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Ocean temperature distribution predicted using an embedded
mixed layer model within an ocean circulation medel. Cross-
section is aligned along the track of the model storm which
was located at 450 km at the initial time and has moved toward
the right at 5 m s~V and is at 1315 km after 48 h.

Cumulative percentage of rank-ordered 3 h u,, u.3 and Qa
values versus cumulative percentage of observations based on
24-, 15—~ and 23-year samples (September to December) at OWS P,
V and N, respectively.

Daily-averaged values of (A) sea-surface temperature, (B)
mixed layer depth, (C) insolation (Qs) and surface heat flux
plus back radiation (Qa). and (D) u.3 at OWS P during 1963.
Dashed lines represent the long-term mean (24 year) values.
Similar to Fig. 3 except at OWS V during 1959,

Model-predicted maximum daily depths of the well-mixed layer

(solid), surface temperature minus 0.2%¢c (top of shaded),
surface temperature minus 1.0°C (top of cross-hatching) and
surface temperature minus 2.5°C (bottom of cross-hatching)
during 1959 at OWS P.

Wind speed, total heat flux and selar heat flux at 32N, 175W
during 1977 extracted from FNOC atmospheric model analyses and

12 h predictions.




Figure 10.

Figure 11,

Figure 12,

Location of TRANSPAC ship-of-opportunity bathythermograph
observations during March and April 1977 (provided by W. White

and R. Bernstein).

Heat content (10“ cal cm.z) relative to the 200 m temperature

calculated along 175°W from TRANSPAC analyses in September
(s0lid) and November (dashed) 1976. Vertical bars indicate
the cumulative surface heat flux between 15 September and 15
November 1976,

Initial (circles) temperature profiles at (a) 38°N. 165°W and
(b) 32°N, 175°H from September 1976 TRANSPAC analysis and mean
predicted values at 10 m intervals for months of Octeber
(triangle), November (horizontal dash) and December 1976
(cross). Verification data from December 1976 TRANSPAC
analysis are given at 0, 30, 60, 90, 120, 150 and 200 m
(diamond).

Model-predicted layer (a) depth and (b) temperature during
1976 along 38N. 1Initial spacing between the traces at each
longitude are 100 m and 2°. respectively.

Composite of model-predicted mixed layer temperature (upper)
and depth (lower) for 6 longitudes as in Fig. 10, relative to
spring transition date (zero day).

Composite of atmospheric forcing parameters relative to spring
transition date as in Fig. 11. Wind speed, total heat flux
and solar heat flux are extracted from FNOC atmospheric model

analyses and 12-h predictions.
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Figure 13.

Figure 14.

Model-predicted mixed layer depth and temperature as in Fig.
10 except along 155W during 1976.

Model predictiens as in Fig. 9 except at 30N, 175W and for
March (circle), April (triangle), May (horizontal dash) and
June (cross) 1977. Verification data are from June 1977
TRANSPAC analysis. (a) Unmodified surface heat flux and (b)
reduction of upward heat flux by 10 cal cm'2 h!
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1. Introduction

One often heers that oceanography is several years behind meteorolegy.
Many developmeuts in physical oceanography parallel or build upon the
earlier work in meteorology because of the similaripy in the dynamics. It
is useful to assess the stage of development of the oceanographic endeavor
by comparison with the progress in meteorology. The example to be
illustrated in this talk1 is the development of a capability for ocean
prediction using numerical methods.

The theme of this talk is that the next decade will see the development
of a dynamic ocean prediction system comparable to that of the numerical
weather prediction system developed during the 1960s. Development of an
oceanic prediction system is a multi-faceted problem. Here, we pursue
some aspects of the necessary theoretical background, representation of
physical processes, observational-support systems and justification for an
ocean prediction system., We limit our discussion to open-ocean regimes
and thus avoid the especially complex circulations in coastal regions. In
addition, we limit our choice of examples of research-in-progress to our
group at the Naval Postgraduate School. Our intention is to use these
examples (those of other groups could also be used) as illustrations of
the progress toward an operational ocean prediction system. By analogy
with the evolution of numerical weather prediction, it seems evident that
the building blocks have been laid for development of a comparable ocean

system. Justification for the system lies in the deployment of

1This paper is based on a seminar presented at the Geophysical Fluid
Dynamics Laboratery, Princeton, New Jersey, on 3 November 1979.




antisubmarine systems the U. S. Navy, conduct of fisheries management as
guided by the Department of Commerce and perhaps also in climate research.

