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I. INTRODUCTION

A. GANPUI is an acronym for "A Generalized Approach to New Problems in
Ultrasonic Inspection”. Conceptually, it is an operator-computer interactijve
scheme that involves the application of the latest techniques in ultrasonic

inspection, pattern recognition, and minicomputer technology. The following
paragraphs offer a brief overview of GANPUI. Detailed descriptions of GANPUI
components will comprise the main body of the text. Sample aj;;lications of

GANPUI are also included.

B. The entire procedure may be divided into thrce general cat-ygories: input,
processing, and output.

1. The input consists of several sub-processes, the first o which is
the acquisition of reliable ultrasonic waveforms. These waveforms are then
digitized, that is, decomposed into discrete time sequencts. The PDP 1!/05e
minicomputer, for cxample, accepts these sequences and performs courtain
mathematical operations on them, such as determining maximums and minimums.
This process is knowvn as feature extraction. Features that are use’ul in
ultrasonic examination include center frequency, 6 JB down bandwidih, energy
ratios over specified frequency intervals of a frequency spectra, etc. At
this stage, the computer operator selects the particular features to be
omployed in algorithm develcpment. Once the feature values have heen computed,
they are stored in a vector filing system. This completes the input stage of
the system.

2. Processing utilizes several complex schemes or algorithms to search
for innate groupings of feature data. These data values are ordered with
respect to their effect in defining particular groupings. Upon completion of
proces=zing, the significant features are combined to develop a classification
cchiene .,

3. CANPUY outl_.ut assists the ultrasonic investigator by minimizing tue
data acquired in decision making. Algorithm development makes use ¢~ nanv
techniques in learning network analysis and in pattern recognition, the goal
being to establish some relationship between classification mode and a nuater
of important ultrasonic signal features. Regression analysis is considered at
various points of the algorithm development process. Such techniques as
probability density function anaiysis, cluster omalysis, minimum distance
classification, adaptive learning poiyncmials. and a Fisher linear discriminant
are currently beiny used in our algorithm development test system.

L. An essential element in the GANPUI program of studv is associateu .ith the
utilization of good training data. Good test samples are required so that the
computer can be trained to recognire certain patterns. Test samples arc
ohviously vequired to evaluate the classification algorithms developed bv
CANPUL.

D. Several problems that are being studied by various uitrasonic resecarch
groups that make use of GANPUT concepts include composite material inspecticn,
aircraft and space «hut'le adbesive bond evaluation, the detection of stiess
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corrosion cracking in stainless steel piping for the nuclear industry, flaw
growth propagation in the shipping and aircraft industries, and the ecarly

detection of breast cancer in the field of diagnostic ultrasound,.

E. A flow chart of GANPUI is shown in Table 1.

Table 1. GANPUI Flow Chart
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11.  FOURILR SERIES ARD TRANSFORM THtORY

A. FOURIER DECOMPOSITION. From a mathematical viewpoint, .ny artitrar

mathematical! function could bLe resolved or decomposed into a finite =u. of
some other functions.

ol a

1. For exampie, if we were to examine the mathematical respo
system from a rectangularly shaped input function, we could, i wotlematically
convenient, compute the response from two rectangulardy shapuen a0t ions as
shown in Figure 1. In this particular example, the decompositiorn process into
two rectangularly shaped functions does not provide us with ars additional
information or mathematical computationral efviciency. The rectungular input
pulse given above could, hbowever, be decompozed inte a sum of some otner wave-
Torms; say rec “angular segments of rixed pulse duration of whicl: : mathematical
solution might be readily cvailable in the literature cr in a corputer. The
total solution could then be obtained by examining the contributiecns from each
sraller segment and addiay them together in linear fashion to obtezin total
solutions,

2. Let us consider now a different forw f{or the input juncticin. The pulse
for stiown below could be treated in o mathenctical sense as a inite number

ot rectangularly shaped ivput puise torms as iilustrated in figure I, Tn the
limiting process, as the pulse duration, &, ¢. the rectangularly shaped pulse

decreases to some infinitesinal value. the respeonse function or solution to
come svsterm could be identical.

3. A more ase’ur function cecomposition approacih exists in a mathematical
Sentte U oo those presentaed atove in the rectangular segment approach. Thic
appyeact. o ceiled frequency analveis or Fourier Series analysis. In this
pArLe e apgroaciy, o giren tunc: lonal shape is resolved inito a {inite number
Wosinusoidel wovetories, Az an examplce, an arbitrary pulse form could be
vosidered mathizmaticasls as the sum illustrated in Figure 3; the functions

ST - Lhe v oabl L representing continuous wave or sinusoidal woveTornn
oo the reeror o0 waves heing added together increases, the more avrc .o

be e covparisen of the rasulting waverorms with the initial waverorm.
eramp -+ if 2 vectangnlar puise were to be resolved into one continusu- wan
Ter o the croccimation would not be good. Two terw. would be better. As
oo i the erample I+ Tigure «, counsidering the reo~tsngular function o an

oudd function, adding toth first ond chird Larmos. -w, zives the appros.
of the originil fuwrction. In order te ohisin the corncrs of ths rects |
tulse, discent i wuitics being critica” rornts and dirficult peints to -,

mite in o Four-er series sense, 2 CaicT loree number of corns, say

nore, wonld be rogquived o spprocen the odyes of the rectangular pul-g
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and

where f£(t) is such that

The a are called Fourier coefficients. Another common notation is
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The Fourier Series of the periodic function is defined by

f£(t) = £(t + T); T = period
1 T -jn21t
ag = 7 I . f(t)e T dt

T

0

A, = Real lagl= Ly f(t) cos(n giL—t)dt !
T 0 T :

1 T L i

B,=1Im [a,]= ;f f(t) sin(n *;“‘t)dt :
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B. FOURIER TRANSFORM THEORY. Much of the pattern recognition work assocciated
with ultrasonics, uses the Fourier transform of a time domain signal as a
feature source. A feature 1s a parameter defined on a function. Consider the
graphical representation of a function shown below in Figure 5.

///,-«-Peak VYalue

//——~width at 507 of Peak Val.e

-—Value of f Where Peak QOccurs
Figure 5. Example of Fourier Spectrum Parameterization

Three possible features are shown sn the illustration. The rourier trans-
form will be reviewed in thils section because of its importance in ultrasonic
work.

By definition, the Fourier transform of a function of time f(t) is a
function of angular frequency F(. ), given by the relatiomship

F( ) =f T orne T e

"‘wt A
whnere e = coswt - 3 sinut G = /<D
Re . F( w) '=.f £(t) cosut dt (real part)
Im (F( ») i=.r ~f(t) sinwt dt (imaginary nart)

Terus usually associated with the Fourier transform are Power Spectrum and
Phase Angle. These are defined beiow.
. 2 2 2
Power Spectrum =; ¥(u)!'" = (Re[F( D" + (Im{F(w ) D

Phase Angle - ¢(w ) = tan—l(lm[F(m ) }/Re{F(w )]

An example of o time Vunction ulong with its spectrum and ﬁﬂhsé 5ng1e is given
in figuce b on the following pag .

)
|
i
{
i

e m— e e e e i i e e
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N IFZw)IZ
f(t) ~ | Power Spectrum
i
—
% !
\J-- ‘ P
/””’ i Q
7; = Phase Angle

Damped Sinusoidal (o) © \

Figure 6. Example of a Transform Pair

The inverse Fourier transform is defined by

B o™ .
f(t) = O—Tf F(uw)ed % duw

-

f F(w) coswt dw
f F{w) sinwt d w

The similarity between the Fourier Transform and the Fourier Series should be
noted. It can he shown that discrete spectrum resulting from Fourier Series

anaivsis has the Fourier Transform continuous spectrum as its envelope. See
Figure 7.

Relf(t) ] =

NS
3 —_—

fu

In[f(t) | =

|

N

T

///—~——Envelope = Fourier Transform
/

—— Discrete "ocurier Series Spectrs

aiiiill % ;rmﬁw-

Figure 7.

[llustration of the Relationship Between
fourier Series and Fourier Transforms

B e -~
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I1I. SIGNAL PROCESSING

A. ANALOG TO DIGITAL CONVERSION. There are basically two types of signals
encountered in ultrasonics. They are generally called 'narrow band" and
"broadband". These terms refer to the spectral characteristics of a signail.
These concepts will be made clear by the use of a simple correlation that
exists between the time domain and the frequency domain.

1. The Fourier spectrum of a continuous wave of Irequenc—, !, is a spike
located at f, in the frequency domain. This would be the ultimate narrow band
signal. The Fourier spectrum of a single spike in the time domain would be a
constant extending from zero to infinite frequency. This would be a perfect
broadband pulsc. See Figure 8, an illustration of these types oi signals. An
intuitive correlation that might be made is that the longer the signal durationm,
the narrower the frequency spectrum. These are the kinds of signals that are
generally processed during ultrasonic analyses.

