
F AD-AOB3 937 SCIENCE APPLICATIONS INC ENGLEWOOD CO F/S 9/2
STUDIES IN PLAN CONSTRUCTION II ANALYSIS OF AN EXTENDED PROTOCO--ETC(U)

MAR MO R ATWOOD, R JEFFRIES
N00014-78-C-0165

UNCLASSIFIED SAI-80-O28-DEN NLEohumhElllEEE-E
IIIEEEEEIIIII
IIIIEIl-EIIEIlt
IEEE/IEEE////I ,
EIIIEEIIIIIIEE
ElElllElllEEI
EEL7

ApphICQIONS F
IcORpOORateD

ftJ ,onI e loe act D~eb t

80 5 1 007-,

STUDIES IN PLAN CONSTRUCTION I:

ANALYSIS OF AN EXTENDED PROTOCOL

V1.x
Technical Report
SAI-80-028-DEN

March 1980

Michael E. Atwood

Science Applications, Inc.

Robin Jeffries

University of Colorado

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research
Programs, Psychological Sciences Division, Office of Naval Research,
under Contract No. N00014-78-C-0165, Contract Authority Identification
Number, NR157-414.

Approved for public release; distribution unlimited.

Science Applications, Inc.
A0 Denver Technological Center West, 7935 East Prentice Avenue, Englewood, Colorado 80111, 307734900

0" Offices: Albu eq. ARA Ar r. Alingtn. Atlanta. Boton. Cnh:ago. .'ItIeV. IP J411s. .rs Angeles. 1CL. Palo Alto. Santa 9S:r',a. Sunnyiefe. and Tueonf

Unclaggified
SECURITY CLASSIICATION OF THIS PAGE (l1en Data 801110104

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLE TINiG FORM

I. REPORT NUMBER 2. 3OVT ACCESSION NO. 3. RECIPIENTeS CATALOG NUMEER

Technical Report Number 2 " 9.57
4. TITLE (rd SwbfiU*) S51 Ot'~I~ ('r

__j _ Stu ie rP E~Cnstructlon I:
Analysis of an Extended Protocol, Technical Rewt / r- ---.---- - , ,"------- .I_ _

"'" -- SA-8Q(-28- DEN 2

Michael E. twood --A Robln/Jeffrles . Nd0O14-78-C-(165

S. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMBERS

Science Applications, Inc.
7935 E. Prentice Avenue NR157-414
Englewood, CO 80111

11. CONTROLLING OFFICE NAME ANO ADDRESS i2. REPORT DATE

Personnel & Training Research Programs a/rg 3
Office of Naval Research 0/4 -- _s
ArlinnnVA p6917 _ _

14. MONITORING AGENCY NAME I AOORESS(If dlfferent Irom Contrallind Office) IS. SECURITY CLASS. (of this report)

-----i- Unclassified
150. DECLASSI FICATION/ DOWN GRADING

SCHEDULE

1. OISTRIUUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

I?. DISTRIUUTION STATEMENT (of the abetstea t tered in Block 20, if dillermt trnat Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cntinue on rever e side If neceeeary md identilf, by block numbet)

Problem solving, planning, computer programming

20. ;DISTRACT (Contimm on reveree side It neisNy md identify by block nuuber)

This report describes the analyses of long, thinking-aloud protocols collected
from two experienced software designers during their initial attempts at

solving a moderately difficult lesign problem. Our method of analysis involves
transforming the protocols into a series of rules in a condition-action format.
These rules reflect the "policies", or general strategies that guide design
activities, "goals", that indicate the actions that a designer intends to
accomplish, and "notes", that represent problem-specific information that was
generated or retrieved during the course of problem solving. (cont.) I

D D 1jrANI 1473 GIr TION O I NOV 6 IS O SO tLTE Unc ass fie
SS U lassifid ass f T)SEUIYCASIIAINO HI AE(hn aeEt/d

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(WIm Data Enterd)

Solving a design problem involves the identification of the components that
must be included in a design and the solutions of these components. The
identified components represent the subproblems that must be solved in order
to complete the design, and these solutions involve the creation and satis-
faction of goals. In this report, we focus on the form and content of these
goal structures and the manner in which they are generated. We conclude that
the design components tend to be enumerated breadth-first on certain classes
of design problems, and that the associated goals are explored depth-first.
This cycle proceeds through multiple iterations and other processes constrain
the expansions of these top-down processes.

Unclagsified
SECURITY CLASSIFICATION OF THIS PAGE(W 01 Data Entered)

PREFACE

This report describes an tnvesttgatioon of the problem

solving processes observed In a design task. The dis-

cussions presented here are based on a detailed analysis

of long, thinking-aloud protocols. Detailed descrtptions

of the results of these analyses are contained in an

appendix, which may be obtained from the authors.

i

Ion

st~lbutlo'

A v 1 a i i

TABLE OF CONTENTS

INTRODUCTION 1

TASK DOMAIN AND PROBLEM DESCRIPTION. 3

METHOD OF ANALYSIS. 5

GOAL STRUCTURES: AN OVERVIEW. 11

Related Research.14

A BRIEF OVERVIEW OF THE PROTOCOL. 17

RESULTS OF THE ANALYSIS 23

Policies. 23
Goals. 25
Notes. 27
Problem Solving by Debugging Almost-Right Plans 30

Design Modification Strategies 31
Recurring Topics. 33

A BRIEF LOOK AT A SECOND EXPERT PROTOCOL 37

DISCUSSI. 40
Breadth - First Expansions40

Depth - First Expansions. 41

Stopping Rules and Iterations. 42
Constraints on Top-Down Expansions. 44

Swiiry 46
REFERENCES. 48

APP ENDICES

(presented in a separate volume)

A. OVERVIEW OF S3's PROTOCOL A-i

B. SUBJECT S3 -- PROTOCOL SEGMENTS NOT ENCODED. B-i

C. SUBJECT S3--RULES. C-i

D. SUBJECT S3 -- GOAL STACKS D-i

E. SUBJECT S3 -- GOALS. E-i

F. SUBJECT S3 -- NOTES. F-i

G. SUBJECT S2 -- ENCODING OF THE PROTOCOL G-1

RULES. G-1

GOAL STACK. G-i1

GOALS. G-13

INTRODUCTION

This report describes an investigation of the problem solving

processes employed in a design task. In this context, we will describe

a method for analyzing thinking-aloud protocol data and the results of

such an analysis. 'I

In discussing ill-structured problems, Simon (1973, pg. 190) notes

that "the whole [architectural) design, then, begins to acquire

structure by being decomposed into various problems of component

design, and by evoking, as the design progresses, all kinds of

reqjirements to be applied in testing the design of its components.

During any given short period of time, the architect will find himself

working on a problem which, perhaps beginning in an ill structured

state, soon converts itself through evocation from memory into a well

structured probl em."

Design involves the identification of design components and, then,

the solution of these components. The identified components represent

subproblems that must be solved in order to complete the design, and

these solutions involve the creation and satisfaction of goals. The

form and content of these goal structures and the manner in which they

are generated, therefore, provides a record of the problem solving

actions taken by a designer. In this report, the major focus will be

on such goal structures.

The problem solving processes involved in design can be described

as the creation of goal structures. The second focus of this report is

to describe these processes. Simon (pp. 190-191) equates the processes

involved in attaining solutions to identified design components to GPS

(General Problem Solver; Ernst and Newell, 1969) and those involved

with identification to a "retrieval system, which modifies the problem

space by evoking from long-term memory new constraints, new subgoals,

and new generators for design alternatives." In this report, we will

describe the results of these processes and consider the "constraints"

and "generators" that underlie these actions and the manner in which

these actions are applied.

This report focuses on the goal structures created during the

performance of a design task and on the derivation of these structures.

We present a detailed look at a protocol collected in a software design

task and a brief look at a second protocol. The organization of this

paper is as follows: we briefly describe the task of software design.

Next, we describe the method of analysis that leads to the

identification and definition of these goal structures and associated

problem solving processes. We present an overview of the goal

structures and processes observed in the protocols and compare these

observations with those of others who have investigated behavior in

complex tasks. We examine one protocol and, then, give specific

illustrations of the designer's problem solving processes and

associated goal structures. This analysis is compared to that of a

second protocol. Finally, we consider the implications of our results.

2

TASK DOMAIN AND PROBLEM DESCRIPTION

Software design is the process of translating a set of task

requirements (functional specifications) into a structured description

of a computer system that will perform the task. There are three major

aspects to this description. The original specifications are

decomposed into a collection of modules, or substructures, each of

which satisfies part of the original problem description. This is

often referred to as modular decomposition of the problem. In

addition, these modules must commiunicate in some way. The designer must

specify the interrelationships and interactions among the modules. This

includes the control structure, which indicates which modules are used

by a given superordinate module to do its work and the conditions under

which they are used. Lastly, a design may include a definition of the

data structures required.

One can think of the functional specifications as indicating the

properties that are desired in the final result. The design identifies

the components, or modules, that can satisfy these properties. That

is, a design delineates what must be done in order to meet the

functional specifications. How these modules are to be implemented is

a programming task, which follows the design task.

The particular problem to be discussed in this paper is to design

a page-keyed indexing system. The problem specifications are shown in

Figure 1. This problem was chosen because it is of moderate difficulty,

3

understandable to individuals with a wide range of knowledge of

software design, while not requiring knowledge of highly specialized

techniques that would be outside the competence of some expert

subjects. That is, a reasonable design ciuld be constructed for this

task using only the techniques taught in upper-division undergraduate

courses in computer science or those contained in standard textbooks on

computer science algorithms. A variety of approaches, however, could be

taken to design such a system. A designer must select an approach that

can be implemented, identify the algorithms that must be included, asid

specify how these algorithms will interrelate.

4

METHOD OF ANALYSIS

We collected thinking-aloud protocols from two experienced

designers who were given the page-keyed indexing problem. Both

protocols were approximately three hours in length and were very rich

in information about design processes. We analyzed the protocols by

transforming them into collections of rules in the form of condition-

action pairs.

The motivation behind our recoding of the protocol was two fold.

Primarily, we wanted a transformation of the original data that

eliminated irrelevant material and made as explicit as possible the

I ;i~j conditions for decisions and the relationships among facts.

3-sc viewed this process as a first step toward an eventual computer

model of the design task. Th~e recoded protocol should serve as the

D)d51S for one component of a system that can solve problemrs similar to

the specific problem to be reported here.

These considerations led us to translate the relevant portions of

he protocol into a set of condition-action rules. Each rule is

intended to represent a decision made by the subject and the features

of the problem situation that motivated that decision. We tried to stay

as close as possible to the protocol itself, but motivating conditions,

and occasionally entire rules, were inferred as necessary to keep the

_ et of rules reasonably compl ete and consi stent.

5

The first step in our protocol analysis is to partition the

protocol into segments that can be ignored and those that will be

translated into rules. The ignored segments include digressions (e.g.,

on the historical relationship between relocatable loaders and modular

programming), reviews of the current state of the design, definitions

of terms, and unintelligible phrases. A list of the lines that were

ignored and a brief description of the topic of each is shown in

App~endix B; examples of such passages are given in Figure 2.

Two persons did the encoding into rules, each modifying the rules

proposed by the other iteratively, until they both agreed on a set of

rules that seemed to capture the protocol. An attempt was made to have

rules encompass information at a similar level of detail (as defined by

the encoders' intuitions), but no restrictions were placed on the

number of lines of the protocol that went into a single rule.

