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ELECTROMAGNETIC SCATTERING PATTERNS FROM SINUSOIDAL SURFACES:
VERTICAL POLARIZATION

INTRODUCTION

In this paper we present an analysis and calculation of scattering

patterns resulting from a vertically polarized beam of electromagnetic

plane waves incident on a sinusoidal surface. This model is frequently used

to study scattering from periodically rough surfaces. The horizontally-

polarized case is treated in a previous paper [I] by the authors which

contains more detailed discussion and references. The vector properties

of this electromagnetic scattering problem are considered in this communica-

tion by extending the previous analysis to the vertically-polarized case and

comparing the scattering patterns for the two polarizations.

Electromagnetic waves that are scattered from periodically rough surfaces

have a characteristic dependence on the observation angle. In addition to

scattering at the specular angle, which is characteristic of reflection from

a smooth plane, these waves also scatter at a discrete number of different

angles, due to the rough nonplanar nature of the surface.

The fields scattered from periodically rough surfaces can be computed by

employing the space-harmonic representation. This representation expresses

the scattered field as a discrete sum of space harmonics (plane waves). The

scattering coefficient associated with each space harmonic is calculated after

the application of an exact boundary condition on the surface. The polariza-

tion of the incident electromagnetic wave relative to the sinusoidal surface

determines the type of boundary condition (Dirichlet or Neumann) that is used.

Note: Manuscript submitted January 15, 1980.
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The previous analysis of the scattering patterns [I] has been generalized

to include both vertically and horizontally polarized electromagnetic waves.

The scattering of acoustic (scalar) waves from a sinusoidal surface has been

analyzed by DeSanto [2]. Whitman and Schwering [3] have independently ob-

tained a similar formulation for the electromagnetic surface currents for

both the horizontal and vertical cases and have compared their calculations

with the direct numerical solutions of the integral equations for the sur-

face currents.

REPRESENTATION OF THE ELECTROMAGNETIC FIELDS

The electromagnetic field scattered from a sinusoidal surface is repre-

sented by a superposition of plane waves which consists of a discrete

spectrum of space harmonics. In general, the electromagnetic field incident

on the 3urface can be analyzed in terms of two orthogonally polarized com-

ponents: horizontal and vertical. In the horizontal case (denoted by a

superscript (H)) the total E field is parallel to the y axis; E = a y (H)(x,z)

where a is a unit vector in the y direction. In the vertical case (denotedY

by a superscript (V)) the total H field is parallel to the y axis;

H aya(V(x,z). The total field amplitude above the z = 0 plane is composed

of the incident and scattered field amplitudes

(q) (xz x) + (q) (x,z), qC ({H,V}. (1)
()(x,z) = *o0,Z +sc

The spatial dependence of the incident plane wave is

o(x,z) eik(oX-oz), z 0 (2)

27/A
where k - 2/ is the wavenumber and a 0 = sin ei and o - cos e Here e i

is the angle of incidence measured with respect to the z axis. The
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space-harmonic representation of the scattered field is

*sc (q) NY z) a R n(q)eik(Cynx + Snz) z 0 (3)
na-

where P. (q ) is the scattering coefficient of the nth space harmonic,

n = sinOn, On = cosen. and 8n is the scattering angle of the nth space har-

monic as shown in Figure 1. We note that the angle of specular reflection is

9 and 8 =0V0 0 i"

The profile, s(x), of the surface shown in Figure 1 is a sinusoid with

period A and amplitude d

s( (1 + cos 7x). (4)

Due to the periodicity of the surface, the normalized transverse wavenumbers,

tnI satisfy the grating equation.

a n e + nA, n = + 1, ±2 , (5)
n o0- -

where A = A, and

n = J, Im (0n) 0. (6)

The scattering coefficient Rn (q) can be calculated by applying Green's second

theorem to the region bounded by the curve C, as is shown in Figure 1. We

have
I (q)SC,± G+ . q'

G d4 = 0, (7)

where

G± e ik(+9nz -cnx) (8)

Here 4 is the arc length along the contour C and n is the inward normal.