It is not our purpoese here to discuss the gaps in our knowledge that
must be filled if an operational model is to be produced. Much research
and development, many talented workers and considerable computer resources
will be required to accomplish the task. As during the development of
numerical weather prediction, there will be exciting and rewarding
research opportunities as observationalists and modelers work toward a
common goal. )

2. Theoretical backgreund

The basis for numerical weather prediction (NWP) was established in
Princeton, NJ, at the Institute for Advanced Studies (e.g. Platzman,
1979), but the development of operational numerical weather prediction
models required years of additional research. Certainly the success of
atmospheric general circulation models (GCM) at the Geophysical Fluid
Dynamics Laboratory and other places was an important step in
demonstrating the feasibility of NWP models. Such factors as numerical
stability over long integration periods and the representation of physical
processes in the GCM were necessary building blocks.

Continuing this analogy with atmospheric models, the numerical
simulations of the global ocean (see review by Haney, 1979), as well as
the eddy scales, would seem to previde a similar demonstration of
feasibility for ocean prediction. However, nearly all of these models
have been driven with constant or slowly-varying forcing. The ocean mixed

layer serves as a buffer zone between the atmospheric forcing and deep

circulation. To resolve properly the range of time scales induced by

realistic atmospheric forcing, we will require an ocean model that
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inciudes both mixing and advective processes, One-dimensional mixing
models simulate a major fraction of the upper ocean response to atmos-
pheric storms (ef. Camp and Elsberry, 1978). Consequently, the recent
advances in mixed layer theory (see review by Garwood, 1979) are an essen-
tial component. However, there are other examples in which advective
effects can not be neglected.

One of the chief problems in coupling the mixed-layer models and the
ocean circulation models is the difference in time and space scales.
Whereas mixed layer models typically use time steps of 1 h and vertical
increments of 1 to 3 m, the oceanic GCM may use time steps of many hours
and may have layers 10 to 100 m thick. The approach at the Naval Post-
graduate School has been to embed the bulk, turbulent closure model of
Garwood (1977) within the vertical structure of the oceanic GCM of Haney
(1980). An example (see Adamec, et al 1978, 1979) of the simulations
which may be achieved with such a coupled model is shown in Fig. 1. Only
the upper 600 m of the solution is displayed. A total of 25 layers rang-
ing in thickness between 6 m near the surface and 100 m has been used over
the 1000 m depth., A case of hurricane-ocean interaction is chosen because
of the strong advective and mixing effects to be expected. A stress pat-
tern typical of a hurricane has been moved from an initial peint at 450 km
to 1315 km after 48 h. As expected for a hurricane moving at 5 m 3-1, a
large amplitude oscillation is set up on the thermocline. Isotherms within
the thermocline are first displaced downward as the storm center ap-
proaches. Following the storm passage, there is a rapid upwelling, with
the 17.2°C isotherm being raised from around 200 m to about 105 m. Regions
of large horizontal temperature gradients are produced in advance and

behind the cold upwelled water. These thermocline oscillations would




continue for several inertial periods before being damped. There is a net

temperature decrease near the surface due te the upward heat flux to the
storm and the mechanical mixing induced by the strong winds. Even though
the wind speed is decreasing after the storm center passes, cooling
continues as the upwelling brings cold water nearer tﬁe surface where
mixing is effective.

