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ABSTRACT

" In this final report, an Annual Wave Correction Model
is constructed. The model makes rapid reconnaissance of
geothermal prospects using shallow temperature surveys a
reality.

The model is tested using data previously obtained
at the Coso KGRA. Inputs are surface meteorological data
gathered during a 15 month period, soil thermal diffusivity
data derived from previous studies in this series, and sur-
face roughness and albedo measured at the site. Computa-
tions are made to determine the normal, i.e., non-anomalous
temperatures at 2-m depth, for the period 22-24 September
1977, for each of the 102 stations at Coso. The observed 2-m
temperatures recorded at these stations during this period
and corrected for elevation are compared to the normal temp-
eratures, and a residual anomaly map has been drawn. The
map compares favorably to the mean annual temperature map
for the same area.

We conclude that a 2-m temperature survey may be con-
ducted at any time and appropriately corrected with the
Annual Temperature Correction Model and easily obtained
ancillary data. Our _model produces a residual map with
an accuracy of + l.9°C., adequate for anomalies of the
magnitude found at Coso.

We studied the effect of topography on sub-surface .
isotherms at Coso KGRA using a model (FINITEG) developed !
by Lee. The model predicted sub-surface temperatures to
a depth of 0.75 km in the area of Cactus Peak. The model
takes into account 100 m of topographical change and the
effects of three anomalous regions near the surface, repre-
senting the soil in which the measurements were made. Within
the resolution of the model, the isotherms conform to the
topography; the contour interval is essentially unvarying as
it approaches the surface, even though the isotherms pass
through thin soil layers of different thermal conductivity.

WP NN NPT
- ——d 4

é We conclude that in geological settings in the Basin
and Range Province, where there is some topographic relief
and the 2-m temperature measurements are made in a thin soil
layer overlying a more conductive bedrock, there are no sig-
nificant distortions to a 2-m temperature contour map. We
can emplace our 2-m survey holes with relatively little con-
cern for topography or modest variations in soil conditions. \
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1. Introduction

This is the third and final report on the rapid reconnais-
sance of geothermal prospects using shallow temperature sur-
veys. The first report, LeSchack et al (1977), showed how
2-m temperature measurements made in the summer of 1977 pro-
duced the same contour patterns as temperature measurements
at 10-m depth at Long Valley, California, and at 30-m depth
at Coso Hot Springs KGRA, California (Figure 1). Elevation
corrections, i.e., corrections for the adiabatic lapse rate,
were the only ones made to our 2-m temperature measurements.

The second report, LeSchack et al (1979), discussed the
additional temperature measurements made at Long Valley and
those made during the winter of 1977 and the spring and summer
of 1978 at Coso. We observed the seasonal variations of temp-
erature patterns due to surface effects. Although temperature
pattern variations at 2 m due to surface effects at Coso were
not significant enough to affect the interpretation of this
strong anomaly, they did affect the interpretation of shallow
temperature anomalies at sites such as Upsal Hogback, Nevada,
where the anomaly is weaker. We found in general that surface
effects must be corrected in a shallow temperature survey. We
showed that corrections were required for elevation, surface
albedo and roughness, and soil thermal diffusivity.

In our previous reports we discussed how we measured these
parameters and the effects of groundwater. We concluded that
making useful shallow temperature measurements where there is
a modest amount of groundwater flow needn't be a hopeless task.
Though it often complicates the interpretation of the results,
it does not invalidate application of the technique.

In the current report we discuss how all these corrections
may be applied to 2-m temperature data taken at any given time.
This permits a shallow temperature survey to be conducted at
any time of year with temperature and correction measurements
being made at the same time. This is the major requirement for
a quick, cost-effective reconnaissance temperature survey.

2. The Steps to Conduct a Shallow Temperature Survey*

As stated in LeSchachet al (1979), the steps essential
to conduct a SHALLO-TEMP survey are:

(a) At each site drill two adjacent 2-m holes. i.f“°n3°r
D5 (weail 7
oy -
(b) Insert thermistor probe in one, thermal con- ° %3¢ ]
ductivity probe in the other. o wumvknced o

cifigation

.

*We call this complete survey a SHALLO—TEMPTM Survey -: ..
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Locations of 2-m temperature stations at Coso. The

first 24 were emplaced in July 1977, the rest in
September 1977. (Haiwee Reservoir and Little Lake

Quadrangles).

FIGURE 1:




(c)
(d)

(e)

()

(8)

With this as a guide, we have used the annual wave cor-
rection program (discussed in Section 3) to analyze our Coso
2-m temperature data by entering our surface effect parameters

Take soil sample for type determination.

Measure surface roughness, surface albedo,
thermal conductivity.

After equilibration (2-4 days, depending on
hole size) read thermistor probe. One read-
ing will suffice.

Using the annual wave correction program,
calculate the normal 2-m temperature for the
given location and time using the following
inputs: 18-24 months of weather data (see
Section 3.4.1) from nearest National Weather
Service Station; thermal diffusivity (calcu-
lated from thermal conductivity); surface
roughness and albedo. Output is normal 2-m
temperature for given location and time.

Subtract normal 2-m temperatures from ob-
served 2-m temperatures to obtain residual
geothermal anomaly.

as follows:

Surface Roughness: This was measured at Coso

sites 1-24 according to the method of Lettau
(1969). Photographs were taken at all 102

sites. The 24 measured sites had surface
roughness values (ZO) ranging from 0.1 cm to

16.1 cm. From the photographs, the range of
these values appeared to be roughly representa-
tive of the remainder of the area. For the
purpose of evaluating our correction model and
reducing the number of individual computations,
we divided surface roughness into four categories
A-D: with A having a mean value of 3 cm; B having
a mean value of 8 cm; C having a mean value of

12 cm; D having a mean value of 18 cm. From ex-
amination of the photographs of the measured
sites, i.e., 1-24, we subjectively assigned the
remaining sites into appropriate surface rough-
ness categories.

