of levels by 5-7 dB is well within design limits.

Impact of Design Changes on Performance, Weight and Cost

Performance

A sensitivity study was performed to examine the effect which the reduction in
main rotor tip speed has on the aerodynamic performance of the BO-105. The
impact of main rotor tip speed reduction on aircraft gross weight is shown in
Figure 18, along with related FAR Part 27 requirements and flying quality
standards. Although not a requiremant of FAR Part 27, the existing maneu-
verability capability of the BO-105 was maintained as a criterion for this study.

As shown in Figure 18, any reduction in tip speed with the existing rotor
would result in a decrease in maximum gross weight, which would come direct-
ly out of payload or range (fuel). In order to maintain the basic mission
profile, therefore, an increase in rotor solidity was raquired. In reality, a
modification to the rotor system would not likely be made for less than a
20-25 percent increase. A 25 percent solidity increase could be accomplished
through either addition of a fifth blade to the rotor or by a 25 percent
increase in chord of each of the four existing blades. The second approach
was adopted to maintain dynamic system frequencies for which the airframe
had been proven. This dictated development of a new blade, but this was
estimated to be less costly and contain less risk than the addition of a fifth
blade. A fifth blade would require a redesign of the upper contrcl system, a
new rotor hub and an extension of the tail boom to provide for an increase in
rotor radius resulting from a requirement to spread the root end fittings.
Blade redesign utilizing the existing four-bladed rotor would be preferable
from the design standpoint as well, since it also would allow the most recent
airfoil technology to be incorporated into a new blade, with its associated
performance improvements. The 25 percent increase in solidity by way of a
fifth blade with the unimproved airfoil would not be as efficient an approach.

An increase in rotor solidity by 25 percent also introduces sufficient growth
into the rotor such that future reductions in flyover noise of derivative
aircraft required by certification would be achievable without unreasonable
increases to the rotor system costs.
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FIGURE 17. CONFIGURATION CHANGES TO BO-105
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The additional chord added to the main rotor blade would increase aircraft
weight empty from approximately 3130 pounds to 3240 pounds, in increase of
3.5 percent.

The effect of tip speed reduction and increase in rotor solidity on aircraft
speed and range are shown in Figure 19. Below V., = 707 ft/sec, there is a
discontinuity in the trend due to the increased rotor solidity. Best range
speed improved slightly due to increased rotor thrust below 707 ft/sec, and
range decreases from 232 miles to 217 miles (6.5%) as a result of an increase
in rotor power required.

Weight

The effect of design changes on BO-105 weight is presented in Table 3. The
changes defined by Modification 1 result in a minimal increase in weight
(1.5 pounds) since the advanced airfoil tail rotor blades are designed to the
same criteria as the existing 0012 section blades. The increase in drive
system torque is accommodated by the existing dynamic system, although a
new gear set has been installed in the tail rotor transmission resulting in a
weight increase of 0.5 pound.

Costs

The BO-105 has been treated as an 'in-production' helicopter for the purpose
of determining the cost impact of noise reduction changes. As such all origi-
nal development costs were assumed to have been charged to prior produc-
tion, and additional nonrecurring costs for noise reduction were spread over
the remaining production quantities. Figures 20 and 21 show the effect of
noise reduction on the factory flyaway cost and direct operating cost, respec-
tively, for a wide range of production quantities.

Model 179

Vehicle Descripticn

The Boeing Vertol Model 179, as used for the present study, is the 19 pas-
senger twin turbine helicopter shown in Figure 22. The aircraft has a four-
hladed rigid main rotor with glass fiber reinforced plastic blades. Maximum
takeoff gross weight is 17,400 pounds and cruise speed is 137 knots (99% best
range). Table 4 presents some pertinent characteristics cf the Model 179.

Noise Sources

Noise source identification for the Model 179 was determined from flybys of
the parent aircraft, the YUH-61A. Data were available from a flyby at an
altitude of 137m above the microphone and a 61m sideline distance at 140
knots (0.9V These levels were adjusted to estimate average flyover levels
based on ce Hterllne and 150m sideline microphones for a 150m altitude flyby.
A Perceived Noise Level time history was determined from tone-corrected
spectra and the Effective Perceived Noise Level calculated. The narrowband
spectra and 1/3 octave band spectra were produced at two-second intervals
for the flyover and sources identified as shown in Figures 23 ana 24. On
approach, the main rotor dominates in the spectra while the tail rotor domi-
nates for approximately four seconds prior to PNL . These sources are
identified on the illustrations. X
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Table 3. Impact of Design Changes On BO-105 Weight

Baseline Additional
Weight Weight
Component (Lb) (Lb) Description of Change
Tail Rotor 15 0.5 Change Gear Kkatio in
Transmission Tail Rotor Transmission
Tail Rotor 22 1.0 New Tail Rotor Blades
Blade with Advanced Airfoil
and Stronger Hub
Total Weight 1.5
3 Body 521 6.0 Add Strut to Tail Rotor
Fin.  New Horizontal
otabilizer (Shaft Pairing)
Main Rotor 307 4.0 Change Gear Ratio in
1 Transmission Main Rotor Transmission
Tail Rotor 15 0.5 Change Gear Ratio in
Transmissicn Tail Rotor Transmission
Tail Rotor 23 2.0 Increase Strength of
Drive Shaft Shaft End Fittings
Tail Rotor 0 5.0 Add Shaft frem Tail
Rotor Transmission to
Tail Rotor Blades
; Main Rotor Blade 264 11.0 Increase Chord of Main
: Rotor Biade
1
E Tai! Rotor Blade 22 1.0 New Tail Rotor Blades
with Advanced Airfoi
: and Stronger Hub
- Main Rotor Hub 198 12.0 Increase Strength of
] Main Rotor Hub
i Rotor Transmission 157 15.0 Add Acoustical Treat- i
ment to Main Rotor
} ( Transmission :
Total Weight 56.5
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Table 4. Model 179 Characteristics

Maximum Takeoff Gross Weight
(Normal Payload)

Operating Weight Empty
Engines
Main Rotor
Type
Number of Blades
Radius
Chord
Tail Rotor
Type
Number of Blades
Radius
Chord
Normal Cruise Speed
Main Rotor RPM
Tail Rotor RPM

Accommodations

17,400 Pounds

9,574 Pounds
(2) GE CT 71

Hingeless

4

24.5 Feet
23.0 Inches

Flex Strap
4

5.08 Feet
V.73 Inches
137 Knots
286 (97%)
1296

19 Passengers
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Frequencies which displayed a major contribution to the Perceived Noise Level
were noted and the amplitudes converted to 1/3 octave Noy weightings.
Levels of PNL and EPNL were then reduced in increments by an iterative
process whereby the sound pressure in the appropriate frequency band was
reduced as required, based on estimates determined by the analytical proce-
dures of References 3-6, in a process similar to that described for the BO-105.

Configuration Changes - Tradeoff Variables

The cost/benefit study was conducted for the baseline Model 179 and three
modifications to the baseline helicopter. Changes to the helicopter from the
baseline are identified in Table 5 and illustrated in Figure 25.

Modification 1 to the baseline configuration of the Model 179 achieves a 3
EPNdB reduction in flyover noise by reducing main rotor tip speed from 734
to 713 ft/sec and tail rotor tip speed from 69C to 668 ft/sec. in addition, the
tail rotor blade has been modified by increasing the twist. Increasing twist
nas been reported in Reference 9 as an effective method for reducing tail
rotor noise by moving the position of spanwise lift to a more inboard location,
thus reducing velocity at the station of maximum thrust. The redesigned tail
rotor blade also includes a revised tip shape, such as an elliptical or swept
configuration that would be incorporated into the design along with the other
blade modifications. The lower tip speed of the tail rotor requires a new
gear ratio in the tail rotor gearbox and a strengthened hub.