Along that portion of the contour on the sinusoidal surface, the boundary

condition is used to simplify the integral in (7). The vanishing of the

tangential E field on the surface of the conductor implies that 0H) = 0(v)

(Dirichlet condition) and -M 0 (Neumann condition) on the surface.
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By using the above boundary conditions in the integral equation (7) ex-

pressions for the scattering coefficients Rn(q) are obtained ([3] and [2])

(q) iT+ 00 (q) (q)R -eM a ,m- 0a +1n m2 .... (9)
n-no

where

Vn(H) . im M Jm (T ) (10)
imn 80r-n m0

n rm mn mn T I

a am - a )
b i + (12)

Here J is the nth-order Bessel function with argument
n

+
T± = A(o ± 8 ), A = 7d/X. (13)m 0 in

The a (q) that appear in (9) are the coefficients of the Fourier expan-
n

sion of the surface currents and thus will be called the surface current

amplitudes. They satisfy the following infinite system of equations:

(q)j'~ a ( q ) = 6 , in= 0, -1, .... (14)
mn n m,o ,(4

where

(H) - t) (15)
inn m-n i

T () I(1 - 8o8 m - Cs Cs)J m n(t), n = ±I, ±2,..

(V M G m m n -nm (16)
in n,o + cn, n,-I ' m 0

with c = iAao /(26 ) and 6m,n is the Kronecker delta function:

m,n f 0, m n
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I
CALCULATION OF SCATTERING COEFFICIENTS - VERTICAL POLARIZATION

The infinite set of linear equations (14) can be solved numerically for

the { an(q)} by symmetrically truncating the system at an order M and solving

the resulting 2M-order matrix equation. More accuracy is obtained by sequen-

tially increasing M; this technique is known as the method of reduction.

Confidence in this numerical method for solving the set of equations (14)

was established by employing two criteria: conservation of energy and solu-

tion stability. For a lossless surface the conservation of energy criterion

requires that the incident power be equal to the scattered power. Employing

Poynting's theorem, we have (z is the complex conjugate of z)

+2.12 *
Z 5 ec(q) "'sc (q) 

(17)
ko = Reis z )dx.

If we introduce the normalized reflection coefficients

n (q)12= IR (q)12 , (18)

and use (3) in (17), then energy conservation requires that

1 7 Irnq12, (19)

where the sum is only over the set of propagating modes P, P = {n:Im( n)=01.

The conservation criterion can now be written as

lim EM = 0, (20)

where

EM = II n p Irn(M)121. (21)

Here e M is the energy-conservation error made when the approximate reflection

coefficient, rn (M), is used; the r n(M) are obtained when the {a have been

computed after truncating system (14) to order M.

The other criterion used was a check of the stability of the matrix

solutions. The complex values of a symmetric subset of the surface current

amplitudes {a n } should stabilize with increasing matrix size 2M for a given
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set of parameters e' A, A. In all cases which we examined, the energy-

conservation and current-stabilization criteria were compatible.

The above numerical procedure was carried out for five different sets

of parameters in both the horizontally and vertically polarized cases. The

results are shown in Table I. The first two examples use the same surface

parameters that were used in [i], Example 1. In these cases both the per-

turbation and physical-optics conditions, as defined in [I], are exceeded.

The last three examples show Bragg backscattering. Examples three and four

demonstrate first-order Bragg backscattering, while example five shows

second-order Bragg backscattering. The energy-conservation criterion was

applied with the following steps: First, M was chosen large enough to

include the set P of all propagating modes; second, M was incremented until

EM 10 - 4 , if this criterion hadn't been satisfied during the calculations

for the first step. In Table I the values of normalized height, A, and

period, A, of the surface are given along with the angle of incidence, 8i .

We also shown the maximum matrix order needed to establish an accuracy eM ,

Because of the interest in radar backscatter, we have used our numerical

procedure to calculate the absolute value of the Bragg backscattering ampli-

tude r-11. The plots are shown in Figure 2 as a function of the normalized

roughness amplitude for several different values of Bragg backscattering

angle eB,_1 = arcsin(A/2). For small values of A, the backscattering ampli-

tude depends linearly on A; however, the slope of this line approaches zero

as B,-1 Tr/2 (grazing). This indicates that a perturbation theory could

be used for small e B,_ but it would have limited validity as 9B,-l + T/2. As

L increases the curves oscillate between 0 and 1. The maximum value that each

curve attains is I as can be seen from (19). We also note that when

I, all other 1n, n # -1, are zero because of energy conservation.
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Thus, at this maximum all incident energy is backscattered to the transmitter;

this phenomenon is known as blazing. It is interesting to observe that all

curves shown in Figure 2 that attain the value I on the first oscillation have

only two propagating modes. Thus the curves for e = 75 and 850 do not

reach 1 on its first oscillation and have more than two modes propagating.