The rules derived from the protocol are contained in Appendix C.

To provide the reader with an idea of the correspondence between the

actual contents of the protocol and our encoding into rules, some

examples are presented in Figure 3.

Each rule is a condition-action pair, written in an IF ... THEN

format. The left hand side of the rule contains one or more clauses

that are true of the current situation and which lead to the generation

of the information on the right hand side. The right hand side clauses

either set "policies", create "goals" or "note" information in working

memory or some external memory. The conditions on the left hand side

6

PAGE-KEYED NEEXING SYSTE4
BAC GROUND.

A BOOK PtBLISHER REQURES A SYST- M TO PODUCE A PAGE-KEYED rNtEX.
THIS SYSTEM WILL ACCEPT AS INPUT THE SOURCE TEXT OF A SCOK AND PRCDUCE AS
OUTPLT A LIST CF SPECIFIED INEEX TERMS AND THE PAGE NUBES CN WHICH EACH
UMEX TERM APPEARS. THIS SYSTE IS TO OPERATE IN A BAICH MODE.

DESIGN TASK.
voU ARE TO cSt4 A SYST34 TO FRODUCE A PAGZ-KEYED INDEX. THE SOIRCE

FILE FOR EACH BOOK TO BE INDEXD IS AN ASCII FILE RESIDING ON DISK. PAGE
NIJMBERS WILL BE INDICATED ON A LINE IN THE FORM /*NNW WHERE / ARE MARK
CHARACTERS USED TO IDENTIFY THE OCCLRRENCE OF PAGE NUMBERS AND NNNN IS THE
PACE NU4BER.

THE PAGE NLUMBM WILL APPEAR AFTER A BLOCK OF TEXT THAT COMPRISES THE
BODY OF THE PAGE. NCRMALLY, A PAGE CONTANS ENOUGH INFCRMATICN TO FILL AN
8 1/2 X 11 INCH PA(E. WCRDS ARE DELIMITED BY THE FOLLC.JNG CHARACTERS:
SPACE, PERIOD, CO. MA, SEMI-COLON, COLON, CARRLAGE-RET!.RN, QUEST.CN MARK,
QUOTE, DOUBLE QUOTE, 0CLAMATtCN POINT, AND LINE-FEED. W(RXS AT THE MJD
OF A LINE MAY BE HYPHDATED AND CONTINUED ON THE FOLLJING LINE BUT WCRES
WILL NOT BE CONTINIED ACROSS PAGE BOUNDARIES.

A TERM FILE, CcNTAINING A LIST CF TERMS TO BE rNDEXED, WILL BE READ FROM
A CA.D REA.ER. THE TERM FILE CON7IINS ONE TERM PER LINE, WHEE A TE'M IS
T; WcRD LONG.
"?- SiSTEM SHOULD READ THE SOURCE FILES AND TERM FILES AND .FIND ALL

OCCRRUCES CF EACH TERM TO BE INDEXED. THE OUTvf SHOULD CNTAIN THE INDEX
TERMS LISTED Ar AETICALLY WITH THE PAGE NUMBERS FOLLC#rNG EACH TERM 0N
NUMEM CAL ORDER.

A NULL SOURCE FILE tNDICATES THNT ROCESSIN IS COMPLETED. ERR
MESS ?ES AND A TERNINATION MESSAGE SHOULD BE WR'.r6" TO THE CPERATC 'S
,C:QCLE. EAC CCWPLETED INDEX IS TO BE STM= ON DISK FCR LATER LIST=N.

Figure 1. The Page-Keyed Indexing Problen

(lines 87-95)
this is - also the, this sort of method came out when uh modular
program, the idea of module programming - my heavens, might have
more than one sub-routine, uh came out. Of course, that cane
out when - with uh relocatable loaders, which uh - you really
need to have that kind of thing with lots and lots of
subroutines. Urn so I usually try to do things from that point
of view, top-down, "let George do it".

(lines 414-418)
Well, computer words, I gue'ss, at this point, well let's not
consider that so much as say it's words. (That's certainly a
misused word.) Uh, units - whatever unit is necessary to be the
length of a pointer.

(lines 523-542)
(Funny-looking box). I didn't really make the boxes right here.
Uh I don't know what shape this, these, these things are called,
But way back when IBM first came out with their templates, they
had a box shaped, shaped like that on it, (whoops, this is
supposed to be all, all straight lines here) and that box was
supposed to mean, uh, well there are lots of schools of thought,
one school of thought was that this box implied a subroutine,
and I've always used that, some - and sometimes these boxes
imply subroutines, but that's sort of, they're sort of I/O
subroutines and you don't really specifying them. At this poinw
you're what you're saying - something like uh the equivalent of
saying a FORTRAN read, and this is certainly a subroutine, and
yet you aren't really worried much of anything about it, and you
have no, probably no control if anything goes wrong either,
which is unfortunate, but -. So, that's what boxes that
approximate that shape mean.

(lines 957-962)

If there is no next term word, that's unequal because there was
a text so we have compared everything. And, if there is, just
carry on.

Figure 2. Subject S3 -Examples of Segments Not Encoded

(lines 275-295)
Now at this point.- terms, we can't, well we could, uh, it
doesn't specify, no, that would just be a fancy sort of thing,
would be to try to find terms that are really the same. Well,
no. No, you wouldn't want to do that because maybe they might
appear in the text. You might actually want to have variations
on terms that are really the same, that are actually little
spelling differences. Since they're supposed to come out
alphabetically, and I can't really think of any better way of
doing it, uh, I would want to consider that having read all of
the terms, that one would then, could then alphabetize the
terms, unless you could have a - some - glean that some terms
were much more likely than other terms in which case you would
want to put them in that order, wha-ever that order might be.

IF (policy is to look for anomalous conditions) AND (goal to
build term table) THEN (note that some terms may be duplicates)
AND (create goal to consider eliminating duplicate terms)

IF (goal to consider eliminating duplicate terms) THEN (create
goal to determine if duplicate terms are redundant)

IF (goal to determine if duplicate terms are redundant) AND
(policy to critique decisions by considering alternatives) THEN
(note that duplicate terms may be permitted)

IF (goal is to order terms) AND (specifications say output of
terms is to be in alpha-order) THEN (note that term table can be
constructed by reading in terms and alphabetizing)

IF (goal is to order terms) AND (policy is to be efficient) AND
(best order of terms is on basis of frequency of occurrence)
THEN (note that frequency order for terms is better than
al pha-order)

(lines 408-413)
While I'm thinking of trying to make a list, that - but that
there must be a pointer to each list, or, well a pointer to each
list and fixing it to be a certain number of pointers, such that
the uh, pointers themselves are actually in a vector of NT units
or words,

IF (goal to build table of lists) AND (noted to associate a list
with each term) THEN (create goal to have a pointer to each term
(list))

IF (goal to have pointer to each term (list)) AND (there are NT
terms) THEN (note that there are NT pointers) AND (note that
there will be a pointer to each term) AND (note that pointers
will be stored in a vector)

Figure 3. Subject S3 -- Examples of Encoded Segments

must consist of some member(s) of the set of currently active goals or

policies, or of facts (notes) retrieved from long-term, working, or

external memory.

Policies are general strategies that a particular designer uses in

most or all design tasks. While certain attributes of a problem may

cause a given policy to be invoked, the policy itself is problem-

independent. Policies represent a designer's approach to design. They

influence the direction that the design will go, in that when the

subject has a choice among several alternatives, the one chosen will be

consistent with his or her policies. Policies are frequently found

among the left hand side clauses of rules, as they motivate mariy of the

design decisions the subject makes. We have assumed that all policies

are activated at the beginning of the problem solving session. We show

this by simply listing at the beginning of the encoding a set of rules,

each with a policy on its right-hand side and simply "start of problem"

on its condition side.

Goals indicate activities that the subject intends to accomplish.

Although goals name what needs to be done, they do not specify how

things are actually to be accomplished. They represent the subject's

internal representation of the current status of the solution -- what

is being worked on, what remains to be done. Some goals can be

satisfied almost as soon as they dre created, while others invoke

subgoals, which may, in turn, invoke their own subgoals.

7

Notes, the third element found in our rules, include all

information specific to the problem that the subject either generates

or retrieves while expanding the design. Some of this information is

derived directly from the problem specifications or the developing

design. Other information conmes from known computer science facts or

concepts. In addition, a designer makes a large number of inferences

during the course of constructing a design, and we have encoded the

results of these inferences as notes. Notes include information that

is recorded in or retrieved from either the subject's internal memory

or f;-om external memory.

From the appendices and the examples shown in Figure 3, the reader

will note that our encodings are quite specific. No attempt has yet

been made to aggregate the rules into more general constructs. This was

done in order to keep rules closely tied to particular segments of the

protocol. In this regard, the rules can be considered a translation of

the protocol into a for that is easier to present and deal with.

We also intend these rules to be the basis for a model of the

processes involved in software design. A great many components of the

solution process will need to be specified in much more detail before

such a model can be developed. In particular, a major component which

is absent from this analysis is the executive process that interprets

these rules. However, the rules were constructed with some assumptions

in mind about how this interpreter would operate.

8

The executive's main functions are to: 1) choose which among the

potentially relevant rules is to fire; 2) manage information that is

recorded in memory and retrieve facts and inferences as needed; and 3)

keep track of which goals are active and when goals are satisfied. We

have nothing to say about choosing among rules, since we only see

evidence of the rule that is actually selected in the protocol.

Much of the second function, managing memory, will depend on the

memory representation chosen. We have assumed that information gets

retrieved from long term memory or stored in working memory whenever

necessary. Also, the executive can make simple inferences about memiory

contents, such as "there is no information in working memory on topic

An, or "all cases of type B have been considered", or "C has recently

been recorded on external memory".

Aspects of the third function, keeping track of active goals, are

implicit in the way the rules are written. We assume that goals are

hierarchically organized, although not necessarily into a single,

unified hierarchy. Goals are satisfied when the executive determines

that their purpose has been accomplished, frequently by the recording

of one or more notes. A goal may generate subordinate goals to

accomplish its purpose; in that case, the executive temporarily

suspends work on the original goal until the subordinate is achieved.

Not all goals are satisfied; if achieving a goal appears impossible or

unprofitable, it can be deferred or abandoned. In our encoding of the

protocol, we have assumed an executive that will handle these tasks so

9

that they are transparent; therefore, we have not made explicit

reference to them in the rules.

This method of analysis produces a local encoding of the protocols

and makes no assumptions about the global problem solving processes

employed by designers. Further, the properties we attribute to the

executive do not dictate the overall structures of the design

processes. Only inferences necessary for local connectivity between

rules were made in these encodings. What emerged from this translation

was the goal structures that represent global properties of the

protocols.

10

GOAL STRUCTURES: AN OVERVIEW

There are two sources of evidence for the problem solving

processes used by our expert designers. Components are the elements

included in each iteration of the design, as recorded by the subject in

external memory. The goals, as captured in our encoding of the

protocols, trace the processes that lead to the definition and

decomposition of the components. The overall structure of the problem

solving process is hierarchical; that is, it proceeds from abstract to

detailed representations of the design.

In the protocols, there are multiple iterations of an

identification-solution cycle. Initially, subjects produce abstract

designs. In each successive iteration, the design is expanded to

include more details. Each iteration produces its own goal structure,

and each ends with the satisfaction of all of its goals.

