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have been observed in the crosswind direction.

This research is to explain the asymetries not
predicted in previous theory but discovered under laboratory
operations, and to predict other asymmetries not yet found
in either the experimental or the theoretical phase._

The general approach to the solution of this problem
is via the Kirchhoff integral, together with a choice of
certain surface wave models. In this way, it is shown that
asymmetries can arise not only from unequal depths of source
and receiver, but also from small misalignments in the
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ABSTRACT

FREQUENCY SPREADING IN

UNDERWATER ACOUSTIC SIGNAhL TRANSISSION

Henti Tung

Yale University

May, 1980

The scattering of acoustic waves from a randomly varying

wind-driven water surface is known to introduce both time and

frequency spreading of the received signal. The frequency spreading

is thought to be related to surface statistics and water wave motion.

Therefore, knowledge of this relation leads to the possibility of

predicting surface statistics by analysis of the received acoustic

signal.

One important feature of the frequency spreading function is

that the Doppler sidebands are not equal in magnitude on both sides

of the carrier. This was first disclosed in some recent papers [1],

[2]. In these papers unequal sidebands were predicted if the acoustic

source and receiver are not located at the same depths below the

water surface and if the direction of the surface wave motion is not

perpendicular to the vertical plane containing both the source and

the receiver. Experimental results [3] from a model tank operated

under various wind conditions have verified the existence of unequal

Doppler sidebands under these conditions. However, strong asymetries

in sidebands were also observed under conditions under which the

previous theory would have predicted no asymmetries at all. For



example, strong asymmetries have been observed in the crosswind

direction.

This research is to explain the asymmestries not predicted

in previous theory but discovered under laboratory operations,

and to predict other asymmetries not yet found in either the

experimental or the theoretical phase.

The general approach to the solution of this problem is

via the Kirchhoff integral, together with a choice of certain

surface wave models. In this way, it is shown that asymmetries

can arise not only from unequal depths of source and receiver,

but also from small misalignments in the measuring system.

Furthermore, it is shown that the usually ignored skew in the

surface-slope probability density function also contributes to

the observed results.



- U.
ACKNOWLEDGEMENT

I would like to express my sincere thanks to my advisor

Professor F.B. Tuteur, for his support throughout this investigation

and for his invaluable comments in the preparation of this dissertation.

His patient guidance and constant encouragement made these past years

not only educational but also a most delightful experience in my

career as a student. To him I am deeply indebted.

I also wish to thank the other members of my dissertation

committee: Professor P.M. Schultheiss, for his invaluable discussion

and helpful advice concerning this study; Professor R.E. Apfel, for

teaching me the fundamentals of acoustics; Professor J.G. Zornig,

for his illuminating suggestion and for permission to use his

experimental results which have served as important verification to

this research.

Thanks are extended to Professor R.C. Barker and Professor

R.K. Chang for their constant encouragement; and to Professor J.F.

McDonald for his suggestions and interest in this work. Professor

T.P. Ma provided much assistance and advice, and this is greatly

appreciated. Although it is not possible to thank everyone

individually, I am grateful to members of the Department of Engineering

and Applied Science for their expertise in various areas which in

many ways contributed to this research. In particular, I want to

thank Pat Kakalow for the excellent job that she has done in typing

this dissertation.

I also wish to thank-the U.S. Navy, Office of Naval Research

for providing financial support.

I am grateful to my parents and parents-in-law for their great



sacrifice and support which made my studies possible. Finally,

the last and also the deepest thanks go to my wife Peisha, for

her patience, understanding arid sympathy which have guided me

through my graduate education.



I D*
CONTENTS

* PAGE

Chapter I: FREQUENCY SPREADING 1-1

1.0 Introduction 1-1

1.1 Motivations 1-5

1.2 Historical Background 1-11

Chapter II: MATHEMATICAL PRELIMINARIES 2-1

2.0 Introduction 2-1

2.1 The Kirchhoff integral 2-2

2.2 The Fresnel approximation and other expansion
formulae 2-6

2.3 Beam pattern function 2-13

Chapter III: DETERMINISTIC SURFACE 3-1

3.0 Introduction 3-1

3.1 The surface model 3-5

3.2 Downwind 3-7

3.3 Crosswind 3-25

3.4 Summary 3-28

Chapter IV: RANDOM SURFACE

4.0 Introduction 4-1

4.1 General scattering 4-3

4.2 Random surfaces-smal-I Rayleigh parameter 4-13

4.3 Random surfaces-large Rayleigh parameter 4-29

Chapter V: EXPERIMENTAL DATA COMPARISON AND DISCUSSION

5.0 Introduction 5-1

5.1 Doppler shift 5-1

5.2 Theoretical analysis of angled paths 5-11

5.3 Bandwidth 5-21

_ ,a ° ~~~~- ' ' m, . . , .-



PAGE

Chapter VI: PHYSICAL ARGUMENTS FOR THE REATION OF ASYMMETRIC
SIDEBANDS

6.0 Introduction 6-1

6.1 Effect of source-receiver geometry 6-1

6.2 Effect of the surface slope distribution 6-6

Chapter VII. SUMMARY AND CONCLUSIONS 7-1

Appendix A: DERIVATION OF HELMHOLTZ INTEGRAL A-i

Appendix B: SURFACE INTEGRAL TRANSFORMATION B-1

Appendix C: SPECTRUM COMPUTATION - DETERMINISTIC SURFACE,

DOWNWIND C-1

Appendix D: PROOF OF X >- 0 D-1

Appendix E: SPECTRUM COMPUTATION - DETERMINISTIC SURFACE,
CROSSWIND E-1

Appendix F: REPRESENTATION OF TRANSFER FUNCTION H(w0 ,t) IN
A GENERAL SCATTER GEOMETRY F-I

Appendix G: SIGN OF THIRD ORDER SLOPE MOMENT G-1

Appendix H: POWER SPECTRUM-RANDOM SURFACE, SLIGHTLY ROUGH H-I

Appendix I: POWER SPECTRUM-RANDOM ROUGH SURFACES I-i

Appandix J: SIGNAL PROCESSING TECHNIQUE J-i

References R- 1



ILLUSTRATIONS

Description

Figure Page

1.1 Crosswind source-receiver geometry 1-6

1.2 Wind-driven surface sketch 1-8

1.3 Power spectrum in crosswind scattering geometry 1-9

1.4 The probability distribution of surface slopes 1-16

2.1 Derivation of Helmholtz integral Theorem: region of
integiation 2-3

2.2 General forward-scatter geometry 2-7

2.3 Illustration of two different reflected rays 2-11

3.1 Waveforms generated from a two harmonic model:

z(t) = hI cos(wt+o) + h2 cos(2wt) 3-3

3.2 General forward-scatter geometry with wind direction 3-4

3.3 Downwind scatter geometry (r00 < r10 ) 3-8

3.4 Fresnel zones - symmetrical source-receiver geometry
(r00 =rl1) 3-14

3.5 Fresnel zones - asymmetric source-receiver geometry
(r0 0 < r1 0) 3-15

3.6 First order side frequency power ratio versus phase
angle * 3-19

3.7 First order side frequency power ratio as function
of geometry 3-20

3.8 First order side frequency power ratio versus grazing
angle *0 3-22

3.9 Crosswind scatter geometry 3-26

4.1 General scatter geometry with wind direction 4-4

4.2 Power spectrum-small and large e2  4-18

4.3 Doppler sidebands for scattering from slightly rough
surfaces, upwind 4-20

4.4 Asymmetric sidebands for different acoustic frequency 4-23

9



4.5 Asymmetric sidebands for small Rayleigh parameter,
e3 =0, and r00 > r1 0  4-24

4.6 Asymmetric sidebands for small Rayleigh parameter,

E = 0, and r00 < 4-25

4.7 Experimentally measured spectrum-crosswind 4-28

4.8 Gaussian spectrum-Downwind 4-34

4.9 Theoretically computed power spectrum (1) - rough

surface, upwind 4-35

4.10 Theoretically computed power spectrum (2) - rough

surface, upwind 4-36

4.11 Theoretically computed power spectrum (3) - rough

surface, upwind 4-37

4.12 Theoretically computed power spectrum (4) - rough

surface, upwind 4-38

4.13 Bandwidth coefficient for downwind 4-40

4.14 Bandiwdth for different wind direction and grazing
angles 4-42

4.15 Theoretically computed power spectrum (1) - rough
surface, crosswind 4-43

4.16 Theoretically computed power spectrum (2) - rough
surface, crosswind 4-44

4.17 Theoretically computed power spectrum (3) - rough

surface, crosswind 4-45

5.1 Power spectrum - upwind, *0 30 o  5-2

5.2 Power spectrum - crosswind, *0 = 300 5-3

5.3 Power spectrum - upwind, *0 = 170 5-4

5.4 Power spectrum - crosswind, 00 M 170 5-5
00

5.5 Power spectrum - experimentally measured at T = 2700,
R 850 5-7

5.6 Power spectrum - experimentally measured at T = 2700,
OR = 900 5-8

5.7 Power spectrum - experimentally measured at T = 2700

R = 950 T 5-9

5.8 Source-receiver geometry for experimental results

shown in Figures 5.5-5.7 5-10



5.9 Off-specular source-receiver geometry 5-12

5.10 Frequency displacements for spectra shown in
Figures 5.5 to 5.7 5-16

5.11 Shifted power spectrum of Figure 5.1 5-17

5.12 Shi,"ed power spectrum of Figure 5.2 5-18

5.13 Shifted power spectrum of Figure 5.3 5-19

5.14 Shifted power spectrum of Figure 5.4 5-20

6.1 Asymmetric downwind scatter geometry and attenuation
factor 6-2

6.2 Asymmetric crosswind scatter geometry and attenuation
factor 6-5

6.3 Symmetric downwind scatter geometry and surface slope
distribution 6-7

6.4 Symmetric crosswind scatter geometry and surface slope
distribution 6-8

B.1 Scatter surface and its projection on X-Y plane B-2

G.1 Saw-tooth wave G-2

J.1 Signal representations of acoustic signal transmitted
and received underwater J-2

J.2 Signal spectrum computing block diagram. J-3



Chapter I. Frequency spreading

1.0 Introduction

When an acoustic signal is scattered from a water surface,

the received signal in general depends on the characteristics of

the reflecting surface. If the water surface is a moving rough

surface, and if the acoustic signal is a pure sinusoid, a substantial

amount of frequency spreading around the transmitted frequency can be

expected in the received signal [1] - [18]. This frequency spreading

behavior is the result of the amplitude and phase modulations of the

acoustic signal because of surface roughness. Gulin [36] has

described the amplitude and phase modulations of a sinusoidal surface

from a physical optics point of view. Parkins [4] generalized the

sinusoidal surface case to a time varying ocean situation where he

found the scattered acoustic spectrum was related to the surface

spectrum. Scharf and Swarts [5] and Eggen [11] have developed a

simple model of high frequency scattering which gives a fairly

general qualitative description of scattered field spectral

characteristics. They found the bandwidth of the frequency spreading

function to be a function of surface roughness. Clay and Medwin [7]

have looked at the problem in the time domain and derived the temporal

correlations of the scattered sound field. McDonald and Tuteur [8]

have considered the surface scattering function which contains both

time delay and frequency spreading. All of the above papers use

++
the physical optics method (Kirchhoff integral +). Harper and Labianca

+ See Chapter II, section 1 for detailed descriptions.
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(1], (44], and Kuperman (2], (461 have considered the scattering

problem from a perturbation point of view. These theoretical

treatments of the scattering problem discovered a spectral asyimmetry

that had previously escaped notice.

There has also been a number of experimental studies of the

scattering phenomenon. Typical are sea experiments of Roderick

and Cron [16], Brown and Frisk [171, and model tank experiments

such as those of Zornig [3] or Gazanhes et al [13], etc. There

appears to have been no single theory that explains all the

details of the frequency spreading behavior that have been discovered

in these experiments. For instance, the perturbation. method of Harper

and Labianca, and of Kuperman shoved that the frequency spreading f unction

may be asymmetric for upwind (or downwind) transmission, but it does

not explain the observed asymmetry in the crosswind direction. Further-

more, it applies only in small surface roughness situations. For

large surface roughness the physical optics method has generally been

used; however, if the usual simplifying approximations are applied,

this method gives no spectral asymmetry at all.

In this study, the frequency spreading function, including both

the amplitude and bandwidth, is examined. The object of this

investigation is to develop a model and a formula from which the

* general frequency spreading function can be predicted, given the.

scattering geometry and surface conditions.

The analytical solution to this problem is based on the

Kirchhoff integral method. The mathematical results presented are

for arbitrary scattering geometry where the locations of source and
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receiver are not fixed. These results are specialized for upwind

(or downwind) and crosswind geometries, and detailed properties of

the function are discussed mainly for these special cases. We will

find that the iaportant surface parameters for frequency spreading

are the second-order moment of surface waveheight and the second

and third-order moments of surface slopes. Although the effect of

the surface slopes has frequently been neglected in previous surface

scattering studies (e.g. see [4]-[11],[13]), our analysis shows that

surface slope statistics may play an important role in determining

the shape of the frequency spreading function.

One important aspect of frequency spreading is the sideband

asymmetry which was discovered in both theory (perturbation method)

and experiment. We will show that similar results can be obtained

by use of the Kirchhoff integral method if certain usually neglected

higher-order expansion terms of this integral formula are retained.

The organization of this study is as follows: Chapter I

describes 1) the frequency spreading function and its general behavior,

2) a brief review of the sideband asymmetries found by the perturbation

method, and 3) a historical background review in the areas of underwater

acoustical surface scatter. Chapter II contains a review of the

Kirchhoff integral and the necessary boundary conditions in order to

provide a solution to the surface scattering problem. Chapter III

considers a deterministic surface model, from which the solutions to

the frequency spreading are obtained. Chapter IV contains a discussion

of the scattering of acoustic waves from a random water surface. Both

large and small roughness cases are considered. Chapter V gives a

1-3



comparison between the theory and the experimental results obtained

0 from a model tank. It is shown that misalignments in source-receiver

geometry can cause significant shift in the frequency spreading

function. In Chapter VI, the study of frequency spreading behavior

p of acoustic surface scattering is considered from a physical point of

view. Chapter VII offers a sumary and conclusions. Appendices A to

J provide the necessary mathematical background and computational

* edetails for the solutions presented in Chapters II to V.

1

I

i. 1

p
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1.1 Motivations

Consider a monochromatic acoustic wave of frequency o0

scattered from a moving rough water surface. The received signal

spectrum will generally be spread in frequency around the angular

frequency w0 . If the surface roughness is small and if the surface

deformation is roughly periodic, the spreading consists of a fairly

distinct sequence of sideband frequencies. This is the result of

phase modulation of the transmitted sinusoid by the moving surface,

and the separation between the spectral lines at the receiving point

is roughly equal to the surface frequency [5]. If the surface is

rough and confused, the sidebands merge together into a more or

less continuous spreading of frequencies around the transmitted

frequency w0 "

In several recent papers [11, (44]-[451, E.Y. Harper and

F.M. Labianca showed that if the source and receiver are at

+different depths the upper and lower sidebands may have different

spectral amplitudes. A similar result was obtained more recently

by Kuperman [2], [46]. The amplitude ratio depends on the direction

of the surface wave motion with respect to the source-receiver

geometry. Specifically, if the receiver is at a larger depth than

the source, and If the wind causes the surface wave to travel away

from the source and toward the receiver, then the upper sideband

amplitudes are larger.

IJ
The upper (lower) sideband refers to band of frequency higher

(lower) than the transmitted frequency w0.

1-5
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The existence of sideband asymmetries has been observed in

a series of experimental results obtained in a model tank under

simulated wind blown surface wave conditions f3j, (121. These

measurements showed the predicted asymmetries, but they also

showed asymmetry in the frequency spreading function when the

source and receiver were at the same depths, and the source-receiver

geometry was crosswind. For this arrangement the Harper, Labianca,

and Kuperman theory would have predicted symmetrical sideband

structures. It is clear, therefore, that there are features of the

spreading mechanism that are not yet included in these theories.

The observation of sideband asymmetry in the model tank

experiment can be explained heuristically as follows. Consider a

crosswind source-receiver configuration in Figure 1.1. Rays

reflected from upwind facets have upward doppler shifts, whereas

those reflected from downwind facets have downward doppler shifts

[21]. In a wind driven water surface the slope distribution at the

windward side is different from that at the leeward side [553, [56].

A sketch of a wind blown surface wave is shown in Figure 1.2; note

that the surface slopes on the windward side are shallower than those

on the leeward side [70]. The area of up-wind slopes capable of

reflecting rays from the source to the receiver with upper doppler

shifts is larger than the area of the downwind slopes. Hence, one

would expect the upper sidebands to be larger than the lower sidebands.

This can be seen in the experimental results of J.G. Zornig shown in

Figure 1.3. This frequency spectrum was taken in a crosswind condition

with the source and receiver at equal depths. The frequency of the

1-7
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Figure 1.3 Power spectrum in crosswind scattering geometry
with grazing angle of 300 and wind speed 8.3mlsec.
The acoustic frequency is 256 ICHz.
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acoustic wave was 256 KHz.+ As shown, frequency components higher

than the transmitted frequency (i.e. the upper sideband) are

larger in amplitude than the corresponding components below the

transmitted frequency (i.e. the lower sideband).

I We see that in order to investigate this phenomenon

analytically, it is necessary that the analysis takes into account

the details of surface slopes. Eckart [31], Gulin [36], Parkins [4],

I McDonald [38], and many other authors generally neglected the slope

terms in the Kirchhoff integral by assuming the slope variations to

be small. This implies that amplitude and phase modulations on the

acoustic signal are due entirely to the up and down motion of the

surface. On the other hand, Tolstoy and Clay [69] included slope

terms in their version of the Kirchhoff integral. But because of

the assumption of a directional source, these slope terms were com-

bined into an average slope term at the surface point from which

most of the acoustic energy was reflected. As will be shown in

subsequent chapters of this work, all of these approximations eliminate

one of the mechanism that causes sideband asymmetry.

+ The experimental technique actually involves the transmission of

* narrow pulses, and the recording of the pulse responses. After
Fourier transformation, the response to any desired exciting
frequency can, however, be obtained.
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1.2 Historical Background

The problem of scatter of acoustic signals from a rough

air-water interface has been extensively studied during the last

few decades. An excellent survey of the literature to 1958 was

compiled by Lysanov (19]. A more recent and more general survey

can be found in the excellent paper of Fortuin [20], which covers

work up to 1969. The following review leans heavily on Fortuin's

paper, but extends it to include the decade 1969 to 1979.

