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ACCURATE ANALYTIC APPROXIMATIONS AND NUMERICAL

SOLUTIONS FOR THE STRUCTURE OF QUASI-STATIC

LASER DRIVEN ABLATION

I. INTRODUCTION

Previous numerical simulations at NRL have shown that density and pressure profiles for

an accelerating D-T shell and ablation layer can be temporally superimposed with very little

scatter. Because of the presence of these long lived "quasi-static" profiles, we felt that it was

important to model the equilibrium solutions for a laser ablation layer both analytically and

numerically and to develop a detailed understanding of the nature of this flow. Facility with

such a model enables us to calculate the quantitative dependence of the shell thickness and

acceleration, the peak density, velocity, and temperature of the shell, the width of the

Rayleigh-Taylor unstable region, and the distance to the critical surface on the total plasma

mass, the critical density, and the absorbed and reflected laser flux. This "quasi-equilibrium", as

determined by the input parameters of the configuration, can be used as an inexpensive input

or driver for other numerical studies and as an equilibrium solution for stability analyses. Fol-

lowing is the detailed description of the laser ablation layer included in the numerical model.

1I. STRUCTURE OF THE ACCELERATING SHELL

AND BLOWOFF PLASMA

For our analyses we use the basic one-dimensional steady state fluid equations for a

plasma slab transformed into an accelerating frame of reference

continuity: -- (pv) - 0 (la)

Manuscript submitted December 20, 1979.
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J. H. ORENS

momentum: _-(pv2 + P) p - 8(x -x,) (Ib)

dx

energy: (Pv+Ev+q) - pgv+ 8(x-x) (c)

where -r - Tim, P-pt, E O(3P +pv 2 ), q - - Xm, 712 and g is the2 dx'

acceleration of the slab. I, is the absorbed laser flux, I, is the reflected laser flux, and x, is the

location of the critical surface. As is evident, we are treating the plasma as a fluid with a Y of

5/3 and a classical plasma heat conductivity with a coefficient variation of Ts/ 2. The laser depo-

sition is represented as a 8-function at the critical surface. Note that equation (Is) tells us that

pv - constant. To facilitate the analysis it is convenient to transform the basic equations (1),

except at the critical surface, into a dimensionless form where the normalization variables, sub-

script 0, are those defined at the point of maximum density in the plasma slab.

d 2 -L- 15(P-I) + M02( q-1) -2 J + -L (2a)

d.. M"2 I d(2b)

or

N d ._/ jI in (np3). (2c)

The dimensionless variables are

P(C) - 7/7,. '"(C) - (P0 /P) 2 , C - g/to x, (3)

and the dimensionless coefficients are

N - iO and Mo2 -V2/7. (4)

2
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The isothermal mach number is defined by

m 2 -- .. .. (5)

Only two of the three equations (2) are independent. Depending on the circumstances,

we found that various pairs of the three equations were more convenient to analyze than oth-

ers. Under this transformation the problem was reduced to solving for two dependent, dimen-

sionless variables P (the temperature) and qi (the density) based on one independent spatial

variable C and two dimensionless coefficients N, (primarily the thermal conductivity usually a

large number), and Mo (the isothermal mach number at the density peak, usually a small

number). We utilized this dimensionless set of equations (2) to generate either general numer-

ical or analytic solutions and then matched these solutions to the specific physical constraints

and boundary conditions to determine the desired self-consistent profiles. The numerical solu-

tions were obtained by a Runge-Kutta integration of the non-linear coupled set of differential

equations (2) while the analytic solutions were obtained by making appropriate approximations

to the equations in the various regions and then solving the simplified set.