The initial iteration is based on a very abstract decomposition of

the original problem. This decomposition, which we term the "problem

model", appears to be relatively independent of a given subject's level

of expertise, in the problem used here. A problem model identifies the

major components that will be required to reach a solution.

The fact that such a problem model was easily derived and that its

basic content did not vary significantly as a function of experience,

qualifies the conclusions that can be drawn from this research. In

other design tasks (e.g., the design of compilers or artificial

intelligence systems), where the development of a problem model may

require more of a designer's resources, different problem solving

processes may occur. That all subjects can correctly and easily parse

the indexer problem into its constituent parts, may lead to the

iterative design process we have observed.

The initial iteration, which is based on the problem model, leads

to the formulation of the abstract design. Further iterations expand

the components of the abstract design to greater levels of detail. The

definition of each component is based on the generation and

satisfaction of goals, which successively refine the designer's

understanding of that component.

At a macro-level, the level at which components are added to the

developing solution, our subjects proceed in a top-down, breadth-first

manner through multiple iterations. As a result of this breadth-first

mode of expansion, the subproblems and associated goals involved in the

design are identified.

At the micro-level at which these goals are expanded, however,

solutions are explored depth-first. That is, once a subproblem is

identified, there is a strong tendency to resolve it before the next

subproblem is considered. These depth-first expansions are also guided

by policies, which limit the number of alternatives to be considered,

and by information that is generated to describe the functions that the

solution must satisfy. A given component may be considered in more than

one iteration, with more detailed consideration given in each

12

successive cycle. At each iteration, however, the depth-first expansion

continues only until a level of detail "appropriate" for that iteration

is attained. For example, the initial iteration may consider the

functions that must be performed, while the following iteration would

consider mechanisms to perform these functions, followed by

consideration of the implementation of these mechanisms. These

"1stopping rules" are also part of the processes that guide the

generation of the goal structures.

In a complex task, the top-down processes described above must

interact with other processe that constrain the alternatives that the

top-down processes generate for inclusion in a solution. This is one

function of the policies mentioned above, since these affect the

generation and evaluation of alternatives. They may, for example,

indicate which of several alternatives is preferable or cause other

solutions to the current subproblem to be generated.

These constraining processes are also apparent in the generation

of information that, although it is not immiediately useful, is

potentially relevant later in the problem solving process. Some of

this information is, in fact, irrelevant to the solution, and after it

is once generated, it is ignored, or at least never explicitly

retrieved. Information that later becomes relevant, however, may be

retrieved long after it was generated.

In summary, the top-down processes consist of the breadth-first

expansion of the components and the depth-first explorations of these

components, and this is restricted by other processes.

13

Related Research

Here, we will briefly compare the processes underlying the

generation of designs with those reported by other researchers who have

investigated the solution of complex tasks. In general, these studies

also reveal the basic top-down processes described above. They do not,

however, clearly indicate the alternation between breadth-first and

depth-first expansions or the type of processes we have observed to

constrain the top-down expansions.

Bhaskar and Simon (1977) looked at how an expert solved

thermodynamics problems. They found that their problem solver

consistently worked top-down, but that the problem was solved breadth-

first (i.e., iteratively) only if it surpassed some threshold of

difficulty. Their model, SAPA, focuses on the solution of the well-

structured problem produced once the correct form of the general energy

equation has been retrieved. They also show that the equation was

retrieved according to a standard template, and that processes that

examined key words in the problem description constrained the initial

equation by dictating the inclusion or deletion of certain terms.

Greeno, Magone, and Chaiklin (1979) describe how geometry

problems, particularly those involving constructions, can be solved by

a model called Perdix. When Perdix cannot solve a problem directly, it

tries to instantiate a "plan-schema". A plan-schema "includes

information about global features of the situation that are required

for the plan to be feasible; for example, the plan for proving two

14

7777

triangles congruent requires that two triangles be present" (pg. 8).

This schema is activated if the features of the problem situation can

be made to meet certain prerequisites. If no plan-schema is

imediately applicable, auxiliary lines (constructions) can be drawn to

satisfy the missing prerequisite of an "almost" applicable schema. That

is, this "planning system produces constructions by a process of

partial pattern matching and pattern completion. Perdix recognizes

that a situation partially matches a pattern that satisfies the

prerequisites for a plan-schema and then activates productions that

complete the required pattern" (pg. 8). Once the appropriate plan-

schema is decided upon, the model proceeds to solve the problem in a

purely top-down manner.

While Perdix solves geometry problem completely in a goal-driven

manner, Greeno et al. note that their subjects occasionally used a

working-forward strategy. This strategy is similar to our discussion

of the generation of information that may be relevant only later in the

problem solving process that was discussed above. A line would be

drawn or an inference made that was not required by the current subgoal

or plan-schema. This information could be used later in the solution

to instantiate a new plan-schema. In its present form, Perdix cannot

account for such behavior, and Greeno et al (pg. 36) suggest that the

basic problem is in formulating the control processes that keep the

generation of such information "under control".

An expert solving mechanics problems in physics (Larkin, 1977)

15

also used a top-down, breadth-first approach. After deriving the

relevant features of the situation from the problem description and a

diagram, Larkin's expert proceeded to solve an abstracted version of

the problem and then used this abstract plan to generate a detailed

solution. Larkin models this behavior with a purely top-down,

hierarchical system that, for the most part, finesses how the

appropriate plan is decided on, and deals primarily with how the

problem is solved within the constraints of the plan.

There are two aspects that are common to these projects and to

similar efforts (see Chase and Chi (1979) for a review). First,

identification of the known components underlying the problems

investigated is a process of pattern recognition. That is, problem

solvers have in long-term memory some number of patterns that

correspond to known problems, and some features of the problem cause

one of these to be retrieved. Second, and perhaps as a result of the

first point, all these studies focus more on the solution of well-

structured problems rather than on their selection.

Thus, other researchers analyzing skilled problem solving in

semantically-rich domains have found that, on non-trivial tasks at

least, good problem solvers use a top-down, breadth-first expansion of

a solution. The rk surveyed above, however, has not shown the depth-

first exploration of subgoals or the types of processes that constrain

these top-down expansions _we have found here. We attribute this

both to differences in the level of analysis and to the nature of the

problems being solved.

16

A BRIEF OVERVIEW OF THE PROTOCOL

We gave the page-keyed indexing problem to an experienced computer

systems analyst and asked her to think out loud while generating a

solution. She worked on the problem for over two and a half hours,

producing almost thirty single-spaced pages of remarks. Because of the

extreme length of the problem solving session, we will present here

only a brief summiary of the protocol. A more detailed overview is

contained in Appendix A. Along with her verbal remarks, the subject

produced a flowchart. Close examination of this document, reproduced

as Figure 4, should make the final design solution reasonably clear.

The subject, S3, has degrees in physics and electrical engineering

and about 15 years programming and design experience. Although she is

aware of the current literature on software design methodologies, S3

has no formal training in this area. Nor has she designed any type of

indexing system.

The protocol consists of two major iterations toward a solution of

the indexer problem. In the first third of the session, S3 generates a

"high-level flowchart", a very abstract solution to the problem. The

remainder of her time is spent expanding the boxes of this flowchart to

a greater level of detail, and we have divided this iteration into two

segments.

We will briefly describe these three segments of S3's protocol.

Notice that each segment begins with the identification of the

17

.. i

m~~~~is~~e 40 z ~ U~n /

IS

!131S PAGE IS REST QUALTY MU =U=L

Figure 4., Subject S3 -- Design

igue4 ubet$ - sg

-!tt, a

4aatf~f

A

Figure 4. Subject S3 -- Design
(continued)

. • __ u •

rd

4 C'*,
(cms' r.k1*+ 0+

~/

% / % ,/ -f - - ,. '-, ' '

4",, - - -- _. - ' .

.i--, .

oord

. __t J __ . . .

\. 4,"-- , 4" 14, 'C

THIS PAGE IS MST QUALMT MaTAAML

FRWO "~Y FL2ISHF4D Q

Figure 4. Subject S3 - DeSign
(continued)

functions that must be performed and, then, detailed consideration of

each of these functions.

The initial segment of the protocol, which leads to the

construction of the "high-level flowchart", or abstract design, is

based on S3's inferred problem model, that was developed very soon

after reading the problem description. This problem model indicates

that the form of the solution is to "read the tern file in order to

build a term table, compare terms to text, and store the index."

Although all components of the problem model were considered in

the initial segment, the most consideration is given to the structure

of the input files and the term table. This problem involves two input

files (the tern file and the text file), and each is considered in

turn.

The only complication that occurs with the text file is that the

specifications are ambiguous as to its format. Policies are used to

evaluate the two alternative formats, with the final selection based on

the ease with which errors in this file could be handled.

Consideration of the term file leads S3 to realize that she will

need an internal data structure to store the terms and the results of

the comparison with the text -- the page numbers. This data structure,

which she calls the "term table", is to be a table of linked lists, one

for each term. This strdcture is then considered, and its definition

is based on a policy that leads her to minimize the storage

requirements involved. She also notices that the terms will have to be

18

alphabetized and that duplicate terms may occur. No external notation,

however, is made of this information.

In considering how the text and terms will be compared, S3 notices

that hyphens can serve two functions; they can be a character in a

word, and they can separate words at line boundaries. She realizes

that this has implications for how the compare routine will operate.

Some time is spent trying to decide how to handle the problem of

hyphens, but she comes to no resolution and decides to postpone

consideration of this issue.

Once the input files have been adequately considered and the

hyphen issue is set aside, the abstract solution is developed fairly

quickly. As can be seen from the first panel of Figure 4, she intends

to "read the term file', compare "text:terms", and "store index".

The remainder of the protocol is an expansion of these boxes. For

convenience, we have divided it into two segments. The first of these

is concerned with reading the terms and building the term table. The

latter primarily concerns the comparison operation. Since the "store

index" module was only briefly considered, we have also included it in

the final segment.

S3 begins the second segment with a more detailed examination of

the term table data structure. She decides that the terms themselves

will be stored in d string table; the term table will contain a pointer

to the term and a count of the number of characters in the term. The

facts that the terms should be alphabetized and that duplicate terms

19

may occur, which were generated in the first segment, are reconsidered

here, and appropriate modules are added to the flowchart.

Each of these aspects of the term table is considered in turn.

Although S3 decided earlier that the page numbers in which terms appear

would also be stored in this structure, this topic is not considered in

this segment.

The remainder of the second segment is concerned with recording on

the flowchart the decisions made up to this point. The resulting

flowchart is shown in panel 2 of Figure 4.

In the final segment, S3 describes how the actual compare

operation 4S to be performed. In terms of length and the numbpr of

modules added to the Flowchart, this is the most complex of the three

segments and involves the largest goal structure. Each component is

considered in detail and independently of the others.

S3 begins with a module that will read in a block (page) of text

and extract the page number. At this point she also returns to the

unresolved hyphen problem, but decides that the "read block" module is

not the place to deal with it.

She next determines that the text and terms should be compared

word by word, as opposed to comparing an entire term string to the

text. She begins looking for a term that begins with the first letter

of the current text word, using a "binary chop" routine. When she

realizes that this will not necessarily bring her to the first term

starting with that letter, she adds a routine that searches a list of

"first terms starting with [each] letter."

