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T Doppler sidebands are not equal in magnitude on both sides
of the carrier. ~This was first disclosed in some recent
papers {1], [2].‘LTE’EEE§€—§a§E;§?gnequal sidebands wexe< ‘'/c¢
predicted if the acoustic source and receiver are not
located at the same depths below the water surface and if
the direction of the surface wave motion is not perpendicular
to the vertical plane containing both the source and the
receiver. Experimental results {3] from a model tank operated
under various wind conditions have verified the existence of
unequal Doppler sidebands under these conditions. However,
strong asymmetries in sidebands were also observed under )
conditions under which the previous theory would have pre- .
dicted no asymmetries at all. For example, strong asymmetries
have been observed in the crosswind direction.

This research is to explain the asymmetries not
predicted in previous theory but discovered under laboratory
operations, and to predict other asymmetries not yet found
in either the experimental or the theoretical phase;;tgk

The general approach to the solution of this problem i
is via the Kirchhoff integral, together with a choice of
certain surface wave models. In this way, it is shown that
asymmetries can arise not only from unequal depths of source
and receiver, but also from small misalignments in the
measuring system. Furthermore, it is shown that the usually
ignored skew in the surface-slope probability density function
also contributes to the observed results.
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ABSTRACT
FREQUENCY SPREADING IN
UNDERWATER ACOUSTIC SIGNAL TRANSMISSION
Henti Tung

Yale University

May, 1980

The scattering of acoustic waves from a randomly varying
wind-driven water surface is known to introduce both time and
' frequency spreading of the received signal. The frequency sﬁreading
is thought to be related to surface statistics and water wave motion.
k Therefore, knowledge of this relation leads to the possibility of

! predicting surface statistics by analysis of the received acoustic

signal.
One important feature of the frequency spreading function is
’
that the Doppler sidebands are not equal in magnitude on both sides
of the carrier. This was first disclosed in some recent papers [1],
[2). In these papers unequal sidebands were predicted if the acoustic

)
source and receiver are not located at the same depths below the

- water surface and if the direction of the surface wave motion is not
perpendicular to the vertical plane containing both the source and
the receiver. Experimental results [3] from a model tank operated
‘ under various wind conditions have verified the existence of unequal
Doppler sidebands under these conditions. However, strong asymmetries
’ in sidebands were also observed under conditions under which thé

previous theory would have predicted no asymmetries at all. For




example, strong asymmetries have been observed in the crosswind

direction.

This research is to explain the asymmetries not predicted
in previous theory but discovered under laboratory operatioms,
and to predict other asymmetries not yet found in either the

experimental or the theoretical phase.

The general approach to the solution of this problem is
via the Kirchhoff integral, together with a choice of certain
surface wave models. In this way, it is shown that asymmetries
can arise not only from unequal depths of source and receiver,
but also from small misalignments in the measuring system.
Furthermore, it is shown that the usually ignored skew in the
surface-slope probability density function also contributes to

the obsgerved results.
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Chapter 1. Frequency spreading

1.0 Introduction

When an acoustic signal is scattered from a water surface,

the received signal in general depends on the characteristics of
the reflecting surface. If the water surface is a moving rough

| surface, and if the acoustic signal is a pure sinusoid, a substantial
amount of frequency spreading around the transmitted frequency can be
expected in the received signal [1] - [18]. This frequency spreading
behavior is the result of the amplitude and phase modulations of the
acoustic signal because of surface roughness. Gulin [36] has
described the amplitude and phase modulations of a sinusoidal surface
from a physical optics point of view. Parkins [4] generalized the
sinusoidal surface case to a time varying ocean situation where he
found the scattered acoustic spectrum was related to the surface
spectrum. Scharf and Swarts [5] and Eggen [11] have developed a
simple model of high frequency scattering which gives a fairly
general qualitative description of scattered field spectral
characteristics. They found the bandwidth of the frequency spreading
function to be a function of surface roughness. Clay and Medwin [7]
have looked at the problem in the time domain and derived the temporal
correlations of the scattered sound field. McDonald and Tuteur [8]

have considered the surface scattering function which contains both

time delay and frequency spreading. All of the above papers use

—— e

the physical optics method (Kirchhoff 1ntegra1+). Harper and Labianca

+ See Chapter II, section 1 for detailed descriptionms.
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(1], {44], and Kuperman [2], [46] have considered the scattering

problem from a perturbation point of view. These theoretical
treatments of the scattering problem discovered a spectral asymmetry

that had previously escaped notice.

There has also been a number of experimental studies of the
scattering phenomenon. Typical are sea experiments of Roderick
and Cron [16], Brown and Frisk [17], and model tank experiments
such as those of Zornig [3)] or Gazanhes et al [13), etc. There
appears to have been no single theory that explains all the
detaills of the frequency spreading behavior that have been discovered
in these experiments. For instance, the perturbation method of Harper
and Labianca, and of Kuperman showed that the frequency spreading function
may be asymmetric for upwind (or downwind) transmission, but it does
not explain the observed asymmetry in the crosswind direction. Further-
more, it applies only in small surface roughness situations. For
large surface roughness the physical optics method has generally been
used; however, if the usual simplifying approximations are applied,

this method gives no spectral asymmetry at all.

In this study, the frequency spreading function, including both
the amplitude and bandwidth, is examined. The object of this
investigation is to develop a model and a formula from which the
general frequency spreading function can be predicted, given the

scattering geometry and surface conditions.

The analytical solution to this problem is based on the
Kirchhoff integral method. The mathematical results presented are

for arbitrary scattering geometry where the locations of source and

1-2

. L. N B
- a2 A, skt A

RS R e




Lo RIS e ¢

I < R . B

receiver are not fixed. These results are specialized for upwind
(or downwind) and crosswind geometries, and detailed properties of
the function are discussed mainly for these special cases. We will
find that the iamportant surface parameters for frequency spreading
are the second-order moment of surface waveheight and the second

and third-order moments of surface slopes. Although the effect of
the surface slopes has frequently been neglected in previous surface
scattering studies (e.g. see [4]-[11],[13]), our analysis shows that
surface slope statistics may play an important role in determining

the shape of the frequency spreading function.

One important aspect of frequency spreading is the sideband
asymmetry which was discovered in both theory (perturbation method)
and experiment. We will show that similar results can be obtained
by use of the Kirchhoff integral method if certain usually neglected

higher-order expansion terms of this integral formula are retained.

The organization of this study is as follows: Chapter I
describes 1) the frequency spreading function and its general behavior,
2) a brief review of the sideband asymmetries found by the perturbation
method, and 3) a historical background review in the areas of underwater
acoustical surface scatter. Chapter II contains a review of the
Kirchhoff integral and the necessary boundary conditions in order to
provide a solution to the surface scattering problem. Chapter III
considers a deterministic surface model, from which the solutions to
the frequency spreading are obtained. Chapter IV contains a discussion
of the scattering of acoustic waves from a random water surface. Both

large and small roughness cases are considered. Chapter V gives a

1-3
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comparison between the theory and the experimental results obtained

from a model tank. It is shown that misalignments in source-receiver
geometry can cause significant shift in the frequency spreading
function. In Chapter VI, the study of frequency spreading behavior
of acoustic surface scattering is considered from a physical point of
view. Chapter VII offers a summary and conclusions. Appendices A to

J provide the necessary mathematical background and computational

details for the solutions presented in Chapters II to V.
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1.1 Motivations

Consider a monochromatic acoustic wave of frequency u
scattered from a moving rough water surface. The received signal
spectrum will generally be spread in frequency around the angular
frequency wo. If the surface roughness is small and if the surface
deformation is roughly periodic, the spreading consists of a fairly
distinct sequence of sideband frequencies. This is the result of
phase modulation of the transmitted sinusoid by the moving surface,
and the separation between the spectral lines at the receiving point
is roughly equal to the surface frequency [5]. If the surface is
rough and confused, the sidebands merge together into a more or

less continuous spreading of frequencies around the transmitted

frequency Wo*

In several recent papers [1], [44]-[45], E.Y. Harper and
F.M. Labianca showed that if the source and receiver are at
different depths, the upper+ and lower sidebands may have different
spectral amplitudes. A similar result was obtained more recently
by Kuperman [2], [46]. The amplitude ratio depends on the direction
of the surface wave motion with respect to the source-receiver
geometry. Specifically, if the receiver is at a larger depth than
the source, and if the wind causes the surface wave to travel away
from the source and toward the receiver, then the upper sideband

amplitudes are larger.

+ The upper (lower) sideband refers to band of frequency higher
(lower) than the transmitted frequency uwg.
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The existence of sideband asymmetries has been observed in

a series of experimental results obtained in a model tank under

simulated wind blown surface wave conditions [3], {1Z]. These
measurements showed the predicted asymmetries, but they alsé |

] showed asymmetry in the frequency spreading function when the

gource and receiver were at the same depths, and the source~receiver
_ geometry was crosswind. For this arrangement the Harper, Labianca,
i and Kuperman theory would have predicted symmetrical sideband i

structures. It is clear, therefore, that there are features of the

spreading mechanism that are not yet included in these theories.

The observation of sideband asymmetry in the model tank
experiment can be explained heuristically as follows. Consider a :

crosswind source-receiver configuration in Figure 1.1. Rays

reflected from upwind facets have upward doppler shifts, whereas

‘ those reflected from downwind facets have downward doppler shifts

i ; {21]. In a wind driven water surface the slope distribution at the
windward side 1s different from that at the leeward side [55), [56].
A sketch of a wind blown surface wave is shown in Figure 1.2; note
that the surface slopes on the windward side are shallower than those

on the leeward side [70]. The area of up-wind slopes capable of

reflecting rays from the source to the receiver with upper doppler
shifts 1s larger than the area of the downwind slopes. Hence, one
1 would expect the upper sidebands to be larger than the lower sidebands.
l This can be seen in the experimental results of J.G. Zornig shown in
Figure 1.3. This frequency spectrum was taken in a crosswind condition

with the source and receiver at equal depths. The frequency of the
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Figure 1.3

Power spectrum in crosswind scattering geometry
with grazing angle of 300 and wind speed 8.3m/sec.
The acoustic frequency is 256 KHz.
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acoustic wave was 256 KHz. As shown, frequency components higher
than the transmitted frequency (i.e. the upper sideband) are

larger in amplitude than the corresponding components below the

transmitted frequency (i.e. the lower sideband).

We see that in order to investigate this phenomenon
analytically, it is necessary that the analysis takes into account
the details of surface slopes. Eckart [31], Gulin [36], Parkins [4],
McDonald [38], and many other authors generally neglected the slope
terms in the Kirchhoff integral by assuming the slope variations to
be small, This implies that amplitude and phase modulations on the
acoustic signal are due entirely to the up and down motion of the
surface. On the other hand, Tolstoy and Clay [69] included slope
terms in their version of the Kirchhoff integral. But because of
the assumption of a directional source, these slope terms were com-
bined into an average slope term at the surface point from which
most of the acoustic energy was reflected. As will be shown in
subsequent chapters of this work, all of these approximations eliminate

one of the mechanism that causes sideband asymmetry.

The experimental technique actually involves the transmission of
narrow pulses, and the recording of the pulse responses. After
Fourier transformation, the response to any desired exciting
frequency can, however, be obtained.

1-10




1.2 Historical Background

The problem of scatter of acoustic signals from a rough
air-water interface has been extensively studied during the last
few decades. An excellent survey of the literature to 1958 was
compiled by Lysanov [19]. A more recent and more general survey
can be found in the excellent paper of Fortuin [20], which covers
work up to 1969, The following review leans heavily on Fortuin's

paper, but extends it to include the decade 1969 to 1979.

cmaramis

The scattering of sound by a sinusoidal water-air interface
was first studied by Lord Rayleigh [21]. This was the first attempt
to solve the wave equation in combination with a boundary condition
in sound scatter problems. Rayleigh's solution was an intuitive
approach which assumed that the scattered sound field from a
pressure-release sinusoidal surface could be described by a discrete
set of plane waves travelling away from the surface. This simple
approach received criticisms [22]-[30] from several authors, such
as Uretsky [22], Meecham [28], Heaps [30], who questioned the
validity of the boundary conditions assumed by Rayleigh. All of
these critics concluded, that '"the Rayleigh method is indeed incorrect i
in the way the boundary conditions are used" [20,p. 1213], however, 1
"for [relatively] smooth surfaces, the method produces results that
do not disagree more with experimental data than do other, more

rigorous, solutions." Uretsky [22] developed a method which

improves upon that of Rayleigh., It is based on a more rigorous

mathematical approach with matrix computation and handling techniques

1-11
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to evaluate the reflection coefficients for the various orders of
sound reflection from a sinusoidal surfaces. His method was
sumnarized by Barnard et al. {27] and used to make comparisons
with experimental results obtained in a model tank. Satisfactory
agreement between theory and experiment was obtained. Both the

Rayleigh and Uretsky theories apply to sinusoidal surfaces only.

In 1953, Eckart [31] applied an integral formulation known
as the Helmholtz integral [32] to the solution of sound scattering
from rough boundaries. He assumed two boundary conditions. One
is that the water-air interface is a pressure-release surface; the
other is that the first derivatives of the incoming acoustic wave
and the scattered fields are equal at the surface. This is a
frequently used boundary condition called the Kirchhoff approximation.
The use of the Kirchhoff approximation implies that the surface is
locally flat, i.e. the radius of the surface curvature is much
larger than the acoustic wavelength, and the surface is free of shadowing
and multiple reflections. Eckart derived a surface scattering cross-
section coefficient in terms of the incident acoustic frequency and
surface spatial spectrum. The Kirchhoff integral approach (Helmholtz
integral plus Kirchhoff boundary condition) was criticized by
Meecham [33] and Mintzer {[34] because the limit of the validity of the
Kirchhoff boundary condition was not properly considered. It has in
fact been said [6] that Eckart "had obtained significant results with
minimum mathematical complexity by relying on a highly developed
physical insight into the problem'". Nonetheless the Kirchhoff integral

method has been widely used in studies of surface scatter, and experi-
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mental verification of some results [36] seems to indicate that
the error introduced by the Kirchhoff approximation may not be too
serious. The formulation used by Eckart is equivalent to the
Fraunhofer approximation used in optics. An improvement of this
approximation is the Fresnel or second-order approximation, first
applied to surface-scatter problems by Feinstein [35]. It has
also been used by Gulin [36], Melton and Horton [37], Medwin and
Clay {7], McDonald and Tuteur [8], etc. The Fresnel corrected
Kirchhoff integral is usually applied where the illuminated surface
area is large. It has many applications, such as the study of
amplitude and phase fluctuations [12], the correlation and power
distribution of scattered sound [7], [38], and the studies of

frequency spreading and shift in forward and backward scatters [10].

A different approach to the solution of surface scatter

problems is the perturbation method introduced by Isakovich [41]

in 1957. 1Its original application was to solve the normal-mode
transformation problem in an irregular waveguide. Bezrodnyi and

Fuks [42] used it in the solution to the problem of amplitude and
phase fluctuations in a waveguide. Wait [43] analyzed the reflection
from two-dimensional periodic sea waves. In 1975, Harper and

Labianca [44]) used the perturbation method in the study of the spectral
behavior of the surface scattered acoustic signal. Their studies show
the existence of asymmetrical sidebands in surface scattering. This
result was corroborated by the theoretical study of Kuperman [2]

using the same method, and by experiment [3]. The perturbation method
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is mathematically more rigorous than the Kirchhoff integral method

and permits fairly precise bounds to be placed on the validity of
the simplifying assumptions [45]. However, its applications are

limited to problems with very small roughness.

Both the Fresnel-corrected Kirchhoff integral and the
perturbation method require a solution to the wave equation subject
to boundary conditions at the water-air interface. If the form of
boundary is very complicated, it can be extremely difficult, if not
impossible, to reach such a solution. Middleton [47) developed a
so-called Quasiphenomenological approach which eliminated the need
to simultaneously satisfy the wave equation and boundary conditioms.
It introduces the surface (boundary) in terms of a group of
randomly distributed point scatterers. Each of these point scatterers
has its own system function and directivity pattern. This gives the
model the ability to handle problems of general scatter geometry with
very complex boundary conditions. However, application of this very
general theory is severely restricted in practice by the difficulty
of relating measured surface parameters to statistical behavior of

the scatterers.

The commonly used surface parameters are surface waveheight
and surface slopes. In most of the analyses that require descriptions
of the water surface boundary, it is assumed, with exceptons e.g.
[49], [50], that the water surface height and slopes are stationary
Gaussian processes [4]-[5], etc. Experiments performed at sea and

in model tanks have shown that this, in fact, is close to the real

situation. For example, Kinsman [51] used a capacitance probe held




at the water surface to record the surface displacement. The

result of his measurement indicated the surface height distribution
was close to Gaussian with zero mean.+ This observation was
corroborated by Weissman [52] in his ocean waveheight measurement
with a two frequency radar interferometer and by Zornig [53] in his
height measurement in a model tank. However, Spindel [54]) found

that the joint distribution of two points on the surface is
occasionally far from Gaussian. In particular, he found that the
conditional distribution of the surface at one point, given its

value at the second point, was occasionally multimodal, especilally

at high winds. Cox and Munk [55] studied the slope distribution of

a wind-driven surface using aerial photograph technique. Their
method consisted "in photographing from a plane the sun's glitter
pattern on the sea surface, and translating the statistics of the
glitter into the statistics of the slope distribution'. Figure 1.4
contains the result of the slope measurement by Cox and Munk. The
top plot was the slopes measured crosswind and had a symmetrical structure
with respect to zero slopes. The bottom plot was the up-down wind
slope distribution which showed skewness to the upwind side, i.e. the
most probable slope for the sea surface was negative. This distortiom
probably was due to a wind stress effect, as remarked by Kinsman [51],
p. 350]. Schooley [56] made the same sea slope measurement by a

similar optic method except the sun was replaced by a flashing gun attached

+ The flat surface level is chosen as the reference zero.
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Figure 1.4 The probability distribution

of surface slopes. The upper curves are
for crosswind; the lower curves are for
downwind. The solid curves refer to the
observed distribution, the dashed to a
Gaussian distribution of equal mean
square slope components. The thin
vertical lines show the scale for the
standardized slope components

L2 for crosswind and

(o4 Ix
c

1

°p
The wind direction is in the y axis;
0. and oy are the r.m.s. slope in x and
y direct?ons respectively. The heavy
vertical segments show the surface slope
angle for 59, 109,.¢...,250, 1In the
lower curve, the negative slopes are on
the upwind side and the positive slopes
are on the downwind side.

sz
2y for downwind.

(From Cox and Munk, 1954)
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to the camera. The same skewness in up~down wind slopes has been

observed by Wu [57] and Zornig [58] in model tank experiments.

