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I. INTRODUCTION

A. GANPUI is an acronym for "A Generalized Approach to New Problems in
Ultrasonic Inspection". Conceptually, it is an operator-computer interactive
scheme that involves the application of the latest techniques in ultrasonic
inspection, pattern recognition, and minicomputer technology. The following
paragraphs offer a brief overview of GANPUI. Detailed descripti.ns of GANPUI
components will comprise the main body of the text. Sample ajj,'V.cations of
GANPUI are also included.

B. The entire procedure may be divided into three general catIgories: input,
processing, Qnd output.

1. The input consists of several sub-processes, the first o: which is
the acquisition of reliable ultrasonic waveforms. These waveforms are then
digitized, that is, decomposed into discrete time sequenc s. The PDP !!/05e
minicomputer, for example, accepts these sequences and performs cc'rtain
mathematical operations on them, such as determining maximums and minimums.
This process is knovmn as feature extraction. Features that are use:-ul in
ultrasonic examination include center frequency, 6 dB doun Laudi,.Lh, energy
ratios over specified frequency intervals of a frequency spectra, etc. At
this stage, the computer operator selects the particular features to 1e
employed in algorithm development. Once the feature values have been computed,
they are stored in a vector filing system. This completes the input stage of
the sy'stem.

2. Processing utilizes several complex schemes or algorithms to search
.or innate groupings of feature data. These data values are ordered with

reipect to their effect in defLning particular groupings. Upon completion of
proces-ing, the significant features are combined to develop a classification

C.fPI"I ouL,'rt. assists the ultrasonic investigator by minim zin, Li~e
data acquired in decision making. Algorithm development makes usl c- 7-.any
techniques in learning network analysis and in pattern recognition, the goal
bein, to establish some relationship between classification mode and a nu:.c-r
of i.iportant ultrasonic signal features. Regression analysis is considered at
various point.s of the algorithm development process. Such techniques as
probability density function analysis, cluster -:iiysis, minimum distar.ce
classification, adaptive learning poiyncrmials. and a Fisher linear dis-riminant
are currently oeiii, used in our algorithm development test system.

C. An essential eiement in tie GANPUI program of studyv is associateu .,th tne
utilization of good training data. Good test samples are required so thlt the
computer can te trained to recogni.e certain patterns. Test samples arL
obviously required to evaluate the classification algorithms developed by
CANPUI.

D. Several problems that -ire being .tu(died by various ultrasonic research
groups that make use o ;ANPU] concepts include composite material inspect i,-n,
aircraft and sface ,hut! I adhe:sive bond evaluation, the detection of :-tiessI

S I
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corrosion cracking in stainless steel piping for the nuclear Industry, flaw
growth propagation in the shipping and aircraft industries, and the early
detection of breast cancer in the field of diagnostic ultrasound.

E. A flow chart of GANPUI is shown in Table i.

Fable 1. GANPUI Flow Chart

Clever DataI
Signal Processing

(digital filtering in
software, deconvolution)

Normaliznqt ion

(standard, variances,
0-i, etc.)

Feature
Extraction]

Time Frequency Cepstral Nth TransformMenu Menu 'Menu I Menu

Renormatization Local Global Local Global

0

L i i
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Table 1. GANPUT Flow Chart (Continued)
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I1I. FOURILk SERIE;, AND TRANSFORM, 1 HEOf<Y

A. FOURIERDEC 'OMPOSITION. From a matht-ii&at ical ,,iewpoint , !ny ar: i trIar
machemat ical f unct ion could he ren o Ixed or decomposed Lrtit o , f in ite L.
some other furictions.

1. For examplo, if w-.e were to ?xamine tire mathematical resp-iie : t
system from a rectangularly shaped input function, w.2 (ouild, .'L

convenient, compute the response from two rectangulariv st~afoi Oils as
cshwn in Figure 1. In this particular example, the dc ((orpos;it-;cr. ,rocL'ss into
two re tauiularly shaped functions deinot provide it with ai-: nitina
information or mathematical computational ef'.iciency. The rectanvular 2flpUL
rAse given above could, however, be dtecompoo'ed intcj a sum of s otner wavc-
'orms, say rer ingular segments of fixed pulse duration of which mathematical
solution might be readily .-vailoblt- ir. the literature or in a cwr)iputer. The
total solution could ther be ooitaned by examining the conitributions; from each
sraller segment and a~idiai, then together in linear fashion to obtsim total

Let. us consider now a di f frenTA Vt i for tihe 1-1C'--.t n.....The oulse
r-, stiown hulow could be- treated in a :-ah u a ense: as a '-itie number

ofi rectangularly shaped Jicout pui ,e Iorns "s iliustrated in Figutre '. Tn1
limit'ig process, as the pulse uiuration, 6" o. the rectangularly shaped pulse
o ecccates t o sor'e inf initc;z-r it al the response function or solution to

soeS\'ter 'Ouid !)( i' Ctiaj

3.A -iore isefitii funictlion kecomposition approachi exists in a mathematical
-,oe ' os,, pre-en-tcd -sto-Ve Lrn tie rectangular segment approach. Thiu

o roei nL.sor Fourier Series analysis. In this
1lic' P'!"O ~u2C ~ mao spe is resolved into a finite numher

.1 o i, e I e 111 exa n'IL an arbitrary pulse form could he
i' t ci '1I S th e ni il'strated in Figure 3; the functior.-

'r''entii4  continuous wave or sinusoidal 's:
%;-,vs 'c-lng added toget hcr increases, the more a .

0h' Of~p rs tie rasulting waveiorms with the initial waiveYorm i.~ an
e., 1r-p :r rcctangilar pui se we;e to be rv-solved into- one continU,:--

V a nwool ' ie oH Two tcci- %oo id 'e 1bette:-- t
pie I ini're -. couisi rliiw-, thle -~'t :girfunetion a

-o! ' t r .di rig I -,4h f oT- - n d -' :,, \C: tu appro-- -,r
of :.hr. rigini3 'ul t ioni. in order to ) *,1n toe orners of th: roct-: li-r

~ d rt I L t~t ~ ca iiSind difficult inmts to
"" In ur-' r seric sen, e, I -i e numbehtr oi LLZr:S, say

~re, ~ he cn re' t O~i e: ~de' citIertLangular )11-.
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4. The Fourier Series of the periodic function is defined by

fXt aneJ:2~ -t
- T

where f(t) is such that

f(t) =f(t + T); T Fperiod

and an T f(t)e - 2'- T Ldt
T 0

The a are called Fourier coefficients. Another common notation is
n

T

An Real 'Lan1 f(t) cos(n -t)dt

T 0  T

T
2 T

Bn Im [an I=f(t) sin(n tOdt

9



NAFC -92-140

n--i
I I
I I
I _________ I

+
I I

I I

III
I~-
I _____________ I
I V Iii
L

FIGURE 1. Rectangularly Shaped Functions

I I

I I
I I
I I

III
I I

I I
I I
I I

( YLj.2~ ]O*fl Pecnmpo~ ~

1 ~)



- 77

INAEC- 92-140

L7177 lve Frf

FIUF4. !nrirleie proiaio, aRctn~± ,l



NAEC-92-140

B. FOURIER TRANSFORM THEORY. Much of the pattern recognition worl, associated
with ultrasonics, uses the Fourier transform of a time domain signal as a
feature source. A feature is a parameter defined on a function. Consider the
graphical representation of a function shown below in Figure 5.

Peak V'alue

Width at 50% of Peak Val je

/---Area Under Curve

_ l--Value of f Where Peak Occurs

Figure 5. Example of Fourier Spectrum Parameterization

Three possible features are shown on the illustration. The Yourier trans-
form will be reviewed in this section becaLse of its importance in ultrasonic
work.

By .!efinition, the Fourier transform of a function of time f(t) is a
function of angular frequency F(, ), given by the relationship

F( ) f (t)e -  
tdt=e dt

v)nert e cosLt - j sinxt (j =

ReuP( 0 f(t) coswt dt (real part)

LmF(.) =, -f(t) sin wt d t (imaginary Part)

Ter:is uz;uallv associated with the 1,ourLer transform are Power Spectrum an
Phase Angle. 'Fh,!se are defined beiow.

0 )2

Powcr Spectrum Y(t.)' = (ReF( a,) )+ (m[F()

PhasE Angle P ( , ) = tan (1m[F( )]/Re F(o ) ])

An exaTrm.1_ of time function .iloitg with iis spectrum and :hase Sngle is given
in Cigu e n on the fo11owil1W, Tp,: •

12
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Iij,) t2  [

fI Power Spectrum,

-. n Phase Angle

Damped Sinusoidal 
(W) 2 

h

Figure 6. Example of a Transform Pair

The inverse Fourier transform is defined by

fW -21 T, F ( w )e e j  tf(t) = --- F(w e, dw

Re[f(t) ] =- f F(,) cos wt d w

Im[f(t)j = F( o) sin w t d w

The similarity between the Fourier Transform and the Fourier Series should be
noted. It can he Thown that discrete spectrum resulting from Fourier Series
analvis has the Fourier Transform continuous spectrum as its envelope. See
Figure 7.