20

Consideration of the compare opera tion proper focusses on how to

determine if the result is a match, a mismatch, or if it is necessary

to compare additional words. This leads her to notice a similarity

between this compare routine and the task of comparing, or verifying,

two files. The analogy is not an accurate one, however. This mistake

leads her to assume that the terms and text will only match if they are

the same length; that is, the text may not continue beyond the end of

the term.

She next decides what she must do once a match or a mismatch is

found. The "mismatch" case leads her to either compare the text to

additional terms or to advance to the next text word. On a "~match",

she must store the page number for that match. This causes her to

notice that there is not room in her term table for page numbers; she

then adds a vector of pointers to linked lists of page numbers. The

flowchart produced in this segment is shown in the third panel of

Figure 4.

Next, she discusses some of the functions the "store index" module

must perform -- e.g., put commas between entries and put headings at

the top of each page. She chooses not to expand this module, because

it is "uninteresting".

The remainder of the protocol contains a critique of the compare

operation and a discussion of how the hyphen problem would be solved.

She finishes by discussing with the experimenter what remains to be

done to solve the problem, and how she would approach it. Since this

21

section of the protocol does not involve additions or modifications to

the flowchart, we will not consider it, in detail, in this analysis.

22

RESULTS OF THE ANALYSIS

In this section, we present some of the results obtained from S3's

design ind from our encoding of this protocol into rule form. First,

we will consider how each of the elements involved in these rules --

policies, goals, and notes -- relate to the development of the goal

structures constructed to solve a design pi~oblem. Because it is based

on these elements, this analysis provides a fairly local view of these

processes. In addition, we will consider the actions of these

processes from a more global view. This involves errors in the design,

frequently recurring topics, and other aspects that influence or result

from these processes.

We defined policies as general strategies that represent a

designer's approach to a design task and guide the manner in which the

design will be expanded. As such, they provide fairly direct evidence

of the problem solving processes employed in a design task. Goals, on

the other hand, more closely represent the results of applying these

processes, and notes represent the information that these processes use

to make decisions and, perhaps, information that they cause to be

generated.

Policies

The primary function of policies is to guide the generation and

evaluation of design alternatives, to prescribe functions that the

design components must satisfy, and to aid in determining which aspect

23

be efficient

choose the most convenient of multple alternatives

critique decisions by considering alternative solutions

defer goals that represent tricky problems

define returns from modules

divide problem into inputs, processes, and outputs

expand top-down

look for anomalous conditions

resolve ambiguities by asking user/experimenter

use flowcharts

Figure 5. Subject S3 -- Policies

I_ _ _ 2 L

of the design should be considered at a given time. The policies

identified in our encoding of S3's protocol are shown in FigurE 5.

The primary policy concerned with generating alternative solutions

is to "critique the design by considering alternative solutions." For

example, when considering how to define the results of the text and

term comparisons, this policy leads to noting that this could be a list

of page numbers on which terms appear as well as a count of the number

of times each term appears.

The policies involved in evaluating, or selecting, alternatives

include "ask(ing) the user/experimenter" and "choosing the most

convenient of multiple alternatives." A selection can also be made on

the basis of "efficiency" or by selecting the alternative that involves

the fewest "anomalous" conditions. An example of the latter is the

selection of a format for the text file that makes errors, or anomalous

conditions more easily dealt with.

The policy to "look for anomalous conditions" can also be used to

prescribe the functions that a module must perform. For example, when

it is noted that terms may contain errors, a test for errors is

included in the module that will read the terms. The policy to "divide

problem into (initializations), inputs, processes, and outputs" is

similar in that each expansion of the design involves consideration of

initialization functions.

Some policies aid in determining which components of the design to

consider next. For example, if sufficient information does not yet

24

exist to support detailed consideration, the policy to "defer goals

that represent tricky problems" is apparent. The policy to "define.

returns from modules", which is most apparent in the latter two

segments of the protocol, clearly controls selection of the modules to

be considered at a given time.

The remianing policy ("to use flowcharts") reflects the chosen

documentation medium for the design. It is clearly related to some of

the policies described above, and, as a result, may serve multiple

functions.I

In summary, policies constrain the top-down expansion of a design

solution by generating and selectinj design alternatives to be

incorporated into the design. As a result of these processes, the

goals necessary to perform the design task are created.

Goals

Goals, in our encoding, indicate the actions that the designer

intends to accomplish to complete a design task. This generation

proceeds in an orderly manner. In this subsection, we will consider

the generation of goals, as it was captured in our encoding. We will

consider both the order in which goals were created and their relations

to other goals.

In the course of solving this problem, S3 generates a 1drge number

of goals. For each rule, in order of its use, we tabulated which goals

were active when the rule was invoked and which goals were satisfied by

the invocation of that rule. This results in a "goal stack" that

25

act,:ve sati sf led
10. 41
11. 41
12. 10
13. 10
14. 15
15. 15, 30
16. 15, 30, 17, 16
17. 15, 30, 17, 16, 22
18. 15, 30, 17, 16, 22, 34
19. 15, 30, 17, 16, 22, 34, 38
20. 15, 30, 17, 16, 22 38, 34
22. 15, 30, 17, 16, 22, 11
24. 15, 30, 17, 16, 22, 11, 4
26. 15, 30, 17, 16, 22, 11 4
27. 15, 30, 17, 16, 22, 11, 2
28. 15, 30, 17, 16, 22, 11 2
29. 15, 30, 16 11, 22, 17
30. 15, 30, 16, 40
31. 15, 30, 16, 40, 31
32. 15, 30, 16, 40 31
35. 15, 30, 16, 40, 19
36. 15, 30, 16, 40, 19
37. 15, 30, 16, 40, 19, 20
38. 15, 30, 16, 40, 19, 20, 29
39. 15, 30, 16, 40, 19, 20, 9, 29
40. 15, 30, 16, 40, 19, 20, 9, 29, 32
41. 15, 30, 16, 40, 19, 20, 9, 29 32
42. 15, 30, 16, -t0, 19, 20, 9, 29, 37
43. 15, 30, 16, 40, 19, 20, 9, 29 37
44. 15, 30, 16, 40, 19, 9, 29 20
45. 15, 30, 16, 14 40, 9, 14, 29, 19

Figure 6. Subject S3 -- Example of Goal Stack

indicates which goals the designer is considering at a given point in

the design process. These goal stacks, one for each of the three

segments into which we have divided this protocol, are contained in

Appendix D and a portion of one is shown in Figure 6.

Many of the goals generated by S3 are descendants of others. That

is, in order to accomplish the functions of some goals, subgoals are

created. These relations, which were derived directly from our

encoding, are contained in Appendix E and a portion of one is shown in

Figure 7.

In considering the goal stacks, notice that the number of goals

being considered at a given time varies. At several points, the number

of goals becomes relatively small and the 'n begins to increase. At those

points where the number of active goals reaches a relative minimum, the

protocol indicates a shift of focus on the part of the designer from

one aspect of the design to another. In fact, the episodes described in

the overview of this protocol (see Appendix A), are delimited by such

shifts, with each episode beginning with the generation of a small

number of goals and ending with their satisfaction.

S3's problem solving processes, therefore, control both the number

and purpose of goals that are active at a given time. This ensures

that the goal information, which represents the designer's conception

of the current status of the design, remains within working memory

capacity.

Comparing the goal stacks with the hierarchical arrangement of

26

1-41. sel ect language to be used
2-10. create problem model
3-15. describe input files

5-17. describe text file
6-22. determine record structure of text file

7-34. examine known information on text file
8-38. reread specifications for text file

9-11. decide between A and B
10-4. choose the more convenient

of A and B
11-2. choose the alternative (A or B)

that makes errors or anomalous
cases more easily dealt with

5-16. describe term file
21-36. order the terms

22-26. determine the basis for ordering (terms)
29-6. consider other solutions to ordering terms

30-8. consider terms in alpha-order
24-21. determine record structure of term file

25-33. examine known information on term file
23-23. determine size of term file

4-30. draw top level flowchart (FC) of processes

Figure 7. Subject S3 -- Example of Goal Structure
(Note: first number indicates relative order -- second

identifies goal in "goal stack")

goals provides evidence of how this management takes place. Within each

segment of the protocol, the first few goals, which may be considered

to be the "major" goals of that segment, are identified relatively

quickly and without overt consideration of alternatives. Each major

goal then invokes appropriate subgoals. Once these subgoals are

identified, however, their sub-subgoals are generated in a depth-first

manner. That is, once a subproblem, at some level of detail, is posed,

it is resolved before additional subproblems, that may have been

identified earlier, are considered (see Figure 7). In general, episodes

are depth-first explorations of a single goal that represent some

components of the design that the designer considers to be necessary.

This topic-by-topic exploration is one mechanism that is used to ensure

that the goal information remains within reasonable bounds.

In summnary, goals represent the actions that the designer intends

to accomplish and the selection of goals is based, in part, on

policies. This selection is also based, however, on information that

is generated during the course of problem solving. We have encoded

such information as notes.

Notes

Of the elements involved on our rules, notes are by far the most

numerous. The primary use of notes appears to be to store information

that is relevant to the generation and evaluation of design

alternatives. As was indicated above, the problem solving processes

that create goal structures have access to this information and, as we

27

will show below, cause some of it to be generated. The notes involved

in our encoding are contained in Appendix F.

Most of the information we have encoded as notes was derived

during the course of problem solving and is related to specific goals.

That is, the creation of a goal leads to the generation of information

that is relevant to the satisfaction of that goal.

There may, however, be alternative methods for satisfying a given

goal, and notes can indicate the alternatives, the functions that must

be performed, and the relative advantages and disadvantages of each

alternative. The goal to "determine (the) record structure of the text

file", for example, leads to noting that "text file records are

'blocks'", "page number appears after b lock of text", "page number may

be part of block", and "page number may be separate from block". These

last two represent alternative solutions to this goal, and a selection

is made on the basis of other information that is generated ("locating

page number can be done by scanning backwards from end of block", etc.)

Such information is explicitly generated to guide the development

of the goal structures. Other notes, however, were not explicitly

generated during the course of problem solving. That is, while most

notes initially appear on the right-hand sides of our rules, some

inferred information initially appears on left-hand sides. Such

information appears to come from several sources, and examples are

provided in Figure 8.

The notes that we attribute to the "executive" appear to be

28

"executive"
- attempts to resolve hyphen problem have failed
- no data structures or variables are yet defined
"flowhart"

- flowchart contains "read term file"
- flowchart contains "end of list" test

"problem specifications"
- problem specifications state that unit of text is block
- output of terms is to be alpha-order

"inferences from problem specifications"
- text block will be a variable length record
- text file is an input file

"computer science"
- results of read are being stored in memory incrementally
- list may be empty

"textbooks and indexing"
- text may be justified
- terms may be within terms

"simulating effects of design"
- text is not equal to term (at this point)
- text word is found (at this point)

"generated"
- assume that characters are lexically ordered
- compare should begin with next text word

Figure 8. Subject S3 -- Examples of Notes

------------------------------.--- '-- L -'-!

generated whenever there is a need for information on the current state

of working memory. Notes derived from "simulating" the effects of a

segment of the design serve to regenerate needed information and also

aid in determining what returns from modules should do. Other

information is derived from S3's knowledge of "computer science" and

"textbooks and indexing". When it is needed, relevant information from

these sources is retrieved from long-term memory.

Other information is derived from external sources. This includes

information recorded externally on the "flowchart" and the "problem

specifications". When necessary, however, the control structure can

cause "inferences from the problem specifications" to be generated.