The purpose of showing such an extreme example as hurricane-ocean
interaction is to demonstrate that realistic advective and mixing effects
can presently be simulated in a coupled ocean model. A relatively fine
grid and detailed atmospheric feorcing would be required to attempt a
prediction with real data. Before developing such a complex model, it
will be necessary to begin with simpler models. The "first-generation"
model will probably be a mixed layer model only. The purpose of these
models will be to predict ocean thermal structure changes in response to
atmospheric forcing on time scales of days to weeks. In the following
sections, we will describe the physical processes, the atmospheric forcing
and the ocean observations necessary to run these first-generation models.
3. Representation of physical processes

One of the first prerequisites for atmospheric prediction was the
proper representation of the processes involved in extratropical
cyclogenesis. By the 1960's, there was ample theoretical background for
demonstrating the length and time scales required for prediction of this
phenomenon., It was also important to develop a representation of the
internal energy redistribution and frictional effects acting on these time
scales. We still have much to learn about the release of latent heat in
clouds of different scales and the interaction with the atmosphere

boundary layer, especially in the tropics. There is little doubt that




attempting to develop an ocean prediction moedel will alse uncover some
physical processes which will likely require additional years of research
to model properly.

The first-generation ocean mixed-layer models will take advantage of a
separation of time scales. That is, the vertical mixing processes on time
scales of a few days dominate the advective effects over much of the
ocean. Thus the principal physical process to be represented is the
redistribution of the density structure induced by vertical mixing
processes. If the upper ocean is well mixed to a depth Z = -h, the

vertical temperature flux within the layer will be a linear function eof

vertical temperature flux at the base of the mixed layer. As shown by
Niiler and Kraus (1977), this vertical temperature flux can be written in
terms of an entrainment velocity We at the mixed layer base.

One of the important factoers influencing We is proportional to the

third power of the atmospheric friction velocity (u.2 = TD-1). The

3

distribution of u,~ values is very skewed, as shown in Fig. 2. In this
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diagram, the three-hourly observations at ocean weather ships have been :
rank-ordered and accumulated (see details in Elsberry and Camp, 1978; i
i Elsberry and Raney, 1978). For example, 50 percent of the smallest values i

” of u,3 throughout the entire record contribute only 15 percent of the

total accumulated value. The remaining 50 percent of the total rate of ?

working on the upper ocean by the wind occurs during a few large wind |
- speed events, lasting less than 15 percent of the time. These are

associated with the passage of extratropical cyeclones. This type of

distribution occurs during both winter and summer seasons. It is

f remarkable that the same curve fits the u*3 distribution for the three
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ocean weather ship locations (P: 50°N, 15%; N: 30°N, 140%W; v: 3u°N,
164°E) shown, especially considering the large differences in the total
u.3. The distribution of the upward heat flux at the ocean surface (Qa)
is not as skewed, as it follows the u, (or wind speed) distribution. The
Qa is a part of the buoyancy flux that also contributes to the entrainment
velocity at the base of the layer, if the heat flux is upward. The con-
vective overturning of parcels contributes te the turbulent energy avail-
able for mixing at the base of the layer.

3

Daily values of u,”, selar flux (Qs) and Qa at OWS P are shown in

Fig. 3. As indicated abeve, the u.3

trace is characterized by a
background of small values with much larger values of brief duration at
3-4 day intervals. There is alse a synoptic period variability in Qs and
Qa' The oceanic response to this atmospheric forcing is shown in terms of
the sea-surface temperature and mixed-layer depth. From the beginning of
September until abecut 10 October 1963, the temperatures were higher than
the long-term mean. A major fraction of the seasonal decrease in
sea-surface temperature then occurs over the next 10 to 15 days, and the
temperatures remain below normal for the remainder of the year. The
daily-averaged, mixed-layer depth trace is about 10 m shallower than the
long-term mean prior to 10 Octeber 1963, The layer deepens rapidly during

the period of large u'3

values, and remains deeper than normal throughout
November 1963.

