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1.0 INTRODUCYION

In support of the Navy's continuing program to develop high speed

towed-body systems, this report describes the extension of an earlier

analysis capabilities programming effort. It is the results from this

most recent work which we are reporting here.

To provide some background for the present tasks, a brief review of

our previous efforts is given below.

The initial work was undertaken to provide an analysis and numerical

demonstration capability for the study of streamlined fairings. These

fairings are to be used in high speed underwater towing situations. The

construction of the fairings is such that streamwise distortions are able

to occur; and, that a likely consequence from them would be some "unde-

sirable behavior" from the towline. What was not anticipated, but what

has actually occured, was an uncontrolled "kiting" of these tow cables --

leading to unacceptable towing performance.

Since the physics of this problem was not immediately apparent, and

the remedial measures taken to correct the adverse happenings did not

resolve the situation; it was proposed that some numerical analysis tools

be developed to aid in the study and understanding of these situations.

A first step in this effort was the development of the computational

algorithm which we have labled HYDROSAP. This program seeks to describe

the physical deformations produced on a typical streamlined, flexible,

two-dimensional fairing section as a consequence of the hydrodynamic

loads impressed on it. The loadings which these airfoil-type sections

are subjected to are those typical to any streamlined (two-dimensional)

shape operating at an angle of attack in a steady, viscous fluid flow.

Because these fairings are flexible -- their after-sections are con-

structed from a rubber-like material -- the chordwise distortions cause

the flow field to be altered; which, in turn, produces other chordwise

distortions; which, in turn, changes the flow pattern, .. etc.

-1-



As a consequence of these actions it is apparent that the mathematical
modelling of this phenomenon requires an iterative method of solution. A

solution which (first) determines the hydrodynamic "loads" on the profile

section; then ascertains the distortions due to this loading; subse-

quently, redefining the loads on the (deformed) profile; and so on.

(Incidentally, this methodology is depicted, schematically, on Figure 2.1

in the next section of this report.)

Being cognizant of the fact the HYDROSAP treats only the two-

dimensional problems; that it will merely "point" to the probable causes

of kiting; then, a next logical step (in the developmental process) was

that of modelling the three-dimensional problem and seeking a more likely

and realistic answer to the real-world situation.

The three-dimensional, computational program development is basi-

cally what is being reported on here. However, it should be noted that

we have only begun the task of developing a three-dimensional, numerical
analysis tool. In this report we will describe the current status of

these efforts; outline what has been accomplished; discuss the findings

and results from this work; and describe those things which we believe

are needed to accomplish the goals for this overall task. These goals,

incidentally, will only be realized when a full, three-dimensional anal-

ysis program has been developed; and after it has been checked and veri-

fied against experimental evidence. Then, and only then, can this work

be said to be "complete".

In this second stage of the development effort two primary computa-

tional algorithms have been developed. One, given the acronym SHCENT, is

used to describe the mechanical-structural characteristics of the cable's

cross-sections. Its principal outputs are the shear-center location and

torsional rigidity; both of which depend on the shape and the material
description of the cross-sections. In addition, certain other parameters

(elastic and geometric properties) needed in the structural analysis are

also computed here.

-2-



With the loading information provided from HYDROSAP, and the cross-

sectional mechanical properties obtained from SHCENT, the second computa-

tional prograi, TOWLINE, is used to ascertain the three-dimensional

dynamic response of the cable. This algorithm was developed using a

finite element method technique. The cable's elements were build around

a standard bean model, one which is assumed to suffer large displacements

but have only small strains.

The TOWLINE program, in its present state of development, is des-

cribed in this docunent. It should be recognized that the existing ver-

sion of TOWLINE is not ready to be used on a production basis, even

though it has been used in an exploratory fashion on several "model"

cable problems as we describe in Section 3.0, below. The original intent

of this developmental task was to provide the existing computational

framework; to enhance it during subsequent efforts; and, to perfect the

model through a verification with experimental data and evidence.

In the following sections of this document we will (first) outline

our previous developments (HYDROSAP); then, we will describe, discuss and

comment on the achievements and results obtained in the current task

effort.

-3-
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2.0 TWIO-DIMENSIONAL FLOW-STRUCTURE INTERACTION

2.1 Overview of the Two-Dimensional Problem

A study of the nonlinear interactions between hydrodynamic and

structural effects, on a flexible two-dimensional streamlined cross-

section when exposed to a steady, viscous fluid flow, was a first step in

the analysis of faired towing cable systems. The resulting cross-

section's deformed shape alters the cable's local hydrodynamic character-

istics and, consequently, affects its global behavior. This build-up in

interaction of structural and hydrodynamic effects is pictured schematic-

ally in Figure 2.1.

In our iterative approach to this problem we determine a pressure

distribution corresponding to the base (or design) profile shape. Thi:

streamlined section is assuned to be at a fixed angle of attack, a ,

relative to the free stream velocity vector, V . This (base) pressure

distribution is then applied to a suitably described finite element model

of the fairing to determine a structurally "deformed" profile. This

altered shape, in turn, develops an altered pressure distribution --

which in turn deforms the profile -- which in turn ... etc. This pro-

cess continues, in an iterative fashion, until the incremental change in

structural deformation is "sufficiently small" to describe the converged

(deformed) profile and its attendant pressure distribution. Typically a

converged solution is achieved after some five to ten iterations.

The HYDROSAP computer program is a mechanization of the process

described above. HYDROSAP is based on various elements of two existing

computer programs; the NASA Multicomponent Two-dimensional Viscous

Airfoil Program (referred to as HYDRO in the sequel) and the University

of California's ron-linear Structural Analysis Program (NONSAP). The

various program elements, plus the many components developed for our pro-

grams's mechanizations, were integrated into a single software system.

-5-U _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _
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Fi gure 2. 1
A Schematic Depicting the Iterative Operations of HYDROSAP --
A Hydrodynamic Loading, Structural Response Software System

-6-



In sections 2.2.1 and, respectively, 2.2.2 below, we will briefly

describe these solution algorithms. A more detailed discussion,

including a description of program input and operating requirements, can

be found in the HYDROSAP documentation [1].1

That report also describes, in full detail, the several features of

the HYDROSAP system. In particular, a description of the BTS-developed

executive, DRIVER, and other features which would be of interest, primar-

ily, to the software user, appear therein.

2.2 Solution Algorithms

2.2.1 The Fluid Flow Field

Given a pointwise shape description of a two-dimensional profile,

the HYDRO routines compute the velocity destribution, over the rrofile's

surface, by a superposition of velocity fields. These are the primary

velocity distributions due to thickness and to profile camber. This is a

potential flow solution, one which must be modified to account for vis-

cous (boundary layer) effects by one of two methods: (1) a modifying of

the profile's geometry; or, (2) introducing a distribution of source sin-

gularities to account for the boundary layer thickness distribution. The

potential flow field (thickness and camber effects) is then re-computed,

taking into account the boundary layer displacement thickness over the

profile. This process reoccurs, iteratively, until changes in the veloc-

ity field fall below some pre-set tolerance. Of course, if the viscous

boundary layer is neglected, the computations are not iteratively

sequenced and the corresponding run time is considerably shortened.

Calculations for the velocity fields, due to thickness and camber,

make use of Oellers' Vortex Distribution Method [5], using the scheme

which is outlined in [2] and [3]. Incorporated into these computations

is a procedure to satisfy the Kutta condition for the profile. The pro-

cedure represents a modified Kutta condition wherein the upper and lower

'Numerals in brackets [ ] denote the reference numbers in Section 5.0.
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surface vortex strengths are matched, in magnitude, but assigned opposing

signs at the foil's downstream terminus.

If the viscous boundary layer is to be simulated by a distribution

of source singularities then subroutine SOURCE is called. Otherwise the

boundary layer's influence is provided for by modifying the velocity

field for camber effects. For those cases where the foil's trailing edge

thickness is not zero, the velocity field due to thickness is altered

through a closure of the geometry one chord length downstream of the true

trailing edge.

The present version of HYDRO does not compute flow separation,

although recent work in this area could be incorporated [6]. Also, the

drag increment due to the wake behind the foil is based solely on empir-

ical results from tests on truncated profiles.

The laminar boundary layer computations in HYDRO are based on

Goradia's adaptation of the work by Cohen and Reshotko [7], and on

Schlichting [8]. In addition to computing the laminar boundary layer

thickness, the program determines the laminar friction coefficients and

predicts boundary layer transition points. Truckenbrodt's integral

method [9] is used to compute parameters describing the turbulent bound-

ary layer.

Finally, the usual force and moment coefficients for the profile are

computed from the pressure and shear force distributions. The moment

coefficients -- at both the quarter-chord point and at the leading edge

-- are determined. In addition to the "usual" drag coefficient, the drag

coefficient based on the approximate theory of Squire and Young [10] is

calculated and displayed in the output.

-8-
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2.2.2 A Cross-Section's Mechanical Response

Given a description of the profile's topology, the mechanical prop-

erties of its constituent materials, and the pressure loading (from

HYDRO), NONSAP is used to compute the profile's mechanical response.

(The finite element program NONSAP (NONlinear Structural Analysis

Program) was originally developed in 1974 [12]). Even though NONSAP may

be used to analyze the static or dynamic response of one-, two-, or

three-dimensional structures, including the effects of geometric and/or

material nonlinearities, we restrict ourselves to its two-dimensional

capabilities.

In this section we give a brief overview of NONSAP's capabilities

and its operation. However, for a more complete and detailed description

of the NONSAP theory and operation, the reader is referred to the orig-

inal program documentation [11, 12] and to the HYDROSAP documentation

[1].

2.2.2.1 Program Description

The NONSAP program was developed to solve static or dynamic, linear

or nonlinear structural problems. The allowable nonlinearities may be

due to either material behavior (elastic, hyperelastic, and hypoelastic

material models are available) or to the effects of large displacements

and large strains. The equations of motion from continuum mechanics,gov-

erning the behavior of the structure under study, are discretized, in

space variables, through the use of isoparametric finite elements. The

equations are discretized in the time variable through either a Wilson-

Theta or a Newmark-Beta time integration scheme. The resulting nonlinear

equations are solved using an incremental method which corresponds to a

modified Newton iteration.

The structural systems to be analyzed may be modeled using a variety

of finite element types. These are:

-9-
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" one-dimensional truss elements,
* two-dimensional plane stress or plane strain elements,
" two-dimensional axi-symmetric shell elements, and
• three-dimensional solid or thick shell elements.