There are two reasons, as pointed out by Kinsman, why the
waveheight and slopes are not strictly Gaussian. One is that the
wave motion must satisfy the Bernoulli equation and the free-surface
boundary conditions. The other is that waves are limited in height
by the wave breaking phenomenon. In summary, it appears that even
i though the surface distribution i8 generally not strictly Gaussian,

; the assumption of a Gaussian distribution is not unreasonable, and it

has been widely used.

] Another factor to be considered in the development of a

scattering theory is shadowing. Shadowing occurs when a part of the

surface is screened by some other parts of the surface. In surface
scatter terms, this means the illumination of incoming radiation at
these parts of the surface is interrupted., Shadowing is more
significant when the acoustic source and receiver are very close to
; ' the scattering surface, Neglecting this shadowing effect may cause
7 large errors if the theory is based on the assumption of total
illumination on the water surface, e.g. the Kirchhoff integral
method. Beckman [59] proposed a simple way to treat the shadowing
by introducing a shadowing function S which equals unity on the
illuminated parts of the surface and equals zero on the screened parts.
i In other words, the shadowing function S is the probability that this
|

part of surface will get illuminated. He applied this concept of a

shadowing function to the study of backscattering from a composite

rough surfaces [60]. However, a computer simulated experiment on

1 ‘ 1-17
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shadowing in backscatter by Brockelman and Hagfors [61)] showed
marked disagreement between their results and those of Beckmann.
With a modification to the Beckmann theory that includes the
effect of slopes, Wagner (62] developed formulas which consider

geometric shadowing. A comparison between his results and those of

experiment showed an excellent agreement between theory and experi-
ment [20]. Lynch and Wagner [63], [64] used this geometric shadowing

to correct the energy loss in high frequency scatter from random

T R s T T

rough surfaces. A simplified method to evaluate Wagner's shadowing

function was given by Smith [65]. He omitted the correlation between

A i o R L

surface height and slopes but obtained a result which was not very
different from the complete solution obtained from Wagner's method.
Gardner [66] used Wagner's theory to explain near grazing backscatter

through the Kirchhoff integral approach. However, it was pointed out

L in the experiment by Novarini and Medwin [67] that Wagner's theory
of geometric shadowing is inadequate in the sea experiment because
of the proven existence of bubbles below the sea surface [68]. 1In
our analysis of the scattering problem, shadowing has been ignored.

The analysis therefore is limited to relatively large grazing angles.
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Chapter II. Mathematical preliminaries

2.0 Introduction

In this chapter, we introduce some basgsic mathematical concepts
which are of interest in this analysis. These include the derivation
of the Kirchhoff integral formula to solve the surface scatter problem,
the Fresnel approximation and other expansions, the definition of

! surface roughness, and the beam pattern function for both source and
receiver. Most of the material presented in this chapter can be
found elsewhere. For example, Baker and Copson [32] and Eckart [31]
give a derivation of Kirchhoff integrals; the Fresnel expansion is
a second order approximation and is commonly presented in optics
texts [71]; the discussion of the beam pattern function (directivity)
for an acoustic source can be found in texts of acoustics, such as

Beranek [72].

We shall regard the underwater acoustic surface scattering

process as linear and slowly time-varying. This permits us to use

a monochromatic signal source.




2.1 The Kirchhoff integral

Consider a function p(r, g t) which satisfies the wave
equation within a volume V bounded by a surface S. For our purpose
p is regarded as the complex time varying amplitude of the pressure
at a location defined by r and at the frequency W and time t.
Assume that p and its first-order derivatives are finite and
continuous inside the volume V. Then, from the Helmholtz theorem
(see Appendix A), the value of p at a particular point P inside V

and at time t is given by

®9
~ T
1 p c 1
..1._f e T~ .Ps_ 3 e ° ..
P(P,t) = - J[ T T Rewm (y M @D

where P is the pressure amplitude at the surface S, T 18 the
scalar distance from the surface element ds to the point P as shown
in Figure 2.1, and n is the surface normal defined to be poisitve
in the outward direction. The surface pressure Py and its normal
derivative are evaluated at the time t - ;l » where c is the sound

velocity; however, for the time scale of interest in our work this

retardation delay can be ignored [74].

In much of our work we are interested in sound transmitted
and received by directional hydrophones with directional beam
patterns. The effect of such a beam pattern is to give unequal
weights to different parts of the surface S, and this effect can be

included in equation (2.1.1) by changing the Green's function

Ak i btk iae e
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Figure 2.1 Derivation of Helmholtz integral Theorem:
region of integration
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T to BR = . This results in
1 1
® w
1 e 8 2 e .
p(P,t) = = By —= C e P 3B * ds (2.1.1a)
1 - = 1

where the beam pattern function BR is, strictly speaking, evaluated

T
at the retarded time t - El .

We now assume that the water surface is illuminated by a
monochromatic acoustic source which has a beam pattern function Bs'
The incident acoustic pressure pi measured on the water surface is

then given by

P, = p,B £ (2.1.2)

where L is the distance from the source point to the surface element

ds, and Py is the amplitude of the acoustic source.

The pressure amplitude Py appearing in equation (2.1.1) is
regarded as the surface reflected pressure. It is related to the
incident pressure Py through a surface boundary condition. For the
air-water interface the surface can to a very good approximation be
regarded as being a pressure-release surface; hence the boundary
condition is

pgtpy =0 on S (2.1.3)

ap
Also, the normal derivative 3;5 can be related to the normal

derivative of the incident pressure by invoking the Kirchhoff boundary




condition:

ap op
8 i
™y Y on S (2.1.4)

The Kirchhoff condition implies that the surface is "locally
flat", i.e. the radius of the surface curvature is much larger
than the acoustic wavelength. It also implies no shadowing or
multiple reflections on the surface, i.e. the surface is totally
illuminated. As briefly discussed in Chapter I, there are criticisms
about the validity of the Kirchhoff condition. A summary of these
criticisms can be found in [20], [74]. However, by employing these
two boundary conditions and replacing Py with its equivalent from
equation (2.1.2), one can convert the integral in equation (2.1.la)

to the form

L / . :b‘(‘o*’l)
9 e .
PEB,E) = ﬂpo AR o } ds (2.1.5)

If we define the channel transfer function H(mo,t) as the
ratio of p(P,t) and po, equation (2.1.5) can be rewritten as
)
I (rytry)
- L _[/i—{ e 1.4 (2.1.6)
H(mo,t) 4m am 1%e%R T T.x S 1.
8 - 01l
Thus H(wo,t) represents the instantaneous amplitude and phase at

the receiver due to a unit amplitude sinusoidal signal with frequency

Wy at the source.

)




g
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2.2 The Fresnel approximation and other expansion formulae

A commonly used coordinate system in surface scattering
studies is shown in Figure 2.1. The X-Y plane is the plane of
the smooth (flat) surface. The positive direction for the Z axis
is downward into the water. The origin of coordinates is taken to
be at the smooth-surface specular point. The source, receiver and
specular point lie in a plane which makes an angle ¢R with the
-Y axis. Both source and receiver have grazing angles Vg with the
flat water surface. The distances from the origin to source and
receiver are respectively r,, and T10° The locations of source and
receiver are described as (X&, YT’ ZT) and (xR, YR, ZR), respectively,

where

XT = =rgy cos wo cos ¢R XR = Iy, cos wo cos ¢R

YT = ryy cos wo sin ¢R YR = - co8 wo cos ¢R (2.2.1)

ZT =  Tg0 sin Vo ZR = Ij0 sin wo

We further define Z(x,y,t) as the surface displacement at a point
(x,y) and time t, with positive % being upward. Therefore; the
distances from the source and the receiver to an arbitrary point on

the surface can be represented by T, and r respectively, where
- 2 2 2.%
o = (XKD + -1+ @+zp ] (2.2.2a)

£, = [0ex)? + (-xp)? + g4z (2.2.2b)
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The integration of equation (2.1.6) cannot be carried out in
closed form if we substitute equations (2.2.2a) and (2.2,2b) directly.

We therefore first rewrite ry and rl in the form

- 1 w2 w2 2y %
ry = rogll - —2(2xTx + 2Y,Y - 22, & -X°-Y c.)] (2.2.3a)
r .
. 00
_ 1 2 o2 ,2v:%
r; = rlo[l - - 2(szx + 2¥ Y - 22,8 -X"-Y"-L N (2.2.3b)
10

If the distances rgg and Tio 2re large compared to the
dimensions of the insonified area, i.e. o0 T >> X,Y,%, we can
then expand equations (2.2.3a) and (2.2.3b) in a power series by

use of the binomial expansion formula

(1+a)n = 1 4+ na + E&%fll a2 + ESE:l%%E:Zl a3 + otieenes (2.2.4)
2

for a” < 1,

We further assume that the surface .deformation is small

compared with other dimensions, i.e.

(X,Y) << X,Y << Too» Ty (2.2.5)

Therefore we retain the first order term in % and the X,Y terms up

to the second order in the expansion. The result is

P S




]
i
i
i

2 2
Y
Y Z T r
g ¥ %o " rxlx o R 00 9 . (2.2.6a) @
00 00 00 Zzbo i
]
2 2
Y :
X2[1- E—R—-Z- 1+ Y[(1- — {
Y Z r r ;
r1§ rlo—erx-rRY+rR T+ 10 10 | (2.2.6b) ’
10 10 10 2r
10
Hence, the total transmission distance for any ray path can be
approximated by
XT XR Y Y. Z Z
~ T R T R
r,. +r,=r +r, ~( + ) X-( + )Y+ ( + )%
0 1 00 10 ro0 rlO %o rlO o rlO
2 2 2 2 i
Y, Y )
K1~ -1 > k- 151 ¥n- i“—z}uzu— 2
r r r
. 00 o _, 10 10
2roo 2r10
(2.2.7)
Equation (2.2.7) is called the Fresnel approximation. 1
Eckart [31] retained only the first order expansion terms of lb+r1 in

his analysis, i.e. he neglected the terms in the brackets of equation
(2.2.7). This is called the Fraunhofer approximation. As mentioned
in Chapter I, the Fresnel approximation is superior to the Fraunhofer
approximation because it includes the second order terms. This
permits the Fresnel approximation to be used in problems with large

acoustic beam width. In fact, without the second order terms,

2-9
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equation (2.2.7) can be simplified with the aid of equation (2.2.1)

to give

e i e s

0 1 o + Tiot 2¢ sin wo. (2.2.8)

Under these conditions, the path dependence on X and Y is completely
eliminated, and the total path fluctuations of L + r1 is proportional
only to the surface displacement {(X,Y,t). The total phase fluctua- o
tion between rays reflected at surface level (X,Y,t) and rays

reflected from the flat surface plane, i.e. [ = 0, is
w

g = -0 > sin wo t(X,Y,t). Figure 2.3 is a plot of the two

z C
reflected rays. If r(X,Y,t) is replaced by its r.m.s. value ©

then go, written as g, is called the Rayleigh parameter, and is given

by
410 sin ¥
g = (2.2.9)
A

where A = 2nc/w0 1s the acoustic wavelength. The Rayleigh para-

T R WA [
(o)
P

meter [75] is commonly used as a measure of surface roughness; g << 1
is a relatively smooth surface while g >> 1 corresponds to a rough

surface.

The product term in equation (2.1.6) can be expanded

Tt

' in a similar way. From equations (2.2.3) and (2.2.4), with n being

set to - % , we have

gy e

Y, ¥
1 -~ 1 (., % X T R)Y}

= H( =+ — )X +( —= + (2.2.10)
] r r 1 2 2 2 2
) 1 l:00 10 o0 r10 %o r10
g 2-10
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A

needs to be expanded only to first order in

The factor
0“1
X and Y since it affects only the magnitude of the integrand of

equation (2.1.6) whereas the term r +ry determines the phase. Small

¢]
changes in r0+1:1 can produce large changes in phase, but small
changes of only cause a relatively small perturbation of

r.r
071
the integrand. Also, because of inequality in equation (2.2.5),

the dependence of on & 1is negligible.

k!
We find it convenient, furthermore, to treat equation (2.2.10)

as the first-order expansion of an exponential function s¢ that

another approximation of —l;— is

1
Y Y
rlr =z 1r exp {( _EZE + XRZ )X + (.—;!E + RZ)Y} (2.2.10)
01 00 10 r r
00 10 o0 10

Substituting equation (2.2.1) into equations (2.2.7) and

(2.2.11), 5) + r and T i can be rewritten in following forms:
071

~ 1,.2 2 2 2 2 2
r0+rl = r00+r10 +2 T Sin wo + R[X (1-cos wocos ¢R)+Y (1l-cos dbsin ¢R)]

(2.2.12)

]; g exp{-( -;L - -Ijl‘—) [X cos wo cos ¢R-Y cos 'J)Os:ln ¢R]>

of2  Too*10 00 F10
(2.2.13)
where 2r,..r
R= —0010 (2.2.14)
Too' F10
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2.3 Beam pattern function

The acoustic source is assumed to be circular-piston
pressure transducer of diameter DT' The beam pattern function

for this type of transducer can be written as {72, p. 102]

w,D,
thiT sin 6 )
BT(O) = (2.3.1)
gDy
sin 6
2¢c
where 6 1is the angle measured from the center axis of the
piston. Jl(-) is a first order Bessel function, having the
power series expansion
2n
f — (3 "
n=0 (n+1)!n!
X 2 X 4
5 . (P ($)
'E(l— + - teees)
2 3121
3 5
X X X
= 2 - 8 + 384 ee s s e . (2.302)
Hence BT(B) can be rewritten as
w.D 2 w.D 4
( (;: sin 6) (20':T sin 0)
BT(G) =1 - + - (2.3.3)

4 192




i i

1f we assume 0 is sufficiently small such that sin 6 = @,
and the beam function can be approximated by the first two terms

of equation (2.3.3), then

222
w. D8
0T
22,2 -
wo DT 6 16 2
B.(8) 31 ~————a¢ ¢ . (2.3.4)
T 2
16¢c

We assume now that the projection of the beam pattern on the

surface can be approximated by a two-dimensional Gaussian function
- (uz-l-vzsinzw,r)

T2
(w,)
BT(u,v) = e br 0 (2.3.5)

where wT is the grazing angle, and where u and v are transformed

coordinates given by
u = =X cos ¢T - Ysin ¢T (2.3.6a)

v = =X sin ¢T + Ycos ¢T (2.3.6b)

We let the angle 8 measured along the u and v directions be eu
and o, respectively. Then for small 6, equation (2.3.5) can be

rewritten as

2

r
00 2 2 2
- (eu + ev sin WT)

3
By(u,v) =e 1 (wg) (2.3.7)

e




By comparing equations (2.3.4) and (2.3.7) and assuming a circular

beam pattern, we see that

2.2 2

w, D r
¢ I . S (2.3.8)
léc LT (wo)
or
ber 2cr
L.(w) = © ___ 0 (2.3.9)
T D nf_ D :
“o'T 0T :
’f
Substituting this into equation (2.3.5), we have |
!
"2f02 DT2 2. 2.2
B (u,v) = exp{ - . (u° + visin“y,) (2.3.10)
T 2 2 T
4e oo

By use of equation (2.3.6) the beam pattern function can be expressed

in terms of X and Y., Using Bs to indicate the source beam pattern ;

function on the surface, we have

ey DT2 2 2, 2, 1.2 2 2 ;
Bs(x,Y) = exp{~ 7 2 [X®(1-cos ¢Tsin ¢T)+Y (1-cos bycos ¢T)
4¢c r :
00 ]
+ XY (cos’yysin2¢,) ] (2.3.11)

A similar expression is obtained for the receiver beam pattern function

ﬂzf 2 D 2
- -—0 . _R 42 2 2
E B (X,Y) = exp ol o2 (X" (1-cos“ypain ¢R)+Y2(1—cosszcosz¢R)
10

+ X¥(cos ¥ps1n2¢)) (2.3.12)




’ Thus the form of the combined beam pattern response of both source
and receiver is
2 2
Y BB, = exp| - —p— - —— - — 2 (2.3.13)
Lix W) Lyy (ug)  Lyy (Wg)
1
where
]
2 2 2
¥ 4¢ r r
L () = 3 [ = S+~ ] (2.3.14a)
™ f0 DT (1-cos wTsin ¢T) DR (1-cos szin ¢R)
! 2 4c? 1"ooz l’102
by W) =5 | 5 —— —— 55— 1 (2.3.1)
1 T fo D, (1-cos Ypcos ¢T) Dy (1-cos chos ¢R)
2 4c? roo2 £o
Ly W) =53 [ —5— Y= — ] (2.3.14c)
m f0 DT cos wTsin2¢T DR cos szin2¢R

For the simplified situation where the source and the receiver
are in a forward specular reflection geometry, i.e. wT - wR = wo R

and ¢T = ¢R + 1800, equation (2.3.14) can be simplified as

2-16




Lz(mo)

Lxxz(mo) — (2.3.15a)
l-cos wosin ¢R
2 12 (mo)
; 1-cos wocos ¢R .
|
) Lz(mo) 1
Lyy (mo) = 3 2 (2.3.15¢)
cos wosin 2¢R
where
2 2 2
1l6¢c T T
L) = (-20_, 10, (2.3.16)
0 N 2 D 2 D 2
0 T R

We now substitute equation (2.2.12), (2.2.13) and (2.3.13)
into equation (2.1.6) and convert the integration over S to one over

X,Y by using the transformations (see appendix B)

2 2
3z 3z
ds 1,/r1+( 32 )+ (%) axay (2.3.17)
and
3 1 5 3t a3 3L d
an 2 7 le "X "avayl (2318
L)+ (&)
3% 3%
i Then equation (2.1.6) takes the form
2-17
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H(wo,t)-

where

© oo

3“’0‘5
e [3— - 8L 3 _ 25.3_]
3z _ 9X 9X _ 9Y 93y’

135 S0 o

t
8

00710

-ll =00

w

-j ::% (l-coszupocosz¢R) + ——-21—-——-—
e ()
Yo 2 2 1
-3 =X (1~cos wosin ¢R) + ——
Lyy (wg)
2w
0 2 2
-3 R Ccos woain¢Rcos¢R+ —
Yy (mo)
1 1
(=— - —) cosyp,cosd
Th0 10 0 R
1 1
-~ ( = = =—)cosy,.8ing
rOO 0 0 R
2 gin *0

| PPN I o

00 10

-
c

“o

~AX"-BY"~CXY-DX~EY+j %

dxdy

(2.3.19)

(2.3.20a)

(2.3.20b)

(2.3.20c)

(2.3.204)

(2.3.20e)

(2.3.20£)

(2.3.21)

where Ln(mo), L,n(wo) and LXY(“'O) are defined in equations (2.3.14).
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Chapter III. Deterministic Surface

3.0 Introduction

The application of the Kirchhoff integral to the general
problem of surface scattered acoustic signals was described in the
previous chapter. An expression was developed in equation (2.3.10)
for a general water surface. Actual ocean surfaces are highly
random and complex, but in this chapter we side-step the issue of
random surfaces by considering a deterministic ore. (Random sur-
faces are considered in Chapter IV). There is substantial precedent
for considering deterministic surface models as a way of approaching
a solution for the random surface. For instance, as mentioned in
Chapter I, the early work of Rayleigh [21] and the more recent work
of Uretsky [22], Murphy and Lord [26], Heaps [30] and Parker [76]

t used a sinusoidal surface to derive the surface reflection coefficients.