We also consider the periods of light winds to be important in
determining the oceanic thermal response to atmospheric forcing. An
example of the distributiens of u*3. Qs and Qa at OWS V during January to
August is shown in Fig. 4., The large variability in u*3 relative to the

long-term mean is again shown. Note that there is a period from around 15
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March te 15 April during which the mean u,3 decreases significantly. The
sumer-time values are considerably smaller, although there continues to
be synoptic-peried variability. During the same period that the wind
speeds are decreasing, the selar flux is increasing. A net downward heat
flux tends te oppose deepening of the layer. If there is insufficient
wind mixing to maintain the depth against the stabilizing influence of the
surface heating, the layer will become shallower. This tends to occur
throughout the year during the low wind speed perieds between the passage
of storms, as shown in both Figs. 3B and 4B. Likewise, the period of maxi-
mum daytime heating will lead to a similar shallowing of the layer if the
wind speed is not large enough te maintain layer depth. A very rapid
transition in mixed-layer depth occurs around 1 April 1959. Prioer to this
time, the depth was around 130m. During a single diurnal period, the
layer depth decreased to 40 m. Although the passage of subsequent storms
temporarily increased the layer depth, the values did not approach the
winter-time values. The effect on the sea-surface temperature is to trap
the heat flux in a shallower layer, and thus increase the temperature, If
the layer is very shallow, the rate of temperature increase can be quite
large. Elsberry and Garwood (1978) have shown that warm and cold anoma-
lies in the upper ocean throughout the summer can result from early and

late transition dates, respectively.

The important feature of these data sets is that the oceanic mixed
layer depth and temperature do not smoothly change in time, Rather the
evolution tends to respond directly to the frequency and intensity of
storm events. Rapid cooling and deepening occur during high wind speed 1

periods associated with storms, especially if there is upward heat flux. §
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Warming and shallowing tend to occur during light wind speed perieds with
downward heat flux,

It is important te determine whether an oceanic mixed-layer model can
predict these changes in the ocean thermal structure given the atmospheric
forcing. An example (Garwood and Adamec, 1980) of a long-term simulation
with the 3 h forcing at OWS P is shown in Fig. 5. The Garwood (1977)
model was started from the observed temperature on January 1. This is the
only ocean thermal structure observation used, although the observed
sea-surface temperature has been used to calculate the surface heat
fluxes. The simulated isothermal depths during winter indicates consider-
able variability as in Fig. 3. A rapid transition to a shallow depth is
predicted about day 100, after which the layer remains above 65 m, Forma-
tion of the seasonal thermocline and its associated stability (temperature
intervals relative to the surface temperature) are shown in Fig. 5. The
autumn stoerms then gradually erode the layer. Mixed-layer depth observa-
tions (not shown) exhibit the large-scale trends and much of the short-
term variability shewn in the simulation.

4, Specification of atmospheric forcing

The ocean mixed-layer model requires hourly estimates of wind speed,
solar flux and total surface heat flux (if the salinity effects were in-
cluded in the model, the precipitation rate would also be required). In the
above examples, the atmospheric forcing was provided frem 3 h observations
at the ocean weather ships. It is thus an important question whether or
not the atmospheric forcing can be provided at the required frequency over
the ocean away from the weather ships (only a few of which remain in
existence). A key premise in our research at the Naval Postgraduate

School is that this atmespheric forcing can be derived from the Fleet




Numerical Oceanography Center (FNOC) atmespheric analysis/prediction
models. Synoptic-scale wind fields are analyzed each 6 h and the
atmospheric prediction medels include hourly calculatioens of the surface
heat budget over the ocean. Are these atmospheric model-derived fields

adequate for ocean predictioen?

The present FNOC analyses of wind over the ocean make use of ship

reports and satellite-derived cloud motien vecteors. In many areas, there
is adequate coverage te define the syneptic-scale variability. 1In eother
areas, the data coverage is poer, and there is reasonable doubt as to the
validity of the analyses. A number of possibilities are being explored to
enhance the observations of wind over the ocean. These include
satellite-based instruments (such as on SEASAT) and over-the-horizon
radar, If these instruments are to be useful for ocean prediction, they
must be able to identify the oceanic regions of both high and low wind
speeds. Given an accurate analysis of the wind field, the atmospheric
model must provide the correct prediction of the winds with time.