Since nonlinearities may be due to nonlinear material behavior as

well as to large displacements, or large strains, there are several

material descriptions available in the program. These include:

• an isotropic linear elastic material model,
" an orthotropic linear elastic material model,
• the Mooney-Rivlin model,

" an elastic-plastic material with von Mises or Drucker-Prager

yield conditions,
• a variable tangent model, and
" a curve description model.

Currently, the HYDROSAP program makes use only of the one-dimensional

truss finite element, the two-dimensional plane strain element, and the

isotropic linear elastic material model. All nonlinearities are, there-

fore, geometric. Moreover, HYDROSAP uses NONSAP routines in the non-

linear static solution mode with the "updated Lagrangian" solution proce-

dure. As a consequence of the constraints, the discussions below will be

restricted to those NONSAP procedures and options which are currently

employed in HYDROSAP.

2.2.2.2 Incremental Equilibrium Equations for Structural Systems

Using the well-known and well documented [12, 13] method of finite

elements, the incremental nodal point equilibrium equations for an

assemblage of finite elements take the form,

M ii(t+At) + C 6(t+At) + K(t) Au R(t+At) - F(t), (2.1)

-10-



where

M = the constant mass matrix,

C = the constant damping matrix,

K(t) = the tangent stiffness matrix, described at time t

R(t) = the external applied load vector, described at time t

F(t) = the nodal point force vector (of stress-equivalent internal

reactions), for time t ,

u(t) = the vector of nodal point displacements, at time t

Au = the vector of nodal point displacement increments, from time

t to time t+At: thus, u(t+At) - u(t)

t = time, and

At = time increment.

Of course, in a static analysis M=C=O , while time is regarded only as a

loading parameter used for applying the external load in "quasistatic"

load increments. Also, in nonlinear analysis, the solution of (2.1)

yields only approximate solution increments, Au . In order to improve

the solution accuracy and to prevent the buildup of solution instabil-

ities, equilibrium iterations may be used at selected time steps.

In the nonlinear static case an equation system of the form

K(t)(Au)i+ I = R(t+At) - F. (i=0,1,2,...) (2. )

is solved by iteration. Here F = F(t) and F. is the vector of

stress-equivalent internal reactions corresponding to the displacement

vector ui(t+At) = ui.1(t+At) + (Au)i . The solution of (2.2), by

iteration, is clearly a modified Newton method for (2.1).

-11-



2.2.2.3 NONSAP Solution Process

The complete NONSAP solution process consists of three distinct

stages: input, assembly, and step-by-step solution (See Figure 2.2).

Input Stage

In this stage, control and nodal point input are read and/or gener-

ated by the program; and equation numbers for the active degrees of

freedom at each nodal point are established. In addition, externally

applied load vectors are established and stored on tape. Finally, when

the element data are ready and/or generated, element connectivity arrays

are established, and all element data are stored on tape.

Assembly Stage

Here the linear and effective linear structural stiffness matrices

are assembled and stored on tape, as are the mass and damping matrices

(for a dynamic analysis). Matrices are stored in compacted form as one-

dimensional arrays. Only the elements below the "skyline" of a matrix

are processed, thereby reducing storage, input/output, and computational

costs.

Solution Stage

In nonlinear static analysis (the solution mode for which NONSAP

routines are used by HYDROSAP) damping and mass effects are neglected.

Time serves as a loading parameter only, and the input time step deter-

mines the load increment to be applied to the structure during each solu-

tion step. The linear stiffness matrix, which was previously assembled

and stored on tape, is updated at each solution step. This is accom-

plished by updating the stiffness matrices, of the nonlinear elements, to

form a current tangent stiffness matrix. The load step interval at which

this update occurs is one of the NONSAP control inputs.

-12-



INPU READ Control information ,

INPUT Establish nodal data
PHASE Establish loads data and

Store on TAPE 3
Establish element data

MATRIX ASSEMBLE linear structure
ASSEMBLY Stiffness matrix
PHASE STORE on TAPE 4

COMPUTE linear effective loads
READ linear stiffness from

BEGIN TAPE 4
SOLUTION Calculate nodal forces
PHASE equivalent to element

s tresses 4

READ loads from TAPE 3

ASSEMBLE nonlinear str cture
stiffness matrix

IF stiffness update this step...
READ linear stiffness

from TAPE 13 13
READ nonlinear element

group data from TAPES 2/9
Update stiffness matrix /---E/9

OR...
READ triangularized

nonlinear stiffness from
TAPE 10

CALL COLSOL to compute
displacement increment

Store triangularized __

nonlinear stiffness lO
mnatrix on TAPE 10

READ loads from .
TAPE 33

READ linear stiffness
from TAPE 44

EQUILIBRIUM READ nonlinear element

ITERATION group data fromPHAER T O TAPES 2/9
PHASE Determine current

nonlinear effective
loadsREAD triangularized

effective stiffness
from TAPE 10

CALL COLSOL to compute
displacement increment

( Caculae eement stresses

NlONSAP Flowchart Program Operation
in Nonlinear Static Solution Mode
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Moreover, within each load step, solution accuracy may be improved

by equilibrium iterations. The interval of load steps at which an equi-

librium iteration is to be allowed is also a NONSAP control input.

A solution to the incremental linear equations at each load step is

performed by the linear equation solver, COLSOL, which performs Gauss

eliminations on the positive definite symmetrical system of equations.

This algorithm takes advantage of the banded and sparse structure of the

stiffness equations by not processing elements outside a matrix skyline,

since they remain zero throughout the computation. The algorithm

consists of an LDLt decomposition of the tangent stiffness matrix into

lower triangular, L , and diagonal, D , matrices, followed by a reduc-

tion and back substitution of the load vector.

2.2.2.4 NONSAP Element Library

In this section we will briefly describe only those NONSAP element

types which are used by HYDROSAP.

The One-Dimensional Truss Element

A one-dimensional truss element, which

may be located in three-dimensional space,

is used in HYDROSAP to model the thin skin

which is on the exterior of some cable fair-

ings. This element has two nodes; it is

assumed to have a constant cross-sectional

area (which corresponds to the skin thickness y

in the HYDROSAP plane strain analysis) and to
x

undergo small strains and large displace-

ments.
Figure 2.3

A One-Dimensional

Truss Element
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The Two-Dimensional Plane Stress/Plane Strain Element

An isoparametric plane strain element, X

having a variable number of nodes, is used to 2

model the cross-section of the cable fairing.

This element may have from three to eight

nodes; any of the nodes numbered from five

through eight on the sketch may be omitted. A

three node element is obtained by setting the

coordinates of two nodes for a four node quad-

rilateral equal to one another. In a plane

strain analysis the out-of-plane element thick-

ness is assumed to be unity.

Figure 2.4

A Two-Dimensional

Plane Strain Isopara-

metric Quadrilateral

Element

2.3 Sample Computations

In order to illustrate the capabilities of the HYDROSAP software

system, in this section we will present the results of some typical com-

putations. In section 2.3.1 will we analyze the behavior of an NACA 0020

section. In section 2.3.2 we will discuss an NACA 65-018 section; and in

section 2.3.3 we will explore the sensitivity of the computations to a

refinement of the finite element mesh.

2.3.1 The NACA 0020 Profile Section

A hypothetical, three-inch chord faired cable, constructed as an

NACA 0020 section, is "towed" through water at 44 fps (34.5 knots). It

is assumed to be at an angle of attack of 80. In the following discus-

sion we designate parameters of the computer model by capitalization.

These variables are defined in Appendix A.

-15-



Structurally, the towline section is modelled as having a rigid

CORE (ECORE = 1x10 6 psi) extending aft from the leading edge for 3/4"

(Y1CORE = 0.0, Y2CORE = 0.75). The afterbody, or TAIL, is assumed to he

composed of a relatively flexible rubber-like material (ETAIL = 1x10 4

psi). The entire fairing section is enclosed by a very flexible skin

(ESKIN = 2x10 3 psi), which is 0.05 inches thick (TSKIN = 0.05). The

finite element mesh used to analyze the structural response is generated

automatically by the software (MESHC = 11, MESHT = 3). This mesh con-

sists of 48 two-dimensional elements having 57 nodes; the outer SKIN con-

necting the surface nodes is modelled by 24 one-dimensional elements.

For purposes of the hydrodynamic computations, the fairing's NACA

0020 surface profile is modelled by 35 surface points distributed auto-

matically (HYDROSAP controls: IPANEL = 2, and N = -2 --- for FOIL03) on
the upper and lower fairing surfaces by the software. Viscous effects

are included in the computations in each of the HYDROSAP "outer iter-

ations" (ITRSWT = 1).

The effect of the hydrodynamic loading on this flexible symmetric

fairing is to induce negative camber. Figure 2.5 summarizes the types of

deformations suffered by the fairing cross-section. Evidently the mater-

ial above the fairing chord is in compression while that below is in ten-

sion. The equilibriun trailing edge transverse deflection is

approximately 2.3% of the chord.

The negative camber acts to reduce the magnitude of the lift and

(nose) moment coefficients significantly. In Figure 2.6 these hydro-

dynamic coefficients are plotted for each successive pass through the

HYDROSAP system. It is evident from the graph that after ten iterations

the hydrodynamic loading and structural response are in equilibrium. The

fairing's deformation has reduced the lift coefficient by 24%, from C,

0.8996 for the undeformed fairing, to C2, = 0.6794 for the deformed

fairing. The nose-down moment coefficient, taken about the profile's
leading edge, has been reduced by 29%. Figure 2.7 shows the effect that

-16-
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the modest chordwise deflection of the fairing has on the overall pres-

sure distribution. Pressure coefficients are reduced in magnitude by

about 10% to 20% even in the region of the rigid leading edge. The

trailing edge deflection evidently makes its presence felt globally over

the entire fairing's surface.

2.3.2 The NACA 65-018 Profile Section

We explore the degree of deformation for a flexible MACA 65-018

fairing made entirely of a material with Young's modules (ETAIL) = 1x10
5

psi. No distinguishable SKIN or CORE are present here. The three-inch

section is towed at 44 fps (34.5 kts) through sea-water.

In Figure 2.8 we plot the viscous and potential pressure distribu-

tions over the undeformed section at 0' angle of attack. Since the sec-

tion is symmetric the upper and lower surface pressure distributions are

identical, and the profile suffers no deformations. Figures 2.9 and 2.10

show pressure distributions for the deformed and undeformed fairing at 20

and 80 angles of attack, respectively. Figure 2.11 summarizes the angle

of attack dependence of the sectional lift, drag, and nose moment coef-

ficients.