Meecham [77] considered the transmission of acoustic wave through a

P T P W . T e e ~ B 4 A Tk WP T PSP e K. ST Yo P o2 S 72, £ Ao ., 7 =y 1 P P = 7 0 07 2m o

: sinusoidal surface by the use of the Kirchhoff integral method.
The experimental work of Gulin [36], and of LaCasce and Tamarkin [78]
dealing with reflections from pressure-release sinusoidal surfaces
shows that much insight is gained by analyzing simple surface models.
If the surface scattering process can be regarded as linear (as is
always assumed in this work), more complicated surface effects can be

obtained by Fourier analysis of the swrface and superposition. This

P AL T WAL e gt 2 VTR P TP

was, for instance, done by Beckmann [60] in a study of backscatter

‘ from a composite rough surface. He assumed each of the component




3

waves to be an independent random process, and found that the

small structure of the surface (the component waves of small

amplitude) played an important role in the determination of

backscattered acoustic power.

In this chapter, we will demonstrate the effect of small
surface structures on the frequency spreading function by considering
a wind-blowm surface. A commonly observed characteristic of wind-
blown surfaces is that the waves are steeper on the downwind side
than on the upwind side [70]. A typical wave shape is shown in
Figure 1.2. A deterministic model that has the feature of shallower
slopes on one side and steeper slopes on the other can be constructed

with a sine wave plus its second harmonic; i.e.

z(t) = h, cos(wt+d) + h, cis 2ut (3.0.1)

1 2

Typical waveforms generated from equation (3.0.1) for different
values of hl’ h2 and ¢ are shown in Figure 3.1. It is seen that by

proper choices of amplitudes and phase angles (e.g. h, = Iihz, $=45%),

1
this two-harmonic surface wave will have a slope distribution similar

to that of a wind generated wave.

The frequency spreading function of the acoustic signal
ascattered from this deterministic surface model is discussed for two
scatter geometries, crosswind and down(up) wind. Crosswind means
that the wind direction is at right angles to a vertical plane
containing source and receiver, and down (up) wind indicates that
the wind direction is parallel to this plane. Thus in Figure 3.2,

¢R- 00,900(2700), and 180° correspond respectively to upwind, crosswind

and downwind.
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.
!

! . ] h, = 5h,, ¢ = 45

(2)

_ _ o
h1 = Shz, ¢ = 135

(3)

. h1 = 3h2, =20

= - (4

o
h1 = 3h2, ¢ = 90
Figure 3.1 Waveforms generated from a two harmonic model:

z(t) = h cos(uwt +¢) + h2 cos2wt

1
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3.1 The surface model

In accordance with our discussion in section 3.0, the surface
displacement at an arbitrary point of a wind generated surface is
described by a time function as in equation (3.0.1). If we choose
our coordinate system such that the wind blows in the positive Y
direction and if the surface wave is one-dimensional, the surface

wave motion can be expressed in the following form

(X,Y,t) = hlcos(pY-£t+¢) + hzcos(ZpY-Zﬂt) (3.1.1)

i
Cp o (3.1.2)

where p is the surface wave number, Q is the wave frequency, and

Cp is the phase velocity.

Observe that the fixed phase angle ¢ ir equation (3.1.1) and
the constant phase velocity for both harmonics is not consistent
with the model usually assumed for gravi:iy waves (e.g. Parkins [4]
or Scharf and Swartz [5]). For gravity waves, G —EE— , and the
phase angle 1s usually regarded as being uniformly distributed
between 0 and 2n. The dispersion relation for gravity waves does not

permit persistent slope asymmetries of the kind required in our dis-

cussion here. Equation (3.1.1) therefore should be regarded as a

rather idealized model for a wind-blown surface.

In order to study the surface scattering behavior from this
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model, it is necessary to replace r(X,¥,t) of equation (2.3.19)
with the expression in equation (3.1.1) and then evaluate the X

integral., We first consider the downwind case.
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3.2 Downwind

Figure 3.3 illustrates a downwind (¢R = 180°%) scatter geometry.
The acoustic source is on the ~Y side and the receiver is at the
+Y side. As we showed in Chapter II, the distances from an arbitrary
surface point to the source and receiver are respectively T, and .

Tihese have the forms:

r, = //xz + (Y-O-::oocosll)o)2 + (C-Proosinwo)z (3.2.1)

r, = /fz + (Y-rlocoswo)2 + (I;-H:losin'llo)z (3.2.2) ﬁ

By the use of the Fresnel approximation as described in
Chapter II, the total transmission distance T, + r, can be approximated h

| as equation (3.2.3). From equation (2.2.7), we have

Too + Tyo + 2t siny, + %-[X2+stin2¢o] (3.2.3)

0 1 00 10

From equation (2.2.11), the approximation of the attenuation factor

(r:orl)_1 can be put into form:

L3 1 exp { - ( - —]*—)Y cos lbo} (3.2.4)
Yoo Ti0

[
"o
AR 144 o 42wt Tt Pempgr # S

Tory Y0010
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Both equation (3.2.3) and (3.2,4) are good approximations if the

following conditions hold:

o(X,Y,t) << X, Y (3.2.5a)

X,Y << Too* F10 (3.2.5b)

In the mathematical preliminaries, we showed that the
projection of the combined source-receiver beam response on the
X-Y plane can be approximated by a Gaussian function. For a
downwind geometry, this combined beam response can be expressed
in a simple form as equation (3.2.6) by replacing ¢R with 180°

in equation (2.3.15)

1
L™ (w

x2+y2

s°R e"P{ - sinzwo)} (3.2.6)

o)

Thus L(mo) is the acoustic beamwidth measured in the X direction.
In order to compute the power spectrum, we first have to

evaluate the transfer function H(wo,t) in equation (2.3.19). After

substituting equation (3.2.3, 4, 6) into equﬁtion (2.3.19), H(wo,t)

can be rewritten as

JugTg
H(ugpt) = =— //[3— oy - - exp{ - 5t 47 stn’y)

( 4"r00r10 PRI 1< X Y L (wo)
1 1 wg X2+Y231n2w0
-(— = —)Ycosl‘;o+ i E— [ + 2¢ simpol} dxdy.
Too T10 R
(3-2-7)
‘ 3-9
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In this section we assume that the surface height 7 (X,Y,t) is
small compared with the incident acoustic wavelength so that
w
2 Zg (X,Y,t)sin wo << 1. Thus the phase term can be approximated

by its linear expansion, i.e.

W
j2 2 UX,Y,t)siny, v,
e ¢ T 1+ 42 7 o(X,Y,e)ein ¥ (3.2.8)

Observe that the surface wave motion is assumed to be one-
dimensional and is propagating in the Y direction. Therefore, the
slope Zx is zero, We replace T(X,Y,t) by the expression in equation
(3.1.1) and substitute equation (3.2.8) into H(wo, t). The integration
of equation (3.2.7) is straightforward but lengthy. Details of the
computation are contained in Appendix C. The result of the integration

can be put into the form:

JugTg 6 -jmQt jm Qt
1} (.2.9)

e
H(mo,t) = - ~ H0+ 2;; [Hm+ e + Hm_ e
00 10#

Expressions for A, B, HO and Hm+ are also contained in Appendix C.

The expression of the received signal r(t) is the product
-jwot
of H(wo,t) and e

-jwot
r(t) = H(wo,t)e

-jwot il -3 (momn) t -3 (mo—mn) t
= D0 e + [Dm+ e + Dm_e )| (3.2.10)

[}
i
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Equation (3.2,10) indicates that the interaction of an acoustic
slnusoidal wave of frequency “0 with a moving surface corrugation
given by the expression in equation (3.1.1) results in the generation
of frequencies wo‘i m with m ranging from zero to at least 6.

The number 6 arises from the first order expansion of the phase term
exp [-j2 %Q sin woc] . For surfaces of greater roughness, a higher
order expansion of the phase term would become necessary, and would
result in more frequency components.

From equation (3.2.10) we see that the coefficient D0 is
associated with the transmitted frequency wo and represents the
amplitude of the coherent (or specular) surface reflection. If we
neglect the beam pattern effect in A and B, 1.e. if the beam width

L(wo) in equation (C-2) is assumed to be infinity, then D0 can be

written as
~Ju,(t=1) 2, 2
L T 2 2, 3% 2 2 |
Dy = ?[1- - 20"h, -3 ——0» hy h,sin y,cos z¢s
r00+r10 2 2 ¢
2 2
(r, T, cot™ ¥
. exp[j 10 90 0 ] (3.2.11)
(]
2 T Toof10(T10%T00’

The above equation is obtained from equation (C-11). The
leading term on the right-hand side of equation (3.2.11) represents
the phase change and attenuation due to the transmission distance

o0 + 0 in the specular reflection path. The term in the square

2, 2
ph 2 2

brackets, 1 - - 2p h2 » 18 an additional attenuation of the

2

;
i
i
i
!
;
i
:




smooth surface response due to the surface corrugation. The factors
phl and ph2 are proportional to the r.m.s. slope of the first and
second harmonic of the surface wave. It is reasonable that the
larger the corrugation is, i.e. larger ph1 and phz. the more

the coherent component of the acoustic signal is attenuated. The
imaginary term Jj %-gg pzhlzhzsin wocos 2¢ is a phase lag which
is a function of the phase angle ¢. It is zero for ¢ = 45° and
ig maximum for ¢ = 0°. From the surface profile shown in Figure
3.1, we observe that ¢ = 45° results in a "zero mean" sawtooth
wave from which one would expect no net phase shift. However,for
$ = 0° (or 1800), the surface wave is characterized by a sequence

of narrow pulses, and the average height of the reflecting facets

can therefore be above or below ghe sgooth-surface reference. The
(r197Tgp)“ <Ot

W

< Y0010 " 10" 00’

last phase term exp [j ] represents the

2
phase change due to scatter geometry. If the scatter geometry is
symmetric, i.e. oo ™ T10° then the argument of this phase term
becomes zero. This implies that the coherent reflection is associated
with the specular ray-path. When the scatter geometry is asymmetric,
i.e. roo * 0’ then there is a net phase shift in addition to the
nominal phase change WoTg ° Hence under this condition coherent
reflection is no longer associated with the specular ray. This
effect can also be explained by considering the Fresnel zones [75].

A symmetric downwind scatter geometry is shown in Figure 3.4. The

ellipgses on the surface plane represent the Fresnel zones. Figure 3.5

is the similar plot as Figure 3.4 except the scattering geometry is

3-12




is asymmetric with 00 <To -t In Figure 3.4 the specular point

is at the center of the first Fresnel zone (the inner-most ellipse)
and therefore the specular path is associated with the coherent

reflection. In Figure 3.5, the center of the first Fresnel zone

i e o

Py

is shifted away from the specular point and toward the receiver
(toward the source if Too > rlo). Thus there is a net phase

difference between the coherent reflection and specular reflection.

The coefficients of the side-frequencies (the frequency
component other than the transmitted frequency) above and below wy

are respectively Dm+ and Dm_, m=1,6. Examination of these

coefficients [cf. equation (C-12)] reveals that these coefficients
with m ranging from 1 to 4, are in general not complex conjugates of

each other. Therefore, the magnitudes of Dm+

for m = 1 to 4. We are mainly interested in the power of the first-
|2

and D _ are not equal
+ 2

order side-frequencies , i.e. |D1+ and lDl_I . These can be

written in the forms:

2
— (E-3p)
ID1+(m°,t)|2 = [f + Y+ X Y sin 2¢]. | exp [——— ]I (3.2.12)
2B

Il)l__(wo,t)l2 - [_i_z + Yz— XT sin 2¢]' Iexp[%pl-z-]

| (3.2.13)

where

2

_ h w,siny 2 h 2

T- 1. 0%, 20, 2h22- —5—5)1 (3.2.14a)
T00*T10 ¢ ) Yo 512 ¥

Because of the first-order expansion of equation (3.2.8), the higher-
order side-frequency coefficients sre probably not correct in any
case.
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~y
e

s °hyhy
= 2 T (3.2.14b)
00 10

and where from the definition in appendix C, i.e. equation (C-2)

w

1 0 2
B = -3 =1 siny (3.2.15a)
Lz(uo) cR 0
1 1
E= (—=—)cos ¥ (3.2.15b)
Yoo F10 0

Notice that ID1+(w0,t)|2 and IDl_(a)o,t:)l2 are in general not
equal. They differ because of the sign differences in the bracketed
term and in the exponential term. These two sign differences
represent two different mechanisms. The sign inside the brackets,
associated with the term X Y sin 2¢, is the result of asymmetric
water surface slopes (the assumed wind-driven surface model). The
second sign difference in the exponential term results from the

asymmetric scattering geometry (i.e. rOO ¢ rlo).

We consider first the case Too ™ T10° This results in
E = 0 [cf. equation (3.2.15b)] and leaves only the sign difference
in the bracketed term. We observe that the asymmetry (the amplitude
difference between |D1+(mo,t)| and |D1_(¢n°,t)| exists when ¢ & 0
(oxr ¢ = l;l » n = integer), and is most pronounced when ¢ = 45°,
In Figure 3.1, ¢ = 45° represents the most asymmetric saw tooth
wave. There is no asymmetry when the amplitude of the second harmonic

is zero (i.e. h2 = 0, Y=0). The question as to which one of the two




side-frequencies has the larger power magnitude depends on the

sign of §:+ . Generally speaking, the water surface under
consideration has no surface slope with magnitude larger than 1.
This condition is required by the laws of hydrodynamics for non-
breaking surface waves. Hence X has a positve magnitude at all

times. (see appendix D.)

We can conclude therefore that under the condition rOO = rlO’
the upper side-frequency power magnitude |D1+(wo,t)|2 is always
larger than the lower side-frequency power magnitude lDl_(mo,t)I2

for 0 < ¢ < 90°. 1i.e. for wind driven waves.

Observe that the effect considered here is a function of the
surface slope asymmetry only and does not depend on source-receiver
geometry. Exchanging the positions of source and receiver replaces
wo by w-wo (see Figure 3.2), and since wo enters the expression
only through gin wo s repiacing wo by n-wo has no effect on the
magnitudes of |D1+(w0,t)|2 and |D1_(mo,t)|2. This result can also

be justified heuristically by invoking simple reciprocity.

The power ratio between the upper side-frequency and the

lower side-frequency can be obtained from equation (3,2.12) and

(3.2.13)

Yz + 2%Y sin 24

D1+(wost)

'l
— (3.2.16)
D,-(wyst) 1_!2 +Y - 2X Y sin 24

+ The values of ¢ lie between 0° and 90° in order to have the wind
driven waves moving in the direction of the-steeper wavefront.[70]
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A plot of this power ratio as function of ¢ according to

equation (3.2.16) is shown in Figure 3.6.

We now focus our attention on the sign difference in the
exponential term. To this end, we set ¢ = 0, 1.e. to have a
surface wave with symmetric slope distribution. By replacing
B and E with the expressions in equation (3.2.15), the exponential

1 \ term becomes

1 [coszwo ) 92] wo 2p cos wo

o — .
’ (E;jp)z Lz(wo) r'2 cR R'
e"p[ u_ ] - e""[ 2 ]
2B 2 1 Yo
2 s8in wo A + 23
L (wo) c¢“R
1 ] (3.2.17a)
wvhere
.11 (3.2.17b)
\j
] R rOO rlO
The power ratio of the upper and the lower side-frequencies
" can be written as
is
¢ wo p cos Y
Dy+lug,t) | = exp[ R T X ] (3.2.18)
2 w.2
D;-(wg,t) sin “’o[ 41 + 202]
L (mo) ¢“R

2
Figure 3.7 shows a log-log plot of |D1+(w0,t)/D1-(mo,t)l

as a function of rlO/rOO’ with grazing angle wo as a parameter.

Observe that the power ratio is unity when rOO " 10" It is greater
‘ than unity when oo < Tio ° Also notice that the power ratio
saturates at very large or very small values of r10/r00' The limiting

value can be obtained from equation (3.2.18) by letting rlo/roo go
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o
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0
ol ¥ =130
S
T
8
i
h
8
"; T — Y 1
~1.00 -0.50 0.00 0.50 1.00
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Figure 3.7 First-order side frequency power ratio as
function of scattering geometry; daghed
curve represents the power ratio maximum
in Figure 3.6 for ¢ = 45° and y = 25°
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to infinity+,

2 4
un | P9t |7 . [ 2ugepL” (wy)cos ¥, ] (3.2.19)
T
r—(l)-(‘;- *+|® D;_( gst) sin® y;lacrgn gL (wp))

where R and R' are approximated by 2roo and Too? respectively.
As far as the effect of grazing angle wo is concerned, we see

b
' that for wo = 90° (vertical incidence and reflection) the power ll

ratio is unity, but for very shallow grazing angles this ratio can
become very large, Figure 3.8 has a semi-log plot of
1og|Dl+(w0,t)/D1_(m0,t)|2 versus grazing angle wo. In fact, in
the limit of wo = 0° or wo = 1800, the power ratio goes to infinity.
However, for extremely low grazing angles as well as for extreme

values of rlO/IOO’ the assumption of no shadowing is violated, and

therefore the results should not be carried out to these limits.

The power ratio in equation (3.2.18) is sensitive to the
wind direction, and will change to its reciprocal value when the

direction of wind reverses. For example, if we take the scatter

geometry in Figure 3,3 with Too < T then according to equation
(3.2.18) the power of the upper side-~frequency 1s larger than that

of the lower one. If we reverse the wind direction so that the wind
blows along the -y axis, we are effectively replacing the wave number
p with -p in equation (3.2.18). Thus the power ratio is inverted

and the lower side-frequency will become the one with a larger power

+ The Fresnel approximation breaks down before reaching this limit.
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magnitude. This same effect can also be observed from Figure 3.3
and equation (3,2,18) by letting wo exceed 90°, 1.e. the source
moves to the +y side and receiver to the -y side, and the wind

blows along +y direction.

If the beam width L(wo) of the combined source-receiver
beam response becomes very large, i.e. if both source and receiver

lose their directivities, and for T, << 0’ equation (3.2.19)

0
can be further simplified to the form:

1im D1+(w0,t) 2 n 2 cos wo
Y = exp y 3 (3.2.20)
10° 700 Dl_(mo,t) wolc 1l-cos wo
L(wo)-> ©

We see that the argument of the exponential function consists
of two parts, one is the ratio of the surface wave number p to the
acoustic wave number wO/c, the other is a function of the grazing angle
wo, a geometric factor. According to equation (3.2.20), the power
ratio is large when pc/wb is large; and the ratio approaches unity
when pc/mo closes to zero. A heuristic explanation of this is that
for a given acoustic wave number, if pc/m0 decreases, the surface wave-
length must increase. In the limit pc/m0 + 0, the surface wavelength
is infinity and the surface wave becomes a plane surface. All

reflections become specular, and there is no asymmetry.