For the purpose of obtaining general analytic solutions, the set of equations (2) is con-

veniently divided into three regions. The first region is the accelerating shell (Q < 0). the

second region is the vicinity of the density peak (Q = 0), and the third region is the blowoff

plasma (Q > 0). Because of certain basic physical trends for the solutions P and "0 in each of

these regions, it is possible to make simplifying assumptions that allow analytic solutions to the

equations (2). As will be discussed later, there are other admissible solutions to these equa-

tions with counterintuitive physical trends but as yet these have not been sufficiently investi-

gated to determine whether they, too are physically real.

k 3
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a. The Region of the Accelerating Shell (C < 0)

Rewriting equation (2a) into a more convenient form we find that:

5(- 1) + M 2(,q- l) - 24 - - (5/2 ndE - i). (6)

The traditional physical profiles for this region require that ( < 0, 13 < 1, and 7iMo ( 13.dC

In words, the density and temperature should decrease away from the density maximum at

- 0 toward the inner regions of the accelerating shell (Q < 0), and for this region the flow is

isothermally subsonic. Therefore from (2b) I 1 and correspondingly

dC

From (6) and (7) we then obtain the following two inequalities

5(3-1) + M2('q-1) - 2C 4 0 (8a)

and

2
5 (P - 1) + M1o2 (q - 1) - 24 + -L > 0. (8b)

Except for a very narrow region where I . (N is usually large), Eqs. (Sa) and (Sb)
N0,

imply that

5(/S - 1) + M.1(71- 1) - 2C = 0 (9)

is quite a good approximation. By differentiating (2a) we find that

5.9f + -2- 2/ dP (10)

4
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Again, except where I I is on the order of and is varying rapidly, we have the
N0

approximation that

5-- 0. (11)

Combining Eqs. (2b) and (11) gives us the further approximation that

dC
d ( /f3) 0 (12a)

or

1. (12b)

This latter result can also be obtained from equation (2c).

Collecting our results, we have as a general approximate solution to the set of equations

(2) for the region 4 < 0,

5(1) + M2(,g- 1)-2 - 02C3a

5(o (13a)

73 = 1. (13b)

It is interesting to note that this approximation is independent of N, and therefore the flow and

profiles in the accelerating shell are not basically governed by thermal conductivity. Also equa-

tion (13b) states that the entropy P/py is approximately constant throughout the accelerating

shell which behaves like an adiabatic gas.

From equation (13b) we obtain

~4 dC(14)

SCp4d
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Combining this result with equation () yields

p4 2P4 (15)
dC 5 4 - 3M.2

It is important to note that equation (15) does not hold when { - 0 and -1 C - 0 is the

turning point for the density. There d 0 and from (2b) - . Therefore it is

evident that ASd varies from I to approximately 2 very quickly over a narrow region.
dC~5 - 3M.2

It is possible for the flow to approach an isothermal sonic point (M 2 71 - P) in this region.

From (13a) and (13b) this occurs when

S(16a)

and

3f 5 + M (16b)

Substituting (16a) into (15), we have

-d [_ 1 (17)

where C, is the location of the isothermal sonic point. This is an important result. It implies

that equation (2b) may not be singular at the isothermal sonic point. In fact, from (14) we

expect that

d4 t' M."C Ic , - "o

Applying L'Hospital's rule to the full set of equations (2) in the limit where P - M,27 and

-. I yields:
d6

6
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urn* -M - I N  f (18)

0r-u, dC 2 M,2

N1o3/2

Since > >1 generally, Equation (18) tells us that
#3/2

.±1 [ 3(19)
dC _j , U.,

as expected. The fact that the flow approaches a well behaved, continuous isothermal sonic

point is very helpful since it gives us a convenient position to define as the inner edge of the

accelerating shell. This definition is reasonable since no physical information about the flow

could be transmitted across this point.

b. The Vicinity of the Density Peak (Q = 0)

The simplest approach to determining an analytic approximation in this region is to

expand the system of equations (2) in a Taylor series about C - 0. Doing this for small C yields

to third order

I +C + -53N(3N-5)+-e- [NM(3 -O-5) -L (20a)

and

I + - 2 (ON, - 5)

+ C3/6 o NO 5) (s 3MI - (3No-5) 7 - 5. (20b)

7
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Since ; - 0 is to be a density maximum

d2 ia-[ > 0 (21)
dC2 _o

which by differentiating equation (20b) twice yields

N, > 5 (22)3

This is not a very stringent criteria for N0 . Generally for physical problems of interest

N0 > > 5/3. It is also important to note that the region where the Taylor expansions (20) are

accurate is exceedingly narrow. Trying to utilize these results for even a distance on the order

of the thickness of the ablation layer does not yield valid results. In fact, equations (2) are

included more for completeness than for their practical importance.

c. The Region of the Blowoff Plasma (Q > 0).