In summary, notes are related to specific goals and they contain

information that is used in generating goal structures. In this regard,

the function of notes is similar to that of policies. Notes are

similar to goals in that both represent information about a specific

design task. By indicating necessary design functions, notes may lead

to the generation of a given goal.

Up to this point, we have been looking at the protocol at a fairly

local level, that of the policies, goals, and notes involved in solving

this design problem. We conclude that policies control the generation

of goals, that goals are generated in a very orderly manner, and that

notes represent information that is generated and then used to control

the generation of goals. In the remainder of this section, we will

consider certain episodes and recurring topics that provide insights,

from a more global view, of S3's problem solving processes.

29

Problem Solving by Debugging Almost-Right Plans

There are several instances in S3's design where information was

generated that caused her to retrieve previously developed plans. This

type of problem solving has been referred to by Sussman (1977) as the

"debugging of almost-right plans." For reasons that are not -lear,

however, these plans were not completely "debugged" at the time they

were incorporated into the design. This is, in part, a consequence of

the unfinished state of the design. Had we taken S3 through more

iterations of the design, which is the way in which designs are usually

generated, she would most likely have discovered and corrected all of

these problems. However, the fact that they were produced at this

point provides information about the processes that guide S3's design

behavior.

The clearest example is S3's assumption that the term must be the

same length as the text for a match to occur (lines 947-962). Her

model of the compare process is something like: "get a word of text,

get a word of term, compare, loop until a failure occurs or everything

is compared". At the point in the design where the comparison has

succeeded for the first word of a term and some text word, she

considers how to determine when everything has been compared. This

leads her to noticing an analogy between this compare operation and the

process of verifying two files (949-950). Verifying files is an

algorithm that is well understood by S3, and she proceeds to apply some

cautions that are prescribed by the file verification template. The

30

primary one of these is to make sure that the files are of equal

length. This is inappropriate in the indexing system, where a term is a

substring of the text.

This error is an instance of the application of a well-learned,

quite rigidly defined knowledge structure to a situation. Some

features of the situation led her to realize that this knowledge

structure is relevant; in this case, it is apparently the fact that she

is considering a compare operation and the termination conditions for

this compare. When she activates the knowledge structure, some

procedures related to its use are also activated. Such procedures

could indicate commnon errors to be checked for, a particular type of

data structure that is needed, etc. In this case, it is the need to

check for simultaneous termination of the files. These procedures are

apparently executed without any additional checks for appropriateness.

Design Modification Strategies

S3 does not backtrack. When she finds it necessary to modify or

expand upon a previously completed component of the design, she

consistently makes modifications only within a single module, never at

the interfaces to other modules and never makes changes that could

propagate across several components of the design.

The first example is her decision to count the terms as they are

read in (646-647) and then, when S3 notices that the "get rid of

duplicates" module wilL alter the number of terms, to adjust the count

within that module (649-650). Both modules were added to the design

31

previously and, at that time, no consideration was given to counting

the terms. In considering the compare operation, however, the need for

a count is noticed. S3 originally decides to have the "read term"

module do the counting, because it cycles through the terms. However,

the "get rid of duplicates" module must also cycle through the terms,

and if it counted the terms, no "adjustment" procedure would be needed.

The count of terms is an output of the "read term" module that could

potentially be used by modules between "read term" and "get rid of

duplicates". Thus, moving the procedure that counts the terms could

possibly have interactions elsewhere in the design. While we have no

explicit evidence that she makes the decision for these reasons, her

modification resulted in the minimal change to the design.

A second example occurs when S3 notices that the planned "binary

chop" routine does not guarantee finding the first term starting with

the indicated character (832-840). She resolves this by adding a data

structure that contains a pointer to the first tern starting with each

character and a module that searches this data structure for the term

she needs (841-857), making the "binary chop" module unnecessary.

However, she does not delete the "binary chop" module. Again, there is

reluctance to delete a module that has been incorporated into the

desi gn.

Although these decisions not to backtrack can be construed as

producing inefficiencies in the design, viewed from another

perspective, they may actually improve the efficiency of the problem

32

I-

solving process. This protocol represents the initial iterations of a

design; additional iterations and refinements remain to be performed.

These modifications are efficient in that by restricting changes to

single modules, this initial iteration can proceed more smoothly. This

would not be the case if more efficient changes were effected,

requiring frequent and extensive changes to the entire design. We have

only observed design behavior, however, in the initial iterations. Were

we to examine it in later iterations of the design, we would expect to

see more attention to modifying design components that were inefficient

from a software design perspective. Such attention is apparent in the

final section of S3's protocol, where she describes what would happen

on succeeding iterations.

Recurring Topics

Another aspect of this protocol that tells us something about S3's

problem solving processes are the topics that recur throughout the

protocol. She will bring up an issue, explore it for a while,

sometimes even seeming to resolve it, then drop the subject for a

while, even tens of minutes, only to bring it up again as new

information is acquired that may be relevant. While she does this in a

minor way in many places in the protocol, the two that permeate the

whole design are the hyphen issue and the form of the term table data

structure.

This suggests that S3's problem solving processes are very adept

at accessing information whenever it is relevant. Moreover,

33

information is marked according to its relative importance and

identified with that part of the design to which it is relevant.

Early in the protocol, S3 notices that the text may contain

hyphens and that this complicates the comparison process. At this

point, S3 only notes this "as being a problemi when you come around to

comparing" (249-250). This issue is not considered for long portions

of the protocol, but it imerges whenever a module that is related to

the compare operation or accessing the text is considered. After

critiquing the final version of the design, S3 returns to the hyphen

issue (1345-1367), reconsidering much of the information that was

generated earlier, and considers other aspects of this issue that she

would consi-ler on further iterations of the design.

S3's examination of hyphens clearly permeates the entire protocol.

She is, however, able to ignore the issue for a much as a half hour,

bringing it up again as soon as a related module is being considered.

It is interesting that she is able to recall this issue at precisely

the relevant moments, considering the number and complexity of other

items that she has had to retain and deal with in the interval. Notice

that no external notation about hyphens is made until quite late in the

protocol.

This quite remarkable memory for the hyphen problem tells us

several things about how.S3 must organize the information she gathers

in the course of expanding a design. First, such information must be

marked according to its importance; S3 generates far too much data for

34

it all to be as easily accessible as the hyphen information was.

Second, the information must be tagged in some way with the part of the

design to which it is relevant. S3 never mentioned hyphens during the

"read terms" expansion, but it was one of the first things mentioned

when she came to expanding the "construct index" module.

Some additional ideas about the organization of S3's memory can be

derived from the ways she handles the construction of the tern table

data structure. This issue is considered several times and each

consideration involves a depth-first exploration of the corresponding

goals. The goals considered at each iteration, however, differ. In the

first segment of the protocol, she decides to make a "table of terms",

with each entry containing a term and a pointer to a linked list of the

page numnbers on which the term appears. Initially, there is some

confusion over whether this table should contain the actual page

numbers or merely a count of the number of times the term occurs in the

text

In the second segment of the protocol, S3 proceeds to construct a

term table that contains a pointer and a count, except the pointer is a

pointer to a string containing the term itself and the count is a count

of the number of characters in the term (411-431). No mention is made

of page numbers until much later in the protocol, when she has found a

term that matches the text (1142-1147). She does, however, treat the

string table as though it were a linked list, discussing routines for

insertions and deletions of list items and for "garbage collection".

35

It appears as if she has forgotten most of the information that she

generated about this data structure in the earlier segment. She

apparently remembers only that it was to contain linked lists,

pointers, and counts, and she appears to reconstruct a new data

structure based on this information and the fact that, at this point,

she is looking for a place to put the term she has just read.

'One way for S3 to manage the large amount of information she

generates as she explores facets of the design would be to summarize

the information and only retain the summary. Frequently, only one or

two points from an extended episode will be relevant later in the

design and, if more information is needed, it can be regenerated if the

necessary main points are remembered. It looks as if S3 was using just

such a summarization strategy, but in the new context, the summary was

insufficient to cause the original material to be properly

reconstructed. S3 fails to notice this, however, because the data

structure she does construct is a reasonable one, even if it is

apparently not the one she sketched out in the initial segment of the

protocol.

36

A BRIEF LOOK AT A SECOND EXPERT PROTOCOL

In order to further evaluate some of the results suggested by S3's

protocol, we are performing a similar analysis on the protocol obtained

from a second expert subject (S2). The problem given to this subject,

to design a system to produce a page-keyed indexing system, was

identical to that given to S3. In this section, we will describe our

preliminary analysis o-f the first phase of this protocol, in which the

abstract plan for the design was formulated. In general, this analysis

(see Appendix G) produces results that are very similar to those

obtained from S3.

S2 begins his design by constructing a high-level representation

of the components that will be included in the final design and their

interrelations (see the first panel of Figure 9). The problem model

underlying S2's design appears very similar to that of S3. S2's next

step is to consider the formats of the input and output files, and he

then produces the abstract design that describes how these files will

be processed. Finally, the necessary iterations are added (see the

last panel of Figure 9).

Much of the evidence for S3's problem solving processes comes from

consideration of her policies. Recall that policies are used for the

generation and evaluation of design alternatives. This is also true of

the policies we consider to be used by 52 (see Figure 10). Like S3, S2

has a policy to "divide the problem' into inputs, processes, and

37

Figure 9. Subject S2 -Abstract Design

____ Ar7 ~

Fiqure 9. Subject S2 -- Abstract Design
(continued)

...L_ _

ZI fleA-w..l 1-7 I~k A _

.*p0z- Xre e4o.(

F~eIr~i q iihjort 92 - Ahctract flodgn-

(continued)

divide problem into inputs, processes, and outputs

elaborate design in terms of implementation language primitives

make the most convenient assumption in ambiguous cases

use pseudo-programming language

use stepwise refinement

Figure 10. Subject S2 -- Policies

i I|.. . . .

outputs", and in both protocols, this policy is used to identify the

major components that will be required in the final design. S2's

policy to "make the most convenient assumption in ambiguous cases" is

similar to S3's policy to "choose the most convenient of multiple

alternatives", and both are used for selecting among various design

alternatives. While S3 used a policy to "expand top-down" to determine

what element of the design to expand at a given time, S2 elected to

"suse stepwise refinement", which is very similar.

In summary, there is a great deal of similarity in the policies

used by these two subjects. Although the exact form that these

policies take differs somewhat, their basic use is in the generation

and selection of design alternatives and in guiding the generally top-

down expansion of the design.

The goals derived from our encoding of S2's protocol are contained

in Appendix G. In comparison with those of S3, it can be noted that

some (about 25 percent) are common to both subjects (see Figure 11).

These common goals are concerned with the structure of the input files

involved in the problem and with the issue of considering and then

deferring the problem of hyphens appearing in the text. The remaining

goals, however, are different, reflecting somewhat different approaches

to the design task. For example, S2 constructs a separate file to

store the results of the comparisons, while S3 stores these results in

the term table data structure along with the terms.