Thermal Diffusivity: Thermal diffusivity was

measured at Coso using the phase lag method as
described in LeSchack et al (1979). The values
ranged from 0.0012 to 0.0025 cm?/sec. As above,
to reduce the number of computations, we divided
the thermal diffusivity values into five cate-
gories as follows:

—_—
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Mean Thermal Diffusivity

Category Interval (cm?/sec.)
1 .00120-.00146 0.0013
2 .00146-.00172 0.0016
3 .00172-.00198 0.00185
4 .00198-.00224 0.0021
5) .00224-.00250 0.0024

® Surface Albedo: As mentioned in LeSchack et al (1979),
during preliminary evaluation of the annual wave cor-
rection model, variation of surface albedo from 25-
40% had little noticeable effect on 2-m temperatures.
We felt justified in using the mean value of 33% de-
rived from the measurements at Coso sites 1-24. This
was representative of the remainder of the Coso area.

3. The Annual Wave Correction Model

3.1 Introduction

The use of 2 meter temperatures for geothermal explora-
tion is predicated on removal of the annual temperature wave
which masks the geothermal signal. This annual effect must be
mathematically specified or filtered from observed data before
assessing the geothermal potential of a target region. At 2-m
depths only the surface-induced annual temperature wave is of
concern; transient waves are damped rapidly with depth, and
for most soils the diurnal temperature pulse has little con-
squence at depths greater than 0.5 meters.

The partitioning of energy flux (radiant, sensible,
evaporative, and soil) at the earth's interface is a function
of meteorological and surface conditions. Meteorological
parameters such as solar radiation and wind velocity, and sur-
face conditions such as albedo and surface roughness, will
determine the amount of energy propagated into the soil. Once
the energy is conducted into the soil matrix, the physical
properties of the soil will determine the magnitude and speed
of propagation of the soil heat flux. Therefore, the soil's
thermal diffusivity and conductivity properties, which are
conditioned by mineral, water and air content, influence the
amplitude and phase of the annual temperature wave at 2 meters.

We developed an annual surface climatic simulation
model to account for the annual soil temperature wave, based
on the work of Goodwin (1972). Given local monthly climatic
parameters and surface/soil conditions, the model can recon-
struct surface energy exchanges (sensible, latent and soil
heat fluxes) and soil temperatures to a depth of 10 m.

Described below is the theoretical form of the sur-
face energy budget simulation with a discussion of some of
the model's underlying assumptions. The numerical schemes
are outlined with emphasis on methods of constructing the




the soil's temperature profile. Also, details of the model's
input and output will be specified.

3.2 Model Structure

3.2.1 Theoretical Basis of Model

The radiation balance for a particular surface
(SFC) is expressed for clear skies conditions as:

- [ _ 4
Q* = (1l-=)(Q+q) + sOTSKY EGTSFC (1)
where Q* is net radiation,

« is albedo, Q+q is beam and diffuse solar radiation,
respectively, ¢ is the Stefan-Boltzmann constant and € is
emissivity. For a complete description of this formulation,
the reader should consult Sellers (1965), Oke (1978), and
Montieth (1973). The sky radiation is estimated using the
empirical Brunt equation:

) — 4
eoT gy = T*41R (a+bVe) (2)

where a and b are empirical constants and e is vapor pressure
of the air.

Using the assumption that the soil surface
radiates essentially as a black body, equation (1) can be writ-
ten as

- y _ N

Q* = (1-=)(Q+q) + 0T, p(a+bVE)-0Tgp. (3)
Since =, (Q+q), TA and e are assigned as data, Q* can be
calculated explic1%§y as a function of surface temperature

(Tgpe) -

Equation (3) is for clear sky conditions.
Variations in solar input induced by changing cloud cover are
corrected by using percent clear sky and a correction factor
for the cloud type following Sellers (1965). Equation (3) is
rewritten as:

Q* = (l-=)(Q+q) + (UTAIR (atbVve) - °T§Fc) (PCL+(1-PCL)CT)

where PCL is percent clear sky and CT = cloud cover correction
factor,

The non-radiative components of the energy
balance need to be specified to complete the total energy
exchange at the earth's interface. The non-radiative trans-
fers are:




where QH = sensible energy flux
QL = latent energy flux
QS = so0il energy flux

The first two transfers of energy occur in the
surface layer (a layer of the atmosphere up to approximately
10 m) by turbulent transfer, whereas soil heat flux occurs
through a conductive process.

3.2.2 Sensible Energy Flux

Sensible heat is transported by turbulent eddies
which are a function of the stability regime of the lower at-
mosphere. Therefore, any expression describing sensible energy
transfer must incorporate a stability-dependent function. The
annual simulation model uses the Businger-Dyer (Businger, 1971;
Dyer, 1967) formulation for calculation of sensible energy
flux in the surface layer. An assumption that is characteris-
tic of all surface layer calculations is that the energy flux
is constant throughout this layer.

The stability of the surface layer is determined
by the Richardson number:

L=, 38 [5(e0
Ri =g ’az/e(az)z (6)
where g is acceleration due to gravity
6 is the mean potential temperature
Z is the vertical coordinate

U is the magnitude of the mean horizontal wind vector

The Ri number is a dimensionless quantity which
varies from less than -0.025 for a free convective regime, to
greater than -0.025 and less than O for forced convection,
where zero defines the neutral condition; from >0 to <0.4 is
a stable state; and finally values for Ri number >.4 define
a laminar condition where essentially all turbulent motion is
suppressed.

Under neutral atmosphere conditions the mean
wind flow is logarithmic with height as

30 _ ,

-ﬁ = U*/k& (7)
where U* is friction velocity and k is the von Karman constant.
If equation (7) is integrated from some reference height Zo,
(ZO) = surface roughness) one obtains

6
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0 = U*/k 1n(§—) (8)

o
If Z_ is the instrument height and U is the
mean wind speed from Zo (U =0) to Za’

then u* = kiy ln(_z_a) (9)

Z
o
U* is a scaling parameter for the wind.