The scattering of sound by a sinusoidal water-air interface

was first studied by Lord Rayleigh [21]. This was the first attempt

to solve the wave equation in combination with a boundary condition

in sound scatter problems. Rayleigh's solution was an intuitive

approach which assumed that the scattered sound field from a

pressure-release sinusoidal surface could be described by a discrete

set of plane waves travelling away from the surface. This simple

approach received criticisms [22]-[30] from several authors, such

as Uretsky [22], Meecham [28], Heaps [30], who questioned the

validity of the boundary conditions assumed by Rayleigh. All of

these critics concluded, that "the Rayleigh method is indeed incorrect

in the way the boundary conditions are used" [20,p. 1213], however,

"for [relatively] smooth surfaces, the method produces results that

do not disagree more with experimental data than do other, more

rigorous, solutions." Uretsky [22] developed a method which

improves upon that of Rayleigh. It is based on a more rigorous

mathematical approach with matrix computation and handling techniques

1-11



to evaluate the reflection coefficients for the various orders of

sound reflection from a sinusoidal surfaces. His method was

summnarized by Barnard et al. (27] and used to make comparisons

with experimental results obtained in a model tank. Satisfactory

agreement between theory and experiment was obtained. Both the

Rayleigh and Uretsky theories apply to sinusoidal surfaces only.

In 1953, Eckart (31] applied an integral formulation known

as the Helmholtz integral [32] to the solution of sound scattering

from rough boundaries. He assumed two boundary conditions. One

is that the water-air interface is a pressure-release surface; the

other is that the first derivatives of the incoming acoustic wave

and the scattered fields are equal at the surface. This is a

frequently used boundary condition called the Kirchhoff approximation.

The use of the Kirchhoff approximation implies that the surface is

locally flat, i.e. the radius of the surface curvature is much

larger than the acoustic wavelength, and the surface is free of shadowing

and multiple reflections. Eckart derived a surface scattering cross-

section coefficient in terms of the incident acoustic frequency and

surface spatial spectrum. The Kirchhoff integral approach (Helmholtz

integral plus Kirchhoff boundary condition) was criticized by

Meecham [33] and Mintzer (34] because the limit of the validity of the

Kirchhoff boundary condition was not properly considered. It has in

fact been said [6] that Eckart "had obtained significant results with

minimum mathematical complexity by relying on a highly developed

physical insight into the problem". Nonetheless the Kirchhoff integral

method has been widely used in studies of surface scatter, and experi-

1-12



mental verification of some results [36] seems to indicate that

the error introduced by the Kirchhoff approximation may not be too

serious. The formulation used by Eckart is equivalent to the

Fraunhofer approximation used in optics. An improvement of this

approximation is the Fresnel or second-order approximation, first

applied to surface-scatter problems by Feinstein [35]. It has

also been used by Gulin [36], Melton and Horton [37], Medwin and

Clay [7], McDonald and Tuteur [8], etc. The Fresnel corrected

Kirchhoff integral is usually applied where the illuminated surface

area is large. It has many applications, such as the study of

amplitude and phase fluctuatiQns [12], the correlation and power

distribution of scattered sound [7], [38], and the studies of

frequency spreading and shift in forward and backward scatters [10].

A different approach to the solution of surface scatter

problems is the perturbation method introduced by Isakovich [41]

in 1957. Its original application was to solve the normal-mode

transformation problem in an irregular waveguide. Bezrodnyi and

Fuks [42] used it in the solution to the problem of amplitude and

phase fluctuations in a waveguide. Wait [43] analyzed the reflection

from two-dimensional periodic sea waves. In 1975, Harper and

Labianca [44] used the perturbation method in the study of the spectral

behavior of the surface scattered acoustic signal. Their studies show

the existence of asymmetrical sidebands in surface scattering. This

result was corroborated by the theoretical study of Kuperman [2]

using the same method, and by experiment [3]. The perturbation method

1-13



is mathematically more rigorous than the Kirchhoff integral method

and permits fairly precise bounds to be placed on the validity of

the simplifying assumptions [45]. However, its applications are

limited to problems with very small roughness.

Both the Fresnel-corrected Kirchhoff integral and the

perturbation method require a solution to the wave equation subject

to boundary conditions at the water-air interface. If the form of

boundary is very complicated, it can be extremely difficult, if not

impossible, to reach such a solution. Middleton [47] developed a

so-called Quasiphenomenological approach which eliminated the need

to simultaneously satisfy the wave equation and boundary conditions.

It introduces the surface (boundary) in terms of a group of

randomly distributed point scatterers. Each of these point scatterers

has its own system function and directivity pattern. This gives the

model the ability to handle problems of general scatter geometry with

very complex boundary conditions. However, application of this very

general theory is severely restricted in practice by the difficulty

of relating measured surface parameters to rtatistical behavior of

the scatterers.

The commonly used surface parameters are surface waveheight

and surface slopes. In most of the analyses that require descriptions

of the water surface boundary, it is assumed, with exceptons e.g.

[49], [50], that the water surface height and slopes are stationary

Gaussian processes [4]-[5], etc. Experiments performed at sea and

in model tanks have shown that this, in fact, is close to the real

situation. For example, Kinsman [51] used a capacitance probe held
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at the water surface to record the surface displacement. The

result of his measurement indicated the surface height distribution

+
was close to Gaussian with zero mean. This observation was

corroborated by Weissman [52] in his ocean waveheight measurement

with a two frequency radar interferometer and by Zornig (53] in his

height measurement in a model tank. However, Spindel [54] found

that the joint distribution of two points on the surface is

occasionally far from Gaussian. In particular, he found that the

conditional distribution of the surface at one point, given its

value at the second point, was occasionally multimodal, especially

at high winds. Cox and Munk [55] studied the slope distribution of

a wind-driven surface using aerial photograph technique. Their

method consisted "in photographing from a plane the sun's glitter

pattern on the sea surface, and translating the statistics of the

glitter into the statistics of the slope distribution". Figure 1.4

contains the result of the slope measurement by Cox and Munk. The

top plot was the slopes measured crosswind and had a symmetrical structure

with respect to zero slopes. The bottom plot was the up-down wind

slope distribution which showed skewness to the upwind side, i.e. the

most probable slope for the sea surface was negative. This distortion

probably was due to a wind stress effect, as remarked by Kinsman 1513,

p. 350]. Schooley [56] made the same sea slope measurement by a

similar optic method except the sun was replaced by a flashing gun attached

+ The flat surface level is chosen as the reference zero.
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Figure 1.4 The probability distribution
of surface slopes. The upper curves are
for crosswind; the lower curves are for
downwind. The solid curves refer to the

observed distribution, the dashed to a
Gaussian distribution of equal mean

" 3 square slope components. The thin

vertical lines show the scale for the
standardized slope components

1 -L- for crosswind and

1 1 for downwind.

0 T e w d D ay

The wind direction is in the y axis;
cc and a are the r.m.s. slope in x and
y directions respectively. The heavy
vertical segments show the surface slope
angle for 50, 100 ..... ,250. In the
lower curve, the negative slopes are on

j ,' the upwind side and the positive slopes
are on the downwind side.

.2 -I

(From Cox and Munk, 1954)
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to the camera. The same skewness in up-down wind slopes has been

observed by Wu [57] and Zornig [58] in model tank experiments.

There are two reasons, as pointed out by Kinsman, why the

waveheight and slopes are not strictly Gaussian. One is that the

wave motion must satisfy the Bernoulli equation and the free-surface

boundary conditions. The other is that waves are limited in height

by the wave breaking phenomenon. In summary, it appears that even

though the surface distribution is generally not strictly Gaussian,

the assumption of a Gaussian distribution is not unreasonable, and it

has been widely used.

Another factor to be considered in the development of a

scattering theory is shadowing. Shadowing occurs when a part of the

surface is screened by some other parts of the surface. In surface

scatter terms, this means the illumination of incoming radiation at

these parts of the surface is interrupted. Shadowing is more

significant when the acoustic source and receiver are very close to

the scattering surface. Neglecting this shadowing effect may cause

large errors if the theory is based on the assumption of total

illumination on the water surface, e.g. the Kirchhoff integral

method. Beckman [59] proposed a simple way to treat the shadowing

by introducing a shadowing function S which equals unity on the

illuminated parts of the surface and equals zero on the screened parts.

In other words, the shadowing function S is the probability that this

part of surface will get illuminated. He applied this concept of a

shadowing function to the study of backscattering from a composite

rough surfaces [60]. However, a computer simulated experiment on

1-17



shadowing in backscatter by Brockelman and Hagfors [61] showed

marked disagreement between their results and those of Beckmann.

With a modification to the Beckmann theory that includes the

effect of slopes, Wagner [62] developed formulas which consider

geometric shadowing. A comparison between his results and those of

experiment showed an excellent agreement between theory and experi-

ment [20]. Lynch and Wagner [63], [64] used this geometric shadowing

to correct the energy loss in high frequency scatter from random

rough surfaces. A simplified method to evaluate Wagner's shadowing

function was given by Smith [65]. He omitted the correlation between

surface height and slopes but obtained a result which was not very

different from the complete solution obtained from Wagner's method.

Gardner [661 used Wagner's theory to explain near grazing backscatter

through the Kirchhoff integral approach. However, it was pointed out

in the experiment by Novarini and Medwin [67] that Wagner's theory

of geometric shadowing is inadequate in the sea experiment because

of the proven existence of bubbles below the sea surface [68]. In

our analysis of the scattering problem, shadowing has been ignored.

The analysis therefore is limited to relatively large grazing angles.

Iq
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Chapter Il. Mathematical preliminaries

2.0 Introduction

In this chapter, we introduce some basic mathemotirl concepts

which are of interest in this analysis. These include the derivation

of the Kirchhoff integral formula to solve the surface scatter problem,

the Fresnel approximation and other expansions, the definition of

surface roughness, and the beam pattern function for both source and

receiver. Most of the material presented in this chapter can be

found elsewhere. For example, Baker and Copson [32] and Eckart [31]

give a derivation of Kirchhoff integrals; the Fresnel expansion is

a second order approximation and is commonly presented in optics

texts [71]; the discussion of the beam pattern function (directivity)

for an acoustic source can be found in texts of acoustics, such as

Beranek [72].

We shall regard the underwater acoustic surface scattering

process as linear and slowly time-varying. This permits us to use

a monochromatic signal source.
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2.1 The Kirchhoff integral

Consider a function p r, wo, t) which satisfies the wave

equation within a volume V bounded by a surface S. For our purpose

p is regarded as the complex time varying amplitude of the pressure

at a location defined by r and at the frequency w0 and time t.

Assume that p and its first-order derivatives are finite and

continuous inside the volume V. Then, from the Helmholtz theorem

(see Appendix A), the value of p at a particular point P inside V

and at time t is given by
U)0  U"0
1-l e r

p(P,t) S 4 [ I3 " Psn rI  1 ds (2.1.1

where p8 is the pressure amplitude at the surface S, rI is the

scalar distance from the surface element ds to the point P as shown

in Figure 2.1, and n is the surface normal defined to be poisitve

in the outward direction. The surface pressure p and its normal
ir 1

derivative are evaluated at the time t -- ,where c is the soundc

velocity; however, for the time scale of interest in our work this

retardation delay can be ignored [74].
$

In much of our work we are interested in sound transmitted

and received by directional hydrophones with directional beam

patterns. The effect of such a beam pattern is to give unequal

weights to different parts of the surface S, and this effect can be

included in equation (2.1.1) by changing the Green's function
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Figure 2.1 Derivation of Helmholtz integral Theorem:
region of integration
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C 1
"1c-- ~ r -- r1

to BR  e. This results inr 1

W 0 01 _ ____ _

p(P,t) - c r 1 P ) • ds (2. 1.1a)

where the beam pattern function BR is, strictly speaking, evaluated
r1

at the retarded time t
c

We now assume that the water surface is illuminated by a

monochromatic acoustic source which has a beam pattern function Bs

The incident acoustic pressure p measured on the water surface is

then given by W0

icLO
P, PoBs r0  (2.1.2)

where r0 is the distance from the source point to the surface element

ds, and p0 is the amplitude of the acoustic source.

The pressure amplitude ps appearing in equation (2.1.1) is

regarded as the surface reflected pressure. It is related to the

incident pressure p, through a surface boundary condition. For the

air-water interface the surface can to a very good approximation be

regarded as being a pressure-release surface; hence the boundary

condition is

Ps + Pi a 0 on S (2.1.3)

Also, the normal derivative - can be related to the normal

derivative of the incident pressure by invoking the Kirchhoff boundary
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condition:

- - =-- on S 
(2.1.4)

The Kirchhoff condition implies that the surface is "locally

flat", i.e. the radius of the surface curvature is much larger

than the acoustic wavelength. It also implies no shadowing or

multiple reflections on the surface, i.e. the surface is totally

illuminated. As briefly discussed in Chapter I, there are criticisms

about the validity of the Kirchhoff condition. A summary of these

criticisms can be found in [20], (74]. However, by employing these

two boundary conditions and replacing Pi with its equivalent from

equation (2.1.2), one can convert the integral in equation (2.1.1a)

to the form

j -(ro+r)
p(Pt) e L 0 an Bs3 R Crot •ds (2.1.5)

If we define the channel transfer function H(w0,t) as the

ratio of p(P,t) and p0, equation (2.1.5) can be rewritten as

0
JI-(ro+r1 )

H(w 0 ,t) Tr .JJ -BR er r ds (2.1.6)
,<o.> -o0 1

Thus H(w0,t) represents the instantaneous amplitude and phase at

the receiver due to a unit amplitude sinusoidal signal with frequency

wo at the source.
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2.2 The Fresnel approximation and other expansion formulae

A commonly used coordinate system in surface scattering

studies is shown in Figure 2.1. The X-Y plane is the plane of

the smooth (flat) surface. The positive direction for the Z axis

is downward into the water. The origin of coordinates is taken to

be at the smooth-surface specular point. The source, receiver and

specular point lie in a plane which makes an angle 0Rwith the

-Y axis. Both source and receiver have grazing angles *0 with the

flat water surface. The distances from the origin to source and

receiver are respectively r00 and r10. The locations of source and

receiver are described as (X, YT' ZT) and (X, YR' ZR), respectively,

where

XT = -r00o cos cos OR s r c cos OR

YT = r00 cos *0 sin 0R YR = -r1 0 cos 0 Cos 0R (2.2.1)

Z T = r0 0 sin *0  ZR r10 sin *0

We further define 4(x,y,t) as the surface displacement at a point

(x,y) and time t, with positive C being upward. Therefore; the

distances from the source and the receiver to an arbitrary point on

the surface can be represented by r0 and r1 respectively, where

r 0 - [(XX 2 + (C+ZT)21 (2.2.2a)

r 1 - [(X-XR)2 + (Y-YR) 2 + (4+ZR) 21 (2.2.2b)
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The integration of equation (2.1.6) cannot be carried out in

closed form if we substitute equations (2.2.2a) and (2.2,2b) directly.

We therefore first rewrite r0 and r1 in the form

4

r 0 - r 0011 - 1(2XTX + 2 YTY - 2ZT -X2 -Y2-2)q, (2.2.3a)
rob,

r = r10[l - -- (2 + 2Ye - 2 ZRC -X2 -Y2- 2 ) 1 (2.2.3b)1 10 ~rlO2XR

If the distances r0 0 and r1 0 are large compared to the

dimensions of the insonified area, i.e. r0 0 , r1 0 >> X,Y,1, we can

then expand equations (2.2.3a) and (2.2.3b) in a power series by

use of the binomial expansion formula

(l+a)n = 1 + na + u(n-1) a 2 + n(n-l)(n-2) a3 +. ....... (2.2.4)
21 31

is for a2 < 1.

We further assume that the surface .deformation is small

compared with other dimensions, i.e.

C(X,Y) << XY << r0 0 , r1 0  (2.2.5)

Therefore we retain the first order term in C and the X,Y terms up

to the second order in the expansion. The result is
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XT~2 Y

X2 R - + Y 2[1- T

r q Y z r 0
r --- --- Y +- +0 (2.2.6a)00 r 0 2r0

0 00 '0o 0 00 00o

22
2 XR 2 RX2[1 -  ]2 + y2[1- 21

XR X --- Y +- + r10  (2.2.6b)
r r 0 -0 0 2r 1 0

Hence, the total transmission distance for any ray path can be

approximated by

XT + XR T YR y+(ZT ZRro+ r-( -- + -- + -
°0 r + 00 roo too r1o r00 r10

2 y2 2 y2
X2[ I T 2[( -  -- X2[I_ -R 2 [I -  R- I

+ ro0  ro0 + r1 0 2r r 1

2r0 0  210

(2.2.7)

Equation (2.2.7) is called the Fresnel approximation.