Envelope - Fourier Transform

- Discrete oure Series Spectr;

(
Figure 7. Illustration of the Relationship Between

Fourier Series and Foirier Transforms

11
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11. SIGNAL PROCESSING

A. ANALOG TO DIGITAL CONVERSION. There are basically two types of signals
encountered in ultrasonics. They are generally called "narrow band" and

"broadband". These terms refer to the spectral characteristics of a signal.
These concepts will be made clear by the use of a simple correlation that
exists between the time domain and the frequency domain.

1. The Fourier spectrum of a continuous wave of frequenc-, , is a spike
located at fo in the frequency domain. This would be the ultimate narrow band

signal. The Fourier spectrum of a single spike in the time domain would be a
constant extending from zero to infinite frequency. This would be a perfect
broadband pulsc. See Figure 8, an illustration of these types oil signals. An
intuitive correlation that might be made is that the longer the signal duration,
the narrower the frequency spectrum. These are the kinds of signals that are
generally processed during ultrasonic analyses.

2. The important question is what happens when one has only a finite number
of sample points from a signal. The points will he digitally processed to
obtain a Fourier spectrum. Is this spectrum a reasonable representation of the
true frequency content of the continuous signal? Following the digitization
process step-by-step will illustrate some of the problems that do occur.

a. A time signal theoretically has a Fourier transform. Let us track
the effects that processing this time signal has on the theoretical or true
spectru,-m. First, the signal is sampled at some rate, say T; that isdata
obtained cvery T seconds. Essentially, the time signal is multiplied by a
train ,f. delta functions spaccd I seconds apart. In the frequency domain, this
corresponds with a pulse train separated by I/T frequency units. See Figures
9a and 91).

h. Since only a finit! number of samples can be processed, the sarpled

waveform TMust he truncated. This is again a multiplication, but this time
a cectanguLarly shaped function. The transform of such a function is a sine
functio-. See Figures 9c and 9d. This multiplication also translates into a
convolution in the frequency domain. See Figure 9e. The sampled and truncated
'.ime eonain signal now has a distorted periodic frequency profile. This con-
tiou spectrum must also be sampled and truncattd. These results are shown

in Figures 9f and 9g.

c. PartLcular attention should be paid to Figures 9c and 9d. Figure 9
shows that if tiv sampling rote i not high enough, considerable spec ral crer
lap may occur, thus distorting the true sppctrum. The term applied to this
suboptimal sampling is called ALighting. There is a theorem, called th -'st
sampling theorn, which states If the sampling rate is at least twice the h-
est frequency contained in the signal, then Aliasing will not occur. See
Figure :Oc.

d. Figure '.d show.,, that a rectangular window function has a spectru-m
with many side lobes in it. Convolving this with periodic spectrum of Fig; r h
introduces rippicl. "ht type of distortion is called leakage. This problem ha_
been under study for man) y, ars and certain window functions developed that have
minimum side lobe ener,v.

14
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3. Real world signals also have the additional component of noise. Noise
may be grouped into several categories. The two items just alluded to, Aliasing
and Leakage, might be considered sampling rate noise and mathematical noise.
Appropriate steps may be taken to eliminate this type of noise. Quantitization,
that is, partitioning the signal into discrete levels, also introduces noise.
An analog signal having values located midway between two adjacent quantum levels
has a 50-50 chance of being quantitized into either level. Other kinds of noise
include electronic noise and thermal noise.

4. Ultrasonic signals may be considered as belonging to the realm of random
processes. That is, each time a signal from the same reflector is viewed, it
obtains slightly different values. The distribution of these variations may be
considered random.

a. One way Lo get a better estimate of the true value of a signal is
to average over a set of similar signals. It can be shown that averaging
decreases the effects of quantitization, electronic and thermal noise.

The theory behind simple signal averaging is as follows:

Let x, denote an observed signal.

Let s denotv the true signal.

Let n i denote the noise content of the ith observation, then

x i = s + n i

Consider collecting an ensemble of N of these signals;

x1 = s + n 1

x= s + n 2

x N =s + nN

Averaging then involves sunning and division by N (simply ,caliag)

N N
xi = Ns n i

N
x S, + n

18
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For N large enough

N

i= I

is small, and division by N makes the second right-hand term even
smaller:

N
xi 'us for proper N.

i= I

N

b. Averaging introduces the new problem of jitter. Jitter is time
shifting of signal components due to the variability of the trigger levels
necessary to initiate the digital-to-analog sampling process. Most often,
this occurs when instruments are first turned on. After a period of time
though, trigger levels tend to stabilize. If jitter is still present, a pro-
cess called correlation detection may be used.

c. A signal is captured and stored. A new signal is then obtained
and cross-correlated with the stored one. The maximum value of the cross-
correlation function locates on the time axis the number of sample units the
new form has been shifted away frum the original. The second is time shifted
into agreement with the first one. The two signals are then averaged and
stored as a new reference signal. The process may be iterated until it is
thought that suf:zicient noise reduction has occurred.

U. SIGNAL PROCESSING DEFINITIONS. Many textbooks on signal processing are

available, many of which could be useful in understanding the difficulties and
possible improvemeats of ultrasonic signal analysis. Highlights and! jefinitions
of several terms that are encountered in the signal processing fie]. are out-
][ned below. A review of the terms and basic concepts will serve to introduce
the subject and its many mathematical and electrical engineering areas of study.
The concept of a transfer function is illustrated in Figure 11. This idea is
used very often in iignal processing systems and is referred to in the electri-
cal engineering and systems analysis literature. The transfer function is often
treated as a black box where the output function can be formulated as a function
of an input function hy way of the black box or transfer function.

BLACK
BOX >OUT

Out :(1) wh',ru black box (F) represents a transfer function.

Fv.urc 11. Transfer Function Concept

£ 19
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i. n. A physical disturbance that contains information. The disturb-
ance may vary with time, temperature, pressure, etc. A traffic li6ht is a
signal. The color is the disturbance and the information is stop, go, or cau-
tion. In ultrasonics, voltage variations versus time are typical signals.

2. Processing. The automatic extraction of information from a signal.
For instance, the Fast Fourier Transform is a computer processing technique used
to extract the frequency information contained in a signal.

3. Analog Signal. A signal that is continuous in time.

4. Digital Signal. A signal that occurs in discrete time intervals, usually
represented as a sequence of numbers, each being restricted to an integer multi-
ple of a fundamental unit called a quantum.

5. Sampling. When it becomes impractical to process a signal in continuous
time, samples of the signal are taken at a set of predetermined discrete times.

6. luantitization. Restriction of sample values to a finite number of pos-
sible values.

7. A/D Conversion (Analog to Digital). The procedure for sampling analog
signals and thereby converting the analog information into a digital sequence.

8. Spectral Analysis. The evaluation of the frequency content of a signal.
This is usually performed by Fourier transforming the signal and noting those
areas which have significant values.

9. Bandwidth.

a. The highest frequency above which there is no significant content.
(0 to 10 MHz, 0 to 20 MHz, etc.)

b. ',.hen prefixed with 3 dB or 6 dB, the width of the spectral profile,
at respective amplitudes, 0.707 of the peak value and 0.5 of the peak value
respectively. (5 to 10 MHz, 2 to 6 MHz, etc.)

10. Sampling Theorem. A theorem that states an analog signal must be
sampled at a rate of 1/(2 fmax), where fmax is the highest frequency contained
in the signal, in order to insure a faithful representation of the signal in
the digital domain.

11. Aliasing. The misinterpretation of a signal due to too low i sampling
rate. When one looks at an airplane propeller, it seems to be going siv. (,r
even backward.;i. This is due to the facL that the eye cannot sample the vial
information at n high enough rate. This can produce incorrect electronic
signal:; since a lower sampling rate could actually represent several higher

frequency signals. See Figure 12. This can occur when the sampling rate is
too iow...--

12. Filter. A mathiematical algorithm or computational procedure used to
process digital data. These algorithms are implemented either in software
(using computer language) or in hardware (actual digital circuitry).

20



-- Aliased Version . NAEC-92-140

I I

T 2T 31'
Figure 12. Aliasing

13. Transfer Function. A mathenatical representation of the effects a
physical system will have on an input, regardless of what that input nay be.
It represents the inherent characteristics of the system.

14. Linear Filter. A filter where the property of superposition is known
to hold. That is, if two inputs are added together, tho output 4s the sum of
the two individual outputs obtained from each input alone.

15. Auto Correlation. A statistical measure of the expected value of the
product f(n) • f(n -t- k), where f(n) is a signal at time n, and f(n + k) is the
value of the signal k units Liter. k is called the lag.

IAC( ) liin 1 T f(t)f(t + T)dt

T- 2T J -T

Thi,_; unction might he useful for the alignment of similar signals displaced

relative to each other in time.