The effects of the geometry asymmetry and the surface slope

asymmetry on the power ratio are not equal in general. The logarithmic

value of the power ratio due to the surface slope effect is plotted




dashed in Figures 3.7 and 3.8. We see that the effect of surface

1]
slope is smaller than that of the geometry asymmetry and is
significant only when Too and r o are approximately equal or when

) the grazing angle is close to 90°.
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3.3 Crosswind

The discussion for crosswind is very similar to that for
downwind. The scattering geometry is shown in Figure 3.9 with
the source and receiver located in the x-z plane. The mathematical
operations are very similar to those already performed for downwind.
Details of the computation are given in appendix E. We find that
the received signal can again be expressed as in equation (3.2.10);

however, the expressions for the D's are generally different.

The coherent response Do has the same form as in the previous

section and we need not consider it again.

Expressions for power magnitudes of the first order i

side~-frequencies are

2_2
K _ A E -p .
D4yt > = { F + P + W atn 20} - exp { —— }  (3.3.1)
2B
g2_p2
[nl.(mo.t)l2 = { X+ ¥ - X¥ oin 20} * exp { —— 1} .3.2)

vhere X, Y, B and E are defined in equations (3.2.14) and (3.2.15).

The sign difference in these two expressions is related to
the surface wave slope asymmetry. The sign difference arising from
asymmetry in the scatter geometry is no longer present. Therefore,

for a symmetric surface, e.g., gravity waves, we would expect

symmetric side~frequencies in the crosswind geometry for any 00

and 1., (r00 and Ty 8re assumed to satisfy the far-field assumptions).




K1jowoe8 1933v08 PUIMSsol) 6°¢ 2andyg

y 4

YA

32UN0S

///

NOILO3NIO ONIM

3-26




The detailed consideration of the sign difference in
equations (3.3.1) and (3.3.2) is the same as discussed in the
previous section since only the slope effect is presented here,
the power magnitude of the upper side-frequency is always larger
than that of the lower side-frequency. We see that there is no
effect of geometry asymmetry in the crosswind condition; therefore

f this is a convenient experimental configuraton for the observation

of surface slope asymmetries [3].




3.4 Summary

In this Chapter we have considered the frequency spreading

function for both the downwind and the crosswind conditions using

a deterministic model. We have found that the power magnitudes of
the upper and the lower side-frequencies produced by this model are
L generally unequal. There are two different mechanisms that cause : g
; inequality. One is the scattering geometric asymmetry, i.e. the .
; ' gsource and receiver are at different depths. If the source is 3'
| located at a _smaller depth than the receiver and if the wind blows
from the source to the recelver (i.e. surface wave propagates from
source to receiver), then the power of the upper side-frequency is
larger. This effect is reversed when wind direction (the surface

wave direction) 1is reversed or if the wind direction is unchanged

but the source is at the larger depth. This mechanism does not
exist in the crosswind condition. The other mechanism is the
surface asymmetry caused by asymmetric surface slopes in wind-
driven waves. This, taken by itself, always results in a larger
power magnitude in the upper side-freqenncy. The power ratio
(asymmetry) caused by asummetric surface slopes is generally smaller
than that caused by the asymmetric scatter geometry as observed in
Figures 3.7 and 3.8, Therefore, the overall power difference tends

to be mainly a function of the scattering geometry.
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Chapter IV  Random Surface
4,0 Introduction

In this Chapter we consider a random water surface with a
Gaussian surface-height distribution. As already discussed in
Chapter I, the Gaussian assumption is frequently used in the
t analysis of surface scatter even if it is not rigorously correct
; in all cases. Parkins [4], Scharf and Swarts [5], McDonald and
: ' Schultheiss [10] used this assumption to study the frequency
spreading in the forward acoustic scattering from random rough
surfaces. Schwarze [80] developed the doppler spread of back-
3 scattered acoustic wave from a Gaussian sea surface. Clay and
Medwin [7] computed the covariance of signals observed at a pair

of receivers with the aid of Gaussian surface. Beckmann [49]

has considered the surface scattering by non-Gaussian surfaces.
| He found that the results in most scattering analyses are not very

- sensitive to the precise choice of distribution.+

The analysis considers a general scattering geometry with

arbitrary source and receiver locations. Thus the study includes

various oblique and asymmetric scattering situations. In the
previous Chapter, we saw that surface slopes played an important role

in determining the shape of the frequency spreading function. Hence

g ‘ + This is probably not true for backscattering. Backscatter may depend
‘ heavily on the distribution of high magnitude surface slopes [81].
The high slope distributions offered by different surface distributions
are generally quite different from one another.
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slope statistics are explicitly included in this analysis. By
assuming independence of surface slope and surface height
statistics, asymmetry effects in the received signal spectrum

that are similar to those obtained for deterministic surfaces can

be shown to exist also for random surfaces.




4.1 General scattering geometry

If the water surface is random, the surface scatter process
can be regarded as a randomly time-varying linear system having a
transfe- €function H(wo,t). This represents the instantaneous
amplitude and phase at the receiver due to a sinusoidal signal of

frequency Wy from the source. The received signal has the form

-

WLt
r(t) = H(ug,t)e 0 (4.1.1)

|
1
i

Figure 4.1 shows the scattering geometry. The origin of the

coordinate system is chosen to be the aiming point of the acoustic

source on the flat surface. In other words, the source has a beam

pattern whose center line intercepts the flat surface at the origin.
The x,y and z axes are as previously defined. The location of the
- acoustic source is specified through three polar coordinate para-
meters, oo ¢T and WT + Tgo is the distance from source to system

origin, ¢T is the azimuthal angle of Too projection on the x-y

plane, measured positive clockwise from the ~y axis, wT is the
; grazing angle. The receiver location can be described through a
similar get of parameters Ti0° ¢R and wR.

The transfer function for this scattering geometry can be
derived from the Fresnel-corrected Kirchhoff integral and has the

form (see Appendix F)

R s
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wo w ™ 2 2 mO
j? (r00+r10) // ) \ . -Ax"-By -ny—Dx-Ey+j-é—Fc
e
LICY s J { % Cxow cyay]e dxdy
00710
(4.1.2)

where A, B, C, D, E and F are specified in Appendix F.

Our interest is in the power spectrum of the received signal
due to a sinusoidal input. The power spectrum can be obtained by
Fourier transforming the autocorrelation function of the received
signal r(t). By the assumption of wide-sense stationarity in the i
acoustic scatter channel, we can write the autocorrelation function

in the form [82]

jwot i
= O(wo,t)e (4.1.3) !

r(t) r*(t + 1)

where Q(mo,r) = H(wo,c)H*(wo,t + 1) (4.1.4a)
is the autocorrelation function of the scatter channel. Substituting
the expression of H(wo,t) in equation (4.1.2) into equation (4.1.4a),

we get a four~fold integral as follows

o0 o oo
l - -
¢ (ge) 2, 2 2 f/ff Iy 1Ty 3%y [y )T Tp) X dxydy, dy,
167 Too F10 2 71 72

(4.1.5)




Lo
where
t
J(c. ,C_ 3L L )
¥ % N 7
= {j i»-91"(1-«: 2_; 2)+ (2Ax,+Cy,4D)+%_ (2By.,+Cx.+E) }
4 c 3 N Xy 1771 Yy 17
! et per Pl p *yrr (akx +Cky 4DR)HL (2Bhy, +Chx +ER) }
S Cx, Uy ) x *72 y *yz *2 )
2 2 2 2
13
*exp{-Ax 2-By 2_cx y.,~Dx,~Ey,=A%*x 2-B*y 2_cxx y,-D*x_-Exy, }
1 1 1°1 1 1 2 2 272 2 2
(4.1.5a)
!
“o “o
Qz,,8,) = exp{j - FCl(xl,yl,t)— i F L, (xy,7,,t + )} (4.1.5b)
]
We use the subscripts 1 and 2 to indicate variables at time
t and t + T respectively. Notice that J(g_ ,C_ i C_ »T ) summarizes
: - X)) %3 Y1 Y2
% the channel slope information and Q(cl,;z) is a function of surface
’

waveheight. The averaging operation in the integral is over the

product of J(Cx NS4

£ ) and Q(.,%.). The random variables
1 y 1’72

x. 3%y s
2 71 72
to be averaged are the surface slopes, cx
' 1 72
displacements Cl and Ly

sz and rface
’Cx ’Cyl yz’ nd su

The averaging operation is obviously fairly complicated. In

order to simplify this operation we make two assumptions. The first 1

,f these is to assume a one-dimensional random surface with randomness
wm.vy in the wind direction. In this way the cross-wind slope terms

and g have negligible effect on the final result and can be

)i
“ D

-et ;. This approximation can be justified by the final result

~» *hat the effect of all of the slope terms is, in fact,

4-6
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quite small, We do not wish to eliminate the downwind slope

terms since they contribute an asymmetry to the frequency spreading
function, whose study is one of the objectives of this analysis.
Even though this is a small effect it is important. The crosswind
slopes do not contribute such an asymmetry and setting them to zero

therefore does not alter the final result in any essential way.

The second assumption concerns the averaging operation itself.
It can be performed exactly only if the surface slopes and heights
are jointly Gaussian. However, the Gaussian asgsumption is inconsistent
with the directional asymmetry of windblown surfaces that we believe
to be partly responsible for the phenomenon being studied.here. This
follows from the fact that a strictly Gaussian surface can be
represented by a two-dimensional "Rice" model [83]; i.e. an expansion
in terms of sinusoids with uniformly distributed random phase angles.
Such a surface would be statistically isotropic. Hence a more
fruitful simplifying assumption for the evaluation of equation (4.1.5)

is that the surface heights are approximately Gaussian and that they

are uncorrelated from the slopes. A possible basis for the second
part of this statement is that the slopes depend largely on small
ripples of the surface, when the surface is rough, and that ripples
of any slope can occur at any surface level. This may not be quite
true for the small-surface-roughness situation. However, if both
surface height and slopes have small magnitudes, cross-product terms
can be regarded as second-order magnitudes. Hence the assumption of

uncorrelated surface heights and slopes results in an approximation

that is correct to first order.




With these two assumptions, the integral of equation

(4.1.5) can be rewritten as

¥ugs®) =~ ff.//

16n°r 0110 J(cyl,cyz)‘Q(Cl,Cz)dxldxzdyldyz
(4.1.6)
where
J(Cyl,Cyz)
= {3 % F(1-¢ 2)+;y (2By.+Cx,+E) }*{-j 2 F(1-¢ *2)+c * (2Bky +ckx +E*)|
c Y1 1 17" c Yo Yy 2 2

'exp{-Axlz-Bylz—Cxlyl-Dxl-Eyl-A*xz2—B*y22-C*x2y2—D*x2—E*y2}
(4.1.7)
The integrand is the product of two averaged terms. One is

J(;y ’;y ), which contains the surface moments up to the fourth
2

1l
order. The other is Q(;l,cz), which is the characteristic function
of the Gaussian distributed variables Cl and ;2' It can be written

in the form

_— w2
Qz,,8,) = expl- —o~ FRo?[1-¥(£,n, )]} (4.1.8)
c

where o is the r.m.s. surface waveheight and ¥(£,n,t) is the

normalized surface height correlation function, given by

YEN,D = p T (x,y,08, (%, tH) (4.1.9)
g

o




(4.1.10a)

where £ = x2-x

1

n= Y,y (4.1.10b) ]

The surface correlation function is a critical factor in the
final result. The expression chosen for it should represent the
actual surface with some degree of realism, and at the same time
it should be simple enough to permit evaluation of equation (4.1.6).
The correlation function of the ocean surface has been measured by
a number of researchers, such as Clay and Medwin [7], etc. Model
tank measurements have been made by Kingsbury [84], Spindel [54]
and Zornig [53], etc. A relatively simple expression that fits these
measurements with a fair degree of realism is

62 rl2 T

¥(g,n,1) = expl- =5 - -3 } - cos p(n—cpr) (4.1.11)

Ax Ay TO

This represents a surface corrugation moving in the y direction with
a velocity Cp. The parameters Ax’ Ay and To are correlation distances
in the x, y and t directions, respectively. This expression has been

used in scattering studies by Clay and Medwin [7], McDonald and

Tuteur [8]. A shortcoming of equation (4.1.11) is that it does not ;

take into account the surface dispersion which is an abvious and
easily observed feature of typical water surfaces. Dispersion could
be modelled by using a sum of terms of the form given in equation
(4.1.11) with different values of p and Cp, as in Tuteur, McDonald

and Tung [40]. This complication has not been added to our analysis

in order to keep the result simple.




L2

o d

In spite of the relative simplicity of equation (4.1.11),

the expression that results when it 1s substituted into equation
(4.1.6) is not directly integrable. A standard procedure that
permits integration is to use a Taylor series expansion. This

can be applied to the characteristic function to give

2
expl-g2(1-¥(£,n, 1)1} = e® (1+g2¥(-)+ ;—l (g2¥()1% ——-}
(4.1.12)
w

where g = —% Fo is the Rayleigh parameter which is a measure of

+
effective surface roughness with respect to acoustic frequency.

Since |¥(E,n,1)| £ 1, equation (4.1.12) converges rapidly
if g << 1; hence this expansion is appropriate if the surface
roughness is small. For very small roughness it is permissible
to use only a first-order approximation of equation (4.1.12); for
surfaces of larger roughness (larger g) higher order terms canm be

used as well.

For a very rough surface, i.e. g >> 1, equation (4.1.12)
becomes inconvenient to use. In this case we observe that for
very large g the expression in equation (4.1.8) has a significantly
non-zero value only when 1-¥(£,n,t) is almost zero. Therefore, if
we expand Y(£,n,T) in a Taylor series about § = n = t = 0, only
the first few terms of the series are significant. The linear or

the first order term in the series need not be considered since it

+ See Chapter II.
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corresponds to a non~differentiable surface [10], [85]. Thus

the expansion of ¥(&,n,t) correct to second order is

YE,n,T) 21 - =5 - A _ T _ 2 (n-CpT)Z (4.1.13)

Using this second order expansion of ¥(£,n,t) in equation (4.1.8)

ve get

2 2 2 2
exp{—gztl— ¥(&,n,1)1} = exp{-~ gz[ X5§-+ f—§-+ —1§-+ g—(n-cpr)zl}
T
b 4 y 0

(4.1.14)
The other statistical parameters that need to be specified

sZ. ) . The orders of slope
1 72
moments in J(z;y ’Cy ) range from 1 to 4. The first order moment
1 72
is the average surface slope which is zero. The second order
%2 e
moment appears in the form of C 2. T 2 »and L_ T . The
1 ¥ 172
first two are the mean square slopes. We assume the third term

are the slope moments in J(cy

4

*
yl’r’y2 to be the form

. 22
yl,Cyz =€, exp{- —Ai' - T—z } (4.1.15)
2
2
where . *
e. =t 2 oz * (4.1.16)
2 41 Y2

clearly €, 2 0 for all cases.

The third order slope moment appears in the form

* *
5,2 z +z 7 2 s and is assumed to have the form
1 72 1 Y2
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2 * *2 n T
14 4 +z 14 = g, exp{ - —5 -—%1} (4.1.17)

V1 Y2 Y2 3 02 12

3 3

where *
€. = =2 14 3 = -2 g 3 (4.1.18)
3 41 )

The parameter €, is generally positive, and the appearance

3
of the minus sign in front of €3 is explained in Appendix G. Both

the second and the third order slope moments are functions of n
and 1. We neglect the fourth order moment :ylz cyz*z » because

it is normally much smaller and it does not contribute any
asymmetry to the final result. This follows from equation (4.1.7).
The fourth order moment comes from the product of the first terms

" in the first and the second brackets, which is

w 2

0
el F) (1-222 + I,'y

W,

()
[§oo F(l-z;ylzm-j S Fa-g,

2

*

)] = ( 20, "

1 2
(4.1.19)

Notice that the mean square slope term is replaced by its

equivalent ¢ It will be shown in the final result that 1—282

2°
represents the energy left in the coherent component because of
’ finite surface slopes. ;ylz gy *2 represents a higher order
correction term to this cohereni response only and therefore can
' be neglected. j
[ ’ T
|
’
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4.2 Random Surfaces - Small Rayleigh Parameter

The characteristic function for a Gaussian surface of
Rayleigh parameter less than unity was given in equation (4.1.12).
For the small Rayleigh parameter case, only the first few terms

are important, so that equation (4.1.12) is rewritten as

—_— wg W ;
Q(g,5) = exply — F 5, (t)-§ — F ,(t+1)} §

2 2 2

-_£ n T
T TP Ve Y X j
= e 8 {Hg (e y cos p(n-Cpr)]} (4.2.1) ;

Details of the evaluation of the four-fold integral in 1

equation (4.1.6) are presented in Appendix H; this integration is
basically straightforward but lengthy. The result can be put into

the form:

(wy,7) = Ky [T+ I, + I ] (4.2.2)

b

where definitions for IO’ I1+ and Il— are given in equation (H-9),

and Kl is a constant coefficient.

The signal spectrum can be computed by substituting equation
(4.2.2) into equation (4.1.4) and taking the Fourier transform

with respect to the variable t.

I(w,u,) = f (o) re(tro)e 39T 4r

-00

[ -3 (wmug)t
= Kl ’_/; (Io+I +I. de dt

14 H1-




o S oz, e

Details of this computation are also shown in Appendix H. The
result of this operation is contained in equation (H-14), repeated

here as equation (4.2.4):

F(m,wo) = K1[8p0(w,w0)+Spl+(m,w0)+Spl_(m,mo)] (4.2.4)
where
T 2
Spo(w,wo) G(w—m )+ stz T smfmoexp{— —%—(m-wo)z} (4.2.5a)
m=2,3
2

T
Spy (sug) = B £ {Tgfgpexpl= = (wmugy ocp)’]

T.T T ?’1' z(w—w ;pCp)z
0'm 0 m 0
* L T3 2% ol o*Pl- 2. 2 1
m=2,3 To +T ) 4(T0 +Tm )
(4.2.5b)

The signal spectrum is seen to consist of three parts;
Spo(m,wo), Spl+(m,wo) and Sp1~(”'”o)' Spo(m,mo) represents the
coherent response of the scatter channel. Spl+(m,m0) and Spl_(w,wo)
are respectively the upper and lower shifted Doppler spectra. The
shape of both spectra is approximately Gaussian with center
frequencies at w0+pCp and mo-on. The two center frequencies are
the transmitted acoustic frequency wo shifted yp and down by pCp,

the frequency of the surface wave correlation function.