Since the NACA 65-018 fairing material is ten times stiffer than

that of our NACA 0020 example, the development of negative camber is

somewhat less pronounced. Nevertheless, the gradual separation of the

deformed and undeformed lift and moment curves in Figure 2.11 underscores

the need for careful attention to be given to the local orientation and

behavior of the cable sections in a three-dimensional analysis. We note

that the drag coefficients are not so sensitive to the pressure induced

chordwise deformation of the fairing.
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2.3.3 An Accuracy Study

Although certain theoretical error estimates are available, to meas-

ure the accuracy of a particular finite element solution, in practice it

is customary to determine the sensitivity of the numerical solution to

the fineness of the finite element mesh by experiment. In this regard we

compute the numerical solution for a sequence of finite element meshes;

each succeeding mesh being finer than its predecessor.

For this study we use the NACA 0020 fairing of section 2.3.1, but

tow it at 40 angle of attack, at 22 fps (13 kts), in seawater. We use

the number of nodal points for the mesh as a measure of mesh "fineness".

For this analysis the solutions were computed using meshes with 7, 27,

57, 79, and 90 node points. Table 2.1 summarizes the conditions of the

tow and the nominal hydrodynamic coefficients for the rigid profile.

Table 2.2 gives the variation in trailing edge deflection, the hydro-

dynamic coefficients, and computer "costs" with the fineness of the

mesh. Evidently, increasfng the number of nodes from 79 to 90 offers a

negligible increase in accuracy. Indeed, even the crudest (and
"stiffest") finite element mesh (having only 17 nodes) already accounts

for 25% of the reduction in C, , observed for the deformed fairing

modelled with 90 nodes. Obtaining the remaining 15% Cl reduction

requires an investment of twice as much computer CPU time.

This completes the brief review of our two-dimensional analysis

capabilities. In the next section a description of the three-dimensional

analysis development will be presented.
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Table 2.1

Nominal Test Values

PROFILE NACA 0020 section

CHORD (length) 3.0 (in.)

CORE (length) 0.5 (in.)

TAIL MATERIAL MODULUS 104 (psi.)

TEST CONDITIONS

V 22. (fps.)

a +4. (deg.)

HYDRODYNAMIC COEFFS.

Ct 0.4507

Cmo -0.1223

Cd 0.0086

Table 2.2

Sensitivity Analysis Values

Trailing Edge Run Time
No. of Deflection Coefficients No. of 2 CPU I/O
Nodes Y(in) Z(in) Cz Cd Iterations (mins)

17 -0.0016 0.0084 0.4248 -0.1141 0.0085 3 0.50 4.70
27 0.0086 0.4243 -0.1139 0.0085 3 0.68 4.91
57 0.0097 0.4205 -0.1126 0.0084 4 0.90 5.62
79 0.0098 0.4203 -0.1125 0.0084 4 1.07 6.n6
90 0.0098 0.4202 -0.1125 0.0084 4 1.15 6.09

NOTES: 'Coefficients determined from Pressure Distributions;2Outer Loop Iterations, to a coverged solution;
3Based on an IBM 360/91 system.
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3.0 THE THREE-DIMENSIONAL FLOW-STRUCTURE INTERACTION

3.1 Overview of the Three-Dimensional Problem

In contrast to our focus on the local deformations for a typical

cable cross-section, in the two-dimensional study, the object of the

three-dimensional study is to determine the global shape of a tow cable.

In this case the cable is being influenced by forces from the towed body

in addition to the hydrodynamic forces developed on its cross-sectional

profiles. For this study the solution methodology is based on a large

deformation, small strain theory for the deflections of a heterogeneous,

isotropic rod. These deflections are modelled in terms of the three-

dimensional motion of a reference curve -- the locus of shear centers for

the cable's cross-sections. The cross-section's mechanical properties,

such as bending stiffnesses, torsional rigidity, modulus weighted cen-

troids, and shear center locations are the subject of a separate anal-

ysis; this is detailed in section 3.2.1, below.

Having reduced the motion of the towing cable to that of the locus

of shear centers, the dynamic equations for the displacements of the ref-

erence curve are discretized using the finite element technique. We dis-

cuss this process and its computer implementation in section 3.2.2.

3.2 Solution Algorithms

3.2.1 Mechanical Properties for a Cable Cross-Section

In order to model a towing cable's dynamical behavior, in terms of

the motion of its reference axis, it is necessary to compute for a typ-

ical cross-section (or cross-sections, in the case of a non-uniform

cable) certain of its mechanical properties.

-27-
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Referring to Figure 3.1, we shall denote

a typical cable cross-section by , and its

boundary by 6S . Let us denote by E , v

and G the sections Young's modulus,

Poisson's ratio, and shear modulus, respec- Q

tively. Note that E , v , and G may be

functions of position within Q . For exam- y

ple, the heterogeneous cross-section shown in

Figure 3.1 consists of a rigid strength mer-

ber, QI . a soft, flexible afterbody,

S2 9 and a thin sheathing, 3 Figure 3.1

A Cable Cross-Section,

We wish to compute the following properties for any representative

section:

. moduls weighted area, TA- f E dy dz

. modulus weighted centroid, (y,z) where

y f Ey dy dz/-EA
A

f f Ez dy dz/-ET
A

. bending rigidities,

El - f Ez2 dy dz ,

ET - f Ey2 dy dz ,

Ely z -f Eyz dy dz , and

-28-
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torsional rigidity,

-GJ -f G(y 2+z2 +y, -Z, ) dy dz
0 z y

Here the function T is the St. Venant warping function for the sec-

tion. The warping function describes the longitudinal (out of plane)

deformation for the cross-secion, considered to be a thin prismatic mem-

ber subject to pure torsion.

By way of explanation, consider the

prismatic member shown in Figure 3,2; let it

be subject to a twist per unit length of y

along the axis of the member. The 0 dis-

placement field, for pure torsion, is

described as:

x

Figure 3.2

A General Prismatic

Member Under Twist, 0

u 0 T(y,z)

v = -0 x z (3.1)

w=Oxy,

where (u,v,w) are displacements, due to 0 , in the (x,y,z) directions.

For displacements of the form (3.1), the non-zero strains are:

-29-



av + au ( -z)y " a ay

and (3.2)

aw + au (a_Czx =ax 7Z = 0 - +y).

The equations of equilibrium, for a heterogeneous, isotropic material,

therefore reduce to

a-; -z)] + [-G [G(-' +y)] = 0 , (3.3a)

in S , subject to the boundary condition

(V').n = zny - ynz' (3.3b)

on Q

In equation (3.3b), n = (ny, nz )  is the outward normal to 60.

Clearly, (3.2) and (3.3) determine T only up to a constant; thus we
will normalize T by requiring that

f G dy dz = 0 . (3.4)

The computer program SHCENT (SHear CENTer) is used to compute the

warping function (T) for the airfoil-type cross-sections used for

faired towlines whose towing characteristics are to be studied.2

2SHCENT is an adaptation of a code developed by E. M. F. Raumgartner

[15].
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The finite element method is used to solve equations (3.3). For

this, the cable's cross-section is triangulated; T is assumed to be

linear on each element of the triangulation; the shear modulus, G , is

assumed constant over each element of the triangulation; and a linear

equation for the nodal values of T is obtained from the variational

form of equations (3.3). We outline this procedure below.

Let 0 be any function, defined on the cross-section 2 , which

together with its gradient is square integrable over Q . Then the weak

(or variational) form of equations (3.3) is

f [G -z) LI + G (- +y) - dy dz 0 0 (3.5)

To obtain equation (3.5) we have multiplied (3.3a) by * , integrated

over Q , applied Green's Theorum, and finally taken advantage of (3.3b).

Suppose, for the moment, that SI is th (y3,Z3)

triangle, T , as in Figure 3.3, and that we

consider T to be of the form T

1 2

(Y IZ) (y2 ,Z2 )

Figure 3.3

Sketch of a Triangular

Element with

Coordinates (y,z).

(y,z) :- (I f1 (y ' z) + '2 f 2 (yz) + 'P3 f 3 (yz)) (3.6)
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where

fi (Y') (Y-j) (z -zk (z-z.) (vjy) 37

for, respectively,

i=1 ,2,3

j=2,3,1

k=3,1,2

and where A is the area of T . We take * in analogous form. Then
clearly TP (yi,zi) = TF. i=1,2,3, and TI is linear on T

Next let us observe that

af , (3.8a)

and

af.
= -(~ -~~--~k ~(3.8b)

so that

ay 2A. ( 1 23+'i2 31 ' 3 12) ,(.a

and

az 2A (vIy23+ 2y31+i3yI2J (3.9b)
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Similar equations, of course, hold for € . Thus, equation (3.5)

becomes

S{( 1 2 3 "2z 31+T3z 1 2  ay l(y23 + 2 y 3 +'ay12" 2 }dy

=f G (z, v Jdy dz (3.10)

Since equation (3.10) must hold for arbitrary 4 , we select, alterna-

tively, 0 = fi' i=1,2,3. Thus, we have from equation (3.10) three

equations for the three unknowns, '1,T 2,1 T3 . In matrix form those three

equations are

K T =(3.11)

where: -IN 2 ,' 3 )T, F -(FI,F 2 , F2)T, and K = (kij) for i,j=1,2,3.

The matrix K is called the "local stiffness matrix"; its elements are

given by

k G(y 2 +Z2 )/2A

k12  k21 = G(y2 3 y31 +z23 z3 1 )/2A ,

k1 3 : k31 : G (y2 3Y12+z23z1 2 )/2A , (3.12)

2 G(Y3 1+z3 1 )/2A ,

k 23 k 32 G(y31Y12+Z 31Z12)/2A ,

and

k33  2 2

k 33 =G(y 12 +Zl 2 )/2A

-33-
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The vector of "generalized loads" is given by

F 1 = ((y Y2 3
+ z23 ) ,

F2 = G(y Y31+z z31 ) , (3.13)

and

F3 = Gy Y1 2 +' z12 )

Here ( ,) are the coordinates of the centroid of the element, T

We retain the shear coefficient, G , in both equation (3.12) and equa-

tion (3.13) since the global stiffness matrix and global generalized load

vector, for the entire domain 0 , must be assembled from the local

values for each element. The local values of the shear constant and ele-

ment area may vary from element to element.