16. Power Spect.rum. The magnitude of the Fourier spectrum of a signLl.

1 ,'. P-ow-er. Spectral Density. The Fourier transform of the aute-correlation
of a :signal.

li. '_al to Noise Ratio. (A/On) The ratio jof peak amplitude to the

root mean square of the noise in a signal.

19. White Noise. (Widebaad Gausi; ii Noise) A signal whose power spect rur,
is a constant.

20. Cross Correlation. ,\ stntit 'cal mesure of the expected va, o of the
product f(;) • g(n + k) whert f (-) is a signal at time n, and g(n + k)
another signal at time n . k.

= ir I' (t. (t A r )dt
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a. Cross correlation may be useful for the detection and location of

a signal which is embedded in noise, since only those components which are not
noise will have non-zero components.

b. Intuitively, correlation is similar to a template matching pro--

cedure. One signal is displaced relative to another (or the same) and the two
compared. That displacement where the two signals agree the most is where the
correlation function is maximum and where they coincide the least, it is a

minimum.

21. Deconvolution. The process of solving for the function

K(t, 7) in the equation

f f(t) K(t,T )dt = g(T

given the functions f(t) and g(T ).

K(t,T ) is known as the kernel of the integral.

a. This is related to the theory of linear systems where it is shown

that if f(t) is an input to a system, g(T ) is the output with K(t,T ) being

the system transfer function.

f (r) -- Ig([)

S K(t,T ) }--

input transfer function output

1). Fourier anal-sis also shows that if F(w), K(w), and G(w) are the
Fourier transforms of f(t), K(t,T ), and g(r ) respectively, then

!((w)-:(w)

This complex division is known as deconvolution. Deconvolution could be useful
in ultrasoi.ic analvs;is, for example, in transducer compensation analysis, that
is making one trans(hlcer appear to be another, perhaps more suitable transducer.

22. tna] Iera ,n. A mathemn.ical process ('r filter) which e'tractc

the central tendency of a signal. It i usually used to eliminate noise.
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IV. BASIC PATTERN RECOGNITION AND CLASSIFICATION PROCESSES

A. SIMPLE TECHNIQUES. One manner in which man has been expanding tiic general

capabilities of the digital computer is the concept of artificial intelligence.

Hopefully, the digital computer will perform perceptual tasks assignd to it..

Pattern recognition has received considerable attention in this area.

1. The basis for using pattern recognition in solving pr. -ical problems

lies in the assumption that a logical means exist: to train z. cmputer to

associate given data with a particular test response.

2. The basic form for a classification process, a:s i]lustr--ted in Figure

13, consists of a data acquisiticn process, parameter or ifature extractor,

and a classifier. Note: Before the system functions correctPl, the classifier

must be trained to provide a solution having a higher probabiliLy of being

correct than the ss temn previously used.

COMPUTER
CONTROL

i' , FFAT URE
\t~l I~TIU j EtRATORCLASSIFICATION

DECISION

£'i:ire 13. 1'he Pattern t"ecognition and Classification Prncess

2_
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3. Figure 14 il1ustrates how Prohabiiity Jin. ity 1 1r'tion (1 ' rv,.h
be used to obtain feature effectiveness. Not( that fvaiurc I ha-, .preKiately
the same values for the two different classes in the fir;t illustration.

Probab il ity

Poor
reature

Fo. tnre 1.

Feat~re :

e -iture

"xce! lent2Feature '  .- 2

I , . SimplU: Probabili tv Density Function Curves for
Tpicl 2 Cl sClassif',Ication Problem

24
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There is no differentiation capability for the feature. "eaturas 2 and 3
are also somewhat limited in their capability for classifying the Proilem
as either class 1 or 2. Note that, however, feature 4, possibly center
frequency of the reflected signal p.ovides for us a clearer diffeientiation
between class 1 and class 2, and of course, feature 5, possibly a 6 dB
down frequency bandwidth provides for us an excellent feature for differ-
entiating the two classes with 100% reliability. Quite often, however,
the features fall in categories such as those illustrated ini eaLures 2
and 3. The probability density function curves, however, provide us with
insight into the difficulties that might be associated with the classifica-
tion problem in pattern recognition. Obviously, if results similar to those
for feature 5 occur, the solution to the problem is complete. Lf this is not
the case, it is often desirable to examine two-dimensional feature profiles
as illustrated in Figuro 15.

feature 2b

*-u Sp-c .Cl"$e.

-..- ., ..
* • . .. . ': .

ao* fetr 2 ibo naIfaueSaeClstr

o o ,

•I'""" ;-"T''''. :
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4. If we were to plot in two-dimensional space a feature 1 versus feature
2, and were lucky enough to obtain data clustering as either ball-like, ring
type, string type, and so on, as illustrated in Figure 15, again promise for
obtaining a reasonable solution exists. The combination of two-dimensional

profiles should be plotted for all promising type features as indicated by the
probability density function analysis. If the cluster situation in two-dimensional
feature space is not useful, it then becomes necessary to employ more sophisti-
cated algorithm analysis from pattern recognition.

5. The next approach that could be used for finding a solution to this
classification problem would be to consider aspects of Bayes' decision theory

in combination with the results obtained from the probability deosity function

analysis. A fuzzy logic decision algorithm could be establishud that classifies
a certain percentage of the total number of test situations encountered with

100% reliability vector or index of performance. A sample fuzzy logic algorithm

is illustrated in Figure 16.

6. if problems are encountered in this approach or a different kind of
reliaoility parameter is requiied, additional concepts in pattern recognition
must be explored. As an example, an index of performance vector that provides

us with 100% classification even though the algorithm reliability is only 80;

or 90_, could be useful for maay applications. Keep in mind that the index of
performance criteria depends on the classification levels and possible loss

iunction analysis, loss functions can be incorporated into the index of per-
formance evaluation. As an example, an item classified as class I that is

reall. 'lass 2, ray' not represent a serious error. On the other hand, calling
a cla7, 2 situaLion ,.lass 1, could be serious. Suppose we are doing a flaw
detecLion in metals. If class 1 represents porosity and class 2 cracking
classification of porosity, cracking is obviously not serious since it results

pocsLLiy in small financial loss.

FISHEr' LINIEAP DISCRIMINANT. One of the major problems encountered in

pattern recognition work is the vastness of the feature space. Proceoures: that
are analytically and computationally manageable in low dimensional spaces uo-
comes i-practical in higher dimension spaces. An ideal space is the one-
iten nan] space represented by a straight line. The advantage of a Fisher

inear Discriminant is that it projects all of the data from an N-dimensional
space onto the best line for separating the daLt. Once the data has been pro-

jected onto the line, a threshold value may be selected which will separate the
data into two classes. Thus the Fisher Linear Discriminant is ideally suitedc

to a two-class problem, as illustrated in Figures 17 and 18.
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class 1 class 2

A B Feature Value
Feature #r2

class 1 class 2

C D Feature Value

Classi

Read Feature ~

look at anotherz<Y < D~
feature, etc.

F'igura- 16. Sample Fuzzy Logic Algorithm Development
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Threshold4w

featixes Projected Onto Arbitrary Line -50% Reliability

X2

Fi~i (. Features Projtcted Onto Line Determined by the
Fisher Linear Discriminant - 100% Reliability

28



NAEC-92-140

0O'~ O
0 " X ~~) 0 0 000,,or~c

) 0 00

./, a :xq o o ''

% & '- 0 0_ 0

A - EXAMPLE OF DATA SCATTERING IN B - FISHER LINEAR DISCRIMINANT
A TWO-DIMENSIONAL SPACE SHRINKS IN CLASS SCATTER

(SI2 + $22

0 (

K~ Y% Y, v
,x

C - FISHER LINEAR DISCRIMINANT SPREADS THE MEAN VALUE OF EACH
CLUSTER AND PROJECTS THE DATA ON AN IDEAL LINE

igurc 18. Comparison of Two-Diensionnal Space and
Fisher Linvar D)iscriminant Data Scatter
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The simplest way to project an N-dimensional space onto a line i,. by forming
a dot product.

N

[1, w2' .,[i W1 xi = y (a scalar)

This may be written as

y = wtx

1. Consider a set of K samples (vectors) divided into two classes, CI and
C2 with NI samples and N2 samples respectively (K 

= N1 + N?). (If the samples
fall into two intermingled clusters, the result desired is that the clusters be
shrunk and their means well separated.) See Figure 15. Another way of express-
ing this is to say that the difference of projected means is to be maximized and
the scatter within each cluster is to be minimized. The mathematical formulation
of this problem is given below.

Let x denote a typical D-dimensional vector. Then for class I samples,
the vector mean is

N

m = T5/, xE C1

and for class 2

N

-2 = 2 XIN 2% x C2 .

