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v A Selection Procedure Using a Screening Variate

) Richard W. Madsent®*

University of Missouri - Columbia
1. Introduction and Background

Consider N objects on which two correlated

measurements X and Y can be made. Assume that the

N 2

probability that the Y measurement meets a certain 4

specification (e.g. Y <u) 1is Y . We present a

method whereby a maximal subset of m out of the N
objects can be chosen, based on the observed X
measurements, so that there is a high probability (z)
that a large proportion (I > Y) of the selected sub-
. set will meet the desired specification related to the
?1, Y measurement. In general such a selection procedure
3 would be used when Y is based on a measurement which
is difficult or expensive to make and X is based on
one which is easier or less expensive to make. For
example measuring Y may actually destroy the item being
tested whereas measuring X will not. In another situa-

tion Y might be a student's grade point average after

‘ *Research supported in part by the Office of
: . Naval Research, Contract ONR-N00014-76-C-0789,.




a number of years in college, while X is a score made
on an entrance or qualifying examination.

A related problem considers an infinite population
where we assume that a certain proportion, say Y , of the
observed Y variates satisfy some specification. By
screening on the observed value of the correlated variable
X , it may be possible to raise the proportion of Y
variates which satisfy the specification to a higher
value, say 6§ . We will assume, as is generally done,
that X aﬁd Y have a bivariate normal distribution with
correlation coefficient p .

This problem has been studied for quite some time
with the work of Taylor and Russell [8] in 1939 being
among the earliest. More recently D. B. Owen and various
co-researchers ﬂS], [4], [7]}, and [9])have studied other
aspects of this problem. For example, Thomas, Owen, and

Gunst [9] considered two screening variables X, and X

1 2
Li and Owen [3] considered two sided screening procedures;
Owen and Boddie [4] considered screening methods with some
parameters unknown. In these cases, sharp cut-off scores
are found such that if the X score is in a given range,
say X < uy * kcx , the corresponding item is selected.
Much of the work done in this area has been to
table values of k corresponding to values of Y , ¢,

etc. to meet certain specifications. Hence one potential

deterrent to implementation of these screening procedures

v e i 4 -




is the need for specialized tables. A second point to
consider is that with the usual procedures the precise

5 ’ value of X is not used, rather only the fact that X |

is above or below a given cut-off score is used. The
procedure presented here has the advantage of not needing %‘
special tables (other than standard normal tables). It

also makes yse of the precise observed value of X , not
simply whether or not the score is above a given cut-off.
We assume ;hat there are a finite number N of items

available for screening.
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2. The Selection Procedure

Consider a finite collection of objects, say N
objects, on which it is possible to make measurements X
and Y which come from a bivariate normal distribution
with correlation coefficient p > 0 . Assume that an
item is acceptable if Y < u and that the overall propor-
tion of sucﬁ acceptable items is to be raised from vy
(before screening) to & (after screening). Following
the procedure of Owen, Chen, and Li [S], we might find a
value k such that an item is selected if X < My *+ kox .
The value k , of course, is a function of the parameters.

For this value of k ,
P[Y <u| X<uy+ koy] =6 . | (1)

While in an exceedingly large population (which we might
take to be "infinite'"), the proportion of selected items
which are accepted will be & , in a finite set of

selected items the actual proportion of acceptable items
will be a random variable. Specifically, if m items

are selected, then the actual number of those items for
which Y < u , will be a binomial random variable, say

V , with parameters m and § . If we want the proportion
of acceptable items in the finite set of selected items

to be at least N with probability at least g ,
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i.e. if we want

P[V > IIm] = H (@)sj(l - o™, (2)
j=t |’

where £ = 2(m) is the smallest integer greater than

or equal to Im , then § must be chosen suitably large.