We also note that the curves have been terminated at different values of A;

this is due to limitations of the computer program whose convergence is para-

meter dependent.

CALCULATION OF SCATTERING PATTERNS

The scattering pattern S (q)(e) is defined as

s(q)(6) = lim- q ) 2  
(22)

r-ov

(q)
The scattered intensity, sc , can be calculated as a function of observation

angle when a bounded beam is incident on the surface. Let us assume that the

incident beam is given as

,o(q) (x,z) = W [(ztanei)/] eik(aox - a0z), (23)

where the beam is centered about the line x =-z tan 0.. The beam shape is1

defined by the function W(x/L) which is slowly varying when lxl<L/2 and

W(x/L) = 0 for IxI>L/2. If we decompose the incident beam into plane waves,

a space harmonic representation can be obtained for the scattered field

(q)
sc

An exact expression for the scattering pattern in the horizontally-

polarized case is derived in [I] by using the space harmonic representation

of the scattered field in (22). Since the arguments used there hold equally

well in the vertically-polarized case, we have

S ( q ) (e) EQ [kL(sine-sine n)] Rn(q)(sin6-nA)12 , (24)
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where

Q(klo) = -"W(i)e ikLxd" (25)

Here Q can be interpreted as the scattering amplitude due to an incident

beam on the z - 0 plane. In addition, we note that only propagating space

harmonics contribute to S (q ) (e).

To use (24), one requires the knowledge of R (q ) at many different

angles of incidence. When kL is large, an approximate expression can be

obtained which only requires R (q) at the angle of incidence of the beam.n

Following the arguments of [1], we have

s(q) (0 ) = Q(kL(sine-sinn))" Rn(q)(sini ) 1 2  (26)
nE:P

The validity of (26) is based on the fact that R ( q ) (sine i ) must be a slowlyn

varying function of Bi compared to the variation of the Q function.

DISCUSSION

The exact formula (26) for the horizontally- or vertically-polarized

scattering patterns will differ only in the scattering 
coefficients R (H)

n

or R (V). Thus the behavior of R n and R nV) as functions of the inputn n n

parameters 9i, A, and A (we recall that A and A contain the incident elec-

tromagnetic wavelength X) will reveal the behavior of the corresponding

scattering patterns. For example, the graphs of R (H) and R n as functionsn n

of incidence angle, which we call the space-harmonic diagrams, have been

extensively studied for periodic surfaces (see, for example, [3], Figs. 3

and 4). These diagrams reveal the existence and relative strengths of the

various propagating space harmonics. The graphs of R (H) and R (V) asn n

functions of A reveal the existence of blazing; the existence of Bragg

backscatter blazing is shown in Fig. 2.
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We first repeated all the numerical examples of Table 1 in [1] for the

case of vertical polarization. Since some of these examples did not differ

significantly between the two polarizations, we varied the input parameters

(ei, A, A) to demonstrate several interesting effects of polarization and

these are summarized in Table i. However, in the interests of brevity, only

scattering patterns for the case of blazing (Example 4 and Figs. 3 and 4)

will be shown here.

Example 1, provides a straightforward demonstration of the scattering

pattern calculation. However, for this example the vertically and

horizontally-polarized cases happen to be similar at ei = 45° 1 which was

discussed in [1], Example 1. An examination of the space harmonic plots

reveals that changing the incidence angle to 300, as in example 2, provides

a clearer distinction between the scattering patterns for the horizontally-

and vertically-polarized cases.

The third and fourth examples demonstrate first-order Bragg backscatter-

ing. The vertically-polarized scattering pattern for example 3 is not

significantly different from the corresponding horizontally-polarized case

([l], Fig. 7) for 8. = 450 . However, if the incidence angle is adjusted to

the blazing angle, ai = 600 as in example 4, there is substantial difference

between the horizontally-polarized (Fig. 3) and vertically-polarized (Fig. 4)

cases. Finally, example 5 demonstrates the case of vertically-polarized

second-order Bragg backscatter; comparison with the horizontally-polarized

case of Ei], Fig. 8, shows that the specular and backscatter components are

larger for this vertical-polarization case.
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