The width of Spo(w,mo) is governed by T2 and T3, which are

the correlation constants (temporal) of the second and third order




moments of surface slopes. The widths of Sp1+(w,wo) and Spl_(w,w

o
are controlled by the combination of T2, T3 and the surface wave-

height correlation constant TO’ If the surface correlation functions
are in the form of an undamped sinusoid, then TO’ T2 and T3 are
infinite and the signal spectrum consists of three spectral lines

at Wo» wo+pCp and wo-pCp. This 18 essentially the same result
obtained in the deterministic case. For smaller TO’ Tz, and

T3, the surface wave spectrum is itself a narrow band spectrum and the

three spectral lines spread to form three narrow bands.

There would have been more than just one Doppler sideband on
each side of the carrier, if we had incorporated more terms of the
expansion of the characteristic function in equation (4.2.1). The
number of significant sidebands depends on the magnitude of the

Rayleigh parameter g.

We consider next the relative magnitudes of the upper and
lower sidebands. As in the deterministic case, the results depend
on wind direction and we therefore consider the downwind and crosswind

geometries separately.
Case I. Downwind geometry

The computational details of the substitution of dowmwind
geometry parameters in the signal spectrum are presented in Appendix H.
The result is expressed in equation (H-24) and 1s repeated in the

following equation




2

e

Tpw,uy) = Y. [SDO(w,m0)+SD1+(w,wO)+ SDI_(w’wO)] (4.2.6)
00 10
where ) )
2.2 2 2
po €2 = T—(w—(ﬂo)
SDO(N,NO) = (1—262)6(m-¢no)+(ﬁ TZ). ______g_i____ e
T 2
poey - Zg_ (m-—wo)2
+T Ty) (4.2.7a)
202R2p2 40 R dp
SD (w u)o)a (rT e g L (0.)0) g L (w )
7 2. 2 - 2
Toz '1‘0 T, (w-wgheCo)
- 7 (u-u +pCp) 0202 2. 2
“{(1-2¢,)e 4 __ze 4(Tg™+T,°)
_ 02 3 (w"m +9Cp)
po 4(T Zer )
* g-%_- e 0 37 (4.2.7.b)

We observe that the coherent response is an impulse of
amplitude — 5 e g
(r0+r1)

completely flat, i.e. €)= €y=g*= 0, the coherent response is

at frequency wg* If the surface is

-2
the only term in FD(m,mo) and it has the form (r00+r10) , which
is the familiar form of point source response. When the surface
2
is disturbed, €, and g are nonzero. The attenuation term e 8

results from the surface deformation amplitude, while the term




2€2 represents attenuation caused by the slope terms. To

consider the effect of surface waveheight and the effect of
slopes separately, we assume the surface to have extremely
small deformation, 1.e, extremely small g, but have finite
surface slopes. In other words, the surface can be modelled
as a group of plane facets located on the flat surface. Each
facet is random and has its own slope and the correlation of
thé slopes is described by equations (4.1.15) and (4.1.17).
The spe;tra SD1+(w,m0) can be neglected for extremely small g

and e ® 1is approximated by 1. The spectrum in equation (4.2.6)

can then be rewritten as

2 2
pioe, -7 (w-wo)

1 .
T (0,0, = 5—————{(1-2¢.)6(ww )+&T T,) e
D 0 (r00+r10) 2 0 2 g2
2
pce3 -~ E%—(w—wo)z
+ (Y7 T,) e } (4.2.8)

It is seen that the energy which is removed from the coherent
response is distributed in the frequencies surrounding Wg» i.e.

the second and the third terms in the brackets in equation (4.2.8).
As discussed in the previous section, the bandwidth is determined
by T2 and T3, and is not a function of slope moments. Varying the
mean square slopes €, only changes the absolute magnitude of each
spectral component proportionally. Figure 4.2 contains sketches of
PD(m,wo) of equation (4.2.8) for both small and large values of €ye

Notice that the bandwidth stays the same in both cases.
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The effect of sumewhat larger surface deformation on
the frequency spreading function can be examined by including

the two spectra S (w,wo) and SD (w,wo) into our considera-
1+ 1-

tion. Each of the spectra is the sum of three Gaussian functions

D

as indicated by equation (4.2.7b). Considering the bandwidths

of these three Gaussian functions in more detail, we see that

-1 -1, -2 ~2.%
0) . (T0 + T2 )* and

Hz. Hence the spread in the first Gaussian is

they are respectively 2(w T 27

-1 -2 -2.%
2% (To +T3 )

due entirely to the surface waveheight fluctuations, while the
spreads in the second and the third Gaussian functions are due

to the combined effects of surface fluctuations and surface
slopes. The combination is such that the bandwidth is controlled
by the process which has the smaller correlation time. To our
knowledge, no measurements of slope correlation times have ever
been made. To be consistent with the assumption that slopes and
heights are independent because the slopes depend largely on

T

small ripples one might argue that T << T. . However,

2% 13 0

)& T3 =3 TO’ simply on the

basis that all three correlation times result from the same

another point of view is to assume T

surface wave motion. We have used the second approach in equation

(4.2.7b) to compute S (w,w.) and S
Dy 70 Dy
parameter values needed for this calculation are taken from data

(m,wo). All the other

obtained in a model t:a,nk.'r These values are shown in Figure 4.3,

which contains a plot of the two spectra. The Rayleigh parameter

T The magnitudes of €, and €, used in the plot may be larger than

the practical value in ordér to emphasize the asymmetry.
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g is 0.3. We observe that the two sideband spectra have

completely different amplitudes. The amplitude differences
poe
are caused by the two double-signed terms, i.e. + g and
40%R%dp

2.2 . Note that the inequality of the spectral
g L (w,)

heights dges not depend on the correlation times and is therefore

unaffected by the assumptions made about the relative values of

TO’ T2 and T3. As in the deterministic case considered in

Chapter III, the two double-signed terms can be related to
two different mechanisms, i.e. the surface slope asymmetry

and the scattering geometry asymmetry. The effect of surface
pae
slope asymmetry shows in the term s while the effect of

402R2do

82L2(w0)

scattering geometric asymmetry is in

We first consider only the surface slope asymmetry by
setting d = 0. From equations (H-13) and (H-22), this implies
either

(4.2.9a)

(4.2.9b)

Since €4> 0 for wind-driven surface, we clearly see that the

upper sideband SD (w,wo) is larger than the lower sideband
1+
SD (w,mo). If the direction of surface wave propagation
1-

reverses, both Cp and €, change sign S0 that the sideband

3
asymmetry stays the same. The degree of this sideband asymmetry
is a function of acoustic frequency. If we increase the acoustic

frequency, the Rayleigh parameter g becomes larger, and the term




¥
2

poe

becomes smaller. Therefore, we would expect to find less
sideband asymmetry for higher Wy* This is illustrated in the two
sketches of Figure 4.4. The acoustic frequency used to generate

the lower sketch is twice the value used in the upper sketch.

We now consider the sideband asymmetry caused by asymmetric
scattering geometry. In order to do this, we let €q = 0 to
elminate the effect of surface slopes. The form of the exponential
term can be rewritten by replacing d with its equivalent expression

in equation (H~22). We get

402R2dp [0} rlO—IOO 2 cos wo
exp{ + —§~E—-—-}= exp { + [ : . 2 1} (4.2.10)
g°L (wo) mO/c r10+r00 sin” ¥,

This is similar to equation (3.2.18) for very large L(mo). The
upper and the lower sidebands are asymmetric when oo ¢ 10 and
Yo # 90°, The discussion of the sideband asymmetry is the same
as in Chapter III. Figure 4.5 and 4.6 contain sketches of the

agymmetric sidebands for Yoo > T10 and Too < T * respectively.

The corresponding downwind geometry is shown above each sketch.

Case II. Crosswind

The formulation of the signal spectrum in a crosswind geometry
is presented in Appendix H. The resulting spectrum is written as

2

F(m,wo) = 3 [Sc (w,m0)+ Sc (w,m0)+ Sc

(w,wo)] (4.2.11)
1+ 1~

(*oo*T10’
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Figure 4.6 Asymmetric sidebands for small Rayleigh parameter,
€3 = 0, and To0 < Ti0
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where

2

T
pzozez - 4—2— (w—wo)2

S, (m,mo) = (1-252)6(m-w0)+(of1'r' Tz) —Z e

0 ;
2 ‘
T3 2 i
poey - 77 (u-w,) i
+(T T,) e (4.2.12a)
202R2p2
2 gsz(wo)
Scl+(w,w0) - %— (V7 To)e
2. 2 - .2
r 2 _Tp Ty (wmugieCy)
- 7t Toe ) ploe, 4(T02+T22)
*{(1-2¢,)e Py T e :
g ﬁ
2.2 - 2
) ‘I'0 T3 (m-wo'!'pCp)_
2,2 !
poE, 4('!0 -4-’1.'3 ) :
+ e
g (4.2.12b)

We observe that equations (4.2.12) are quite similar to 3

equations (4.2.7) except that the geometry-asymmetry factors,

2.2
i.e. exp{+ -"—;—%—de— } in equation (4.2.7b), have disappeared.

g8 L™ (w,)
Therefore, the sigeband ratio, i.e. Scl_._(w,wo)lscl_(w.wo),

will remain unchanged for all values of LI and 0 The effect

of asymmetric slope distribution is, however, still present in




e e e g

R (AT

=,

equation (4,2,12), Figure 4.7 shows a crosswind spectrum obtained

by Zornig [3] in a model tank experiment.
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4.3 Random surfaces - large Rayleigh parameter

w.Fao

?- When the surfaces become rougher, i.e. g = >> 1, either

c
by increasing the r.m.s. surface waveheight o or by increasing the
acoustic frequency Wys the surface height characteristic function is

conveniently approximated by equation (4,1.14) repeated here as

equation (4.3.1):

] 2 2 2 2
1°>2 2 2 2
Ax Ay To 2

The received signal spectrum can be computed as in Sec. 4.2,
with equation (4.3.1) being used to represent the characteristic
] function Q(El,cz). Appendix I has the details of this computation.

The resulting spectrum is expressed in equation (I-4), repeated

9 here as equation (4.3.2):

1 jﬂ” ~J(w-wy)T
! F(w,wo) = J Q(mo,r)e dr

2
{w-w.-q,(0)]
~ LS Y . _ 0 2
= K G0,0 ) f10” el 4q,(0,0) )
1
] y 3lo- uy 4, 27)] Lomeg=ay¢ 7)1
2 2
) ¢ ey 11 ) -expl- T 1. 1l
ql(——Z’_E ) qu( _'2' ’ —_2' ) 4‘11(—'—2, 2) i
T," A " A T," A |
S UNCE
. " =3 lu-wy-q, . 5) fo~ug=9,3 ‘
3 ) 3
H (2 _.1_)) 313 1 el (—1——1-)]}
Gt T2 2 2q,( =55 ,—5) 9 2.2 2
3 A3 7.2 A 3 M
3 A
(4.3.2)
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where K b3 £

9 and q, are defined in Appendix I.

2> f100 f120 f13
Notice that the signal spectrum F(w,mo) is the superposition

of three functions. Each of the three functions contains a Gaussian

term. The centers of the first, the second, and the third Gaussian

are respectively wy + q,(0), w) + q,( Xli )s and wy + q4( —159-

2 Ay
From equation (I-4b), we get
1 22
( 7 P g Cpd
qz 0) ) (4.3.33)
lNlZ g2 ng
+—+
N+N#* A 2
1 22
1 5 p g Cpd
q2( ) 5 ) . 3 3 73 ) (4.3.3b)
2 L"L-+ + +——-2—
N+N* A 2 A2
2 2
% p-g Cpd
1, ( 20T T 2 17 ) (4.3.3¢)
3 + +-"—5—-+-—2
N+N* A 2 A3

where N is a complex quantity defined in equation (H-4). Equation
(4.3.2) is rather unwieldly as it stands and must be simplified
considerably to permit easy interpretation. We consider first the
equation for qz('). From equation (4.3.3) we see that their dependence
on A2 and A3 is relatively slight, especially if we make the assumption
that AZ’ A3 and Ay are all of the same order of magnitude (this

assumption is based on considerations similar to those used in the

O PP g

" -




previous section to argue that Tdt Tziz T3). Note that since we are

dealing with rough surfaces here, g2 >> 1, and therefore gzlnyz >> —lf’ lq
A A
Thus we have that 2 3
1 ~ 1 ~
(=5 ) =q,(—5) = q,(0) (4.3.6)
2 2 2 2 2
Ay Ay

Furthermore, if the surface slope correlation times T, and T, are of the

2 3

same order of magnitude as TO’ then from equation (I-4a), we have

(2, 23, )T q0,00 ».3.5
1 A 2 T 2 1 T 2 A 2 1
2 T 3 M

By the use of equations (4.3.4) and (4.3.5) the three Gaussian
functions in equation (4.3.2) are made to be identical and F(w,wo) can

be rewritten as

_ .k [0-uy=q,(0) ]
) =X (g @y ) * = T !
~jlw-wy=q,(0)] =3 [w-wy-q, (0)]
R ST ARLPLIPY 24,(0,0) )+ e5f, 5 24, (0,0)

(4.3.6) :

Except for the terms involving the slope moments ezand €39 the signal

spectrum F(w,wo) is seen to be a Gaussian function with center

frequency at Wy + qz(O) and bandwidth fB = 2ﬂ-1[q1(0,0)]%. The

functions flO’ f12, fl3’ 9, and 9, all depend on the scattering

geometry, as can be seen in Appendix I. Thus the gpectrum I‘(w,wo)




derends on geometry and on slope moments. As in the previous sections

we consider in detail only the down (up) wind and crosswind geometries.

Case 1. Downwind

Detailed calculations for the downwind case are given in
Appendix I, equations (I-5) to (I-9). Equation (I-9) gives the

expression for the spectrum, repeated here as equation (4.3.7)

2
[w—wo-qz (0) ]

2

N 1 Vo (z“fn)z
Y(m,mo) = 5 e
(roo+rlo) gpCp/ 2
2 ce
{(1-2e,)420%, [ ( L5 + = )b Lo b —2 [w-u-q, @)1}
Ay 2 g A gCp

(4.3.7)

We see that F(w,mo) is generally not symmetric with respect to Wy
unless q2(0) = (O and e3 = (). These are the effects of the two mechanisms
mentioned previously as we recognize that €3 represents the slope asymmetry

and q2(0) is the scattering-geometry asymmetry. The expression of q2(0)

can be obtained from equation (4.3.3a) and the expression of d in equation

(H-22)
%-pZCp mOLz(mo)coswo 1 1
qZ(O) 2 2 * ( - )
|} N 1 +f’_ CR Yoo 1o
2 2
g (N+N*) Ay 2
(4.3.8)

4-32

AN AT A
e i i o P Y SN et 1.




P s B L e rasieineadey ¢

S ZANICErY e

We see that q2(0) is non-zero if roo'f 10 and vpof 90°; and

1
q2(0) is positive (negative) when Too < rlo(r00 >Ty0). Therefore,
considering no slope asymmetry, i.e. €y = 0, we conclude that if the

wind blows fram source to receiver, and if r,.. < ), the

00 < F10¢T00 ” T10
upper (lower) sideband is larger than the lower (upper) sideband
(see Figure 4.8). This conclusion is the same as was reached in the

deterministic case and in the slightly rough (random) surface case. %

We examine next the sideband asymmetry caused by surface slope
asymmetry. As usual, we eliminate the effect of the scattering geometry

factor by assuming oo = Ti0° Then equation (4.3.7) becomes | 4

2 E
(w-w,) .
I‘(w,wo) ¥ 1 2 ¢ /‘l-l'- * expl- ‘———OT
(roo+rlo) gnCp/2 (ZWfB)
2 ce
e ((1-2e.)420%, [( = + Byr 2 10 3 (4w )) (4.3.9)
2 2 2 2, 2 0
A 2 g A2 ng

We see that the center of the Gaussian function is at Wo* The

sideband asymmetry is introduced by the last term in the brackets, viz.
o€

EE; (w-wo), which is positive and therefore increases the upper sideband |

when m>w0; and is negative and decreases the lower sideband when w<w0. i

Therefore, the upper sideband is always larger than the lower sideband.

Figure 4.9 contains a plot of equation (4.3.14) with £ = 256 KHz,

0

° 10" 254 cm, A slight agymmetry can be seen by comparing

wo =30, r r

00~
‘ the corresponding spectral amplitudes on both the upper and lower sidebands.
Much greater asymmetry is produced by differences in source and receiver i

depths. This 18 illustrated in Figures 4,10 to 4.12, which are plotted ;

for roo/rlo = 0.1, 10, and 0.5 respectively.

:“ 4=33
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Figure 4.8 Gaussian spectrum-Downwind
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The amount of frequency spreading is determined by the bandwidth

f From equation (I-4a), with a = b = 0, we find that this is given

B*
by 2
L (mo) 1
: t 3 I
) 2.2
4ro [ 1 g2  BR A
£ = f + . (4.3.10)
B 0) ¢ 2 2 2 2
72 Y2t
80°R A 2
y
!
mOFo (Zﬂfo)FO
where the Rayleigh parameter g has been replaced by g = P p .

We see that the bandwidth fB is a monotonic function of the

N Py T

acoustic frequency fo (in Hz). However, it is not a linear function of

f_., since the beamwidth L(mo)«-%- is frequency dependent. For low

0
0
acoustic frequency, L(wo) is large, and we can assume that
Lz(wo) 1 2
32 2> 3 +& . Hence for small fo
80°R A 2
y

| 4Fo [ 1 26,21
2 £, 5 £, {22 + LR } (4.3.11)
. B 0 c T 2 2

; As the acoustic frequency increases, th beamwidth L(wo) becomes smaller,

L™ (wg) 1
and at some high frequency, we have << . Hence, for large
802R? A2
fo, equation (4.3.10) can be rewritten as y
Y
2.2
£, = fo{"z" [ Lo+ £2E ] (4.3.12)
To 24p~Cp
‘ Figure 4.13 contains a plot of fB/fo as function of frequency fo

according to equation (4.3.10). Notice the asymptotic behavior at both
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low+ and high acoustic frequencies.

Case II. Crosswind

The received signal spectrum for crosswind is derived in Appendix
I, equation (I-10), repeated here as equation (4.3.13)
2
! -
‘ 1 v (w wo) \

I‘(w,wo) = 3 . . exp{-
(r00+r10) goCp/2

(2nfB)2 f

2 1 2 1 083

.{(1-25 )+20%€ [(........,.&_)4.___].,._._ (w~w (4.3.13)
2 2 2 2, 2

A 2 g A gCp

y 2

n
O)I

RSN

There is only one factor in equation (4.3.16) that can causz side-
o€

band asymmetry. It is EE% (w—wo), the surface slope asymmetry. As
A we discussed in the section dealing with the downwind geometry, this i

term will make the upper sideband larger than the lower sideband in a wind
driven surface. Varying the scattering geometries, i.e. changing Yoo’ T10°

has no effect on the sideband agymmetries.