The projected means would be
N

m I N 1  y y projected fror C

~~2 y y projected from C2

that is

fflwt t
1 N t t

the squared difference of projected means is then

2~n . Wtn2122 1

-2 
w 

= - t2 -1t( - _E2

=t m 2t
-1 ! 2 )(m i  2)
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this may be rewritten as

1 - 212 w 
t w

where

M (I 1 m - ) (r, - m2 )

The scatter S for each class may be defined as

" - (x _i) (x -ml) t x: C
1 1-

S2  
- 22) (x - R2)tx E C2

Also, a variance measure of the entire data set may be defined as

V L (- 2 2
K 1 2

where

i Y(y - fI2 y c pro3ected C1

2 (Y - 2  
y E projected C2

or

2 - (wt x -t m 2 XE C

4t(x - ml)(x - 2ts X C I

2  t (likewise for $2)
S, 2

with S I as aLcve.

Let S = 1+ S2
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then

-12 + 2 _ WtSl w 
+ wt

1 2 - 1- - S2-

= wt(S 1 + )w

S + 2 = wtSw

The Fisher Linear Discriminant is defined as w x for which

I- 22

J(w) 
I 2

91 
+  22

assumes its maximum value. It should be noted that in a sense when - rn2 12
is a maximum and 12 + 22 is a minimum J(w) is maximum.

In terms of the above formulations
wtw

w tMwJ(w) -- -

w tSw

this is known as a generalized Rayliegh quotient. The solution w that maximizes
J (,_,) is given by

W = S- ( m 2 )

Conmputationally, the vector means m and m 2 are first calculated. Then the
matrices

(x- m1 )(x - m)t x C C

S (X tm xC C2 / i - m2 ) ( x - 2)t 2

are calculated and summed tc give S. S is inverted and multiplied tin C-e
difference of vector means (m - !_2).

32



NAEC-92-140

C. INTRODUCTION TO ADAPTIVE LEARNING NETWORKS. This section will develop the
tools and concepts necessary for understanding the motivating philosophies
behind a learning network. There are essentially four divisions included in
this section. The first three will develop the mathematical machinery required
for conceptualization of a learning algorithm. The next and most critical
section will cover the analogy between human learning and mathematical
(computerized) learning.

1. MINIMUM SQUARED ERROR CONCEPTS. Consider the classic problem of find-
ing a line that approximates a set of data in the sense that the sum of the
squared errors is a minimum. One wants to find parameters, say a and h such
that the line

y = ax + b

is a good estimate of the inherent functional relationships of data samples,

where the samples are given as

sit (xI, yl
)

s2,  (x2, Y2 )

SN, (X, y')

Given that a and b exist, the error between actual data and the estimate is

error, = Yi - axi -b

for each i. The sum of squared errors is

N N
(errors)2 (Yi axi- b ) 2

i i

This last expression is the one that is to be minimized with respect to the
parameters a and b. The condition for a minimum is well known from the calculus.
It is that the partial derivatives, with respect to the parameters, of the
function equal to zero.

N N2a (errorV) i )

= (y -ax b)

ii
N 2(y i - nx i - b) (-xi)

i

$ 0.
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The -2 is a constant

t.N N 2""(y 1 - axi - b)x = xYi -a b' - x 0

which can be written as
_ N 2 N N
aEx i + bjxi = yxli
± i 1

Likewise

a N 2 N
3b (error) (Y - ax, - b) (1) = 0

N N

or yi - a Ex - Nb = 0 ,

N N
a xi + b N yi

i ii

Putting the two above equations in matrix form gives

2 N N

NNx i  N Zy i

If the matrix Y is nonsingular then the solution is

Sy-i

N N N

[a]' 
xiy '

W~ b;

r y2 N N
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12 " xii- xi Yi

2 *f 2
N - i x i

b B N IYl -r xl"1 l~

Nxi ( xi) 2

2. GENERALIZED MATRIX APPROACH; PSEUDOINVERSE. A more general problem may
be formulated as follows: We want to find the components of a vectorw such
that the accumulated squared errors inherent in the expression

Xtj = b

add to a minimum. Define e = error vector, then e = Xtj - b.

Noting the sum of squared errors is also the length of error vectors, we
want to minimize

elle2 = IXI- bit2  =271(1tiZ - b)2 (t transpose)

taking partials (denoted by V) we have

NLO Ix'-$ 2 2tx 2 l X t 2x(n -

Setting the partials equal to zero.

vl bx i - I' 2 2xt(x - ) 0

X X X Xb

If XtX is non-singular then

(xtx)- tb

is the solution to our generalized problem. We can write

where + , (Xtx)-IX t and is called the "Pseudoinverse" of X.

As an example, we will consider the case where an outcome (result) depends

on two other variables. For instance,

y 0U% + wlx1 + W2X2

with N data samples 35
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(2) 2(2)
S 2 , (x 1  , x , Y2)

(N) (N)6N" (x1  , x2  YN)

(the superscripts indicate the sample number) the generalized riatri:.-
approach is

S (1) x2  w Yl

x 1 (2) x2(2) I = 2

(N) (N) L2 Y Jj
1 1 ... 1

X (1) (2) x

x 2( x2(2) . 2(N)

2
1 1 ."1l(1) x2(1

xtx [ (1) (2) (N) (2) (2)
xXx2(2... x1  1 2

x(1) x2(2) .. x2(N) L xI(N) x2(N)

L 2  x2 2 • •x 1 (N)x

N N

i iN x , 2

(i) - 2(i) ,(2)

I 1 x1i (I) l) (22()

I I

36
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1 * .. 1 Y

t (1) (2) (N)

x2(1) X2(2) ''" . 2(N)

N.

i

iN'02i 
xI)Yi

One should try this approach to the linear curve y = ax + b to gain appreciation

I3-

for this -method.
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3. MULTINOMIALS. Linear approximations always remain linear upon composi-
tion. As an example, consider the linear device below.

0+ IX + W2 x 2  -y

x2 -

The device implements y w + + x These devices may also be used
in tandom or in layers.

W 0 +  
W 1x l1 +  

W2 2 - Y2 y

X2  -

X I . PO + 
PlYl + 

P_2Y2_-

x 3 z 0 f z lI x I + z 3 x 3 [ Y Y2 -

o Pl + 1 2 2 + P2('o + '1'1 + '3'3)

Po + P I P2o + (Pl'I + P27l)×I + (PlL'2)x2 + (P2Z3)X3

A + Bx1 + Cx 2  + Dx( 3

A, B, C, and D = constants.

The important point here is that the resulting y is still a first order

approximation of the functional relationship inherent in the data. rhe only
result to be obtained, regardless of topological structure is

Y a

where N is the number of parameters or "features" that y depends on.

Data having a relationship involving cross-products and powers of features

would be poorly approximated by this scheme. Therefore, non-linear approxima-

tions are now considered. The simple case involving 3 features is shown below.

: x + + + 2 XX 2
0 22l "2lx Y12 i

X2 4

1
z0 + zlxl + z3 x3 + z1 3 X 3  Y

313
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Y 12 + +

Y1 3  P P + P1 3Y1 3 + P1 23Y 2Y1 3 1 9

y M p p1 2(W + Wix + x + 1XlX2) + p (z + zlX + z x +z xx)0 120 1 2l12 1 2 13 o 1 1 3 3 13 13
P123(W 0+ wxI + 'x2 + 1 2 Xlx2)(z + z1x1 + z 3 x3 + z 1 3x1 x 3)

which implies terms in

X1, x2 , X3 , 2CX9X, xlx3

as expected and the new interactions

2 2
x2x3, xIx 2x 3, xI , x I X

2x3

It is noted that cross-terms and power terms are automatically i Ltroduced by
layering. This suggests that the inclusion of non-linear terms and layering
gives a broader range of approximating power.

4. BASIC ALN CONCEPTS. The nonmathematical concept of adaptive learning
is easily comprehended. Experiences are recorded by an individual and are put
into a scheme or logic by some undefined method. He has a theory about his
experiences. When presented with new experiences, his theories are tested.
Some theories are modified, some are disregarded, and others remain unchanged.
In this sense the individual "adapts" to his environment. The measure of how
well his theories perform is the frequency with which he makes successful
decisions on new experience.

a. The jump from the philosophical domain to the mathematical one is
made most easily by defining terms or creating a vocabulary.

(1) Feature - a quantitative measure of an experience. Examples:
temperature, velocity, mean value, peak-to-peak amplitudes, etc.

(2) Feature Vector - a column-like a-rray of features.

[temperatur.