The reduction in main rotor RPM requires a review of all drive train compo-
nents with regard to accommodating higher torque levels in the drive system.
While not all components require strengthening, some modification to the
dynamic system, such as strengthened main rotor hub, would be likely.

Reductions in tip speed of the main rotor below that defined for Modification 1
require an increase in rotor solidity in order to maintain baseline helicopter
mission profile and performance. In addition to the changes noted above for
Modification 1, a wider chord blade is added to the main rotor. Modification 2
illustrates the 'step' changes to the rotor which are required as rotor speed
is reduced. Figure 26 shows that below a tip speed of 718 ft/sec, maneuver-
ability criteria require that additional rotor area be provided. For purposes
of the study, a 25 percent increase in rotor solidity was incorporated into the
Modification 2 change. This could take the form of either a fifth blade on the
rotor or a 25 percent increase in blade area of the existing blades. An
additional blade on the main rotor hub would require a small fuselage exten-
sion. This arises due to a rearrangement of the hub and fittings resulting
from insufficient area in which to lay out a fifth blade on the existing hub.
Thus, the addition of a fifth blade also results in an increase in rotor radius
and an extension to the Model 179 fuszlage. For this reason, primarily, the
approach with the least impact on the aircraft was a wider chord blade. The
amount of increase in rotor solidity acutally selected for a particular design
would be determined by the desired noise level. Redesign costs would be
similar regardless of the specific increase in chord. Material and recurring
costs vary somewhat with blade weight, but these costs are not considered
significarnt in comparison with the complexity of extending the fuselage length.
A design modification which incorporates a 25 percent increase in rotor solidity
allows some growth to the rotor and is a realistic increase from a manufac-
turer's viewpoint. A revised tip shape would also be included in the new
blade design to reduce tip generated noise. An elliptical shape tip has
demonstrated a reduction of 2 dB on the Model 179 rotor.
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MODS 2, 3| \ / MODS 1,2,3
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Figure 25, configuration Changes to Model 179 1
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The rotor isolation system was reworked for Modification 2 in order to tune
the isolator to the new rotor frequency. This involves a small increase in
weight in that the rotor frequency was reduced from 286 to 278 RPM and
trend curves indicate higher isolator weights at lower frequencies.

The tail rotor blade was redesigned for Modification 2 to increase solidity and
provide sufficient thrust for control response at the lower tail rotor speeds.
The twist schedule is similar to that described for Mcdification 1. Tip speed
has been reduced to 665 ft/sec for the tail rotor.

Modification 3 of the Model 179 reduces flyover noise to 91.5 EPNdB by further
reductions in main and tail rotor tip speeds and a lateral offset of the tail
rotor to substantially reduce interference between the wake of the main rotor
and the blades of the tail rotor. Main rotor tip speed is reduced to 694 ft/sec
and tail rotor tip speed to 654 ft/sec. The tail rotor offset of 3.77 feet
represents a clearance between main and tail rotor tip path planes of § = 0.12
as described in Section IV-3. The modification to the tail rotor includes an
extension of the shaft between the tail rotor gear box and hub, a tubular
enclosure for this shaft, a bearing at the hub and a strut between the tail
boom and the outboard section of the extended hub. The effect of this
design change on other aircraft systems and flying qualities is discussed in
the following section. In order to maintain performance and flying qualities,
the solidity of both the main and tail rotors has been increased as discussed
for the Modification 2 configuration.

Other modifications to the helicopter required as a result of the lower tip
speeds include strengthening of certain drive train components such as rotor
transmission gears, rotor shaft, tail rotor deive shaft and main and tail rotor
hubs. In addition, the Rotor Vibration Isolation System is retuned to a lower
rotor frequency.

Impact of Design Changes to Performance, Weight and Cost

Performance

The effect of tip speed reduction on cruise speed and range is shown in Fig-
ure 27. The percent reduction in cruise speed relative to the baseline aircraft
ranges from -0.9 percent for Modification 1 to -1.6 percent for Modification 3.

Weight

The baseline weight empty for the Model 179 is 9754 pounds. This increases
by 52 pounds for Modification 1, 111 pounds for Modification 2 and 191 pounds
for Modification 3. The effect of helicopter modification on system weights is
presented in Table 6.

The increase in weight empty for each configuration is 0.5 percent for Modifi-
cation 1, 1.1 percent for Modification 2 and 2.0 percent for Modification 3.

Costs

For the cost study, the Model 179 was considered both as a derivative aircraft
which was several years into the production cycle, and a 'new' aircraft that
was early in the design stage without benefit of a current production base.
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Table 6. Impact of Design Changes on Model 179 Weights

Baseline Additional
A/C Weight Weight
Mod Component (Lb) (Lb) Description of Change
1 Main Rotor 1300 19 Strengthen Drive Train
Transmission Components
Tail Rotor 67 3 Change Gear Ratio-
Transmission Strengthen Hub
Tail Rotor Blade 38 0 New Twist Schedule
Main Rotor Hub 590 30 Strengthen Hub
- Total Weight 52
E 1
| | 2 Main Rotor 1300 24 Strengthen Drive
i Transmission Train Components
i Tail Rotor 67 3 Change Gear Ratio-
; Transmission Strengthen Hub
|
! Rotor Isolation 228 4 Retune Isolation
System System
Tail Rotor Blade 33 2 New Twist Schedule
Main Rotor Blade 1256 45 Wider Chord Blade
Main Rotor Hub 590 33 Strengthen Hub
Total Weight m
3 Tail Rotor 1546 15 Lateral Offset of Tail
Rotor
Main Rotor 1300 51 Strengthen Drive
] Transmission Train Components
t ¢ Tail Rotor 67 28 Change Gear Ratio-
: : Transmission Strengthen Hub
“ E Rotor isolation 228 4 Retune !solation System
i ; Tail Rotor Blade 38 2 New Twist Schedule
? Main Rotor Blade 1256 45 Wider Chord Blade
| Main Rotor Hub 590 4 Strengthen Hub
Total Weight 191




As an 'in-production' helicopter, initial development costs would be spread
over a large production base which might be 1000 or more units, and only the
costs resulting from the noise reduction modifications would be absorbed into
the price of the aircraft. Thus Model 179 total nonrecurring costs for an
'in-production' helicopter were spread over a quantity in excess of 1100
units. This number arises from estimated production quantities of UTTAS
and LAMPS military helicopters and represents the largest reasonable produc-
tion base that might be assumed for a large military contract.

Considered as a 'new' helicopter, all nonrecurring costs were spread over a
fixed percentage of the expected production quantities. Production quantities
would be expected to be in the vicinity of 100-500 units, although a range
extending from 50-1000 aircraft was evaluated. Figures 28 and 29 present the
factory flyaway and seat mile costs (DOC) for the Model 179 ‘new' model
baseline helicopter and three modified configurations. The apparent discontin-
uity in costs at about 3 dB noise reduction is due to the introduction of a
new rotor blade.

Although the absolute flyaway and operating costs are largely a function of
production quantity, it is of interest to note the relatively small change in
cost with each modification compared with the 'in-production' version. This is
because the design had been frozen prior to the test and development cycle
regardless of the modification, and tooling was configured to that design.
The direct operating costs for a 100 unit production quantity, for example,
varied only two cents from the baseline aircraft displaying a 98.5 EPNdB
flyover signature, to the modification which results in a 91.5 EPNdB level (38
cents/mile to 40 cents/mile).