The bandwidth for crosswind is obtained by substituting crosswind

parameter values into equation (I-4a). This gives

+ Very low values of f. might be inconsistent with the assumption of a very
rough surface; i.e. g >> 1. However the inequality leading to equation
4.3.11 depends on beam width, which is partly controlled by transducer size.
Hence equation 4.3.11 may hold with g >> 1.

5 1% (wg) 1
‘ 7.0, 2 T 52 3
: A
: £o= g R0 1, oop? | MRSV Ty ] } 4.3.14
i‘ -ty 2 3 3 (4.3.14)
.5. o, 2 L% (uy) 1 o
: 0 + + —
2.2, 2 2

' 80“R”s1 A 2
!‘ "o Ny
i
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The main difference between equations (4.3.10) and (4.3.14) is that
L2(w0) LZ(“QZ
—=——— 1in equation (4.3.10) is replaced by

the term
802R2 802R281n2w
L2 (up) 0
in equation (4.3.14). Since 7 is always larger than
L2 (wy) 80“R“Sin“y :

802R2 , the crosswind bandwidth in equation (4.3.14) is larger than
the downwind bandwidth in equation (4.3.10). In other respects the
dependence of the bandwidth on fo is similar to that already discussed
for the downwind case. Figure 4.14 shows plots of bandwidths for both
downwind and crosswind at wo = 17° and 30°. Also shown in this figure
are experimental points of bandwidth measurements made in a model tank
by J.G. Zornig [3] » The general behavior of the theoretical and experi-
mental results are very similar, and the correspondence between the
results for wo = 30° are well within experimental error. For wo = 17°
there may already be some shadowing, and this might explain the con-
sistently smaller bandwidth observed in the experiment. This issue has
not yet been investigated.
In Figures 4.15 to 4.17 are plots of the crosswind signal spectrum
o

according to equation (4.3.13); in Figure 4.15, f0 = 256 KHz and wo =177

in Figure 4.16, £ = 256 Kiiz, ¥, = 30°, and in Figure 4.17, f.= 524 KHz

0 0
and wo = 30°. Note that the sideband asymmetry becomes less significant
with increase in fo. Also note that the bandwidth increases both with

wo and with fo.

In summary, we have examined the frequency spreading function of
the acoustic signal scattered from a random rough surfaces for both the
slightly rough case and very rough case. We have found that the amount
of frequency spreading (bandwidth) depends on both the surface roughness

and surface slopes. The following illustrations summarize the results of

section 4.2 and 4.3.
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] 4 From (4), the surface roughness
- increases, and the surface wave
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center frequency of pCp.
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]
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A continuation of (7).
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The amplitudes of the frequency spreading function are in general

not symmetric with respect to the transmitted frequency. There are two
different mechanisms which are responsible for this amplitude difference.
One mechanism is the surface slope asymmetry, i.e. €q is positive, which
always results in the upper sideband being larger than the lower sideband.
This effect does not depend on the wind direction. The other mechanism is
the scattering geometry asymmetry caused by unequal depths of source and
receiver. This effect 18 a function of the wind direction and depends

on the relative depths of source and receiver. Specifically, if the
source is located at a smaller depth and if the wind blows from source

to receiver, then the upper sideband is larger than the lower sideband.

By either reversing the wind direction or maintaining the wind direction
but placing the receiver at a smaller depth than the source, the lower
sideband will have a larger amplitude than the upper sideband. Since

thig mechanism is wind-direction dependent, it has no effect on the side-
band amplitude asymmetries in the crosswind condition. The effect of the
second mechanism on the sideband asymmetry is in general larger than that
of the asymmetric surface slopes. The effect of both mechanisms decreases
as the acoustic frequency increases. In other words, the frequency spreading
function is more symmetric at higher acoustic frequency than at lower

frequency.

The width of the frequency function is controlled by several parameters;
it increases with the grazing angle, the surface roughness, and the acoustic

frequency. It also depends on the wind direction, the width of the spreading

increases as the geometry changes from downwind to crosswind.
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Chapter V  Experimental Data Comparison and Discussion

5.0 Introduction

A series of surface-scatter experiments has been performed in
a model tank by J.G. Zornig [3] . A windblown surface 1s generated in
this tank by a fan blowing air through a wind tunnel suspended above
the surface. A detailed description of the experimental equipment
and setup can be found in [79]. The experimental technique involves
the transmission of narrow pulses that are preemphasized so as to produce
an approximately flat received spectrum over the frequency range of 0.2
; ) to 1.2 MHz. The received pulses are acquired by a digital computer and
stored on magnetic tape. Data processing to obtain the frequency spreading
function can then be performed on the stored data. The data processing

? techniques are described in detail in Appendix J.

5.1 Doppler Shift

o 5 Examples of measured and computed spectra are shown in Figures
‘ ’
5.1 to 5.4. Each figure contains four spectra corresponding to four
i
H

transmitted frequencies, f. : 256 KHz, 524 KHz, 792 KHz, and 1.06 MHz.

0
The zero frequency of all plots is referred to the transmitted frequency.
Hence the positive (negative) frequencies correspond to the upper (lower)

gsideband. Figures 5.1 and 5.3 are for upwind transmission, while Figures

5.2 and 5.4 are for crosswind. The grazing angle in Figures 5.1 and 5.2 is

30° and in Figures 5.3 and 5.4 it is 17°, In all plots the Cepths of

source and receiver are the same. It is clear from these figures that

there is a significant discrepancy between theory and experimental results.

According to the theory, the asymmetry should decrease with f This

0
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follows from equations (4.3.7) and (4.3.13). The term that causes
asymmetry is the cq term, and its coefficient is inversely proportional

to acoustic frequency w However, the discrepancy between theory and

0
experiment is most significant at high acoustic frequencies. It
appears in all of these figures that there is a doppler shift in

addition to the theoretically predicted side-band asymmetry.

A possible explanation for this doppler shift can be found in
small azimuthal misalignments of the transducers used in the experiment.
Even though the transducer mountings were carefully positioned to be
exactly opposite each other with respect to the specular point, the
possibility remains that small imperfections in the transducers them-
selves could cause the center lines of their beam patterns to be a few
degrees off the boresight direction. Such a divergence is, in fact,
indicated in {53].

To test this conjecture several experiments were performed.
The results of these experiments are shown in Figures 5.5 to 5.7.
Figure 5.6 was obtained from a crosswind geometry with ¢T = 270° and
¢g = 90°, while Figure 5.5 (¢ = 270°, ¢g = 85%°)and Figure 5.7 (¢ = 270°,
¢R = 950) were obtained in a roughly crosswind geometry but with receiver
being intentionally misaligned by 5°. The top view of the relative
source and receiver positions in these experiments is shown in Figure
5.8. 1In this figure, the source-receiver pairs for Figures 5.5, 5.6 and
5.7 are respectively (S, Rl), (s, Rz) and (S, R3). Since in Figure 5.6,
the gsource-receiver pair (S, R2) was supposedly exactly crosswind, we
would expect a roughly symmetrical spectrum for high acoustic frequency.

However, we find that the most gsymmetrical spectrum among these figures

5-6
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is contained in Figure 5.5, i.e. for the source-receiver pair (S, Rl)'

v In Figure 5.6, we see a fair amount of frequency shift, approximately
12 Hz., in the plot for fo = 1,06 MHz, There i1s a even larger frequency
shift in Figure 5.7 almost 45 Hz toward the positive side in the plot

» for f0 = 1,06 MHz.

If we assume that the center lines of the source and receiver
beam patterns diverge from their respective bore-sight direction by

2.50, then it is conceivable that the intentional misalignment in

Figure 5.5 could result in a roughly crosswind geometry, with the
specular point at 0' as shown in Figure 5.9. The other two gemetries
would then represent angled paths, with both source and receiver
pointed slightly prind. Since both beam patterns would then be larger
in the upwind direction than in the downwind direction, we would expect
more energy returned with upshifted frequency. The frequency displace-
ment should be larger for the receiver at R3 than for the one at R2.

This is exactly what is observed in Figures 5.5 to 5.7

e, g g -
L

5.2 Theoretical Analysis of Angled Paths

A theoretical treatment of surface scatter over a slightly angled
path is easily obtained by modifying the beam pattern function used
in the theory. Assume that the cencer of the beam pattern function on
the water surface is off the specular point by a distance Ax in the x
! . direction and A in the y direction. Then the form of the modified

y
beam function can be derived from equation (2,3.13):
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(5.2.1)

2 2
(x-4,) (Yfey) 2(x—Ax)(y-§y) }

BgBp = e"l’{‘ 7 2

o ) Ly 2 Ly @)

where Lxx(mo), Lyy(wo) and ny(wo) are defined in equation (2.3.14).

Rearranging the terms in the brackets results in

2 2

X y 2xy 2Ax 2A
BsBm;”""‘P{" ) -T2 -T2 +[ 7t T ]"
Lo Lo fw) Lol P 1 P
2 2
ZAx 2Ax Ax AX ZAXAy
+ 3 3 e N S
Lyy (wo) ny (wo) Loy (wo) Lyy (wo) ny (wo)

(5.2.2)

The first three terms inside the brackets represent the original
beam function., The last three terms represent an additional attenuation
of the received acoustic power due to the off-specular beam function.
They don't have any effect on the sideband asymmetry or the doppler
shift and therefore can be neglected. The two remaining terms represent
the significant modifications of the theory. Substitution of the new
beam pattern function of equation (5.2,2) in equation (F-9) affects

mainly the coefficients D and E. I1f we represent the new values as

D1 and El’ then we have
2Ax 24
Lol L7
24 2A




The shift of the center of the Gaussian spectrum was defined as

q2(0) in equation (4.3.3a). The parameter d appearing in this equation
is defined in equation (H-13) and is seen to depend on E in equation
(H-22). If we use E, instead of E in this definition, q2(0)can be

rewritten as follows:

28, 28
| 42(0) = K4E; = Ky(E- t Zay 1 205 )
yy O xy * 0
(5.2.5)
= K E + 2nf,
where
Y pch B*-B
K, = . (5.2.6a)
3 |n|2 1 o2 B*+B
+ 4+ —
gZaur) A2 2
= K, A A
£,o=- 2 (—L— 4 ) (5.2.6b)
' yy ° 0 xy 0

We see that fM is the additional doppler shift (in Hz) introduced by
the misalignment. As we assumed in the previous section, the center
of the beam pattern function is at O' as in Figure 5.9. Thus the beam

center displacements are A, = 0 and Ay = - IQQ'I, where |gg'| indicates

the distance between 0 and 0'., Hence the frequency displacement

K
i fM = -————751——- |00'| is a positive quantity, i.e., the Gaugsian spectrum
T Lyy (wo)

i8 displaced toward positive frequencies. This is what was observed in
Figures 5.5 to 5.7. In fact, the frequency displacements shown in all

experiments shown in Figures 5.1 to 5.4 can be explained in this way.

.
et i, it de,
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The dependence of fM on the acoustic frequency fo can be computed

by using equations (2.3.14) and (5.2.6a) in equation (5.2.6b). An
expression for B, to be used in equation (5.2.6a) can be found in

Appendix F, equation (F-10). When this is done we find that

2.2

gp Cp wq
fy = 2 N R e T e e B B Y
IN| g- og
+— +
M A 2 (5.2.7)

where h(roo,rlo,wT,wR,¢T,¢R) is a function of geometric parameters only.

We show in equation (H~20) that for downwind for crosswind the term
w~2L2 (wn)
0 0
2c2R2
illuminates several Fresnel zones. Since the beam pattern width

|N|2/(N+N*) can be approximated by if the beam pattern
is proportional to l/wo, wosz(mo) is independent of frequency, and
therefore ]N]z/(N+N*) is a constant. On the other hand, g2 is pro-
moz. For frequencies high enough to make |N|2/(N+N*)
negligible in the denominator of equation (5.2.7), fM is proportional

portional to

to Wy Figure 5.10 contains a plot of the measured frequency displacements

for the experimental results shown in Figure 5.5 to 5.7. The linear

dependence between fM and f. is clearly shown.

0
Figures 5.11 to 5.14 show the same experimental spectra as those

shown in Figures 5.1 to 5.4 and a set of theoretical spectra shifted by

values of fM chosen to provide the best possible match with fM constrained

to be linearly dependent on f These values are shown in each figure.

0'

It is seen that the correspondence between the theoretical and experi-

mental results is very good.
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5.3 Bandwidth

According to equations (4.3.10) and (4.3.14), the bandwidth should
increase with acoustic frequency fo, with grazing angle wo, with surface
roughness, and with size of beam pattern. The increase in bandwidth with
f0 appears in all of the figures; the effect of grazing angle increase
can be seen in a comparison of Figures 5.11 and 5.13, also in Figures
5.12 and 5.14; the effect of beam pattern increases between Figure 5,12
(small band width) and Figure 5.6 (large beam width) is caused by increasing
Tho and fi0°

bandwidth comparison between upwind and crosswind; the theory predicts

An additional qualitative check of the theory is in the

a larger bandwidth for crosswind and this is corroborated, for instance,

in a comparison between Figures 5.11 and 5.12. The qualitative correspondence
between theory and experiment is seen to be perfect in these examples.
Quantitatively the correspondence between theory and experiment is

generally good for not too shallow grazing angles. The less satisfactory
bandwidth comparison in Figure 5.13 may be caused by the effect of shadowing

as we have already indicated in Chapter IV, Figures 4.14.

In summary, we have shown that the Kirchhoff theory appears to
give quite accurate predictions of the frequency spreading function for
all surface roughness conditions., We have found that experimental
verification of the theory requires very accurate alignment of the
transducers, because even small misalignments which might be caused by
transdu;;r imperfections can result in significant spectral shifts.

However, when all of these factsrs are taken into account the correspondence

between theory and experiment is seen to be very good.
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Chapter VI  Physical Arguments for the Creation of Asymmetric Sidebands

6.0 Introduction p

In the previous two chapters we have used the Kirchhoff integral
method in a rather formal way to compute the spectral properties of sur-
face~scattered signal, We now consider some physical arguments that
provide a more heuristic explanation for some of the results obtained
previously. We consider in particular the two mechanisms that have been
shown to be responsible for the spectral asymmetry of the scattered 1

signal.

6.1 Effect of Source-Receiver Geometry

Asymmetry of the scattering geometry, i.e. where the source and
receiver are at different depths, has been shown to result in a
spectral asymmetry if the source and receiver are in an up or downwind
configuration. This asymmetry has a simple physical explanation which
is illustrated in Figure 6.1, with the source located at a shallower
depth than the receiver. The water waves are assumed to move from source
to receiver. For this configuration we found earlier that the upper i

doppler sidebands have a larger amplitude than the lower ones.

Assume that the acoustic wave frequency is high enough so that
the reflecting surface can be represented by a tangential plane at that

reflecting point. The planes at point A and B in Figure 6.1 represent

two of such surface tangential planes, where the reflections from these
planes will reach the receiver, Point A represents an arbitrary point

on the -Y axis and point B represents the point on the +Y axis. Since
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WIND DIRECTION
——————————

SOURCE

Figure 6.1

RECEIVER

Asymmetric downwind scatter geometry and
attenuation factor.




the surface wave is moving from source to receiver, the surface plane
at point A moves downward and compresses the incoming acoustic wave

and therefore produces an up-shifted doppler frequency component in

the received signal spectrum. On the other hand, the surface plane

at point B moves upward and relaxes the acoustic wave and produces the
down doppler shift. If the points A and B are chosen to produce equal
doppler shifts, the upper (from point A) and the lower (from point B)
doppler sideband amplitudes can be obtained by the intensities of these
ray paths. From Huygen's principle, each illuminated surface point be-

comes the source of new wave front, the attenuation factor for each

A plot of (r for all the points on

-1
0 1) . 0™1)

the y axis is shown above the scatter geometry in Figure 6.1, For a

reflected ray is (r,r

reflection at the specular point 0, the attenuatirn factor is (roorlo)-l.

The attenuation factors for points A and B can be found from the

correspoinding points labelled A' and B' on the (r‘rl)-1 curve. We
see that the magnitude of (rorl)-1 at point A' is larger than that

at point B', therefore the upper sideband is larger than the lower
sideband. This conclusion is the same as that reached in the earlier

chapters. ]

The same mechanism operates in the Kirchhoff integral which we
used to develop the mathematical solutions. The original form of the
Kirchhoff integral is given in equation (2.1.6), repeated here for

convenience

| %o
: j re (r0+rl)
o H(wy,t) = “/f.__ {BgBL }+ ds  (6.1.1)

‘ To'1 |

Observe that the attenuation factor is explicitly included. The

integral of equation (6.1.1) can be read as the sum of all ray components

Y
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reflected from surface S. Each component is a normal derivative of a
w
quantity which has amplitude (rorl) 1 and phase angle —%-(r0+r1).

If the direction of the surface wave velocity 1s reversed, the
plane at point B will then move downward and compress the acoustic
wave, The plane at point A will relax the acoustic wave instead of
compressing it. In other words, the role of plane A and B are
switched and so are the upper and the lower sidebands. Therefore,

the direction of the asymmetry is reversed.

4 crosswind geometry is shown in Figure 6,2, On the Y axis, {
two surface tangential planes, which give the same amount of frequency
shift at the receiver, are shown at points A and B. The attenuation

factor (rorl)“1 is plotted on top of the scatter geometry. It is

observed that A and B are symmetric and the attenuation factors at
these two points are ideﬁtical. In fact, the plot of (rorl)-l is
symmetric with respect to the specular point 0. Hence there should
be no sideband asymmetries in the crosswind configuration if only the

scatter geometry is considered.

As indicated in the previous chapters, the upper and lower side-

bands are symmetrical 1if r,., = Tio °F if the grazing angle 1s equal to

00
900. This result is obvious since (1:01:1)“1 shows a symmetric distri-

bution under these conditions.

The reason why spectral asymmetry has usually not been observed
in scattering computations using the Kirchhoff integral is that the
specular-point expansion used by Eckart [31] and by others [36], etc.

for the sake of

-1 -1
replaces the factor (rorl) by a constant (roorlo)

mathematical convenience. This approximation clearly removes the

asymmetry contributed by the geometric factor.
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! Figure 6.2 Asymmetric crosswind scatter geometry and attenuation
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6.2 Effect of the Surface Slope Distribution

In the discussions of Chapters III and IV, we found that slope
asymmetry of the surface waves results in asymmetry in the received
spectrum. To show only the effect of slopes, we assume a symmetrical
scattering geometry by letting Too ~ T10 in an up (down) wind configura-
tion shown in Figure 6.3. The upper plot shows an assumed asymmetric
distribution of surface slopes for a wind driven surface. In the lower
plot the tangential planes at A and B are indicated as in the previous
two figures. The arrow shows the direction of the wind and of the
surface wave motion. The slope distributions corresponding to the two
surface points A and B are A' and B', respectively. It is seen the
slope distribution at point A' is larger than that at point B'. Hence
there are more positive slopes and fewer negative slopes on the surface
and we would expect more energy in the upper sideband (reflected from
positive slopes) than the lower sideband (reflected from the negative

slopes).