2. The important question is what happens when one has only a finite number
of sample points from a signal. The points will be digitally processed to
obtain a Fourier spectrum. Is this spectrum a rezsonable representation of the
true frequency content of the continuous signal? Following the digitization
process step-by-step will illustrate some of the problems that do occur.

a. A time signal theoretically has a Fourier transform. Let us track
the effects that processing this time signal has on the theoretical or true
spectrum. TFirst, the signal is sampled at some rate, say 7; that is, data
obtained every T scconds. Essentially, the time signal is multiplied by a
train of delta functions spaced T seconds apart. In the frequency domain, this
corresponds with a pulse train separated by 1/T frequency units. See Figures
9a and 9b.

b, Since onlv a finit: number of samples can be processed, the sampled
wavetform must be truncated. This is again a multiplication, but this time uy
a rectangularly shaped function. The transform of such a function is a sinc
function. See Figures 9c and 9d. This multiplication also translates into a
convolution in the frequency domain. See Figure 9e. The sampled and truncated
“ime coamain signal now has a distorted periodic frequency profile. This con-

t Licous spectrum must also be sampled and truncatod. These results are shown
in Figures 9f and 9g.

c. Particular attention should be paid to Figures 9c and 9d. Figure 9
shows that if the sampling rete is not high enough, considerable spec val cver
lap may occur, thus distorting the true spectrum. The term applied to this
suboptimal sampling is called Atiasing. There is a theorem, called the -+ st
sampling theorem, which states if the sampling rate is at least twice the .: h-
st frequency contained in the signal, then Aliasing will not occur. See
Figure i0c.

d. Figure d show- that a rectangular window function has a spectrun

with many side lobes in it. Convolvipg this with periodic spectrum of Figure
introduces rippics. The type of distortion is called leakage. This problem has

been under study f{or many ycars and certain window functions developed that have
minimum side labe energy.
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3. Real world signals also have the additional component of noise, Noise
may be grouped into several categories. The two items just alluded to, Aliasing
and Leakage, might be considered sampling rate noise and mathematical noise.
Appropriate steps may be taken to eliminate this type of noise. Quantitization,
that is, partitioning the signal into discrete levels, also introduces noise.

An analog signal having values located midway between two adjacent quantum levels
has a 50-50 chance of being quantitized into either level. Other kinds of noise
include electronic noise and thermal noise.

4. Ultrasonic signals may be considered as belonging to the realm of random
processes. That 1s, each time a signal from the same reflector is viewed, it

obtains slightly different values. The distribution of these variations may be
considered random.

a. One way to get a better estimate of the true value of a signal is
to average over a set of similar signals. It can be shown that averaging
decreases the effects of quantitization, electronic and thermal noise.

The theory behind simple signal averaging is as {ollows:
Let x; denote an observed signal.
Let s denote the true signal.
Let nj denote the noise content of the ith observation, then
X; = s+ n4

Consider collecting an ensemble of N of these signals:

x1=s+n1

%9

s + n)

XN

s+nN

Averaging then involves summing and division by N (simply scaling)

N N
L %Xy = Ns 4 ¥ ny
i = l i= 1
N N

Xy 7 8 + ni

18
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For N large encugh

is small, and division by N makes the second right-hand term even
smaller.

x; “s for proper N.

i=1
N

b. Averaging introduces the new problem of jitter. Jitter is time
shifting of signal components due to the variability of the trigger levels
necessary to initiate the digital-to-~analog sampling process. Most often,
this occurs when instruments are first turned on. After a period of time
though, trigger levels tend to stabilize. 1If jitter is still present, a pro-
cess called correlation detection may be used.

¢. A signal! is captured and stored. A new signal is then obtained
and cross-correlated with the stcred one., The maximum value of the cross-
correlation function locates on the time axis the number of sample units the
new form has been shifted away {rovm the original. The second is time shifted
into agrecment with the first one. The two signals are then averaged and
stored as a new reference signal. The process may be iterated until it is
thought that sufiicient noise reduction has occurred.

5. SIGNAL PROCESSING DEFINITIONS. Many textbooks on signal processing are
available, many of which could be useful in understanding the difficulcies and
possibie improvements of ultrasonic signal analysis. Highlights arnd definiticns
of several terms that are encountered in the signal processing fiel. are out-
}Jined below. A review of the terms and basic concepts will serve to introduce
the suhject and its many mathematical and electrical engineering arcas of study.
The concept of a transfer function is illustrated in Figure 1l. This idea is
used very often in signal processing systems and is referred to in the electri-
cal engireering and systems analysis literature. The transfer function is often
treated as a black box where the output function can be formulated as a function
of an input function by wav of the black box or transfer function.

BLACK

iN=————¢  BOX ————> oUT

Out = {lu) whare black box (F) represents a transfer function.

Figure 11, Transfer Function Concept
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!. Signal. A physical disturbance that contains information. 7The disturb-
ance may vary with time, temperature, pressure, etc. A traffic light is a
signal. The color is the disturbance and the information is stop, go, or cau-
tion. In ultrasonics, voltage variations versus time are typical signals,

2, Processing. The automatic extraction of information from a signal.
For instance, the Fast Fourier Transform is a computer processing technique used

to extract the frequency information contained in a signal.

3. Analog Signal. A signal that is continuous in time.

4, Digital Signal. A signal that occurs in discrete time intervals, usually
represented as a sequence of numbers, each being restricted to an integer multi-
ple of a fundamental unit called a quantum.

5. Sampling. When it becomes impractical to process a signal in continuous
time, samples of the signal are taken at a set of predetermined discrete times.

6. Quantitization. Restriction of sample values to a finite number of pos-
sible values.

7. A/D Conversion (Analog to Digital). The procedure for sampling analog
signals and thereby converting the analog information into a digital sequence.

8. Spectral Analysis. The evaluation of the frequency content of a signal.
This is usually performed by Fourier transforming the signal and noting those
areas which have significant values.

9. Bandwidth.

a. The highest frequency above which there is no significant content.
(0 to 10 MHz, 0 to 20 MHz, etc.)

b. ‘hen prefixed with 3 dB or 6 dB, the width of the spectral profile,
at respective amplitudes, 0.707 of the peak value and 0.5 of the peak value
respectively. (5 to 10 MHz, 2 to 6 MHz, etc.)

10. Sampling Theorem. A theorem that states an analog signal must be
sampled at a rate of 1/(2 f;,), where f ., is the highest frequency contained
in the signal, in order to insure a faithful representation of the signal in
the digital domain.

11. Aliasing. The misinterpretation of a signal due to too low a sampling
rate. When one looks at an airplane propeller, it seems to be going sl'w (or
even hackwardsi. This is due to the fact that the eye cannot sample the visual
information at a high enough rate. This can produce incorrect electronic
signals since a lower sampling rate could actually represent several higher
frequency signals. See Figure 12. This can occur when the sampling rate is

Loo Low. b e
12, Filter. A mathematical algorithm or computational procedure used to
process digital data. These algorithms are implemented either in software

(using computer language) or in hardware (actual digital circuitry).

20
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—

1 } 1 1 1 1 J

T 2T ar
Figure 12. Aliasing

13. Transfer Funcrion, A mathematical representation of the effects a
physical system will have on an input, regardless of what that input may be,
It represents the inherent characteristics of the system.

14, Linear Filter. A filter where the property of superposition is known
to hold. That is, if two inputs are added together, the output is the sum of
the two individual outputs obtained from each input alcne,

15. Auto Correlation. A statistical measure of the expected value of the
product f(n) * f(n + k), where f(n) is a signal at time n, and f(un + k) is the
value of the signal k units later. k 1is called the lag.

ACCT) = lim _l_j'l‘ E(cYE(L +T)dt

T 27 T

This “unction might be useful for the alignment of similar signals displaced
relative to each other in time.

16, Power Spectrum. The magnitude of the Fourier spectrum of a signul,

4

i7. Power Spectral Density. The Fourier transform of the autc-correlation
of a sigrdl.

ls. $igral to Noise Ratio. (A/On) The ratio of peak amplitude to the
root mean square of the noise in a signal.

19. White Noise. (Wideband Gaussian Noise) A signal whose power spec:irun
iz a constant.

20. Cross Correluatjon. A statistical measure of the expected valve of the

product f() - g(n + k) where f(n) is a signal at time n, and g(n + k) ..
another signal at time n 4 k.

PR(C = lim f T F(tig(t 4 1)de
e 2 T
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a. Cross correlation may be useful for the detection and location of
a signal which is embedded in noise, since only those components which zre not
noise will have non-zero components,

b. Intuitively, correlation is similar to a template matching pro-
cedure. One signal is displaced relative to another (cr the same) and the two
compared. That displacement where the two signals agree the most is where the
correlation function is maximum and where they coincide the lecast, it is a
minimum.