This represents an increase of 5 percent for a 7 EPNdB flyover noise reduc-
tion compared with a range of 8 percent to 40 percent for an 'in-production'
model .
CH-47C

Vehicle Description

The baseline CH-47 helicopter for this study is the CH-47C 'Chinook' (Figure
30), a tandem rotor medium-lift helicopter powered by twin Lycoming T55-L-11
gas turbine engines rated at 3759 horsepower each. It has a cruising speed
of 130 knots and a maximum gross weight of 50,000 pounds. It was introduced
into service with the U.S. Army in 1968. Further development to the rotor
blades, transmissions and equipment are being incorporated into the CH-47D
which is currently undergoing flight testing. A summary of CH-47C configu-
ration characteristics is presented in Table 7.

The baseline study aircraft has been configured as a 44 passenger civil heli-
copter with commercial engines (Lycoming AL 5512's). It has a takeoff gross
weight of 40,654 puunds and an average cruise speed of 139 knots at 243
rotor RPM. This baseline vehicle maintains the flyover noise signature of the
CH-47C, but is typical of a 'derivative' commercial helicopter that stems from
a military history. The interior arrangement is identical with the Boeing
Model 234 Commercial Chinook, currently under development, and the weight
of this installation was available from that program. However, it is unlike the
Model 234 in several ways, primarily in that the Model 234 includes advanced
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Maximum Takeoff Gross
Weight (Pound)

Operating Weight Empty
(Pound)

Normal Payload (Ib)
Range (Km)
Engines

Maximum Continuous
Power Rating (HP)

Main Rotor
Type
Number of Blades
Radius
Chord

Normal Cruise Speed
(Knots)

Main Rotor Speed

Accommodations

Table 7. CH=-47 Characteristics

Military CH-47C

50,000

22,320

12,000
200

(2) Lycoming T-55-11C
3,000

Articulated
3
30 Feet
25.25 Inches
130

245 RPM

33 Troops

64

Commercial
CH-47, Study
Baseline

40,654

24,862

8,800
229

(2) AL 5512
2,975

Articulated
3
30 Feet
25.25 Inches
139

245 RPM

44 Passengers

i
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airfoil fiberglass blades and long range fuel tanks. However, the advanced
airfoil rotor blades are included in the study as a configuration change to the
baseline helicopter.

Noise Sources

Measured flyover noise data were used to idertify noise sources of the base-
line CH-47. The microphone was located directly under the flight path of the
helicopter which was at an altitude of 500 feet and an airspeed of 141 knots
(0.9 V,,). Tone corrected Perceived Noise Levels were used to determine
EPNL's. Sideline microphone data were used to obtain an average flyover
EPNL. The time history of the flyover at the centerline microphone is shown
in Figure 31. Narrowband spectra (Figure 32) and one-third octave spectra
(Figure 33) were produced to identify noise sources at selecied intervals
during the flyover. Source frequencies were verified from calculations of
each component by the methods of Reference 3-6. Levels of PNL and EPNL
were then reduced in increments by an iterative process.

The narrowband spectra of Figure 32 illustrates the dominance of the rotor as
a noise source on the CH-47 during flyover. Main rotor frequency is identif-
iable for at least 60 harmonics of blade passage. Thickness noise on the
23010 airfoil of the CH-47C blade appears to be the major component of this
source of rotor noise at 141 knots, although blade/vortex interaction also has
been shown to be a contributor to flyover noise levels by earlier studies.
Initial configuration changes treat only thickness noise, while major reductions

in flyover noise are obtained from configurations which also affect blade/
vortex interactions.

Configuration Changes - Tradeoff Variables

Four configuration changes were identified for the CH-47 with respect to the
baseline aircraft, which displays an average flyover noise level of 106 EPNdB
as measured by ICAO Procedures. The configuration change with the greatest
impact on the exterior acoustical signature is a stretched fuselage aircraft
which reduces average flyover levels to 90 EPNdB. This 16 EPNdB reduction
has been documented by measurements on a modified CH-47 helicopter.

Specific configuration changes to the Chinook to achieve the incremental
reduction in noise are presented in Table 8 and Figure 34. Modification 1
achieves a 7 EPNdB noise reduction by reducing rotor speed from 245 to 225
rpm. (This corresponds to a reduction in tip speed from 770 ft/sec to 707
ft/sec.) No other primary changes to the configuration were required to
achieve this level. In order to maintain generator output forkthe electrical
system, however, a gear :tet in the accessory drive of the aft fotor transmis-
sion is replaced to maintain generator speeds to the design range. In addi-
tion, the self-tuning cockpit absorbers were modified to bring them into the
new operating range of rotor speeds. This reduced rotor speed ic in a
regime in which earlier models of the CH-47 have had operational experience.

A further reduction of 3 EPNdB in flyover noise (Modification 2) required a
major modification to the rotor system. The basic 23010 airfoil of the baseline
rotor blade was replaced with an advanced aerodynamic performance airfoil
(Boeing Vertol VR-7, VR-8). Rotor solidity increases from 0.0670 to 0.0850.
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The use of this airfoil was made possible by the introduction of glass fiber
reinforced plastic blade technology which permits airfoil contours that are not
feasible with rolled steel 'D' spars and bonded blade box techniques. Noise
levels of the Chinook in this configuration have been recorded during flyovers
of a CH-47D demonstrator aircraft operating at 225 rotor RPM and with the
noted VR-7, VR-8 airfoil glass blades. As required for the initial configura-
tion change, both the accessory drive for the electrical system generator and
the cockpit vibration absorbers required modification. !n addition, there are
some minor changes on the forward swiveling actuator lugs (new bearings),
forward transmission swiveling actuator lugs (new bushings) and new forward
pitch links. Modificrtion 2 results in a 10 dB reduction in flyover EPNL for a
3 microphone average of 96 EPNdB.

Modification 3 to the CH-47 is similar to Modification 2, but has a rotor speed
of 215 RPM rather than 225 RPM. This represents a tip speed of 675 ft/sec
and is near the lowest rotor speed for which the CH-47 dynamlc system has
been qualified. Below this speed, dynamic system torques increase above
design conditions and redesign of the drive train would be required. Modifi-
cation 3 results in.'an estimated 93 EPNdB for a 3 microphone average of
flyover noise. This level has been estimated from trends of flyover noise and
advancing tip Mach Number developed from measured flyover time histeries.
Secondary configuration changes are similar to those identified for Modification
2 and also are presented in Figure 34 and Table 8.

Further reduction in flyover noise from the Modification 2 cenfiguration must
be achieved through a reduction in blade/vortex interaction noise. The
primary source of biade/vortex interaction on a tandem rotor in forward flight
arises from the trailed wake of the forward rotor passing through the aft
rotor. Not only are the rolled-up tip vortex filaments of the forward rotor
intersected by blades on the aft rotor, but rotor inflow is significantly more
turbulent. Avoidance of intersecticns can be obtained by differential cyclic
pitch on forward and aft rotors to achieve the desired separation distances.
However, at high forward speeds this introduces undesirable rotor shaft
bending stresses, reducing component lives and creates undesirable fuselage
attitudes with high drag.

A more direct approach is to reduce overlap of the rotors and increase sepa-
rations by changes to the layout of the airframe. This was the approach
taken for Modification 4 to the CH-47 in which the rotor overlap was reduced
from 34 percent to 22.5 percent by stretching the fuselage an additional 120
inches and increasing the vertical separation of the rotors by adding a 30
inch plug in the aft pylon (see Figure 35). Concurrently, a fourth blade was
added to each rotor. This configuration change was incorporated into a
CH-47 in the early 1970's and was identified as the Boeing Vertol Model 347.
Flight testing of this aircraft demonstrated average flyover noise levels of 92
EPNdB at an altitude of 61m (200 feet). The Modification 4 configuration is
shown with glass fiber reinforced plastic blades with the VR-7, VR-8 airfoil,
although the Model 347 flew with blades having a NASA 23010 section.
Estimates of noise levels for 150m (492 feet) flyovers when corrected for
distance, directivity and duration are 2 EPNdB lower, or 90 EPN4B.