The components of the surface heat budget include the latent and
sensible heat fluxes and the incoming and outgoing radiative fluxes.
There are inadequate ship observations over the oceans to calculate these
variables on the required (hourly) time scales. There are again a number
of existing and propesed satellite instruments which may increase our
capability to specify the heat flux compenents. One of the most difficult
of the variables to observe remotely will be the latent heat flux, which
depends on the near-surface specific humidity. For the present, we use
the FNOC atmospheric model-derived heat fluxes (U.S. Naval Weather
Service, 1975). The sensible and latent heat fluxes are calculated from

bulk aerodynamic equations given the sea-surface temperature distributien.

i e T R RS- A T A oy S O TR S YT




e o Sl e . 6 R b e 56 i )
PN L. * SNSRI SO - : R ———. . - . - . B o R i - . -

Friehe and Pazan (1978) found good agreement between the FNOC winds and
heat fluxes using independent observations over a two-week period. One of
the more questionable aspects of the model heating package is the estimate
of the cloud amount which is used in the radiation calculations. In the
present formulatioen, cloud cover is simply related to the relative
humidity in the column.

An example of the time series of atmospheric forcing derived from the

FNOC fields is shown in Fig. 6. The wind speeds are derived from the 6 h

analyses using a cubic spline interpolatioen. Although the heat flux

values are presently being archived at 6 h intervals, during the period g‘

shown the values were only available at 12 h intervals (details of the

extraction and interpelation routines can be found in Gallacher, 1979). ;

The wind and heat flux values derived from the FNOC fields appear teo ll
contain the synoptic-scale variability shown above to be important for 1

H ocean prediction. They do not contain the mesoscale variability that ]

would be expected from point measurements. One measure of the suitability

of these fields is the performance of the ocean model.

: 5. Ocean thermal structure observations/predictions !

One of the primary reasons why ocean prediction has lagged behind

atmospheric prediction has been the paucity of ocean observations. The
global rawinsonde network with 12 h releases has been adequate, especially
over land areas, to resolve the primary synoptic-scale atmospheric
features. The time scales of the oceanic flow are considerably longer
than in the atmosphere. However, the comparable space scales for . I

baroclinic motion in the ocean are several orders of magnitude smaller

than in the atmosphere. This requirement for observations on very small

space scales will remain the greatest obstacle to ocean circulation

16




prediction. However, there are larger scale anomalous thermal structure

Zabd 4

features with space scales cemparable te atmespheric cycleones. These
ocean features are the object of research of the North Pacific Experiment

:_, (NORPAX). White and Bernstein (1979) have designed a ship-of-oppertunity

expendable bathythermograph (XBT) program called TRANSPAC for observing
ocean thermal structure on space scales of a thousand or more kilometers.

An example of the TRANSPAC data coverage for a month is given in Fig. 7.

Although there are consideresble gaps near the ceasts, there are enough
data in the central Pacific to define the thermal structure over a 15-20°

latitude band. Haney (1980) has used the TRANSPAC data in simulatien

R R Rt

experiments with an ocean circulatien model that are designed to test
anomaly generation hypotheses. Because all TRANSPAC observations within a
particular moenth are used in the analysis, this defines the time scale for
the initialization and verification of the ocean model.

A one-dimensioenal, mixed-layer model considers only the vertical
fluxes of heat. Consequently a necessary condition for accurate model
predictions is that the change in heat centent from the ocean analyses
must be nearly equal to the surface heat flux. A check (Elsberry,

Gallacher and Garwood, 1979) of this condition using the TRANSPAC ocean

it i g

; ﬂ temperature analyses and the FNOC surface heat fluxes is shown in Fig. 8.

The heat content in the upper 200 m aleng 175°w has been calculated
} ' relative to the 200 m temperature, which tends to remove the effect of

vertically coherent fluctuatiens that may be related to nen-mixing

processes. Over most of the latitudinal band, there is a large decrease ?

in heat content from September to November 1976. The vertical lines

indicate the integrated total heat flux between 15 September and 15

November 1976 calculated from the FNOC fields. North of 36°N there is




very good consistency between the twe calculations. There is clearly
disagreement betweeq the surface fluxes and heat content changes south of
36°N. but ene can not determine which calculatien is in errer from these
data alone.