By using the interrelationships among the binomial, beta,

and F distributions it can be shown that a suitable

choice for & 1is given by

§ = 2/[e + (m -2+ DF on 2942,24]

where F is the (1 - g) - 100% wupper tail

z,a,b
percentage’point for an F distribution having a and b
degrees of freedom for the numerator and denominator.
This value of & is then used in (1) and the value of k
to satisfy the equality in (1) can be found by using tables
given in Owen, McIntire, and Seymour [6]. Note that the
value of m must be specified in advance and hence is a
fixed quantity.

In the procedure we propose, we assume that a large
lot of N items is available for screening.. The values of

X , call them Xl, Xz, e, XN are found for each item.

Using the conditional distribution of Y given X = x ,




calculate P; by

P; "PlY<u| X; = x;1 -

1

g
= ol(u - uy - °6§'(xi - ux))/(oy/l - pz)]

where ¢[°] represents the CDF of a standard normal
random variable. Since we assume the parameters of the
bivariate normal distribution are known, we can, wlog,

by = 0, oi-o%-l. In this

take them to be My

case we have
p; = ¢l(u - pxi)/ll - pz] . (3)

By first ordering the x;'s , we can assume that

P} 2Py 2 - 2 py - Now for each value of m , define
2£(m) to be the smallest integer greater than or eqqal
to T - m . The selection procedure is to select the
m* items having the largest p; Vvalues, where m* is
the largest integer satisfying a relationship like (2),

namely
PIV(*) 2 (@] 2 ¢ . , 14)

In so doing we select as many items as possible subject
to satisfying the constraint given in (4). (Note that
this kind of situation might be desirable for a manufac-

turer who produces lots of N items and wishes to sell




a sub-lot of size m* , as large as possible, such that

a proportion N or more (say a guaranteed proportion)
of the screened items are satisfactory with probability
at least ¢ .)

In order to calculate the probability in (4), it
is necessary to note that since we first order the X
values and then consider the conditional distribution
of the corresponding Y values given the X's , we are
&ealing with what are known as the concomitants of order
statistics. (See David, 0'Connell, and'Yang [(2].) 1t
follows from Bhattacharya's work [1] that the Yi values,
conditional on the ordered X; values, are independent

with conditional distribuiions which are normal with

- 2
By |x. pxi and Oyix. = 1 - pz ., Now let the x. values
i i . i

be given and define

{1 if Y. <u
N, = 1
1 0 otherwise .

then the Wi are (conditionally) independent Bernoulli

random variables and P(wi = 1) = P; - Consequently

| m
P[V(m) > £(m)] = P[_lei 2 2(m)]
i=
T % . l-a.
- ziflpi (1- p;) i - (5)
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where the sum is taken over all vectors

a = (al, Gyy **° am) satisfying a; = 0 or 1,
La; 2 t(m) . We then take m* to be the largest value
of m such that ip 2% -

In trying to fini m* , one could systematically
calculate n for m =N, N-1, N - 2, --- stopping
as soon as [ 27 . However it is not necessary to
check all values of m because some values are inadmis-
sible., Specifically, if 2(m) = 2(m + 1) -, then the
value m is inadmissible. (For example if I = .8 ,
then £(4) = (smallest integer > (.8)(4) = 3.2) = 4
and 2(S) = 4 . Since

PIV(4) > £(4) = 4] < P[V(5) > 2(5) = 4] ,

it follows that G4

A

fg . We would never take m* to
be 4 since if L4208 it must also be true that

g 2 ¢ . Hence we say that when I = .8 , the value
m=4 is inadmissible.) Since N is the size of the
lot, take N to be admissible. Since the p; are

in decreasing order, it might appear that for admissible
m's , the quantities g are strictly decreasing. How-
ever because of the rounding upwards that is done in
calculating 2(m) , this need not be the case. Conse-
quently by following the given algorithm we can be sure

to find m* .

T AP vop, g Vit




(1) Pplace the observed x; in increasing order and

] oo
relabel the x's so that X)L Xy 8 2 Xy

(2) Find p; = P[Y; <u | X, = x,]
= ®[u - pxi)//l - pzl y 1 =1, 2, .-+ N

(3) Find the admissible

mi , M <My <My < e <M= N .