The increased fuselage length and four-bladed rotor system of Modification 4
permits the payload to be increased from 8,800 pounds (44 passengers)
to 12,000 pounds (B0 passengers) and remain within the capabiiities of the
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AL 5512 engines and existing drive train. Therefore, for this study, Modifica-
tion 4 was considered both as a 44 passenger and a 60 passenger helicopter.

The weight increase for Modification 4 includes the additiona! airframe and
pylon plug. Secondary changes also include an extended aft rotor shaft,
additional synchronizing shafts between forward and aft rotor transmissions,
new swashplates and flight controls for the four-bladed rotors, additional
hydraulic lines, and air comfort system ducting for the fuselage extensions.
As noted for previous modifications, the generator drive gear set is replaced
with a lower ratio unit and cockpit absorbers are retuned to the lower rotor
speed. These changes have been identified as shown in Figure 35 and Tatle
8. For the 60 seat configuration, additional passenger seats, interior traim,
a galley and lavatory are included.

Noise sources on the CH-47, other than the rotors, are sufficiently below the
rotor that they do not contribute to the flyover signawure. Reductions in
EPNL below those identified in Modifications 1-4 would require carefui review
to insure that engines and the dynamic system do not contribute to flyover
noise. It is probable that engine inlet sources and rotor transmissions would
require acoustical treatment for further noise reduction. It should be noted
that documentatiori of flyover noise has been made for each of the noted
CH-47 modifications except for Mod 3 and that reported levels have been
verified in flight test.

Impact of Design Changes to Performance, Weight and Cost

Performance

The sensitivity of rotor speed reduction on aerodynamic peiformance of the
CH-47 is shown in Figure 36. As a derivative of a military helicopter whose
performance has been established from hover at 2000 feet altitude at 90°F
conditions, and payloads in excess of those required for the civil transport
configuration, reductions in rotor speed to 215 RPM are within the capability
of the existing airframe and dynamic system.

For the civil transport role, the takeoff gross weight permitted under Category
'A' rules was based on 150 FPM climb with one engine inoperative at 1000 feet
above the sea level takeoff site. Aircraft gross weight was ccmposed of
maximum passenger capacity and full fuel load.

Reduction in tip speed has a slight impact on cruise speed of the CH-47.
Figure 37 shows a r:duction of 3 knots for Modification 1 compared with the
baseline. Modification 2 average cruise speed is 4 knots higher than the
baseline due to installation of the advanced airfoil rotor blades even though
tip speed was reduced from 770 ft/sec to 707 ft/sec. The tip speed of Modi-
fication 3 (675 ft/sec) reduces average cruise speeds to 136 knots. This
drops to 135 knots for the stretched version as a result of higher rotor and
fuselage (aft pylon) drag.

The effect of modifying the CH-47 for reduced noise level generally improves
the range of the aircraft. Reduced rotor speeds result in lower rotor power
requirements and thus lower specific fuel consumption. Comparad with the
baseline aircraft range of 229 miles, Modification 1 range increased 16 percent,
Modification 2 increased 11 percent, Modification 3 increased 13 percent and
Modification 4 increased 5 percent.
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Weignt

The weight empty for the baseline CH-47 is 23,725 pounds, with no change
for Modification 1. There is an increase of 251 pounds for Modification 2 as
noted in Table 9 which presents the increase in weight for each system modi-
fied. An increase of 3490 pounds accompanies the changes of Modification 4.

Cost

For the cost study, the CH-47 was considered to be a 'current production'
helicopter. Costs associated with the design and development of the noted
modifications were spread over the remaining production quantities which were
assessed over a range of units from 50-1000 as shown in Figures 38 and 39.

Modification 1 consisted of only a reduction in rotor tip speed from 770 to
707 ft/sec resulting in a reduction of flyover noise at 7 EPNdB. Although
the higher rotor speed was required to meet military demands, a reduction in
rotor RPM from 245 to 225 is within civil gross weight operating limits and the
only modifications required were a retuned vibration absorber and a new gear
set in the accessory drive for the generator. Figure 39 illustrates that for
production quantities of 50 units and greater, a small decrease in operating
costs for the Modification 7 configuration occurs relative to the baseline
configuration. This results from a reduction in block fuel required from 1862

pounds to 1698 pounds, since specific fuel consumption is reduced at the
lower rotor speed.

Modification 2 retains the same rotor speed as Modification 1 but replaces the
metal rotor blades with fiberglass units having an advanced airfoil and
increased solidity. For the larger quantities, operating costs show a slight
improvement even with regard to Modifications 1 and 3. This arises from a
small reduction in cruise time resulting from a higher cruise speed (165 mph)
for Modification 2 than for Modification 1 (152 mph) or Modification 3
(156.6 mph).

Modification 3 is a similar configuration to Modification 2, but rotor tip speed
has been reduced to 675 ft/sec. Operational costs increase due to an increase
in block time for the mission, with a production quantity of 50 aircraft result-
ing in a 5.5 percent increase in seat mile cost relative to the baseline config-
uration. Modification 3 has a flyover noise signature 13 EPNAB below the
baseline CH-47C helicopter.

Modification 4 achieves a 16 EPNdB reduction in flyover noise with a consider-
able change to the basic airframe is noted in the previous section and illus-
trated in Figure 35. The configuration change results in a substantial
increase in cabin size and paylcad capability. Figure 39 illustrates the
diverse effect on operating cost depending on whether the number of seats
are held constant or advantage is taken of the increased size cabin by increas-
ing capacity to 60 seats. This latter configuration is similar to the Model 347
as previously described.

The inclusion of the additional 16 seats for the Modification 4 configuration is
an infringement of study guidelines which prescribed that helicopter pay.oad
and performance by maintained essentially constant for each configuration
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Table 9. Impact of Design Changes on CH-47 Weight (Sheet 1)

Baseline Additional
A/C Weight Weight Description of
Mod System (Lb) (Lb) Change
1 Aft Rotor 0 Change Gear on Gener-
Transmission ator Accessory Drive
Vibration 0 Retune Cockpit
Absorbers Absorbers
Total Weight 0
2,3 Flight 0 New Bushings on
Controls Swiveling Actuator
Aft Rotor 0 Change Gear on Gen-
Transmission eral Accessory Drive
Vibration 0 Retune Cockpit
Absorbers Absorbers
Rotor Blades 251 New Rotor Blades with
Advanced Airfoil
Fiight 0 New Forward Pitch
Controis Links
New Bearings in For-
0 ward Swiveling Actua-
. tor
Total Weight 251
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.