Two very important regions lie in the blowoff. The first is the Rayleigh-Taylor unstable

region where the gradients of density and pressure have opposite sign. The second is the vicin-

ity of the critical surface where the laser deposition occurs. In this region g is increasingdC

rapidly from its value of 1 at C - 0. Corresponding, p > > 1 except very near the density

peak. It is expected that this region be isothermally subsonic at least until the critical surface is

reached. Therefore,

IM,2(,q - 1) - 2C I < < 5(p - 1) (23)

is a valid approximation except in a very narrow region about C - 0 where it is in error by

about 40%. Here retaining C is important and the approximation is more properly written as

Mo2(--) << 5(p -1)-2 . (24)
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The error in (23) potentially could be as great as 20% in the vicinity of the critical surface as

well. In practice (numerical integrations) it never becomes that large. Under these approxima-

tions equation (2a) becomes either

d# = - -!!.N0  L (25a)

d 2 5'~ I NJS5

or

d 2 5/2 -1-(25b)

Equation (25b) can be solved analytically to yield:

4 L(, 5/2-1) + W (3/2_1) + i- (Pl/2_1)

1 _L5/ -in 5NN(26)55 
N

2+ p112 2 2

Equation (25a) can also be solved analytically to yield an approximation near i - 0 that is more

exact than (26), but little is gained by including it here due to its complexity. Though it is not

crucial to use this more exact approximation to define the Rayleigh-Taylor unstable region, its

use does improve the results in a measurable way. For > 0 it is advantageous to write equa-

tion (2b) in terms of the pressure where

"F .(27)
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This gives two interesting forms

df41n -21] 2 lnPP, (4, 4 2a

and

Ipi ~ I d -- (Mf2 2). (28b)

Adding (28b) to (28a) yields

d 1[2) +1- M,27 1 (29)

-["V-(1-1)-2g1 d f

The second term on the R.H.S. of (29) is effectively a coefficient times the rate of change of

the pressure. Conveniently it turns out that Zhe rate of change of the pressure is significant

where the coefficient is small and the coefficient is significant where the rate of change of the

pressure is small. Therefore the term is always small and may be neglected.

We obtain as an approximation

/32 exp [2,3 + M,2( - ) - 2C]1-

,~ 320. (30)

The presence of 7) - p2 in the denominator compensates for the additional root at 7) s /2 intro-

duced by adding (28b) to (28a). Equations (26) and (30) are then an extremely good approxi-

mation to the general solution for 4 > 0. It is also relevant to note that these analytic solutions

with the modifications included due to (25a) will hold around 4 = 0 and even be valid when C

is slightly less than zero and /#/2 !L0 is varying rapidly as noted earlier.

10
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From (28b) we obtain two interesting results. First

d I~~~IL -1(31)

and second

d [P/Po - O when d 2 (32)

Combining (32) and (2b) yields

[pIpo]- 0 when =3)dC d4 Mo2

or from (5)

d [PIP,] - when M2 d- 1. (34)

Equations (32) and (33) or (34) give us respectively the rate of change of the density and the

temperature at the turning point of the pressure. It is just this offset of the density and pres-

sure peaks that bounds the Rayleigh-Taylor unstable region, so-called because density and

pressure gradients are opposed.

Combining (33) with equation (2a) yields an equation defining the relationship of the

variables at the pressure peak

M, _ N _L 5(1 -1) NL + M2(,-1) " (35)
M,,2q 2 p" N0  I.j

The relevant question is whether equation (35) has a solution for all values of M, and N,,.

From Eq. (32), in the Rayleigh-Taylor unstable region

0< < #A 2 (36)dC M.,

11
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Therefore

d{ W,26)(- 1) - 2CJ (<-0 or 1~(,-) - 2C < 0 (37)

there applying (37) to equation (35) we obtain the condition for the exislence of a pressure

peak not located at C - 0,

8< . M, (.8 21)+ (38)
2 52  N,I

also in the Rayleigh-Taylor region

dC [P/P] >"  or P >" l (39)

or from equation (27)

7 <p 2  (40)

Combining inequalities (38) and (40) requires at the pressure peak
N,, 1 2

P3/2 < - M,2 5( - 1) + 2. (41)

It is tedious, but straightforward to show that there can be no regime where 1- I > 0 and ine-

quality (41) can hold when

N,,M,, <- (42)

This is a rather significant result since it shows that not all values of M,, and N,, are admissible

if one requires a solution to the set of equations (2) where there is a turning point in the pres-

sure profile. Figure I displays graphically the allowable region of M,, - N,, space.