38

S3: defer goal of resolving problem of hyphens having two functions
S2: defer goal to determine how to handle hyphens

S3: describe input files
S2: describe input files

S3: create problem model
S2: define problem in high-level terms

S3: resolve problem of hyphens having two functions
S2: determine'how to handle hyphens

S3: describe term file
S2: describe term file

S3: describe text file
S2: describe text file

$3: expand FC (flowchart) to detailed level
S2: expand components of abstract design

S3: reread specifications for form of terms
S2: reread specifications for form of term file

S3: reread specifications fo text file
S2: reread specifications for form of text file

Figure 11. Goals Common to S3 and S2

act ive sati sf ied

1. 6, 4, 38
7. 6, 4, 38, 31

10. 6, 4, 38, 31, 17
11. 6, 4, 38, 31, 3 17, 3
12. 69 4, 38, 25 31
13. 6, 4 38, 25
14. 6, 4, 19, 21, 22
20. 6, 4, 19, 21 22
21. 6, 4, 19, 21, 8, 9
22. 6, 4, 19, 21, 8, 9, 13
23. 6, 4, 19, 21, 8, 9, 13, 12
24. 6, 4, 19, 21, 8, 9, 13, 12, 34
26. V, 4, 19, 21, 8, 9, 13, 12 34
31. 6, 4, 19, 21, 8, 9, 12 13
33. 6, 4, 19, 21, 8, 9, 12, 33
35. 6, 4, 19, 21, 8, 9, 12 33
36. 6, 4, 19, 21, 8, 9, 12, 16
37. 6, 4, 19, 21, 8, 9, 12, 16, 32
38. 6, 4, 19, 21, 8, 9, 12, 16 32
39. 6, 4, 19, 21, 8, 9, 12 16
42. 6, 4, 19, 21, 8, 9, 12, 18
43. 6, 4, 21, 9 19, 8, 12, 18
45. 6, 4, 21, 9, 14
46. 6, 4, 21, 9, 14, 35
47. 6, 4, 21, 9, 14 35

Figure 12. Subject S2 -- Example of Goal Stack

1-6. define problem in high-level terms
6-19. determine inputs

7-8. describe input files
B-13. describe text file

10-34. reread specifications for form of text file
9-12. describe term file

11-33. reread specifications for form of term file
12-16. determine delimiters for words

13-32. reread specifications for form of delimiters
14-18. detennine if blanks are significant

6-21. determine outputs
7-9. describe output files

21-7. describe error message file
15-14. describe xref (cross-reference file)

17-39. use standard output format for xref
18-11. describe standard output format

19-23. determine what to do with multiple occurrences
20-37. reread specifications to determine what to

with multiple occurrences
16-35. reread specifications for form of xref

1-38. restate problem in own terms
2-31. reexamine specifications
3-17. determine how to handle hyphens

4-3. defer goal to determine how to handle hyphens
5-25. determine where on line page number appears

Figure 13. Subject S2 -- Example of Goal Structure
(Note: first number indicates relative order -- second

identifies goal in "goal stack")

Although the specific goals involved differ, the patterns of goal

activation and goal satisfaction are identical. That is, there are

depth-first explorations of design components that have been identified

as necessary. The goal stacks generated for each subject consist of a

number of episodes (see Appendix D and Figure 6 for S3 and Appendix G

and Figure 12 for S2), and increases in the number of active goals are

due to a depth-first expansion of some topic (see Figure 13). In

addition, it can be noted that the mean length of a given episode and

the number of goals involved in a single episode are very similar for

both subjects.

Althoitgh we have not examined the notes from S2 in the detail that

we have considered those of S3, in both protocols these elements are

used to store information that constrains the form and content of the

developing design. The sources of this information also appears to be

common for both S2 and S3.

In summary, althouyin these two subjects adopted somewhat different

approaches to this problem that resulted in somewhat different designs,

there are commonalities in the use of policies and notes and in the

dynamics of generating and maintaining a list of active goals. For

both subjects, there are both breadth-first and depth-first expansions

and other processes guide these top-down processes. We consider this

to be a strong indication that there are also large commonalities in

the problem solving processes that guide the design behavior of each

subject.

39

DISCUSSION

In this report, have taken a detailed look at the steps a computer

professional employs to solve a lengthy design problem. In this final

section, we will review what we have learned about the processes that

guide design behavior.

Breadth-Flirst Expansions

First, we can note that S3 generates the design in a top-down

manner. At a macro-level, the level of the design elements included in

the flowchart, it is also primarily breadth-first. Her first iteration,

the problem model, is an abstract decomposition of the problem, which

is probably constructed soon after reading the specifications. This is

expanded during the first third of the protocol into her abstract

design. The remainder of the problem solving session is concerned with

the expansion of each of these boxes. From the discussion at the end

of the protocol.. it appears that S3 would, on her next pass at a

solution to this problem, again take each box of the current flowchart

in turn and further refine it.

At every iteration, S3 examines each element of the design in its

proper (i.e., top-down, breadth-first) sequence in the solution. Only

on rare occasions does she jump around in the solution, either forward

or backward. She avoids backtracking because of her desire to minimize

the possible interactions that could occur with other existing modules.

In the one case where she examines a later module prematurely (the

40

decision that hyphens will be handled in the "compare text:term"

module), she merely notes this constraint; she makes no attempt to

further expand the module, even to determine if the assigned process is

achievable.

S2 shows this pattern even more strongly. He takes his design

through more iterations than S3, in the portion of the protocol not

discussed in this paper, but each is a completely breadth-first

expansion of the previous solution. In the segment of the protocol

that we have analyzed, he shows no deviations from a purely sequential

consideration of each module.

Depth-First Expansions

While both protocols are strictly breadth-first when considered at

a macro-level, when examined at the more micro-level of individual

goals, both subjects exhibit a strong tendency to expand the solution

depth-first. A subproblem is posed, a goal to solve it is set up,

subgoals and sub-subgoals are created and resolved as needed. Only

then is the next subproblem attempted. The few exceptions to this,

where a set of sibling goals are successively enumerated, occur only

under two circumstances. The first is at the top levels, where the

subject is using some canonical set of goals that he or she presumably

begins every such problem with (e.g., goals to describe both input and

output files are enumerated breadth-first). The second occasion occurs

when the current goal is to process some collecticn of items (e.g.,

multiple input files). The members of the collection are typically

41

- -~-MON-

contained in some external memory, and the subject enumerates each of

the items to be processed before beginning detailed consideration of

any of them. Not only are goals considered in a breadth-first sequence

only under these restricted circumstances, but even when a set of goals

is initially explored in this manner, each member of the set is then

further expanded and resolved depth-first.

Stopping Rules and Iterations

When goals are expanded in a depth-first order, it is necessary to

consider what the rules are that control th- limits, or bounds, on the

depth of the search; that is, what are the stopping rules for the,

subgoal expansion? From the fact that the design grows iteratively and

breadth-first at the more global level, we must conclude that the

designer is not considering each problem component until the final,

ultimate level of resolution is reached; rather, the designer judges

some level of resolution to be "appropriate" for a given iteration.

These subjects apparently have very little difficulty deciding

when to terminate consideration of a goal. S3 shows uncertainty as to

whether to continue expanding a goal on only one occasion; the first

time the hyphen issue comes up, she grapples with the question of

whether it is "important" enough to require resolution at this level.

She vacillates, eventually deciding to put it off, but it is never

clear what informnation she uses to make that decision. In the cases

where the stopping decision causes her no trouble, the criteria she

uses are even less obvious.

42

The stopping rules clearly vary with each iteration of the design.

During the development of the abstract flowchart, S3 is primarily

concerned with enumerating the "important" processes that must be

contained in the solution. These include input file descriptions,

internal data structures, and the major modules of the design. In the

second iteration she is much more concerned with control structures,

anomalous conditions, and some of the details of the design.

Two examples clearly illustrate the iterative nature of these

stopping rules. First, consider how the "compare" routine is handled.

During the development of the abstract design, it rates one sentence;

after the term table is built, she notes that the terms and text are to

be compared. No potential problems are even considered. The second

half of the protocol, well over an hour of 53's time, is spent

expanding this module, in particular dealing with its complex control

structure and the many anomalous conditions which may occur.

The second example concerns the term table data structure. S3

spends approximately equal amounts of time dealing with this structure

on each iteration of the design. However, she focuses on very

different aspects of the term table each time. During the first

iteration the general form of the data structure is at issue. She is

particularly concerned with the matter of whether to store the page

numbers for each tern in an array or in a linked list. In the second

pass she is more concerned with the details of the structure -- that it

is to contain pointers to the terms, counts, and pointers to page

43

numbers. The data structure is still not completely defined; on some

later iteration S3 must elaborate on the form of the pointers and

counts and how the table is to be initialized.

The rules that control the bounds of this depth-first expansion

are undoubtedly one of the most complex aspects of 53's design

behavior. Similar rules are apparent in S2's protocol. These rules

tend to insure that goals are not explored in either too much or too

little detail, and they contribute to the relative ease or difficulty

with which the design is expanded. At this point in our analysis we

have no particular insights into what these stopping rules are. We

suspect, however, that the sophistication of such rules may be one of

the areas that separates experts from novices.

Constraints on Top-Down Expansions

As with any complex skill, top-down processes that guide expansion

of the design (or problem solution) must interact with other processes

for the design to be successfully produced. These processes operate to

constrain the expansion of the top-down processes. In essence, they

act as a sort of filter, limiting the possibilities to be considered by

the designer as the solution is elaborated. We observe these processes

operating primarily in two ways -- in the policies, and in some of the

notes.

Many of the policies we observed, in particular those that allow

designers to select among multiple alternatives, are used to channel

the developing design in particular directions. It, S3's protocol, for

44

example, "define returns from modules" operates on the perceptual

features of the flowchart and gives her a systematic procedure for

deciding in what order to expand the design. The policies to "be

efficient", to "choose the most convenient alternative", and to "ask

the experimenter" allow her to eliminate potential alternate solutions

without the need to explore each possibility in detail. The policies

to "consider anomalous 'conditions" and to "critique the design by

considering alternative solutions" help S3 ensure the correctness of

the design by generating plausible solutions to subproblems in cases

where the first solution considered is likely to be incomplete or

incorrect. In an earlier section, we noted the similarities between

the policies of S3 and S2. Apparently, designers can use these "rules

of thumb" to minimize the amount of effort needed to ensure that the

design is expanded correctly at such points.

Other processes generate information that is also used to generate

or select alternatives. Frequently, this information is generated by

an active goal and is used to determine the subgoals necessary to

perform that goal's function. At other times, information is generated

that is not relevant to the subgoal currently being explored. Sometimes

this datum is recalled and employed elsewhere in the design, often tens

and occasionally hundreds of lines of the protocol later. Even more

frequently, however, the information is never used. This is both

because many of the items generated are not relevant to any later

module, and because 53's memory for her notes is less than perfect.

45

Often, however, when beginning a new topic, S3 is able to retrieve out

of the large amount of information she has generated a note that is

relevant to the solution of her current subgoal.

Summary

The problem solving processes we have described enable a designer

to generate the goal structures underlying the solution of a design

task. Our analysis has focussed on the goals employed by designers as

well as the information generated in the course of producing a

solution. Our subjects solved a large number of subproblems while

producing their designs. The goal information was apparently developed

as a means of keeping track of what subproblem was being worked on and

how it related to other pieces of the solution.

In a previous section, we reviewed other research using complex

tasks. The problems used in such research, however, typically

decomposed into two or three subcomponents. Both the subject and the

theorist could maintain all these pieces in working memory

concurrently; thus, most of these models assume that a plan was

developed directly that covered all portions of the decomposition. Our

more complex problem may have caused subjects to verbalize many more of

the intermediate steps in their solutions, making the components which

were considered and the interrelationships Tore apparent.

