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1. Introduction

The purpose of this paper is to describe two methods

for constructing smooth bivariate functions which take on

given values at scattered points in the plane. Given the

data (x, yi,fi), i =,..., both of these schemes

define a smooth bivariate interpolant S with the property

that S(xi,Yi) = fil i = 1,...,N.

In the past several years a number of methods have been

proposed (e.g., [1], (3], [6], [7], [8], and [11]), and two

survey papers, [2] and [10], have dealt extensively with this

topic. The problem of constructing smooth approximations

based upon scattered data is encountered frequently in many

areas of scientific applications. C'mmon examples are:

meteorological information such as rainfall and solar

insolation, geographical information such as elevations,

geological information such as depths of underground

formation s, and engineering data such as stress values

obtained by finite element analysis, A somewhat less obvious

example is given in [10] where it is described how human

heart potential is measured at irregularly spaced points as

an aid in diagnosing abnormal heart conditions.

Since a number of methods are available for this

important problem, a project was undertaken to test and

compare as many methods as possible [4]. While the project

included both global methods (meaning that S(x,y) is depend-

ent on all data points regardless of their distance from

J£
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(x,y)) and local methods (S(x,y) does not depend on data

points more than a certain distance from (x,y)), for large

sets of data it is necessary to use local methods. During

the course of developing and testing variations of previously

published schemes we have discovered two which appear to be

preferable as general purpose methods. While neither of

these methods have appeared in the literature, they are both

modifications of previously described techniques. In Section

2, we describe the basic method from which both of our methods

derive. In Section 3, we describe the details of the two

modifications and in Section 4 we show the results of applying

these methods to certain test problems. In Section 5, we

discuss some generalizations and ways to fine tune the

schemes to suit the particular needs of a user.

2. Inverse Distance Weighted Least Squares Interpolation

It is convenient to consider the data as coming from

an underlying function f and to view the interpolation

process as an operator applied to this function. That is,

fi = f(xiYi), i = 1,...,N and S(x,y) = P[f](x,y). Let

Pi(xy) denote a function with certain properties of a

distance function. In particular, we assume that Pi(xi,Yi) =

0 and that i/Pi(xi,yi) is a nonnegative decreasing function

as (x,y) "gets further" from (xiyi). For example, the

usual Euclidean distance, di(xy) = X1 (x - i)2 + (y - yi ) 2

is one possibility for pi. We denote by , j = ,...,m

a set of basis functions to be used for a least squares

approximation.

"i
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McLain [7] was the first to consider a family of inverse

distance weighted least squares approximations. The general

form of these interpolants is

m
(2.1) P[f](x,y) = -aj (x,y) pj(x,y)

j=l

where aj(x,y), j = l,...,m represents the solution of

N [a1 1 ,(xi y ) +..+ amom(x.,y.) - f 2
(2.2) Min I mmi 1

al,...,am i=l Pi(x,y)

for given (x,y). McLain gave results of a number of tests

for several choices of basis functions, Oi, and distai±ce

functions, pi. The #j consisted of the low order monomials,

k 2 ad 2
x y dand pi was taken as di, di ,or die i . The higher

power of di and the exponential are motivated by the desire

to place less importance on distant data than would be

accomplished by di alone.

The function (2.1) is not defined at any data point,

(xi,Yi), by the above definition. Because the weight for

the best least sqiares approximation i/pi 2(x,y) -- - as (x,y)--.

(xi,Y i) it is clear that P[f] (x,y)-- fi as (x,y) --o (xi,Yi),

else the sum of the squared errors would be unbounded. Thus

we obtain a continuous approximation if we define P[f] (xi,Yi) =

fil i = I,...,N. McLain asserts that the interpolants are

infinitely differentiable, and upon the assumption of non-

singularity of the coefficient matrix for the normal equations

AM
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obtained from (2.2), this readily follows.

McLain singled out the case of the bivariate quadratic,
P~f(xy) ~?+~- 2 -2 with

P[f(x,y) = + a2 x+a 3 y 4x + a 5xy 
+ a 6y

weight function pi = die ad i as working well for a variety

of problems in the sense that small deviations from certain

test functions were observed. Additional experimentation [3]

has confirmed this, but even so this method has two serious

drawbacks: (1) The computational effort required is large

since each evaluation requires the solution of a least squares

problem, and (2) the method is global, that is, the interpolant

depends on all data points regardless of how far away these

points are from the point at which the interpolant is being

evaluated.