21. Deconvolution. The process of solving tor the functicn

K(t, 1) in the equation

f £(t) RK(t,r)dt = g(1)

given the functions f(t) and g(t ).

K(t,T ) is known as the kernel of the integral.

a. This is related to the theory of linear systems where it is shcwn
that if £(t) is an input to a system, g(1 ) is the output with K{t, T ) being
the system transfer function.

f(t) g(t)
K(t, 1) >
input transfer function output

b. TFourier anal;sis also shows that if F(w}, K(w), and G(w) are the
Fourier transforms of f(t), K{(t,T ), and g(7 ) respectively, then
GGw)
F(w).
This complex division is known as deconvolution. Deconvolution could be uselul

in ultrasonic analvsis, for example, in transducer compensation analvsis, that
is making one transducer appear to be another, perhaps more suitable transducer.

Tw) =

22, Signal Averaginy. A mathemntical process (~r filter) which evtracts

the central tendencyv of a signal. Tt is usually used to eliminate noise.
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i IV. BASIC PATTERN RECOGNITION AND CLASSIFICATION PROCESSES

A. SIMPLE TECHNIQUES. one manner in which man has been expanding the general
capabilities of the digital computer is the concept of artificial intelligence. ‘
Hopefully, the digital computer will perform perceptual tasks assipned to it. j
Pattern recognition has received considerable attention in this arvea.

; 1. The basis for using pattern recognition in solving practical problems
lies in the assumption that a logical means exists to train & =(mputer to i
associate given data with a particular test response.

2. The basic form for a clascification process, as illustruted in Figure

! 13, consists of a data acquisiticn process, parameter or feature extractor,

and a classifier. HNote: Before the system functions correctly, the classifier
must be trained to provide a solution having a higher probabilitiy of being
correct than the system previously used.

COMPUTER
CONTROL
BATA | FFATURE
ACQUIS i TIUN j EXTRACTOR CLASSIFICATION
L
DECISTON

Flzure 13. The Patcern fecognition and Classification Prncess
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3. Figure 14 illustrates how Probability Density Function (PDFY curves night
be used to obtain feature effectiveness. Note that feature ! has uoprosimately

the same values for the two different classes in the rirst illustration.

Probability

Poor
Tegture

“eature -,

xcellent
Feature C

RN N $
e L S

Figure 4. Sample Probability Densitv Function Curves for
a Typiral 7 Class Classification Problem
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There 1s no differentiation capability for the feature.
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“eaturces 2 and 3

are also somewhat limited in their capability for classiiying the proilem

as either class 1 or

Note that, however, feature 4, possibly center

frequency of the reflected signal p.ovides for us a clearer differentiation
between class 1 and class 2, and of course, feature 5, possibly a 6 dB

down frequency bandwidth provides for us an excellent feature for differ-
entiating the two classes with 1007 reliabiiity.
the features fall in categories such as those illustrated in “eatures 2

and 3.

Quite often, however,

The probability density function curves, lLowever, provide us with

insight into the difficulties that might be associated with the classifica-

tion problem in pattern recognition.

for feature 5 occur, the solution to the problem is complete.
to examine two-dimensional reature profiles

the case, it is often desirabile
as illustrated in Figure 15.

4
— RS
[+%] .« ®
e . toe
o | -'.':‘.
® A
8 “ee
a feature 2
) §

\!

.

e

Obviously,

if results similar to those

If this is not

v

"wo-ilimensional Feature Space Clusters
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* 4. If we were to plot in two-dimensional space a feature 1 versus feature

2, and were lucky enough to obtain data clustering as either ball-like, ring

type, string type, and so on, as illustrated in Figure 15, again promise for
obtaining a reasonable solution exists. The combination of two-dimensional
profiles should be plotted for all promising type features as indicated by the
probability density function analysis. If the cluster situation in two-dimensional
feature space is not useful, it then becomes necessary to employ more sophisti-
cated algorithm analysis from pattern recognition.

5. The next approach that could be used for finding a solution tc this
classification problem would be to consider aspects of Bayes' decision theory
in combination with the results obtained from the probability density function
analysis. A fuzzy logic decision algorithm could be established that classifies
a certain percentage of the total number of test situations enccuntered wich
100% reliability vector or index of performance, A sample fuzzy logic algorithm
is illustrated in Figure 16,

6. if problems are encountered in this approach or a2 Jlifferent kind of
relianility parameter is required, additional concepts in pattern recognition
must be explored. As an example, an index of performance vector that provides
us with 100% classificaticn aven though the algorithm reliabilicy is only 80X
or 907, could be useful for many applications, Keep in mind that the index of
performance criteria depends on the classification levels and possible loss
function analysis, loss functions can be incorporated into the index of per-
formance evaluation. As an example, an item classified as class 1 that is
reallv class 2, mav not represent a serious error. On the other hand, calling
a class 2 situation class 1, could be serious. Suppose we are doing a flaw
deteciion in metals. If class 1 represents porosity and class 2 cracking
. classification of poresity, cracking is obviously not serious since it results
E : possiLiy in small financial loss.

&, FISHE: LINEAR DISCRIMINANT. one of the major problems encountered in
vattern recogrition work is the vastness of the feature space. Procecures that
are analytically and computationally manageable in low dimensijional spaces be-
comes impractical in higher dimension spaces. An ideal space is the one-
dimens ‘onal space represented by a straight line. The advantage of a Fisher
Junear Discriminant is that it projects all of the dats from an N-dimensional
space onto the best line for separating the dat:. Once the data has been pro-
! jected onto the line, a threshold value may be selected which will separate the
data into two classes, Thus the Fisher Linear Discriminant is ideally suitcd
to a two-class problem, as illustrated in Figures 17 and 18.
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class 1 class 2

_ - |
m |

A B Feaiure Value

Feature # 2

} class 1 | -~ class 2

N
o

C D . Feature Value
Read Feature #1 /@ :
Value
- /
~(X>8 > Class 2

X
Read feature #2 /®/

Value

Y
l
X
<Y< D) | look at anctner
feature, efc.

Figure 16. Sample Fuzzy Logic Algorithm Development
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Figure 1f. Features Projrcted Onto Line Determined by the
Fisher Linear Discriminant - 100% Reliability




3 NAEC-92-140
] | 3
0 0
o p ©
oX X o 00 5 Qo
% X o X x0x0 50
Xox o %6
% 000 XX "2‘ ©o, o
X x 9x X xS% ¢ 0 o
X X o ' © X&x AZX o 00
Xy X X
K7
A - EXAMPLE OF DATA SCATTERING IN B - FISHER LINEAR DISCRIMINANT
A TWO-DIMENSIONAL SPACE SHRINKS IN CLASS SCATTER
2 2
(S] + 52 )
h; PR
_—i ﬂ
(o)
60 9 o
% 17
7
C
» x e
% ) .
X x I
7(,‘>>‘ N
T
o i
C - FISHER LINEAR DISCRIMINANT SPREADS THE MEAN VALUE OF EACH
CLUSTER AND PROJECTS THE DATA ON AN IDEAL LINE
Figure 18. Comparison of Two-Dimensional Space and
I'isher Lincar Discriminant Data Scatter




NAEC-92-140

The simplest way to project an N-dimensional space onto a line i« by forming
a dot product.
N
[él, w2 , u&] X1 = L wyxg =y (a scalar)
i

XN

1. Consider a set of K samples (vectors) divided into two classes, C; and
Cy with N} samples and N, samples respectively (K = Ny + Np). (If the samples
fall into two intermingled clusters, the result desired is that the clusters be
shrunk and their means well separated.) See Figure !5. Another way of express-
ing this is to say that the difference of projected means is to be maximized and
the scatter within each cluster is to be minimized. The mathematical formulation
of this problem is given below.

Let x denote a typical D-dimensional vector. Then for class 1 samples,
the vector mean is

b

o,
m o= ’-‘/Nl' xe &

and for class 2

»%
[y}
@]

N,
o, = Z ?f/Nz’ X

20
The projected.ﬁeans would be
Lo 1<l
o, =y 2§ y y projected from C1
1 4L-
1 2
ﬁz = N, y y projected from C2
that is
.
1o
ﬁ‘l‘ﬁi!£=ﬂtml
1
the squared difference of projected means is then
. 2t t 2
:w(m

30
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this may be rewritten as

|, ~ @ 2 o Wb

1 2l

vhere

M= (_m_l—gz)(gg S

1 2

The scatter S for each class may be defined as

5. =% (x-m)x-m)t, xe C
Lo

s, =z(§_—_@2)(§—22) , xe C
Also, a variance measure of the entire data set may be defined as

1 2 2
V=g 6 +§2)

where
5 2 2 4
S]_ = z &y - ﬁll) y £ projected Cl
g 2 . y2 e projected C .
S2 = (y - mz ye p 2 j
or
. - t 2
Lt _ t c
= v (x - n)(x mz) s xe Cy
~ i . |
g ¢ . wtslw (likewise for 526) ?
l a—— | —

with S, as above.