At a general level, there are some similarities between the

processes described here and those incorporated by Hayes-Roth and

Hayes-Roth (1979) in their Hearsay-based (see Lesser, Fennell, Erman,

46

and Reddy, 1975) model of errand planning behavior. Both studies focus

on the processes involved in constructing solutions in complex tasks

and both observe these processes operating in a multi-directional

manner.

A basic difference, however, is that we observe a highly

structured expansion, while Hayes-Roth and Hayes-Roth observe more

"opportunistic" generation. This difference may be due to the fact

that we are investigating design behavior, and for experienced

designers such as those reported here, designs must be presented as

hierarchical structures. This may cause experts to use highly

structured generation processes. Such processes may also be due to

memory and resource allocation heuristics that are used by the expert,

but not known to novices. A second source of difference is that errand

planning occurs at a fairly low level of detail while the designs

considered here are fairly abstract.

47

REFERENCES

Bhaskar, R., & Simon, H.A. Problem solving in semantically rich
domains: An example from engineering thermodynamics. Cognitive
Science, 1977, 1, 192 215.

Chase, W.G., & Chi, M.T.H. Cognitive skill: Implications for spatial
skill In large-scale environments (Technical Report No. 1).
Pittsburgh, Pennsylvania: University of Pittsburgh, Learning
Research and Development Center, December 1979.

Ernst, G.W., & Newell, A. GPS: A case study in generality and problem
solving. New York: Academic Press, 1969.

Greeno, J.G. Natures of problem solving abilities. In W.K. Estes
(Ed.), Handbook of learning and cognitive processes. Hillsdale,
New Jersey, 1978, 239-270.

Greeno, J.G., Magone, M.E., & Chaiklin, S. Theory of constructions and
set in problem solving. Memory and Cognition, 1979, 7, 445-461.

Hayes-Roth, B., & Hayes-Roth, F. A cognitive model of planning.
Cognitive Science, 1979, 3, 275-310.

Larkin, J.H. Skilled problem solving in physics: A hierarchical
planning model (Unpublished manuscript). Berkeley, California:
University of California at Berkeley, September 1977.

Lesser, V.R., Fennell, R.D., Erman, L.D., & Reddy, D.R. Organization
- bf the Hearsay-II speech understanding system. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 1975, ASSP-23, 11-23.

Newell, A., & Simon, H.A. Human problem solving. Englewood Cliffs,
New Jersey: Prentice Hall, 1972.

Simon, H.A. The structure of ill-structured problems. Artificial
Intelligence, 1973, 4, 181-201.

Sussman, G.J. Electrical design: A problem for artificial intelligence
research. Proceedings of the International Joint Conference on
Artificial Intelligence, Cambridge, Massachusetts, 1977, 894-900.

48

I

SAI/Atwood March 20, 1980 Page 1

Navy Navy

Dr. Jack R. Borsting 1 Dr. Kneale Marshall
Provost & Academic Dean Scientific Advisor to DCNO(MPT)
U.S. Naval Postgraduate School OPOT
Monterey, CA 93940 Washington DC 20370

Dr. Robert Breaux 1 CAPT Richard L. Martin, USN
Code N-711 Prospective Commanding Officer
NAVTRAEQUIPCEN USS Carl Vinson (CVN-70)
Orlando, FL 32813 Newport News Shipbuilding and Drydock Co

Newport News, VA 23607

Dr. Richard Elster
Department of Administrative Sciences 1 Dr William Montague
Naval Postgraduate School Navy Personnel R&D Center
Monterey, CA 93940 San Diego, CA 92152

DR. PAT FEDERICO 1 Commanding Officer
NAVY PERSONNEL R&D CENTER U.S. Naval Amphibious School
SAN DIEGO, CA "152 Coronado, CA 92155

Dr. John Ford 1 Library
Navy Personnel R&D Center Naval Health Research Center
San Diego, CA 92152 P. 0. Box 85122

San Diego, CA 92138

LT Steven D. Harris, MSC, USN
Code 6021 1 Naval Medical R&D Command
Naval Air Development Center Code 44
Warminster, Pennsylvania 18974 National Naval Medical Center

Bethesda, MD 20014
Dr. Patrick R. Harrison
Psychology Course Director 1 Ted M. I. Yellen

LEADERSHIP & LAW DEPT. (7b) Technical Information Office, Code 2C1
DIV. OF PROFESSIONAL DEVELOPMMENT NAVY PERSONNEL R&D CENTER
U.S. NAVAL ACADEMY SAN DIEGO, CA 92152
ANNAPOLIS, MD 21402

1 Library, Code P2O1L
Dr. Norman J. Kerr Navy Personnel R&D Center
Chief of Naval Technical Training San Diego, CA 92152
Naval Air Station Memphis (75)
Millington, TN 38054 5 Technical Director

Navy Personnel R&D Center
Dr. Leonard Kroeker San Diego, CA 92152
Navy Personnel R&D Center

San Diego, CA 92152 6 Commanding Officer
Naval Research Laboratory

Dr. William L. Maloy Code 2627
Principal Civilian Advisor for Washington, DC 20390

Education and Training
Naval Training Command, Code ODA
Pensacola, FL 32508

SAI/Atwood March 20, 1980 Page 2

Navy Navy

Psychologist 1 Roger W. Remington, Ph.D
ONR Branch Office Code L52
Bldg 114, Section D NAMRL
666 Summer Street Pensacola, FL 32508
Boston, MA 02210

1 Dr. Worth Scanland
Psychologist Chief of Naval Education and Training
ONR Branch Office Code N-5
536 S. Clark Street NAS, Pensacola, FL 32508
Chicago, IL 60605

1 Dr. Robert G. Smith
Office of Naval Research Office of Chief of Naval Operations
Code 437 OP-987H
800 N. Quincy SStreet Washington, DC 20350
Arlington, VA 22217

1 Dr. Alfred F. Smode
5 Personnel & Training Research Programs Training Analysis & Evaluation Group

(Code 458) (TAEG)
Office of Naval Research Dept. of the Navy
Arlington, VA 22217 Orlando, FL 32813

Psychologist 1 Dr. Robert Wisher
ONR Branch Office Code 309
1030 East Green Street Navy Personnel R&D Center
Pasadena, CA 91101 San Diego, CA 92152

Office of the Chief of Naval Operations
Research, Development, and Studies Branc

(OP-102)
Washington, DC 20350

Captain Donald F. Parker, USN
Commanding Officer
Navy Personnel R&D Center
San Diego, CA 92152

DR. RICHARD A. POLLAK
ACADEMIC COMPUTING CENTER
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402

Dr. Gary Poock
Operations Research Department
Code 55PK
Naval Postgraduate School
Monterey, CA 93940

SAT/Atwood March 20, 1980 Page 3

Army Army

1 Technical Director 1 Dr. Harold F. O'Neil, Jr.
U. S. Army Research Institute for the Attn: PERI-OK

Behavioral and Social Sciences Army Research Institute
50n1 Eisenhower Avenue 5001 Eisenhower Avenue
Alexandria, VA 22333 Alexandria, VA 22333

1 HQ USAREUE & 7th Army 1 Dr. Robert Sasmor
ODCSOPS U. S. Army Research Institute for the
USAAREUE Director of GED Behavioral and Social Sciences
APO New York 09403 5001 Eiserhower Avenue

Alexandria, VA 22333

1 Col Gary W. Bloedorn
US Army TRADOC Systems Analysis Activity 1 Commandant
Attn: ATAA-TH US Army Institute of Administration
WSMR, NM 88002 Attn: Dr. Sherrill

FT Benjamin Harrison, IN3 46256
1 DR. RALPH DUSEK

U.S. ARMY RESE'IRCH INSTITUTE 1 Dr. Joseph Ward
501)1 EISENHOWER AVENUE U.S. Army Research Institute
ALEXANDRIA, VA 22333 5001 Eisenhower Avenue

Alexandria, VA 22333

1 Dr. Beatrice J. Farr

Army Research Institute (PERI-OK)
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Ed Johnson
*Army Research Institute

5001 Eisenhower Blvd.

Alexandria, VA 22333

I Dr. Michael Kaplan
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz

Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Director
U.S. Army Human Engineering Labs
Attn: DRXHE-DB
Aberdeen Proving Ground, MD 21005

r -- - --- --..I..I.I.I."

SAT/Atwood March 20, 1980 Page 4

Air Force Marines

1 Dr. Earl A. Alluisi 1 H. William Greenup
HQ, AFHRL (AFSC) Education Advisor (E031)
Brooks AFB, TX 78235 Education Center, MCDEC

Quantico, VA 22134
1 Dr. Genevieve Haddad

Program Manager 1 Special Assistant for Marine
Life Sciences Directorate Corps Matters
AFOSR Code lOOM
Bolling AFB, DC 20332 Office of Naval Research

800 N. Quincy St.
1 Research and Measurment Division Arlington, VA 22217

Research Branch, AFMPC/MPCYPR
Randolph AFB, TX 78148 1 DR. A.L. SLAFKOSKY

SCIENTIFIC ADVISOR (CODE RD-I)
1 Dr. Marty Rockway (AFHRL/TT) HQ, U.S. MARINE CORPS

Lowry AFB WASHINGTON, DC 20380
Colorado 80230

2 3700 TCHTW/TTGH Stop 32
Sheppard AFB, TX 76311

1 Jack A. Thorpe, Maj., USAF
Naval War College
Providence, RI 02846

1 Brian K. Waters, Lt Col, USAF
Air War College (EDV)
?Paxwell AFB, AL 36112

SAT/Atwood March 20. 1980 Page 5

Other DoD Civil Govt

12 Defense Documentation Center 1 Dr. Susan Chipman
Cameron Station, Bldg. 5 Learning and Development
Alexandria, VA 22314 National Institute of Education
Attn: TC 1200 19th Street NW

Washington, DC 20208
Dr. Craig I. Fields
Advanced Research Projects Agency 1 Dr. Joseph I. Lipson
14100 Wilson Blvd. SEDR W-638
Arlington, VA 22209 National Science Foundation

Washington, DC 20550
Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY 1 Dr. John Mays
11100 WILSON BLVD. National Institute of Education
ARLINGTON, VA 22209 1200 19th Street NW

Washington, DC 20208
Director, Research and Data
OASD(MRA&L) 1 Dr. Arthur Melmed
3B919, The Peti '-n National Intitute of Edurjation
Washington, DC 20301 1200 19th Street NW

Washington, DC 20208
Military Assistant for Training and

Personnel Technology 1 Dr. Andrew R. Molnar
Office of the Under Secretary of Defense Science Education Dev.

for Research & Engineering and Research
Room 3D129, The Pentagon National Science Foundation
Washington, DC 20301 Washington, DC 20550

HEAD, SECTION ON MEDICAL EDUCATION 1 Personnel R&D Center
UNIFORMED SERVICES UNIV. OF THE Office of Personnel Managment

HEALTH SCIENCES 1900 E Street NW

6917 ARLINGTON ROAD Washington, DC 20415
BETHESDA, MD 20014

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution

801 North Pitt Street
Alexandria, VA 22314

1 Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave. SW
Washington, DC 20202

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

!1

SAI/Atwood March 20, 1980 Page 6

Non Govt Non Govt

Dr. John R. Anderson 1 Dr. Nicholas A. Bond
Department of Psychology Dept. of Psychology
Carnegie Mellon University Sacramento State College
Pittsburgh, PA 15213 600 Jay Street

