
I AD-A003 902 MISSOURI UNIV-COLUMBIA DEPT OF STATISTICS FIG 12/1
A SELECTION PROCEDURE USING A SCREENING VARIATE. (U)

MAR 80 R W MADSEN N1OIl4"76-C-0789

UNCLASSIFIED TR-90 NL

*uuIIuIuuIIuI
I fllllfNDl...



University of Missouri-Columbia

A Selection Procedure Using
a Screening Variate

by

Richard W. Madsen
4

Technical Report No. 90
Department of Statistics March 1980

Mathematical ,= .

Sciences A

" 
'V.1 

" f r

L&J

80 5 5 01t -



SUCURITY CLASSIVICATION OF THIS PAGE (Ol'on Data Enetedi)

REPORT DOCUMENTATION PAGE READ INSTRUCTIOS
BEOR COMPLETNGNFOR

V . GOVT ACSSON NO 3. AMPIENI5 CATALOG NuMBER

. LIE (m and l $ tIer) XT_____I_

..6 A Selection Procedure Using ._

a Screening Variate, =-

7.. AO U rJO GRANT kUMUEN(g)

Saiard en{~JO R~G-6~

01Rr_---_76_-7

9. PERFORMING ORGANIZATION NAME AND ADDRESS IS. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Department of Statistics NR 042-353
University of Missouri-Columbia
Columbia. Missouri 65211

I. CONTROLLING OFFICE NAME AND ADDRESS -- lIU JU _AJT.

Office of Naval Research (j Hare 8O'
Department of the Navy -1. NUMmER OF PAGES

Arlington, Virginia 22217 24
14' MONITORING AGENCY NAME A AOORESS(II different Irom C tmrolling Olies) IS. SECURITY CLASS. (.l this report)

Unclassified

i4. "DecL ASSI lC ATION/ DOWNGRADING

Is. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

7. DISTRIBUTION STATEMENT (of the abstract entered In lock 20, If dlffent he. Iepen)

I. SUPPLEMENTARY NOTES

Is. KEy WOROS (Continue an revere aide It neosesmy and Identify b b&lek number)

Screening variables, Bivariate normal model, Selection procedures using
correlated variates.

ABSTRACT (Conimnue on revere olde It neceesary and idenelip , blk nuinher)

Consider N objects on which two correlated measurements X and Y can be made.
Assume that the probability that the Y measurement meets a certain specification
is S$. We present a method whereby a maximal subset of m out of the N objects
can be chosen, based on the observed X measurements, so that there is a high
probability that a large proportion of the selected subset will meet the desired
specification related to the Y measurement. The method we propose uses the condi-
tional probabilities that Y will meet the -specification given by the observed
value of the x's. The procedure compared favorably4 (Contifi' d on back of sheet)

IJN, 3 1473 EDITION OF , Nov s s oesoLT 41 r4 , -

SI / O-1- 2. 6 ACURITY CLASSIFICATION OF THIS PAGE (0l760" 0 tX



20. Continued.

with one suggested by Owen, Chen, and Li but has the advantage that no special
tables are needed.

Access ion For

NTIS C:.
MC -

jL

Ju.2.t



A Selection Procedure Using a Screening Variate

Richard W. Madsen*

University of Missouri - Columbia

1. Introduction and Background

Consider N objects on which two correlated

measurements X and Y can be made. Assume that the

probability that the Y measurement meets a certain

specification (e.g. Y S u) is Y . We present a

method whereby a maximal subset of m out of the N

objects can be chosen, based on the observed X

measurements, so that there is a high probability (t)

that a large proportion (R > y) of the selected sub-

set will meet the desired specification related to the

Y measurement. In general such a selection procedure

would be used when Y is based on a measurement which

is difficult or expensive to make and X is based on

one which is easier or less expensive to make. For

example measuring Y may actually destroy the item being

tested whereas measuring X will not. In another situa-

tion Y might be a student's grade point average after

*Research supported in part by the Office of

Naval Research, Contract ONR-NO0014-76-C-0789.
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a number of years in college, while X is a score made

on an entrance or qualifying examination.

A related problem considers an infinite population

where we assume that a certain proportion, say Y , of the

observed Y variates satisfy some specification. By

screening on the observed value of the correlated variable

X , it may be possible to raise the proportion of Y

variates which satisfy the specification to a higher

value, say 6 . We will assume, as is generally done,

that X and Y have a bivariate normal distribution with

correlation coefficient P .