For the same geometry, if the wind direction is reversed, the
slopes at point B will compress the acoustic wave but it also will have
a higher slopes distribution. Therefore, reversing wind directions only
exchanges the roles of points A and B, and has no effect on the direction

of the spectral asymmetry.

The same result can be obtained for the crosswind geometry, which

is shown in Figure 6.4. The reflection from surface plane A constitutes

the upper sideband and has more energy in this band.
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Figure 6.3 Symmetric downwind scatter geometry and surface
slope distribution,




Figure 6.4
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Symmetric crosswind scatter geometry and surface
slope distribution,
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Here again, the reason why the effect of the surface slopes was

not observed in earlier analysis of the scattering problem is that in
order to simplify the Kirchhoff integral:

w

/ h| ___CO (r0+r1) i
1 9 e .
Blogs®) = 77 J X s fr e €.2-1) ’

the fact that both 3% and ds contain slope terms has generally been

ignored. Thus, equation (6.2.1) 1s usually simplified to read

“0
1 Y b 9 ejz_ (r0+rl)
H(wo,t) = % 3z { Tots }dx dy (6.2.2)

rather than the more accurate form

“o
j —(x.+x,)
H(w.,t) = = f" °°(a_aza _aza)(ec 01 yax a
Yo 4n J, 9z 9x 3x 3y 9y oy y

(6.2.3)

When the slope terms are retained, even approximately, we have shown that

slope asymmetries result in spectral asymmetries.
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Chapter VII Summary and Conclusions

In this study, we have examined the problem af frequency spreading
in the acoustic surface scattering from both the mathematical and the
physical point of views. The result of this investigation is the
establishment of spectral characteristics as a fun;tion of three
effects; viz., scattering geometry, surface statistics, and acoustic
frequency. Expressions are derived based on an arbitrary scattering

geometry to allow for general applications.

The analysis considered two different kinds of surface model;
a deterministic one and a random one. The deterministic model 1is
treated in Chapter III. A two~harmonic surface éave was used to model
a wind-driven surface. The spectral behavior offthe acoustic signal
scattered from this deterministic surface was dérived for small surface
waveheight. It was found that the surface scag&ering process introduced
doppler shifted spectral lines into the receiﬁéd signal spectrum. The
amount of frequency shift is a function of suéface wave frequencies.
The amplitudes of the two spectral lines adj%cent to the transmitted
acoustic frequency are generally unequal. Under crosswind condition,
the upper spectral amplitude is always ;érger than the lower one. In
the down (up) wind case, the relative agplitudes depend on wind direction
and relative depths of source and receivér. Scattering from a random
surface was considered in Chapter IV. Th% surface height distribution
was assumed to be approximately Gaussian,%but such as to permit a non-

H
zero third order surface slope moment. It was found that this moment is

one of the two mechanisms that control the spectral amplitudes. The other

et A b




mechanism is the surface scattering-geometry asymmetry. A detailed
discussion of how the two mechanisms control the spectral amplitudes
was given for both the slightly rough and the very rough surface
situations. In each situation we considered the downwind and cross-
wind cases separately. The result obtained from the slightly rough
random surfaces was compared against that obtained from the deterministic
model, We showed that the latter could be a limit case of the former.
All these discussions are for forward specular scattering. In Chapter
V, the theoretical and the experimental results are examined, and the
amplitude asymmetries due to misaligned source-receiver geometry (off-
specular) are discussed. The major mathematical results of Chapter

III, IV and V were reviewed from a physical point of view in Chapter VI.
A simple surface reflection model was used to explain the analytical

results qualitatively,

It was found that the deterministic model, random surface and
physical modelling all lead to consistent conclusions about the frequency
i-; spreading function. The major results can be summarized as follows:

(a) The acoustic signal scattered from a sinusoidal surface produces
distinct spectral lines as sidebands in the received signal spectrum.
The spectral lines are doppler shifted from the source frequency with
frequency shifts equal to the surface wave frequency and its harmonics.
The number of significant spectrum lines depend on the surface waveheight
(the roughness)., More spectral lines will result if the surface wave-

I height increases its value. If the surface wave has more than one

|
frequency, the resulting spectrum will have additional spectral lines with

doppler shifts equal to the mixed frequencies. The total energy is

i
1
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conserved, however, when more spectral lines are formed, the amplitude

of each spectral line decreases.

(b) When the acoustic signal is scattered from a random moving surface,
the resulting spectrum usually shows frequency spread around the source
frequency and frequency spreads around the doppler-shifted surface wave
frequencies (i.e. the surface wave still has one or more characteristic
frequencies despite the randomness). The width of the spread is usually
controlled by the surface waveheight and by the surface slopes correlation
constants. The smaller the correlation constants are, i.e. the more

the surface height or slopes are uncorrelated, the larger is the
frequency spread (bandwidth). For surfaces with very large roughness,
the received signal shows a spectrum that has a Gaussian shape. This
result can be extended from the small surface roughness situation by
widening the doppler shifted spectrum as surface roughness increases,
and finally the bandwidth of all sidebands become wide enough so that
they merge with the center spectrum to form a single spectrum around

the source frequency.

(c) The magnitudes of the sidebands on both sides of the acoustic
frequency are in zeneral unequal. Two different mechanisms are
responsible for this amplitude difference., One of these is the surface
slope asyumetry which always results in the upper sideband being larger
than the lower sideband. This effect is independent of wind direction
or of the relative depths of source and receiver, The second mechanism
is the asymmetry of the scattering geometry; i.e. a difference in the
depths of source and receiver. If the ratio between depths of

source and receiver exceeds 2 and if the source-receiver configura~
tion is down (or up) wind, the second mechanism becomes dominant in
determining the relative sideband amplitudes. Specifically, the conditions

are, if the source is at a shallower depth than the receiver is, and if
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the wind blows from source to receiver (downwind), then the upper

sideband 1s larger than the lower sideband. By either reversing
the wind direction or maintaining the wind direction but placing
the source at a larger depth than the receiver, the direction of
sidebard asymmetry is reversed. Since the second mechanism is a
wind-direction dependent effect, it has no effeét on the sideband

amplitude asymmetries at crosswind.

Good agreement was obtained for random surfaces under a variety
of roughness conditions. Some of the differences that were initially
found between experimental results and the theory turned out to be
the result of small measurement inaccuracies. By modifying the
theory to permit consideration of misalignment in hydrophone placement,
it was found that very small misalignments could result in fairly
substantial doppler shifts. When these misalignments were removed,
excellent agreement between experiment and theory was obtained in

practically all cases.

The success of the theory in matciing experimental results can
be regarded as a verification indication of the Kirchhoff integral
method for dealing with the forward scattering problem. Although the
sideband asymmetries that were one of the major items of interest in
this research were not discovered by the Kirchhoff method in its
commonly used simplified form, it has been shown that if some often
neglected factors were retained, the Kirchhoff method gives expari-
mentally verifiable results. .Furthermore, the effect of surface-

slope asymmetries and of small hydrophone misalignments had not been

© T PR Tt e, i



previously predicted. Thus although this method has frequently been

’ criticized, and although it is difficult to justify all the simplifying
] assumptions on which it rests, it appears to be able to give new and
g useful results.
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APPENDIX A: Derivation of Helmholtz Integral

Consider a monochromatic scalar wave

~jwt

P(x,y,2,t) = p_(x,y,2)e (a-1)
It satisfies the wave equation
2 mz
vt = ps(x,y,z) =0 (A-2)

c

Let p(x,y,z) be a point within a volume V bounded by a surface S
as shown in Figure 2.1. If we assume a function U(x,y,z) which together
with its first order derivatives is continuous and finite within and

on S, then from Green's theorem

ap
2 2 s 3 |, _
./:/‘v(psv U-uv ps)dv = '/:/S-(U —BB. ~ Py 3__11 )+ds (A-3)

when n is the surface normal defined positive outward. We also assume

U to satisfy the wave equation.

2

[

v

From equation (A-2) and (A~4), we see that the left side of

equation (A-3) is zero for every point of V, therefore we have

P
U 8
f/ (pg -V ) ds = 0 (a-5)
S

We now assume U to be a function of the form

c 1

e
U= N (A-6)




)
where T is the distance from p(x,y,2) to any other point in V.

’ We hgve assumed U to be a continuous function within V, and since
ej -7;0 ! /rl is singular for r, = 0, we must exclude the point
p(x,v,2z) from the domain of integration., We surround P by a

[ . small sphere of radius € and let the integration be taken through-

out the volume between S and S', where S' is the surface of the

small sphere enclosing P, We can rewrite equation (A-5) as

t ap
ol s
f/+././-{psan-uan} ds = 0 (a-7)
S s' - =

’ 0 4]
) op 3 c’l o or jZ"’l op
s U e 0 1 1 e sl .
U0 " Psanf %€= ) \Per. G -3D%m &, %
(A-8)

Notice that the first term and the third term in the kernel of the

right-hand side integral are proportional to %T , Where S' is

proportional to 52, therefore if we let € - 0, the first and

3
; the third term in the right~hand side integral gives no comtribution
2 to the integrated value., However, the integration of the second
| )

) term yields a value Anps, since ej c® closes to unity when € + 0.

Dividing both sides of equation (A-8) by 47w gives equation (2.1.1)




APPENDIX B: Surface Integral Transformation

Consider a surface integral I of the form

I ‘/ gE £(x,y,5(x,y))* ds (B-1)

where S represents the surface area over which the integral is

to be performed, ds is a small surface element whose direction
is that of the surface normal; x, y and {(x,y) are the coordinates
of an arbitrary point on the surface S in an x,y,z coordinate
system as shown in Figure B.1l. The location of each point of

the surface area S is completely specified by the vector
I(x,y) =x8+y T +ix,yk (B-2)

Let S be a smooth surface and assume r’«x,y) to have

continuous first derivatives along the x and y directionms.

X

=%+ 2 (B-3)
Ix 9x
or al; (X|y)
-_ A A
3y y + —T z (B-4)

These two partial derivatives define the slope of the tangential

plane of S at the surface point (x,y,;(x,y)). Therefore the surface

normal n at point (x,y,t(x,y)) is

OU%: it aqumst~ 80T Cumpet i, s
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%% X 3y
o =-2%X 9°Y¥
Jor ar
9x 3;
3L (x,y) a 9t (x,y) “
N 3y )
2 2 (B-5)
/[ [0

The angle 6 between surface normal n and the z axis is the arc

A
cosine of the inner product of n and z, oOr

cos O = 1
/ L +[acag:,12]2+[ acag; ¥) ]2 (B-6)

If the surface element is sufficiently small, we can replace

,ds] by dxdy/cos 6; hence

ds =2y, . [g- ) g 2EGy) ‘a’y‘ 7] dxdy (B-7)

The integral in equation (B-1) can now be rewritten as

] 2 g, 2 a, D s o dxey
I '/‘l [ax x + dy y + Y4 Z] f(x,y,c(x,y)) n cos 8 (B-8)
Xy

3 _d¢ 3 _ 3% 2 _
/f [M 9x 9x 2y ay] f(x,y,%(x,y))dxdy (B-9)
Sxy

where Sxy represents the projection of S on the x-y plane as shown

in Figure B.1. _8_31_ has been replaced by its equivalent expression

in x,y,z coordinates.
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APPENDIX C: Spectrum Computation-Deterministic Surface, Downin

From equation (3.2.7) and t;x =0, H(wo,t) can be

rewritten as

w
-Ax%-By’-Ey+] 29- F
H{w ,t) = J --—-F(l— )+;y(ZBy+E) dxdy
0 4nr
00710
V(D
where 1 w
A F - - _—0-
2 J
L (wo) CR
2 2
sin ¢ u sin™y
=@ -5 00 0-=Asin2w0 . .
L (w,) CR ‘ _
0 .
E = ( ;l— --;l— ) cosw' .
00 10
' B
J .
= 2 siny o (C-2)

Since Y x,y,t) is not a function of x, the integral with
4
respect to x in equation (C-1) can be easily performed and H(wo,t)

becomes

- w
~By2-Ey+j E—QFC

H(o ,t) = L ra-g 2y 4t (23y+E)}e dy

“roo 10 *,"_A. /

(c-3)

By use of the one dimensional surface wave model in equation

(3.1.1), %(x,y,t) can be put into the equivalent form
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h
Wxyy,t) = -1 (eIPY-IREHIS | ~Joy+iQe-3¢,
2

The slope along the y direction is obtained by differentiation

of equation (C-4), and it becomes

ph
5 (xy,t) = § & (eJPY-INtHe_ ~leyHIac-1e,

+ jphz(eijy-jZQt _ e-j29y+j29t) (c-5) !

and therefore |

pzh 2 1

z 2 _ + 2p2h 2, pzh h [e30Y'JQt'j¢ + e‘JDY+ﬂ9t+J¢] i

y 2 2 172 i
o 2

JP T d2ey-32004520 | -320y+320t-320, |

4 ;

—o%h b, [I3YI3HG . -33pyHisaL-o,

_p2h22 [ej4py-j49t + e—jépy+j40t] (C-6)

The waveheight of the water surface is assumed to be

small compared to the acoustic wavelength. From equation (3.2.8)

w
0
e T %y _t_l_;_[ejoy-jﬂﬁjh o~Joy+Int-14,

, w h
j + D5 _%{eJZOy-jZRt + e-j20y+j29t] (c-7)

‘ c
Substituting equations (C-4) to (C-7) into equation (C-3) T

results in

T R AT g TR . i,



w ph
-jﬂt[_j 29 5o2m h, IPy-34, L1 (apy+)edPYHI)

. w h
3% -3 L FoPhyn, eIV 2 L (2pysm)eP 3%

2, 2
. w, eh j j
Q - - .-

+ o329t [ Co F _Zl_ - 120y-326_ joh, (2By+E)e j2ey,

-330c . O 2 +]
+ e 330t 4 ?Q Fp hlhzej3py 14

. !
j3qt . 0 -j3py-i¢ .
e 53— Fo hlhze ] P

- w j
+e j4Qt[j _C_Q F °2h22 eJ4DY] !

+ 34y e F pzhz2 347
~jar 0 ¢ PL _geyiey , Jdeep, o o BL -ey-g4 |
1+e 3 oF—5e PPR% v e U‘c"erDYJ] |

c 2

w w h
N e_jzm; 4 —CQ F 325 ejZDy] + ejZQt[j OF 2 e'jZOY]} (c-9)




Hoopr

- w - w_ h
+ 30738 L Oey (-0%n n,e 73~ —Or L1

-jpy+jat 20. a2 hL _ﬂﬂ —(1-
+e {( Or) [-30%h hye 0 11

w p"h
+ eijy-jZQt{( —%F)[j 41 J20_ 05 2

w
+ e I20yHI2 Oy 4

=13 Qra-

w ph

p2h 2

ph w

h
+ — (py+m) (3t D p —% e’“’]}

-1 . 202h22)e-j¢]

ph h .
+ —L (2By+E) (-1 710 2 ew]}
2

Y )
+ (2By+E) [joh, - L F "Z_l" ej2¢]} |

1 -320_ %0 n 2 g > 1
—————4 e P F 2(1 2

2
‘0 ¢ 2 e-j%]}
4

+ (2By+E) [-3oh, + —% F

ph 2 3h

eJ3py-33at _Q F) (ph)) [§oh, eJ¢- ..0 F __lil;_ o330 .zl(znym)e”]

2 3h

w w ph - -
+ e'j 3py+] 39:( —%F) (phl) [jphze-j ¢_ 9 F —-—;-— e j3¢+ T2(2By+E)e j¢]

jooy-j40t , Y0 -
ey ( —; F)(eh,) [§oh,

C

2 h

5ph
1 326 —i— (2By+E) ]

“o
cF 8

2
Sph h
"jtbpy'i'jloﬂt “0 F) (ph )[jph - inQ_F ._8L e-j2¢+ —% (2By+E) ]




R R T T . —— "

)
L+ © 2 ,
+ ejSDy—jSQt[ __0 szzh h 2 ejd’] |
2 172
c .
’ 2
w
+ e-jSpy+jSQt[_ Q0 sz?'h h 2e-j¢]
2 172
c
" 2 th 3
' 4 olbey-ibar; _Po- 22 72
2
c 2
" 2 p2h 3
! ¥ e J0eyHI6RE [ O P —2 ! (c-10)
» c 2
Since HCOEF has the form o + 1Y the integral in
equation (C-8) can be integrated in closed form. The result of
’
this integration is
jutg 6 _
B ) = =—0%  Jy4 ¢ o, eIy ™ (1)
0 4& ) PP o ot e
’ 0010 m=1
where 2
2, 2 2, 2 E
w ph w 3p"h,h ey
0 1 2, 2 0.2 172 4B
HO {3 - F(1- 3 - 2p h2 )+ c2 F 3 cos 2¢le
w. . h,  p*h 2 0%h 6, Soh.h £10)”
i 2002 10 1,2 2, ° 1. +j6_. °Q 121j¢}43
“11{[(31’) (-~ ~207hy) Fletity e
f 2. 2 2, 2 Et12p)”
; .- {_(ig F)Z 22_(1_ _p_ll- —pzh 2)-292h y ‘_"Q . p7hy eij2¢}e 4B
2+ c 2 2 2 2 c 4
) EFi3p) 2
» “q wo phl +33¢ Soh2 +He 4B
Hy = (£ Peh|-CFg—e 5 e fe
‘ (EF14p)?

( wp wy  Sehy eiqu, 4B ‘
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APPENDIX D: Proof of X2 0
The water surface function is

t(x,y,t) = hy cos(py-it+¢)+h, cos(2py-22t) (D-1)
which has a slope of the form

- 2L(x,y,t)

4
y oy

= - ph1 sin(py-Qt+¢) - th2 sin(2py-20t) (p-2)

since the water wave 1s assumed to be one~dimensional in the y

direction, the slope is zero in x direction,

Qyz is given by

v 12 sin2(py—9t+¢)+492h2231n2(2py—29t)

+ 40zhlhzsin(p}"ﬂt+¢)sin(Zpy-Zm:) (p-3)

In performing the average over T = 3% , the cross-product

term vanishes. Hence

2 1 2, 2
;Y 7 + 2p h2 (D-4)

For hydrodynamic reasons, the water surface slope is in
general less than unity in absolute magnitude; i.e. slope angles

are generally less than 45°. Therefore

2, 2
°h1

2

2

, < 1 (p-5)

0< + 20%h

use of this inequality in equation (3.2.14), viz.