(4) Set j = e and find g, by using equation (5).
j
(5) 1f tp. 2 T, set m* = mj . Otherwise reduce

J
j by 1 and calculate the next Cm. °
)

Note that while the sequence of {cm } is not strictly

decreasing empirical studies indicate that the size of any
increase in successive terms is quite small relative to the
typical amount of decrease. From a practical viewpoint
then, one might use a different algorithm. For instance
one might choose a middle admissible mj and increase or
decrease j depending on the value of Em.

1£f mj is sufficiently large, the %alue of Cm.
can be approximated by using a normal distribution. T%e

use of this approximation can be justified by using a

central limit theorem for independent but not identically
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distributed random variables. In particular

PIV(m,) > t(m;)]

. ™3 "5 . 1/2
1- 0[(R'(mj) - .5 - iflpi)/(iflpi( - pi)) ]

If N 1is relatively small so that S is to be
found exactly by using (5) rather than being approximated
by a normal distribution, the calculations can be quite
tedious. One possible means of eliminating some of the
calculations is to use Chbychev's inequality. In partic-

ular we have

.® s R L2
B[V(ln)) ipi » ov(m) (ipiqi)

m
so if (Im - Zpi) >0 , then
1

m
P[V(m) > Mm] = P[V(m) - E(V(m)) 2 (Nm - ){Pi)]

) m
< PL| V) - E(V(M) | 2 (- Zp,)] siz :

m
where k = (IIm - ipi)/GV(m) . It follows that

P[V(m) > Mm] < g

zpiQi
. 1 . 1 7
provided that ( /kz) <z, i.e. <7 . (7)

mo2
(nn = :pi)
1

(6)




Consequently for any admissible value of m for which
the inequality in (7) holds, the value Cn will be less
than g , hence need not be calculated explicitly. If a
normal approximation is to be used, the computations are
quite simple and shortcut methods are not quite so

X necessary.

o vy 2

1
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3. An Example

In this example we take N = 10 . The data shown
in Table 1 was generated from a bivariate normal distribu-

tion with uy = uy, =0, oi - ag =1, and p = .90 .

Table 1. Data for Example 1.

Xi Yi Pi
-1.8772 -1.3569 .9995
- .8058 - .7349 .8606
- .6222 - .8524 .7592
- 4457 - .0962 .6327
- .0152 - .8580 .2912

.3443 .5514 .0982

.5310 .5349 .0468

.5431 - .0648 .0444

1.2019 1.6161 .0011
1.7573 1.3359 .0000"

For convenience the x values have been placed in increas-
ing order. The y values correspond to the appropriate
x's . (That is the (x,y) pairs are ordered by the first

element.) We will take y = .4 , N = ,6 , and ¢ = .90 .
That is in the unscreened popuiation Y = 40% of the items
are acceptable. We wish to choose a subset of the N = 10
items available such that at least N = 60% of the items

in the screened subset are acceptable with probability

T =~ .9 .

From this information we find the value of u . Since

P[Y < u) = .40 = ¥y




g
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and since Y has a standard normal distribution, it
follows that u = -.2533 . Following the steps of the

algorithm, we next find the values

P; = ¢l(u - pxy)/00 - 92)1/2]

= &[(-.2533 - .90xi)/.4359]

These values are shown in the third column of Table 1.
Next find the admissible m's . With N = .6 ,
the admissible values of m are 1, 3, 5, 6, 8, and 10 .
Direct calculations show that for m = 8 and 10 , the
inequality (7) holds, so % and Ti0 8re both less

than .90 . Using (S) we find

L = -5751 , = ,8909 , Ls = .9663

ts
so we would take m* = .3 . From Table 1 it can be seen

that for the top three x values, each of the correspond-

ing y's turned out to be acceptable (i.e. y; £u-= -.2533)

In this sample all screened items happened to be satisfac-
tory. In general, by following this procedure, at least

60% of the screened sample would be acceptable at least

90% of the time.
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4. Comparison with Another Procedure