This problem has been studied for quite some time

with the work of Taylor and Russell [8] in 1939 being

among the earliest. More recently D. B. Owen and various

co-researchers ([3], [4], [7], and [9])have studied other

aspects of this problem. For example, Thomas, Owen, and

Gunst [9] considered two screening variables X1 and X2 ;

Li and Owen [3] considered two sided screening procedures;

Owen and Boddie [4] considered screening methods with some

parameters unknown. In these cases, sharp cut-off scores

are found such that if the X score is in a given range,

say X < u X + k 6 x , the corresponding item is selected.

Much of the work done in this area has been to

table values of k corresponding to values of Y , p ,

etc. to meet certain specifications. Hence one potential

deterrent to implementation of these screening procedures



is the need for specialized tables. A second point to

consider is that with the usual procedures the precise

value of X is not used, rather only the fact that X

is above or below a given cut-off score is used. The

procedure presented here has the advantage of not needing

special tables (other than standard normal tables). It

also makes use of the precise observed value of X , not

simply whether or not the score is above a given cut-off.

We assume that there are a finite number N of items

available for screening.
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2. The Selection Procedure

Consider a finite collection of objects, say N

objects, on which it is possible to make measurements X

and Y which come from a bivariate normal distribution

with correlation coefficient p > 0 . Assume that an

item is acceptable if Y j u and that the overall propor-

tion of such acceptable items is to be raised from y

(before screening) to 6 (after screening). Following

the procedure of Owen, Chen, and Li [S], we might find a

value k such that an item is selected if X S M + kax"

The value k , of course, is a function of the parameters.

For this value of k

P[Y s. u I X i ux + kax] - 6 . (1)

While in an exceedingly large population (which we might

take to be "infinite"), the proportion of selected items

which are accepted will be 6 , in a finite set of

selected items the actual proportion of acceptable items

will be a random variable. Specifically, if m items

are selected, then the actual number of those items for

which Y -s u , will be a binomial random variable, say

V , with parameters m and 6 . If we want the proportion

jof acceptable items in the finite set of selected items

to be at least n with probability at least C ,

Iii



i.e. if we want

mL

P[V rnm] - E ( 6 )i - ) > , (2)

where Z - 1(m) is the smallest integer greater than

or equal to Hm , then 6 must be chosen suitably large.

By using the interrelationships among the binomial, beta,

and F distributions it can be shown that a suitable

choice for 6 is given by

6 - Z/[' + (m- . + 1)F ,2m_2t+2,21]

where F ,a,b is the (1 - ) 1001 upper tail

percentage point for an F distribution having a and b

degrees of freedom for the numerator and denominator.

This value of 6 is then used in (1) and the value of k

to satisfy the equality in (1) can be found by using tables

given in Owen, Mclntire, and Seymour [6]. Note that the

value of m must be specified in advance and hence is a

fixed quantity.

In the procedure we propose, we assume that a large

lot of N items is available for screening.. The values of

X , call them X1 , X2, "-- , XN are found for each item.

Using the conditional distribution of Y given X = x



6

calculate pi by

Pi P[Y s u Xi a xi .

-*[(u - Uy - p.xCx - /-

where 0[.] represents the CDF of a standard normal

random variable. Since we assume the parameters of the

bivariate normal distribution are known, we can, wlog,

take them to be UX =  a 0 a . 1 In thisx Y
case we have

Pi = 4[(u - Pxi)//lJ- 7 * (3)

By first ordering the xi's , we can assume that

P1 Z P2 "'" PN " Now for each value of m , define

1(m) to be the smallest integer greater than or equal

Kto H - m . The selection procedure is to select the

m* items having the largest pi values, where m* is

the largest integer satisfying a relationship like (2),

namely

PlY(m*) a. IWA) a C •14)

In so doing we select as many items as possible subject

to satisfying the constraint given in (4). (Note that

this kind of situation might be desirable for a manufac-

turer who produces lots of N items and wishes to sell
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a sub-lot of size m* as large as possible, such that

a proportion N or more (say a guaranteed proportion)

of the screened items are satisfactory with probability

at least c

In order to calculate the probability in (4), it

is necessary to note that since we first order the X

values and then consider the conditional distribution

of the corresponding Y values given the X's , we are

dealing with what are known as the concomitants of order

statistics. (See David, O'Connell, and Yang [2].) It

follows from Bhattacharya's work [1] that the Yi values,

conditional on the ordered Xi values, are independent

with conditional distributions which are normal with

= Px and a
UY*X i  Y~xi - 1 - P Now let the xi values

j ibe given and define

Ii 1 i£ Yi u

0 otherwise.