Eckart [31] retained only the first order expansion terms of rb +rI in

his analysis, i.e. he neglected the terms in the brackets of equation

(2.2.7). This is called the Fraunhofer approximation. As mentioned

in Chapter I, the Fresnel approximation is superior to the Fraunhofer

approximation because it includes the second order terms. This

permits the Fresnel approximation to be used in problems with large

acoustic beam width. In fact, without the second order terms,

2
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equation (2.2.7) can be simplified with the aid of equation (2.2.1)

to give

0  + r00 l0 + 2c sin *0. (2.2.8)

Under these conditions, the path dependence on X and Y is completely

eliminated, and the total path fluctuations of r + rI is proportional

only to the surface displacement r(XY,t). The total phase fluctua-

tion between rays reflected at surface level 4(X,Y,t) and rays

reflected from the flat surface plane, i.e. = 0, is

g 4' 2 sin 0(X,Y,t). Figure 2.3 is a plot of the two
gC c0

reflected rays. If (X,Y,t) is replaced by its r.m.s. value a

then ga, written as g, is called the Rayleigh parameter, and is given

by
4 wa sin *0g = (2.2.9)

where X = 2wc/w.0 is the acoustic wavelength. The Rayleigh para-

meter [75] is commonly used as a measure of surface roughness; g << 1

is a relatively smooth surface while g >> 1 corresponds to a rough

surface.
1

The product term - in equation (2.1.6) can be expanded
r0r1

in a similar way. From equations (2.2.3) and (2.2.4), with n being

set to - , we have

l1~l+( ! + XR X + YT + YR (2.2.10)
rl _ 0 0 r0 2 2 2 2)0

Oj'r r0 r1  ~ 0  10  ro r1
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The factor needs to be expanded only to first order inr 0 r 1

X and Y since it affects only the magnitude of the integrand of

equation (2.1.6) whereas the term r0+r1 determines the phase. Small

changes in r0 +r1 can produce large changes in phase, but small

changes of I only cause a relatively small perturbation of

r0or

the integrand. Also, because of inequality in equation (2.2.5),
1

the dependence of -ron is negligible.
r0r1

We find it convenient, furthermore, to treat equation (2.2.10)

as the first-order expansion of an exponential function so that

another approximation of 1 is

r_ rl
e+-i )X + ( + R Y. (2.2.11)

ro r1  roo r10  ro2 r, o02 r 102

Substituting equation (2.2.1) into equations (2.2.7) and

(2.2.11), r0 + r1 and can be rewritten in following forms:

r,+rI Zf r 0 +rlO +2 Sin *0 + 12(1-cos2*0 cos 2 R)+Y 2 (1-cs2 4 sin2OR)

(2.2.12)

exp -)[X Co o0- o *0sinror ror r0 10
0 1 00 1000 1

(2.2.13)

where 2 00 r 10
R (2.2.14)
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2.3 Beam pattern function

The acoustic source is assumed to be circular-piston

pressure transducer of diameter DT. The beam pattern function

for this type of transducer can be written as (72, p. 102]

ODT
2J1(- sine )

BT(e) - 1 2c (2.3.1)

sin e

2c

where 6 is the angle measured from the center axis of the

piston. J1() is a first order Bessel function, having the

power series expansion

(X 2n
2n

Jl(X) - i I
• n-0 (n+l) InI

X 2 _4+ --X (1. i + .) -

2 3121

2 8 +384 
(2.3.2)

Hence BT(e) can be rewritten as

0T 2 0DT 4
(T sine) 0T sin e)

BT(e) -1 - + - (2.3.3)

4 192
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* If we assume e is sufficiently small such that sin e '; 0,

and the beam function can be gpproximated by the first two terms

of equation (2.3.3), then

w 2 DT2 2

BT(e) 1- i w D. 6 (2.3.4)
16c

2

We assume- now that the projection of the beam pattern on the

surface can be approximated by a two-dimensional Gaussian function

I (u 2 V 2Sin 2 T)

BT(u,v) - e T(w)(2.3.5)

*where *Tis the grazing angle, and where u and v are transformed

coordinates given by

u -X Cos -Ysim (2.3.6a)

v --x sin + Ycos (2.3.6b)

8We let the angle e measured along the u and v directions bee

and 0 respectively. Then for small e, equation (2.3.5) can be

rewritten as

r 2

2_00_e_ 2 + e 2 sn2OT

BT(u'v) -e IT (0) .nVT (2.3.7)
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By comparing equations (2.3.4) and (2.3.7) and assuming a circular

beam pattern, we see that

02DT2 r 2

0r2oT 2 00 (2.3.8)
16c LT (W0)

or
4crO 2c ro

LT(W0 ) 0 0  0 0  (2.3.9)
W 0DT f0DT

Substituting this into equation (2.3.5), we have

~ 22 2
BT(uv) = exp 42 f DT 2 2+ v sin (2.3.10)

4c2  t0

By use of equation (2.3.6) the beam pattern function can be expressed

in terms of X and Y. Using B to indicate the source beam pattern

function on the surface, we have

B (X,Y) exp- - - -D
T  [X2 (1-cos 2*sin 2T)+Y2 (1-cos 2*TCoS *T

+ XY(cos24*Tsin2*T)]I (2.3.11)

A similar expression is obtained for the receiver beam pattern function

" .2f2 D 2

BR(X,Y) exp [X2 (1-cos 2 *Rsin2 R)+Y 2 (1-cos RCos2R)
4c r10

+ XY(cos2 -jRsin2.R)] (2.3.12)
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* Thus the form of the combined beamu pattern response of both source

and receiver is

B BB - x - 2 - 2 2X (2.3.13)
a R Lxx 2(W 0 LYY2() LXY2 wo

where

2 2 r 2 - 2(2 3 1 a
2X 0) c- 2 00 2 2 2 2

nrf2 D T(1-cos2*Tsin2f) D R (1-cos *R Sin OR)

2 W c2 r 02 + 02(231b
2f f 2c -

T 2  D2(1_cos 2 * T cos 2 0) +R 2(1cos2* RCos 2~ 0 2.3R)b

4c2  002= -10 (2.3.14c)

fff0 DT 20Cs5 * Tsin2f T DR 2cos 2*Rs'i2OR

S For the simplified situation where the source and the receiver

are in a forward specular reflection geometry, i.e. *T 0

and * T - R + 1800, equation (2.3.14) can be simplified as
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L2 (
2 L(w 0)

LXX(a) - 2 2 (2.3.15a)
1-cos *0sin #R

2L 2 (W 0)
I /2 (W 0) M (2.3.15b)

2 2m0

2 (Lo) - (2.3.15c)

cos2 *0sin 22R

where

16c 2  r 2  102L2 (w0 ) - ( -) (2.3.16)
W0 DT2  DR

We now substitute equation (2.2.12), (2.2.13) and (2.3.13)

into equation (2.1.6) and convert the integration over S to one over

X,Y by using the transformations (see appendix B)

2 2
ds 1+( ) + 2 MY (2.3.17)

and

an [2 2 ( ) ac ax ax a ¥ j¥ (2.3.18)

Then equation (2.1.6) takes the form
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jW ° ff -AX -BY -CXY-DX---Y+j---F

4wr 00r0 ax ax a¥- dXdY

(2.3.19)

where

A - -j 2 2 1 (2.3.20a)
32 (1-Co OB o +00 R L + 2(W0

B- -j (1-cos 20 sin 2 1 (2.3.20b)

2w0
C _ -j j cos2* osnRcos 2 (2.3.20c)c R 0 L X 2  ( b 0 )

D " ( 1O1 * os0CO (2.3.20d)

r 0 r O R

-00- 10

i ( 10 cos4sOB~nCR (2.3.20e)

F - 2 sin * 0 (2.3.20f)

r 0 0 +r 1 0  (2.3.21)

8 c

where LXY(Wr), Lyy(wO) and Ly(wo) are defined in equations (2.3.14).
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Chapter III. Deterministic Surface

3.0 Introduction

The application of the Kirchhoff integral to the general

problem of surface scattered acoustic signals was described in the

previous chapter. An expression was developed in equation (2.3.10)

for a general water surface. Actual ocean surfaces are highly

random and complex, but in this chapter we side-step the issue of

random surfaces by considering a deterministic ote. (Random sur-

faces are considered in Chapter IV). There is substantial precedent

for considering deterministic surface models as a way of approaching

a solution for the random surface. For instance, as mentioned in

Chapter I, the early work of Rayleigh [21] and the more recent work

of Uretsky [22], Murphy and Lord [26], Heaps [30] and Parker [76]

used a sinusoidal surface to derive the surface reflection coefficients.

Meecham 177] considered the transmission of acoustic wave through a

sinusoidal surface by the use of the Kirchhoff integral method.

The experimental work of Gulin [36], and of LaCasce and Tamarkin [78]

dealing with reflections from pressure-release sinusoidal surfaces

shows that much insight is gained by analyzing simple surface models.

If the surface scattering process can be regarded as linear (as is

always assumed in this work), more complicated surface effects can be

obtained by Fourier analysis of the s,,rface and superposition. This

was, for instance, done by Beckmann [60] in a study of backscatter

from a composite rough surface. He assumed each of the component

3-1
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waves to be an independent random process, and found that the

small structure of the surface (the component waves of small

amplitude) played an important role in the determination of

backscattered acoustic power.

p In this chapter, we will demonstrate the effect of small

surface structures on the frequency spreading function by considering

a wind-blown surface. A commonly observed characteristic of wind-

* blown surfaces is that the waves are steeper on the downwind side

than on the upwind side [70]. A typical wave shape is shown in

Figure 1.2. A deterministic model that has the feature of shallower

* slopes on one side and steeper slopes on the other can be constructed

with a sine wave plus its second harmonic; i.e.

z(t) - h 1 cos(w~t") + h 2 c.s 2wt (3.0.1)

Typical waveforms generated from equation (3.0.1) for different

values of hi, h2 and 0 are shown in Figure 3.1. It is seen that by

proper choices of amplitudes and phase angles (e.g. hi = 5 h2  *-45~

scattered from this deterministic surface model is discussed for two

scatter geometries, crosswind and down(up) wind. Crosswind means

that the wind direction is at right angles to a vertical plane

containing source and receiver, and down (up) wind indicates that

the wind direction is parallel to this plane. Thus in Figure 3.2,

0
0R 0,900(2700), and 1800 correspond respectively to upwind, crosswind

and downwind.
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10

h= 0

1 3h 2  9

Figure 3.1 Waveforms generated from a two harmonic model:

z(t) h h1cos(wt +0) + h 2 cos2wt
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3.1 The surface model

In accordance with our discussion in section 3.0, the surface

displacement at an arbitrary point of a wind generated surface is

described by a time function as in equation (3.0.1). If we choose

our coordinate system such that the wind blows in the positive Y

direction and if the surface wave is one-dimensional, the surface

wave motion can be expressed in the following form

C(X,Y,t) = hlcos (pY- f+t) + h2cos(2pY-20t) (3.1.1)

c = - (3.1.2)
p p

where p is the surface wave number, 9 is the wave frequency, and

C is the phase velocity.
p

Observe that the fixed phase angle * ir equation (3.1.1) and
the constant phase velocity for both harmonics is not consistent

with the model usually assumed for gravi:y waves (e.g. Parkins [4]
qL2

or Scharf and Swartz [5]). For gravity waves, p , and the

phase angle is usually regarded as being uniformly distributed

between 0 and 27r. The dispersion relation for gravity waves does not

permit persistent slope asymmetries of the kind required in our dis-

cussion here. Equation (3.1.1) therefore should be regarded as a

rather idealized model for a wind-blown surface.

In order to study the surface scattering behavior from this
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model, it is necessary to replace C(X,y,t) of equation (2.3.19)

with the expression in equation (3.1.1) and then evaluate the

integral. We first consider the downwind case.

3-
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3.2 Downwind

0
Figure 3.3 illustrates a downwind R 180°) scatter geometry.

The acoustic source is on the -Y side and the receiver is at the

+Y side. As we showed in Chapter II, the distances from an arbitrary

surface point to the source and receiver are respectively r0 and rI.

Ttese have the forms:

r0 = JX 2+(Y+r 00cosi 0)
2 + (+roSin) 2 (3.2.1)

r= /X2_+_(Y-rl0cOS0)
2 + (+rl0sin 0)

2  (3.2.2)

By the use of the Fresnel approximation as described in

Chapter II, the total transmission distance r0 + r1 can be approximated

as equation (3.2.3). From equation (2.2.7), we have

r + rI Q r00 + r 0 + 2C sin* + [X2+y2sn 2* (3.2.3)

From equation (2.2.11), the approximation of the attenuation factor

(r0r)1 can be put into form:

- _1 -I ( 1 1 -=Y Cos (3.2.4)

r0r1  r00r10  r0 0  r10
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Both equation (3.2.3) and (3.2,4) are good approximations if the

following conditions hold:

C(X,Y,t) << X, Y (3.2.5a)

X,Y << r00, rl0  (3.2.5b)

In the mathematical preliminaries, we showed that the

projection of the combined source-receiver beam response on the

X-Y plane can be approximated by a Gaussian function. For a

downwind geometry, this combined beam response can be expressed

in a simple form as equation (3.2.6) by replacing *R with 1800

in equation (2.3.15)

BB exp 2 (X +y sin2 n (3.2.6)
sBR L (W0) 0

Thus L(w0) is the acoustic beamwidth measured in the X direction.

In order to compute the power spectrum, we first have to

evaluate the transfer function H(w0 ,t) in equation (2.3.19). After

substituting equation (3.2.3, 4, 6) into equation (2.3.19), H(w0,t)

can be rewritten as

H(w0,t) - - [ - -X - -Y 1 - ] e1 (X 2+y2sin20)
4ir 00r10  L ax ay (i0

- -)cso 1 iw X 2+Y 2sin 2 0 1- 2C sin*~ M~Y.
-1)Ycos%0 + j - [ + 2 sun0 ] I ~Y

r00 r10 R

(3.2.7)
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In this section we assume that the surface height (X,Y,t) is

small compared with the incident acoustic wavelength so that

2 U- c(X,Yt)sin *0 << 1. Thus the phase term can be approximated

by its linear expansion, i.eo

W0
J2 -" c(XYt)sin*O 1 0(

e I + J2 - (X,Y,t)sin (3.2.8)

Observe that the surface wave motion is assumed to be one-

dimensional and is propagating in the Y direction. Therefore, the

slope X is zero. We replace (X,Y,t) by the expression in equation

(3.1.1) and substitute equation (3.2.8) into H(i0, t). The integration

of equation (3.2.7) is straightforward but lengthy. Details of the

computation are contained in Appendix C. The result of the integration

can be put into the form:

H(w0,t) . e 0+0  [Hm+ e + H e a (3.2.9)
4oorlop m

* Expressions for A, B, H and Hm+ are also contained in Appendix C.

The expression of the received signal r(t) is the product

of H(wot) 
and e

r(t) - H(wot)e

-Jo -J (wo+mn) t -J (Wo-IMf) t

D - e + [Dm+ e + D e ] (3.2.10)
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Equation (3.2.10) indicates that the interaction of an acoustic

s±nusoidal wave of frequency w0 with a moving surface corrugation

given by the expression in equation (3.1.1) results in the generation

of frequencies w, ± mn with m ranging from zero to at least 6.

The number 6 arises from the first order expansion of the phase term

exp [-j2 w- sin 00 . For surfaces of greater roughness, a higher

order expansion of the phase term would become necessary, and would
result in more frequency components.

From equation (3.2.10) we see that the coefficient D0 is

associated with the transmitted frequency w0 and represents the

amplitude of the coherent (or specular) surface reflection. If we

neglect the beam pattern effect in A and B, i.e. if the beam width

L(w0 ) in equation (C-2) is assumed to be infinity, then Do can be

written as

D0i e-0(t--s) P 2 h12 2 23 0 2  D -L [1- 2p2h2 - - 2h h s i n *OoOS 20

roo+rlO 2 2 c

(r0-ro00) t2 o 0

exp j ] (3.2.11)

2 -roro(r+r)
c 00 10 1000o

The above equation is obtained from equation (C-11). The

leading term on the right-hand side of equation (3.2.11) represents

the phase change and attenuation due to the transmission distance

r00 + r1 0 in the specular reflection path. The term in the square

2 2
ph 2 2

brackets, 1 - - 2 2p h2  , is an additional attenuation of the
2
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smooth surface response due to the surface corrugation. The factors

ph, and ph2 are proportional to the r.m.s. slope of the first and

second harmonic of the surface wave. It is reasonable that the

larger the corrugation is, i.e. larger ph1 and ph2, the more

the coherent component of the acoustic signal is attenuated. The

3 W0  
2h 2h i

imaginary term J - p h1 sin  0cos 2 is a phase lag which

is a function of the phase angle *. It is zero for * - 450 and

is maximum for * - 00. From the surface profile shown in Figure

3.1, we observe that * - 450 results in a "zero mean" sawtooth

wave from which one would expect no net phase shift. However,for

= 00 (or 1800), the surface wave is characterized by a sequence

of narrow pulses, and the average height of the reflecting facets

can therefore be above or below the smooth-surface reference. The
r (r 1 -r00)

2 cot2*
last phase term exp [1 (l 00 0 I represents the

2 ' 00rl(r0+r00

phase change due to scatter geometry. If the scatter geometry is

symmetric, i.e. r00 - r10 , then the argument of this phase term

becomes zero. This implies that the coherent reflection is associated

~with the specular ray-path. When the scatter geometry is asym~etric,

Si.e. r00 k r10 , then there is a net phase shift in addition to the

nominal phase change w0Ts . Hence under this condition coherent

reflection is no longer associated with the specular ray. This

effect can also be explained by considering the Fresnel zones [75].

A synmetric downwind scatter geometry is shown in Figure 3.4. The

( ellipses on the surface plane represent the Fresnel zones. Figure 3.5

is the similar plot as Figure 3.4 except the scattering geometry is

3-12



is asymmetric with r00 < r10 * In Figure 3.4 the specular point

is at the center of the first Fresnel zone (the inner-most ellipse)

and therefore the specular path is associated with the coherent

reflection. In Figure 3.5, the center of the first Fresnel zone

is shifted away from the specular point and toward the receiver

(toward the source if r0 0 > r10). Thus there is a net phase

difference between the coherent reflection and specular reflection.

The coefficients of the side-frequencies (the frequency

component other than the transmitted frequency) above and below 0

are respectively D M+ and DM_, m - 1,6. Examination of these

coefficients [cf. equation (C-12)] reveals that these coefficients

with m ranging from 1 to 4, are in general not complex conjugates of

each other. Therefore, the magnitudes of DM+ and D m_ are not equal

for m - 1 to 4. We are mainly interested in the power of the first-
+ . 22

order side-frequencies , i.e. ID1+1 and ID1 1_ . These can be

written in the forms:

ID1+(w°0 i>t)1 1[ +Y+ XT sin 24]. i [e-p J]1 (3.2.12)
2B

2

ID (WSt X 2+ Y sin 24]' Iexp [ (E+JP) ]1 (3.2.13)
2B

where

hl w0sin 0  2  hl2  2
Y [1-p + 2h 2 2 2 (3.2.14a)

r0+r c 4 4w si
00rl 10 0

+ Because of the first-order expansion of equation (3.2.8), the higher-

order side-frequency coefficients are probably not correct in any
case.
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4 p2 h 1h2  (3.2.14b)
T 4 ro+rO

and where from the definition in appendix C, i.e. equation (C-2)

P1 0 2B 2 0- .] sin *o (3.2.15a)
L (wo)

| (1 1
cos 0(3.2.15b)r 00 rl100

Notice that 1Dl+(wo0,t)12 and ID1 ._(W0,t)12 are in general not
equal. They differ because of the sign differences in the bracketed

term and in the exponential term. These two sign differences

represent two different mechanisms. The sign inside the brackets,

associated with the term _ T sin 24, is the result of asymnetric

water surface slopes (the assumed wind-driven surface model). The

second sign difference in the exponential term results from the

asymmetric scattering geometry (i.e. r00 0 r10).

We consider first the case r0 - r10. This results in

E - 0 (cf. equation (3.2.15b)] and leaves only the sign difference

in the bracketed term. We observe that the asymetry (the amplitude

difference between D1+(wO,t) j and I1_(wo,0t) exists when 4 k 0

(or - , n - integer), and is most pronounced when * - 450.

In Figure 3.1, * - 450 represents the most asy mmetric saw tooth

wave. There is no asymmetry when the amplitude of the second harmonic

is zero (i.e. h2 - 0, T - 0). The question as to which one of the two

3-16
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side-frequencies has the larger power magnitude depends on the

sign of X . Generally speaking, the water surface under

consideration has no surface slope with magnitude larger than 1.

This condition is required by the laws of hydrodynamics for non-

breaking surface waves. Hence X has a positve magnitude at all

times. (see appendix D.)

We can conclude therefore that under the condition r00 = r 0,

the upper side-frequency power magnitude ID1+(w0,t)1
2 is always

larger than the lower side-frequency power magnitude ID1_(w0,t)I2

for 0 < * < 90. i.e. for wind driven waves.

Observe that the effect considered here is a function of the

surface slope asymetry only and does not depend on source-receiver

geometry. Exchanging the positions of source and receiver replaces

*0 by w-*0 (see Figure 3.2), and since 0 enters the expression

only through sin *0 1 replacing *0 by w-* 0 has no effect on the

magnitudes of ID+(w0 ,t)1
2 and ID1_(w0,t)12. This result can also

be Justified heuristically by invoking simple reciprocity.

The power ratio between the upper side-frequency and the

lower side-frequency can be obtained from equation (3,2.12) and

(3.2.13)

2 + Y + 2W_ sin 2#

2 +9 - 2X T sin 24 
(3.2.16)

+ The values of # lie between 00 and 900 in order to have the wind

driven waves moving in the direction of the-steeper wavefront.170
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A plot of this power ratio as function of * according to

equation (3.2.16) is shown in Figure 3.6.