Table 9. Impact of Design Changes on CH-47 Weight (Sheet 2)

A/C
Mod System
4 Body
Aft Rotor

Transmission

Aft Rotor
Shaft

Sync Shaft

Rotor Blade
Hub

Hinge/Pitch
Shaft

Swashplate

Electrical
System

Hydraulics

Furnishings
& Equipment

Environmental

Control System

Total Weight

Baseline
Weight

(Lb)

4972

423

242

1908
315
1197

381

636

225

2818

259

Additional
Weight

(Lb)

1194

400

S0

740
84
316

40

60

65

516

25

3490

Description of
Change

Add 120" Section to
Fuselage. Add 30"
Plug to Aft Pylon
Reinforced Aft Fuse-
lage, Seats, Lavatory,
Galley

-Change Gear on General

Accessory Drive

New Aft Rotor Shaft

(30" External)

New Sync Shaft for
External Fuselage

New F/G Rotor Blades
New 4-Bladed Hub

Add 4th Blade, Hinge
and Pitch Shaft System

New Swashplate and
Pitch Link for 4th
Blade

Revised Instrument

Panels, Console, O/H
Panel, Displays, Wir-
ing for 120" Extension

Add Hydraulic Lines
for 120" Extension

Add Interior Trim,
Seats, Galley,
Lavatory in 120"
Extension

Retune Cockpit
Absorber

Add HVAC Ducting for
120" Extension

PR T R Re——
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evaluated. Therefore, for study purposes, the Modification 4 case was evalu-
ated utilizing only the 44 seats of the baseline CH-47. Figure 39 shows that
the operating costs are substantially higher than the 60 passenger configura-
tion. Although this version represents a lower weight empty with slightly
improved fuel consumption, a small increase in cruise speed and a slight
decrease in acquisition costs resulted from the smaller interiors package. In
reality, these trends can be projected from the costs of the previous modifica-
tions to the CH-47. As previously noted, however, it is certain that given
the added payload of this stretched CH-47 the additional 16 seat capacity
wouid be utilized to reduce seat mile costs for the civil application.

Heavy Lift He'icopter - Model 301

Vehicle Description

The Boeing Vertol Model 301 is a heavy lift helicopter (HLH) designed to
previde vertical airlift capability for large and heavy loads. As originally
designed, it was configured as a 'crane' helicopter primarily designed to lift
external loads such as standard shipboard container modules, slings, plat-
forms or special pods. For study purposes, a civil transport version of the
Model 301 also was investigated. This transport configuration would have a
larger fuselage with the capability of transporting 140 passengers in a
7-abreast, dual-aisle airline arrangement. Although similar in many ways,
each helicopter has sufficient differences to be treated separately for the
crane and transport configurations.

The heavy lift helicopter, described in this section, is the result of an inten-
sive design study performed for the U.S. Army. The HLH rotor system was
assembled and whirled on both a rotor tower as well as an integrated power-
plant/drive system test facility (DSTR) which included one rotor, transmis-
sions, and engines.

Model 301 Crane

The Boeing Vertol Model 301 crane is a tandem rotor shaft-driven helicopter
powered by three T701-AD-700 gas turbine engines of 8079 HP each (see
Figure 40 and Table 10). It provides a vertical airlift capability for loads
carried externally beneath the fuselage utilizing either a single or two point
suspension system. The crew compartment accommodates a pilot, copilot,
flight engineer and load controlling crewman. A combination troop/light cargo
compartment is aft of the crew compartment. Aft of the troop compartment,
the center section contains the cargo handling equipment in the forward and
aft positions. Etach of the two hoists are located in this section.

The main rotors are four-bladed and operate at 156 RPM (750 fps tip speed).
A fly-by-wire flight control syst:m has been incorporated in the aircraft.

Noise Sources

Model 301 flyover noise levels have been estimated using measured test rig
data as weli as predi~tive methodology. Noise levels were based on: (1)
measurements of an H.H rotor on a whirl tower, (2) data obtained on the
dynamic system test rig, (3) comparison with flyover noise levels measured on
the Boeing Vertol Model 347 (similar rotor geometry to the Model 301), and
(4) analytlical predictions.
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Figure 40
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Table 10. Model 301 Characteristics

Maximum Takeoff Gross Weight

. Operating Weight Empty

Normal Payload (SL/St_d)
Range
Engines
Maximum Continuous Power Rating
Main Rotor
Type
Number of Blades
Chord
Normal Cruise Speed
Main Rotor RPM

Accommodations - Crane

- Transport

118,000 Pounds
64,594 Pounds
28.3 Tons

(See Text)
T701-AD-700
8079 HP

Articulated
92.0 Feet

40.0 Feet

130 Knots

156

5 Crew

12 Troop Seats

Cargo Area

6 Crew
140 Passengers

Y-




The basic approach to estimating Model 301 flyover EPNL was to relate it to
Model 347 flyover data since overlap and rotor configuration are similar on the
two helicopters. Therefore, PNL flyover time histories were assumed to have
similar charactzristics, although absolute levels differed.

The absolute values for PNL for the Model 301 and Model 347 were pre-
dicted by the methods of s8&tion 111 and the Appendix and are shown in
Figure 41. This spectrum results in a PNLTmax of 108 PNdB.

Configuration Changes - Tradeoff Variables

The configuration changes to the Model 301 crane are listed in Table 11 and
illustrated in Figure 42. The modification includes new rotor blades, modified
cockpit vibration absorbers, a new gear ratio for the generators and acous-
tically lined engine inlets.

Impact of Design Changes on Performance, Weight and Cost

Performance

The sensitivity of rotor speed reduction on aerodynamic performance of the
Model 301 is shown in Figure 43. As noted for the CH-47, the 301 is a
derivative of a military helicopter. At a gross weight of 118,000 pounds
reductions in rotor speed to 141 RPM (681 ft/sec) are within the capability of
the existing airframe and dynamic system.

Figure 44 shows the relationship between the number of sorties that can be
conducted and the mission radius of each sortie. In addition, at a mission
radius of 3 nautical miles, for example, reduction of tip speed from 750 ft/sec
to 681 ft/sec reduces rotor power required and SFC, effectively increasing
the number of sorties from 37 to-40. A reduction in payload of approximately
9000 pounds is associated with this rotor speed reduction, however, limiting
the payload to 41,000 pounds. This represents a reduction in payload of
18 percent. Obviously, payloads in excess of 41,000 pounds would be the
only loads affected.

Weight

The modification to the crane version of the Model 301 increases weight empty
from 62,120 pounds to 63,534 pounds, an increase of 1414 pounds. This is
comprised of an additional 643 pounds due to increased blade chord, 150
pounds for the retuned vibration absorbers and 621 pounds resuiting from the
lined engine inlet plenumn area (see Table 12).

Cost

For the cost study, the mission of the Model 301 crane was based on 2.3
statute mile sortie as defined in the 'performance' section, cruising outbound
at 90 knots to a work area. The hover pickup of load and inbound cruise,
nover and deposit of load results in a block speed of approximately 49 mph.
Since the crane is designed to carry external loads, not passengers, the cost
study was based on ton-mile rather than seat-mile costs. Ton-mile costs weie
developed from air-mile costs divided by the payload which is a function of
tip speed. Thus, at a tip speed of 750 fps payload was approximately 25
tons while at 680 ft/sec the payload was reduced to 21 tons (Figure 43).
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V, (ft/sec)
RPM

No. of Blades
Airfoil

Chord (ft)
Flyover EPNL
Dynamic System
Airframe

Powerplant

Weight Change

Table 11. Model 301 Configuration Changes

Baseline

751

156

4

23 Series VR-7, 8

3.33

102

Basic

Baselire transport, crane

Allison 501-M62B

Modification 1
680

141

4

23 Series VR-7, 8

4.17

99

Basic

Baseline transport, crane

Allison 501-M62B
Lined inlet plenum, all nacelles.