then the Wi are (conditionally) independent Bernoulli

random variables and P(Wi - 1) - Pi Consequently

m

P[EV m) L (CM)] P[ Z 1wi > ZCm)]

p . - pi) l 'i = ; (5)
-m



where the sum is taken over all vectors

- (a1 , a2 , . . am) satisfying ai - 0 or 1

Eai > L(m) . We then take m* to be the largest value

of a such that m 2 C "

In trying to fins m*, one could systematically

calculate Cm for m - N, N 1, N - 2, .-- stopping

as soon as m > C However it is not necessary to

check all values of m because some values are inadmis-

sible. Specifically, if L(m) - Z(m + l) , then the

value m is inadmissible. (For example if R - .8

then 1(4) = (smallest integer > (.8)(4) = 3.2)i= 4

and t(S) = 4 . Since

P[V(4) Z t(4) - 4] P[V(S) a t (S) - 4]

it follows that C4 C S  We would never take a* to

be 4 since if C41 C ,it must also be true that

qSj -- > .Hence we say that when R - .8 , the value

m - 4 is inadmissible.) Since N is the size of the

lot, take N to be admissible. Since the pi are

in decreasing order, it might appear that for admissible

m's , the quantities Cm are strictly decreasing. How-

ever because of the rounding upwards that is done in

calculating i(m) , this need not be the case. Conse-

quently by following the given algorithm we can be sure

to find m' .

--b4 '-
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(1) Place the observed xi  in increasing order and

relabel the x's so that x 1 x2 _ "* < x .

(2) Find pi = P[Y i < u I Xi - xi ]

(u - xi)/] , i1 1, 2,** N

(3) Find the admissible

Mi , m1 < m 2 < m 3 < .- < M e = N.

(4) Set j = e and find c by using equation (5).
J

(5) If -> , set m* = m.. Otherwise reduce
J

j by 1 and calculate the next C "

Note that while the sequence of {mj I is not strictly

decreasing empirical studies indicate that the size of any

increase in successive terms is quite small relative to the

typical amount of decrease. From a practical viewpoint

then, one might use a different algorithm. For instance

one might choose a middle admissible m. and increase or

Jdecrease j depending on the value of C m *

If m. is sufficiently large, the value of3 mJ
can be approximated by using a normal distribution. The

use of this approximation can be justified by using a

central limit theorem for independent but not identically

[i
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distributed random variables. In particular

P[V(m) > (m.)

3 1/2
L.-*(~. -S . E -ZP)/( E p.(l -p.)) 1 (6)

i-1 1  i-1 1

If N is relatively small so that 4 m is to be

found exactly by using (S) rather than being approximated

by a normal distribution, the calculations can be quite

tedious. One possible means of eliminating some of the

calculations is to use Chbychev's inequality. In partic-

ular we have

M m 1/2
E(V (m)) - Ep V(m) 1 1Eiqi

m
so if (Tim - Ep.) > 0 ,then

11
m

P[V(m) .n Tm] - P[V(m) - E(V(m)) z (Jim -Epi)]

1

k P[ V(m) - E(V(m)) (Tim - Ep1)] s1

mm

'I _I



Consequently for any admissible value of m for which

the inequality in (7) holds, the value Cm will be less

than r , hence need not be calculated explicitly. If a

normal approximation is to be used, the computations are

quite simple and shortcut methods are not quite so

necessary.

Ii
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3. An Example

In this example we take N - 10 . The data shown

in Table 1 was generated from a bivariate normal distribu-

tion with P 0 02 2  1 , and P a .90

Table 1. Data for Example 1.

xi Yi Pi

-1.8772 -1.3569 .9995

- .8058 - .7349 .8606

- .6222 - .8524 .7592
- 4457 - .0962 .6327

- .0152 - .8580 .2912

.3443 .5514 .0982

.5310 .5349 .0468

.5431 - .0648 .0444

1.2019 1.6161 .0011

1.7573 1.3359 .0000

For convenience the x values have been placed in increas-

ing order. The y values correspond to the appropriate

x's . (That is the (x,y) pairs are ordered by the first

element.) We will take y - .4 n 1 a .6 , and C a .90

That is in the unscreened population Y - 40t of the items

are acceptable. We wish to choose a subset of the N - 10

items available such that at least U - 60% of the items

in the screened subset are acceptable with probability

C =.90.