The only other important modeling necessary for the region ( > 0 is near the critical sur-

face. Here we integrate equations (1) across the critical surface to obtain the jump conditions

and utilize the density shelf criteria of Felber' and Lee at al.2 where

12
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(1 (-M32

M 2 - In (M 2) - I

with the subscript minus referring to the values just interior to the jump and

- (p, is the critical density). (44)' P,

We force the temperature to remain constant across the jump and the heat flux to be zero out-

side the critical surface. We did not believe that it was important to model the underdense gas

outside the critical surface since the density is so low there. Felber' has chosen to model this

region as an adiabatic gas and that would probably be as good a choice as any other. We do

require that the flow out of the critical surface be supersonic and that gives us an additional

constraint on M,, that

Mo2 < M-1 < 3 (45)5

This constraint is also included in Figure 1. When M,, and N,, are chosen within the bounds

depicted in Figure 1 the solutions to equations (2) are profiles that can be given physical explai-

nations. For values outside that regime equations (2) are still solvable, but it is not clear

whether the profiles generated also have a physical significance or are merely mathematical

curiosities. This question is worthy of further investigation. There are two possible approaches

to obtain profile solutions to equations (2) for given specific boundary conditions. First the

coupled set of non-linear first order differential equations can be integrated numerically by a

Runge-Kutta method and then the boundary conditions matched. Second, the general analytic

approximations (13), (26), and (30) can be utilized instead of a numerical integration and then

matched to the specific boundary condition. Conceptually there is not much difference in either

method. Because of the complexity of the analytic approximations both methods require the

use of a computer. The major advantage of the analytic approximation approach is that, by

13
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allowing an error in the results of a few percent, significant computational time can be saved.

Also the analytic approach often gives a better insight into what is physically occurring. The

three available boundary conditions not previously taken into account are the total plasma mass,

the absorbed laser flux, and the reflected laser flux. Certainly the original slab mass must be

encompassed by the density profile. For our model we assume that all the mass lies between

the interior isothermal sonic point and the critical surface. Because the densities outside this

region are exceedingly small compared to the peak density, this approximation should have lit-

tie effect on the results. Therefore, if m is the total slab mass per unit area,

XC POT 0  *.M - f c - gC (46)

or from (4)

m No 12 d. (47)

MO 0oo~ - 1 ?d

Evaluation of the integral in (46) or (47) follows from an integration of equation (28b)

J dc= M2~Ii (48a)

or

dL - -c + M02h -7 = + M. GI (48b)

and since M02 I -ps

C d+ M.2  2 02 fs (49a)

or

d4 + M.' - 2M. rP, (49b)

14
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Applying the approximations (16)

+ M 2 ../j - (50)

Of course, in (50) 71, and /3, are, as yet, an undetermined parameters.

At the critical surface we handle the jump conditions and laser deposition much as Felber,

did where

2,,-Aq _I+2 ,, - Aqp# poMor3/2/3 M3-  (51)

and we have used the constancy of pv, and equation (5). It is also true from reference 2 that

1,+21r (1 -M 2 ) (1--) (52)
CPo7ofiC

By use of equations (43), (47), (50), (51), and (52), we are able to determine the position of

the critical surface for a given M. and N. This is accomplished by beginning at C - 0 and

moving in the direction of increasing C using a Runge-Kutta solution of equations (2) or using

the analytic approximations. At each point we assume that we have reached the critical surface.

Then from (47) and (50) we can obtain the value ro such that all the plasma mass would be

contained within the density profile to that point. With the To equations (51) and (52) will

determine the corresponding p0. This value of p, may then be used to see if equation (43) is

satisfied. When (43) is satisfied, we have reached the critical surface. Also we have the values

of po and To needed to transform the general profiles into the specific profiles for the given

a boundary conditions. The other values of interest v, and g can be found from (4).