+1594 transport
+1414 crane




NEW TIP SHAPE A\
ON BLADES - ELLIPTICAL -

ENGINE INLET PLENUMS
LINED WITH ACOUSTICAL
PANFLS

\

MODIFIED\/ NEW GE;ﬁ RATIO
VIBRATION IN FWD AND AFT
ABSORBERS ROTOR TRANSMISSION
2 PLACES ACCESSORY DRIVE

FOR GENERATORS

Figure 42 Configuration Changes to Model 301 Crane
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TRIP DESCRIPTION

l. WARM UP 2 MIN AT MAX CONTINUOUS POWER
AND TAKE OFF

2. CRUISE OUT TO TRIP RADIUS AT MIN POWER
(90 KT) Wi d{ FULL FUEL, NO LOAD
3. HOVER OGE ! MIN,EXTRACT LOAD FROM SHIP

N 4. CRUISE INBOUND AT MIN POWER
) \ (90 KT) WITH LOAD
80 \ 5. HOVER % MIN OGE WITH LOAT, DEPOSIT LOAD
\\ 6. REPEAT STEPS 2 THROUGH 5 TO FUET LIMIT
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Table 12. Impact of Design Changes on Model 301 Weight

CRANE
Baseline Additional
A/C Weight Weight
Mod Component (Lb) (Lb) Description of Change
1 Rotor 0 Change Gear Ratio on
Transmission Generator Drive
Rotor Blade 6264 643 Increase Blade Chord
by 10% - Modify Tip
Shape
Furnishings & 150 Retune Vibration
Equipment Absorbers Pilot,
Copilot, Load
Controller
Powerplant 620 Line Engine Inlet
Installation Plenum with Acousti-
cal Panels
Total Weight 1414
TRANSPORT
1 Body 112 Retune Floor Isolation
System
Rotor 0 Change Generator
Transmission Gear Ratio
Rotor Blade 6264 643 Increase Blade Chord
by 10% - Modify Tip
Shape
Fuel System 5223 118 Retune Fuel Celi
Isolation System
Furnishings & 100 Retune Vibration
Equipment Absorbers Pilot,
Copilot Seats
Powerplant 840 _620 Line Engine Inlet
Installation Plenum with Acousti-
cal Panels
Total Weight 1594
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The Model 301 crane was considered tc be a 'new' helicopter for this study
with the implied assumption that nonrscurring costs were spread over the
entire production base. This production base was assi’~21 over a range of
50 to 1000 units to display the effect which this varizu:¢ has on operating
costs.

Modificaticn 1 to the baseline crane configuration results in a 3 EPNdB reduc-
tion in flyover noise as previously noted in this Section. Air-mile costs
remain essentially unchanged as a result of the configuration change to the
crane. However, the reduction in rotor tip speed from 750 to 685 ft/sec
results in a reduction in payload from 25 tons to 21 tons resulting in a ton-
mile cost increase by 17-19.7 percent (Figure 46). |If crane payload had been
21 tons or less initially, no increase in ton-mile costs would be incurred due
to the reduced tip speed of Modification 1.

Reductions in flyover EPNL below that defined by Modification 1 did not
appear to be achievable as predicted by the methodology of Section I[II. A
reduction in tip speed to 650 ft/sec with the increased solidity main rotor
blade showed only a 1 dB reduction in Perceived Noise Level. Further reduc-
tions in rotor noise are not apparent tor this 90 foot diameter rotor. Addi-
tional research is required in the area of broadband noise reduction of large
rotors.

Model 301 Transport

Vehicle Description

The Boeing Vertol Model 301 transport, like the crane, is a tandem rotor,
three engine helicopter. It has the same drive system and rotor as the
crane, but the airframe is configured to transport 140 passengers (see Figure
47 and Table 10). The load controllers cab and associated flight controls,
etc. have been removed.

Noise Sources

Since rotor geometry, powerplants, drive system and gross weight are similar
on the crane and transport configuration, noise sources are similar. Configu-
ration changes on the transport rotor system also are the same as those for
the crane.

Configuration Changes - Tradeoff Variables

Configuration changes to the Model 301 transport are identified in Table 11.
Modification 1 to the baseline 301 reduces flyover noise to 99 EPNdB.

Modification 1 illustrated in Figures 42 and 48, shows rotor speed reduced
from 156 RPM to 141 RPM (751-681 ft/sec) and an increase in rotor solidity by
the addition of 0.83 feet to the main rotor chord (40 inches to 50 inches).
This increase in chord requires a redesigned blade which wouid include a
modified tip configuration which is shown as elliptically shaped in planform.

The engine inlet plenum has been lined with absorptive panels similar to those
currently employed on fixed wing transports to reduce engine inlet noise.
This reduces powerplant levels and permits reductions in broadband noise to
be realized.
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Secondary changes required to the configuration include a new gear ratio in
the forward and aft rotor transmission's accessory drive section to maintain
operating speed for the electrical system generators. In addition, vibration
absorbers in the cockpit and load controller's station must be retuned to the
lower rotor speed and the rotor hubs require strengthening due to higher
torques resulting from lower operating speed and also from higher loads
resulting from increased weight of the blade. The higher torque would be
partially offset by lower centrifugal loads at the lower rotatiorial speed.

Impact of Design Changes on Performance, Weight and Cost

Performance

The sensitivity of rotor speed reduction on performance of the Model 301
transport is shown in Figure 49. The transport mission is a two minute
warmup at maximum continuous power and takeoff at sea level-standard day
conditions, climbing to 2000 feet and cruising out at 99 percent optimum range
and landing with a 45 minute fuel reserve for a 99 percent optimum range
cruise speed. For the transport gross weight of 118,000 pounds which
includes 25,000 pounds fuel and 140 passengers and baggage at 200 pounds
each, no impact on payload is noted to tip speeds of 665 ft/sec. Below this
rotor speed, the number of passengers or fuel foad would be reduced by a
requirement to maintain a 35 degree band angle maneuver. Modification 1
operates at 681 ft/sec, which is within this limit.

Figure 50 presents the effect which reduced rotor speed has on cruise speed
and range. Lower rotor power required results in an increase in cruise
speed from 138 kt to 151 kt, a 9 percent increase. Similarly, the range
increases from 417 to 545 nautical miles, an increase of 14 percent.

Weight

The weight empty of the transport increases by 1594 pounds for Modification 1
from 64,638 to 66,232 pounds. A brief weight statement for only those items
that have been modified is presented in Table 12. Note that for the trans-
port, cockpit vibration absorber weight has been reduced to 100 pounds to
reflect the deletion of the load controller's station. In addition, the floor
isolation system must be retuned for Modification 1 to the baseline helicopter,
adding 112 pounds to weight empty.

This PNLmax level was then converted to an equivalent flyover EPNL based
on Mode! 347 tests. The results of this testing indicated that for the average
of the three microphones Effective Perceived Noise Level was 5 dB less than
PNLmax measured on the centerline for a flyover EPNL of 103 EPNdB.

Cost

The mission of the Model 301 transport for this study as defined in the per-
formance section consisted of a 100 seat mile flight at a cruise speed of 138
knots. This cruise speed represents 99 percent best range speed. Block
speed associated with this is 125.8 knots. The transport configuration seats
140 passengers resulting in a design gross weight of 118,000 pounds as noted
in the section on Performance. This gross weight is well below the engine
torque limits shown in Figure 49 for all rotor speeds, and the reduced tip
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speed of the Modification 1 configuration does not limit the transport payload
capability. The direct operating costs in dollars per seat mile were utilized
as calculated by the Reference 7 AIA costing program to compare configura-
tion changes.

The Model 301 transport was considered to be a 'new' helicopter for this
program with all nonrecurring costs spread over the entire production base.
As for the other aircraft in the study, the production base was evaluated
over a range of 50 to 1000 units to determine the effect which this variable
has on operating costs.

Flyover costs and direct operating costs for the Model 301 transport are
presented in Figures 51 and 52, respectively.

Changes in air mile costs resulting from Modification 1 changes to the trans-
port version of the Model 301 produce only minimal changes in direct operat-
ing costs. As a 'new' aircraft, only those changes to the transport which
incur additional material costs result in an increase in direct operating cost,
since all nonrecurring is similar for both configurations. The additional
material is in the wider chord blades, engine plenum acoustical linings, the
retuned vibration absorbers in the cockpit and cabin floor and the fuel isola-
tion system. These increased material costs, when added to all nonrecurring
expenditures and spread over 140 seats for a distance of 100 miles result in a
maximum change in DOC of 0.51 percent from the baseline.