We now focus our attention on the sign difference in the

exponential term. To this end, we set * - 0, i.e. to have a

surface wave with symetric slope distribution. By replacing

B and E with the expressions in equation (3.2.15), the exponential

term becomes 22 + 0 2p cos 0

- 22

exF(Elip) j ~ L2(w0 ) R' cR Rex ex I' I
2B 2 n2___ o

0oL 4 (W 0) c2R2 1

(3.2.17a)

where

1(3.2.17b)

R' r00  r1 0

The power ratio of the upper and the lower side-frequencies

can be written as

2 WO P Cos *0
Dl(wo0 ,t) exp 2 -R" -R- w02 (3.2.18)

D1- (WO9t sin * 0 _ " 4 L _O)  
2R21

2
Figure 3.7 shows a log-log plot of 1Dl+(w0 ,t)/Dl-(w0 ,t)I

as a function of r1 0 /r0 0 , with grazing angle *0 as a parameter.

Observe that the power ratio is unity when ro0 - rl0 . It is greater

than unity when r0 0 < r1 0  Also notice that the power ratio

saturates at very large or very small values of r1 0 /r0 0. The limiting

value can be obtained from equation (3.2.18) by letting r10 /r0 0 go

( X3-18
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Figure 3.7 First-order side frequency power ratio as
function of scattering geometry; daohed
curve represents the power ratio msz1~mum
in Figure 3.6 for *-450 and ip-250
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to infinity

lim Dl+(w0 ,t) 2 2w0 cpL4 (W0 )cos 0 ] (3.2.19)

r 0  6 D 1 -( Opt) I sin o[(4c r 0 0
2  

0
2L4 (W0 ))

where R and R' are approximated by 2r00 and r00 , respectively.

As far as the effect of grazing angle * 0 is concerned, we see

that for * 90 (vertical incidence and reflection) the power

ratio is unity, but for very shallow grazing angles this ratio can

become very large. Figure 3.8 has a semi-log plot of
2

logID L+(,t)/D_(ost)l 2versus grazing angle *0' In fact, in

the limit of *0= 00 or 0 . 1800, the power ratio goes to infinity.

However, for extremely low grazing angles as well as for extreme

values of r10/r00 , the assumption of no shadowing is violated, and

therefore the results should not be carried out to these limits.

The power ratio in equation (3.2.18) is sensitive to the

wind direction, and will change to its reciprocal value when the

direction of wind reverses. For example, if we take the scatter

geometry in Figure 3.3 with r0 0 < r10 , then according to equation

(3.2.18) the power of the upper side-frequency is larger than that

of the lower one. If we reverse the wind direction so that the wind

blows along the -y axis, we are effectively replacing the wave number

p with -p in equation (3.2.18). Thus the power ratio is inverted

and the lower side-frequency will become the one with a larger power

+ The Fresnel approximation breaks down before reaching this limit.
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magnitude. This same effect can also be observed from Figure 3.3

and equation (3.2.18) by letting *0 exceed 900, i.e. the source

moves to the +y side and receiver to the -y side, and the wind

blows along +y direction.

If the beam width L(w0) of the combined source-receiver

beam response becomes very large, i.e. if both source and receiver

lose their directivities, and for ro0 < r1o, equation (3.2.19)

can be further simplified to the form:

lim D+(wot) 2 exp[ p 2 co* ] (-- 2 (3.2.20)
r10/r00-* D-(W0,t) W0/c 1-cos *0
L (w0) 1-0

We see that the argument of the exponential function consists

of two parts, one is the ratio of the surface wave number p to the

acoustic wave number w0 /c, the other is a function of the grazing angle

*0, a geometric factor. According to equation (3.2.20), the power

ratio is large when pc/w0 is large; and the ratio approaches unity

when pc/W0 closes to zero. A heuristic explanation of this is that

for a given acoustic wave number, if pc/w 0 decreases, the surface wave-

length must increase. In the limit pc/w 0 -p 0, the surface wavelength

is infinity and the surface wave becomes a plane surface. All

reflections become specular, and there is no asymmetry.

The effects of the geometry asymmetry and the surface slope

asymetry on the power ratio are not equal in general. The logarithmic

value of the power ratio due to the surface slope effect is plotted
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dashed in Figures 3.7 and 3.8. We see that the effect of surface

slope is smaller than that of the geometry asymetry and is

significant only when r0 and r1 0 are approximately equal or when

0
the grazing angle is close to 90

3
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3.3 Crosswind

The discussion for crosswind is very similar to that for

downwind. The scattering geometry is shown in Figure 3.9 with

the source and receiver located in the x-z plane. The mathematical

operations are very similar to those already performed for downwind.

Details of the computation are given in appendix E. We find that

the received signal can again be expressed as in equation (3.2.10);

however, the expressions for the D's are generally different.

The coherent response D0 has the same form as in the previous

section and we need not consider it again.

Expressions for power magnitudes of the first order

side-frequencies are

2_ 2

1Dl+(&0 ,t) 2 . {X + Y + sin 2# ' exp { (3.3.1)I 2B

2_p2
t)12E -P

IDl_(- t) 12 . _ + -2 . - sin 2+" exp { 2B (3.3.2)

where X, Y, B and E are defined in equations (3.2.14) and (3.2.15).

The sign difference in these two expressions is related to

the surface wave slope asymmetry. The sign difference arising from

asymmetry in the scatter geometry is no longer present. Therefore,

for a symetric surface, e.g., gravity waves, we would expect( syinetric side-frequencies in the crosswind geometry for any r00

and r10 , (r00 and r10 are assumed to satisfy the far-field assumptions).
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The detailed consideration of the sign difference in

equations (3.3.1) and (3.3.2) is the same as discussed in the

previous section since only the slope effect is presented here,

the power magnitude of the upper side-frequency is always larger

than that of the lower side-frequency. We see that there is no

effect of geometry asymmetry in the crosswind condition; therefore

this is a convenient experimental configuraton for the observation

of surface slope asymmetries [3].

1
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3.4 Suimmary

In this Chapter we have considered the frequency spreading

function for both the downwind and the crosswind conditions using

a deterministic model. We have found that the power magnitudes of

the upper and the lower side-frequencies produced by this model are

generally unequal. There are two different mechanisms that cause

inequality. One is the scattering geometric asymmetry, i.e. the

source and receiver are at different depths. If the source is

located at a* smaller depth than the receiver and if the wind blows

from the source to the receiver (i.e. surface wave propagates from

source to receiver), then the power of the upper side-frequency is

larger. This effect is reversed when wind direction (the surface

wave direction) is reversed or if the wind direction is unchanged

but the source is at the larger depth. This mechanism does not

exist in the crosswind eondition. The other mechanism is the

surface asymmetry caused by asynmetric surface slopes in wind-

driven waves. This, taken by itself, always results in a larger

power magnitude in the upper side-freqenncy. The power ratio
(asymmetry) caused by asummetric surface slopeR is generally smaller

than that caused by the asymmetric scatter geometry as observed in

Figures 3.7 and 3.8. Therefore, the overall power difference tends

to be mainly a function of the scattering geometry.
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Chapter IV Random Surface

4.0 Introduction

In this Chapter we consider a random water surface with a

Gaussian surface-height distribution. As already discussed in

Chapter I, the Gaussian assumption is frequently used in the

analysis of surface scatter even if it is not rigorously correct

in all cases. Parkins [4], Scharf and Swarts [5], McDonald and

Schultheiss [10] used this assumption to study the frequency

spreading in the forward acoustic scattering from random rough

surfaces. Schwarze [80] developed the doppler spread of back-

scattered acoustic wave from a Gaussian sea surface. Clay and

Medwin [7] computed the covariance of signals observed at a pair

of receivers with the aid of Gaussian surface. Beckmann [49]

has considered the surface scattering by non-Gaussian surfaces.

He found that the results in most scattering analyses are not very

sensitive to the precise choice of distribution.

The analysis considers a general scattering geometry with

arbitrary source and receiver locations. Thus the study includes

various oblique and asymmetric scattering situations. In the

previous Chapter, we saw that surface slopes played an important role

in determining the shape of the frequency spreading function. Hence

+ This is probably not true for backscattering. Backscatter may depend

heavily on the distribution of high magnitude surface slopes [811.
The high slope distributions offered by different surface distributions
are generally quite different from one another.
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slope statistics are explicitly included in this analysis. By

assuming independence of surface slope and surface height

statistics, asymmetry effects in the received signal spectrum

that are similar to those obtained for deterministic surfaces can

* be shown to exist also for random surfaces.

1

L
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4.1 General scattering geometry

If the water surface is random, the surface scatter process

can be regarded as a randomly time-varying linear system having a

transfP, function H(wo,t). This represents the instantaneous

amplitude and phase at the receiver due to a sinusoidal signal of

frequency w0 from the source. The received signal has the form

-jW 0t

r(t) = H(w0t)e (4.1.1)

Figure 4.1 shows the scattering geometry. The origin of the

coordinate system is chosen to be the aiming point of the acoustic

source on the flat surface. In other words, the source has a beam

pattern whose center line intercepts the flat surface at the origin.

The xy and z axes are as previously defined. The location of the

acoustic source is specified through three polar coordinate para-

meters, r00 9 OT and VT . ro0 is the distance from source to system

origin, 0T is the azimuthal angle of r00 projection on the x-y

plane, measured positive clockwise from the -y axis, * is the

grazing angle. The receiver location can be described through a

similar set of parameters rlO, *R and

The transfer function for this scattering geometry can be

derived from the Fresnel-corrected Kirchhoff integral and has the

form (see Appendix F)
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O(r +r -Ax 2 B y2 - C xy-Dx-Ey+ -L
H(o~ .. e (f_

(W0,t) W J{ dxdy4 r00 r1 0  -0

(4.1.2)

where A, B, C, D, E and F are specified in Appendix F.

Our interest is in the power spectrum of the received signal

due to a sinusoidal input. The power spectrum can be obtained by

Fourier transforming the autocorrelation function of the received

signal r(t). By the assumption of wide-sense stationarity in the

acoustic scatter channel, we can write the autocorrelation function

in the form [82]

(4.1.3)r(t) r*(t + t)

where 0T) = H(w0 ,t)H*(wOt + t) (4.1.4a)

is the autocorrelation function of the scatter channel. Substituting

the expression of H(w0,t) in equation (4.1.2) into equation (4.1.4a),

we get a four-fold integral as follows

00 or) O0 Go

1(OT ((f f 'C )QC ~ )dx dx2dy~dy
0 167r 2 r02 r 102 a*_0 0 _0 x1  x 2 yl 22 1Y

( (4.1.5)

4-5



where

Xx 2 ; Y 2

Q '-0 F (lC 2 _ y 2)+ (2Ax +Cyl+D)+ (2BYl+Cxl+E))

C X I y1  1 Y

"{0- F(l- 2 -Y2 )+2(2A*x2+C*Y+D*)+2(2B*y +C*x +E*) }

2 Y22 2

*exp{-Ax1 -By1 -Cx ly,-Dxli-Eyl-A*x2 -B*y2 -C*x2 y2-D*x 2 - E*y 2

(4.1.5a)

9W
'"0 U0

Q(CIo2 exp{j - FI(xIpy 1Yt)- j F r2(x2,Y2,t + ) 1 (4.1.5b)

We use the subscripts 1 and 2 to indicate variables at time

t and t + r respectively. Notice that J(t ,CX 2; C , Y2) summarizes

the channel slope information and Q(, is a function of surface

waveheight. The averaging operation in the integral is over the

product of J( I X2 ;%yl, Y2) and Q(C., 2). The random variables

to be averaged are the surface slopes, X1, X2, Yl, Y2, and surface

displacements CI and 2'

The averaging operation is obviously fairly complicated. In

urder to simplify this operation we make two assumptions. The first

,t these is to assume a one-dimensional random surface with randomness

i.v tn the wind direction. In this way the cross-wind slope terms

n ha have negligible effect on the final result and can be

This approximation can be justified by the final result

.. *!.t the effect of all of the slope terms is, in fact,
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quite small. We do not wish to eliminate the downwind slope

terms since they contribute an asymmetry to the frequency spreading

function, whose study is one of the objectives of this analysis.

Even though this is a small effect it is important. The crosswind

slopes do not contribute such an asymmetry and setting them to zero

therefore does not alter the final result in any essential way.

The second assumption concerns the averaging operation itself.

It can be performed exactly only if the surface slopes and heights

are jointly Gaussian. However, the Gaussian assumption is inconsistent

with the directional asymmetry of windblown surfaces that we believe

to be partly responsible for the phenomenon being studied.here. This

follows from the fact that a strictly Gaussian surface can be

represented by a two-dimensional "Rice" model [83]; i.e. an expansion

in terms of sinusolds with uniformly distributed random phase angles.

Such a surface would be statistically isotropic. Hence a more

fruitful simplifying assumption for the evaluation of equation (4.1.5)

is that the surface heights are approximately Gaussian and that they

are uncorrelated from the slopes. A possible basis for the second

part of this statement is that the slopes depend largely on small

ripples of the surface, when the surface is rough, and that ripples

of any slope can occur at any surface level. This may not be quite

true for the small-surface-roughness situation. However, if both

surface height and slopes have small magnitudes, cross-product terms

can be regarded as second-order magnitudes. Hence the assumption of

uncorrelated surface heights and slopes results in an approximation

that is correct to first order.
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With these two assumptions, the integral of equation

(4.1.5) can be rewritten as

O(WO, 16i2 r 2 2 fff

16 ro0 rio Jyl Y'Y 2 ,Q(Cl 2 )dx dX2dydy 2dY2

(4.1.6)

where

J I' Y2 )

0J -0 F(1- .y 2)+ (2BYl+Cxl+E)}{-J 0 2

2 2 2 2 2 Y +

* exp[-Ax1 _ By1 2 _ Cxl Yl -Dx l -Ey l A*x 2 2_B*y 2 2_ C*x2 y2 _D*x2 _E*y 2 1

(4.1.7)

The integrand is the product of two averaged terms. One is

J Y2 ), which contains the surface moments up to the fourth

order. The other is Q(C1 ,r2 ), which is the characteristic function

of the Gaussian distributed variables 1 and 2 It can be written

in the form

2
Q(Cls) exp{- - 1,2,,2[1 -1U, T, T) 11 (4.1.8)

c

where a is the r.m.s. surface waveheight and (n,T) is the

normalized surface height correlation function, given by

T(EnT) -2- - 1 (xlYl t)C2 (x2,y2 t+r) (4.1.9)
a
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where E = x2-x1  (4.1.10a)

' - y2-yl (4.1.10b)

The surface correlation function is a critical factor in the

final result. The expression chosen for it should represent the

actual surface with some degree of realism, and at the same time

it should be simple enough to permit evaluation of equation (4.1.6).

The correlation function of the ocean surface has been measured by

a number of researchers, such as Clay and Medwin [7], etc. Model

tank measurements have been made by Kingsbury _[84], Spindel 154]

and Zornig [53], etc. A relatively simple expression that fits these

measurements with a fair degree of realism is

V( n,) ep -2 q2 T2

- exp(- T2 - 2 } " cos p(n-C T) (4.1.11)
A2 A2 T2 pAt A T
x y 0

This represents a surface corrugation moving in the y direction with

a velocity C . The parameters Ax, Ay and T are correlation distances

in the x, y and t directions, respectively. This expression has been

used in scattering studies by Clay and Medwin [7], McDonald and

Tuteur [8]. A shortcoming of equation (4.1.11) is that it does not

take into account the surface dispersion which is an obvious and

easily observed feature of typical water surfaces. Dispersion could

be modelled by using a stun of terms of the form given in equation

(4.1.11) with different values of p and Cp, as in Tuteur, McDonald

and Tung [40]. This complication has not been added to our analysis

in order to keep the result simple.

4-9
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In spite of the relative simplicity of equation (4.1.11),

the expression that results when it is substituted into equation

(4.1.6) is not directly integrable. A standard procedure that

permits integration is to use a Taylor series expansion. This

* can be applied to the characteristic function to give

222 1 2 2
exp{_g2_(,,)] e 2- +g2,p(.)+ _L [g2f(.)12+ ---- I

(4.1.12)
where g =- F is the Rayleigh parameter which is a measure ofc

effective surface roughness with respect to acoustic frequency.+

Since jT(9,n,T)I 1 , equation (4.1.12) converges rapidly

if g << 1; hence this expansion is appropriate if the surface

roughness is small. For very small roughness it is permissible

to use only a first-order approximation of equation (4.1.12); for

surfaces of larger roughness (larger g) higher order terms can be

used as well.

For a very rough surface, i.e. g >> 1, equation (4.1.12)Ibecomes inconvenient to use. In this case we observe that for

very large g the expression in equation (4.1.8) has a significantly

non-zero value only when l-T(F,n,T) is almost zero. Therefore, if

we expand T(,n,T) in a Taylor series about T - - - 0, only

the first few terms of the series are significant. The linear or

the first order term in the series need not be considered since it

See Chapter II.
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corresponds to a non-differentiable surface [10], [85]. Thus

the expansion of T(QT,T) correct to second order is

ii(~,?h~rI 1 O 2- 2-L r-C T) 2(4.1.13)
A 2  2  2  2 p
Ax Ay T0

Using this second order expansion of ( ,n,,r) in equation (4.1.8),

we get

22 2 2 2 22
exp{-g2(1- (Q,n,rI)]} exp{- g2 [ --U + 2' + 2 2P-Cp.0)2]

A x2 A y2 T 02  2x y T02

(4.1.14)

The other statistical parameters that need to be specified

are the slope moments in J(Qyr ) . The orders of slope
________ l Y2

moments in J( yl,C Y2) range from 1 to 4. The first order moment

is the average surface slope which is zero. The second order

2 *2
moment appears in the form of Y ,and y . The

~l~ 2 ~ l2
first two are the mean square slopes. We assume the'third term

Yl *2 to be the form

2 2, =E exp{- 2 _ (4.1.15)
Yl Y2 2,A T2 2

2

where 2 *2

2 y2 2

clearly c2 0 for all cases.
2i

The third order slope moment appears in the form

2 **2i + C , and is assumed to have the form
4-l2 , 2
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2 2

2 * *2 , 3  exp{ A ") } (4.1.17)

*3 3

where , -- -2 y2*3 (4.1.18)

The parameter £3 is generally positive, and the appearance

of the minus sign in front of £3 is explained in Appendix G. Both

the second and the third order slope moments are functions of n

and r. We neglect the fourth order moment 22 *2 , becauseYl Y2

it is normally much smaller and it does not contribute any

asymmetry to the final result. This follows from equation (4.1.7).

The fourth order moment comes from the product of the first terms

in the first and the second brackets, which is

.~2. o 2 2 *
w'J F(1_y12)l-~ -- F--_0 2 2 *2
cc ]- c = F) (1-22 Yl Y2

(4.1.19)

Notice that the mean square slope term is replaced by its

equivalent c2. It will be shown in the final result that 1-2c2

represents the energy left in the coherent component because of
finite surface slopes. 2 *2 represents a higher order

Yl r 2

correction term to this coherent response only and therefore can

be neglected.