The procedure that we have proposed for screening
is most similar to the one discussed in Owen, Chen, and
Li [5]. For convenience we will refer to their procedure
as the OCL procedure and will refer to ours as the Sigma
procedure. The OCL procedure is to find a single cutoff
score ko go that any item having an X score below

o

k_is accepted In order to find the value of ko from

tables it is necessary to know the value of m, the

’
total number of items to be accepted. This implies then
that the number of items to be accepted is determined
before inspection starts. It would be loéical then to
inspect the items one at a time, say as they become avail-
able. The inspection process would terminate when - m
items have been accepted. One advantage of such a
procedure is that it is immediately known whether or not
an item is to be accepted or rejected. Of course it is
possible that the pool of items which are being inspected
is too small to be able to find m, acceptable items, in
which case new screening criteria must be set forth result-
ing in a new cutoff score, etc.

With the Sigma procedure, all of N items avail-
able are inspected and the number which will ultimately be
accepted, say M , is a random variable. Likewise the

cutoff score is a random variable, say K . Since the




value of K is not known until all N items have been

inspected, even though the value of X and the corres-
ponding value of p are known for a particular item,
it may not be immediately known whether or not that item
will ultimately be accepted. (In some cases, however,
if the value of p is high enough, one can be virtually
certain that the item will be acceptable. See Appendix 1.)
Monte Carlo studies were performed to compare the
OCL and Sigma procedures quantitatively. Since there are
some qualitative differences (e.g. in the OCL method m,
is fixed while in the Sigma method M is random), some
reasonable basis for comparison had to be made. We took
m, to be 100 for the OCL method so that items were
screened sequentially until 100 acceptable ones were
found. We denote the random number which had to be
screened by NocL + Im the Sigma method N was determined
empirically so that, in 500 Monte Carlo trials, the
sample average value of M was also approximately 100 .
(we were satisfied if m was within 100 * 1.) Some results
of the Monte Carlo studies are shown in Table 2. There are
four comparisons that can be made here:
(1) Observed sample proportion of satisfactory items.
(2) Estimated variance of proportion of satisfactory
items.

(3) Estimated average number screened to get 100

acceptable.

(4) Observed number of times that V > Mm .
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The first and third of these are probably of greatest
interest. In the first case, in order to have a high
probability that V > IIm , the actual proportion of
satisfactory items must exceed I . However it is
advantageous to a manufacturer, for example, to exceed
N by as little as possible. In almost every case the
observed proportion is closer to I for the Sigma
procedure, especially when I = y . To compare average
numbers screened to get 100 acceptable items, we used
an empirical determination of N so that m was within
100 * 1 . Then the estimated average number under the
Sigma procedure was taken to be 100N/m . This number
is compared with ﬁbCL » the average number screened
under the OCL procedure to get 100 acceptable items.
In 22 out of 28 casas investigated the average is
smaller for the Sigmna procedure.

In 500 trials, the expected number of times that
V will be at least T - m should be 500 - z with a
variance of 500¢(1 - z) . There are some situations
where the observed number is higher than this expected
number for the Sigma procedure. However the cases
where this happens all correspond to cases where y = 1 .
Closer examination of the Monte Carlo output revealed
that in these cases there were several times when m* ,
the number accepted, was equal to N , i.e. all N items

were "accepted." (See the last column of Table 2.) The i
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implication of this is that P[V(N) > « N] 2 ¢ , and
in fact the probability most likely exceeds g by some
amount. This leads to a higher expected value for the
number of.times that V will be at least T - m . In
each of the four quantitative comparisons the Sigma
procedure compares quite favorably with the OCL procedure.
Another comparison that can be made using Monte
Carlo studies is with the fixed cutoff score (ko) of the
OCL procedure and the random cutoff score K of the Sigma
procedure. Recall that in the OCL procedure an item is
accepted if X < uy * ko ox = ko (if uy * 0 and

= 1) . In Table 3 the values ko and k , the average

%%
cutoff score based on 500 trials, are compargd. Since X
is random, there are times when it is smaller than k°
and other times when it is larger. If it is, on the average,
larger than k° , this indicates that the acceptance
cirterion is less stringent. The observed value of K is
larger than ko in 23 out of 28 cases.