Similarly, from

30 = ot/z (10)

where 0* is a scaling temperature,

ox = (Oza - @0)/1n(;§) (11)
o

Now the sensible heat flux can be calculated
by

QH = pckU*0o* (12)

where pc = volumetric heat capacity of air; p = air density
and ¢ = specific heat.

Under non-neutral conditions Equations (9) and
(11) are modified

Ux = kﬁ/(ln(ﬁ) - ) (13)

Z0

(©2a=%) /h@.&) - ¥ 2) (14)
Q

where ¢ and wz are functions of atmospheric stability (Paulson,
1970).

O%

From the original work of Businger (19271) and
Dyer (1967), Paulson shows that ¥ is computed for unstable
conditions by !

v, =2 1n£(1+x)/2_7+ 1n E(1+x2)/_27— 2 tan"ix + 3 (15)

where

x=(1-%¥ (16)

ol
L
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Y is an empirical constant and z/L is a stability function
such that

Ri = Zm/L

where Zm is geometric mean height and L is the Obukov length
given by

L = - U*3cT/ngH.

For temperature stability correction the following 3
expression is used )

V. =2 m[Q +x?*)/2] (17)
Under stable conditions,
L =2m (1 - 7Ri)/Ri (18)
and
Vo=V, - 7(%) (19)
When Ri = 0 (neutral conditions), the stability parameters
(lp1 and wz) are equal to zero.

3.2.3 Latent Energy Flux

The transfer of latent energy is obtained by
using the Bowen ratio in conjunction with Equation (12). The
Bowen ratio is an expression of energy partition between sensi-
ble and latent energy flux

B = (20)
U

Q,, and Q;. can be written in terms of a gradient relationshi
H L p
as follows. |

a0

Qq = PcKy =2 (21)
and J
= 9q :
Q, = PLK =7 (22) :

T e




where p is air density, L is latent heat of vaporization, q is
specific humidity and KH and KL are the eddy diffusivity for

heat and moisture respectively.

Dividing Equations (21) and (22) one obtains
the Bowen ratio

96
B - H_ oku(52). ¢ tor-0,) u (23)
QL OLKL %%) L (q -ql) KL
if KH = KL, which is the general assumption, then
L -
o - Qq (q2 ql) (24)
L c(Oz- @1)

Serious questions remain as to the legitimacy
of long term arithmetric mean values in the computation of
average Richardson numbers and energy fluxes at time scales
considered in this model. It remains to be tested as to the
physical reality of these assumptions.

3.2.4 Soil Energy Flux

Soil heat flux is related to the time rate
of change of the soil heat content by,

oH

Q = 3¢ (25)

The heat content for a column of soil at
depth z and unit area is

H = pczT (26)

T is mean temperature of the soil, Setting Equation (25) equal
to the time rate change of temperature produces

Qs ot T (27)
The flow of heat into the soil can also be given
by
Q. = k3T (28)
S ot

where k is thermal conductivity of the soil.




oz ot = 90z 0z (29)

When k is constant with depth, the Fickian
diffusion equation is obtained by restructing Equation (29)
to produce

AT _ k. (aT\_ . [T (30)
ot pc 9z72 s \oz

“q is the soil thermal diffusivity

The solution of Equation (30) for equally
spaced nodes is the method for obtaining the time history of
soil temperatures given a periodic surface forcing function,

Q. is calculated from Equation (29) after the temperature dis-
t§ibution is computed.

In a desert region, such as Coso, it is assumed
that convection of heat by percolating water in the soil is
small, especially averaged over 5 days, and that no freeze-
thaw phase changes occur. In addition, a major assumption of
the model at the specified time scale is that mean temperature
profiles in the soil over a five-day period are linear.

3.3 Numerical Scheme

The finite difference equations are developed for the
Richardson number, sensible energy and latent energy fluxes.
(See Goodwin, 1972 and Outcalt 1972)., The Fickian diffusion
Equation (30) is developed in the finite form utilizing a
back differencing method. The temperature at depth ZN in the
soil at time increment I is given by

TN(I) = TN(I—1)+°=S %%277 [&N-l(l-l)-zN(1_1)+TN+l(I-li] (31)

where TN+l is the temperature at some depth ZN+1 > ZN’ ms is

soil thermal diffusivity, t and z are the time increment and

depth increment respectively.

This Equation is solved for

10 nodal

ints with Az equal to 1 meter and At equal to

o
4.32 x 10g seconds (or 5 days). The quantity (= At ) has
shz?

very interesting properties and is referred to as the Fourier

modulus. This modulus can be used to determine the computational
stability of Equation (31). The stability criterion is
0 <« &t < 3 (32)

s (Az)?




The numerical solution of Equation (30) for equally
spaced nodes is stable (real) only if the above condition is
satisfied. Inserting the range of values for soil thermal
diffusivity and the time-depth increments, the stability cri-
terion is always satisfied within the context of the Coso sim-
ulation. The finite difference equation for soil heat flux
at time I is then

Qg(I) = k(T - Tgpo)/bz (33)

The complete numerical solution for the model at a
particular time step hinges on the specification of all the
variables needed to calculate the components of surface energy
transfer on the meteorlogical (M) and surface (G) based data.

The four components of surface energy transfer are net radi-
ation (Q*) and the soil (QS), sensible (Q,), and latent (Q,)
heat fluxes. These can be specified as tganscendental in gurface
temperature (T) in the familiar energy conservation equation,

Q*(G,M,T) + Qq(G,T) + Qu(G,M,T) + Q (G,M,T) =0 (34)

An interval halving algorithm is selected to carry
out a search for that temperature which will drive the above
equation to a zero sum condition. Thus, at each iteration,
the surface temperature and all of the components of surface
energy transfer are outputs in addition to the substrate (soil)
temperature profile (Pease, et al, 1976).