Sacramento, CA 95819

Anderson, Thomas H., Ph.D.
Center for the Study of Reading 1 Dr. Lyle Bourne
174 Children's Research Center Department of Psychology
51 Gerty Drive University of Colorado
Champiagn, IL 61820 Boulder, CO 80309

Dr. John Annett 1 Dr. Kenneth Bowles
Department of Psychology Institute for Information Sciences
University of Warwick University of California at San Diego
Coventry CV4 7AL La Jolla, CA 92037
ENGLAND

1 Dr. Robert Brennan
1 psychological research unit American College Testing Programs
Dept. of Defense (Army Office) P. 0. Box 168
Campbell Park Offices Iowa City, IA 52240
Canberra ACT 2600, Australia

1 Dr. John S. Brown
Dr. R. A. Avner XEROX Palo Alto Research Center
University of Illinois 3333 Coyote Road
Computer-Based Educational Research Lab Palo Alto, CA 94304
Urbana, IL 61801

1 Dr. Bruce Buchanan
Dr. Alan Baddeley Department of Computer Science
Medical Research Council Stanford University

Applied Psychology Unit Stanford, CA 94305
15 Chaucer Road
Cambridge CB2 2EF 1 DR. C. VICTOR BUNDERSON

ENGLAND WICAT INC.
UNIVERSITY PLAZA, SUITE 10

Dr. Patricia Baggett 1160 SO. STATE ST.
Department of Psychology OREM, UT 84057
University of Denver
University Park 1 Charles Myers Library
Denver, CO 80208 Livingstone House

Livingstone Road
Mr Avron Barr Stratford
Department of Computer Science London E15 2LJ

Stanford University ENGLAND
Stanford, CA 94305

1 Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

SAI/Atwood March 20, 1980 Page 7

Non Govt Non Govt

Dr. Hicheline Chi 1 Dr. Edwin A. Fleishman
Learning R & D Center Advanced Research Resources Organ.
University of Pittsburgh Suite 900
3939 O'Hara Street 4 3 30 East West Highway
Pittsburgh, PA 15213 Washington, DC 20014

Dr. Allan M. Collins 1 DR. JOHN D. FOLLEY JR.
Bolt Beranek & Newman, Inc. APPLIED SCIENCES ASSOCIATES INC
50 Moulton Street VALENCIA, PA 16059
Cambridge, Ma 02138

1 Dr. John R. Frederiksen

Dr. Meredith P. Crawford Bolt Beranek & Newman
American Psychological Association 50 Moulton Street
1200 17th Street, N.W. Cambridge, MA 02138
;Jashington, DC 20036

1 Dr. Alinda Friedman
Dr. Kenneth B. Cross Department of Psychology
Anacapa Scierces, Inc. University of Alberta
P.O. Drawer Q Edmonton, Alberta
Santa Barbara, CA 93102 CANADA T6G 2E9

Pr. Hubert Dreyfus 1 Dr. R. Edward Geiselman
Department of Philosophy Department of Psychology

University of California University of California
Berkely, CA 94720 Los Angeles, CA 90024

LCL J. C. Eggenberger 1 DR. ROBERT GLASER
DIRECTORATE OF PERSONNEL APPLIED RESEARC LRDC

14TIONAL DEFENCE HQ UNIVERSITY OF PITTSBURGH
l1l rOLONEL BY DRIVE 3939 O'HARA STREET

OTTAWA, CANADA KIA OK2 PITTSBURGH, PA 15213

Dr. Ed Feigenbaum 1 Dr. Marvin D. Glock
Department of Computer Science 217 Stone Hall
Stanford University Cornell University

Stanford, CA 94305 Ithaca, NY 110153

Mr. Wallace Feurzeig 1 Dr. Daniel Gopher
Eolt Beranek & Newnan, Inc. Industrial & Tanagement Engineering

50 Moulton St. Technion-Israel Tnstitute of Technology
Cambridge, MA 02138 Haiff

ISRAEL
Dr. Victor Fields
Dept. of Psychology 1 DR. JAMES G. GREE1O

Montgomery College LRDC
Rockville, MD 20850 UNIVERSITY OF PITTSBURGH

3939 O'HARA STREET
PITTSBURGH, PA 15213

SAT/Atwood March 20, 1980 Page 8

Non Govt Non Govt

Dr. Ron Hambleton 1 Dr. Wilson A. Judd
School of Education McDonnell-Douglas
University of Massechusetts Astronautics Co.-St. Louis
Amherst, MA 01002 P.O. Box 30204

Lowry AFB, CO 80230
Dr. "'1rold Hawkins
Des snt of Psychology 1 Dr. Steven W. Keele
University of Oregon Dept. of Psychology
Eugene OR 97403 University of Oregon

Eugene, OR 97403
Dr. Barbara Hayes-Roth
The Rand Corporation 1 Dr. Walter Kintsch
1700 Main Street Department of Psychology
Santa Monica, CA 90406 University of Colorado

Boulder, CO 80302
Dr. Frederick Hayes-Roth
The Rand Corporation 1 Dr. David Kieras
1700 Main Street Department of Psychology
Santa Monica, CA 90406 University of Arizona

Tuscon, AZ 85721
Dr. Dustin H. Heuston
Wicat, Inc. 1 Dr. Stephen Kosslyn
Box 986 Harvard University
Orem, UTr 84057 Department of Psychology

33 Kirkland Street
Dr. James R. Hoffman Cambridge, MA 02138
Department of Psychology
University of Delaware 1 Mr. Marlin Kroger
Newark, DE 19711 1117 Via Goleta

Palos Verdes Estates, CA 90274

Glenda Greenwald, Ed.
"Human Intelligence Newsletter" 1 Dr. Jill Larkin

P. 0. Box 1163 Department of Psychology
Birmingham, MI 48012 Carnegie Mellon University

Pittsburgh, PA 15213
Dr. Earl Hunt
Dept. of Psychology 1 Dr. Alan Lesgold
University of Washington Learning R&D Center
Seattle, WA 98105 University of Pittsburgh

Pittsburgh, PA 15260
Journal Supplement Abstract Service
American Psychological Association 1 Dr. Michael Levine
1200 17th Street N.W. 210 Education Building
Washington, DC 20036 University of Illinois

Champaign, TL 61820

. .. - :i~l l~i m i ir-_.. -_ _"_ _ -" . .

SA/Atwood March 20, 1980 Page 9

Non Govt Non Govt

Dr. Robert A. Levit 1 DR. PETER POLSON
Director, Behavioral Sciences DEPT. OF PSYCHOLOGY
The BDM Corporation UNIVERSITY OF COLORADO
7915 Jones Branch Drive BOULDER, CO 80309
McClean, VA 22101

1 DR. DIANE M. RAMSEY-KLEE
Dr. Charles Lewis R-K RESEARCH & SYSTEM DESIGN
Faculteit Sociale Wetenschappen 3947 RIDGEMONT DRIVE
Rijksuniversiteit Groningen MALIBU, CA 90265
Oude Boteringestraat
Groningen 1 Dr. Fred Reif
NETHERLANDS SESAME

c/o Physics Department
Dr. Robert R. Mackie University of California
Human Factors Research, Inc. Berkely, CA 94720
5775 Dawson Avenue
Goleta, CA 93017 1 Dr. Ernst Z. Rothkopf

Bell Laboratories
Dr. Mark Miller 600 Mountain Avenue
Computer Science Laboratory Murray Hill, NJ 07974
Texas Instruments, Inc.
Mail Station 371, P.O. Box 225936 1 Dr. David Rumelhart
Dallas, TX 75265 Center for Human Information Processing

Univ. of California, San Diego
Dr. Allen Munro La Jolla, CA 92093
Behavioral Technology Laboratories
1845 Elena Ave., Fourth Floor 1 DR. WALTER SCHNEIDER
Redondo Beach, CA 90277 DEPT. OF PSYCHOLOGY

UNIVERSITY OF ILLINOIS
Dr. Donald A Norman CHAMPAIGN, IL 61820
Dept. of Psychology C-009
Univ. of California, San Diego 1 Dr. Alan Schoenfeld
La Jolla, CA 92093 Department of Mathematics

Hamilton College
Dr. Seymour A. Papert Clinton, NY 13323
Missachusetts Institute of Technology
Artificial Intelligence Lab 1 DR. ROBERT J. SEIDEL
5115 Technology Square INSTRUCTIONAL TECHNOLOGY GROUP
Cambridge, MA 02139 HUMRRO

300 N. WASHINGTON ST.
Dr. James A. Paulson ALEXANDRIA, VA 22314
Portland State University
P.O. Box 751 1 Committee on Cognitive Research
Portland, OR 97207 % Dr. Lonnie R. Sherrod

Social Science Research Council
MR. LUIGI PETRULLO 605 Third Avenue
2431 N. EDGEWOOD STREET New York, NY 10016
ARLINGTON, VA 22207

SAT/Atwood March 20, 1930 Page TO

Non Govt Non Govt

Robert S. Siegler 1 Dr. Kikumi Tatsuoka
Associate Professor Computer Based Education Research
Carnegie-Mellon University Laboratory
Department of Psychology 252 Engineering Research Laboratory
Schenley Park University of Illinois
Pittsburgh, PA 15213 Urbana, IL 61801

Dr. Robert Smith 1 Dr. John Thomas
Department of Computer Science IBM Thomas J. Watson Research Center
Rutgers University P.O. Box 218
New Brunswick, NJ 08903 Yorktown Heights, NY 10598

Dr. Richard Snow 1 DR. PERRY THORNDYKE
School of Education THE RAND CORPORATION
Stanford University 1700 MAth STREET
Stanford, CA 94305 SANTA MONICA, CA 90406

Dr. Kathryn T. Spoehr 1 Dr. Douglas Towne
Department of Psychology Univ. of So. California
Prown University Behavioral Technology Labs
Providence, RI 02912 1845 S. Elena Ave.

Redondo Beach, CA 90277
Dr. Robert Sternberg
Dept. of Psychology 1 Dr. J. Uhlaner
Yale University Perceptronics, Inc.
Box 11A, Yale Station S271 Variel Avenue
New Haven, CT 06520 Woodland Hills, CA 91364

DR. ALBERT STEVENS 1 Dr. Benton J. Underwood
BOLT BERANEK & NEWMAN, INC. Dept. of Psychology
50 !1OULTON STREET Northwestern University
CAMBRIDGE, VA 02138 Evanston, IL 602C1I

Dr. David Stone 1 Dr. Wil1prd S. VjugL n, Jr.
ED 236 Oceanautics, Inc.
SUNY, Albany 422 Sixth Street
Albany, NY 12222 Annapolis, 11D 214 03

DR. PATRICK SUPPES 1 Dr. Phyllis Weaver
INSTITUTE FOR MATHEMATICAL STUDIES IN Graduate School of Education

THE SOCIAL SCIENCES Harvard University
STANFORD UNIVERSITY 200 Larsen Hall, Appian Way
STANFORD, CA 94305 Cambridge, 11A 02138i

1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 551455

SAI/Atwood March 20, 1980 Page 11

Non Govt

I DR. GERSHON WELTMAN
PERCEPTRONICS INC.
6271 VARIEL AVE.
WOODLAND HILLS, CA 91367

1 Dr. Keith T. Wescourt
Information Sciences Dept.
The Rand Corporation
1700 Main St.

ACKNOWLEDGEMENT

Computer time was provided by the SUMEX-AIM computer facility

under grant number RR-00785 from the National Institute of Health.