Simulations with the Garwood (1977) model in the two regions noted
above are shown in Fig. 9. The initial (September) temperature profile at
38°N. 175°W is rather unusual in that it has a mixed layer depth that is
less than 10 m. The predicted Octeber profile illustrates the large
temperature decreases near the surface and temperature increases at the
base of the layer expected with strong vertical mixing. Further cooling
and deepening of the mixed layer is predicted from October to November and
into December, The medel predictioen is in close agreement with the
December TRANSPAC analysis. Agreement between surface fluxes and heat
content change, plus the correct vertical temperature distributien,
indicates that the parameterization of surface mixing processes is capable

of accounting for the thermal structure. A similar prediction at 32°N,

175°W dees not verify well., Although the largest discrepancy is found in

the upper 100 m, the TRANSPAC values are consistently warmer than the
model prediction throughout the upper 200 m. As discussed abeve in
relation te Fig. 8, it is noet clear whether the TRANSPAC analyses or the
surface fluxes derived from the FNOC fields are in error in this regien.
There are two other possible explanatioens. The mixed-layer model may need
to be adjusted for different conditions, or the one-dimensienal models may
not contain the necessary physics. In particular, a horizontal or
vertical advective process that is not included in the model could

possibly explain the deviations,




During the spring, the important feature to be predicted is the
formation of the seasonal thermocline (see Figs. 4 and 5). The menthly
TRANSPAC analyses have inadequate time resolution te verify the rapid
transition predicted by the mixed-layer meodel. Examples of the mixed
layer depth and temperatures at various longitudes along 38°N are shown in
Fig. 10. These simulations with the Garwood model are driven by the time
series of atmospheric forcing derived from the FNOC fields and are started
from the March TRANSPAC analysis. The predicted mixed layer depth traces
show coensiderable time and space variability. The transition te a shallew
layer characteristic of summer conditions occurs befere day 105 at
longitude 215 (135°H). Apparent transitions eccur at the other lengitudes
within a few days of this date - with some appearance of a lag in time as
one proceeds eastward. Over the next 10 days, the mixed-layer temperature
begins te increase. However, increased mixing occurs subsequently that is
sufficient te eliminate the warm, shallew layer between 175°E and 165°w
(longitudes 175 and 195 in the figure, respectively). The accumulated
heat is then spread over greater than 100 m and the surface temperature
decreases. Around day 130, the mixed layer again shallows in the western-
most traces and then remains above 60 m for the remainder of the peried.
The associated mixed-layer temperature traces increase rapidly following
the transition to shallow mixed-layer depths (see Fig. 10b), much as in
Fig. 4b. One can see from the space between adjacent temperature traces
that the time of transition as well as respense to the later forcing
events causes horizontal variability aleng the latitudinal sectien,
Similar variability is predicted along other latitudinal and longitudinal

sections (not shown).
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It is of interest te explere what features of the atmospheric fercing
are most relevant to these predictions of spring transition. Because the
transition date varies at each pesition, the atmospheric forcing was com-
posited for 10 days prier and 20 days follewing the tyansition date. The
resulting composites of mixed-layer temperature depth for the six lengitude
traces in Fig. 10 are found in Fig. 11. The day-to-day variability in
mixed-layer depth prier to transitien coentrasts markedly with the smaller
mean value and variability follewing the transition. One can alse note a
distinct change in the rate of mixed-layer temperature increase with time
across the transition date. The composites of the forcing variables are
shown in Fig. 12. It is clear that the mean wind speed on the day eof tran-
sition is much lower than during the 10 days prier te this date. Although
the mean wind speed increases slightly during the next few days, the aver-
age wind speed over the 20 days following the transition remains smaller
than before transition. Such an extended period with less wind mixing (re-
call this term is proportional to the cube of the wind speed) is required
for the warm stable layer to become well established near the surface. The
variations in selar radiation derived from the FNOC fields do net seem to
be very well correlated with the transition date. The overall trend is
toward increasing values., However, the maximum values appear to be
modulated by a synoptic-period variability which is larger than the differ-
ence in peak values from before te after the transition date. Similar cem-
ments apply for the total heat flux trace, except that the nighttime
upward heat fluxes are smaller after transition. This is consistent with
the smaller wind speeds found during this peried. One then finds a trend