4
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4.2 Random Surfaces - Small Rayleigh Parameter

The characteristic function for a Gaussian surface of

Rayleigh parameter less than unity was given in equation (4.1.12).

For the small Rayleigh parameter case, only the first few terms

are important, so that equation (4.1.12) is rewritten as

( , 2 exp {j ( t ) -j  0 0

2 2 2

e- +gA2 [e Ax Ay 2  cos p(n-C pT)]} (4.2.1)

Details of the evaluation of the four-fold integral in

equation (4.1.6) are presented in Appendix H; this integration is

basically straightforward but lengthy. The result can be put into

the form:

(W0 T0) - K1[10 + I14" + 11-] (4.2.2)

where definitions for I0, I,+ and I,_ are given in equation (H-9),

and K, is a constant coefficient.

The signal spectrum can be computed by substituting equation

(4.2.2) into equation (4.1.4) and taking the Fourier transform

with respect to the variable T.

r (w, w ) - f r(t)r*(t+r)e-Jw dT
40 _j ( ... 0 )

= K1 (I0+I++II) e dT (4.2.3)
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Details of this computation are also shown in Appendix H. The

result of this operation is contained in equation (H-14), repeated

here as equation (4.2.4):

r(w,w 0) Kl1[Sp0 (Ww 0)+Spl+(WW 0)+Sp_(W,w0 )] (4.2.4)

where

2TTT

~~SP0+(W,W ) = f00 (w-0) f ex[ Tm mo { ((6-_0)2 (4.2.5a

2T 2 2,2

T T T ( -  POc p )P 2
+=2,3 2  Cmfm+ exp[- 4( 24T 2 ]

m (To2+Tm2 ( 0 M_

(4. 2.5b)

The signal spectrum is seen to consist of three parts;

SP 0(w,W0), Spl+(w,w0 ) and Spl (,W0 ). Sp0 (WW 0) represents the

coherent response of the scatter channel. Spl+(W,0) and Spl (w,w0 )

are respectively the upper and lower shifted Doppler spectra. The

shape of both spectra is approximately Gaussian with center

frequencies at w0+pCp and wo-pCp. The two center frequencies are

the transmitted acoustic frequency w00 shifted up and down by pCp,

the frequency of the surface wave correlation function.

The width of Sp0 (w,w0 ) is governed by T2 and T3, which are

the correlation constants (temporal) of the second and third order
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moments of surface slopes. The widths of Spl+(,W 0 ) and Spl_(WW 0)

are controlled by the combination of T2, T3 and the surface wave-

height correlation constant TO. If the surface correlation functions

are in the form of an undamped sinusoid, then To, T2 and T3 are

infinite and the signal spectrum consists of three spectral lines

at W0' W0+PCp and w0-pCp. This is essentially the same result

obtained in the deterministic case. For smaller To, T2, and

T3, the surface wave spectrum is itself a narrow band spectrum and the

three spectral lines spread to form three narrow bands.

There would have been more than just one Doppler sideband on

each side of the carrier, if we had incorporated more terms of the

expansion of the characteristic function in equation (4.2.1). The

number of significant sidebands depends on the magnitude of the

Rayleigh parameter g.

We consider next the relative magnitudes of the upper and

lower sidebands. As in the deterministic case, the results depend

on wind direction and we therefore consider the downwind and crosswind

geometries separately.

Case I. Downwind geometry

The computational details of the substitution of downwind

geometry parameters in the signal spectrum are presented in Appendix H.

The result is expressed in equation (H-24) and is repeated in the

following equation
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II

2

WW 2 [)+ SD (WWo)] (4.2.6)D 0,o) (r 0 0 +rl 0 ) T 1SD0(W'W0)+SDI+('0) 1-0

where 2

T2
SD ('0) 0 (1-2c2 )6(-W 0)+(14 T2)° 2 e

0 g

T32° T 3 2 - (tO2

+(" T 3 ) 3 e (4.2.7a)

02R + 42R2dp
2 2L2(0 - 22(0

s o T0)e L w g L (w

-- T 0 2T0 22( t0-P CO

4)-(4w-w 0 pCp) p2a 2 £2  4(TT 2 22 )
"{ (1-2e 2 )e + 2 e 0 + 2

2 2
So T3 (W-WO+P CP)2

poc% 4(T0 2+T 3 2)

+ - e I (4.2.7.b)

We observe that the coherent response is an impulse of

amplitude (-2c2) e-g 2 at frequency w0" If the surface is

completely flat, i.e. £2 = £3 = g - 0, the coherent response is

the only term in rD(=, 0 ) and it has the form (r 0 0+r 0 )-, which

is the familiar form of point source response. When the surface
2

is disturbed, £2 and g are nonzero. The attenuation term e-g2

results from the surface deformation amplitude, while the term

'I 4-16



2e2 represents attenuation caused by the slope terms. To

consider the effect of surface waveheight and the effect of

slopes separately, we assume the surface to have extremely

small deformation, i.e. extremely small g, but have finite

surface slopes. In other words, the surface can be modelled

as a group of plane facets located on the flat surface. Each

facet is random and has its own slope and the correlation of

the slopes is described by equations (4.1.15) and (4.1.17).

The spectra S+D (W'W0) can be neglected for extremely small g
2 1+

and e-9 is approximated by 1. The spectrum in equation (4.2.6)

can then be rewritten as

T 
2

2 2 _ 2 ( _0 2
1 ~~P a C2  4(-

rD (W ,W0) = (rl--+r0)-{(1-2 2) (-W0)+( 7r T2 ) 2 2 e

2

T3  2+pT 3 e 4 -0 2

(4 T3 ) g 4 (4.2.8)

It is seen that the energy which is removed from the coherent

response is distributed in the frequencies surrounding w0' i.e.

the second and the third terms in the brackets in equation (4.2.8).

As discussed in the previous section, the bandwidth is determined

by T2 and T3 t and is not a function of slope moments. Varying the

mean square slopes e2 only changes the absolute magnitude of each

spectral component proportionally. Figure 4.2 contains sketches of

rD(w'w0) of equation (4.2.8) for both small and large values of 2 .

Notice that the bandwidth stays the same in both cases.
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r (w, W0)

A0

small £2

r(w, wO)

1* 1
!W

large e2

figure 4.2 Pover spectrum- small and large c
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The effect of somewhat larger surface deformation on

the frequency spreading function can be examined by including

the two spectra SD (W,w0 ) and SD (WW 0 ) into our considera-

tion. Each of the spectra is the sum of three Gaussian functions

as indicated by equation (4.2.7b). Considering the bandwidths

of these three Gaussian functions in more detail, we see that

they are respectively 2(m T0)i' 27i-(T0-2+ T2-2 ) and

27- (T 02+T 3-2) Hz. Hence the spread in the first Gaussian is

due entirely to the surface waveheight fluctuations, while the

spreads in the second and the third Gaussian functions are due

to the combined effects of surface fluctuations and surface

slopes. The combination is such that the bandwidth is controlled

by the process which has the smaller correlation time. To our

knowledge, no measurements of slope correlation times have ever

been made. To be consistent with the assumption that slopes and

heights are independent because the slopes depend largely on

small ripples one might argue that T2 _ T3 << T0 . However,

another point of view is to assume T 2  T 3 ; Too simply on the

basis that all three correlation times result from the same

surface wave motion. We have used the second approach in equation

(4.2.7b) to compute SD (WW 0 ) and SD I (W , 0
) . All the other

parameter values needed for this calculation are taken from data

obtained in a model tank.t These values are shown in Figure 4.3,

which contains a plot of the two spectra. The Rayleigh parameter

The magnitudes of c2 and c used in the plot may be larger than

the practical value in order to emphasize the asymmetry.
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g is 0.3. We observe that the two sideband spectra have

completely different amplitudes. The amplitude differences
Pac3

are caused by the two double-signed terms, i.e. + - and

+ 42 R 2dp . Note that the inequality of the spectral
g 2L2 (w )

heights d es not depend on the correlation times and is therefore

unaffected by the assumptions made about the relative values of

TOP T2 and T3. As in the deterministic case considered in

Chapter III, the two double-signed terms can be related to

two different mechanisms, i.e. the surface slope asymmetry

and the scattering geometry asymmetry. The effect of surface
Poc 3

slope asymmetry shows in the term - , while the effect of
g4o2R dp

scattering geometric asymmetry is 
in

g2L2 (W0)

We first consider only the surface slope asyinetry by

setting d 0. From equations (H-13) and (H-22), this implies

either

r00 -rl 0  (4.2.9a)

or

0 900 (4.2.9b)

Since £3> 0 for wind-driven surface, we clearly see that the

upper sideband D (WW 0 ) is larger than the lower sideband
1+

DI(' ). If the direction of surface wave propagation

reverses, both Cp and e3 change sign so that the sideband

asymmetry stays the same. The degree of this sideband asymmetry

is a function of acoustic frequency. If we increase the acoustic

frequency, the Rayleigh parameter g becomes larger, and the term

4-21



becomes smaller. Therefore, we would expect to find less
g

sideband asymmetry for higher w0" This is illustrated in the two

sketches of Figure 4.4. The acoustic frequency used to generate

the lower sketch is twice the value used in the upper sketch.

We now consider the sideband asymmetry caused by asymmetric

scattering geometry. In order to do this, we let e3 ' 0 to

elminate the effect of surface slopes. The form of the exponential

term can be rewritten by replacing d with its equivalent expression

in equation (H-22). We get

4o2Edp p rl0-r0 2 cs

exp{ + }- exp { +r r 2 [- "] (4.2.10)
g2L2(W0) W 0/c r10+r00  sin2 (0

This is similar to equation (3.2.18) for very large L(w0). Thep
upper and the lower sidebands are asymmetric when r00 0 r10 and

0 900 . The discussion of the sideband asymmetry is the same

* Ias in Chapter III. Figure 4.5 and 4.6 contain sketches of the

asymmetric sidebands for r00 > ri0 and r00 < ri0 , respectively.

The corresponding downwind geometry is shown above each sketch.

Case II. Crosswind

The formulation of the signal spectrum in a crosswind geometry

is presented in Appendix H. The resulting spectrum is written as

2
r(w,w O)e [Sc )+ Sl +(W, O)+ Sl (WW0 )] (4.2.11)

(r 00+r10  0 1+ 1-

i' 4-22



r(w,w0)

0 0pCp (A)0 W0+p
ep

r(ww

0

2w 0 -PCp 2w0  2w0+pCP

Figure 4.4 Asymmetric sidebands for different acoustic

frequency w0 and 2w0
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WIND DIRECTION

r~o

RECEIVER

SOURCE

z

r(w, w0)

O0

W0-pCp 0 w0+pCp

Figure 4.5 Asymmetric sidebands for small Rayleigh parameter,
3 0, and r0 0 > r1 0
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RECEIVER

z

r (w, w0 )

0 w0-Pp wp wo+PCP

Figure 4.6 Asymmetric sidebands for small Rayleigh parameter,
E 3 0, and r0 0 < r 10
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A

P p2 a 2 -C2-2 (W-W0)2 I

S o(W'W 0 )  (1-2c 2)6 (W-W0)+(4w T 2 )  gZ e4

I. *1O
2

POE3  - (-)

T3 (ww 2
+(4 T3) - 3 e 4 0  (4.2.12a)

2o 2R2p2

2 g2L(w 0 )
S (w, W - (4i'* T0 )e 22sc +CwtO 0 20

2 2 2
T0 T2  ~i~+C

-0 -2 2 2 22)

-{(1-2c 2)e + 2 e 0  2

g

2 2 2

poe 3  4(T0 2+T 3 2)

9 (4.2.12b)

We observe that equations (4.2.12) are quite similar to

equations (4.2.7) except that the geometry-asymmetry factors,

i.e. exp{+ 2 2 in equation (4.2.7b), have disappeared.

Therefore, the sieband ratio, i.e. Scl+ ('W0 )/Sel- (W,0)9

will remain unchanged for all values of r0 0 and r1 0 . The effect

of asymmetric slope distribution is, however, still present in
4
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equation (4.2.12). Figure 4.7 shows a crosswind spectrum obtained

by Zornig [3] in a model tank experiment.
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4.3 Random surfaces - large Rayleigh parameter

When the surfaces become rougher, i.e. g - w -> 0 , either

by increasing the r.m.s. surface waveheight a or by increasing the

acoustic frequency w0 ; the surface height characteristic function is

conveniently approximated by equation (4.1.14) repeated here as

equation (4.3.1):

2 2 2 2 2

Q( 1 2) exp{-g 2[ 11 n +  - + 2- (n-CpT) 2]} (4.3.1)2 2 y 2 2
A A T 2

x y 0

The received signal spectrum can be computed as in Sec. 4.2,

with equation (4.3.1) being used to represent the characteristic

function Q(%Ic 2). Appendix I has the details of this computation.

The resulting spectrum is expressed in equation (1-4), repeated

here as equation (4.3.2):

f -J (W-W0 -r

r(w,w O) f O(W0,r)e 0 dT

[ o q2 (0) ]2
)- exp[-

K2( ql(0,0) f0 exp[- 4ql(0,0)

-J[W- W0- q2 ( 2 )  [W-W 0 -q2 ( 
) ]

+ ) f ( )exp[-
1 1 e2f1 2  1 1 1 1

2 2 2 A 2  T2  A2

2
-j[W-Wo-q 2 ( [- q

pA 3  A3

ql( I I 3 3f13(3 )exp[- 1
10 1q( 1 14q,( -- 1

T3 A32 T32 A T32 A32

(4.3.2)
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where K2, f10, f1 2 ' f1 3' q, and q2 are defined in Appendix I.

Notice that the signal spectrum r(w,w O ) is the superposition

of three functions. Each of the three functions contains a Gaussian

term. The centers of the first, the second, and the third Gaussian

are respectively w0 + q2 (0), W0 + q2( -1- ), and w0 + q3 ( 1 2).A22 A3"

From equation (I-4b), we get

1p 2g 2Cpd

q2 (0) = N12  g2 2g2  (4.3.3a)

-+'2+-

N+N* 2
y

1 2 212pgCpd
-2( ^i ) = .- 2+P -
A2  (4.3.3b)

2 2 2 N 2 2 2
N+N* A 2 A22

Y

1 22Cpd

q - (4.3.3c)

N+N* A 2  2 A32
Y

where N is a complex quantity defined in equation (H-4). Equation

(4.3.2) is rather unwieldly as it stands and must be simplified

considerably to permit easy interpretation. We consider first the

equation for q2 (-). From equation (4.3.3) we see that their dependence

on A2 and A3 is relatively slight, especially if we make the assumption

that A2, A3 and Ay are all of the same order of magnitude (this

assumption is based on considerations similar to those used in the
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previous section to argue that T 0 : T 2 : oethtsnew r

dealing with rough surfaces here, g 2I>1 n hrfr A 2 > 2' 1
y A A

Thus we have that2 3

A 2  A7

Furthermore, if the surface slope correlation times T 2and T 3are of the

same order of magnitude as To, then from equation (I-4a), we have

S q(~:, )= q (0,0) (4.3.5)
A TT A

2 23 3

By the use of equations (4.3.4) and (4.3.5) the three Gaussian

functions in equation (4.3.2) are made to be identical and r(w,w 0) can

be rewritten as

__ _(W-W O-q 2 (0)1

0{f ~ -J [w-w 0-q 2 (0)] -j [W-W0-q 2 (0)1
10 + 2 f12( 2q 1(o0c0) )+ C 3 f13 ( 2q, 1 0) )I

(4.3.6)

Except for the terms involving the slope moments F-2 and E 3 the signal

spectrum r(w,w 0) is seen to be a Gaussian function with center

frequency at 4- +qV0j and bandwidth fB - 2w [q1(0,0)] The

functions f 10, f 12 f 1 3, q, and q. all depend on the scattering

geomtry, as can be seen in Appendix I. Thus the spectrum r(w,w)
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depends on geometry and on slope moments. As in the previous sections

we consider in detail only the down (up) wind and crosswind geometries.

Case I. Downwind

Detailed calculations for the downwind case are given in

Appendix I, equations (I-5) to (1-9). Equation (1-9) gives the

expression for the spectrum, repeated here as equation (4.3.7)

[W-W 0 -q 2 (0)]2

I______O) _I V7_ e (2r fB)
2

(r0 0+r10 )2 gpCp/ 2

1 2 c
1(1-22)+2 c2[( I 2 - [W-Wo-q 2 (O)]}

2 2 A y2 2 g2A 2  gCp2

(4.3.7)

We see that r(w,w O) is generally not symmetric with respect to 0

unless q2 (0) - 0 and c3  0. These are the effects of the two mechanisms

mentioned previously as we recognize that c3 represents the slope asymmetry

and q2 (0) is the scattering-geometry asymmetry. The expression of q2 (0)

can be obtained from equation (4.3.3a) and the expression of d in equation

(H-22)

12 ~CP 2 * L 2. 1 1O

N22  1 p CR r0 0  r10

g (N+N*) A 29 y 2

(4.3.8)

f
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We see that q2(O) is non-zero if r00 7 r10 and 0 900 ; and

q2 (0) is positive (negative) when r00 < r1 0 (r0 0 > rlo) Therefore,

considering no slope asymmetry, i.e. c3 - 0, we conclude that if the

wind blows from source to receiver, and if r0 0 < r10 (r0 0 > r1 0 ), the

upper (lower) sideband is larger than the lower (upper) sideband

(see Figure 4.8). This conclusion is the same as was reached in the

deterministic case and in the slightly rough (random) surface case.

We examine next the sideband asymmetry caused by surface slope

asymmetry. As usual, we eliminate the effect of the scattering geoietry

factor by assuming r0 0 = r1 0. Then equation (4.3.7) becomes

r(w,1 2 exp{-
0 (roo+rO)2 gpCp/2 (2wfB)2

201 1 3

((1-2c 2 )+2c22[( - + -)+ 2  g2A 1+ - c (w-n°)) (4.3.9)

A y 2 g A2  gC p

We see that the center of the Gaussian function is at w 0* The

sideband asymmetry is introduced by the last term in the brackets, viz.
-3 (W-W0), which is positive and therefore increases the upper sideband

when >0; and is negative and decreases the lower sideband when w<w0 *

Therefore, the upper sideband is always larger than the lower sideband.

Figure 4.9 contains a plot of equation (4.3.14) with f - 256 KHz,

00 " 30 0 , r0 0 , r10 - 254 cm. A slight asymmetry can be seen by comparing

the corresponding spectral amplitudes on both the upper and lower sidebands.