As noted for the crane configuration, reductions in flyover EPNL below that
defined by Modification 1 does not appear achievable as predicted by the
methodology of Section I11. A reduction in tip speed to 650 ft/sec produced
only a 1 dB reduction in PNL. Further reductions in rotor noise for a.rotor
of this diameter (90 feet) are not apparent. Additional research is required
to reduce the broadband component of large rotors.

Several cases of rotational and broadband noise evaluation showed that reduc-
tion in rotor speed alone without other rotor modifications resulted in no
reduction in Perceived Noise Level for that rotor. This stemmed from an
increasing average rotor lift coefficient as rotor speed was reduced having
the effect of increasing broadband noise. The result was generally offsetting
noise trends between rotational and broadband noise. Only when blade chord
was increased, reducing average C;y , did both rotational and broadband noise
decrease.
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Vi. EFFECT OF NOISE STANDARDS ON ROTORCRAFT
DESIGNED IN THE 1980's

Market Forecasts

Forecasting the requirements for commercial helicopters in the decade 1980-1989
requires knowledge of a number of wide-ranging factors. Assumptions must
be made regarding: (1) military actions between key nations of the world,
(2) inflation rates in industrial and oil-producing nations, (3) the value of
the U. S. dollar with respect to other international currencies, (4) the rate
of increase in the price of fuel, (5) the growth of certain rotorcraft technol-
ogy areas (fuel consumption, aerodynamics, rotors, avionics), (6) the
increased use of helicopters by major corporations as an element of their
corporate fleets, and (7) the procurement practice of business and commer-
cial helicopter operators with regard to replacement of helicopters currently in
the corporate inventory. For this study, a forecast for commercial helicopter
requirements for the period 19578-1987 prepared by Defense Marketing Systems,
inc. (11) was used to estimate the production rate of commercial helicopters.

The results of the Reference 2 study indicate that by far the largest number
of units forecast is in the single turbine, under-60LJ-pound weight empty
category. Dollar value of the larger rotorcraft remains relatively high,
although total number of units to be produced is small in comparison with the
smaller helicopters.

Although in the past helicopters designed for the civil market built heavily on
military efforts this trend is changing for small and medium size helicopters.
In a recent aerospace publication (Reference 11), the President of Sikorsky
Aircraft, G. J. Tobias, presented a rationale whirh suggests that while
helicopters with gross weights below 14,000 pounds may be developed with
corporate funds to meet the civil market, civil helicopters of the larger sizes
will continue to be derivatives of military models. Both categories of aircraft
may require substantial additional testing, both wind tunnel and full scale to
confirm noise reduction technology solutions where the helicopter is shown to
be above the allowable certification levels. If, for example, tail rotor/main
rotor interference dominates flyover noise, lateral offset of the tail rotor
could be employed to reduce this component ot the noise signature. Were this
approach adopted for modifying an aircraft, wind tunne! testing would be
required to confirm rotor performance and flying quality characteristics prior
to the actual flight test and upon completion of a prototype vehicle, extensive
flight testing would be initisted. Wind tunnel testing typically costs $50,000
to $70,000 per week of tunnel occupancy and flight testing may cost up to
$150,000 per week. These development and test costs would increase both
the flyaway cost as well as the direct cperating cost to the operator.

an Defepse Marketing Systems, Inc., "World Helicopter Forecast to 1987",
Published by DMS, Inc., 100 Northfield St., Greenwich, Conn. 06830.
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Technoiogy

It is not envisioned that there will be any breakthroughs which will lead to
major noise reduction in the manner that the introduction of sound absorbing
inlets and high bypass ratio engines achieved for subsonic jet airplanes.
Helicopter noise reductions will probably be much more modest and result from
a combination of several small changes.

Technology developments in the decade 1980-1989 which impact helicopter
exterior noise will be related to the following areas;

Advanced airfoils

Reductions in drag of all forms
Composite materials

Fuel efficient engines

Noise reduction technology
Noise predictions.

The development of advanced airfoils has been paced by composite material
research which is -currently permitting the manufacture of complex airfoils.
Development of lightweight materials will reduce total airframe weights and
promote helicopters with higher forward speeds, decreasing block times and
decreasing operating costs. The higher speeds will create higher advancing
tip Mach numbers, however, which could result in higher levels of thickness
noise. Achieving higher airspeeds without substantial noise increase is pro-
viding an impetus for the further development of transonic airfoils and blade
planforms which will permit use of the higher speed rotor capabilities without
accompanying increases in harmonic rotor noise.

Broadband rotor noise, which in some cases may determine the maximum value
of Perceived Noise Level, is also adversely affected by high forward speed.
Broadband sources, such as trailing edge noise may be reduced by mod:fica-
tions -to trailing edge configuration made possible by composite material
research. Some suggested modifications have been serration and porosity of
the trailing edge as well as planform sweep near the tip region. To date,
broadband noise has not been studied in the same depth as the harmonic
components of rotor noise and is an area that requires greater understanding.

Reductions in rotor noise will bring about a requirement for turbine engine
noise reduction on the larger helicopters. Engine noise will be a contributing
component to flyover noise on approach and reductinns in inlet noise will
require nacelle linings similar to fixed wing transports, and the elimination of
inlet guide vanes which currently produce strong tones in the acoustical
signature. Exit velocities and mass flows of turboshaft engines are generally
small and jet noise will not be a major noise source.

Drag reduction generally will result in reductions in broadband body noise.
This source can contribute to the acoustical signature during takeoff and
approach procedures. This source is not considered significant.

Transmission noise on some helicopters is a contributor to the flyover roise
signature. This probleni is being actively investigated for the primary pur-
pose of reducing internal noise. Any positive results may also have beneficial
effects on the external signature.




VIl. CONCLUSIONS AND RECOMMENDATIONS

It is evident from the four aircraft investigated, representing six case histo-
ries of a wide range of helicopter gross weights and basic configurations,
that every aircraft design affected by noise standards will be an individual
case that does not submit to generalization. However, requirements to reduce
helicopter noise ha.e resulted in main and tail rotors which operate at lower
tip speeds than their predecessors. This dictated that the modified rotors
have higher solidity and that the drive systems were somewnat heavier.
Rotors also reqyuired thin tips to accommodate higher forward speed capabil-
ity. Airframzs tended to be larger in order to provide greater rotor separa-
tion on tandems and main/ tail rotor separation on single rotor configurations.

In some cases, it appears that the rotor and power requirements for military
helicopters may be more stringent than those required ror civil operation. In
those cases, some reduction in tip speed may be achieved without any physical
changes to the rotor or drive systems. Once a change to an 'in-production’
helicopter is required, however, the cost impact will be more severe than if
the same capability had been included in the initial design.

The quantity of helicopters over which the costs of noise control can be
spread is a very important iactor, and appears t: have a greater effect on
helicopters which are already in production than »n new designs. This has

serious potential impact with respect to application of noise limits to derivative
aircraft.

Noise levels during takeoff and approach were not investigated. They are
considerably more complex to analyze from the aerodynamic as well as the
acoustical aspect. Although some solutions for reducing noise in level flight
are also applicable to other flight modes, there are some unique rotor-vortex
interactions which have been observed on certain helicopters during takeoff
and landing which may limit the noise reduction achieved in level flight.
These regimes require further investigation. In addition, rotors with two
blades were not investigated and the reduction of noise by reducing tip speed
may have a greater impact on other characteristics of these aircraft thar for
helicopters with larger numbers of blades.