Velociy

mean value

frequency

39
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b. Mathematically, once the parameters are defined they may be tagged.

x I - temperature

x2 - velocity

x22 - mean value

xN - frequency

The feature vector may be written as

x 1

x2

x22

XN

Other terms wilL be defined as necessary. From the previous section, we have

good reason to suspect that the use of nonlinear expressions and layering will

lead to much broader thecries than linear relationships. We will restrict our-

selves to expressions of the form. 2 2

Y, W. W + WX + WX + W 3xi + W4N + W \

ij %, 2i j 4' j~ W 1  5 J

where i # j. We will be interested in all experiences or features at the outset

because we are not aware of any particular relationship.

c. This is best done by considering all possible combinatiuns of

features. Given N features, there will be

N(N- 1)

possible combinations. As an example, consider N 4. A typical feature

vector would be

x3

40
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and the combinations would be

x 1 x 2  x2 x 3 ,x3 X 4

x i x3 ,x 2 X4 , or - 6 combinations2
x I x4

We define a "box" as a device that implements

Y W 0 + Yi + W2 x + W3x ix + 4xi 2 4 1Xj 2

Yi5j

xj *

then as a first attempt at developing a theory we have

x1 1 Y2 = Yl

x 3  y 13 = 92

X 4

341x 3'l -1

,4 Y34 6

41
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This initial try will be called a "1st layer". The data that is put into this
layer is called "fitting" data. The word fitting referring to the previously
developed method that solved for u o, w 1, -' w 5 (pseudoinverse, least
squares concepts).

d. The data is submitted to each box in the ist layer and the coeffi-
cients for each box are solved for using the matrix methods at the beginning
of this section.

e. The expression or algorithm we have, along with the coefficients,

constitute our initial theories about our experiences (features). To decide

which theories ("boxes") are useful or not, we must subject them to new experi-

ences. This set of data is called the "selection" set. Those boxes which
perform well are retained, while those that perform poorly are disregarded.
Assume that boxes 3, 5, and 6 performed poorly. Then we have

x 2 " Y1 2  1

22

J Y2 3  Y4 
= Y3

x 4  -

We zicte that feature x4 may be disregarded at this 1st layer, although the pos-

sibilltv exists that it might be useful at another level in the network.

D. FACTOR ANALYSIS IN PATTERN RECOGNITION. As part of the pattern recognition
capability being developed at Drexel University for the Navy, we have incorpora-
ted a factor analysis program to efficiently select the features most -rucial
in the flaw detection problem. This program aids in the identification of
relationships among the variables and may contribute to the discovery of new
features which will improve our ability to discriminate between different pr',
tern classes. Also, through the use of Lhis program we may be able to reduce
the number of mea'urements needed to make a successful discrimination.

1. FACTOR ANALYSIS. Factor analysis is an extension of principal component
analysis which determines the minimum number of independent dimensions needed to
account for most of the variance in an original set of variables. Factor, are
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derived measurement constructions which may produce parsimony 1 , orthoeonalirv.
increased reliability and increased normality over the observation measures
from which they are derived.

a. The digitized ultrasonic waveform can be represented as a signal
vector in an n dimensional time space, where each dimension corresponds to the
signal voltage at a different latency 2 point in the analysis epoch. Princi-
pal component analysis can identify the actual dimensionality of the "signal
space" containing a set of such vectors representing waveforms from many deri-
vations in the same experiment or from the same derivations >1 many experiments.
One can then construct a parsimonious description of each waveform as a linear
combination of a set of terms. Each term defines the relative contribution of
each feature to that waveform. These linear equations enable great data com-
pression, since any waveform in that signal space can be described as some

combination of the same basic factors. Thus, patterns of factor weightings
can be used to construct clusters of waveforms with distinctive morphology.
The p linear combinations of the variables (principal components) are designed
to capture as much of the variation in the data as possible while at the same
time being linearly independent of all the other principal components.

b. A principal component Yj is a linear combination of p variables.
Thus

Yj = BIXIj + B2X2j + ... + BpXpj, j = 1, 2, ... , m

is a principal component with unknown coefficients B1 , B2 , ... , p. In matrix
notation let

Bi2 Y1 XII "'..,.Xpl
B2 Y2 X12 ...... Xp2

B =' Y = " ,and X=

• L

Then we can write the principal component as

Y = XB

1. dimensionality reduction

2. not yet apparent, but there

For a given B, the sample variance of Y is given by

var Y = B'SB

where i 6 the sample covariance matrix.
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c. The first problem in principal component analysis is to find the
principal component, Y1, with the maximum variance. The problem then is

maximize B'SB subject to B'B = I

d. If we let

t = B'SB - . (B'B - 1)

where X is a Lagrange multiplier, the vector of partial derivatives is

= 2SB 2 XB

which, upon being set to zero, reduces to

(S .- I)B =0

To solve this equation, we find the p characteristics roots of the covariance
matrix S, thus to maximize the variance of Y, we choose the largest character-
istics root of the covariance matrix S. The first principal component is given
by=

by Y1 = XBI

with variance equal to X1 .

e. In general, when there are p variables, the first principal com-
ponent Yl, is a linear combination of the p variables with coefficients equal
to the normalized characteristic vector associated with the largest character-
istic root of S. The second principal component, Y 2 . is the linear combination
of the p variables with coefficients equal to the normalized characteristic
vector associated with the second largest characteristic root of S, and so
forth up to the pth principal component, Y . Each principal component has
variance equal to its corresponding characteristic root and each component
merely defines the p axes of the p-dimensional concentration ellipsoid and is
computed by the prigram.

f. Thus far in the development of the program, we have the standard
packages to accomplish the following:

• CORRE - to find means, standard deviation, and the correlation
matrix

SEI;EN - to compute eigenvalues and associated eigenvectors of
the correlation matrix

TRACE - to select the eigenvalues that are greater than or equal
to the control value specified by the user

LOAD - to compute a factor matrix

* VAR "X - to perform varimax rotation of the factor matrix

44
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The program has been debugged and employed on a small set of data. The prelim-

inary results are described in the pages which follow.

2. RESULTS AND DISCUSSION. The results of the factor analysis are sum-

marized in the matrix of common factor coefficients presented in Table II. Each

entry aij of the matrix shows the importance of the influence of factor j upon

variable i. The factor loadings indicate the net correlation between each factor

and the observed variables or features.

a. The interpretation of factor loadings may also be made in terms of
the squares of the coefficients. Each (aij) 2 represents the proportion of the

total unit variance of variable i which is explained by factor j, after allowing
for the contributions of the other factors. Thus in the first row of the table,
it can be seen that 90% of the variation in Feature 1 can be explained by

Factor 1. Factor 2 explains only 0.8%; Factor 3, 2.9%; etc.

b. The matrix of factor loadings, in addition to indicating the weight
of each factor in explaining the observed variation, provides the basis for
grouping the features into common factors. Each feature may reasonably be
assigned to that factor in which it has the highest loading. Where loadings of
a feature in two factors are very close, the feature is assigned to the one
judged to have the closest affinity. In Table II clusters of features with
highest factor loadings are enclosed in rectangles. Only Factor 1 contains a
cluster of features.

c. From an examination of the variables in each cluster it appears
reasonable to assign attributes to each factor. Thus, Factor 1 might be termed
the "Frequency Factor."

d. The analysis described is an exploratory one and, therefore, any
conclusions resulting must be tentative. However, the loadings are small in
Factor 5i this factor may be eliminated completely by changing the minimum
eigenvalue to be retained. In addition, one might conclude from Factor I that

only one of the frequency features is heavily loaded on the same factor. This
conclusion is supported by a previous study conducted by the authors.

e. The generalized variance is shown in Table III for each of the
five factors. More than 82% of the generalized variance can be attributed to
the first two factors. Thus, it appears that the fractional power ratio at
2-2.5 MHv and the total power from 0-3 MHz are not strong discriminators since
their heaviest loadings are on factors other than the first two.

f. The correlation coefficients are shown in Table IV where 10 dB
down bandwidth is shown to have a strong negative correlation with 10 d? down
mLd-froquency, -.928. This correlation is reflected in the cluster of thes
two features in Factor 1 of the rotated factor matrix in Table II.

g. A~ile the work reported here is preliminary and results must be
treated cautiously because of small sample sizes, it appears that factor analy-
sis is a powerlul tool for further use in guiding the selection of features from
ultrasonic waveforms. This capability should greatly enhance the possibility

i of selecting features in the most efficient manner for discrimination.
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TABLE I. ROTATED FACTOR MATRIX

FEATURE FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5

10 dB Down
Mid-Frequency -.949 .091 -.189 .163

10dB Down
Bandwidth .058 -.249 .142 .172

Number of Peaks

Above 20 dB -.022 -.986 .034 [ -.009

Fractional Power
Ratio 2-2.5 MHz .013 -.957 .147 .003

Total Power m
0-3 MHz .408 -.498 -.305 -.001

TABLE III. GENERALIZED VARIANCE FOR FACTORS

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5

Eigenvalues 2.817 1.295 .677 .157 .055

7 of Generalized 56% 26% 14% 3% 1%

Variance

Ciimulat ive %

ol Generalized 56% 82% 96% 99% iiZ
Variance
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TABLE IV. CORRELATION COEFFICIENTS

NUMBER OF FRACTIONAL TOTAL 10 dB DOWN 10 dB DOWN

PEAKS POWER RATIO POWER BANDWIDTH MID-
ABOVE 20 dB 2-2.5 MHz 0-3 MHz FREQUENCY

Number of

Peaks 1.000 -.027 .586 -.65 -.096

Above 20 dB

Fractional
Power Ratio -.027 1.000 .491 .495 -.425
2-2.5 MHz

Total Power
0-3 MHz .586 .491 1.000 .530 -.617

10 dB Down
Bandwidth -.065 .495 .530 1.000 -.928

10 dB Down
Mid- -.096 -.425 -.617 -.928 1.000
Frequency
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V. GANPUI COMPONENTS

A. DATA ACQUISITION. Shown in Figure 19 is a block diagram of the 1 , i,.ird-
ware components used by GANPUI. The system generally has a capability o ,
rately digitizing signals up to the range of 10 MHz. All functions ar,
controllable either manually or through software. Associated with the video
terminal, but not shown, is a hard copy unit; that is, a device which reproduces
on paper the contents of the video screen. There are also three means of "soft"
storage: disk, floppy disk, and cassette.