The fact that K is random and not fixed has the

following implication. In repeated trials, a score of

x = k, + € would never be accepted under the OCL procedure

while a score of x = ko - ¢ would always be accepted.
However in repeated trials using the Sigma procedure, the
probability that a score of x, will be accepted is a
non-increasing function of X, - This is illustrated in

Figufe 1. This figure is based on the empirical Monte Carlo
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results and does not give the exact distribution of K .
From this we see that, rather than there being a strict
cutoff (as in the OCL procedure), the lower (better) the
x score attained by an item (or individual) the higher

the probability that the item will be accepted.

OCL procedure
/ ) 4

(7%} =-1.00 R
° Sigma procedure
> 0 .80} '
=¥
- .60¢
ol
3 o wof
oV . |
g |
- .20 |
- N
-1 0 14 2 3 4
k, X SCOTEe ——»

Figure 1. Comparison of Cut-off scores.

t=.9, p= .9, y= .4, NI = .4
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5. Conclusions

There are various situations under which screening
may be done. Some examples are admissions tests for
educational placement, competency tests for employment,
or quality tests for a product. Based on Monte Carlo
studies, the Sigma procedure that we have described com-
pares favorably with the procedure suggested by Owen,

Chen, and Li in terms of meeting the conditions given in

(4,
P[V(m*) > 2(m*)] >z .

The comparison is also favorable in terms of the number
of items N which need to be screened in order to obtain
a specified number of acceptable items. The Sigma
procedure may offer a disadvantage in that the X measure
ments need to be made on the entire populaiion of N
items before it can be determined which items can be
accepted. One of the major advantages is that the Sigma
procedure does not require any specialized tables to

implement.
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Appendix

Determination of a "Guaranteed" Acceptable Score

In Section 4 we pointed out that the X measure-
ments need to be taken on the entire population of N
objects before determining which items in the population
will be in the acceptable subset. In the OCL procedure,
as soon as the x score for an item is found, it is
immediately known whether or not x is less than or
equal to k° , and hence whethgr or not the item is accept-
able. However if we assume that we know approximately how
many items out of N , say m , will ultimately‘be accept-
able, and if m 1is large enough to use a normal approxima-
tion, then we can find an x score (or equivalently a
value of p) for which the corresponding item is almost
certain to be accepted. The most difficult case would be
when all items are essentially at the same minimal score,
so we will let p denote this common conditional proba-

bility. Using (6) with all p; = p we obtain

P{V(m) > 2(m)] B
=1 - e[(am - .5 - mp)/(mpl - PN} . (8)

If we let 2 = ¢(m) - .5 , then the right hand side of
(8) will be at least g if

172

(2 - mp)/(mp(1 - p)) < z - (9)

where z = z, . denotes the 100(1 - %)% point of the

T e e A e OB AL T A GRS LSO
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standard normal distribution. Solving the inequality in

(9) for p via the quadrdtic formula yields

1/2
g+ (2%/2) ¢ |z e[ (1 - &/m) + 2%/4]

m+ 2z

P 2

The corresponding x values can be found by solving (3)

to get

) 1/2
x < B -9 ‘e - 0%
[}

From the empirical Monte Carlo studies these values of p

and x appear to be highly conservative.
As an example, if ¢z = .9, p= .9, y = .4, and
Nn=.4, and if we assume that m will be about 100

then we will find

‘ 1/2
2 2
39.5 + ((21-282)7 Ly pg2(39.5(1 - 35 . (1:282)7,

P 2
100 + (-1.282)°

= ,4589

and the corresponding values of x would be

-1 2 1/2
x < -.2533 - &7 °(.4589)[1 - (.9)°] = -.2315 .

.9
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