3.4 Input and Output of the Annual Model

3.4.1 Input
The annual energy budget simulation model re-
quires six data parameters and 15 mean monthly values for each
of the eight data variables.
The parameters include:
] Soil properties;
° climatological properties;
® numerical node constants for the model.
Data variables are:
® Climatological variables;

[ surface characteristics.

The soil properties needed as input ar? thermgl
conductivity and diffusivity. Thermal diffusivity (cm /sec) is

11
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obtained by measuring the temperature amplitude decrease with
depth or temperature phase change with time.

Thg two climatological parameters are ground
temperature mean ( F) for the 15 monthly temperature values
and a cloud-type correction factor which modifies effective
outgoing radiation values, as specified in Sellers (1965).
The node spacing for the soil was tested for numerical stability
and a value of 100 cm was found satisfactory. The instrument
shelter height of 150 cm was used as the atmosphere's upper
boundary condition. These parameters remain constant for the
15 month test period and for each site location.

The two sets of data variables consist of five
climatological and three surface cover variables. These vari-
ables are submitted to a Fourier mathematical smoothing rou-
tine which computes a value for each variable at 91 time steps,
producing five-day equally-spaced data points over the 15-month
period. The input climatological variables are:

) Mean monthly dew point (OF);
° mean monthly nercent clear skies (%);

] mean monthly atmospheric pressure (cor-
rected to mean elevation of 4127 ft.)
(in. Hg);

° mean monthly air temperature (°F);
) mean monthly wind speed (mph).
These variables were obtained from the China
Lake Naval Weather Station located 25 miles south of Coso be-
tween January 1977 to March 1978. These values are considered
uniform over an extensive area, justifying their extrapolation
to the Coso region. Table 1 shows the mean monthly climatolog-
ical input.
The surface characteristics values are;:
® Surface aerodynamic roughness (cm);
° surface relative humidity (%);

® surface reflectivity-albedo (%).

The aerodynamic roughness is calculated from
measured geometric properties of the surface following tech-
niques outlined in Lettau (1969). The surface relative humid-
ity is definec as the percent of wet fraction which is deter-
mined by the svil moisture content in the upper horizon. The

12
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TABLE 1:
NAVAL WEAPONS CENTER, CHINA LAKE, CALIFORNIA

INPUT CLIMATOLOGY; WEATHER DATA FROM THE U.S.

1977
January
February
March
April
May
June
July
August
September
October
November
December

1978
January
February
March

Temperature

(°F)
44 .59
52.46
50.45
65.41
64.08
83.9
87.88
85.9
77.5
68.55
56.4
50.60

47.79
51.75
58.44

Mean 65.6

Dew Point

(°F)

24.
20.
16.
24.
.82
40.
35.
43.
38.
31.
18.
28.

32

35.
33.
38.

85
57
55
28

13
62
83
27
29
93
48

65
55
97

Wind Speed

(MPH)

3.

74

3.96

W b WO U N eO

.66
.06
.32
.73
.2

.82
.63
.68
.7

.35

.05

4.18

.21

Pressure
Hg)

(in

27.
27.
27,

27

27.
27.
27.

71
76
60

.60
27.
27.
27.
27.
27,
27.
27.
27.

51
53
57
53
54
63
68
69

69
62
62

G NN NN KWW W N B

S0 )

Skycover

%
.52
.12
.66
.53
.83
.45
.54
.51
.3
.52
.45
.02

.16
.45
.03




third variable, albedo, is the ratio of reflected solar radi-
ation to the total incoming solar (global)* radiation. Albedo
and surface roughness were measured at 24 individual field
sites. Surface relative humidity was calculated from soil
samples taken at these same locations. The soil samples were
sealed in double plastic bags and sent to a laboratory for
analysis. Once a surface characteristic was determined, it
was assumed constant for a given site over the 15 month period
for which meteorological data were gathered. Given the arid/
semi-arid nature of the test location, we feel this assumption
is correct.

In addition to these specified initial condi-
tions, the model also generates three internal variables. It
transforms the dew point temperatures to air vapor pressures;
it calculates sky radiant temperature from atmospheric tempera-
ture, atmospheric moisture, and the cloud correction factor;
and it has an attached solar radiation generator**, which cal-
culates mean 5-day global radiation values corrected for chang-
ing sky cover conditions.

3.4.2 Output

The model output consists of 5-day interval
values for sensible, latent, soil heat flux, and net radiation.
At each time step, a soil temperature profile is printed con-
sisting of temperatures at a 1 m node spacing down to a depth
of 10 meters.

4. Evaluating the Annual Wave Correction Model

To evaluate the Annual Wave Correction Model according to
step (f) in Section 2, and obtain the residual geothermal
anomaly in step (g), we would be required to make 102 compu-
tations of normal temperatures at 2-m depths. However, since
the main input variables for each site, i.e., surface roughness
and thermal diffusivity, appeared repetitive in various com-
binations, we divided both variables into four surface rough-
ness categories and five thermal diffusivity categories, as
discussed above. Each site was given a surface roughness-
thermal diffusivity classification; they are listed along with
the September, 1977 temperatures corrected for elevation, in
Table 2. Table 3 shows the various combinations. Using this
technique, we reduced the number of computations from 102 to
17. In view of the uncertainties in the model and the input
data, a larger range of classifications with an increase in
number of computations was not considered justifiable.

Using the 17 sets of input variables shown in Table 3,

*Global radiation is the sum of direct and diffuse radiation
on a horizontal surface.