Both of the methods we propose can be viewed as modifica-

tions of the above inverse distance weighted least squares

interpolant in that they consist of replacing ai(x,y) with

an approximation A[aj] (x,y) which is computationally more

tractable than a (x,y) itself. We note that as long as

A[a] (xi,Yi) = aj(xiYi), i =

the operator

m
Q[f](x,y) = A(a I(x,y)j (x,y)

j-l

will maintain the interpolatory properties of P[f]. The type

41 1 P 
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of approximation we use for aj, j 1,..., m is of the form

N
A[a I(x,y) = aj(xiYi) Wi(x,y)

where

(2.3) Wi(xj,y j ) = , i, j ,...,N.

Therefore, we may rewrite the above expression for Q as

N
(2.4) Qlf] (x,y) = Wi(x,Y)Qi(x,y)

i=l

m
where Qi(x,y) = a(xi,Yi) j i(x,y) is the inverse distance

weighted least squares fit at the point (xiyi).

We refer to the functions Qi' i = 1,...,N as the nodal

functions since they are associated with the nodes (xi,Yi),

i = 1,...,N, respectively. We note that Qi(xi,Y) - fi'

i = I,...,N, and that Qi(xy) is a local approximation (near

(xi,Yi)) to f(x,y), and as such may be expected to mimic

the shape of f(x,y) provided distant points do not influence

Qi (xy) too much.