1 . The ultrasouic investigator first determines the appropriate mode ot
inspection, either contact or immersion. If he chooses immersion, sttw;re
control for the x-v scanner apparatus is available to him.

2. He then set, such variables as damping, gain, repetition rate, and so
forth on the instrumentation involved. Once he is satisfied that proper signals
are being obtained, he is ready to use GANPUI.

3. Thc principal data acquisition program is called GCi'TER. This program
1,ws the operator to choose the sampling rate, tlih ti:n window. nd number

' t timles a signal is to be averaged, if such a procedure is deerned necessary.

"h, ope,:ator may also assign a name to the data he is acquiring. L- 2l. set of
daita is called a frame. Data is automatically plotted on tLe video terminal as
it is obtained. This allows the operator to monitor the pio~cedure and detect

an gross jitter (time shifting) problems. The investigator then decides if
the data is acceptable for further processing or not, his decision being based
on ,;nantum levels involved, noise content. etc. Figure 20 shows a typical for-

n it of the GETTER output. Acceptable data is then displayed as an averaged
wa:.eorru irid ;as ,a Fourier transformed signal. The information pertinent to
the es:.rnent is stored and printed on the second page. There is also space

Jvailabje for comn.ents. both the averaged waveform and its spectrum are stored.
if the ,operator wisihes to continue, another frame is available to him.. Upon
r:om;plc ting te desired sequence of data, the video terminal displays the namis

th. fil'; wihorc the data is stored. Figures 21 through 25 show typical cot-

4. When jitter becomes a significant problem, the operator may employ

orrei,:iton-detection algorithm. This procedure aligns signals according to
Lhcir d, grec of correlation with each other. Aftli th., signals are aligned,
tiev arc. averaged.

5. The (A:.P, I c;vsterm also includes Lrecdures for determining the sni--
tivity rojuirements of ;" particular inspection. Testing sensitivity detor-
.,inod fiy the minimum size of a flaw which must be detected accordinri Purti-

tlIte specification or other ent-:ineering requirements. TI the sensitivi tv is
l,, low. it is possible Lo miss; flaws which are dangerous for the s truct,

trenH. lo,, much ;c isitivitv cases detection of the great amounts of
r'c tural inhomogcneiti,..s and insignificant tlawf;.

r, l tie section on S ignal irl'rcssing i noludes descriptions of averaging
and corre at ion detection.

7. The progra. that ,trioves, pre, ous acqoired data for furthr ;

ce.,sing to evaluation is cal[led 1 '.ILAY. ]h inpot to this program is K nc
name of the, file containing the desi red diata. The operator may select only
those frame.- which he e,'l-; an e u-eful and u isregard those that are not of
Interest. See Figuren 2h through 33.
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Oscilloscop

Pulser/Gate Telephone
Communications

Si PnaV Converter

X-Y Scanner

Scanner
Control

Transducer Teletype &
Video Display

Test Specimen

Figure 19. Block Diagram of a Fast Ultrasonic

Data Acquisition and Analysis System
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B. FEATURE EXTRACTION. Feature extraction is the process whereby original and
transformed signals are parameterized and the parameters treated as components
of a column-like vector called a feature vector. Figure 34 below shows how ,i
waveform might be parameterized.

NORMAL WAVE SHEAR WAVE PEAK-TO-PEAK
CONTRIBUTION A3 CONTRIBUTION

Al-A 4PPE

- TI T2

Figure 34. Waveform Parameters

a. Absolute maximum + absolute minimum in either preceding or following
half cycle in 0-4,psec window (normal component).

b. Absolute maximum + absolute minimum in either preceding or following
half cycle in 8-12isec window (shear component).

c. Any maxima rising above the 6 dB down (50%) level + absoiu e minimum
in either preceding or following half cycle.

A - The first peak-to-peak value in time over the O-4psec portion of the
waveform. A1 will never be zero.

A - Thc second peak-to-peak value in tme over the 0-4psec portion of the
waveform.. If there is no second peak-to-peak as defined above, A2

,- Thi- first peak-to-peak value in time over the 8-12Wjsec portion of the
waveform. If no peaks appear in this portion, A 3 = 0.

- Th. sec4 nd peak-to-peak value in time over the 8-121.sec portion of the
waveform. If no peaks appear in this portion, A4 = 0.

n- Te time from the maximum value of Al to the maximum value of A,.

I -The time from the maximum value of A3 to the maximum value of A,,.

feature vector = IA,
A2
A3
A4 ,

~Tlj

All featur', extractioni is imple~mnted in software. Prior to perfortriioc
feat ork Extraction, 'tic i nvest igator no 'v wish to examine other representation-
of the signa'l- Th 100 o:st popular is its [ourier transform including both 01."
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power spectrum and phase angle. Recently, the so-called cepstrum ha; been

found to be useful in superposition problems. These transforms are available

in GANPUI along with the option of arbitrary transforms (operator defined).

2. Some work requires the use of the transfer function of the system under

investigation. This is obtained by a process known as Deconvolution. This

process may also be used to compcasate for changes in transducer -haracteris-
tics. CANPUI has a deconvolvin,, algorithm and the software to extract features

from the transfer function.

3. In those studies where signal amplitudes are hindering ratiier thian
helpiny. , appropriate normalizing procedures may be used. Signals nlay, Le nor-

malized t- have peak-to-peak valueo:; of one, to have zero mean w'z'. standard

deviation 4I ,iic, in( so f ,rtK . "'ran:; ormed data may have to s)e. : rmi'4z,,d
c.i,Oendino .,n U1 M at Lt.r eI tIr e ature extraction involved.

4. T._ net. preprocessed data (transformed, deconvolved, nerralized, etc.)

is tIe se of finctions on which feature extraction is performed. In general,

featnres art- of t,.,o broad classes: statistical and physically motivated. Sta-

tisticas feature:s are those such as mean value, standard deviation, kurtosis,
etc. Phvsically motivated might include parameters such as arrival times,
ratios of echo amplitudes to a reference amplitude, spectral depression spacing,

etc. There are aiso two methods of applying these concepts. One is called

Global and the other is called Local. Global methods involve the analysis of
tbe entire pre.processed function, whereas Local methods look only at windowed

portion-s ol the data. An example of Global and Local feature extraction is

shown in Figures 30-33. The feature is the peak frequency of the Fourier
spot tr in.

C . VECTOR FILING SfSTEM. When ultrasonic inspection is used to predict com-

pon:ct performance or quality, the problem is considered either in the form of
disCrete cuisses or as a continuum. For example, an adhesive bond strength
investigation may classify bonds as good or bad (2 class), high, medium, or .row

'rc ak'La', sLren th (3 class), or continuously by actually predictig. :..r

ing strengLh J"n lbs./in.'-. Each type of problem requires a different orr of
a~goritA .i.{cc different algorithms require different inputs, feature values
(vect,,r,-) ms3t be filed in a manner appropriate to the algorithm employed.

1. TLe heneral approach is to have three distinct file structures. fhe

first is a file containing only single features over the entire domain of the
i)roblem. That is, a sub-file with only feature I values, a sub-file sit> erl,
fe2ature 2 values, etc. Algorithms requiring this type of structure PD7
estimation, 2-space plotting, fu7zv logic, etc. These algorithms will nOe
ezpia ined c;epiirately.

2. Secondly, a file containing complete vectors is necessary. Algorit..-.
of the ALN (adocive learning network) type require vector inputs.

. ;tly, a iile .:trl:cturc !,tr lssqI on class restricted vectors i- required.
The I i. , er .Anc.,r Mici ,inaut., Minimum Distance, and Factor Analysis aII.r;....
use class restri,:ted vect inpt,t;,.

0 5
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D. PATTERN RECOGNITION PROCEDURES. The first procedure involves the estima-
tion of probability density functions. These curves graphically indicate the
probability that a feature will assume a particular value. A narrow unimodal
distribution could indicate a poor feature since over all classes, only one
value is most likely. The feature would have no merit in differentiating be--
tween classes. On the other hand, a multi-modal distribution would indicate
a potentially good feature or one that varies hopefully from class to class.
See Figure 35.

-J

LJ

40

O-.

1-4[ - d
U.,.

0
I.-.

>.