**John Davies of McMaster University provided the bases for
this solar radiation routine.

14




T L T N

TABLE 2: TEMPERATURE, THERMAL DIFFUSIVITY, ROUGHNESS/DIFFUSIVITY GROUP,

COMPUTED NORMAIL TEMPERATURES, AND RESIDUALS FOR COSO KGRA
M Q,
Temp. %c?  Thermal? Thermal Diffusivivy/ * Camputgd Mesjdual
station' (Sept 1977) Diffusivity Surface-Moughness Class Temp. °C <
1 7.0 1.62 s 3.3
2 5.5 1.51 »
3 6.0 1.3 pr 3 B
4 21.0 1.62 a 2.2
s 7.7 2.27 [ 1.9
6 n.2 1.22 » 10.6
? 0.1 1.51 » 6.
[ 6.2 1.62 » 2
1 21.3 151 « 4.0
10 25.7 1.1 k'Y 0.0
i1 26.? 1.78 » 2.2
12 5.3 1.62 » .3
1 2%.8 1.7% » 1.4
e - as 1.62 n -1.3
15 25.6 1.62 i 2.3
16 6.3 1.91 n 0.7
17 2.27 £’y =0.1
18 1.7% » 4.2
19 181 » 5.7
20 1 1.40 i 3.5
2 3 1.78 » 1.9
2 5.0 1.62 x 1.7
1 3.0 1.62 » 1.4
k23 5.2 1.9 3 1.3
- s 2.8 1.22 ic 1.3 1
26 26.0 1.62 n 1.2
7 25.0 1.40 i 2.4
28 25.7 1.93 x 1.6
2 25.9 1.62 » 2.2
30 26.7 1.40 1A 3.
+ i 26.5 1.40 i 3.9
32 26.7 1.40 1 48
3 28.8 1.91 x 4.7
3¢ 26.% 1.40 s 3.9
kL 26.0 1.51 28 2.3
% 25.4 191 30 1.7
” 26.9 1.62 0 19 :
38 28.0 1.62 20 5.0
kL] 29.1 1.51 2» S5.4 j
40 .7 1.1 i 9.} F
41 33.3 1.91 i 9.2
42 .2 2.07 “« 6.5
43 25.0 1.7% B 0.6
4« 23.1 1.62 2 =-0.2
4 23.6 2.07 43 -1.6
46 24.7 2.48 58 =1.1
48 24.8 1.91 k) 0.4
49 25.3 2.07 4 0.2
50 29.9 1.62 A s.1
51 30.8 1.62 » T.1
52 338 2,27 5A 6.8
53 25.1 1.7% kL 0.7
Se 6.2 1.9 3 1.8
55 28.0 2.27 SA 1.0
56 268.) 1.62 F Y 3.5
57 26,9 1.40 1c 4.7
58 7.8 1.62 B 3.9
59 6.7 1.62 < 3.4
&0 26.7 1.40 t 4.1
61 27.0 1.40 T 3.4
62 26.1 1.62 c 2,6
63 6.7 1.51 n 1.9
64 8.3 1.62 E S 3.5
65 24.7 1.62 2A ~0.1
66 25.0 1.7% kY 0.6
67 25.2 1.62 n 0.4
68 23.8 1.62 2 -1.0
69 23.1 1.40 it} =-0.%
i 241 178 » -0.1
n 8.7 1.62 m 2.0
72 24.9 1.40 1A 1.3
. .. 7 26.9 1.62 E 3 2.1 9
N )3 4 26.6 1.7% pLY 1.0
£ 5 24.9 1.40 1c 2.
. 76 2.6 1.22 1 3.0
r- 7 8.7 1.51 E 1.9
» 5.6 1.62 » 1.9
. 9 6.6 1.78 » 2.2 {
P © 6.6 1.78 n 1.0 j
s 0 5.4 1.5 n 0.6 !
“2 6.8 19 3 1.2 f
I3 25.7 1.3 3¢ 1.6 i
s 25.2 1.90 n 0.8 :
3 .- . 0.7 1.78 n -0.9 H
86 4.5 1.7% k) 1.1
87 2.3 1.62 » 0.6
. 2.2 178 'Y -2.4
9 2).5 1.7% » -0.9
%0 0.7 L9l » -0.7
9 2¢.1 1.9 s 0.3
92 4.1 L9 3 ~¢.3
[H 5.1 2.07 @ -1.2
9 3.8 1.51 » o.1
98 4.7 1.9 » 0.3 ,
9% 4.9 1.9 n -0 H
97 7.2 L 1 ‘.
% 0.2 122 n 6.6
9 25.6 1.51 E 1.6
100 253 1.82 » 23
100 26.7 1.40 n 31
102 6.0 1.51 » 2.3
103 6.3 1.40 s 1

NOTES: !No data were taken at Station #47.

Temperature values in (°c) bave all been correci~d for ele-
! vation differences. Corrections based on an adiabatic lapse
rate of ~-1.0°C/100 m. Corrections are keyed to an arbitrar-
‘ ily picked datum of 3400 ft elevation (See LeSchack et al
(1877).

3Thermal diffusivity is expressed in cm?/sec.