From this information we find the value of u . Since

P[Y < u] " .40 - y
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and since Y has a standard normal distribution, it

follows that u - -.2S33 . Following the steps of the

algorithm, we next find the values

Pi a [(u - Pxi)/(l - P ) l I

- #[(-.2533 - .90xi)/.4359]

These values are shown in the third column of Table 1.

Next find the admissible m's . With H a .6 ,

the admissible values of m are 1, 3, 5, 6, 8, and 10

Direct calculations show that for m - 8 and 10 , the

inequality (7) holds, so C8 and €10 are both less

than .90 . Using (5) we find

C6 = .5751 , €S - .8909 C C3 = .9663

so we would take m* - .3. From Table 1 it can be seen

that for the top three x values, each of the correspond-

ing y's turned out to be acceptable (i.e. yi L u - -.2533)

In this sample all screened items happened to be satisfac-

tory. In general, by following this procedure, at least

601 of the screened sample would be acceptable at least

90% of the time.
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4. Comparison with Another Procedure

The procedure that we have proposed for screening

is most similar to the one discussed in Owen, Chen, and

Li [5]. For convenience we will refer to their procedure

as the OCL procedure and will refer to ours as the Sigma

procedure. The OCL procedure is to find a single cutoff

score k so that any item having an X score below

ko  is accepted In order to find the value of k0  from

tables it is necessary to know the value of m°0 , the

total number of items to be accepted. This implies then

that the number of items to be accepted is determined

before inspection starts. It would be logical then to

inspect the items one at a time, say as they become avail-

able. The inspection process would terminate when m 0

items have been accepted. One advantage of such a

procedure is that it is immediately known whether or not

an item is to be accepted or rejected. Of course it is

possible that the pool of items which are being inspected

is too small to be able to find m0  acceptable items, in

which case new screening criteria must be set forth result-

ing in a new cutoff score, etc.

With the Sigma procedure, all of N items avail-

able are inspected and the number which will ultimately be

accepted, say M , is a random variable. Likewise the

cutoff score is a random variable, say K . Since the
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value of K is not known until all N items have been

inspected, even though the value of X and the corres-

ponding value of p are known for a particular item,

it may not be immediately known whether or not that item

will ultimately be accepted. (In some cases, however,

if the value of p is high enough, one can be virtually

certain that the item will be acceptable. See Appendix 1.)

Monte Carlo studies were performed to compare the

OCL and Sigma procedures quantitatively. Since there are

some qualitative differences (e.g. in the OCL method m

is fixed while in the Sigma method M is random), some

reasonable basis for comparison had to be made. We took

o 0to be 100 for the OCL method so that items were

screened sequentially until 100 acceptable ones were

found. We denote the random number which had to be

screened by NOCL . In the Sigma method N was determined

empirically so that, in 500 Monte Carlo trials, the

sample average value of M was also approximately 100

(we were satisfied if F was within 100 t 1.) Some results

of the Monte Carlo studies are shown in Table 2. There are

four comparisons that can be made here:

(1) Observed sample proportion of satisfactory items.

(2) Estimated variance of proportion of satisfactory

items.

(3) Estimated average number screened to get 100

acceptable.

(4) Observed number of times that V z ml.
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The first and third of these are probably of greatest

interest. In the first case, in order to have a high

probability that V a nm , the actual proportion of

satisfactory items must exceed n . However it is

advantageous to a manufacturer, for example, to exceed

n by as little as possible. In almost every case the
observed proportion is closer to H for the Sigma

procedure, especially when H - y • To compare average

numbers screened to get 100 acceptable items, we used

an empirical determination of N so that N was within

100 t 1 . Then the estimated average number under the

Sigma procedure was taken to be lOON/N . This number

is compared with nOCL , the average number screened

under the OCL procedure to get 100 acceptable items.

In 22 out of 28 casas investigated the average is

smaller for the Sig.na procedure.

In 500 trials, the expected number of times that

V will be at least R •m should be 500 • with a

variance of S00C(l - . There are some situations

where the observed number is higher than this expected

number for the Sigma procedure. However the. cases

where this happens all correspond to cases where y =  .