1

let S = Sl + 52
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then

The Fisher Linear Discriminant is defined as w 5 for which
lm, -

;0 ¢

n,|?
1
J(w) =
assumes its maximum value, It should be noted that in a sense when Iih

is a maximum and gl + 22 is a minimum J(w) is maximum. 2

In terms of the above formulations
t

w Mw

J(w) = ==

e t

v Sw

this is known as a generalized Rayliegh quotient. The solution W that maximizes
J@1) is given by

~1
w=-s (Tl - 22)

Computationally, the vector means my and m, are first calculated. Then the
matrices

Sl=§:(§—gl)(35~ml)t xe G
52~ 5 (= m) (x - m))° xe €

are calculated and summed tc give S. S is inverted and multiplied times (e
difference of vector means (1_1.11 - _n_1_2).

32




NAEC-92-140

C. INTRODUCTION TO ADAPTIVE LEARNING NETWORKS. This section will develop the
tools and concepts necessary for understanding the motivating philosophies
behind a learning network. There are essentially four divisions included in
this section. The first three will develop the mathematical machinery required
for conceptualization of a learning algorithm. The next and most critical
section will cover the analogy between human learning and mathematical
(computerized) learning.

1. MINIMUM SQUARED ERROR CONCEPTS. Consider the classic problem of find-
ing a line that approximates a set of data in the sense that the sum of the
squared errors is a minimum, One wants to find parameters, say a and b such
that the line

y = ax + b

is a good estimate of the inherent functional relationships of data sumples,
where the samples are given as

1 G vy

82, (xz’ y2)

BN, (XN’ yN>
Given that a and b exist, the error between actual data and the estimate is
= - - b
error, =y, ax,

for each i. The sum of squared errors is
N N
2
TE: (erxror )2 =f§: (yy - axy - b)
i >
i i

This last expression is the one that is to be minimized with respect to the
parameters a and b, The condition for a minimum is well known from the calculus.
It is that the partial derivatives, with respect to the parameters, of the
function equal to zero.

,gi 2
(yi - axi - b)

Iyt

[ Y
]
w0

N "
a Z (crrori)‘ =
i

2(yi - ang - b) (—xi)

?
»(vjz

v
(=]
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The -2 is a constant

N

N N
. f - _ 2 STy =
o . (y;l axi-b)xi~-2x1yi aEi X —bL_i’x, 0

which can be written as

- é% 2 é% N
a) x, +b x, = X,y
D SR

1
Likewise

N N
3 2 .
b Z; (errori) -+ ; (y1 - ax, - b) (1) =0

N N
or ?‘yi - ag:xi - Nb = 0,

N N
aZ2_x, +b N =y Y,
i i
Putting the two above equations in matrix form gives
[~ = -

N o, W
Z;xi Z{"i

N
2; xi N

Y 5 0= b

If the matrix Y is nonsingular then the solution is

o= YR
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2, GENFRALIZED MATRIX APPROACH; PSEUDOINVERSE. A more gencral problem may
be formulated as follows: We want to find the components of a vectorw  such
that the accumulated squared errors inherent in the expression

Xw = b

add to a minimum. Define e = error vector, then e = Xg - b.

Noting the sum of squared errors is also the length of error vectors, we
want to minimize

2
Hell® = |
taking partials (denoted by V) we have

2 X t t
vlxd - B}|° =D 2@ xg = b)x = 2X (X@ - D)
i

N
Xw.” b][z =Z:~(Et§i - bi)2 (t = transpose)
1

Setting the partials equal to zero.
vi|xz-31)% = 2xtxd-) = 0

+ x%d=x%
If th is non-singular then

3= x0T
is the solution to our generalized problem. We can write

3= x'
vhere xt - (xtx)'lxt and is called the "Pseudoinverse" of X.
As an example, we will consider the case where an outcome (result) depends

on two other variables. VFor instance,

ys= “B + “ﬁxl + w2x2

with N da;a samples 35

e b o Sl
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k 52a (xl(Z)o x2(2)9 )’2)
sSN’ (xl () » x2 ) ’ yN)

(the superscripts indicate the sample number) the generalized matrix
approach 1is

~ _XB=Tb
A -
1 xl(l) xz(l) wo ) Tyl
(2) (2) w - y
1l 1 Xy 1 .2
. . : Wy
(r) (N) -
Ll x1 x2 ._yN_J
J
- T
1 1 1
Xt = xl(l) xl(z)"' xl(n)
- 2),,. (N)
xz(l) ¥ *2
L4 N P @ W
xtx - xl(l) x2(2)..' xl(N) 1 xl(2) X2(2)
ORNIORRE i W@ ® _
[ ¥ N ]
. (D o—_
N X L. X
i i 72
Aoy Ao A (4) ]
=1\ X ( ) ) _ (x,x,) "
{ T g 5 01




One should try this approach to the i1i
for this method.

1 LI Y 1 )'1
N
xl(z) . xl( ) Y2
"2(2) o xz(N) 2
J L
J n

near curve y =

i
e e
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ax + b to gain appreciation
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3. MULTINOMIALS. Linear approximations always remain linear upon composi-
tion. As an example, consider the linear device below.
%1 -+
w, + WXy + Wy %o -y
X, *

The device implements y = Wy +owyXy + w,Xye These devices may also be used
in tandom or in layers.

N W+ + ‘

o ML T ey Ty
X, *
X 7 Po T PyYy F Ry, |
2 t oz -
x_+] %0 T T RNy,
3

y = o+ oW x : +p.(z +z2.x, +

Y= Pyt Py ug b ugxg Fegxg) 4pyleg 42y by

y = z x, + 4

= Cpg ¥y, ppz,) + (pyiy + pp2y)xy + (pyuy)x, + (py2g)xy

y= A+ Bxl + sz + Dx3
A, B, C, and D = constants.

The important point here is that the resulting y is still a first order
approximation of the functional relationship inherent in the data. The only
result to be obtained, regardless of topological structure is .

»

y= 2:"‘1"1 ;

i

where N is the number of parameters or '"features' that y depends on.

Data having a relationship involving cross-products and powers of features
would be poorly approximated by this scheme. Therefore, non-linear approxima-

tions are now considered.

The simple case involving 3 features is shown below.

X ->
1

R T G e i IR VIS Tl IR AT
2 H

x + ‘
1

. - z0 + zlxl + z3x3 + zl3x1x3 N ; |
3 13 |
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y
12 :
+
g |70 T P12712 T P1g¥i3 T Praa¥iphyg ) 9
13
y + +
Y = Py Prple, +upxy + Xy +wxx)) 4 pyalz Fozyx) +ozaxs 4oz xox,
+
Prag{iy ¥ Xy + wxy) + 0% %)) (20 + 20 %) + zax, + 20X %)

which implies terms in
X1, X2, X13, X1x2, X1X3

as expected and the new interactions

2 2
XoXqs X XoXq, Xy, X XoXg

It is noted that cross-terms and power terms are automatically iatroduced by
layering. This suggests that the inclusion of non-linear terms and layering
gives a broader range of approximating power.

4. BASIC ALN CONCEPTS. The nonmathematical concept of adaptive learning
is easily comprehended. Experiences are recorded by an individual and are put
into a scheme or logic by some undefined method. He has a theory about his
experiences. When presented with new experiences, his theories are tested.
Some theories are modified, some are disregarded, and others remain unchanged.
In this sense the individual "adapts' to his environment. The measure of how
well his theories perform is the frequency with which he makes successful
decisions on new experience.

a. The jump from the philosophical domain to the mathematical one 1is
made most easily by defining terms or creating a vocabulary.

(1) Feature - a quantitative measure of an experience. Examples:
temperature, velocity, mean value, peak-to-peak amplitudes, etc.

(2) Feature Vector - a column-like array of features,

— —
temperature
velocity

mean value

frequency

-
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b. Mathematically, once the parameters are defined they may be tagged.