“Surface roughness (A-D) and thermal diffusivity classes
(1-5) were determined according to procedures discussed
in Section 2 above.
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TABLE 3: SURFACE ROUGHNESS/THERMAL DIFFUSIVITY COMBINATIONS
AND OTHER MODEL INPUT VALUES

\ THERMAL DIFFUSIVITY CLASS (cm?/sec)
1 2 3 4 5
A 0.0013 | 0.0016| 0.00185 | 0.0021 | 0.0024 ]
“ 3 3 3 3 3
2
EA B 0.0013 | 0.0016| 0.00185 | 0.0021 | 0.0024
= 8 8 8 8 8
28
i a0 0.0013 | 0.0016 | 0.00185 | 0.0021
Owm C
=3 12 12 12 12
gu
n 0.0013 0.0016 | 0.00185
D 18 18 18
OTHER INPUT VARIABLES
(1) Mean albedo; 0,33
! (2) Mean percentage moisture; 0.05
; (3) Volumetric heat capacity (pcp); 0.4

TABLE 4: COMPUTED NORMAL TEMPERATURES FOR 17 SETS OF
MODEL INPUT DATA BASED ON SURFACE ROUGHNESSéTHERMAL
DIFFUSIVITY CLASSES, TEMPERATURES IN “C

THERMAL DIFFUSIVITY CLASS

/

2 3 4 5 i
A 23.6 24.8 25.6 26.3 27.0
@ B 22.6 23.7 24.4 25.1 25.8
223
mE< C 22.2 23.3 24.1 24.7
[«
200
n Qo D 21.9 23.0 23.7

16
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we chose to evaluate the model for data gathered during 22-24
September, 1977, because at this time of year the 2 m tempera-
tures are close to their peak annual value. This results in
maximum temperature contrast between areas of low and high
thermal diffusivity. The computed normal temperatures are
shown in matrix form in Table 4.

5. Preparing the Residual Map

In theory, if there is no anomalous geothermal heat flux,
the evaluation of the Annual Temperature Correction Model at
each site for a given date should produce a 2-m temperature
value equal to that actually measured for the same data. Any
measured temperature greater than that computed by the model
could be assumed to be caused by higher than normal heat flow.
Values for the site, the roughness-diffusivity group, the meas-
ured temperature for September, 1977, corrected for elevation,
and the computed temperatures are listed in Table 2. The
differences between the measured values minus the computed
values, i.e., the residuals, are also tabulated. When these
residuals are contoured in the same fashion as the mean annual
temperature map for Coso, and the two are compared as in Fig-
ures 2 and 3, the similarity can be seen. In short, the same
map that was developed using a year's temperature data can
be duplicated in much less time using temperatures recorded
at a given time along with appropriate corrections derived
from simultaneous ancillary data.

6. A Preliminary Test of the Model's Reliability

Because the model has not yet been refined to the maximum,
and because there is uncertainty in the accuracy of our input
data, we have evaluated on a statistical basis the reliability
of our simulated normal temperatures. Using the residual map
as a guide, we chose two areas: the southwest and the north
where there are a number of data points and geothermal heat
flow appears to be normal. At each site we compared the ob-
served temperatures with their respective computed temperatures
using the Student-T test, a statistical test for comparing data
populations. The values are listed in Table 5. At both areas
we can accept the null hypothesis that there is no significant
difference between the means at the 5% level; there is a 95%
probability that the computed and measured values come from
the same population. If this is so, it suggests that the re-
sidual values for the entire Coso area are probably accurate
to + 1.99C, based on the summation of the standard deviation
of *+ 0.96°C for the observed temperatures corrected for elevation
with the standard deviation of + 0.94°C for the associated com-
puted values, in the non-anomalous areas.

As the model is refined with further use, greater accuracy
is expected. Although the present accuracy is adequate for
the strong anomaly found at Coso, the true test will come when
the Annual Wave Correction Model is applied to an area where
the temperature anomaly is much less.

17
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FIGURE 2: (Above) Mean annual temperature contour mag for Coso,
corrected for elevation. Temperatures in “C.

FIGURE 3: (Right) Residual temperature contour map for Coso in
OC. Residuals were prepared by subtracting normal
2-m temperatures computed from Annual Wave Correction
Model for 22-24 September 1977 from 2-m temperatures
observed during this same period. Note close similar-
ity between mean and residual anomaly patterns.
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TABLE 5: A COMPARISON OF SEPTEMBER 1977 TEMPERATURES,
RECORDED AT TWO NON-ANOMALOUS AREAS AT COSO AND
CORRECTED FOR ELEVATION, WITH TEMPERATURES
COMPUTED FOR THE SAME SITE AND TIME WITH
THE ANNUAL WAVE CORRECTION MODEL

. ¥EST o _ NorTH o
Station Temperature ~C Station Temperature “C
observed computed observed computed

16 26.3 25.6 65 24.7 24.8

17 26.7 27.0 66 25.0 25.6

22 25.0 23.3 67 25.2 24.8

23 25.1 23.7 68 23.8 24.8

82 26.8 25.6 69 23.1 23.6

83 25.7 24.1 70 24.3 24.4

84 25.2 24.1 71 25.7 23.7

85 24.7 25.6 72 24.9 23.6

86 24.5 25.6

87 24.3 23.7 Computed T value = 0.44926

88 23.2 25.6

89 23.5 24.4

90 23.7 24 .4 STD of computed values = +0.94

91 24.1 24.4

92 24.1 24.4 STD of observed values = +0.96

93 25.1 26.3

94 23.8 23.7

95 24.7 24.4

926 24.8 25.6

Computed T value = 0.03187
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7. Examining the Effect of Topography on Shallow Isotherms

We have studied the effect of topography on sub-surface
isotherms at Coso KGRA using a model (FINITEG) developed by
Lee (1977). The model was used to predict sub-surface temp-
eratures to a depth of 0.75 km in the area of Cactus Peak
(Figure 1). Program FINITEG uses the finite-element method
to develop a numerical temperature grid within specified
boundaries so that isotherms can be drawn. When these isotherms
are superimposed on a topographic profile of the area, it can
be determined if the isotherms conform to the topographic
profile. Conformity is necessary for a survey in an area of
significant topographic relief, such as Coso.

The FINITEG program can provide solutions for steady-
state or transient conditions, It allows for the addition of
anomalous areas to the data set to provide a more realistic
geological model of heat flow problems. FINITEG provides
steady state or transient solutions for a number of heat flow
conditions that can be related to relief, heat generation,
erosion, sedimentation, igneous intrusion, non-uniform surface
temperature, transient surface temperature and inhomogeneous
thermal properties. The model allows for the treatment of a
single situation or a combination of them.