The global analog of equation (3.11); i.e., the fully assembled

matrix problem, is a linear equation for the nodal values of the "best"

piecewise linear approximation to T for the given triangulation of 0

[12]. The global problem is solved by elimination, taking advantage,

however, of the banded, symmetric and sparse structure of the global

stiffness matrix.

3.2.1.1 Torsional Rigidity

The torsiondl rigidity, J , of the cross-section sl is defined to

be the moment necessary to twist a rod (of cross-section Q ) one radian

per unit of length. That is, if the twist of the rod is 0 , then the

necessary twisting moment, M , is

M = GO . (3.14)
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Setting 0 : 1, and writing M in terms of the cross-sectional shear

stresses, we have

f (-zoyx+ya ) dy dz

- I G -z(--z) + y(-'y) dy dz

f l G (y 2+z 2+yIF, Z ,) dy dz • (3.15)

Several remarks concerning equation (3.15) are in order.

If G is constant over .£ , we see that

2 2
= G. I (y +z +yY, z-Z, ) dy dz . (3.16)

z y

The integral on the right hand side of (3.16) depends only on the shape

of P , and is called the torsion constant -- usually denoted by J --

for the cross-section. When 2 is a circular section, T = 0 over S1

then J reduces to this section's polar moment of inertia.

3.2.1.2 Bending Rigidities

The bending rigidities, EI y , EIzz , and Ely z are computed in

SHCENT by calculating the bending rigidities for each triangular element,

T , about its own centroid. Using the transfer of axes theorem, these

element rigidities are referred to the modulus weighted centroid of the

section. Bending rigidities with respect to the global origin -- the

modulus-weighted centroid -- and with respect to the shear center are

among the program's output.

-35-
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3.2.1.3 Modulus Weighted Area and Centroid

As with the bending rigidities, the modulus weighted area and

weighted centroid, for 1 , are (each) computed by summing over all the

triangular elements, T , into which 0 is partitioned; thus:

ET E T AT (3.17)
T

also

£ YT ET AT
T (3.18a)

and

E z T ET AT
T (3.18b)

3.2.1.4 Shear Center

The shear center for 0 is defined to be that point, in the plane of

, at which a transverse point load P = (P y,P z) , on a rod of cross-

section Q , causes no twist about its longitudinal axis. It is well-
known [16] that the resulting normal stress, axx , at a point (y,z)

in a section, at distance L from the loaded section, is

a = E(y,z)(CIY+C2 z)L , (3.19a)
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where

P EI +P El
C = _y' z yZ 3 (3. 19b)

*EI T - (EI~)

C Py Elyz+ z Elzz (3.19c)

yy zz yz

Using the technique in reference [171, it is possible to show that the

coordinates, (y s z s) of the shear center are:

YS I

+ C{ f E(y,z) y'Y(y,z) dy dz(32a

+S C~ If E(y,z) zy(y,z) dy dz,(32a

+ C~ f E(y,z) zTY(y,z) dy dz (3.20b)

Here the constants C! are obtained from equations (3.19) when Py = 0Iy
Pz= 1 ; and , C'! are the values for P~, = I and P = 0 . In the

I y z
SHCENT computer program, the integrals in equations (3.20) are carried

out piecewise over 0, making use of the constancy of E(y,z) and the

linearity of '(y,z) over each element T in the triangulation of 0
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A short user's guide for the SHCENT program is included in Appendix

B of this report. Included in this user's guide is a description of the

ptogram's input deck, external file requirements, and a flow chart.

3.2.2 The Towline Response

We formulate the equations of motion for the discretized towline

in terms of the incremental displacements of the structure as it moves

from one (quasi) equilibrium configuration to an adjacent deformed con-

figuration. If we denote by B(t) the deformed state of the towline at

time t , then we are interested in the incremental deformation "AB"

of the towline, from state B(t) to state B(t+At) . We compute the

displacements which define AR with respect to a local connected coordi-

nate system using a linearized theory. These local deformations are then

referred to a fixed global coordinate system by means of local transfor-

mations which depend on B(t) .

Let us drop, for the moment, the dependence on t and focus on the

computation of the incremental displacement, AB

As shown in Figure 3.4, the local incre-

mented displacement field for a prismatic Z

member, B , with cross-section S(x) , may

be written in terms of the incremental dis-

placements of a reference axis. That is, the Y

displacements of material points in body B -
8

can be approximated, over the cross-section, x

by - 0 6

'a (x) .

Figure 3.4

A General Prismatic

Member
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u(x,y,z) - Uo(x) - c(x)z - T'(x)y + O'(x) '(x,y,z) , (3.21a)

v(x,y,z) VO(X) -zO(x) , (3.21b)

and

w(x,y,z) WOW(X) + yO(x) , (3.21c)

where u0 ,v0,w0  are displacements at the reference axis; 0 is the

angle of twist; 0 = dw0/dx , and T = dv0/dx are the bending about the

y and z axes, respectively. Also, here, T is the St. Venant warping

function for the cross-section; it is obtained by solving the St. Venant

torsion problem for 2(x) , as discussed in section 3.2.1, above. In the

sequel, we assume that Q does not vary along the length of the member.

The strains corresponding to the displacement field (3.21), and

subject to the assumption T = '(y,z) , are

u '' f I + uo" (3.22a)
xx =- = 0  Z

= : 0 (3.22b)

-W 0 (3.22c)

=v = a+_u z:O' - T + ', , (3.22d)
xy 3x y y

aw 3v
ayz n 7d (3.22e)

and

-39-
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au +_ = . + 0'z + Wo + yo' . (3.22f)Czx a'-' ax 0

Here the primes signify differentiation with respect to x . We relate

the non-zero stresses to the strains through the constitutive relations:

axx = (A+2G)xx , (3.23a)

Oxy =G e xy '(3.23b)

and

a zx= G e .x (3.23c)

Here X = vE/(1+v)(1-2v) is the material's Lame' constant, v is the

Poisson ratio, E is the Young's modulus, and G = E/2(1+v) is the

shear modulus. We will adopt the notation, E X + 2G, henceforth.

The internal strain energy increment, V , of body B , subject to

the incremental strain field (3.22), and incremental stress field (3.23),

is

1 r~ x + 2 + G 2
2 = Bt xx + G xy + zx J dx dy dz . (3.24)

Substituting expressions (3.22) into (3.24), and integrating over

the cross-section, gives the strain energy in terms of the six functions

u(x), v(x), w(x), O(x), O(x), and '(x) , and the several mechanical

properties of the cable's cross-section:

• modulus weighted area, tA t / dy dz
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*modulus weighted centroid,

= f y dy dz,
EA S

and

z = Z f E dy d z;

" bending stiffnesses,

Ly= f z2 E dy dz,

tEl =f y2 E dy dz,

and

ti =1 yz dy dz

and,

" torsional rigidity,

f 3) 1 y G{ 24z 2+Y'P Z- z'I1f,} dy dz



We have discussed the computation of these section properties at

length in section 3.2.1. There are several other cross-sectional

properties which are of interest; we will denote these, generically,

using the notation:

I(a) f t(y,z) dy dz . (3.25)

Thus, for example, we could write

EA I( )

or

Elz -(ty 2 )

Using this notation, and integrating over 2 in equation (3.24), we

obtain:

2 EA ((u) 2iuo'w" - 2yuov") + 21(E&Y)u' 0"
2 i0 oo ox

+ 2 El u"w" - 21(EzY) O"w" - 21(tyl)O1v"
yz 00 xo0X 0

+ - (w")2 + El (vII ) x

+ 9 (0)2} dx . (3.26)
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In order to discretize the equations of motion for body B , we

shall assume that it has been sub-divided into a finite number of para-

metric elements (which we will again denote by B ). Within each of

these elements the incremental displacements (of the reference curve) can

be modelled as polynomials in the connected coordinate system. The coef-

ficients of the polynomials will be called the generalized displacements,

associated with that element. We will model the transverse displace-

ments, v and w , as third order polynomials in the axial coordinate;

but the twist, 0 , and the elongation, u , will be linear. Note that

for convenience we have dropped the zero subscripts on u,v,w. Thus, we

assume:

u(x) = u1al1(x) + u2a 2(x) (3.27a)

v(x) = v181(x) + viyl(x) + v2a2(x) + v Y2(x) , (3.27b)

w(x) = W181(x) + WiY( ) + w2a2(x) + w2x ) , (3.27c)

and

O(x) = 01ca1(x) + 02a 2(x) ; (3.27d)

where, with L being the length of the element, the basis (or shape)

functions are

a1(x) = 1 - I, (3.28a)

a2(x) X (3.28b)

01(x) = 1- 3 (1)2+ 2(. ) 3  (3.28c)
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LL
y2(x) = 1-3(1-- )2 + 2(I--}, (3.28d)

and

Y2(x) = - L{(I X-) - 2(1 x 2 + (.2f

(Recall that x is the longitudinal coordinate for the element). We

note that since v' (x) = T(x) and w' (x) = 4(x) , we may write

v'. =T'V i=1,2

and

w' .i i=1,2
I *

By virtue of the definitions (3.28) -- for

the basic functions -- we see that the 2 X, U2

generalized displacements (ui, vi, w ' Oi '  - 2

i , for i=1,2) are the values of the shape P2

functions (3.27) at the node points (points 1 ./ ,
and 2 in Figure 3.5) which define the loca- -
tion of the ends of the "beam". As a conse-

quence of (3.27) and (3.28) we see that
"=0 , and so the internal energy becomes, in

terms of the generalized displacement,

Figure 3.5
A Prismatic Element
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V = EA EA2( -L (y2

6 6+ E(I'tfVl-V (wl2 ) + L T(1+ T2)]

1 ( 2)[ L(2i-12) + -UT2 ( +22 ) '2

2 L 3 (W-W 2 ) + L 21-2)( + 2  L - 2 21

-L(2 212 v _L22
+ - - 2) L 2 1-v2 )('Fl+ 2) L( 1 +2+''21)

+ 1 7 (02-01)2 "(3.29)
L

Let us denote by = (u1 ' u2, '1. 2 1' ' 0 v1 v 2' 1' I"1 w2' ) T

the vector of generalized incremental displacements. We see, then, that

the internal energy can be expressed as a quadratic form in the

incremental generalized displacements; or,

V _ lT (3.30)

where K is the local element stiffness matrix given in Table 3.1.
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Tabl e 3.1