X) - temperature

Xg velocity

X99 - mean value

xyy - frequency
The feature vector may be written as
Xl 7]
X2
X22
N

Other terms will be defined as necessary. From the previous section, we have
good reason to suspect that the use of nonlinear expressions and layering will
lead to much broader thecries than linear relationships. We will restrict our-
selves to expressions of the form. 5

2
TS be + w X
= + wx, +wXx, tw X.hj + w&‘i 574

Y13 R G 20k SR b

where 1 # j. We will be interested in all experiences or features at the outset
because we are not aware of any particular relationship.

c. This is best done by considering all possible combinaticns of
features. Given N features, there will be

N(N - 1)

)

“

possible combinations. As an example, consider N = 4. A typical feature
vector would be

X1

X9

&

X3

X4
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and the combinations would be
X X, .xz Xq ’x3 xQ,
xl X3 ,Xz X4 or
Xy X,

We define a "box" as a device that implements

4(3)
2

= 6 combinations

2 2
= w + +
yid o mlxi wzxj + w3xixj + uzxi + ung
X -»
1 "box" - yij
x, -
3

then as a first attempt at developing a theory we have

xl -+
- MRSV
”D | SRRR——
X))
Xy MRAERIR S
%
. X, > TV F Y3
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This initial try will be called a "lst layer"., The data that is put into this
layer is called "fitting' data. The word fitting referring to the previously
developed method that solved for u ,, w 17 =<2 W5 (pseudoinverse, least
squares concepts).

d. The data is submitted to each box in the lst layer and the coeffi-
cients for each box are solved for using the matrix methods at the beginning

of this section.

e. The expression or algorithm we have, along with the coefficients,
constitute our initial theories about our experiences (features). To decide
which theories ('boxes') are useful or not, we must subject them to new experi-
ences. This set of data is called the "selection" gset. Those boxes which
perform well are retained, while those that perform poorly are disregarded.
Assume that boxes 3, 5, and 6 performed poorly. Then we have

x, > T2 Yy T

i LA
T Y23 Y4 = Y3

We ncte that feature x; may be disregarded at this lst layer, although the pos-
sibility exists that it might be useful at another level in the network.

D. FACTOR ANALYSIS IN PATTERN RECOGNITION. as part of the pattern recognition
capability being developed at Drexel University for the Navy, we have incorpora-
ted a factor analysis program to efficiently select the features most r-rucial

in the flaw detection problem. This program aids in the identification of
relationships among the variables and may contribute to the discovery of new
features which will improve our ability to discriminate between different p::
tern classes. Also, through the use of this program we may be able to reduce
the number of measurements needed to make a successful discrimination.

e sAniars

L. FACTOR ANALYSIS. Factor analysis is an extension of principal component
analysis which determines the minimum number of independent dimensions needed to
account tor most of the variance in an original set of variables. Factors are

42
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derived measurement constructions which may produce parsimonyl. orthogonalityv.
increased reliability and increased normality over the observation measures
from which they are derived.

a. The digitized ultrasonic waveform can be represented as a signal
vector in an n dimensional time space, where each dimension corresponds to the
signal voltage at a different latency point in the amalysis epoch. Princi-
pal component analysis can identify the actual dimensionality of the "signal
space' containing a set of such vectors representing waveforms from many deri-
vations in the same experiment or from the same derivations i1 many experiments.
One can then construct a parsimonious description of each waveform as a linear
combination of a set of terms. Each term defines the relative contribution of
each feature to that waveform. These linear equations enable great data com-
pression, since any waveform in that signal space can be described as some
combination of the same basic factors. Thus, patterns of factor weightings
can be used to construct clusters of waveforms with distinctive morphology.
The p linear combinations of the variables (principal components) are designed
to capture as much of the variation in the data as possible while at the same
time being linearly independent of all the other principal components.

b. A principal component Yj is a linear combination of p variables.
Thus

YJ = Bl‘(lj + BZXZJ + ...+ Bpxpj, j=1,2, ..., m

is a principal component with unknown coefficients By, By, ..., Bp. In matrix
notation let
ol © [ 7
By ¥y X11s soees Xpl
By Yo X125 «eves sz
Bz . , X: * N and§= .
B, YmJ Xims +++e> Xpm
L - | .J

Then we can write the principal component as

Y= X

1. dimensionality reduction
2. not yet apparent, but there
For a given B, the sample variance of Y is given by

var Y = B'SB

where G is the sample covariance matrix.




T

NAEC-92-140

c. The first pro%lem in principal component analysis is to find the
principal component, Y;, with the maximum variance. The problem then is

maximize B'SB subject to B'B = 1
d. If we let
¢ =B'SB -} (B'B- 1)
where » is a Lagrange multiplier, the vector of partial derivatives is

3
Te = 258 - 28

which, upon being set to zero, reduces to
(s - \IDB=0

To solve this equation, we find the p characteristics voots of the covariance
matrix S, thus to maximize the variance of Y, we choose the largest character-
istics root of the covariance matrix S. The first principal component is given
by

Y1 =13

with variance equal to Al'

e. In general, when there are p variables, the first principal com-
ponent Y;, is a linear combination of the p variables with ccefficients equal
to the normalized characteristic vector associated with the largest character-
istic root of §. The second principal component, Y,, is the linear combination
of the p variables with coefficients equal to the normalized characteristic
vector associated with the second largest characteristic root of S, and so
forth up to the pth principal component, Y_. Each principal component has
variance equal to its corresponding characgeristic root and each compcnent
merely defines the p axes of the p-dimensional concentration ellipsoid and is
computed by the program.

f. Thus far in the development of the program, we have the standard
packages to accomplish the following:

. CORRE - to find means, standard deviation, and the correlation
matrix

EIGEN - to compute eigenvalues and associated eigenvectors of
the correlation matrix

TRACE ~ to select the eigenvalues that are greater than or equal
to the control value specified by the user

LOAD

to compute a factor matrix

VARMX

to perform varimax rotation of the factor matrix
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The program has been debugged and employed on a small set of data. The prelim-
inary results are described in the pages which follow.

2. RESULTS AND DISCUSSION. The results of the factor analysis are sum-
marized in the matrix of common factor coefficients presented in Table II. Each
entry ajqy of the matrix shows the importance of the influence of factor j upon
variable’i. The factor loadings indicate the net correlation between each factor
and the observed variables or features. .

a. The interpretation of factor loadings may also be made in terms of
the squares of the coefficients. Each (aj )2 represents the proportion of the
total unit variance of variable i which is explained by factor j, after allowing
for the contributions of the other factors. Thus in the first row of the table,
it can be seen that 90% of the variation in Feature 1 can be explained by
Factor 1. Factor 2 explains only 0.8%; Factor 3, 2.9%; etc.

b. The matrix of factor loadings, in addition to indicating the weight
of each factor in explaining the observed variation, provides the basis for
grouping the features into common factors. Each feature may reasonably be
assigned to that factor in which it has the highest loading. Where loadings of
a feature in two factors are very close, the feature is assigned to the one
judged to have the closest affinity. In Table II clusters of features with
highest factor loadings are enclosed in rectangles. Only Factor 1 contains a
cluster of features.

¢. From an examination of the variables in each cluster it appears
reasonable teo assign attributes to each factor. Thus, Factor 1 might be termed
the "Frequency Factor.'

d. The analysis described is an exploratory one and, therefore, any
conclusions resulting must be tentative. However, the loadings are small in
Factor 5; this factor may be eliminated completely by changing the minimum
eigenvalue to be retained. In addition, one might conclude from Factor 1 that
only one of the frequency features is heavily loaded on the same factor. This
conclusion is supported by a previous study conducted by the authors.

e¢. The generalized variance is shown in Table III for each of the
five factors. More than 827 of the generalized variance can be attributed to
the first two factors. Thus, it appears that the fractional power ratio at
2-2.5 MHz and the total power from 0-3 MHz are not strong discriminators since
their heaviest loadings are on factors other than the first two.

f. The correlation coefficients are shown in Table IV where i0 dB
down bandwidth is shown to have a strong negative correlation with 10 a? down
mid-frequency, -.928. This correlation is reflected in the cluster of thesc
two features in Factor 1 of the rotated factor matrix in Table II,

g. While the work reported here is preliminary and results must be
treated cautiously because of small sample sizes, it appears that factor analy-
sis 1s a powerful tool for further use in guiding the selection of features from
ultrasonic waveforms. This capability should greatly enhance the possibility
of selecting features in the most efficient manner for discrimination.

45
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TABLE IT. ROTATED FACTOR MATRIX
FEATURE FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5
10 dB Down
Mid-Frequency ~.949 .091 .170 -.189 .163
10dB Down
RBandwidth .941 .058 -.249 L 142 172

Number of Feaks
Above 20 dB -.022 -.986 .034 . 162 -.009

Fractional Power
Ratio 2-2.5 MHz .249 .013 -.957 L 147 .003

Total Power
0-3 MHz .408 -.498 ~-.305 .701 -.001

TABLE ITII. GENERALIZED VARIANCE FOR FACTORS

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5

Eigenvalues 2.817 1.295 677 157 .055
7 of Generalized 567 26% 147 3% 1% i
Variance 1

Cumulative 7
of Generalized 567 827% 967 99% 106
Variance
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TABLE IV. CORRELATION COEFFICIENTS

NUMBER OF FRACTIONAL TOTAL 10 dB DOWN 10 d8 DOWN

PEAKS POWER RATIO POWER BANDWIDTH MID-

ABOVE 20 dB 2-2.5 MHz 0-3 MHz FREQUENCY
Number of
Peaks 1.000 -.027 .586 -.65 -.096
Above 20 dB
Fractional
Power Ratio -.027 1.000 .491 495 -.425
2-2.5 MHz
Total Power
0-3 MHz .586 491 1.000 .530 -.617
10 dB Down
Bandwidth -.065 .495 .530 1.000 -.928
10 dB Down
Mid- -.096 -.425 -.617 -.928 1.000
Frequency

47
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V. GANPUI COMPONENTS

A. DATA ACQUISITION. Shown in Figure 19 is a block diagram of the ha i hard-
ware components used by GANPUI. The system generally has a capability of cou-
rately digitizing signals up to the range of 10 MHz, All functions arc
controllable either manually or through software. Associated with the video
terminal, but not shown, is a hard copy unit; that is, a device which reproduces
on paper the contents of the video screen. There are also three means of "'soft"
storage: disk, floppy disk, and cassette.