Flight test of unproven noise reduction techniques is required to verify some
of the methodology suggested in this ieport. For example, reduction in tail
rotor noise using advanced airfoils operating at low tip speeds and offsetting
of tail rotors to achieve additional clearance between main and tail rotors
discs are noise reduction methods that have been partially evaluated by model
testing but need to be evaluated on full scale aircraft. Until these high
technical risk methods have been adequately demonstrated, manufactureres are
unlikely to incorporate them into their design.
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APPENDIX A

ROTOR NOISE PREDICTION METHODOLOGY

The components of rotor noise calculated for the prediction of helicopter
flyover acoustic signatures were (1) rotational, (2) broadband, (3) thickness,
(4) compressibility, and (5) interaction noise. The first two of these methods
had been previously programmed for machine computation and cases were run
for all helicopters in the study.

Elements (3), (4) and (5) were calculated by hand from methods suggested
by Pegg (Reference 3). Pegg reduced the computation complexity of the
equations developed by several researchers in rotor acoustics. These elements
were included, as appropriate, and summed with the rotational and broadband
components to obtain estimates of the total flyover signature. The following
section presents a synopsis of the equations adopted for use in this program.

Rotational Noise - The theory for this component of rotor noise was developed
by Lowson and Ollerhead (12) and it forms the basis for the calculations of
this element of rotor noise used in this program. Several assumptions were
made to the origine' expression to permit a closed form solution:

Cn = )Eo K‘?i{-?'ﬂc' {(IOnM sin 0)J]-J} + (n—lr:- cos B)J;:"

Cn amplitude of nth sound harmonic at specified field point

A air loading harmonic number

K constant

r distance between rotor center and field point

n=mB harmonic number x number of blades

M rotational Mach number

R radius of action of blade forces

8 angle between disc plane and field point

Ji' complex collection of Bessel functions of argument (nM cos 6)

C?\T'C?\D’C)\C thrust, drag, radial force harmonic coefficients
k loading power law exponent

T thrust

(12) Lowson, M. V., and Ollerhead, J. B., "Studies of Helicopter Rotor
Noise", USAAVLABS TR 68-60, January 1969.
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For this study, it was assumed that the thrust, drag and radial force compo-
nents were randcmized wnth respect to phase, that the ratio of the magnitude

of the components (CA ) were 10:1:1, respectively, and that the
harmonic airload power Iaw cB)nstan (k) was 1.8 including the X 0.5 term due
to random phasing effects.

Broadband Noise

The broadband noise equation used for this program was based on the work
of Lowson (13), Hubbard (14), Schlegel (15) and Munch (16). It was further
modified to reflect an observed dependence on average lift coefficient. The
spectrum peak frequency was calculated from

fp = -240 log T + 0.746 Vi # 786

The spectral content of broadband noise is shown in Figure A-1. One-third
octave band sound pressure levels were then determined from the following
equation based on rotor blades having constant chord, thickness and airfoil
section along the radius:

3

v ==
SPLy /3 = 20 log — + 10 Tog Ay, (cos?6+0,1)451/3+6(Cz}-53.3

where
SPLJ. sound pressure level in the jth 1/3 octave band
fp peak frequency
T thrust
Vt tip speed
Ab blade area
61 angle between disc plane and field coordinate
r distance to field coordinate
51/3 1/3 octave band correction from Fig. A-1
Cy average lift coefficient

(13) Lowson, M. V., "Thoughts on Broad Band Noise Radiation by 2
Helicopter", Wyle Laboratories Wk 68-20, 1968.

(14) Hubbard, H. H., "Propeller Noise Charts fer Transport Airplanes",
NACA TN 2968.

(15) Schlegel, R., King, R. J., and Mull, H., "Helicopter Rotor Noise
Generation and Propagation", USAAVLABS | -chnical Report 66-4,
October 1966.

(16) Munch, C. L., "Prediction of V/STOL Noise for Applications to
Commumty Noise Exposure", DOT-TSC-0ST-73-19, May 1973.
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o Thickness Noise - Calculation of thickness noise was based on the theoretical
b analysis developed by Hawkings and Lowson (17). The following equation
1 presents the harmonic sound pressure for thickness noise valid for hovering
3 conditons:
: Pme = - mzocz(B)(h) Q[ N - cos nk) (M cos 0)e
Ul i T nkE 5
where
PmB sound pressure level in harmonic mB
’ Mt rotational tip Mach number
E | ) air density
| C0 speed of sound in air
R rotor radius
: r distance between rotor center and field point
: t blade thickness
c blade chord
n mB
; m sound harmonic number
]‘ B number of blades
' k c/ZRt, slenderness ratio
E Jn Bessel function of order n and argument (n_g_t cos 6)

For estimating thickness noise levels, Pegg reduced the above expression to,

SPLy = 40 log M, + 20 log —+ 20 log B + 20 log RT + ASPLt - C.9

where ASPLt represents an evaluation of

R | nM
/l £ (-5—1-{:—5"—"—-5— - cos nk &) Jn(—g——t- cos 6)dg

for a matrix of values of Mt' g and k.

(17) Hawkings, D. L., and Lowson, M. V., "Tone Noise of High Speed Rotors",
Second Aero-Acoustics Conference, Hampton, Virginia, March 24-26, 1975,
AlAA Paper 75-450.

¥ 109

R & RS it oA - o
A . e : , ——p———
B —— AR e - W ) BT i . i st s it A SN SOl
i i i < U S . i o -




Compressibility-induced Profile Drag Noise - Prediction of compressibility
noise is based on the work of Lowson and Ollerhead as modified by Arndt and
Borgmann (Reference 18) who related the effect of compressibility drag on
impulsive noise in the following expression,

P o . mBCD o .
mB= _""0 & R C . . .
77, 7 Rey PCe I (1-=5)8j J(ns-j)(mBMesne).

j= =00

Pegg has derived a simplified form for the solution to this, assuming a drag
divergence Mach number of Mdd=0.8.

R C
SPLmB = 20 log s 20 Tog [(Me-0.8) ﬁ] + ASPL. -21.6
where
i
Me effective Mach number, 1-Mfcos 8
ASPLC evaluation of the summation on the right side of the
first equation
ﬂo profile drag coefficient
Ay incremental azimuth angle where blade section M>0.8.
B. Fourier coefficients in blade torque loading

)
j summation index
Blade/Vori tex Interaction - The component of interactior noise resulting from

the intersection of trailed tip vortex filameriis cuid roior blades was estimated
using a method proposed by Wright (Reference 19),

where Pmg = (% E 0,) K7 mB xg
E number of interactions per revolution
Ow load solidity (fraction of the effective disk annulus
occupied by the unsteady loading region
AL fractional steady load change per blade
L
o

(18) Arndt, R. E. and Borgman, D. C., "Noise Reduction from Helicopter
Rotors Operating at High Tip Mach Number", American Helicopter
Society, 26 Annual Forum, June 1970.

(19) wright, S. E., "Discrete Radiation From Rotating Periodic Sources",
Journal Sound and Vibration (1971) 17(4) 437-498.
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K.r thrust constant
Xs blade loading spectrum function,

- sim;gft{l) . sinn(ftg+l)

HFto-1) EiGTS

(for sine wave pulse profile)

fto SEpw, (non-dimensional parameter)
s blade loading harmonic number

The simplified expression for interaction noise takes the form,

_ cos 6 AL Ay
SPLug = 20 log ~7—+ 20 Tog =+ 20 log TQ + 20 Tog (XSMBU—JE) + 120.6

where
8 angie between disc plane and observer
T rotor thrust
Q rotational speed
AY azimuthal range of load excursioi.
Yo azimuth at intersection

1m
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