A 12 x 12 Beam Stiffness Matrix

Ul 2 1 2 1 1 2 1 1 '2 "2

u1  EA -0 -zA 0 A 0 -yA 0 y__A0 -Z - o _
1L L 0 0 0 L 0 L __ -L

U2 1 -A EA 0 0 0 2_A 0 -zA 0 yA 0
L L L L L L

1 0 0 L J 0 0 0 0 0 0 0 0

2 0 0 -- G3 0 0 0 0 0 0 0 0
L L I _

121E 61 E-121E 61 E121 E61 E -121 E61E
v 0 0 0 0 z yz Z yZ yz Z Z Z

L3 L2 L3 L2 L3 L2 L3 L2

-yz 4E-61 21y 61E^ 41 -61 21 yz

1 L L 2 2 L 2 L 2 L
L L L L L _ _

021 0 0z E z z yz - z z yz E-61z

'2
L3 L2 L3 L2 L3 L2 L3 L2

61Ei 21E -61 E 41E 61E21E -61 E41EZEA -zEA 0 0 z y yz _ _ Y yy L yz
* L , 2 L 2 L 2 L 2 L
L L oz L L LLL L

w 1 0 0 0 0121 Ez 61Ey -121 Ez 61Ey 121Ey 61 Ez -121Ey 61 yzE

L3  L2  L 3 L2  L3  L2  L3  L2

-yEA yEA 61E^ 41 z z 21 E 61 E 41E -61 E 21 _1---- 0 0 ZX1L_ -Z y LA . .. Z .Z Z

L L L2 L L2 L L2 L L2 L

-121 yE-61 yE 121 E -61 yE -121 E -61 yE 121y -61 yzEw2 0 0 0 0 __L __L ._L _.L ._L XL __. XL

L3 L2 L3 L2 L3 L2 L3 L2

L LL L L tyz z L/ L
yEA -yEA 0 61 zE 21 yzE -61Ez 41 Ez 61 yzE 21 zE -61 yzE 41 zE

2 L L2 L 2 L L2 L
L LL
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Corresponding to there is a vector, P , which describes the net

generalized force increments. Vector P is composed of the net force on

body B ; i.e., P is determined by the difference between the exter-

nally applied loads for the configuration B+AB and the internal

resisting loads, corresponding to the deformed configuration B . We

model the net forces on B as loads distributed linearly over the length

of the element:

Pr = Pr a 1 (x) + Pr 2 2 (x) , (3.31a)

and

mr = mr a1(X) + m r2 a2(x) . (3.31b)

Here the subscript r represents x, y, or z ; and Pr , mr are the

force and moment per unit length acting on B at the reference axis.

The work of the external applied loads is given by

W f (p xu+py v+pZ w+m x+m y"z ) dx , (3.32)

where u, v, w, 0, €, and T are given by (3.27). In terms of the

components P and F± , W is given by

L L LW Inp 1 11(Pmxl u2+Px 01) + fPx2U2

3x1  6 12 x2  2  2

+17L 3L p~ L 2

2--py 1 + 1P-yV 2 - 2Pyll 2
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+ 3L v L2 + 17L v
+-PY2 1 4 y Py2 1  -- PY2 2

+ 17L 3L L2
+ Pzi1 zlW2 - 30Pz 2

L w L2 17L w+ 3LPz 1 + L-2Pz2@I + w2-7Pz

(m +m2 )(w2 -wl) (m y-my)(02-0 )L

2 12

(mzl+mz2 )(v2 -v1) (mz -mzl)(T2- )L
1 + 2 1 (3.33)

2 12

The external work, W , can therefore be written as the scalar product,

W : TP (3.34)

between the vector, , of generalized displacements, and a vector, P

of generalized loads. Now, for clarity, P (PI,...,P12 ) is defined

by:

PI = x1+ L ,

P2 ( §Px. + P2) L ,
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P3 m

(17P + 3 P m 4
P5  20 20io

3P 17P r + m(6 20) 2

7 30 - 12

- L 2  (MY-ml) L

830 + 12

17P~ 3P\ m4f

p 9 20 + 2 OL+

3P ZL + (17 p myl m 2

p 11 30 12

and
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-P yL2  (my2-myL)'
12 12(3.35)

It remains to compute the "kinetic energy", T , of the displacement

increment from state B to state B+AB ; i.e.,

T=-! fBP(x,y,z){I )2 + (;)2 + (w)2ldx dy dz . (3.36) 3

The substitution of equations (3.26) into (3.33), with the

application of(3.27) and (3.28), results in an equation of the form:

T =1 *T * (3.37)

where the consistent mass matrix, Mc ,is a result of the integration of

the material density, p , against the various products of shape functions

arising as a consequence of (3.36). We note that M is a "full"

matrix. In computer implementations of the method it is customary to

replace Mc  by a diagonal lumped mass matrix, M , in the interests of

speeding the numerical integration of the equations of motion. The

diagonal elements of this matrix, M , are given by:

M pAL

_ pAL
2,2 =2

L x
M3 ,3  2

3 d

3The superscript dot denotes a time derivative; () -at (*)
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pLI x
M4 , 4  - 2

PALM5 , 5  2

M6 ,6  = 3  LI

- pALM7, 7  2 '-

pAL 3  PLI zM8 , 8  24 + 2

Mq -PAL

and

3PA pLIz
M10 ,10 = 2+ . (3.38)

The kinetic energy, T , potential energy, V , and external work, W

for the entire structure, are assembled from the local values by means of

the local to global element transformation matrices, EB . Using the

subscript B for elemental quantities, and the subscript G for global

quantities, we may write, formally:

TB T MB ERB = B-- T M Li

2?4 B B -B2G ,GjGB

B T ETT iTB 2 B EB KB EB B 2 RG KG L6



and

W T E T E~ TB P (3.39)

In the sequel we suppress the subscript G ; thus, all generalized

vectors and matrices will be global quantities unless otherwise noted.

Let us define the Lagrangian, L , for this deformation increment to

be

L - T-V+W . (3.40)

Applying Hamilton's Principle, we require that

t+ At
J) - (T-V+W) ds (3.41)

t
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be extremized by the solution vector, . Setting 3J/Ft= 0 gives

Langrange' s equations:

d aL L 0 . (3.42)

However, since we know that

atL = kp.+P,

aL Mt,

and

dt p.

then equation (3.42) implies that

Mx+ kF= P (3.43)

We integrate equation (3.42) using the implicit Newmark beta method

[11] as follows: Introducing the notation,

(t) = 0 , (- 0 , from the definition of )

(t) =l-3
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I"l

)A(t) =o

and

We express the displacement increment, and velocity, at the end of the

time step by

P, + PO4,%At + ( 0.) O At2 + 0l At2

and

I o +  At. (3.44)I O + 2

We seek l and 1, given 0, P. and Ho(O). Premulti-
plying the first of equations (3.44) by M , and solving for M

we obtain from (3.43)

(K + 1 M) -j = P + I 1-20
OAt - M 0 1 0 . (3 45)

Let us define an effective stiffness matrix, K , by
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I1
K K + M

and an effective load vector by

BA ~O-2rT 0

Then (3.45) takes on the form

% = P (3.46)

After computing iI , using an elimination scheme which takes

advantage of the symmetric, banded, and sparse structure of K , we

compute I and from (3.44): thus,

1 2 1  t- )At 2 * (3.47)

and

Note that the matrix K depends on the current geometry through the

local-global element transformation matrices. The displacements, 1

are used to update those local transformations, which in turn are used to

update K . Also, the net load vector, P , is updated based on the

increment in external loads and the new internal loads at time, t+At

or:
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P(t+At) = P ext(t+At) - Pint(t+At), (3.49)

where the internal resisting load is given by

Pint(t+At) = Pint(t) + I " (3.50)

The external loads, P ext(t+At) , are a combination of user-supplied

external loads and hydrodynamic loads which are themselves dependent on

the current deformed state of the cable.

The hydrodynamic loads are computed

in terms of the local components of the

velocity of the fluid flowing past each A.C. S.C. z

element of the cable. (For the purposes - C.G.
yof this discussion we will denote the

local coordinates within each element by

,. ,21) as shown in Figure 3.6). The C

x axis of the cable element lies along

the locus of shear centers. With I

respect to this locus the aerodynamic B 1 L

center (A.C.) and the modulus-weighted

centroid (c.g.) are described by coor--

dinates (y ,z ) and (ygZg) ,
ac' ac cg zcgI

respectively. For each cable element

there is a transformation matrix, EB

which transforms the local coordinates J
to the global system; this is indicated X

in Figure 3.7.

Figure 3.6

Local Coordinate for Element B
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ev If el ,e 2 ,e 3  are unit

vectors along the local x,y,z

Y el axes, then EB is given by

yei el el
xe 11 e12 e13 ]

EB = e21 e22 e23  (3.51)

Figure 3.7 1e31 e32 e33
Sketch Showing Global/Local Coordinates

where ei = (elie 2ie 3i)T is in global coordinates.

Let V be the velocity vector of the fluid flow relative to the

cable. Let the velocity have global coordinates, V = (V1,V2,V3 )T, and

let the corresponding local coordinates (at element B) be expressed by

ET Bv2 = v2" (3.52)

Clearly, Vle I  is the local spanwise component of V , the velocity; and

U V -Ve 1  (3.53)

is the local normal component of V

The local angle of attack, a , is given by

a=tan 1 [3j (3.54)
-V
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The local values of hydrodynamic lift (per unit length), normal drag
(per unit length), tangential drag (per unit length), and twisting moment

(per unit length) about the hydrodynamic center are given, respectively,

by

L = (CL .a)Q.C

D=CDN-Q.C ,
DN N *

DT = CDT.Q .C

and

MHC = CMHC Q'C2  (3.55)

where

C section chord length,

Q -- oral

CL = section lift-curve slope,
a

C D = normal drag coefficient,

C0D = tangential drag coefficient,

-58-



and

CM = moment coefficient about the
hydrodynamic center.

The local components (F1 ,F2 ,F 3 ) of these hydrodynamic forces are

F1 = sin (V1)D T ,

F2 = DN cos a - L sin a

and

F3 = DN sin a + L cos a . (3.56)

Consequently the global components (FI,F 2,F3) are given by

F 1  F 1

F2  = B  F2 •

F3. F3

Since the hydrodynamic loads act at the hydrodynamic center of the

section, they contribute to the moment about the X axis; consequently,

^^ F - F (3.58)
x (YHC3-ZHC2 ) + MHC

The global components (Mx , My, M ) of this moment are given byx y z
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M E[B  . (3.59)

Lz

Of considerable interest, for an interpretation of the cable's

behavior, are the trail angle, 0 , and kite angle, 6 . If we regard the

global x-z plane as the plane of the tow, then we define 0 and 0

from

cos = e 11

sin * sin e = e21

and

sin 0 cos 6 = e3 1 . (3.60)

We note that for e21 + e21 =0 the kite angle is not defined, Cosa

thus the cable is horizontal.