0

CL

.4 Le . V _e k4 ~ I ~ ~ p 4 . a
f t Uff U! Lue (Ui Fw)

Figure 35. Multi-Modal Distribution

I. Copletion of the stage might possibly give insight to Lhe development
of a fuzzy type algorithm. This type of reasoning is illustrated in section IVA.

2. A second step is the use of 2-space plots. These are plots of feature
I versus feature J for each pair I, J. Plots such as these indicate feature
interactions and also have the potential to define distinct clusters, each
cluster defining a particular class in the problem framework. Simple algorithms
may also be defined on the curves. Examples from a Crack versus Geometry study
are shown [n Figures 36-38.

3. If simple algorithms are not feasible at this point, more sophistica,. i
algorithms must he used. The results of these initial analyses may be used to
give direction to use of the higher level algorithms.
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4. Before considering complex algorithms, PDF curves may be used again.
This time the curves are plotted on a feature by class basis. An example of

a typical plot is shown in Figure 39. The shaded regions indicate where values
on the x-axis would indicate a high bond. Other regions are most likely to
contain values obtained from low-strength bonds. An algorithm may possibly be
implemented at this stage.

.0OP--

IST FEATURE HICN hD IMEDIUI
45--

3S-- High Classification

------- Medium Classifi-
30-

cation

.26-I

"SS

10 z

25---%

15----

iS

10 ii l 230 240 20 20 270 ZO0 290 300 30 32

Figure 39. Use of PDF Curves

5. Factor Analysis is used next. This is a statistical procedure for
determining those features which contribute most to variation in classes. It
is a method for ordering features with respect to their degree of importance
in the class discrimination problem. See the section on Factor Analysis for

a detailed description of this method.

6. The above procedures essentially define those features that will be
useful. Using this set of "good" features, three other techniques are possible.
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7. A minimum distance classifier is an algorithm requiring two sets of
statistically similar data. One set is used for training and the other for
evaluation of the algorithm. The first set is called the prototype set. The
evaluation set is called the test set. Training information is used in estab-
lishing the prototype vectors along with the minimum distance classification
routine. The procedure works quite simply by examining a distance in an "n'
dimensional space, "n" being the number of elements in the feature vector. A
test vector is compared to the two prototype vectors by a distance formula.
The test vector is classified according to the resulting distance measure
which classifies according to the prototype it is closest to. The formulas
used are summarized below.

dT1 (XT1 - X1)2 + (XT2 - Xp12 ) + . . + (X Xpn)

dT2 (XT1 - Xp2 1) 2+ (XT2 - Xp22 ) 2 + + (XTn Xp2n )2

which reduces to

n2
dTN = (XTi - XPNn)

i=I

N = prototype number

n = number of elements in the feature vector

dri = distance between the test vector and the prototype vector N

if drl < dT2 then class 1

if dT2 < dTl then class 2
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VI. SAMPLE PROBLEMS USING GANPUI

A. GENERAL CONSIDERATIONS. This section will follow the paths through GANPUI
that have led to the development of two successful algorithms. The problems
to be discussed are intergranular stress corrosion cracking and adhesive bonds.

1. The first major step after problem definition is transducer selection.
This involves specification of frequency ranges, mode of usage, immersion, con-
tact, boot, etc., the choice of narrow band or broad band, and whether or not a
single or dual element probe should be used. The inherent noise levels of the
problem are a major factor in the choice of these parameters. Low noise levels
facilitate the use of transducer compensation routines. The transfer function
of the system may also be used as a source when low noise levels are involved.
Higher feature levels indicate that tight specifications are necessary for
transducers that are different from the design transducer.

2. The que.stion arises, will features be transducer dependent or indepen-
dent? The answers to this type of question establish the data acquisition
a)rotocO!.

3. The next step depends on the physics and mechanics of the problem. This
is the choice of feature sources and those features that are to be extracted.
Questions like, is superposition possible?, are there frequency shifts involved?,
what are possible attenuation effects?, etc., are all indicative of the particu-
lar features that are required.

4. Finally, using the acquired feature vectors, pattern recognition methods
are tried. The progress is from simple to sophisticated, simpler solutions
being favored. Once several algorithms have been attempted, the trade-offs
between simplicity, reliability, and economy are evaluated. Then, in a sense,
the optimum scheme is implemented. See Appendices and references 1, 2, and 3
below for further details.

B. SAMPLE PROBLEMS.

Bonds Cracks

Mode immersion contact
Frequency Range 10 MHz 1.5-3 MHz
Type Single element Dual element

Broad band Narrow band
Signal Spatial Averaging Signal Averaging
Processing Signal Averaging
Noise Level Low High

Deconvolution ---
Feature Sources Transfer function Video envelope

Fourier spectrum
Features Pulse Duration

Partial energy
in spectrum

Algorithm Fisher linear Two space plot
d iscriminant

Performance ---

(# correct/total)
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APPENDIX A

TABLE A-1. INPUT DATA TO FACTOR ANALYSIS PROGRAM

CASE FEATURE I FEATURE 2 FEATURE 3 FEATURE 4 FEATURE 5

1 1 .052 7.071 .781 1.465

2 1 .086 7.387 .879 1.514

3 1 .053 7.552 .879 1.5 4

4 2 .088 7.319 .781 1.562

5 1 .029 6.780 .684 1.514

6 7 .082 12.401 .781 1.514

7 6 .071 10.103 .537 1.440

8 1 .079 12.786 1.660 .879

9 13 .045 11.900 .684 1.514

10 10 .049 9.460 .684 1.367

TABLE A-2. MEANS AND STANDARD DEVIATIONS

FEATURE MEAN STANDARD DEVIATION

1 5.100 4.932

2 .062 .019

3 .823 2.509

4 .923 .402

5 1 .360 .258

75 (A-1I2)
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APPENDIX B - THE UTILITY OF GRAPHICAL AID,

A. PATTERN RECOGNITION. Pattern recognition studies often involve tbe "A
spaces with high dimensionalit. A feature vector of dimension ;ix is n0t
uncommon. One way to graphically display such a vector is througi the uet.!
closed polygons of equal. sides. This, of course, applies to vectors of diwuiit
sion three or greater, an equilateral triangle being the close6 polygon with
the least number of sides. Consider the polygon shown in Exam, . L-1. Each
side is length L. Each side may he considered the range oft . c component,
if the component were normalized to span the interval 0, L i'n:s is easilv
accomplished by applying the following formulation.

Let a = the minimum value a feature can assume
Let b = the maximum value a feature can assume
Let L = the desired range to be spanned by the feature

')' f --:n ( ..... . will map feature values f onto the range t:, L.

, onsid.r tLw st f eature fl I 2, and 13 . t o-urt.pcnd ug rangeu:-q

-10
!5 f') ",

-30 f i K5

A. al e-turt vector might be

' . . r, , . isual. ize tihis vector via a triangle with I Ai.

S - --2.5 + 10 10
: : > 15"

, Q.
ir".'15 ... .... . 0 ,~ i. I ,

,* 1, l . . 1.':d 'it,l,*.el{t ior . o)f c -2.t ,s su11w in }{.Xd1> ! 1'-i

ii., ..L.t ! re, i it t h, p> - , f interest how consider t le vector

[ 9 
.

L 2':. .4J "f! i:: i shown in Fxample B "

l ~ ~~77 (B-1 tj : i
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I it is noted thaL a different pattern is generated for a diff1terit vector.

Also, for vectors that are relatively "close" or clustered, the generated pat-

terns are similar; vectors that are declustered (not in one particular cluster

but in another) generate different patterns.

2. The efficient use of this display method comes when dealing with higher

dimension vectors. Shown in Example B-4 is an example for a six-dimensional

vector.

3. Parametric plotting may alo be useful as an aid to paLtern recognition

.;udies. Illustration of this technique is best shown by example. Three

iourier Spectrums are shown in Example B-5. The one on the right may be con-

idered as a "reference" spectrum. The remaining two spectrums may be assumed

to be derived from two different classes of time functions. At each frequency

there corresponds a value on the reference spectrum, r(f), and values on the

c ther two spectrums, sl(f) and s9 (f) respectively. Using the x-axis as a r(f)

.is ard the y-axis for r(f), s1 Zf) , and s2 (f) axes, the parametric plots

;i whn in Lxample B-6 are obtained.

Another technique is one involving the use of ,su-clled 'p-e" graphs.

-is method is generally applied to curves whose areas may be normalized te

Ole. Fourier spectrums are good examples. See Example B-7a.

5. Yhis unit area can then be related to a circle or "pie" of unit area,

>:a;pic B-7b. The original curve can be sectioned into intervals or bands,

of equal length. See Example B-8a. The intervals will contain certain

L.-centiges of the total area. These percentages correspond to "slices" of

.varying size within the "pie". Example B-8b illustrates this concept. Insteal

of denoting circle sectors by numbers, a gray scale code or symbolic patterns

:ay 5e used. Example B-9 shows a typical display mode.