toward larger net downward heat flux acress the transition date, which

contributes to the increased warmer temperature., However, it appears from
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these composites that the major factor in the transition is the distinct
decrease in wind speed for an extended period of time.

It should be emphasized that the net downward flux of heat is a neces-
sary requirement for the occurrence of a transitioq. and the establishment
of a seasonal thermocline. A cross-section of mixed-layer depths and tem-
peratures along 175°H during the spring as predicted by the Garwood model
is shown in Fig. 13. There is again a pronounced reduction in variability
in mixed-layer depth between the early and later periods for all latitudes
noerth of 36°N. At these latitudes, the mixed-layer temperatures increase
rapidly fellowing the transition dates as was the case in Fig. 10b. How-
ever, the mixed-layer temperature does net increase at latitudes south eof
36°N. In fact, the temperature at 30°N continues to decrease slowly
throughout the period. The evelution of the temperature profile at 30N,
175W is given in Fig. 14a. The initial profile is taken from the March 1976
TRANSPAC analysis. It is clear that the model did not predict the forma-
tion of a seasonal thermocline as indicated in the verifying data from the
June 1976 TRANSPAC analysis. As noted above, the predictien was for con-
tinued cooling of the upper layer. One explanation for this trend was the
absence of a net downward flux in the derived atmospheric forcing (recall
that an excessive upward heat flux in these latitudes was also found during

the fall peried in Fig. 8). An experiment was run in which the upward heat

flux was reduced by 10 cal/cm2 during each hourly time step. The model

then predicted the development of a seasonal thermocline which is quite
reasonable in terms of the verifying data (see Fig. 14b). It thus appears
that relatively small bias in the total heat flux can have an important
impact on the correct prediction of the magnitude of the seasonal thermo-

cline. If it is indeed a bias in the FNOC heat flux, which is the problem
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in these latitudes, it may net have seriosus censequences for the atmos-

pheric predictions since the atmespheric model is not run for extended
perioeds witheut new data fer cerrecting the temperature and meisture
profiles.

The capability eof an ocean model to provide time series of realistic
thermal structure prefiles given the cerrect boundary cenditions is very
important. An example is the long-term integration of the Garwood model
with the ocean weather ship data shoewn in Fig. 5. In many regioens of the
ocean, there will be long periods without new ebservations. Without a
prediction model, the only option is to revert toward a climatelegical
profile., If one had cenfidence in the calculations of the local heat
budget and the wind fercing, it would be pessible te use the mixed layer
model to update continually the ecean thermal structure until new observa-
tions obtained. It appears that an analysis-prediction-analysis cycle, as
used for the atmosphere, would be a useful alternative te a system that
simply reverts to climatelegy in the absence of new observations. This
approach would only apply in oceanic regions where vertical mixing pro-
cesses are dominant. In other regions, the prediction model would have to
include advective effects.

6. Justification for ocean prediction medels

Given that one has the potential to predict some phenomena, it is
still necessary to justify economically the costs of developing and
running the model. 1In the case of weather prediction, there are
tremendous economic benefits because of the direct effects on the lives of
people everywhere. The justification may be less dramatic in the ocean
case, but a few possibilities should be mentioned. (i) Knowledge of the