We remark that with this formulation we can easily take into account

the pressure distribution-induced distortions of those cable element

cross-sections which experience a local flow at a non-zero angle of

attack. That is, using the results of the two-dimensional analysis

(c.f. section 2 above) we let the hydrodynamic coefficients depend on the

local flow velocity and the instantaneous angle of attack. Thus, e.g.,

CD CD (a,V) ; (3.61)
N DN
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such a function could be given in tabular form or introduced through the

use of interpolating polynomials. This feature is not incorporated into

the present version of the three-dimensional program, TOWLINE, due to

constraints on the computer budget for the present study. An extensive

series of two-dimensional HYDROSAP analyses would be required in order to

construct the tables for each individual cable cross-section, under

investigation.

Notwithstanding, some samples of the TOWLINE computations are dis-

cussed in section 3.3.2 below.

3.3 Sample Computations

3.3.1 Cross-Section Mechanical Properties

We will seek, for this example, the cross-sectional mechanical

properties of an NACA 0020 cable section, having a three-inch chord. The

section has a glass fibre strength member (core) in the nose, and a flex-

ible afterbody made of rubber (tail), as shown in Figure 3.8. Let us

suppose, in addition, that the core extends aft of the section's nose to

the 20% chord station. The core material is isotropic, with a Young's
6modulus of E=9.4x10 psi; also, suppose it has a shear modulus

G=3.615xlO 5 psi. The material constants for the tail are assumed to be

E=3xlO 3 psi, and 3G=1.154xlO 3 psi.

We triangulate the cross-section as shown in Figure 3.8. Fifty-

eight triangular elements, defined by 46 node points, make up the finite

element mesh. We expect, due to the large ratios of the material prop-

erties (for the nose compared to those of the tail) that the mechanical

properties of the section will essentially be those of the nose. Our

expectations are confirmed by the results shown in Table 3.2, where we

list the mechanical properties of the heterogeneous section, the core

alone, and for a homogeneous section having the material properties of

the core throughout the entire section. Clearly, the concentration of
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Tabl e 3.2

Cross-sectional Properties of the NACA 0020

Cable Fairing

MECHANICAL THE THE
HETEROGENEOUS CORE HOMOGENEOUS

PARAMETER SECTION ALONE SECTION

Modul us-weighted
Centroid (in).

y 0.35136 0.34996 1.2623
z 0. 0. 0.

Shear Center (in.)

YS0.36018 0.35898 1.1129.

z S 0. 0. 0.

Modul us-wei ghted
Bending Stiffness

(in 4)

El yz/E* () 4.745x10 4.738x103  2.521xl0 2

EI zzIE* 6.925x103  6.409x103  6.044x10'

Modul us-weighted
Torsional Rigidity

(in 4)

-3 -31
(2) 8.978x10- 8.938x10- 1.085xl0 1

Modul us-weighted

Area (in
2)

EAI/E* 0.25504 0.25470 1.2252

() E* =9.410 6 psi (2 G( 3.62x10 6 psi
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Young's modulus and shear modulus in the core material enables one to

essentially ignore the contributions to stiffness, etc., due to the tail

material.

3.3.2 The Towline's Response

The TOWLINE computer program is designed to determine the (static)

equilibrium position of an integrated (faired) towline under steady tow-

ing conditions. This is to be accomplished by simulating the dynamic

response of the tow cable to the hydrodynamic forces induced by the tow-

ing platform and the cable's three-dimensional dynamic response. The

TOWLINE code is an adaptation of a program written by IITRI [18] to study

the large displacements and deformations incurred in vehicle collisions.

In this section we present the results of computations on a model

cable problem which was used for program development. In order to remain

within the constraints on computer resources, the model problem has only

nine elements and has a higher stiffness-to-length ratio than would be

found in an operational towline. The results are intended only to demon-

strate the qualitative behavior of faired tow cables; and, to demonstrate

the capabilities of the TOWLINE program.

Suppose that a 108-inch faired cable is suspended, vertically, in a

264 in/sec steady fluid flow, and that the cable is subject to a 2.64 in/

sec cross-current. By these conditions, the cable's cross-sections have

an initial angle of attack of 0.5750 with respect to the remote resultant

flow. The cable's upper end (point) is "fixed" in space, but free to

swivel. No depressor is fixed to the cable's lower endpoint, which is

completely unconstrained in space. The initial global configuration of

the cable is shown in Figure 3.9. Although the cable is of a composite

construction, we assume that effective homogeneous mechanical properties

have been determined (using program SHCENT as discussed in section 3.1,

above). These mechanical properties of the cable are summarized as fol-

lows:
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* cable density; 3.7xi0
-4 lbf-sec2/in4

* weight in water; 8.46x10 -2 lbf/in

" modulus weighted area; EA = 8x10 5 lbf

" position of modulus weighted centroid; 0.5 in. aft of leading

edge

• modulus weighted moments of inertia:

Elyy = lx10 4 lbf-in 2

EI = 4.67x105 lbf-in 2

lyz = 0 (a symmetric section)

and

" torsional rigidity;

= 1.64x104 lbf-in 2

We assune that (with negligible error) that the shear center and modulus-

weighted centroid coincide. The hydrodynamic properties of the cable are

parameterized by:

Chord length of the cross-section; c=2 in.
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. Lift curve slope; CL 211/rad

. Normal drag coefficient; CDN 0.01

. Tangential drag coefficient; C 0.01

. Moment coefficient about the aerodynamic center; CM = 0
AC

• Position of the aerodynamic center (A.C.); 0.10 in. aft of the

modulus weighted centroid.

We model the cable using nine beam elements, each of which is 12

inches long. A time step of At=.01 sec. has been used for the integra-

tion procedure. In Figures 3.10A and 3.10B we show the successive states

of deformation, for the cable, during the first ten integration steps.

We remark that the "equilibrium" position of the cable has (of course)

not been attained in only ten time steps.

Referring to Figure 3.10A, we note that under the influence of the

264 in/sec. tow velocity, the cable begins to move aft; and, the largest

trail angles are near the tow point, as expected. We see, however, that

between the eighth and tenth integration steps a wave-like motion has

developed.4  While the free end of the cable continues moving aft, cable

elements 9, 8, 7, (and possibly 6) (nodes 1, 2, 3, 4, 5)) are moving for-

ward. Superimposed on this swinging motion, aft, is a higher frequency

vibratory motion in the vertical direction. This is typified by the x-z

position of node 10.

From Figure 3.10B we see that the cable, under influence of the

-2.64 in/sec transverse current, is "fluttering" about the x-z plane of

the tow. In integration steps I through 4 the cable moves -- nearly as a

rigid body -- with the cross-current. Inertia and angle of attack

4 This "whippinq" effect was even more pronounced in longer cables; in
many instances lominating the responses and sending the program to
(numerical) divergence.
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effects then swing the cable back, in opposition to the cross-current

(steps 6 through 8). By integration step 10 the cycle is nearly com-

plete, with the cable approaching the plane of the tow and moving with

the cross-current. Note that the scales used to plot the node point

displacements vary: inches times 10-2 for the x- and y-displacements,

and "inches x 10-3 '' for the z-displacements (vertical).

In Figure 3.11 we plot the time history of the average angle of

attack along the cable. That the average angle of attack is a reasonable

indicator of local behavior is shown by Figure 3.12. The twist of the

cable is only marginally less, near the cable's attachment point, than at

the free end. The cross-current of 2.64 in/sec. corresponds to an ini-

tial angle of attack of 0.573' with respect to the resultant flow.

Twisting, induced by the aft location of the hydrodynamic center, with

respect to the shear center, causes the cable's angle of attack to vary

from the initial (0.5730) to -1.45* (at step 6), then back to 2.160 at

step 8, and to 4.720 at step 10. This oscillation in the torsional dis-

placement of the cable contributes to the oscillatory kiting (transverse

motion). Moreover, even from the limited duration of these sample compu-

tations, it is clear that both the magnitude of the kiting displacement,

and the angle of attack, are growing, even though the hydrodynamic

center's position -- aft of the shear center -- gives a "statically

stable" configuration.

We note once again that the physical parameters of the cable, anal-

yzed above, are not representative of operational cable systems. This

sample cable has a very high stiffness-to-length ratio, compared to an

operational system. Accordingly, the frequencies and the magnitudes of

the oscillations, exhibited, are not representative of operational

cables. The complete analysis of an operational system could not be per-

formed during the present developmental effort due to limitations on the

computer budget.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

The initial phases in the development of a computational program, to

be used for studying faired, flexible towing cables, has been completed.

In the first phase of this task effort, the chordwise deformations, pro-

duced on a flexible fairing profile, in a steady, two-dimensional viscous

flow, were obtained using the software module HYDROSAP. This is now an

operational system which can be used on a production basis to describe

the deformations of flexible fairings under hydrodynamic loadings.

In this document the mathematical and physical foundations upon

which the HYDROSAP software is based were summarized. In addition, the

capabilities of the system were illustrated through the presentation of

typical results acquired from its application to several model cable pro-

files. Even though it was not emphasized here, it should be noted that

this program is a fully developed tool for analysis; developed to the

extent that it includes highly automated input generator schemes which

make it particularly attractive to the analyst-user. In this regard the

user is relieved of the troublesome task of building lengthy and compli-

cated input files. Only a minimum of control and descriptive input

information needs to be provided in order to run this program.

During the present task significant steps were made toward the com-

pletion of a second phase in this program's development effort. Exten-

sions to the two-dimensional computational capabilities, moving toward a

full three-dimensional capability, have been embodied -- in preliminary

form -- into two additional computer programs, SHCENT and TOWLINE.

As we noted in section 3.0, the three-dimensional, dynamic behavior

of a faired cable system, which is modelled in TOWLINE, uses a small

strain, large displacement incremental finite element algorithm. For

this model, the traditional twelve degree of freedom beam element, of

linear structural analysis, has been adapted to the present incremental

formulation. Of course, the use of this beam element, to discretize the

three-dimensional equations of motion for the cable, requires a knowledge

of certain of the mechanical properties (bending and torsional rigid-
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ities; shear center location) for the cable's cross-sections. Neces-

sarily, the mechanical properties of heterogeneous, streamlined cross-

section profiles, used to describe faired cables, must themselves be com-

puted. We have discussed in this document how the SHCENT program per-

forms that function. Although it is not yet as "user-friendly" as the

HYDROSAP module, SHCENT, too, is available for production use.