2. 2 2 2
h w.s8in ¢ e h p e
X= 1 .2 0[1- L -202h2+ ]
4 2

c 4w0281n2w0

|
Mj




results in

X 2 .

Too ¥ T10

+

' 2, 2 22
hy wosinwo [ p"hy p“c ]
2 2
4 4w0 sin wo

c

Since the grazing angle wo is between 0 and n, sin onIO, and

therefore X2 0.

e pore Rt



APPENDIX E: Spectrum computation ~ Deterministic Surface, Crosswind

The distances T, and r; can be expressed in the following
{ form
r, = [ (x~r,_ cosy )2 + y2 + (t+ r,., sin ¥ )2 (E-1)
0 00 0 00 0
’
! r., = [ (xtr, cosy )2 + y2 + (t+r, .siny )2 (E-2)
1 10 0 10 0
The Fresnel expansion of equation (E-1) and (E-2) gives, cf.
equations (2.2,.6)
? xzsinzwo + y2
ro = roo - X cos wo +L sin wo + . (E-3)
00
- xzsinzwo + y2
, T) =1, % xcos yy +L sin Y + ; (E-4)
10

: and the total transmission distance ro + r1 is the sum of these

two equations

- xzsinzwo + y2
T, + T, = Tgo + 1o + 2z sinwo + " (E-5)
2r, .r
' where R = 00 10 was defined in equation (2.2.14).
To0t*10
The attenuation factor Tz, can be approximated by
0°1
’ (see equation (2,2.11))
| ~
' 4 i T 1r exp{ ( rl - ;l—) X cos wO} (E-6)
‘ 01 00710 00 10
» According to equation (3.2.6), the beam pattern function on the

x-y plane can be written as




3 [ xzsinzwo + y2]} "~ (E-7)
L (wo)

Substituting equations (E-5) to (E-7) into the Kirchhoff integral

W
—sz—Ayz—Ex+j;QF;
H(Uo.t) = /J j 2 F(l-C )+2AyC } dxdy

' ‘"’roo 10 (2-8)

formula, one gets

where A, B, E and F are defined in Appendix C.

Comparisons of equations (C-1) and (E-8) shows that these two

integrals are very similar in form except that in equation (E-8),

there 1s an e_Ex term in place of e-Ey » also 2By + E is replaced by

2Ay, Integrating equation (E-8) with respect to x gives

22 N
jm T + - w
- > w, ) -Ay24y 2 re
- H(ug,t) = {j —9 ra-z Ha2aye }e dy (E-9)
a 4455 t00r10 ~c0 ¢ ¥ y

Using the surface wave model of equation (3.1.1), we can
evaluate the integral in equation (E-9) in the same way as in Appendix

C. The result is

2
E
jo‘t+z-i 6
H(wo,t) =& {H + I [H e—jmﬂt+ H ejmﬂt]} (E-10)
41/AB r.r 0 m=1 o o=
00710
! vwhere
Wy Dzhlz 2 woz 2 302h12h2
Hy= 3= F(1 - - 2p°h, )+ >~ F cosl¢

2 c 4

iitatae, A chiadus
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APPENDIX F: Representation of Transfer Function H(wo,t) in a

General Scatter Geometry

The form of the channel transfer function is

W j
© .o = (xrytry) .
1 ) 3 3 e
H(“’O’t) 4 .!;.[w { 9z - c’.x ax cy 8y}{BsBR rorl }dXdy (F-1)

!

!
where T and r; can be expressed as '
r =J(x—r cos y.sin¢ )2+(y+r cosy,.cosé )2+(C+r siny )2 (F-2)

0 00 T T 00 T T 00 T
r, =,/ (x-r, .cos y_siné )2+(y+r cosy_cos¢ )2+(C+r siny )2 (F-3) {
1 10 R R 10 R R 10 R 5
As in Chapter II, the Fresnel expansion of T, and ry have the i N
forms :
- 2 l—cosZWTsin2¢T 3
Ty = Tgo X cospysing, +ycosy,cosg, + 4 sinp+ x ( 5 Ton )
2 1-cosszcosz¢T cosszsinzdsT ’
+y( )+xy ( ) (F-4)
2140 2149 ’,
2 l-coszwksin2¢R
T, = T o7% coswksin¢R+ycos¢Rcos¢R+C sinyt x ( ; )
r
10
2 l-cosszcosz¢R cosszsinNR
+7%( o Yy ( ——7 ) (F-5)
10 10

Therefore r0+r1 can be obtained from the sum of these two equations




-
TR Y

¢

= - ]
r. 4r rootTi10 ~ % {cosz sing, + cosyy sing,

+y (cosyy coséy + cosyp cos¢R)

+ ;(sian + sin¢R)

1-—coszwT sin2¢T l—coszwR sin2¢R
+x“ ( + )
ZrOO 2r10
- l—cossz cosztbT l—coszwR cosz¢R
¢ + )
ZIOO 2r10
coszw Siﬂ2¢T coszw sinZ¢
¢ T + R R )
bt 2 2r (F-6)
Yoo 10

The attenuation factor is approximated as (see Chapter II)

o"1
1 - 1 coszsin¢T cos¢R§1n¢R coswrcos¢T coszcos¢R .
rr. - o exel x( T + T )=y + < ).
071 00710 00 10 00 i0
(F-7)

The beam pattern function on the x-y plane can be computed as in
Chapter II, equation (2.3.13)

x2 y2 2%y
P T i T 20y L 2wy L2 } 8
0 yy 0 Xy ~ 0

XX

where Lxx(wo), L (wo) and nyéwo)are‘defined as in equation (2.3.14).

o Ergtry)

ToF1

yy

If we express B in the general form

sBr

)
|
|
!




“0
. I (ro+rl) JugT

¢ 2.2 “0
BBy L] exp{~ Ax“-By“-Cxy-Dx-Ey+} — F¢ }
r.r

) e o
; 0'1 00"10 (F-9)

Then A, B, C, D, E and F are defined by

! A=-1— ( )+

2
! c 2r00 2r10 Lxx (mo)

l-coszwT sin2¢T . 1—c082wR sin2¢R 1 i

1-coszwT cosz¢T l-coszwR c062¢R 1
B=-§ — ( + )+ — |
c 2r00 2r10 Lyy (wo) 3

2 2
w cos Y., sin2é cos ¢, sin2¢ 1
C=-j _0 ( T T + R R 4+
c

2
2r00 2r10 ny (mo) ;

cosy,.. sin¢ cosy, sin¢
D=3 —> (cosy, sing; + cosyy sindg)-( I L,_=R R
c 00 10

W cosy,, coso cosy, cos¢
E=-j 2 (cosz coséy + cosyp cos¢R)+( I I R R)
c v

Y00 10

F = sian + sin¢R (F-10)
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APPENDIX G:

Sign of Third-Order Slope Moment

In general, the surface slope on the windward side is
shallower than that on the leeward side. To demonstrate that
the third-order slope moment 1s always negative, we consider

an idealized surface profile as shown in Figure G.1.

The wind direction is from left to right. The slope on
the windward side is L§Q/AQ’ and on the leeward side it is
- Igg[gg ‘. The underline represents the distance between

the two points. By hypothesis

& g

BD
@

so that

|2 |||

The third order mowment % is defined as the average of the

cube of the surface slope.

therefore 83 can be calculated as
1(223 Bp |° )
= — [|—| ‘jaD |- *| CD
5 e e ||—{@_||
=——-<-—--—<o
AC AD £

The idealized surface wave is periodic,

(6-1)

(G-2)

(G-3)
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APPENDIX H: Power Spectrum-Random Surface, Slightly Rough

We first rewrite J(;y Ty ) in equation (4.1.7) by
1 72

computing the average of the product of two brackets.

3?—“—-——7‘ = { EEL.FZ(l-z )+ 29 FZ ¢ 2 (2By ., +Cx,+E)
Zy. *ty ) eI T F oy y Y1
c 172
) 3
0 7 % * * *
-§j—FiL_ ¢ (2B y.+C x.+E ) %
S A 27 %2

+ * * * *
Sy by, (2By Cx +E) (2B y,4C x,+E )}

2 2 x 2 k 2 % * * )
exp{—Ax1 By, -Cx,y,-Dx -Ey -A x,"-B'y, C x D x,-E'y,

1 272

(8-1)

Make a change of variable Xy = %X + £, the integration over X and

£ in equation (4.1.6) is easily performed.

@(‘”Op T)
2
- w wg *2 C(Cy,+D)
= L { 0 F2(1-2e y+j —FC T [2By, - —Lr E]
16mr,. 2r 2|A| 2 2 ERARS) 1 2A
00 "10 -0 =00
c*(cty 0"
w % y
0 * * *
-y —F % Y[l - 2 +E"]
¢ N1 Y 2A
*x *
—— & C(Cy,+D) - c'(cy, ) .
+7o¢ By, —s——— + E]*[2B y,- ———— + E
V1Y) 1 2 2 24"

2 * *2
«Q( )+ exp{ -B Z-E -B* Z-E* . (CY1+D) . (C ¥, D ) .y
Cl:cz Xpi-=by, —EY7B Y, ¥, A . AR y,45,

(H-2)
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We make another change of variable

y2=yl+r| (H-3)
and define
C2
N._.B_.EA. (H-4)
CD
M=E-TA_ (Hs)
Then
¢(wo,r)
o’ , m?
LA 4A% 2 -
e { 2o @ . 20 *
= F°(1-2e )+j — FL_ ¢ [2Ny . +M]
16mrx 2r 2 |A] 2 2 ¢ Y1 92 1
00 T10 —o e ¢
0 pr Z * oty e e
J c Y1 Yy y1 n

* * * 2
+z T [4|N|2(y 2+ny )4+2NM y.+2N M(y +n)+|M| }
¥1°Y, 17" 1 1

* x * * *
- (N+N )ylz-[M+M +2N n]yl—N nz-M n
Q(cl,cz) ‘e dy,dn

(H-6)

Performing the integration over 1 results in

R R

) ot vl St
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)
)
(WO’T) ) ;
2 * 2 !
b ,2_ (MM*) o i
GA T GA* T 4 (NN¥)) W 2 4
s - — {2 Fa-2e)) !
% "o
lﬁfn—roo 0 [A] NN c
w 2 2k *
3L F (gt * o 2 *)[ZINInNM+NM ]
) c yl Yz yl y2 N+N*
<
*
CY CY
* * * *
2172 g n) e N 2 0N - (8 e ) 2
*
w2
2 *
+ 2|N| T8 ] ) i
* *
|N|2 , N M-NM
—e N+N%
AL e NN dn
(B-7)
If we now substitute equations (4.1.17) and (4.2.1) into equation
®
(H-7), Q(wo,'r) can be written as
@(mo,r) = Kl[IO + 1, + Il-]
e where ) *2 . 9
D D (M) 2}
‘= expl 73 + 7ax * G(nenm) 8
1
3 2 2 x)3
. 16 7 1oy Ty [A] CN4N%)




2
c

2
®© w
= f { _0_ F2(1-2€2)e

(-:
%
+ 2 =48] n e N 2y - M) 242 [ 2 v |

(N+N*)
N2 o1, weewt
Sl +—5In" 4+ — " —
MN A, N+N T,
e
2 2
1.2 -
2 %k -l lNl"’ 21'1+NMNM n-T2
w 2|N|“n-N M+NM N+N Ay NN T,
+3 DR, . le Yan
N+N
(H-9a)
2 %* * 2
2, NM-MM - -
00 -1 IN[ + 12]“ +[ M EM +jp]ﬂ- L2+ijp'[
g2 [ (a2 N+N A, NN T,
+ /. <
€2 * * * * 2 *
4 B [-6|8] “n 4 8] 00 Zn- (8 MM )42 || S ()]
(N )2
2 1,1 ,2
-I 'E,',* + Lo+ Lo P N—Ni‘i*m— Holn-[25 + 151 4s0cpt
N A2 A 1, T,
e y ? .
w 2 * *
+j _3 Fe3[ 2|N| “n-N"M+\M ]
NHN*
LN 1 1,2, NMet
3 - +—— t°+jpCpt
[N+N*+A2+A2]n+[N+N* +Jeln [T . ]_J
e y 3 0 3 g
(8-9b)

H-4
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The remaining integration

involve a lot of algebra.

over n are straightforward, but

The results are

2
.
2
* *
N2 N N2, 1 N T,
I, = f.( s ye f,( + ’ Je
0= fp % * 282 % 7} *
NN NN M A, NN
o2
n2 . 1 N M-N T32
+e3f3( =+ 5 * e (H~10a)
NN A N+N
3
2
- —5 % joCpr
*
_g e m?, 1 N 3 To
Il+ 2 0( * 2 3 * jp)e
x4 M NN
-[—33-+ —li ]TziijpT
INi2 1 1 NN o N
e, £, ( + + , Fiede
252 * 2 2 *
NS A A NN
y 2
'[—LE + —lE]TziijpT
T T
2 X % 0 3
+ef(\N\ L1 NwNe o
3f3 * ) 2 *
LT S NN
(H-10b)
with
W 2 ¥ EE
£,(a,b) = = 2(1-2¢,) e ha (B-11a)
[ a
2 1 2 * * * * 2
£,(a,b) = ——-11—2{-4|N|4[(%) + 214 | 0 - Yoo (N M- )
(NN)
, ¥
+ 2|N|2(N+N*)} T 4a
ai

(H-11b)
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£1(ab) = 3 -0

2 * * i’ —
N b N M-NM L 4a
ikl R e (e
3\ a

The final signal spectrum is

oo jmot-jwt
F(m,wo) = ./f O(wO,T)e dr
2 *2 * 9
L . L
*
. A" o™
*
16 vt % v 7 |a] owy )t
2 2
-t -t
® T22 T32
,/r { [f00+ezf20e + e3f3oe ]
12 T2 T2
- —5 tieCprt -3 - —
T T T
53 0 2 3
*3 [ f5,%e 00 +oegfqe ]
2 2 2
T
- —5 ~ieCpr - i—z- gy
BE 0 2 3
+ 2 [fo_+€2f2§ +€3f3_e ]}
-j(w—wo)r
e dt
(H-12)

Again, we have defined new symbols to simplify the expression,

they are




f = f.( »3d)
00 0 N+N* ?
)
W2, 1 ]
f., = f.( + —=, jd)
20 720 gt g2
2
’
E £ £ (—Ile + 1, ja)
' 30 3 * 2
N-+N I\3
1]
2
N 1 -
£.,=f.( = +—> , id + jo)
O 07y Ayz
’
_ N2 . 1 1 I
| y 2
PSP | [ SN S-S
#*o ™ a2 2’ P
18 y 3 ':
N MM ;
d = ——~ (H-13) }
4 JONN ) :
i Hence I‘(w,wo) can finally be expressed as a three-part spectrum } 1
]
» I‘(w,wo) = Kl[SPO(w,u)O)+ SP1+(w,w0)+ SPl_(w,wo)] (H-14)
‘!
i
) )
b
"
' e H-7
i A
- - e g

ORI ey ppiem



2 2 2 2
_ T2 (w wo) ) T3 (w wo)
4 4
SPo(w,wo) = fooé(w~wo)+/;'T252f20e +/7 T3e3 30¢
(H-15a)
) Toz(w-wo;'pCp)z
e ) 4
Splt(w,wo) { 2 VT TOfQie
2.2 - 2
= TOTZ To T2 ;w—ubprp)
AR & R TR
2, 2 ° =
T Ty 2. 2 2
_ To T3 (w—wG+DCp)
2 2
7 141, 40T 41,)
+ — s3f3+e {(H-15b)
2 2
(TO T, )
Case I. Down-Wind Geometry
a0
¢T = 0
(H-16)
o
¢R = 180

and the grazing angles of transmitter and receiver are the same

From equation (F-13)

A=-~] = +




e

1

cos wo(;—--—l—)

=
1]

r

00 10

o]
it

2 sin wo (H-18)

And from equation (H-4) and (H-5)

4AB - G2
N = ———— = B (H—19a)
4A
= - ED _ -
M=E- -7 E (8-19b)
2.2 2
2 2 w L%(w ) sin"y

N B 2

I l* _ | I* = Ll s’y + — (H-19¢)
NN B+B 2c¢“R 2L (wo)

If the beamwidth L(ub) is larger than the dimension of the second

Fresnel zone, then from [75]

2.4
w L) 2
—_—— 2 (2T7) (H-194)
2.2
¢ R
Thus
wosz(wO) S (217)2 1
2.2 =72 ) (B-19e)
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Hence equation (H-19c) can be approximated as
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Note that M = E is real, therefore from equation (H-13)
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Case I1 Cross-Wind
- o
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. (H-25)
¢g = 270

All the assumptions and variables are identical to those

of Case I, except we now have
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Subsequently, in equation (H-13)

d=20 (H-27)

The signal spectrum can be written as
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APPENDIX I: Power Spectrum-Random Rough Surfaces

The integration over X1y Xy and y, are the same as in

Appendix H. The result is equation (H-7)
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where the corresponding definitions are contained in Appendix H.
Replacing QZCl,§25 and the slope moments with the expressions in

equations (4.3.1), (4.1.16) and (4.1.17), we would have
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The signal spectrum is
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Case I. Downwind |

, " The conditions in equations (H-16~20) are still valid. Let's ]

’ consider a large beam situation where
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Assuming To, T2, T3 are of the same order, and since
g >>1 then
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Case II. Crosswind

Combining equations (H-25~ 27) and the conditions in the down-

wind geometry, the signal spectrum of cross-wind geometry is
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APPENDIX J: Signal Processing Technique

The acoustic source signal is shown on the left side of
Figure J.l. It consists of a series of narrow pulses, with a time
interval of 10 msec between pulses. The transmitted signal is

wideband with bandwidth ranging from 0.2 MHz to 1.2 MHz.

The signal received at the receiver is also in pulse form
corresponding to each pulse sent at the source. The received
signal h(t,t) is sampled and recorded. Each received pulse is
sampled at a sampling interval of 350 nsec, 256 samples per pulse.
The beginning time of each received pulse is recorded in tm’ with m
ranging from 1 to 64, A data file consists of 64 x 256 = 16,384

samples,

The signal spectrum computational technique is shown in Figure

J.2. Each data file is first passed through a 256 point FFT for

each tm. For 350 ns sampling time, this gives a frequency range
from 0 Hz to 1.42 MHz with a frequency resolution of 11,16 KHz.
One of the 256 FFT outputs corresponding to the desired acoustic

frequency wg is selected for each tm. The 64 values of H(w,,t) in

0t
each file are passed through a 64 point FFT, the output of which is

it o

the raw signal spectrum for that file, This has a frequency resoclution
of 1.5 Hz. The final spectrum P(w,wo) is an average of the outputs of P

N of such files.
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