We have used the variable relief and inhomogeneous thermal
property features to model an east-west transect through
Cactus Peak, an area which appears to have normal heat flow.
Figure 4 illustrates the physical construction of the model,
the details of which are discussed in the Appendix. Using
values determined from field measurements, we have evaluated
the model and have developed the thermal structure illustrated
in Figure 5.

This model has taken into account 100 m of topographic re-
lief and the effects of three anomalous regions near the sur-
face (representing the soil in which the measurements were
made, as opposed to the more conductive bedrock). It is ap-
parent from examination of Figure 5 that, within the resolu-
tion of the model, the isotherms conform to the topography.
The contour interval is essentially unvarying as it approaches
the surface, even though the isotherms pass through thin soil
layers of different thermal conductivity. Our interpretation,
from evaluating the Lee FINITEG model, is that in geological
settings in the Basin and Range province, where there is some
topographic relief and 2-m temperature measurements are made
in a thin soil layer overlying a more conductive bedrock,
there are no significant distortions to a 2-m temperature con-
tour map because of either topography or soil thickness vari-
ations. We therefore feel confident to emplace our 2-m survey
holes with little concern for topography or modest variations
in soil conditions.
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<—— COLUMN 2

ROW 23 — =
ROW 22—

1/ < COLUMN 1

{10PO(1,1), TOPO(I,2)]

ANOMALOUS AREA 3

ANOMALOUS AREA 1

BASE OF CACTUS PEAK MODEL; TOPO(I,2) = 0=0.7 KM ASL\

TOPO(L,2)= A —]>
TOPO(1.2)= B — =

FIGURE 4:

The physical construction of the 7.2 km transect
through the Cactus Peak area. The upper boundary
of the model is determined by the topographic pro-
file. Cactus Peak is at an elevation of 5360 ft
(1.63 km) or 0.93 km above the arbitrarily chosen
base at 0.7 km above sea level. 1In the model, the
number of rows per column is constant; owing to
topographic variations, row thickness varies from
column to column as shown in the case of rows 22
and 23.




8. Conclusions

In previoyﬁ work we goncluded that the steps essential to
a SHALLO-TEMP survey were:;

(a) At each site drill two adjacent 2-m holes;

(b) 1insert thermistor probe in one, thermal con-
ductivity probe in the other;

(c) take soil sample for type determination;

(d) measure surface roughness, surface albedo,
thermal conductivity.

(e) After equilibration (2-4 days, depending on
hole size), read thermistor probe. One read-
ing will suffice.

(f) Using the annual wave correction program, calcu-
late the normal 2-m temperature for the given
location and time using the following inputs:
18-24 months of weather (see section 3.4.1)
from nearest National Weather Service Station;
thermal diffusivity (calculated from thermal
conductivity), and surface roughness and albedo.
Output is normal 2-m temperature for given loca-
tion and time.

(g) Subtract normal 2-m temperatures from observed
temperatures to obtain residual geothermal anom-
aly.

In this work we have gleaned the soil and surface data re-
quired to conduct the survey at the Coso KGRA from previously
discussed measurements or analyses. The meteorological data
were obtained from NOAA weather records. /[fn annual wave model
was constructed and normal 2-m temperatures were calculated
for each of our 2-m sites for the September, 1977, period.
These normal temperatures were subtracted from the 2-m temp-
eratures observed at each of the sites in September, 1977.

A residual map was prepared. Anomalies derived from the re-
sidual map compared favorably with those interpreted from a
mean annual 2-m temperature map for the same area. Using
statistical techniques, we determined that tPﬁ accuracy of
the residual map produced by the SHALLO-TEMP method is

+ 1.9°C. This may be improved with further refinement. How-
ever, we conclude the model is adequate for investigating
anomalies of the magnitude found at Coso,

We have also used a mathematical model to evaluate the
effect of topographical variations and near-surface variations
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of geology on isotherms in a non-anomalous area of Coso. near
Cactus Peak. Because the computed near-surface isotherms
closely follow the surface topographical profile, we can con-
fidently emplace our 2-m survey holes with relatively little
concern for site location, if the water table is deep, as it
is at Coso.
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APPENDIX 1

by Kevin McNamee

Evaluating the Lee FINITEG Program

The area to be studied by FINITEG is a two-dimensional
region (horizontal distance is the ordinate, depth is the
abscissa) consisting of four sides, three of which are straight
lines, while the top side is a topographic representation or
profile of the area. When entering the data, the topographic
coordinates of the area to be studied must be specified. The
defined study area is then divided into quadrilaterals formed
by rows and columns. The width of the quadrilaterals is de-
cided by the user. The greater the number of rows and col-
umns, the greater the resolution of the model. The program
attaches coordinates to the nodal points of this quadrilateral
framework. Right-handed rectangular coordinates are used and
the origin is set at the lower left-hand corner. The field
data (i.e., thermal conductivity, surface temperature, etc.)
are then assigned to this region by the user. Basically the
same procedure is followed for the anomalous regions except
that they are not broken into discrete elements. Their global
coordinates within the defined study area as well as their
extreme coordinates are entered into the program. The data
used for the study at Coso follow:

The area chosen for this heat flow study was an east-
west transect through Cactus Peak extending from, east to west,
stations 62, 61, 63 and 64. The transect is 7.2 kilometers
long and the base of the region is at 0.7 kilometers above
sea level. Three anomalous soil regions were considered in
this area. They are on either side of Cactus Peak. Their
global coordinates are listed below along with their physical
description.