Even though the TOWLINE program, itself, is operational -- as we

have discussed in section 3.0 above -- it is not yet ready for computa-

tional productiv- .rk. First, its input requirements are rather lengthy

and cumbersome. No effort has been expended in giving it an a.tomated
"user-friendly" input capability. Second, we have found, through an

extensive series of check runs, several undesirable performance charac-

teristics which would detract from its use in the eyes of a routine pro-

duction user.

Due to the combination of an extreme slenderness ratio (span/chord),

as is typical of operational towline systems, and the use of an incre-

mental dynamic solution technique, in following the towline to a desired

equilibrium state, we have found that the TOWLINE algorithm demands

inordinately small time steps. These small time steps are necessary to

follow the complicated high-frequency dynamic responses which are appar-

ently exhibited by these cable systems. High frequency oscillations, in

addition to cable "whipping", were observed in several of the sample com-

putational runs. Since the required integration time step is of the

order of micro-seconds, it is prohibitively expensive to follow a motion

for a physically meaningful duration (for several minutes, say). Realis-

tically, the time propagation of numerical errors, inherent to any compu-

tational algorithm, would be of serious concern for any run of such mag-

nitude.

Based on our experience with the current version of TOWLINE, then,

we recommend that serious attention be given to the development of a

non-linear cable finite element. Any such new element formulation would

be tailored to the modelling of the structural response, for structural

membrrs -- such as cables -- with very high slenderness ratios. However,
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unlike existing cable elenents which, at most, are capable of undergoing

axial extensions, our proposed cable element would also resist both bend-

ing and torsion. This new cable element formulation should, of course,

not be based on simple models from the linearized theory of strength of

materials, but must, instead, incorporate the more recent advances in

thin rod theories [19, 20, 21].

Therefore, a general recommendation, based on results acquired from

this work, is that the presently used (cable finite element) model should

be replaced by a more representative one. With such a properly designed

element it is anticipated that many of the present systen's computational

difficulties will be overcome. It is expected that when this new element

model is introduced into (say) the TOWLINE program, it will provide an

efficient and useful tool for engineering design and analysis. Concur-

rent with the development of this new finite element, it is also recom-

mended that the present computational efforts be continued to their

intended conclusion. Then, the completed system can and should be placed

into operation as a design and study tool for high-speed, flexible tow-

line systems.
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APPENDIX A Hydrosap Computer Program

A.1 Program Description

The Hydrosap computer program computes the deformed configuration of

a two-dimensional "flexible" fairing at angle of attack in a steady vis-

cous fluid flow. The program consists of three segments: HYDRO, for the

"fluids" computations; NONSAP, for the mechanical response computations,

and DRIVER, an executive sub-program which initializes and controls the

computations. The NONSAP segment consists of routines selected from the

University of California Non-linear Structural Analysis Program while the

HYDRO segment is an adaptation of the NASA Multi-component Two-

dimensional Viscous Airfoil Program. Since we have discussed the details

of HYDRO and NONSAP operations elsewhere El], and since the user "sees"

only the front-end executive, DRIVER, wp discuss in this Appendix only

the DRIVER input deck.

A.2 DRIVER Input Deck

The HYDROSAP input cards are identified with Tape 5 (usually the

system inpl, stream). The input stream consists of six distinct card

groups, not all of which are present in a single run. Only the first two

card groups must be present; the presence or absence of the other four

groups is determined from values assigned by the user to the NONSAP con-

trol variables SHRTIN, HYDSIM, SAPSIM, and N. All of the control vari-

ables are defined below. The input stream groups are as follows:

CARD GROUP 1 Title Card

Card 1.1 Title of Run

I

Up to 3n 80 character title for the run.

(This card must appear.)
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CARD GROUP 2 Control Variables

Card 2.1 $DRV

Header card for NAMELIST /DRV/; signals the beginning of

the control input. (This card must appear.)

Definitions of the DRV NAMELIST variables are as follows:

A.2.1 Control Variable Definitions

The HYDROSAP Control Variables (Card Group 2 of the HYDROSAP Input) fall

into two groups: logical variables and arithmetic variables. The logical

variables are true/false switches used to activate the various program options.

The arithmetic variables are used to set values for the integer and real

variables which control the flow of computations (examples are: iteration

counters, output units, mesh fineness, and convergence tolerance), or define

the physical parameters of the problem under study (such as flow conditions

and material properties). Detail definitions of the control variables are

as follows:

VARIABLE TYPE DEFAULT INTERPRETATION

CHKPNT LOGICAL .FALSE. =.TRUE. Produce checkpoint
(CHeckPoiNT) tape (FTI4F01B)

=.FALSE. Checkpointing dis-
abled.

CORE LOGICAL .FALSE. =.TRUE. Fairing has a cable
(core) material

=.FALSE. No distinct cable
(core) present

(SHRTIN=.TRUE. only)

DEBUG LOGICAL .FALSE. =.TRUE. Special print in
LOADER: HYDRO and
NONSAP output pro-
vided at each HS
iteration (itera-
tion = outer loop)

=.FALSE. HS print produced at
start of run only.
No debug output.
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VARIABLE TYPE DEFAULT INTERPRETATION

ECHO LOGICAL .TRUE. =.TRUE. Echo of HYDRO and
NONSAP input decks
produced.

=.FALSE. Suppress "echo" of
files.

HYDSIM LOGICAL .FALSE. =.TRUE. Program operates in
(HYDro SIMulation) the HYDRO simulation

mode (SAPSIM must be
.FALSE.)

=.FALSE. Signifies a request
for the full HYDROSAP
run; or NONSAP
simulation, depend-
ing on the value
assigned to SAPSIM.

POST LOGICAL .FALSE. =.TRUE. The Graphics Post-
processor output is
directed to Unit 88.

=.FALSE. No operation requested.

RESTRT LOGICAL .FALSE. =.TRUE. Read checkpoint tape
and restart at time
TSTART

=.FALSE. Restart disabled.

SAPSIM LOGICAL .FALSE. =.TRUE. Program is to operate
in NONSAP simulation
mode (HYDSIM must be
set to .FALSE-T-

=.FALSE. Full HYDROSAP run;
or HYDRO simulation,
depending upon value
assigned to HYDSIM.

SHRTIN LOGICAL .TRUE. =.TRUE. Signifies the short
(SHoRT form INput) form input. An auto-

matic input file gen-
eration occurs (for
foil geometry and
state).

=.FALSE. HYDRO and NONSAP in-
put decks, separated
by 999999999, must
folT5 -$lV:$END on
SYSIN file.
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VARIABLE TYPE DEFAULT INTERPRETATION

SKIN LOGICAL .FALSE. =.TRUE. Denotes the fairing
cross-section has a
skin attached.

=.FALSE. No skin member is
presumed.

TAIL LOGICAL .TRUE. =.TRUE. The fairing has a
fairing "tail" mem-
ber.

=.FALSE. No fairing tail is

assumed (CORE must be
set to .TRUE. in this
case).

TPRINT LOGICAL .TRUE. =.TRUE. Terminal summary out-

(Terminal PRINT) put (error msgs. and
job flow)

=.FALSE. No terminal print.

INTORD INTEGER 3 Denotes the interpolation

(INTerpolation ORDer) order for the pressure dis-
tribution conversion from the
HYDRO surface to the NONSAP
surface.

INTORX INTEGER I Interpolation order to be

(INTerpolation ORder X) assigned for the displacement
conversion from the NONSAP
surface to the HYDRO surface.

IPANEL INTEGER 2 IPANEL is equivalent to HYDRO
control variable IOP.

IPAPER INTEGER 6 Unit number assigned to the
HYDROSAP DRIVER module output.

IPRINT INTEGER =NSTEPS Denotes the NONSAP print fre-
quency within HYDROSAP
ITERATION #1.

ISMTH INTEGER 0 ISMTH is equivalent to HYDRO

control variable ISMO.

ITRSWT INTEGER 8 The number of HYDROSAP itera-
(ITeRation SWiTch) tions using HYDRO potential

flow solution mode only.

IWRTO INTEGER 6 Denotes the NONSAP output
UNIT.
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VARIABLE TYPE DEFAULT INTERPRETATION

IWRT1 INTEGER 6 Denotes the HYDRO output unit.

LOOPMX INTEGER 1 Signifies the maximum number
(LOOPMaXimum) of HYDROSAP iterations (outer

loops) allowed.

MESHC INTEGER 1 Denotes the number of chord-
(MESHChordwise) wise interior stations used

to generate the finite ele-ment mesh, when SHRTIN is
set to .TRUE.

MESHT INTEGER 1 Denotes the number of lateral
(MESHThickness-wise) interior stations used to gen-

erate the finite element mesh
when SHRTIN is set to .TRUE.

N INTEGER 0 N>O Signifies the number of
upper surface coordinate
pairs to be input through
NAMELIST $FAIRNG-$END, fol-
lowing NAMELIST $DRV-$END,
on SYSIN.

N=O Means no fairing profile
is input.

N<O A pointer for profile
library routine INI.
Thus, N= -2 reads profile
points from subroutine
FOIL02.

(Applicable when SHRTIN set to
.TRUE., only.)

NSTEPS INTEGER 20 Denotes the number of (quasi-
static) load steps to be used
in applying the field pressure
load to a fairing, in NONSAP,
during HYDROSAP iteration #1.

Note: NSTEPS should be increased when the message "OUT-OF-BALANCE
LOADS EXCEED INCREMENTAL LOADS" is obtained.

ALPHA REAL*8 O.D Angle of attack (deg.)

ECORE REAL*8 I.D6 Young's modulus for the core
material (psi).

ESKIN REAL*8 1.D04 Young's modulus for the skin
material (psi).
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VARIABLE TYPE DEFAULT INTERPRETATION

ETAIL REAL*8 I.DO4 Young's modulus for the fair-
ing tail material (psi).

PCORE .3 Poisson ratio for the core,
PSKIN REAL*8 0 skin, and tail,
PTAIL .3 respectively.

PZERO REAL*8 14.7DO Static pressure loading (psi).

RHO REAL*8 2.DO H20 density (slugs/ft
3).

TOL REAL*8 ]x10 - 2  Denotes the HYDROSAP conver-
gence tolerance level. Con-
vergence is achieved when rms
displacement increment
<(rms displacement ) * TOL.