Much greater asymmetry is produced by differences in source and receiver

depths. This is illustrated in Figures 4.10 to 4.12, which are plotted

for r 00 /r - 0.1, 10, and 0.5 respectively.
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Figure 4.8 Gaussian spectrum-Downwind
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The amount of frequency spreading is determined by the bandwidth

fB" From equation (I-4a), with a b - 0, we find that this is given

by 2
L (W) 1

" 80R2AR 2 A 2 (4.3.10)
B T 02 2 L2(W0 ) 1 p I

82R2  7 2  2y

where the Rayleigh parameter g has been replaced by g = 0Fa (2rf 0 cF

c c

We see that the bandwidth fB is a monotonic function of the

acoustic frequency f0 (in Hz). However, it is not a linear function of
1

foo since the beamwidth L(w0)= )-- is frequency dependent. For low
0

acoustic frequency, L(w0) is large,' and we can assume that

L2 (W0) 1 2
8a +R2--- . Hence for small f08cr2R2  A2  2

y

f f F P2C (4.3.11)
0%BTO02 + 2

As the acoustic frequency increases, t~e beamwidth L(w0 ) becomes smaller,L6(w O) 1

and at some high frequency, we have 2 - Hence, for large
8 2 R2  A 2

f0 9 equation (4.3.10) can be rewritten 
as Y

f +_p_2____ (4.3.12)
B f c 2 2 I

T0 2+p2Cp

Figure 4.13 contains a plot of f B/f0 as function of frequency f0

according to equation (4.3.10). Notice the asymptotic behavior at both
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low and high acoustic frequencies.

Case II. Crosswind

The received signal spectrum for crosswind is derived in Appendix

I, equation (I-10), repeated here as equation (4.3.13)

1 Fr (W-W) 2

r(w,w O) - 1 .. exp - 0) 2

(roo+rlO) gpCp/2 2 fB

[Jl22+Q 1 2 1 + 1 c3
- 2+- )+ -- +-- (W- = 0 ), (4.3.13)

j~~c)2rc 2  ' A2 2 g2A2 gCp 0
ygA 2

There is only one factor in equation (4.3.16) that can cause side-

band asymmetry. It is a (w-w0 ), the surface slope asymmetry. As

we discussed in the section dealing with the downwind geometry, this

term will make the upper sideband larger than the lower sideband in a wind

driven surface. Varying the scattering geometries, i.e. changing r0 0 , r10 ,

has no effect on the sideband asymmetries.

The bandwidth for crosswind is obtained by substituting crosswind

parameter values into equation (I-4a). This gives
2

L (W0 ) 1

f 4f OJAR + P2 2 822 % Si 2 *0(..4
B 0|c 2 2 2 1 (4.3.14)L2(w0 ) p

22 2
8a RSin *0  A 2

+ Very low values of f might be inconsistent with the assumption of a very
rough surface; i.e. g R> 1. However the inequality leading to equation
4.3.11 depends on beam width, which is partly controlled by transducer size.
Hence equation 4.3.11 may hold with g >> 1.
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The main difference between equations (4.3.10) and (4.3.14) is that

the term in equation (4.3.10) is replaced by

8o2R2  L2 (w0 ) 82 R 2Sin2 0

in equation (4.3.14). Since is always larger thanL2(w 0)  8a2 R 2Sin 2 *0  -

8a2 R2  , the crosswind bandwidth in equation (4.3.14) 
is larger than

the downwind bandwidth in equation (4.3.10). In other respects the

dependence of the bandwidth on f0 is similar to that already discussed

for the downwind case. Figure 4.14 shows plots of bandwidths for both

downwind and crosswind at 0 = 170 and 300. Also shown in this figure

are experimental points of bandwidth measurements made in a model tank

by J.G. Zornig [3] . The general behavior of the theoretical and experi-

mental results are very similar, and the correspondence between the

results for *0 = 300 are well within experimental error. For *0 = 170

there may already be some shadowing, and this might explain the con-

sistently smaller bandwidth observed in the experiment. This issue has

not yet been investigated.

In Figures 4.15 to 4.17 are plots of the crosswind signal spectrum

according to equation (4.3.13); in Figure 4.15, f0 . 256 KHz and 0 = 170;

in Figure 4.16, f = 256 KHz, 0 300 , and in Figure 4.17, f 524 KHz

0
and 0 - 30 Note that the sideband asymmetry becomes less significant

with increase in fo. Also note that the bandwidth increases both with

and with fo.

In summary, we have examined the frequency spreading function of

the acoustic signal scattered from a random rough surfaces for both the

slightly rough case and very rough case. We have found that the amount

of frequency spreading (bandwidth) depends on both the surface roughness

and surface slopes. The following illustrations summarize the results of

section 4.2 and 4.3.
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(1) The incident acoustic signal is

sinusoidal with frequency w0'

W 0

(2) The received signal spectrum re-

flected from an absolutely flat

surface. The spectral amplitude

is attenuated.

W 0

(3) Sinusoidal surface of frequency SI.

The scattered signal spectrum is

a sequence of spectral lines of

interval a.

wo-41 wo-2Q wo wo+2Q Wo+4Q

(4) Surface with very small roughness;

finite surface slopes with large

temporal correlations.

iW

W 0
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(5) Same as (4), except the slope

has smaller temporal correlation

(become more uncorrelated).

W 0

From (4), the surface roughness

increases, and the surface wave

is a narrow band process with a

center frequency of pCp.

CO - P p W 0 WO+PCp

p (7)

The surface roughness increases

more, and the bandwidth of the

4surface wave also increases.

W 0(8)

A continuation of (7).

(9) (A)o

For very large surface roughness,

the signal spectra merge into one

Gaussian.

W 0 4-48



The amplitudes of the frequency spreading function are in general

not symmetric with respect to the transmitted frequency. There are two

different mechanisms which are responsible for this amplitude difference.

One mechanism is the surface slope asymmetry, i.e. E3 is positive, which

always results in the upper sideband being larger than the lower sideband.

This effect does not depend on the wind direction. The other mechanism is

the scattering geometry asymmetry caused by unequal depths of source and

receiver. This effect is a function of the wind direction and depends

on the relative depths of source and receiver. Specifically, if the

source is located at a smaller depth and if the wind blows from source

to receiver, then the upper sideband is larger than the lower sideband.

By either reversing the wind direction or maintaining the wind direction

but placing the receiver at a smaller depth than the source, the lower

sideband will have a larger amplitude than the upper sideband. Since

this mechanism is wind-direction dependent, it has no effect on the side-

band amplitude asymmetries in the crosswind condition. The effect of the

second mechanism on the sideband asymmetry is in general larger than that

of the asymmetric surface slopes. The effect of both mechanisms decreases

as the acoustic frequency increases. In other words, the frequency spreading

function is more symmetric at higher acoustic frequency than at lower

frequency.

The width of the frequency function is controlled by several parameters;

it increases with the grazing angle, the surface roughness, and the acoustic

frequency. It also depends on the wind direction, the width of the spreading

increases as the geometry changes from downwind to crosswind.
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Chapter V Experimental Data Comparison and Discussion

5.0 Introduction

A series of surface-scatter experiments has been performed in

a model tank by 3.0. Zornig [3] . A windblown surface is generated in

this tank by a fan blowing air through a wind tunnel suspended above

the surface. A detailed description of the experimental equipment

and setup can be found in [79]. The experimental technique involves

the transmission of narrow pulses that are preemphasized so as to produce

an approximately flat received spectrum over the frequency range of 0.2

to 1.2 MHz. The received pulses are acquired by a digital computer and

stored on magnetic tape. Data processing to obtain the frequency spreading

function can then be performed on the stored data. The data processing

* techniques are described in detail in Appendix 3.

5.1 Doppler Shift

j Examples of measured and computed spectra are shown in Figures

5.1 to 5.4. Each figure contains four spectra corresponding to four

transmitted frequencies, f 0 : 256 KHz, 524 KHz, 792 KHz, and 1.06 MHz.

The zero frequency of all plots is referred to the transmitted frequency.

Hence the positive (negative) frequencies correspond to the upper (lower)

sideband. Figures 5.1 and 5.3 are for upwind transmission, while Figures

5.2 and 5.4 are for crosswind. The grazing angle in Figuires 5.1 and 5.2 is

300 and in Figures 5.3 and 5.4 it is 170 * In all plots the depths of

source and receiver are the same. It is clear from these figures that

there is a significant discrepancy between theory and experimental results.

According to the theory, the asylmmetry should decrease with f This
0'
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follows from equations (4.3.7) and (4.3.13). The term that causes

asynmmetry is the c 3 term, and its coefficient is inversely proportional

to acoustic frequency w 0 However, the discrepancy between theory and

experiment is most significant at high acoustic frequencies. It

appears in all of these figures that there is a doppler shift in

addition to the theoretically predicted side-band asymmetry.

A possible explanation for this doppler shift can be found in

small azimuthal misalignments of the transducers used in the experiment.

Even though the transducer mountings were carefully positioned to be

exactly opposite each other with respect to the specular point, the

possibility remains that small imperfections in the transducers them-

selves could cause the center lines of their beam patterns to be a few

degrees off the boresight direction. Such a divergence is, in fact,

indicated in (53].

To test this conjecture several experiments were performed.

The results of these experiments are shown in Figures 5.5 to 5.7.

0Figure 5.6 was obtained from a crosswind geometry with *T-270 and

- 900, while Figure 5.5~ 2700,* 850)and Figure 5.7 =2700

O= 950) were obrtained in a roughly crosswind geometry but with receiver

being intentionally misaligned by 5 The top view of the relative

source and receiver positions in these experiments is shown in Figure

5.8. In this figure, the source-receiver pairs for Figures 5.5, 5.6 and

5.7 are respectively (S, Ri1), (S, R 2) and (S, R 3). Since in Figure 5.6,

the source-receiver pair (S, R ) was supposedly exactly crosswind, we

would expect a roughly symmetrical spectrum for high acoustic frequency.

However, we find that the most symmetrical spectrum among these figures

5-6
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i

is contained in Figure 5.5, i.e. for the source-receiver pair (S, RI).

In Figure 5.6, we see a fair amount of frequency shift, approximately

12 Hz., in the plot for f0 = 1,06 MHz. There is a even larger frequency

shift in Figure 5.7 almost 45 Hz toward the positive side in the plot

for f0 = 1.06 MHz.
0

If we assume that the center lines of the source and receiver

beam patterns diverge from their respective bore-sight direction by

2.5° , then it is conceivable that the intentional misalignment in

Figure 5.5 could result in a roughly crosswind geometry, with the

specular point at 0' as shown in Figure 5.9. The other two gemetries

would then represent angled paths, with both source and receiver

pointed slightly upwind. Since both beam patterns would then be larger

in the upwind direction than in the downwind direction, we would expect

more energy returned with upshifted frequency. The frequency displace-

ment should be larger for the receiver at R3 than for the one at R2.

This is exactly what is observed in Figures 5.5 to 5.7

5.2 Theoretical Analysis of Angled Paths

A theoretical treatment of surface scatter over a slightly angled

path is easily obtained by modifying the beam pattern function used

in the theory. Assume that the cenzer of the beam pattern function on

the water surface is off the specular point by a distance Ax in the x

direction and Ay in the y direction. Then the form of the modified

beam function can be derived from equation (2.3.13):

S 5-11 _7
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BB(x-A 2 (y-A ) 2 2 (X-A (y-(5..1
B SBR - L 2

-  2 2 (5.2.1.
L K(W0 L (W0 ) LY (WO)

where Lxx (W0) , Lyy (w0) and LXY(W 0 ) are defined in equation (2.3.14).

Rearranging the terms in the brackets results in

2 y2 2xy +[ 2 2A YBB--+ x +- Y • x

S R 2x 2 2 2 L 2

2 2

+ Av + 2A 1 AX A x2 2A xA

+ 1 Ly2 (t) Lx2 (w ) L 2 () L 2 (WO) Ly 2 (WO)

(5.2.2)

The first three terms inside the brackets represent the original

beam function. The last three terms represent an additional attenuation

of the received acoustic power due to the off-specular beam function.

They don't have any effect on the sideband asymmetry or the doppler

shift and therefore can be neglected. The two remaining terms represent

the significant modifications of the theory. Substitution of the new

beam pattern function of equation (5.2.2) in equation (F-9) affects

mainly the coefficients D and E. If we represent the new values as

D1 and El. then we have
ti

2A 24/ Dl  D - - Y(5.2.3)

L 2 (w0 ) L 2 ()

2A 2A
E E - -- -..- Kx  (5.2.4)

1 2 2L (W) L (WO)
yy 0 KY 0

S "5-13



The shift of the center of the Gaussian spectrum was defined as

q2 (0) in equation (4.3.3a). The parameter d appearing in this equation

is defined in equation (H-13) and is seen to depend on E in equation

(H-22). If we use E1 instead of E in this definition, q2 (O)can be

rewritten as follows:

2A 2A

q(0) K3 E1  K3 (E- 2 2
Lyy (W0  xy (W0)

(5.2.5)

K 3E + 2wf M

where

w pCp B*-BKf -___________0- (5.2.6a)
K3 IN 12  1 P 2 B*+B

g2 (N+N*) A 2 2

K AA31 Ay + l 
(52 6b)

yy (W0) L0 2 (0)

We see that fM is the additional doppler shift (in Hz) introduced by

the misalignment. As we assumed in the previous section, the center

of the beam pattern function is at 0' as in Figure 5.9. Thus the beam

center displacements are Ax M 0 and Ay - - 120'1I, where 120'1 indicates

the distance between 0 and 0'. Hence the frequency displacement
K3

fM 2 1L0'I is a positive quantity, i.e. the Gaussian spectrumLyy2 (W0 )

is displaced toward positive frequencies. This is what was observed in

Figures 5.5 to 5.7. In fact, the frequency displacements shown in all

experiments shown in Figures 5.1 to 5.4 can be explained in this way.

5-14
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The dependence of fM on the acoustic frequency f0 can be computed

by using equations (2.3.14) and (5.2.6a) in equation (5.2.6b). An

expression for B, to be used in equation (5.2.6a) can be found in

Appendix F, equation (F-10). When this is done we find that

f g2p2Cp W0

M iNI 2  g 2  2 2 c 00(rO00rlO1*TI0RTR)

N+N* A 2 (5.2.7)
y

where h(roo,rlO,*T,PR,*T,PR) is a function of geometric parameters only.

We show in equation (H-20) that for downwind for crosswind the term
w02L2 (w0)

IN12/(N+N*) can be approximated by if the beam pattern
2c R

illuminates several Fresnel zones. Since the beam pattern width

is proportional to 1/w0, 0 2L 2(w0 ) is independent of frequency, and

therefore IN12/(N+N*) is a constant. On the other hand, g2 is pro-

portional to w02. For frequencies high enough to make IN12/(N+N* )

negligible in the denominator of equation (5.2.7), fM is proportional

I * to W0" Figure 5.10 contains a plot of the measured frequency displacements

for the experimental results shown in Figure 5.5 to 5.7. The linear

dependence between f and f is clearly shown.

M 0

Figures 5.11 to 5.14 show the same experimental spectra as those

shown in Figures 5.1 to 5.4 and a set of theoretical spectra shifted by

values of fM chosen to provide the best possible match with fM constrained

* to be linearly dependent on f0  These values are shown in each figure.

It is seen that the correspondence between the theoretical and experi-

mental results is very good.
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5. Badit
* According to equations (4.3.10) and (4.3.14), the bandwidth should

increase with acoustic frequency f., with grazing angle *09 with surface

roughness, and with size of beam pattern. The increase in bandwidth with

f f0 appears in all of the figures; the effect of grazing angle increase

can be seen in a comparison of Figures 5.11 and 5.13, also in Figures

5.12 and 5.14; the effect of beam pattern increases between Figure 5.12

(small band width) and Figure 5.6 (large beam width) is caused by increasing

r and r 10 * An additional qualitative check of the theory is in the

bandwidth comparison between upwind and crosswind; the theory predicts

a larger bandwidth for crosswind and this is corroborated, for instance,

in a comparison between Figures 5.11 and 5.12. The qualitative correspondence

between theory and experiment is seen to be perfect in these examples.

* Quantitatively the correspondence between theory and experiment is

generally good for not too shallow grazing angles. The less satisfactory

bandwidth comparison in Figure 5.13 may be caused by the effect of shadowing

as we have already indicated in Chapter IV, Figures 4.14.

In sunmmary, we have shown that the Kirchhoff theory appears to

give quite accurate predictions of the frequency spreading function for

all surface roughness conditions. We have found that experimental

verification of the theory requires very accurate alignment of the

transducers, because even small misalignments which might be caused by

transducer imperfections can result in significant spectral shifts.

However, when all of these factors are taken into account the correspondence

between theory and experiment is seen to be very good.
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Chapter VI Physical Arguments for the Creation of Asymmetric Sidebands

6.0 Introduction

In the previous two chapters we have used the Kirchhoff integral

method in a rather formal way to compute the spectral properties of sur-

face-scattered signal. We now consider some physical arguments that

provide a more heuristic explanation for some of the results obtained

previously. We consider in particular the two mechanisms that have been

shown to be responsible for the spectral asymmetry of the scattered

signal.

6.1 Effect of Source-Receiver Geometry

Asymmetry of the scattering geometry, i.e. where the source and

receiver are at different depths, has been shown to result in a

spectral asymmetry if the source and receiver are in an up or downwind

configuration. This asymmetry has a simple physical explanation which

is illustrated in Figure 6.1, with the source located at a shallower

depth than the receiver. The water waves are assumed to move from source

to receiver. For this configuration we found earlier that the upper

doppler sidebands have a larger amplitude than the lower ones.

Assume that the acoustic wave frequency is high enough so that

the reflecting surface can be represented by a tangential plane at that

reflecting point. The planes at point A and B in Figure 6.1 represent

two of such surface tangential planes, where the reflections from these

planes will reach the receiver. Point A represents an arbitrary point

on the -Y axis and point B represents the point on the +Y axis. Since

6-1
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Figure 6.1 Asymmetric downwind scatter geometry and
attenuation factor.
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the surface wave is moving from source to receiver, the surface plane

at point A moves downward and compresses the incoming acoustic wave

and therefore produces an up-shifted doppler frequency component in

the received signal spectrum. On the other hand, the surface plane

at point B moves upward and relaxes the acoustic wave and produces the

down doppler shift. If the points A and B are chosen to produce equal

doppler shifts, the upper (from point A) and the lower (from point B)

doppler sideband amplitudes can be obtained by the intensities of these

ray paths. From Huygen's principle, each illuminated surface point be-

comes the source of new wave front, the attenuation factor for each

reflected ray is (r0r1 ) A plot of (r0r1) for all the points on

the y axis is shown above the scatter geometry in Figure 6.1. For a

reflection at the specular point 0, the attenuatirn factor is (r00 r1 0 )-I

The attenuation factors for points A and B can be found from the
-i

correspoinding points labelled A' and B' on the (T r1) curve. We

see that the magnitude of (r0r) - at point A' is larger than that

at point B', therefore the upper sideband is larger than the lower

sideband. This conclusion is the same as that reached in the earlier

chapters.