Closer examination of the Monte Carlo output revealed

that in these cases there were several times when m*

the number accepted, was equal to N , i.e. all N items

were "accepted." (See the last column of Table 2.) The

El 4i
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implication of this is that P[V(N) n H • N] Z , and

in fact the probability most likely exceeds C by some

amount. This leads to a higher expected value for the

number of.times that V will be at least n • m . In

each of the four quantitative comparisons the Sigma

procedure compares quite favorably with the OCL procedure.

Another comparison that can be made using Monte

Carlo studies is with the fixed cutoff score (k0 ) of the

OCL procedure and the random cutoff score K of the Sigma

procedure. Recall that in the OCL procedure an item is

accepted if X < ux + ko ax = ko (if uX - 0 and

aX = 1) . In Table 3 the values k0  and k , the average

cutoff score based on 500 trials, are compared. Since K

is random, there are times when it is smaller than k

and other times when it is larger. If it is, on the average,

larger than ko , this indicates that the acceptance

cirterion is less stringent. The observed value of T is

larger than k°  in 23 out of 28 cases.

The fact that K is random and not fixed has the

following implication. In repeated trials, a score of

x - ko + c would never be accepted under the OCL procedure

while a score of x - ko - e would always be accepted.

However in repeated trials using the Sigma procedure, the

probability that a score of x0 will be accepted is a

non-increasing function of xo . This is illustrated in

Figure 1. This figure is based on the empirical Monte Carlo
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results and does not give the exact distribution of K

From this we see that, rather than there being a strict

cutoff (as in the OCL procedure), the lower (better) the

x score attained by an item (or individual) the higher

the probability that the item will be accepted.

-1.00 
OCL procedure

o Sigma procedure
% a.80

4jU

.60

.40
0 U

N .20

-1 0 1+ 2 3 4
ko X score..

Figure 1. Comparison of Cut-off scores.

.9 p .9, y = .4, E = .4

(K
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5. Conclusions

There are various situations under which screening

may be done. Some examples are admissions tests for

educational placement, competency tests for employment,

or quality tests for a product. Based on Monte Carlo

studies, the Sigma procedure that we have described com-

pares favorably with the procedure suggested by Owen,

Chen, and Li in terms of meeting the conditions given in

(4),

P[V~m*) I ICm*)] €.

The comparison is also favorable in terms of the number

of items N which need to be screened in order to obtain

a specified number of acceptable items. The Sigma

procedure may offer a disadvantage in that the X measure-

ments need to be made on the entire population of N

items before it can be determined which items can be

accepted. One of the major advantages is that the Sigma

procedure does not require any specialized tables to

implement.

i .. ..........

.i.i.



22

Appendix

Determination of a "Guaranteed" Acceptable Score

In Section 4 we pointed out that the X measure-

ments need to be taken on the entire population of N

objects before determining which items in the population

will be in the acceptable subset. In the OCL procedure,

as soon as the x score for an item is found, it is

immediately known whether or not x is less than or

equal to k° , and hence whether or not the item is accept-

able. However if we assume that we know approximately how

many items out of N , say m , will ultimately be accept-

able, and if m is large enough to use a normal approxima-

tion, then we can find an x score (or equivalently a

value of p) for which the corresponding item is almost

certain to be accepted. The most difficult case would be

when all items are essentially at the same minimal score,

so we will let p denote this common conditional proba-

bility. Using (6) with all pi p we obtain

P[VCm) z t(m)]

§[t1 - [(m) - .5 - mp)/(mp(l -. p))1/ 2] . (8)

If we let I 1 t(m) - .5 , then the right hand side of

(8) will be at least € if

(t - mp)/(mp(1 - p)1)/2 < z (9)

where z z l- denotes the 100(1 - )% point of the

=mow
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standard normal distribution. Solving the inequality in

(9) for p via the quadratic formula yields

1/2
+ (z 2/2) + I z It ( -/m) + z2/4]

mz 2

The corresponding x values .can be found by solving (3)

to get

u- <u 1(p)[1 - p2 ]
P

From the empirical Monte Carlo studies these values of p

and x appear to be highly conservative.

As an example, if C - .9 , p - .9 , y * .4 , and

I - .4 , and if we assume that m will be about 100

then we will find

39.5 e ( "-82) + 1.282[39.5(1- 39.5 +(-1.282)2 11/2

p _.
100 + (-1. 2 8 2 )

, .4589

and the corresponding values of x would be

-1 i21/2

x < -.2533 - 1 (.4S89)([ - (.9) 2 1 -.231S
.9
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