TSKIN REAL*8 .005 Skin thickness (inches)
(applies only if SKIN is set
to .TRUE.).

TSTART LOGICAL 0.D0 Applies only when RESTRT=
(Time of reSTART) .TRUE. HYDROSAP will restart

at checkpoint for time TSTART.

VFRSTR REAL*8 22.D0 Freestream velocity (ft/sec)

VFRSTR REAL*8 22.D Free stream velocity (fps).

Y1CORE REAL*8 O.DO Chordwise location of the core
starting point.

Y2CORE REAL*8 O.D Chordwise location of the core
ending point.
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Card 2.2 SHRTIN=T,.--

Input as many cards as required to override default control

variable values.

Card 2.n

Card 2.n+l $END
12

End card for NAMELIST /DRV/; signals the termination of

the namelist string. (This card must appear.)

CARD GROUP 3 Cable Fairing Profile Namelist (optional)

Card Group 3 is present only if SHRTIN:T and N>O in

NAMELIST /DRV/.

Card 3.1 $FAIRNG
i2

Header card for NAMELIST /FAIRNG/.

Card 3.2 XX(l)=... ,XX(N)=...,

Card 3.m ZZ(1)..,ZZ(N)..,

{(XX(I),ZZ(I)), I=I,-.-N} are the profile coordinates, in

inches, for the upper surface of the symmetric cable fair-

ing to be modeled. N is set in NAMELIST /DRV/.

Card 5.m+l $END

End card for NAMELIST /FAIRNG/.

CARD GROUP 4 HYDRO Input Deck (optional)

Card Group 4 is present only if SHRTIN=F and SAPSIM=F in

NAMELIST /DRV/.

Card 4.1 First card of HYDRO input deck

} see section 3.3

Card 4.p Last card of HYDRO input deck.
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CARD GROUP 5 Spacer

Card 5.1 99999999
1214S9678
A spacer card to be inserted between HYDRO and NONSAP in-

put decks. (This card must be present whenever SHRTIN=F.)

CARD GROUP 6 NONSAP Input Deck (optional)

Card Group 6 is present only if SHRTIN=F and HYDSIM=F in

NAMELIST /DRV/.

Card 6.1 First card of the NONSAP input deck.

: see section 4.3

Card 6.q Last card of the NONSAP input deck.
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APPENDIX B. SHCENT Computer Program

B.1 Program Description

The SHear CENTer (SHCENT) program computes the St. Venant warping

function for an arbitrarily shaped, heterogeneous, orthotropic cross-

section. The SHCENT program was adapted from a code developed by E.

Baumgartner [15]. Using the warping function, the program computes the

section's torsional rigidity and the coordinates of its shear center,

Incidental to the warping function computations, the program also com-

putes the bending rigidities of the section, the modulus weighted area

for the section, and the location of the modulus weighted centroid.

Written in FORTRAN, the program accepts, as input, the topology of 0

(the section shape) and its triangulation, as well as the material con-

stants for each element of the triangulation.

B.2 Problem Size Limitations

The current double precision version of the program runs in 224k

bytes of core on an IBM system 360/91. With this program size, the tri-

angulation of 2 is limited to:

• maximum number of triangular elements - 140

• maximum number of nodal points - 150

• maximum number of different materials comprising the

cross-section - 20

• maximum semi-bandwidth for the global stiffness matrix - 100.

All significant variables are passed among the various subroutines of

SHCENT via blank common. The problen size limitations (above) are trivi-

ally eased by altering the dimensions of the variables in blank common.

B-l
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B.3 SHCENT Input Deck

Program SHCENT reads input from FORTRAN Unit 5 using list-directed

(free-field) format. The programmer may comment his input deck by plac-

ing an asterisk (*) in the first column of the comment record. A rudi-

mentary mesh generating option is available for automatically computing

model coordinates and element definitions for "regular" meshes. For

this, element nodes must be "numnbered" counterclockwise.

A description of the input deck follows:

Title Card

Card 1: TITLE

TITLE - Any 80 characters alphanumeric to be used as the

title for a run

Control Card

Card 2: NODNO, NGMAT, NGRELM, NGRNOD, NECHO

NODNO - Total number of nodes

NGMAT - Number of material property vectors to be read

V"'ELM - Number of element definition groups to be read

GRNOD - Number of node point definition groups to be read

NECHO - Input echo flag

= 0, No echo of input

= 1, Echo input

Material Property Cards

Cards 3: K, (GMAT(kj),j=1,4) (input NGMAT cards)

GMAT(k,1) - Gxz , xz shear constant

GMAT(k,2) - Gyz , yz shear constant
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GMAT(k,3) - Ez  , Young's modulus orthogonal to the

cross-section

GMAT(k,4) - c , angle (degrees) between material axes

and input coordinate system

Element Definition Cards

Cards 4: NGR, IL, ILA, IS, IA, JS, JA, KS, KA, NMAT

NGR - Number of elements to be defined by this card

IL - Element number of first element in the group

ILA - Increment by which IL is to be increased

(decreased for ILA<O) for each additional element

defined in this group

IS - Global node n.nber of element (local node) number

I
IA - Node number increment for IS (cf. ILA)

iS - Global node number of element (local node) nunber

2

JA - Node number increment for JS

KS - Global node number of element (local node) number

3

KA - Node number increment for KS

NMAT - Material property vector to he associated with

this element (cf. K of CARDS 3)

Node Point Definition Cards

CARDS 5: NGR, J, JA, Y(J), DY, Z(J), DZ

NGR - Number of nodes to be defined by this card

J - Node number of first node in this group

JA - Increment by which J is to be increased (or

decreased, for JA<O) for each additional node

defined in this group
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Y(J)Z(J)-local or global coordinates of node J

DY,DZ - coordinate increments by which Y(J) and Z(J),

respectively are to be increased for each addi-

tional node defined in this group

End of Data Card

Card 6: -999 , in columns 1-4.
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APPENDIX C TOWLINE Computer program

C.1 Program Description

The TOWLINE program computes the three-dimensional dynamic (or

quasi-static) response of a faired towing cable under the assumption that

the cable, while undergoing large displacements, sustains only small

strains. A standard three-dimensional beam element formulation is used

to discretize the cable.

Written in FORTRAN, the program accepts as input an initial config-

uration of the cable and the mechanical and hydrodynamic properties of

the elements into which the cable has been subdivided. Up to ten differ-

ent beam cross-section types can be accommodated. The user may specify

time-dependent external forcing functions, in tabular format, or supply a

user-written subroutine (FORCE) to define the forcing functions explic-

itly. A checkpoint-restart capability makes possible the resumption of

computations from a previous run.

C.2 Problem Size Limitations

The current double-precision version of the program runs in 498K

bytes of core on an IBM System 360/91 system. With this program size the

discretization of the cable is limited to 100 nodes (99 elements).

C.3 TOWLINE Input Deck

Program TOWLINE accepts input from FORTRAN Unit 5 using formatted

reads. A description of the input variables and card formats follows:

CARD 1: KEY, TITLE (19) FORMAT (Al, 19A4)

KEY - decision flag for integration procedure

- E, explicit

= I, implicit

TITLE - 76 character titles for the run
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CARD 2: NNODE, NELE, NUMMAT, FORMAT (615, E10.6,415)

NUMDIS, MXSTEP, NDGREE,

DELT, NCOORD, NSECT, NFUN,

IAERO

NNODE - number of structural nodes (max 100)

NELE - number of elements (max 100)

NUMMAT - number of different material models

NUMDIS - number of nodes at which displacement, velocity,

or force are to be specified, as functions of

time

MXSTEP - maximum number of time steps

NDGLEE - number of degrees of freedom per node (=6 for

current version)

DELT - time step size (secs)

NCOORD - number of beam cross-section pointer nodes

NSECT - number of different beam cross-section types

NFUN - number of different time-dependent functions (max

= 9)

IAERO - decision flag for hydrodynamic loads
= 0, no hydrodynamic loads

= 1, include hydrodynamic loads

CARD 3: RHO,V(3)

RHO - fluid density

V - fluid velocity vector, with respect to cable, in

global (x,y,z) coordinates (x-z plane repre-

sents plane of tow; z axis along gravity

vector)

NOTE: OMIT CARD 3 IF IAELO - 0.

C-2
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CARD 4: KONTRL (10) FORMAT (1015)

KONTRL (1) - stiffness matrix update frequency

(2) - not used

(3) - not used

(4) - not used

(5) - 8x1000; Newmark - beta
(6) - not used

(7) - not used

(8) - checkpoint/restart control

= 0, no operation

= n, checkpoint every n steps on unit 25

= -n, restart and then make checkpoint every n

steps

(9) - restart checkpoint number

(10) - time history frequency

4 0, no operation

= n, make time history of motion on unit 22

every n steps.

CARD 5.1: MTYPE FORMAT (I5)

MTYPE - material model number

CARD 5.2 & 5.3 E(16) FORMAT (8F10.O)

E(1) - material density

E(2) - modulus of elasticity

E(3)-E(6)- not used

E(7) - Poisson's ratio

E(8)-E(16)-not used

NOTE: REPEAT CARD GROUP 5 NUMMAT TIMES
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CARD 6.1: NSEG, KLOS, IYY, IZZ, J FORMAT (215,3F10.0)

NSEG - number of plate sections in beam cross-sections

(set NSEG=1 if KLOS=2)

KLOS - cross-section type

= 0, thin walled closed section

= 1, thin walled open section

= 2, full cross-section with user specified cross-

section

IYY - user-supplied cross-section moments of inertia

IZZ about local y and z axes, respectively, of

the section

J - user-supplied cross-section torsion constant

CARDS 6.2: Y(I), Z(I), T(I), 1=I,KLOS+NSEG FORMAT (3F10.4)

Y(I) - cross-section coordinate of point at beginning of

Z(I) plate segment I (cf. Figure c.1 below)

TI) - thickness of cross-section plate segment I

NOTE: (1) If KLOSO=2, then Y(3),Z(3) are the coordinates of the

modulus-weighted centroid of the section with respect to the

section coordinate system (origin at the section's shear

center). T(2) and T(3) are ignored in this case.

(2) Input NSEG+KLOS cards in group 6.2

z Iz
II 

y(2),Z(2)

II 

),(i 
) 

"z(I

T(I+i) y(l+ T),z(l+1) T

Figure c.la Thin 'Hall Beam Cross Section Figure c.lb Full Rear. Cross-section
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