The same mechanism operates in the Kirchhoff integral which we

used to develop the mathematical solutions. The original form of the

Kirchhoff integral is given in equation (2.1.6), repeated here for

convenience

f e o (ro+r 1)

H(i t-) 1B 1B B _ dS (6.1.1)( 3n SR r 0 r1

Observe that the attenuation factor is explicitly included. The

integral of equation (6.1.1) can be read as the sum of all ray components

6-3



reflected from surface S. Each component is a normal derivative of a

.l (J0quantity which has amplitude (r0rl) and phase angle - (r0+rl).

If the direction of the surface wave velocity is reversed, the

plane at point B will then move downward and compress the acoustic

wave. The plane at point A will relax the acoustic wave instead of

compressing it. In other words, the role of plane A and B are

switched and so are the upper and the lower sidebands. Therefore,

the direction of the asymmetry is reversed.

A crosswind geometry is shown in Figure 6.2. On the Y axis,

two surface tangential planes, which give the same amount of frequency

shift at the receiver, are shown at points A and B. The attenuation

factor (r0r1) -1 is plotted on top of the scatter geometry. It is

observed that A and B are symmetric and the attenuation factors at

hetwo points are identical. In fact, the plot of (r0r1l isthese topit r dnia. I at h lto rr) i

symmetric with respect to the specular point 0. Hence there should

be no sideband asymmetries in the crosswind configuration if only the

scatter geometry is considered.

As indicated in the previous chapters, the upper and lower side-

bands are symmetrical if r00 =r 10 or if the grazing angle is equal to

0 -1
90 . This result is obvious since (r0r) shows a symmetric distri-

bution under these conditions.

The reason why spectral asymmetry has usually not been observed

in scattering computations using the Kirchhoff integral is that the

specular-point expansion used by Eckart [31] and by others [36], etc.

replaces the factor (r 0rI)-I by a constant (r 0 0 r1 0 )-1 for the sake of

mathematical convenience. This approximation clearly removes the

asymmetry contributed by the geometric factor.
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6.2 Effect of the Surface Slope Distribution

In the discussions of Chapters III and IV, we found that slope

asymmetry of the surface waves results in asymmetry in the received

spectrum. To show only the effect of slopes, we assume a symmetrical
9

scattering geometry by letting r0 0 = r1 0 in an up (down) wind configura-

tion shown in Figure 6.3. The upper plot shows an assumed asymmetric

distribution of surface slopes for a wind driven surface. In the lower

plot the tangential planes at A and B are indicated as in the previous

two figures. The arrow shows the direction of the wind and of the

surface wave motion. The slope distributions corresponding to the two

surface points A and B are A' and B', respectively. It is seen the

slope distribution at point A' is larger than that at point B'. Hence

there are more positive slopes and fewer negative slopes on the surface

and we would expect more energy in the upper sideband (reflected from

positive slopes) than the lower sideband (reflected from the negative

slopes).

For the same geometry, if the wind direction is reversed, the

slopes at point B will compress the acoustic wave but it also will have

a higher slopes distribution. Therefore, reversing wind directions only

exchanges the roles of points A and B, and has no effect on the direction

of the spectral asymmetry.

* The same result can be obtained for the crosswind geometry, which

is shown in Figure 6.4. The reflection from surface plane A constitutes

the upper sideband and has more energy in this band.
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slope distribution.
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Here again, the reason why the effect of the surface slopes was

not observed in earlier analysis of the scattering problem is that in

order to simplify the Kirchhoff integral:

4W0
j - (r 0 +r1 )

H00 t)- 1_______ ds (6.2.1)

an

ignored. Thus, equation (6.2.1) is usually simplified to read

410

H(w0 ,t) f _ .. { e rr dx dy (6.2.2)

rather than the more accurate form

J -(r 0+rl)

1 1a az a az e C
(ot) P (r aX ax ay rot I

(6.2.3)

When the slope terms are retained, even approximately, we have shown that

slope asymmetries result in spectral asymmetries.
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Chapter VII Summary and Conclusions

In this study, we have examined the problem of frequency spreading

in the acoustic surface scattering from both the mathematical and the

physical point of views. The result of this investigation is the

establishment of spectral characteristics as a function of three

effects; viz., scattering geometry, surface statistics, and acoustic

frequency. Expressions are derived based on an arbitrary scattering

geometry to allow for general applications.

The analysis considered two different kinds of surface model;

a deterministic one and a random one. The deterministic model is

treated in Chapter III. A two-harmonic surface Wave was used to model

a wind-driven surface. The spectral behavior of the acoustic signal

p scattered from this deterministic surface was derived for small surface

waveheight. It was found that the surface scatiering process introduced

doppler shifted spectral lines into the received signal spectrum. The

amount of frequency shift is a function of suiface wave frequencies.

The amplitudes of the two spectral lines adjacent to the transmitted

acoustic frequency are generally unequal. Under crosswind condition,

the upper spectral amplitude is always larger than the lower one. In

the down (up) wind case, the relative amplitudes depend on wind direction

and relative depths of source and receiver. Scattering from a random

surface was considered in Chapter IV. The surface height distribution

was assumed to be approximately Gaussian, but such as to permit a non-

zero third order surface slope moment. It was found that this moment is

one of the two mechanisms that control the spectral amplitudes. The other

7-1
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mechanism is the surface scattering-geometry asymmetry. A detailed

discussion of how the two mechanisms control the spectral amplitudes

was given for both the slightly rough and the very rough surface

situations. In each situation we considered the downwind and cross-

wind cases separately. The result obtained from the slightly rough

random surfaces was compared against that obtained from the 4eterministic

model. We showed that the latter could be a limit case of the former.

All these discussions are for forward specular scattering. In Chapter

V, the theoretical and the experimental results are examined, and the

amplitude asymmetries due to misaligned source-receiver geometry (off-

specular) are discussed. The major mathematical results of Chapter

III, IV and V were reviewed from a physical point of view in Chapter VI.

A simple surface reflection model was used to explain the analytical

results qualitatively.

It was found that the deterministic model, random surface and

physical modelling all lead to consistent conclusions about the frequency

spreading function. The major results can be summarized as follows:

(a) The acoustic signal scattered from a sinusoidal surface produces

distinct spectral lines as sidebands in the received signal spectrum.

The spectral lines are doppler shifted from the source frequency with

frequency shifts equal to the surface wave frequency and its harmonics.

The number of significant spectrum lines depend on the surface waveheight

(the roughness). More spectral lines will result if the surface wave-

height increases its value. If the surface wave has more than one

frequency, the resulting spectrum will have additional spectral lines with

doppler shifts equal to the mixed frequencies. The total energy is

7-2



conserved, however, when more spectral lines are formed, the amplitude

of each spectral line decreases.

9 (b) When the acoustic signal is scattered from a random moving surface,

the resulting spectrum usually shows frequency spread around the source

frequency and frequency spreads around the doppler-shifted surface wave

* frequencies (i.e. the surface wave still has one or more characteristic

frequencies despite the randomness). The width of the spread is usually

controlled by the surface waveheight and by the surface slopes correlation

constants. The smaller the correlation constants are, i.e. the more

the surface height or slopes are uncorrelated, the larger is the

frequency spread (bandwidth). For surfaces with very large roughness,

the received signal shows a spectrum that has a Gaussian shape. This

result can be extended from the small surface roughness situation by

widening the doppler shifted spectrum as surface roughness increases,

and finally the bandwidth of all sidebands become wide enough so that

they merge with the center spectrum to form a single spectrum around

the source frequency.

(c) The magnitudes of the sidebands on both sides of the acoustic

frequency are in general unequal. Two different mechanisms are

responsible for this amplitude difference. One of these is the surface

slope asymmetry which always results in the upper sideband being larger

than tile lower sideband. This effect is independent of wind direction

or of the relative depths of source and receiver. The second mechanism

is the asymmetry of the scattering geometry; i.e. a difference in the

depths of source and receiver. If the ratio between depths of

source and receiver exceeds 2 and if the source-receiver configura-

tion is down (or up) wind, the second mechanism becomes dominant in

determining the relative sideband amplitudes. Specifically, the conditions

are, if the source is at a shallower depth than the receiver is, and if

7-3



the wind blows from source to receiver (downwind), then the upper

sideband is larger than the lower sideband. By either reversing

the wind direction or maintaining the wind direction but placing

the source at a larger depth than the receiver, the direction of

sideband asymmetry is reversed. Since the second mechanism is a

wind-direction dependent effect, it has no effect on the sideband

amplitude asymmetries at crosswind.

Good agreement was obtained for random surfaces under a variety

of roughness conditions. Some of the differences that were initially

found between experimental results and the theory turned out to be

the result of small measurement inaccuracies. By modifying the

theory to permit consideration of misalignment in hydrophone placement,

it was found that very small misalignments could result in fairly

substantial doppler shifts. When these misalignments were removed,

excellent agreement between experiment and theory was obtained in

practically all cases.

The success of the theory in matclaing experimental results can

be regarded as a verification indication of the Kirchhoff integral

method for dealing with the forward scattering problem. Although the

sideband asymmetries that were one of the major items of interest in

this research were not discovered by the Kirchhoff method in its

commonly used simplified form, it has been shown that if some often

neglected factors were retained, the Kirchhoff method gives exp:ri-

mentally verifiable results. Furthermore, the effect of surface-

slope asymmetries and of small hydrophone misalignments had not been
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previously predicted. Thus althtugh this method has frequently been

criticized, and although it is difficult to justify all the simplifying

assumptions on which it rests, it appears to be able to give new and

useful results.
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APPENDIX A: Derivation of Helmholtz Integral

Consider a monochromatic scalar wave

p(x,ypz,t) f Ps(X,y,z)e-JWt (A-i)

It satisfies the wave equation

(2 + Ps(xyz) _ 0 (A-2)

Let p(x,yz) be a point within a volume V bounded by a surface S

as shown in Figure 2.1. If we assume a function U(x,y,z) which together

with its first order derivatives is continuous and finite within and

on S, then from Green's theorem

fjvp2UUV 2p )dr - (U 1Ps - U- A3

ff sj -" PsS )'ds (A-3)

when n is the surface normal defined positive outward. We also assume

U to satisfy the wave equation.

22

(V2 + - )U 0 (A-4)

2c

From equation (A-2) and (A-4), we see that the left side of

equation (A-3) is 2ero for every point of V, therefore we have

(p 3U aU ). ds-0 (A-5)

S

We nov assume U to be a function of the form

c 1 (A-6)
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where r1 is the distance from p(x,y,z) to any other point in V.

We have assumed U to be a continuous function within V, and since
ej w rI
ejcr1 /r is singular for rI  0, we must exclude the point

p(x,y,z) from the domain of integration. We surround P by a

small sphere of radius c and let the integration be taken through-

out the volume between S and S', where S' is the surface of the

small sphere enclosing P. We can rewrite equation (A-5) as

ff ff 2ap
f Ps n - n d-

Hence 0
ap e c 0  1  e c p

n-s r -5r *d

(A-8)

Notice that the first term and the third term in the kernel of the
1

right-hand side integral are proportional to -F where S' is

2proportional to therefore if we let C 0, the first and

the third term in the right-hand side integral gives no contribution

to the integrated value. However, the integration of the secondwo

term yields a value 4wps, since ej C closes to unity when C - 0.

Dividing both sides of equation (A-8) by 4w gives equation (2.1.1)

SI A-2
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APPENDIX B: Surface Integral Transformation

Consider a surface integral I of the form

I M = f(x,yC(x,y))' ds (B-1)

where S represents the surface area over which the integral is

to be performed, ds is a small surface element whose direction

is that of the surface normal; x, y and C(x,y) are the coordinates

of an arbitrary point on the surface S in an x,y,z coordinate

system as shown in Figure B.I. The location of each point of

the surface area S is completely specified by the vector

A A
r(x'y) = x x + y y + C (x,y)z (B-2)

Let S be a smooth surface and assume (Ac,y) to have

continuous first derivatives along the x and y directions.

3r A 3(x,y) ^
- = x + z (B-3)
ax ax

r M A (xy) (B-4)
y y + (3y Z

These two partial derivatives define the slope of the tangential

plane of S at the surface point (x,y,t(x,y)). Therefore the surface

normal n at point (xy, (x,y)) is

B-II -
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APPENDIX C: Spectrum Computation-Deterministic Surface, Downin

From equation (3.2.7) and x = 0, H(u) ,t) can be

rewritten as

jU( sx -By _yj F

H(W0,t ) = e O s fD ) wOF,1C +,y2B)(2By+E) e dxdy
47Tr0 0r 10  cyy YI

% (C-i)

where 1 0
A 2

L2 (wO ) CR

2sin2 u 0sin2 O ssi -j= ini

B L 2 (u0 2 RB=L2(w,) CR - i°~

E ( 1 r 1 cosp'

r00  r10

F = 2 sin* (C-2)

Since O(x,y,t) is not a function of x, the integralwith

respect to x in equation (C-i) can be easily performed and H(wo,t)

becomes

W _-By-2 Ey+j - QFC
(00, W 2)+ dy

H(Wot) = J - F(l- y (2By+E) dy
00i (C-3)

By use of the one dimensional surface wave model in equation

(3.1.1), 4(x,y,t) can be put into the equivalent form

,



Ox, , 0 h (jpy-jn(t+JO + eijpy+llti)O
2

(ejy-2t + ei2 Yj~ (C-4)

The slope along the y direction is obtained by differentiation

of equation (C-4), and it becomes

C(x,yt) j ph1 (epyj'
t j- ejpy+ifltij)

y2

+ jph(e (C-5)
+ p 2 ( e 2 Y j ~ i P ~ 2

and therefore
2 2

2 p h 1  2 2 2 jpy-jat-JO + jyjitJ
= - +2p h2 + p h h[e+e
2

I j2py-j2Qt+j2O + j 2py+i29Itij2O

4

2 j3py-j~gt+JO + jp~3tj-p h 1h2 [e+e

-P2 h2 [ej4py-j4(nt + -j4py+j4Qt1  (C-6)

The waveheight of the water surface is assumed to be

small compared to the acoustic wavelength. From equation (3.2.8)

e C+ j - F "'[ei2py J2~t J+ e-J (C-7)J~
c 2

Substituting equations (C-4) to (C-7) into equation (C-3)

results in

c-2



ejW 0f -By2 E
H(w0,t) =HCE e Eydy (C-8)

4 *iyA r00r10

where

ph - 2 22

*COEF jc Fl 2 p 2

joeit[ -0 Fh 2  jp- ph1  jp~j

" eJ-~ [-j nFp h 1h 2 e ph (2y+E) e~

j si tW O F 2 h J j p y j _j f h -1 ( 2 B y + ~ - p - o

+ e-2  [j- F e2~ + i ph 2(2By+E)e~
2

c 4

2 2

+ e j2 t [j-F P-l e-pyjo jph (2By+E)e-j2 py]
c 42

+ e-j3gt F P2 h ej3py+jO]

j Q 2 -j3py-jO1+ e 3 t F p h he

1 + e j4 j - F 2 h 22ejp

* ~j4S~t P2i. _ 2  jpy]~iQ 2 _jp 1  C9

+ec 2 c 2

c-3



or

w p2 2 2 3p2h2h2 p22 wo 2 3p 1h2H COEF (j --- F(1- - 2p h 2 )+ 2 F 4 -us 2#]

+eipyjit [_p ~ - -h1 ph 1 2p 2h 2 )ej ]

2h (2By+E) [j -- FI - e-
2c 2

2 2

_J DF -2-1 4 2 2p )e-j
eYc{ .Fjphhe 2 ej h1(ph 22h-2

+Ph 1 (2By+E) [-jej+ -o F h2 ej ]

2c 2

+ J2py-j2Q w ~ 21p 2h 2h 2
c 2 2 p 2)

ph2

+ (2By+E)(Jph2 - A~ F --- e~

w P2 2 h 212

+ ej 2py+j 2Slt (F). 4 h1 e 2 _waF2 2h
c c 2 2 2

2
w Ph1I j2

+ (2By+E) [-Jph2 + F4e

2

+ 3et-D F)(ph )[Jph eiL F -. e~~ -. (2By+E)eI

c 1c 84

2
e-j~p~j3Q 5o- ph 1 -J23

+ eJ4Py-j4 t ( WO F)(ph 2)[Jph- -F -s---- e J_ 2 (2By+E)]

j C-4



2

+ eJ5pY-J5Slt[ _ ej

2
C

* 2
+ e -J~py+j5Qt[ P"222 2 hlh2 2 e-j ]

c

e6py-j6Qt[ F02 p h23

c 2

2 2h3
-j6py+j6Qt [_ 2 .-

c 2

Since HCOEF has the form c0 + c1y, the integral in

equation (C-8) can be integrated in closed form. The result of

this integration is

H(wo, 4 = eO0S • H + 6E [Hm+ + HmeJmt (C-I)

where E2

H0  p h1  2 2 F2 3p h 1 h2  4B
H0  - -cF(- 2 2ph 2 2)+-o 4 -us 20]e

2 2

w h2 p2h1 2h W 5phh (KFjO)

(- - -2p h L-]eei e
_+ c 2 2 )_ - ]

- 2(Efl2p)

w 2 h 2  22 2 2 !:h2 220 4B

HI F) 2 -(I- f- -p h2 )-2ph 2 -J F . e

2
* H0 w0  ph 1 2 +_i3 5ph 2  +_O 4B

2 (E 34p)2

h wO ' 5 2 ± 4B

4 -- F)(ph2 [ -jph2 - e e
(w -F e J3+ c 1 c 8

(EW5p) 2

H - ( -  F)2p2h h2"2 e e

5+ c 1 2

V C-5

%,W 6% ~-5



H ~(-QF 2 ph 3 e(E+1 6p) 2C12

6+ c 2

I C-6 (



APPENDIX D: Proof of X > 0

The water surface function is

(x,y,t) - hI cos(py-St+*)+h 2 cos(2py-2t) (D-)

which has a slope of the form

S (xyft) -ph 1 sin(py-Qt+o) - 2ph2 sin(2py-20t) (D-2)

since the water wave is assumed to be one-dimensional in the y

direction, the slope is zero in x direction.

2
is given by

y i

C2 p2 h12 sin
2 (py-Qt+O)+4p 2h2 2sin

2 (2py-2at)

+ 4P h1h2sin(py-Qt+O)sin(2py-2Qt) (D-3)
p

In performing the average over T -the cross-product

term vanishes. Hence

2 +~ ph 1  2 h2 (D-4)

y 2 2

For hydrodynamic reasons, the water surface slope is in

general less than unity in absolute magnitude; i.e. slope angles

are generally less than 45° . Therefore

222

ph 1  2 2h 1

2 + 2ph 2 2 -< 1 (D-5)

use of this inequality in equation (3.2.14), viz.