1. The ultrasouic investigator first determines the appropriate mode ol
inspection, either contact or immersion. If he chooses immersion, software
control for the x-v scanner apnaratus is available to him.

2. He then sets such variables as damping, gain, repectition rate, and so
forth on the instrumentation involved. Once he is satisfied that proper signals
are being obtained, he is ready to use CANPUI,

3. The principal data acquisition program is called GETTER. This program
1ilows the operator to choose the sampling rate, the time window. und number
ot times a signal is to be averaged, if such a procedure is deemed necessary.
‘he operator may also assign a name to the data he is acquiring. Lach set of
dita is called a frame. Data is automatically plotted on the video terminal as
it is obtained. This allows the operator to monitor the prccedure and detect
anv gross jitter {time shifting) problems. The investigator then decides if
the data is acceptable for further processing or not, his decision being based
on uantum levels involved, noise content, etc. Figure 20 shows a typical for-
mat of the GETTER output. Acceptable data is then displayed as an averaged
wavetorn and as 2 Fourier transformed signal. The information pertinent to
the experiment is stored and printed on the second page. There is alsc space
available for comments. bBoth the averaged waveform and its spectrum are stored.
If the operutor wishes to continue, another frame is available to him. Upon
completing the desired sequence of data, the video terminal displays the names :
¥ the files where the data is stored. Figures 21 through 25 shiow tyvpical cur- :

Puts.

4. When jitter becomes a significant problem, the operater may employ 2
.orrelation-detection algorithm., This procedure aligns signals according to
thelir degree of vorrelation with cach other. After the signals are aligned,
thev are averaged.

5. The GA22T T svstem also includes vrocedures for determining the sonsi-
tivity requirements of o particular inspection. Testing sensitivity ‘s detor-
~iued by the minimum size of a flaw which must be detected according - purti-
reat specification or other engineering requirements. Tt the sensitivitv is
too low, it is possible (o miss flaws which are dangerous for the structn o
streagth, Too much seasitivitv eauses detection of the great amounts of
structural inbomogeneitics and insignificant flaws.

( 6. lhe section on Signal Provessing includes descriptions of averaging
and correlation detection.

7. The propram that retrieves previousiv acquired data ror further pro-
cessing to evaluation is catled REPLAY. The input to this program is ihc
name of the file containing the desired data. The operator may select onlv
those frames which be feels are useful and disregard those that are not of
interest. See Figures 26 through 33,
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Typical Output Getter Frame
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B. FEATURE EXTRACTION. Feature extraction is the process whereby original and
transformed signals are parameterized and the parameters treated as components
of a column-like vector called a feature vector. Figure 34 below shows how i
waveform might be parameterized.

NORMAL WAVE SHEAR WAVE
i CONTRIBUTION A3 CONTRIBUTION
i

t _
—y - 2
R S

Figure 34. Waveform Parameters

PEAK-TO-PEAK

a. Absolute maximum + absolute minimum in either preceding or following
half cvcle in O-4usec window (normal component).

b. Absolute maximum + absolute minimum in either preceding or following
half cycle in 8-12usec window (shear component).

¢. Anyv maxima rising above the 6 dB down (50%) level + absoluce minimum
in either preceding or following half cycle.

a

Noo- The first peak-to-peak value in time over the O-4psec portion of the
waveform. Ay will never be zero.

A, = The second peak-to-peak value in tme over the O-4usec portion of the
waveforwm. 1f there is no second peak-to-peak as defined above, A, = 0.
Aa - The first peak-to-peak value in time over the 8-12usec portion of the

waveform. If no peaks appear in this portion, A3 = 0.

-  The second peak-to-peak value in time over the 8-12usec portion of the
waveform. If no peaks appear in this portion, A, = O.

Tl - The time from the maximum value of Al to the maximum value of aA,.

T, = 'The time from the maximum value of A, to the maximum value of A .
2 3 G

feature vector = [Aq]

1. All feature extraction is implemented in software. Prior to perforrming
feature extraction, the investigator may wish to examine other representation:
of the signal. The most popular is its Fourier transform including both the
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power spectrum and phase angle. Kecently, the so-called cepstrum has been
found to be useful in superposition problems. These transforms are availabple
in GANPUI along with the option of arbitrary transforms (operator defined).

2. Some work requires the use of the transfer function of the system under
investigation. This is obtained by a process known as Deconvolution. This
process mav also be used to compeasate for changes in transducer characteris-
tics. CANPUI has a deconvolvinsg algorithm and the software to extract featurecs
from the transfer function.

3. In those studies where signal amplitudes are hindering rather than
helping, appropriate normalizing precedures may be used. Signals may Le nor-
malized to have peak-to-pesak values of one, to have zero mean wi:i standard
deviation f one, md so forth. Transformed data may have to ve nermae’ized

depending on the nature of the feature extraction involved.

4. Th.s new preprocessed data (transformed, deconvolved, ncrmalized, etc.)
he set of functions on which feature extraction is performed. In general,
ures arcv of two broad classes: statistical and physically motivated. Sta-
stical features are those such as mean value, standard deviatiorn, kurtosis,

c. DPhvsically motivated might include parameters such as arrivali times,

tios of echo amplitudes to a reiesrence awplitude, spectral depression spacing,
etc. There are also two methods of applying these concepts. One is called
flobal and the other is called Local. Global methods involve the analysis of
the entire preprocessed function, whereas Local methods look only at windowed
portiors of the data. An example of Global and Local feature extraction is
stown in Figures 30-33. The feature is the peak frequency of the Fourier
spectrum.

€. VECTOR FILING SYSTEM. When ultrasonic inspection is used to predict com-
ponent performance or quality, the problem is considered either in the form of
discrete classes or as a continuum. Yor example, an adhesive bond strengto
‘nvestigation may -lassify bouds as good or bad (2 class), high, mediur, or .ow
nreaking etrength (3 class), or continuously by actually predicting ... break-
ing screngih in ibs./in.2. Fach type of problem requires a different rorm of
algoritim. Ulirce different algorithms require different inputs, feature values
(vectors) must be filed in a manner appropriate to the algorithm emploved.

1. Tle general approach is to have three distinct file structures. the
first is a ‘ile containing only single features over the entire domain cf thre
problem.  That is, a sub-file with only feature 1 values, a sub-file with only
feature ? values, etc. Algorithme requiring this type of structure . - P27
estimation, 2-space plotting, furzyv logic, etc. These algorithms wili oe
ceplained separately.

2. Secondlv, a file containing complete vectors is necessarv. Algorit. --
of the ALN {ad.prive learning network) type require vector inputs.

S.o iustly, a file structure based on class restricted vectors i= required.
The tisiier lincar aisc: ‘minant, Minimum Distance, and Facter Analysis alpor.s nms
use class restricted vector inputs.,
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D. PATTERN RECOGNITION PROCEDURES. The first procedure involves the estima-
tion of probability density functions. These curves graphically indicate the
probability that a feature will assume a particular value. A narrow unimodal
distribution could indicate a poor feature since over all classes, only one
value is most likely. The feature would have no merit in differentiating be-
tween classes. On the other hand, a multi-modal distribution would indicate
a potentially good feature or one that varies hopefully from class to class.
See Figure 35. !

C
<

e (eaf-an

PROBABILITY OF OBTAINING SPECIFIED FEATURE VALY

L S e e e e R S
A L R L - S . T I
reature Value (G4 fuw)

Figure 35. Multi-Modal Distribution

1. Completion of the stage might possibly give insight to the development
of a fuzzy tvpe algorithm., This type of reasoning is illustrated in section IVA.

2. A second step is the use of 2-space plots. These are plots of feature
I versus feature J for each pair I, J. Plots such as these indicate feature
interactions and also have the potential to define distinct clusters, each
cluster defining a particular class in the problem framework. Simple algorithms
may also be defined on the curves. Examples from a Crack versus Geometry study
are shown in Figures 36-38,

3. 1If simple algorithms are not feasible at this point, more sophisticati«d
algorithms must be used. The results of these initial analyses may be used to
give direction to use of the higher level algorithms.
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4., Before considering complex algorithms, PDF curves may be used again.
f This time the curves are plotted on a feature by class basis. An example of
: a typical plot is shown in Figure 39. The shaded regions indicate where values
on the x-axis would indicate a high bond. Other regions are most likely to
contain values obtained from low-strength bonds. An algorithm may possibly be
implemented at this stage.