7
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APPENDIX C - (ABSTRACT) A PATTERN RECOGNITION REFLECTOR CLAS"IFICATION
FEASIBILITY STUDY - CRACK (IGSCC) VS. GEOMETRIC (CROWNJ)
REFLECTOR IN 304 STAINLESS STEEL PIPE WELD SPECIMENS

A feasibility study has been conducted in order to evaluate te potential
of pattern recognition techniques for discriminating between geometrical and
crack reflector signals obtained during ultrasonic inspection of the weld zone
in 304 austenitic stainless steel pipes. A geometrical reflector is defined
as a reflector associated with the weld geometry and/or a flaw it capable of
causing catastrophic failure e.g. crown, counterbore, suck-backdrop-thru, etc.
Seven welds from four different 4" diameter pipe specimens, containing inter-
granular stress corrosion cracking (IGSCC) were examined ultrac-onically. The
ultrasonic inspection was conducted in a pulse echo mode using a 1.5 Mliz nominal
center frequency, 3/8" diameter transducer mounted on a plexiglass shoe with
450 refracted transverse wave insonifying the area of interest. The ultrasonic
data was correlated with the dye penetrant tests and ult-asonic examination con-
ducted by Southwest Research Institute (SWRI) in order to obtain valid training
information. The data in this particular feasibility study included crown
geometric reflectors and crack reflectors. A total of 107 crown indications and
40 intergranular stress corrosion cracking indications were analvzcd. The
analysis did not consider any arrival time, amplitude information or, in fact,
any other time domain features, but was based on various Fourier transform
features. A 100% reliability level was obtained for discriminating an IGSCC
indication vs. crown indication using automated pattern recognition algoritim.

The overwhelming success of the pattern recognition algorithm employed in
this study demonstrates the applicability of this technique for solving such
inportant problems as discrimination between IGSCC vs. geometric reflectors in
304 stainless steel pipe welds. Work on other kinds of geometric reflectors
is 'n progress for establishing an overall reliability level in reflector

c: ssification analysis.
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APPENDIX D (ABSTRACT) "TRANSDUCER COMPENSATION
CONCEPTS IN FLAW CLASSIFICATION"

by
Joseph L. Rose, Professor of Mechanical Engineering

and
Michael J. Avioli, Graduate Student, Mechanical Engineering and Mechanics

Flaw classification analysis is quite often strongly influenced by the
type of ultrasonic waveform that is generated by an ultrasonic transducer. One
goal of this paper is to introduce procedures that could possibly make flaw
classification algorithms become somewhat independent of certain ultrasonic
waveform characteristics being used in the data acquisition procedure. Data
acquisition of ultrasonic pulse echo signals depends quite strongly on many
test system characteristics, in particular, special characteristics of the
uLtrasonic transducer and pulser-receiver instrument characteristics. A trans-
ducer compensation procedure is presented in this work that requires a suitable

reference signal containing "noise" contributed only by system components
external to the unknown flaw, and in software, a processing scheme is designed
to remove external effects, therefore, allowing concentration on flaw charac--
teristics contained within the ultrasonic signal.

The processing scheme has four general components: Acceptor, Compensator,
Comparator, and Evaluator. The acceptor is basically a gate that decides
whethier or not a particular transducer is usable for the problem at hand. The

compensator implements a mathematical deconvolution process. The comparator
does a feature by feature similarity check on the desired signal and the com-
pensated signal. The evaluator is any scheme that can determine the performance
of a given transducer. In particular, the algorithm under study may be used to
evaluate transducer performance. The evaluation stage is followed by an exam-
ination of the comparator results. Tolerances relating to the acceptability of
a transducer are obtained through this final stage.

Model analysis is used to study the compensation problem. A Layered Model
is used with various levels of system "noise" being introduced, in order to
exa;mine the "noise" effects in the deconvolution computation process. Promise
for attaining success in this difficult compensation problem is good, particu-
larly when considering signal averaging as a signal processing tool.
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APPENDIX E - (ABSTRACT) THE FISHER LINEAR DISCRIMINANT FUNCTION4
FOR ADHESIVE BOND STRENGTH PREDICTION

An ultrasonic inspection system for the prediction of adhesive bond strength

for metal-to-metal applications is of great value to many government and iadus-

trial agencies throughout the world. The prediction of adhesive bond strength

based on surface preparation, assuming that there are no delaminations, inclu-

sions, or such cohesive type problems as improper curing, etc. is the goal of

this study. Ultrasonically evaluating adhesive bonds that have paruially de-

laminated, is generally easily accomplished by using C-scan techniques, but a

major problem arises when the deficiency in the bond is either adhesiva or co-

hesive in nature. Our study involved primarily the adhesive aspect of the bond

strength, which is related to the surface preparation problem. 'rest specimens

were manufactured so that an improper surface preparation occurred on either or

both substrates in an aluminum-to-aluminum step-lap joint. The specimens with
little or no surface preparation provided weak bonds and the specimens with

proper surface preparations, in general, produced strong bonds.

A resource base developed in earlier years in experimental technology,

theoretical ultrasonic wave interaction studies with adhesive bond models,

manufacturing technology, and shear stress distribution analysis have all been
incorporated into a pattern recognition program of study. Such topics as near-

est neighbor philosophy, fuzzy logic analysis, probability density function

analysis, and adaptive search and learning techniques for linear and non-linear

models have been investigated. A Fisher Linear Discriminant algorithm has been
developed which affords a 91% reliable prediction for adhesive bond strength.

Unfortunately, results indicate that the prediction algorithms depend strongly
on the particular transducer which was initially used for data acquisition.

Data acquired with a second transducer, having different pulse form character-

istics, in general, did not provide reliable results for predicting adhesive

bond strength. To compensate for the transducer differences, a deconvolution
technique was implemented to expand the selection of useful transducers. TLimi-
ted success on this technique has been obtained to date because of the inherent

system noise in ultrasonic data acquisition equipment.

,. completely automated ultrasonic inspection system has been developed for
predicting bond strength in metal-to-metal adhesively bonded step-lap joints.

Results to date provide a 91% reliability for solving this difficult problem

of predicting adhesive bond performance.
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APPENDIX F - ON THE UTILITY OF PROBABILITY
DENSITY FUNCTION ANALYSIS

Probability density function curves can be useful for solving a l;rge num-
ber of engineering problems. Of primary concern, of course, in pattern
recognition, probability density functions can be used for feature selection.
Pattern recognition problems call for the establishement of a feature vector
that can be used for developing a reflector classification algorithm. In
addition to this very important application of PDF curves for feature evalu-
ation, a valiety of other applications in engineering is being considered today.
The principles of probability density function analysis are particularly suited
to an inspection philosophy for composite materials. A brief review of possi-
ble applications is outlined below.

1. To evaluate Material Uniformity in a Quality Control Test - Composite
materials, because of the dual material content, variation in fabrication, and
an isotropic character, etc., are noisy with respect to ultrasonic waveform
content as reflected from the composite structure. A good composite material
will have a PDF curve for a particular feature that is fairly tight. Experi-
mental analysis, of course, can acquire this PDF information or "PDF signature".
Uniformity of the composite material can, therefore, be evaluated since poorly
manufactured composites would have a different PDF signature and most probably
producing that of a wider and distorted PDF curve. A material acceptance cri-
teria could, therefore, be written as a function of tolerances on the PDF curves.

2. Material Selection Philosophy for Improved Inspectability - Quite
often a number of fabrication techniques are considered in the development of
a composite materJil. As strength, temperature, and moisture tests indicate
that the performance of the composite is independent of the fabrication process,
it is proposed to :select the fabrication process with the greatest inspectability.
Inspectability of the material can be established on the basis of PDF signatures
for the composite materials and their corresponding fabrication process. Again,
a tLghtly grouped PDF curve for certain features is highly desirable.

3. "aterial Lay Up Selection - Composite materials can be laid up at a
varietv of fiber orientations and lay ups. In some cases, the angle ply lay up
procedures are important for improved composite material performance. On the
other hand, performance may not be improved. In this case, it is suggested
that PDF signatures for the various composite material angle ply configurations
be used to select the lay up that is most respectable, again following some of
the logic developed earlier for tightly grouped PDF curves.

4. Transducer Selection - Probability density function curves can even
be u.ed to select transducers for material inspection. As an example a com-
parison of single element versus dual element transducer application for a
composite material can be evaluated. Dual element transducer work will hcve
composite material inspection because of the removal of back scatter ultrasonic
radiation. This physical principle of recording only for ard scatter informa-
tion ,nn 1e demonstrated quite nicely by examining a numoer of features in a
probability density function analysis. Nicely distributed and tight PDF curves
could be used to select the best transducer for a particular application.
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5. Damage Evaluation - It is quite obvious that once a PiDF signature is
acquired for a composite material that a PDF curve that is produced at some
later date that indicates some marked change is indicative of material change
or degradation. In most cases, the change would come about because of cra-k,
delamination, or environmental degradation. PDF curves produced at various
areas of a composite material can, therefore, be used to provide us with dam-
age propagation information.
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