222 2

___h_1__ w0sin i 0 [1ph i2 2 2  ] + 2
rO r10 44w0sn0

D-1

LL+l 40sn



results in

x ! rc 00 +iri 10 c: 4 4w 0Iin2 (D-6)

Since the grazing angle 0, is between 0 and wr, sin * 0?O, and

therefore X 0.
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APPENDIX E: Spectrum computation - Deterministic Surface, Crosswind

The distances r0 and rI can be expressed in the following

form

ro = (x-r00cos*0)2 + y2 + (t+ r 0 0 sin *0)2  (E-l)

t

The Fresnel expansion of equation (E-1) and (E-2) gives, cf.

equations (2.2.6)

x 2sin2o + y2

r0 =r 0 0 - x cos * 0 
+ C sin* 0 + (E-3)

2r00

x 2sin2o + y2

r1 r 10 + x Cos 00 + C sin *o +  (E-4)

2r 10

and the total transmission distance r0 + rI is the sum of these

two equations x i 2
r0 + r1 00 + r10 + 2C sin*0 + (E-5)

R

2r0Or0

where R- 0010 was defined in equation (2.2.14).
r0+rlO

1
The attenuation factor -i- can be approximated byr0r1

(see equation (2.2.11))

1 1 expl 1.__.)x Cos *0} (E-6)

r0r1  r00 r1 0  r00  r1 0

According to equation (3.2.6), the beam pattern function on the

x-y plane can be written as

E-1



BB R ex 4 - 21 x2sin2 0 + Y2 (E-7)L (W0 )

Substituting equations (E-5) to (E-7) into the Kirchhoff integral

formula, one gets

jW T 00-Bx -Ay2Ex~j-!F

H(wo0 t) ew 0 a j wo F(,- y2 )+2Ay y~e - E  dxdy

00 10 (E-8)

where A, B, E and F are defined in Appendix C.

Comparisons of equations (C-1) and (E-8) shows that these two

integrals are very similar in form except that in equation (E-8),

there is an e term in place of eEy , also 2By + E is replaced by

2Ay. Integrating equation (E-8) with respect to x gives

jWa T + E 2 W
O~ 0s 4B 00 W 1-Ay +j-0F

-ot) e Fj- _..2 )e c dy (E-9)41C r r0rlOy

Using the surface wave model of equation (3.1.1), we can

evaluate the integral in equation (E-9) in the same way as in Appendix

C. The result is

E2

= W T + E meJ~t me

H(o',t) H.ejt+ H-10)4 /A- r oor10 mMl

where 22 2 22H0 02h1 2 3pWhO2 sH0  J w- F(I -l 2P2h 22)+ 0- F -- cos2#

c 2 c 4

E-2



.2

22 2 ±J p2 h j P

2~~h -0 ~h2 4A2h h p h 2 2 p -11 ---- eh 2 i -
F) 2(1 - -2p h2 )- e -j

- 24 2 c 4

22 p 2 _h 2

(1- ph 0 224A4

h4.2-p ( -- F) h2 2 - p - F e2 j 2e 4A

2 2 c 4

IP

0 2 2 2

H3.7.f 
ph 2 

- c 8

...-
2

5ph e+2 4A

0I =( F) (ph) -jph2 O- F - _ 2 e

4+ 2 2 8

(52
W 2 2 2 +i 4A
-(F) p h h 2  J 4

2) 2 h2 
3  

4A

H6 -F) - e 4A(-1
_c 2

E- 3
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APPENDIX F: Representation of Transfer Function H(w0 ,t) in a

General Scatter Geometry

The form of the channel transfer function is

uj0j-(r 0 +r1 )

rrt) -- BBR e r dxdy (F-1)

where r0 and r1 can be expressed as

r0 - (x-roocOs TsinoT) 2+(+r00COS*TCOSOT) 2+( +r00sin*T) 2  (F-2)

r 14'(x-rl0 cos 4'Rsin*R) 2 +(y+co*c ) 2 +(C+r1in* ) 2 (-/
As in Chapter II, the Fresnel expansion of r0 and r have the /

forms

2 -c°s2 fTs in2 OT

ro 0 r0 0-x COS TsinT+Ycos TcosT+ sinT+ x2( 2r 0 0

+y2 ( 2 +xy( F-4)

2r0 0  2ro0  i

2 2
r1  r10-x cOS4RsinOR+ycos*Rcos$R+C sin*R+ x2( 1-cos 2Rsin *R

2r 1 0

2 1-cos2 *RCOs R os2*Rsin 2fR (F-5)

+ 2r 1 0  )+xy( 2r1 0

Therefore r 0 +r I can be obtained from the sum of these two equations

F-l



ro+r I = roo+rlO - x [COS T sin T + Cos* R sinR ]

+y (cos4 T cosOT + cos*R cosOR)

+ t(sin T + sin*R)

2 1-cos2 *T sin 2T 1-cos 2 R sin2*R
+x2 (- + )

2r 0  2r
00 10

2 1-cos 2*T cos 2T 1-cos 2R Cos2 R
+y +

2r0 0  2r10

cos 2 sin2T cos 2  4

+xyT + R (F-6)
2r00  2r10

The attenuation factor rris approximated as (see Chapter II)
r0 r 1

1 T 1 cosossin COs*Rsin$R cOs TCOS BT CO~S*RcoR)

r r exp{x( - r0 r +00 + i

(F-7)

The beam pattern function on the x-y plane can be computed as in

Chapter II, equation (2.3.13)
2 2

sR  exp{ - x 2y 22xy. (F-8)Lxx2 (W 0) yy2 0) XY2 (W 0

where Lx (W0 ) , Ly(w 0 ) and L (w0)are defined as in equation (2.3.14).
eJ, (rO+rl)

If we express BsB e r 0 r in the general form
SR r0 r1

F-2



0J - (r0+r) Jw0

e e 2 2
B B - exp{- Ax -By -Cxy-Dx-Ey+j - Fc ,

r0rI r 00r 10(F-9)

Then A, B, C, D, E and F are defined by

w0 1 -cos 2T 2T ls-cos2R 2 i2R 1

-J- ( + 2
c 2r0 0  2r 10 Lxx2(w0)

0 lcs-cosT Cos2T 1-cos 2 R cos2 R 1

B = - ( + 2
c 2r00  2r10 L yy(w0)

C 0 w(Cos 2 T sin2oT +Cos 2 R sin2OR )+ 1
c 2r10 2rlO Lxy2(w )

D m J 0 (Cs i +Cs no)(cos*T sln T + cos*R sinn)- R

c T T R Rro00 r 10

W0 COS*T cssi T CS* R csR

E - -J - (cos* T COSOT + cos*z coOR)+( r + rc r00 10O

F - sil T + sinoR (F-10)
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APPENDIX G: Sign of Third-Order Slope Moment

In general, the surface slope on the windward side is

shallower than that on the leeward side. To demonstrate that

the third-order slope moment is always negative, we consider

an idealized surface profile as shown in Figure G.l.

The wind direction is from left to right. The slope on

the windward side is J BD_/AD and on the leeward side it is

- BD/CD 1. The underline represents the distance between

the two points. By hypothesis

< BD (G-l)

AD CD

so thatp

The third order moment ' is defined as the average of the
3

cube of the surface slope. The idealized surface wave is periodic,

therefore C3 can be calculated as

1 ( BD 3D 3

~C~AD CD D

p _ _ ____'0(G3

AC (AD CD-3

I

S Ir

G-1

Aj
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APPENDIX H: Power Spectrum-Random Surface, Slightly Rough

* We first rewrite JQ Y, Y2) in equation (4.1.7) by

computing the average of the product of two brackets.
2
02 F2 _ + 0 *2

J(Ql 2 2 - F (1 (2BYI+CXI+E)

* y 2  c2  ' 2'+ c yl Y2

030 , * ** *

-j - F y 1 Cy2 (2B Y2+C x 2 +E)

+* * * *

+4yl2 (2ByI+Cx1+E)(2B y 2+C x 2+E ))

2 2 * 2* 2 * * *
• exp{-Ax1 -By1 -CxlYl-Dxl-Ey 1 -A x2 -B y 2 -C x2Y2-D x2-E y 2

a
Make a change of variable x2 = x1 + C, the integration over x1 and

in equation (4.1.6) is easily performed.

16 O( °O,T)

1_20_2 * [ 2B* *2 C (Cy1 D)
2 { 0 F (1-2c )+j w~ OF [2Byl- 2A + E]

-2 -2 F fY 2 22 Y2 2A* +00 10

* *

C(CYI+D)  C (C Y2C+D( D,
+yY B 2 A + --y* + E

S• +*E2
1I4 2 2A 2 2A*

(Cy+D) 2  (C Y2+D )

Q( 2) - - - Y2 -y2 4A + 4A* 1dy dy2

(H-2)
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We make another change of variable

Y2= + n (H-3)

and define
2
N B TA(11-4)

M CE-D (H-5)
2A

Then

O(w 0 T)

D + D* C 0

=e 22- IA { ' F 2(1-2c )+j '- F C 2 [2Nyl+M]
lr2rO2 J ff c C Y, Y2

16r00 rGoII-~-

wo' F 2 C~ *[2*y Nn
C Yl Y'2

C* [41N12(Yl2+nyl)+2NMy 1+2NM(yfl)+1M1
2}

* 2 * 2_*
-(N+ )y, -[M+M +2N r~,- -M n

(H-6)

Performing the integration over yresults in
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0 2
D (M+M,)2
4A 4A* 4(N+N*)

e { F2(I2E 2)167r002r 021AI N+N*- CO

*2 2 *[ 2lI12n-N*M+NM*-j -O- F ( + )[,
c YIY2 Yl Y2  N+N*

*2

+ (N+N)2 [-41N 4 n2+41N12  MNM*)l-(N * 2

+ 21NI2(N+N*)] )

IN 2 N M-NM

NN* n2+ N+N* T
(H-7)

If we now substitute equations (4.1.17) and (4.2.1) into equation0

(H-7), 0(wIT) can be written as

4(W0, ) = K1 [10 + 11+ + I1i1 (H1-8)

where 2 2D2 * 2}*

exp{ 4-A + + +) 2 +
K1 ,(11-8a)

1 16 r r00r 2 r10
2 JAI (N+N*)l

H
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1N12  2 N*M-NM*

io f2 (12 -) N+N* Ti+ N+N* T

2 2

+ 22 [41N14n+4 IN2(N14N*) -(NHMM)+2NI(N+N)
(N+N*)

I N12 1_2 N _* ____ T

N+N A 2  N+N T22

e

N 1__,2 N*M-NH*

w 21N12 T-N*H+NM N+N A 32 N+N T32

C- 3e ] e Idni
c 3 N+N

(H-9a)

12 NMNH

2 N+N A N+N TO

I _ L I fl F 2 (1-2c )e 0
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The remaining integration over n are straightforward, but

involve a lot of algebra. The results are
2

2 * * 22
I f INI N*M-NH* JN' l N H-NH ) 2

N+N N+N N+N A2  N+N

T2

2 * * T2

+c f (_j +- M1NM )e (H-10a)

3 3 N+N A N+N
3

2

21 = ( ,Nr + N*M - T 2 J PCpt

- 2 0 N+N A N+N
y

+c f . * . + NM * TOpe T2
2 + 2( + A + 2 , + 1---- - +JpPe

+ N" 1 + N M-NM -jp)e
N+N Ay A2 N+N ;

IN , 1,1 * * TO  T3
. IN 2 2'. N M-NM -jp'e

N+N Ay A3 NN

(H-10b)

with
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f ) b N M-NM I-i- 4a (H-lie)
a N+N a N+N* ]

The final signal spectrum is

go j(A Tjwt
r(w,w0) =(w 0,T)e d-r

D2 +D M+M 2 2

4A 4A* 4(N+N*) -
e

2
16 iYr Jr002 r10  IAI(N+N*)

2 2

[ f00+e2f20e 2+ f E~3e ]

2 2 2

T T Tr..
2 T o2 T 22 T3 2
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2 2 2 2

-- I T
2jpCpt

T2 T 2 T 32
+ 2- e [f0-+C2f2f +C3f3-e

•e LA0-c )T df

(H-12)

Again, we have defined new symbols to simplify the expression,

they are
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Hence r(w,w ) can finally be expressed as a three-part spectrum
!a

* r(wwo0 ) = KI[Sp 0 (ww w0 )+ SpI+(ww 0 )+ SpI-(ww) (H-14)
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2 2 2 2
T (w-) T2(w-0)

2__0 3 0

Sp0 (WIWO) 0 f006(O-w0 )+r7T 2e 2f20e 4 +gT 3E3f30e

(H-15a)

T0
2 (-0 ;cp) 2

Spl+(w,w 0) = T0fo+e

T02 T22 (W-W-Cp) 
2

P1 + 0 _

tT 02 f e 4(T 0
2 +T32)

(T 02+T 2 2)1 ~2 2±

r~r T 4(T 02 +T32

23 2- 3f3+e (H-15b)

( T0 +T3 )

Case I. Down-Wind Geometry

T 0 0

(H-16)

R= 1800

and the grazing angles of transmitter and receiver are the same

*T = i 0 (H-17)

From equation (F-13)
i 0 1

A- -j '0 + L21

+o 2CR L 2(W 0)

B s sn 20 + L2*O)
CR ~ L2 (W0)
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D= 0

E cos 0(
r0 0  r10

F 2 sin i0 (1-18)

And from equation (H-4) and (H-5)

4AB - C 2

N = = B (H-19a)
4A

CD

M E- =E (H-19b)
2A

N12 2 2 L2 (sin 
2

* sin20 (H-19c)
N+N B+B 2c2R 2  

2L2 (W0)

If the beamwidth L(ub) is larger than the dimension of the second

Fresnel zone, then from [75]

2 4SfL(wO) > (2 (H-19d)
.c 2R2  -2r

Thus

h0u L (w0 ) (2n) 1
> 2 (H-19e)

cR L( 0) L2( 0)

Hence equation (H-19c) can be approximated as

J wo L( O) 2
, 1 22 sin 2 (H-20)

N+N 2c2R "0
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Note that M - E is real, therefore from equation (H-13)

d= N M-NM - E(B -B) (H-21)

J(N+N*) J(B+B*)
or

21w0L
2 (w0) 1 1

d )cs(-22)
cR r0 0  r10

Then from equations (H-li) and (H-13)

IN 2 N M-NMf 00 f f0( 1 ' *
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2P0
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cR 2
=2 V2________L (w cot 'P

f 20  exp - ,2 (H-23b)wCL(Mw 0)sinPO 2R
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- F p " exp - 0 2 (H-23c)
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0 2 V2rcR e c2 R2 (dTp)2

fo F2(- 2E Lx 2
c 2(w
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(H-23d)
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Hence

* 2

r~w~w 2 [S (w,w 0)+S Dl ww0)SDl ww0 (-4

=(r 00+r1 ) 0 0D+ OD 1-4

22 22

0 22

2 (H-24a)
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2 2 22
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Case II Cross-Wind

=20

R = 2[70cs (F6

r0 0  r10  0

H-11



_ 1

Subsequently, in equation (H-13)

d - 0 (H-27)

The signal spectrum can be written as

2 2cos% r10 -r 0
2c2 cos2 00

-g2+ _ (ri-ro

W2 L ) r10 + r00
0 0
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APPENDIX I: Power Spectrum-Random Rough Surfaces

The integration over xl, x2 and Yl are the same as in

Appendix H. The result is equation (H-7)

* 4 (w , i)
0

K2  f 1 w 2 (1-2e
-0 c

+ (NYI*Y2* [-41N 14n2 +41N 12(N*M-NM*)n-(N *M-NM*)2+21NI 2(N+N*)I

*2
(N+I-N)

*2 2 *21NI n-N M+N-j I0 F( y Y . +  y2y* C M+- * I

c Yl Y2  y1  y2  N

INI 2 N* H-N

* Q(CIp 2)e N+N N+N dn (I-l)

where

2  D*2 (M+M) 2
exp

4A = A* 4 (N+N*)K- (I-la)

2 6 lir r0
2 ri2  IAI N+N

where the corresponding definitions are contained in Appendix H.

Replacing Q( 1 ,T 2 ) and the slope moments with the expressions in

equations (4.3.1), (4.1.16) and (4.1.17), we would have

J
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Q(w0,'r)
0

- K2 I + 122 + I33 (1-2)
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Carrying out the integration over n and applying equation (H-11),

we can express O(w T) as

+ 2 N+N 2 jgpCpd

N0  2N4ON0,r) K K2 fl e  T22 22 20 0

P2g2Cp2 INI2 g2 1
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40 3 f 13 (A)e

(1-3)

where d has the same definition as in equation (H-13) and

f -0 f 0 (N0
' Jd) (I-3a)

1 2
fl2(r) f2 (N0+ - jd + g p Cp-r) (I-3b)
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The signal spectrum is

-J(W-W 0 )T

r(ww 0) " *(wO0,T)e dT
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1 22
q 2 a p g Cpd (I-4b)

IN12  g2  p 22

+---& -+ --+ + a

N+N A 2
y

Case I. Downwind

The conditions in equations (H-16-20) are still valid. Let's

consider a large beam situation where

I2 2  2L2 0 1 1 1
n2  * > > - - (1-5)

2 2 0 ~O> 2  2' 2
N+N* 2c2R A A2  A3y 2

From equation (1-3)
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Assuming To, T 2  T 3 are of the same order, and since

g > >1 then

22 >12 1 1 16

T 0T2 T3

also if
pCpT 0 2r

0 T

Therefore from equation (1-4)

1 1 1 2

T2 2 A 2  T 3  A3  2

Finally, equation (1-4) can be simplified as

r cw, WO) [w-w-q 2(o)]

-7r (21rf B) 2

2 e
(r 00 +r10) gpCpI2
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BitW TO 2 IN!12  g pg29 (I-9a)
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ii
Case II. Crosswind

Combining equations (H-25- 27) and the conditions 
in the down-

wind geometry, the signal spectrum of cross-wind 
geometry is

2c2S r20 )2_ (W-W ) 2

2

o2L 2 (W0 r loro0  (2wfB)
1 ffi O 0f  0

r(W'W 0  - * e
(roo0+r102 gpCp/2

(1-2 +202 )+ + --3  (w-w)}
2' L2  A 2 - 2  ] C +

((-10)
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APPENDIX J: Signal Processing Technique

The acoustic source signal is shown on the left side of

Figure J.l. It consists of a series of narrow pulses, with a time

interval of 10 msec between pulses. The transmitted signal is

wideband with bandwidth ranging from 0.2 MHz to 1.2 MHz.

The signal received at the receiver is also in pulse form

corresponding to each pulse sent at the source. The received

signal h(T,t) is sampled and recorded. Each received pulse is

sampled at a sampling interval of 350 nsec, 256 samples per pulse.

The beginning time of each received pulse is recorded in tm , with m

ranging from 1 to 64. A data file consists of 64 x 256 = 16,384

samples.

The signal spectrum computational technique is shown in Figure

J.2. Each data file is first passed through a 256 point FFT for

each tm . For 350 ns sampling time, this gives a frequency range

from 0 Hz to 1.42 MHz with a frequency resolution of 11.16 KHz.

One of the 256 FFT outputs corresponding to the desired acoustic

frequency w is selected for each tm . The 64 values of H(u0 ,t) in

each file are passed through a 64 point FFT, the output of which is

the raw signal spectrum for that file. This has a frequency resolution

of 1.5 Hz. The final spectrum r(w,w0) is an average of the outputs of

N of such files.
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