50 —y—
: STOP ==

s 15T FERTURE HIGH AND REDIUN 1
4S —p— ]

i High Classification

_____ Medium Classifi-
cation

25 —4—

P ( 9.1£-01
20—

Probability

15—

10

S

200 . 240 k- ) i
Figure 39, Use of PDF Curves !

5. Factor Analysis is used next. This is a statistical procedure for
determining those features which contribute most to variation in classes. It
is a method for ordering features with respect to their degree of importance
in the class discrimination problem. See the section on Factor Analysis f{or
a detailed description of this method.

‘ 6. Th«e above procedures essentially define those features that will be
useful. Using this set of "good" features, three other techniques are possible.
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7. A minimum distance classifier is an algorithm requiring two sets of
statistically similar data. One set is used for training and the other for
evaluation of the algorithm. The first set is called the prototype set. The
evaluation set is called the test set. Training information is used in estab-
lishing the prototype vectors along with the minimum distance classification
routine. The procedure works quite simply by examining a distance in an 'n'
dimensional space, '"n" being the number of elements in the feature vector. A
test vector is compared to the two prototype vectors by a distance formula.
The test vector is classified according to the resulting distance measure
which classifies according to the prototype it is closest to. The formulas
used are summarized below.

2 2
dry =_\/(X"n - Xp11) *+ (X1 - Xp12) + . . .+ (Xpy - Xpjp)

2

dp2 :\//“(XT1 - Xpa) %+ (dpp - Xpp)? . L L+ (g - Xppp)?

which reduces to

Ny 2
dpy = T X7y - Xpnn)
i=1
N = prototype number
n = number of elements in the feature vector
dq = distance between the test vector and the prototype vector N

if dTl < de then class 1

if dpp < dp; then class 2

71
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VI. SAMPLE PROBLEMS USING GANPUI

A. GENERAL CONSIDERATIONS. This section will follow the paths through GANPUI
that have led to the development of two successful algorithms. The problems
to be discussed are intergranular stress corrosion cracking and adhesive bonds.

l. The first major step after problem definition is transducer selection.
This involves specification of frequency ranges, mode of usage, immersion, con-
tact, boot, etc., the choice of narrow band or broad band, and whether or not a
single or dual element probe should be used. The inherent noise levels of the
problem are a major factor in the choice of these parameters. Low noise levels
facilitate the use of transducer compensation routines. The transfer function
of the system may also be used as a source when low noise levels are involved.
Higher feature levels indicate that tight specifications are necessary for
transducers that are different from the design transducer.

2. The question arises, will features be transducer dependent or indepen-
dent? The answers to this type of question establish the data acquisition
nrotocol.

3. The next step depends on the physics and mechanics of the problem. This
is the choice of feature sources and those features that are to be extracted.
Questions like, is superposition possible?, are there frequency shifts involved?,
what are possible attenuation effects?, etc.,are all indicative of the particu-
lar features that are required.

4, Finally, using the acquired feature vectors, pattern recognition methods
are tried. The progress is from simple to sophisticated, simpler solutions i
being favored. Once several algorithms have been attempted, the trade-offs
between simplicity, reliability, and economy are evaluated. Then, in a sense,
the optimum scheme i{s implemented. See Appendices and references 1, 2, and 3
below for further details.

B. SAMPLE PROBLEMS.

Bonds Cracks
Mode immersion contact {
Frequency Range 10 MHz 1.5~-3 MHz
Type Single element Dual element
Broad band Narrow band
Signal Spatial Averaging Signal Averaging
Processing Signal Averaging -

Noise lLevel
N g
Feature Sources

Features

Algorithm

Performance
(# correct/total)

Low
Deconvolution
Transfer function

Fisher linear
discriminant

72

High
Video envelope
Fourier spectrum
Pulse Duration
Partial energy
in spectrum

Two space plot
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APPENDIX A
TABLE A-1. INPUT DATA TO FACTOR ANALYSIS PROGRAM
CASE FEATURE 1 FEATURE 2 FEATURE 3 FEATURL 4 FEATURE 5
1 L .052 7.071 .781 1.465
2 1 .086 7.387 .879 1.514
3 1 .053 7.552 .879 1.514
4 2 .088 7.319 .781 1.562
5 1 .029 6.780 .684 1.514
6 7 .082 12.401 .781 1.514
7 6 .071 10.103 .537 1.440
8 11 .079 12.786 1.660 .879
9 13 .045 11.900 .684 1.514
10 10 .049 9.460 .684 1.367
TABLE A-2. MEANS AND STANDARD DEVIATIONS
FEATURE MEAN STANDARD DEVIATION

1 [ 5.100 4.932

2 .062 .019

3 .823 2.509

4 .923 L402

5 1.360 .258

75 (A-1/2)
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APPENDIX B - THE UTILITY OF GRAPHICAL AIUS

A. PATTERN RECOGNITION. Pattern recognition studies often involve the usc ot
spaces with high dimensionality. A feature vector of dimension six is not
uncommon. One way to graphically display such a vector is througlh the usc ot
closed polygons of equal sides. This, of course, applies to vectors of dimewn
sion three or greater, an equilateral triangle being the closed polygon with
the least number of sides. Consider the polygon shown in Ixor :o L-1. Each
side is length L. Each side may be considered the range of u .. iir component,
if the component were normalized to span the interval 0, L . (a.s is easilv
accomplished by applying the following formulation.

Llet @ = the minimum value a feature can assume
lLet b = t(he maximum value a feature can assume
Let L. = the desired range to be spanned by the feature
.‘ e £ a - - . -
then DN . L will map feature values f onto the range (, L
- A
vonsider the set o0 features fy, fy, and {3 with corresponding raunges
1N 'l )
15 £ e
2

A cupical teature vector might be

= .10 -2.5 + )
vy, o 1 ~7.5 s2.2+ 10 10 = Y = (17
PR l)
oty a o= 05 NP i
’ . M7 e 10 = 7.5 = {,*
N g R
e [ - [ S .
For §y - 50 70 R Voo g e s ’Aqlv
b= 75 S }
The gravhical representcation of 205 is shown in Example D-o
g1 I 3
18,75
o)
d

Mo slidtied region o0 the pattern o f dnterest.  Now consider the vectoer

LIZ{A Z.A_J This is shown in Fxample B -7,
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1, It is noted that a different pattern is yenerated for a difterent vector,
Also, for vectors that are relatively "close” or clustered, the generated pat-
terns are similar; vectors that are declustercd (not in one particular cluster

but in another) generate different patterns.

2. The efficient use of this display method comes when dealing with higher
dimension vectors. Shown in Example B-4 is an example for a six-dimensional
vector.

3. Parametric plotting may also be useful as an auid to paiLtern recognition
studiesg., Illustration of this technique is best shown by example. Three
Fourier Spectrums are shown in Example B-5. The one on the right may he corn-
~idered as a 'reference'" spectrum. The remaining two spectrums may be assumed
to be derived trom two different classes of time functions. At each frequency
there corresponds a value on the reference spectrum, r(f), and values on the
rther two spectrums, s;(f) and s,(f) respectively. Using the x-axis as a r(1)
«xis ard the y-axis for r({), slzf), and sz(f) axes, the parametric plots
shewn in gxample B-6 are obtained.

%. Another technique is one involving the use o su-culled "pie" graphs.
“uis method is generally applied to curves whose areas may be normalized te
cne., Fourier spectrums are good examples. See Example B-7a.

5. This unit area can then bLe related to a circle or "pie” of unit ares,
Twample B-7b.  The original curve can be sectioned into intervals or bands,
cach of equal jength. See Example B-8a. The intervals will contain certain
peroentiges of the total area. These percentages correspond to "slices” of
varying size within the "pie'. Example B-8b illustrates this concept. Insteal
o1 denoting circle sectors by numbers, a gray scale code or symbolic patterns
may be used. Example B-9 shows a typical display mode.