The data input consists of a number of input cards. The
first card is the title. On the second card the input is as
follows: (1) NX is the number of columns (=36). Each column
has a horizontal width of 0.2 kilometers. The number of
columns and rows is chosen by the user. (2) NY is the number
of rows (=22). The spacing of the rows is based on a geo-
metrical progression--the closer to the surface, the smaller
the spacing. This provides for finer resolution in the upper
part of the subsurface. FINITEG allows the user to choose
the row spacing by merely changing program cards. For our
purposes, geometrical spacing was used for better near-surface
resolution. Since the program input is in km, however, the
resolution is poor in the upper 9 m. (3) NDT is the number
of time increments (=1); this is the steady state condition.
(4) NREG is the number of anomalous regions (=3). (5) NBC
is the type of boundary condition chosen (=2). This specific
boundary condition occurs when there are surface temperatures




given at the top of the boundary area and a known heat flux
at the bottom of the boundary area. (6) JFLUX is the Jth
row at which the calculations for nodal temperature and net
flux are calculated (=NY=22), In this case, the calculations
proceed to the top of the study area. (7) MOVE is the topo-
graphic surface movement (=0).

On the third input card, the physical data of the area
broken into discrete elements are included, The first variable
is DT, the time increment for transient temperature solutions.
For the steady state condition, DT=0. The units are in millions
of years. The physical data, derived from Combs (1976) are as
follows: (1) AK is the reglonal thermal conduct1v1ty, = 2,762
W/mK®, (2) DIFU is the diffusivity, = 1.27 x 10~ °® m?/sec,

(3) AQ is the regional heat production, and for this transect
it was assumed that there were no heat sinks or sources, there-
fore, AQ is zero, (4) ALAPSE is the lapse rate and is 31.5°C/m,
and (5) QIN is the ingut heat flux to the bottom of the model
area and is 87.99 mW/m“*

On the fourth card the topographic data are entered; TOPO
(I, 1) is horizontal distance, and TOPO (I,2) is height. In
the case of Coso, there are 37 topographic points entered. The
7.2 km east-west transect was divided evenly into 36 columns,
each 0.2 km long. To find TOPO (I,2), a topographic profile
was drawn from a topographic map of the Coso area. The TOPO
(I,1) coordinates were plotted on the topographic profile and
the height was read to give TOPO (I,2). These data were then
converted to kilometers. The TOPO (I,2) data were calculated
from a base value of 0.7 km ASL. The base was given the value
TOPO (I,2) = 0 and the height of the topographic point was
calculated accordingly.

For each anomalous soil region, a number of inputs are
required. On the topographic profile, the anomalous soil re-
gions are numbered from left to right so that the data input
for each anomalous region must follow in sequential order.
(1) NPT is the number of vertices of a polygon surrounding
the nth anomalous region, and (2) COND is the conduct1v1ty
For anomalous regions 1 and 3, COND is 0.2078 W/m - KO and
for anomalous region, 2, COND is 0.1837 W/m « K (3) CAPA
is the thermal diffusiv1ty of the anomalous region For
regions 1 and 3 CAPA 1s 0.158 x 107° m?/sec and for region 2
CAPA is 0,140 x 10" ®m?/sec. (4) HEAT is the heat generation
and is zero. (5) EXTREMA are the topographic points needed

to define the extreme coordinates xleft' xright’ Ylower’ and

Yupper of each anomalous region,

The coordinates of each vertex must now be defined for

*We have used SI units here to be consistent with Lee's model,
rather than changing them to the CGS units used in the body of
the report.
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each anomalous region. If NPT is 10, there must be 10 global
coordinates, defined as REG (K, 1) and REG (K, 2)(horizontal
and vertical component). The coordinates are read counter-
clockwise starting from the lower left of each anomalous

soil quadrilateral (see Figure 4 of the text).

The last input is the boundary temperature at the top of
the surface. The original program called for the surface
temperatures to be set at 09C, but this was modified for our
purposes so that we could enter our 2-m temperatures. There
is a 2-m temperature to correspond with each topographic sur-
face coordinate. 1In effect, the surface of this model is
at a 2-m depth. We felt this justifiable due to the lack
of resolution in the top 5 m.

The surface temperature is a uniform 21.3° Celcius. This
was derived by consulting a SYMMAP*-produced 1° C-interval
temperature map for corrected mean annnal temperatures at
Coso. In the area of Cactus Peak, the temperatures were
found to be a uniform 21.30C at the 2 m depth.

The output of program FINITEG are 851 temperature nodes
(37 horizontal nodes x 23 vertical nodes), and these are
mapped onto the study area. Since the rows are geometrically
spaced and the total length of each column is different due
to the topography, the width of each row from column to col-
umn will differ. The width of each row is calculated by sub-
stituting the total length of each column and the number of
rows into the geometric spacing equation:

(J-1) |2(Ny + 1) - J| TOPO(I, 2)/Ny(Ny + 1)

where J is the row number. Ny the total number of rows to be

calculated, and TOPO(I, 2) the total length of the column.
From this, we can plot the position of each nodal point, and
its associated temperature and finally, isotherms.

*See Appendix 2
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APPENDIX 2

Map Contouring by SYMMAP

We tried to avoid bias when contouring our data for pres-
entation, especially when comparing our anomalies with those
generated by other researchers. Our data were contoured by
the SYMAP computer program (version 5.20) designed by the
Laboratory for Computer Graphics and Spatial Analysis, Graduate
School of Design, Harvard University, Cambridge, Massachusetts,
02138. The program takes the maximum and minimum points in a
data set and obtains their difference. The difference value
is divided by five, forming five equi~dimensional cells. The
numerical boundary between the lowest and next lowest cell be-
comes the value of the lowest contour. The next highest con-
tour is the boundary between the second lowest and the middle
cell, for a total of four contour lines. Contour values and
intervals are derived when the data set is specified. Differ-
ent typographic characters are used to "fill in" the space
between contours. In each field of characters, numbers from
1l to 5 correspond to geographic locations of the data points
being contoured. A figure "1'" represents the location of a
given point whose range falls within the confines of the lowest
cell. A figure "5" represents the location of a data point in
the highest cell.
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