The preceeding discussion has masked a rather curious fact. Even with all the criteria we

have specified, we cannot determine a unique solution based on a single pair of M. and No but

rather have obtained a whole family of possible "quasi-equilibrium" solutions based on values of

15
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M, and N, only constrained as in Figure 1. Maybe we have not specified all the available

boundary conditions but it is difficult to think of another two, only based on the equilibrium,

that we are at liberty to specify. More likely, what the results are telling us is that there really

are various possible "quasi-equilibrium" states and just which one would occur in a given physi-

cal situation might be determined by the neccessarily time-dependent evolution leading up to

that equilibrium. Such an effect might be an initial shock which impacts an entropy to the

shell. Others may exist.

III. NUMERICAL RESULTS

Figure 2 displays the profiles of density, temperature, pressure, and isothermal mach

number for the "quasi-equilibrium" where Kmr7 2 - 10- 3 3, p, - 4x10- 3 g/cm 3, 1. - 10.2 TW

/cm 2, 1,- 10.2TW/cm2 , m - .773mg/cm2 M. =-.07, and N, = 700. These profiles were

obtained by a Runge-Kutta integration of the equations (2), but curves generated through the

analytic approximations discussed earlier are virtually indistinguishable. These are rather typical

results and while variation of M. and N0, within the constraints of Figure 1, does change the

profiles quantitatively there is not much qualitative variation. The density, temperature, and

pressure are seen to decrease smoothly away from the density peak toward the isothermal sonic

point. For this case the thickness of the shell is about 35 microns and the peak density is about

.3g/cm3 . The corresponding temperptures and pressures at the density peak are respectively

approximately 8 x 1012 cm 2/sec 2 and 2.5 x 1012 dyne/cm 2. The acceleration for the shell is

about 4 x 10' 5 cm/sec 2. It is impossible to see in the figure, but the offset of the pressure and

density peaks is about .1 micron. The peak pressure is only slightly greater than the pressure at

the density peak. In the blowoff plasma the density drops sharply while due to the thermal con-

ductivity the temperature increases rapidly. It is interesting to note that the decrease in density

16
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is nearly balanced by the increase in temperature such that the pressure remains relatively con-

stant. The critical surface is approximately 100 microns from the density peak and the critical

temperature is about 4.5 x 1014 cm 2/sec 2. The density and isothermal mach number just inside

the critical surface are respectively approximately 4.5 x 103 g/cm3 and .6. These profiles have

been used as initial conditions for time varying models and are seen to remain relatively

unchanged for long periods of time. Therefore they are truly "quasi-equilibrium" solutions.

Further, since the density and pressure gradients in the constant adiabat shell are aligned, the

shell interior is Rayleigh-Taylor stable.

IV. CONCLUSIONS

Development of this "steady-state" model is still continuing. The most important question

yet to be resolved is how to choose M,, and N,,. What is desired is to relate Ml,, and N,, to some

physical properties that would remain constant for the solutions while external parameters like

the plasma mass or the laser intensity are slowly varied. One such possibility is the entropy of

the accelerating shell. We have utilized one of our "quasi-equilibrium" solutions as aoI initial

condition to a time dependent simulation model and followed the burning of the shell. During

the evolution, the shell entropy did remain relatively constant. We have also examined the

constancy of the shell momentum, but, as yet, have not reached any definite conclusions.

Our model has been used as an initializer to time dependent ablation models and as a

pressure driver for a laser-target compression simulation. For this latter case the "steady-state"

model was used to relate the variation of the laser intensity to the pressure at the surface of the

shell. Generally we used the analytic approximations for these studies, since it entails a vast

savings in computational time. We also plan to utilize our model as an equilibrium for a

piggy-back analysis of Rayleigh-Taylor stability in the ablation layer plasma.

17
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NO PRESSURE PEAK BELOV THE CURVE

L

40 i

N
0
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Fig. I - The region of M,1 - N O space that yields physically intuitive solutions. For the region below the curve there

is no turning point in the pressure profile. For (he region to the right of the curve the flow out of the critical surface is

not supersonic.
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