78 (B-2) l .
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Example B-2
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Fxample B-3

Pxample B-4

(opresentation of N-Dimensional Vectors
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Example B-7a

Example B-Sa

Example B-9

Examples of Pie Graphing
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APPENDIX C - (ABSTRACT) A PATTERN RECOGNITION REFLECTOR CLASSIFICATION
FEASIBILITY STUDY - CRACK (IGSCC) VS. GEOMETRIC (CROUM)
REFLECTOR IN 304 STAINLESS STEEL PIPE WELD SPECIMENS

A feasibility study has been conducted in order to evaluate the potential
of pattern recognition techniques for discriminating between geometrical and
crack reflector signals obtained during ultrasonic inspecticn of the weld zone
in 304 austenitic stainless steel pipes, A geometrical reflecror is defined
as a reflector associated with the weld geometry and/or a flaw incapable of
causing catastrophic failure e.g. crown, counterbore, suck-back drop-thru, etc.
Seven welds from four different 4" diameter pipe specimens, containing inter-
granular stress corrosion cracking (IGSCC) were examined ultraconically. The
ultrasonic inspection was conducted in a pulse echo mode using a !.5 MHz nominal
center frequency, 3/8" diameter transducer mounted on a plexiglass shoe with
459 refracted transverse wave insonifying the area of interest. The ultrasonic
data was correlated with the dye penetrant tests and ult-asonic examination con-
ducted by Southwest Research Institute (SWRI) in order to obtain valid training
information. The data in this particular feasibility study included crown
geometric reflectors and crack reflectors. A total of 107 crown indications and
40 intergranular stress corrosion cracking indications were analvzed. The
analysis did not consider any arrival time, amplitude information or, in fact,
any other time domain features, but was based on various Fourier trausform
features. A 100% reliability level was obtained for discriminating an IGSGC
indication vs. crown indication using automated pattern recognition algoritum.

The overwhelming success of the pattern recognition algorithm employed in
this study demonstrates the applicability of this technique for solving such
important problems as discrimination between IGSCC vs. geometric reflectors in
304 stainless steel pipe welds. Work on other kinds of geometric reflectors
is in progress for establishing an overall reliability level in reflector
classi{ication analysis.

83 (C-1/2)

e 1ot oAl o 4 o e <0 s es s n o n




NAEC-92~-140

This page left blank
intentionally.




NAEC~92-140

APPENDIX D - (ABSTRACT) “TRANSDUCER COMPENSATION
CONCEPTS IN FLAW CLASSIFICATION"

by
Joseph L. Rose, Professor of Mechanical Engineering
and
Michael J. Avioli, Graduate Student, Mechanical Engineering and Mechanics

Flaw classification analysis is quite often strongly influenced by the
type of ultrasonic waveform that is generated by an ultrasonic transducer. One
goal of this paper is to introduce procedures that could possibly make flaw
classification algorithms become somewhat independent of certain ultrasonic
waveform characteristics being used in the data acquisition procedure. Data
acquisition of ultrasonic pulse echo signals depends quite strongly on many
test system characteristics, in particular, special characteristics of the
ultrasonic transducer and pulser-receiver instrument characteristics. A trans-
ducer compensation procedure is presented in this work that requires a suitable
reference signal containing ''noise” contributed only by system components
external to the unknown flaw, and in software, a processing scheme is designed
to remove external effects, therefore, allowing concentration on flaw charac--
teristics contained within the ultrasonic signal.

The processing scheme has four general components: Acceptor, Compensator,
Comparator, and Evaluator. The acceptor is basically a gate that decides
whether or not a particular transducer is usable for the problem at hand. The
compensator implements a mathematical deconvolution process. The comparator
does a feature by feature similarity check on the desired signal and the com-
pensated signal. The evaluator is any scheme that can determine the performance
of a given transducer. 1ln particular, the algorithm under studv may be used to
evaluate transducer performance. The evaluation stage is followed by an exam-
ination of the comparator results. Tolerances relating to the acceptability cf
a transducer are obtained through this final stage.

Model analysis is used to study the compensation problem. A layered Model
is used with various levels of system ''moise" being introduced, in order to
cxamine the "noise' effects in the deconvolution computation process. Promise
for attaining success in this difficult compensation problem is good, particu-
larly when considering signal averaging as a signal processing tool.

85 (D-1/2)
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APPENDIX E - (ABSTRACT) THE FISHER LINEAR DISCRIMINANT FUNCTION
FOR ADHESIVE BOND STRENGTH PREDICTION

An ultrasonic inspection system for the prediction of adhesive bond strength
for metal-to-metal applications is of great value to many government and iadus-
trial agencies throughout the world. The prediction of adhesive bond strength
based on surface preparation, assuming that there are no delaminations, inclu-
sions, or such cohesive type problems as improper curing, etc. is the goal of
this study. Ultrasonically evaluating adhesive bonds that have partially de-
laminated, is generally easily accomplished by using C-scan techniques, but a ;
major problem arises when the deficiency in the bond is either adhesive or co- :
hesive in nature. Our study involved primarily the adhesive aspect of the bond f
strength, which is related to the surface preparation problem. Test specimens i
were manufactured so that an improper surface preparation occurred on either or
1 both substrates in an aluminum-to-aluminum step-lap joint. The specimens with
little or no surface preparation provided weak bonds and the specimens with
proper surface preparations, in general, produced strong bonds. i

{
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A resource base developed in earlier years in experimental technology,
theoretical ultrasonic wave interaction studies with adhesive hond models,
manufacturing technology, and shear stress distribution analysis have all been
incorporated into a pattern recognition program of study. Such topics as near-
est neighbor philosophy, fuzzy logic analysis, probability density function
analysis, and adaptive search and learning techniques for linear and non-linear
models have been investigated. A Fisher Linear Discriminant algorithm has been
developed which affords a 91% reliable prediction for adhesive bond strength.
Unfortunately, results indicate that the prediction algorithms depend strongly
on the particular transducer which was initially used for data acquisition.
Dats acquired with a second transducer, having different pulse form character-
istics, in general, did not provide reliable results for predicting adhesive
hond strength., To compensate for the transducer differences, a deconvolution
technique was implemented to expand the selection of useful transducers. Limi-
ted success on this technique has been obtained to date because of the inherent
system noise in ultrasonic data acquisition equipment.

A completely automated ultrasonic inspection system has been developed for
predicting bond strength in metal-to-metal adhesively bonded step~lap joints.
Results to date provide a 917 reliability for solving this difficult problem
of predicting adhesive bond performance.

W
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APPENDIX F - ON THE UTILITY OF PROBABILITY
DENSITY FUNCTION ANALYSIS

Probability density function curves can be useful for solving a lurge num-
ber of engineering problems. Of primary concern, of course, in pattern
recognition, probability density functions can be used for feature selection.
Pattern recognition problems call for the establishement of a feature vector
that can be used for developing a reflector classification algorithm, 1In
addition to this very important application of PDF curves {or feature evalu-
ation, a variety of other applications in engineering is being considered today.
The principles of probability density function analysis are particularly suited
to an inspection philosophy for composite materials. A brief review of possi-
ble applications is outlined below.

1. To evaluate Material Uniformity in a Quality Control Test - Composite
materials, because of the dual material content, variation in fabrication, and
an isotropic character, etc., are noisy with respect to ultrasonic waveform
content as reflected from the composite structure. A good composite material
will have a PDF curve for a particular feature that is fairly tight. Experi-
mental analysis, of course, can acquire this PDF information or "PDF signature'.
Uniformity of the composite material can, therefore, be evaluated since poorly
manufactured composites would have a different PDF signature and most probably
producing that of a wider and distorted PDF curve. A material acceptance cri-
teria could, therefore, be written as a function of tolerances on the PDF curves.

2. Marerial Selection Philosophy for Improved Inspectability - Quite
often a number of fabrication techniques are considered in the development of
a composite material. As strength, temperature, and moisture tests indicate
that the performance of the composite is independent of the fabrication process,
it is proposed to select the fabrication process with the greatest inspectability.
Inspectability of the material can be established on the basis of PDF signatures
for the composite materials and their corresponding fabrication process. Again,
a tightly grouped PDF curve for certain features is highly desirable.

3. Material) lLay Up Selection - Composite materials cau be laid up at a
variety of fiber orientations and lay ups. In some cases, the angle ply lay up
nrocedures are important for improved composite material performance. On the
other hand, performance may not be improved. In this case, it is suggested
that PDF signatures for the various composite material angle ply configurations
hbe used to select the lay up that is most respectable, again following some of
the logic developed earlier for tightly grouped PDF curves.

4. Transducer Seclection - Probability density function curves can even
be used to sclect transducers for material inspection. As an examplc & com-
parison of single element versus dual element transducer application fo:r a
composite material can be evaluated. Dual element transducer work will have
composite material inspection because of the removal of back scatter ultrascnic
radiation. This physical principle of recording only for ard scatter informa-
tion ran be demonstrated quite nicely by examining a numver of features in a
probability density function analysis. Nicely distributed and tight PDF curves
could be used to select the best transducer for a particular application.

89 (F-1 ol F-2)
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5. Damage Fvaluation - It is quite obvious that once a PDF signature is
acquired for a composite material that a PDF curve that is produced at some
later date that indicates some marked change 1s indicative of material change
or degradation. In most cases, the change would come about because of cra.k,
delamination, or environmental degradation. PDF curves produced at various
areas of a composite material can, therefore, be used to provide us with dam-
age propagation information.

{ 90 (F-2) l
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