heat storage and distribution in the upper ocean may help us understand
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our climate on time scales beyend a few weeks. Whereas we have only
considered here the response in the upper ocean to atmespheric forcing,
understanding eur climate may involve feedback between the ocean and
atmosphere, requiring coupled atmospheric-ocean models. Demonstrating
that the ocean predictien model can correctly predict the ocean response
to given atmespheric forcing, however, seems to be a necessary first step
to interactive models. (ii) The National Marine Fisheries Service could
use knowledge of the ocean thermal structure to improve fisheries manage-
ment. (iii) The U.S. Navy is a primary customer for an ocean prediction
model because the detection of enemy submarines by acoustical metheds
requires knewledge of the ocean thermal structure. The Navy has recently
organized the Naval Oceanographic Research and Development Activity
(NORDA) to provide the link between ocean research and the applicatien in
the fleet. The Numerical Modeling Group at NORDA has been tasked to test
and develep an ocean analysis and predictien model. With the establish-
ment of this greup, and the anticipated coemputer upgrade at FNOC, which
will be required to run such a medel, it appears that the Navy has the
organization structure and resources to bring an operational ocean
prediction model into reality.
7. Summary

We have used the experience in numerical weather prediction as a
framework for discussing the potential development of a limited ocean
prediction capability during the 1980's. We have used some recent
research results at the Naval Postgraduate School to illustrate some of
the aspects that must be treated if an ocean model is to be integrated

with real data and fercing.
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(1) An ocean model that is te be driven with real atmospheric

forcing must respend on a wide range of time scales, Ocean circulatien
models with embedded mixed layers are being developed by several groups
for this purpose. The ability te treat beth advective and mixing
processes will be a prerequisite for predicting pheﬁomena such as ocean
fronts.

(i1) A knowledge of the wind fercing during sterms as well as during
extended periods of low wind speeds is necessary to predict preperly signi-
ficant changes in ocean thermal structure. We presently have analyses of
the synoptic-scale variability in the wind forcing over the shipping lanes.
Further infermation frem the data-sparse regions may be derived by remote
sensing systems. In the predictive mede, the ocean model will be limited
to the length of time that accurate wind fields can be predicted.

(iii) Over large regions of the oceans there is an approximately
local heat balance. This will permit "first-generation" medels that are 3
one-dimensional. Various ocean mixed-layer models have the capability of
predicting the first-order changes in the ocean thermal structure given
the correct forcing. These models need to be compared over a range of
time scales and ocean conditions to select a candidate for the first-
generation model.

(iv) The mixed-layer models require a specification of the solar
radiative as well as the total heat flux during the prediction perioed. It 3

is proposed that the heating package of the atmospheric prediction model

be used as an indirect representation of the thermal forcing. Further
comparisoens, such as in Friehe and Pazan (1978), of the model-derived heat

flux components with peint observations should be made.

24




(v) One benefit of an ocean predictioen system lies in providing a
better representation of the existing ecean thermal structure in data~
sparse regions, An analysis-prediction-analysis cycle will carry forward
information from limited observations. If the ocean model includes
advective precesses, the infermation frem data-rich areas will be
propagated inte adjacent regiens.

It is anticipated that the development of an ocean prediction model
will reveal many shortcemings in our knowledge of ocean processes. This
will provide a stimulating environment fer research and development
efforts in all areas related te an ocean analysis and predictien model.
Likewise, we will learn more about the data requirements necessary for
accurate predictions and thus be able to deploy our limited resources more
efficiently. If the experiences eof numerical weather prediction are
indicative, the decade of the 1980's should be an exciting period as ocean

prediction models are developed.
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Figure 1.

22.50 45.00 67.50 90.00 112.50 ] 135.00  157.5
KILOMETERS x10° I °

Ocean temperature distribution predicted using an embedded
mixed layer model within an ocean circulation model. Cross-
section is aligned along the track of the model storm which
was located at 450 km at the initial time and has moved toward

the right at 5 m s~ and is at 1319 km after 48 h.
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Figure 3.

Daily-averaged values of (A) sea-surface temperature, (B)
mixed layer depth, (C) insolation (Qs) and surface heat flux
plus back radiation (Q,), and (D) u,> at OWS P during 1963.

Dashed lines represent the long-term mean (24 year) values,
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