In order for the interpolant Q[f] to maintain the local

shape characteristics of the nodal functions we will require

certain properties for the W i in addition to (2.3). Specif-

ically, to preserve

~~~~ X- 7W ...
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DQ[f] xQi(X
x xi'Yi a

and

DQ[f]~ Qi~x '

Si,Y i  y i,Y i )  ,...,N

we require that

aw. aw.
(2.5) ax (xj,yj) (xj,yj) = 0, i, j 1,...,N.

For our two methods, we also propose the use of bivariate

quadratics for Qi(x,y), i = 1,...,N. Thus, if f itself is

a quadratic function, the function Qi will be identical to

f, L.e., Qi (x,y) = f(x,y), i = 1,...,N.

Therefore

N N
Q[f](x,y) = 7 Wi(x,Y)Qi(x,y) = f(x,y) 7 Wi(x,y)

i=l 1 1i=l

whenever f is a quadratic function. In order to obtain

quadratic precision of the modified interpolant Q[f], we add

the additional requirement that

N(2.6) 1 W i (x , y )  -- 1.
i=l

The choice of the distance function to be used in

(2.2) when calculating the nodal functions was made on the basis

'"
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of extensive numerical testing [4]. Franke and Little [2,

p. 112] proposed

i (R - di) R. - d. R. - d. 0
(2.7) Pi R d / (R - d)0 R -d 10,

1 1

and for appropriate choice of the values Ri , this works well.

We recall that Qk is the solution of the inverse distance weighted

least squares problem at (x,y) = (xk,yk). Discussion of the Qk

is simplified (as is the actual computation) by assuming

that

Qk(xy) = fk + ak 2 (x-xk) + ak3(y-yk) + ak4 (x Xk)2 +

ak5 (x-xk) ak 6 (y-yk) 2

We then seek the solution of

N f + a6(i-Yk) 2 fi 2
Min fk + ak2 . k k6yiyk -P (x

ak2 ,... ,ak6  ik Li (xk'Yk)

If L is given by (2.7), then whenever d. (xk,Yk) > Ri

the point (xi,yi,fi) has no influence since the corresponding

term in the sum is zero. Thus Qk depends only on "nearby"

points and is therefore a local approximation to f. If we now

use weight functions Wk which are nonzero only in some neigh-

borhood of (xky k ) we will obtain a local interpolant.

The proper choice of the "radii of influence", Ri,

is critical to the success of the method, and we will discuss

a
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this in the context of our first method in the next section,

as well as in Section 5.

3. Two Methods for Interpolation To Scattered Data
Specifying the weight functions W. (x,y), i = 1,...,N to

1

be used in (2.4) will define an interpolant. We have found

that both of the choices we propose have very comparable

fitting capabilities, but we feel that there are situations

in which one or the other may be preferable, and so both are

presented.

3.1 Method I.

This scheme is based upon a special case of the inverse

distance weighted least squares interpolant given by (2.1) -

(2.2). If m = 1 and 4l(x) 1 1, then (2.2) can be explicitly

solved to yield

N f.

i= (x,y)

al (x,y) N

L 2i=l p (x,y)

and so

N f,

1==i=l P.
(3.1) P[f] 3

N 1

i=l 0i

L .. , i
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This method was first proposed by Shepard [11]. Without

modification it does not have very good fitting properties.

Gordon and Wixom (5] have analyzed this method and have proposed

some interesting modifications. They also discuss some application

areas that are well suited for this type of interpolant. The

fact that Shepard's method is a special case of inverse distance

weighted least squares interpolants has been pointed out by

several authors, e.g. [10]. It can easily be verified that as

long as pi(xi,yi) = 0, the functions

(3.2) W. = Pi
1 N

k=l Pk

will satisfy the conditions of (2.3), (2.5), and (2.6). This

last statement assumes that the distance functions pi, i = 1,...,N

are sufficiently smooth so that the derivatives (2.5) exist.

This is certainly the case for our choice of pi, i = 1,...,N

given by (2.7).

We complete the description of our first method with a

discussion of the selection of the R. involved in the1

definition of pi. While the use of variable radii (i.e., Ri

R.) adds to the flexibility of the methods, we have found that

for a general purpose interpolant, the selection of these values

can quite often be a nuisance which can be avoided by the use of

a uniform value (Ri = R for all i).

At this point we emphasize that the distance functions

pi enters in two places: (1) definition of the nodal

II
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functions, Qk' and (2) definition of the weight functions, Wk -

It is not necessary to use the same radius of influence for

both instances, and experience has shown it is desirable to use

different values, say R = R in defining the nodal functions,q

and R = R in defining the weight functions. Since R denotesw q

the radius of influence of the data points on the nodal functions,

while R denotes the radius of influence of the nodal functionsw
on the interpolant Q[f] (x,y), it is clear we should take R

R . In order to aid the naive user in making reasonable choicesq

of R and Rw we have found it convenient to specify values of*q w

Nq and Nw and to compute the radii of the influence regions

according to the relationships:

Rq =

(3.3)

D NRw

where D )max d. (x_,yj).

These choices of Rq and Rw eliminate the effects of scaling

the data. The values of N and N can be thought of asq w

representing the number of data points anticipated to lie in

circles of radii Rq and Rw, respectively. For somewhat uniformly

distributed data, we have found that a value of N = 18 worksq

quite well. For data that have some regions which are

relatively sparsely populated and other regions where the

data are comparatively dense, or for small sets (N < 25), it

may be necessary to increase the values, since the interpolant

A

-.;k -.. ........ .. . . ..
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is defined only on the union of disks of radius Rw centered

at the data points (xiy,Y. i l....N. We have also found

that the use of the relationship N q/N W,- 2 is useful. To

avoid problems when fewer than five additional data points

fall within a distance Rq of some given (xi,Yi), we have

incorporated an automatic fallback to linear nodal functions

in this case. In general, we use the singular value decomposi-

tion to compute the coefficients of the nodal functions, which

avoids possible nonuniqueness problems. It is not usual for

either situation to occur, however.

We now summarize the description of our first method.

i) Select N and N in order to define
q w

1 _ (R -di)+ R

Pi Rq di Rq 2rf

1 (Rw-di)+ + D N

Default values of N and N are 18 and 9, respectively.q w

ii) For k = 1,...,N solve the least squares problem:

N

min r
akj, =2,.., 6 p( , Lfk+ak2 (xi-xk) +ak3 (y-k

imi

+ak 4 (xi-xk) 2+ak 5 (x i-xk) (Yi-yk) +ak6(yi-yk) 2 fi]

~ .-



12

to yield akj , j = 2,...,6.

iii) Define

Qk(x 'y) = fk + ak 2 (x-xk) + ak3(Y-yk)

+ ak4(XXk) + a k 5 (Xxk) (yyk) + ak6 (YYk)

and compute

N Q k(x,y)

D[f] (x,y) = k=l k(x'Y)
N
k=l Pk

3.2 Method II.

Our second method makes use of a triangulation of the

data Vi = (xiyiA i = 1,...,N in order to define the weight

functions Wi, i = 1,...,N. We use an algorithm which triangulates

the convex hull based upon the min-max angle criterion as

described by Lawson (61. A FORTRAN program which implements

this algorithm is available as part of [1]. Alternatively, if

a triangulation is in existence for other purposes, it can be

used.

Each Wi will be a globally defined C1 function with support

Si = uc Tjk I where Tjkl denotes the triangle withjkl 
i

vertices V., V and V1 and M. = {jkl: T jk is a triangle

with vertex Vi).

LI1
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Figure 1: S.

We first define W. and its first order partial derivatives on

E = U e kj where ekj represents the edge .ith vertices
kj cN e

e

Vk and V. and Ne = {kj: Vk V is an edge of the triangulation}.

Following this, we incorporate a blending method for triangles

to extend the definition to the interior of each triangle of

the triangulation. Let e.- be an edge contained in S. with

V. as an endpoint. As a univariate function along this edge,

W. must satisfy four conditions imposed by (2.3) and (2.5).1

Namely

Wi(V i ) = 1, Wi(V j) = 0,

aw. aw.
(x j-x i)--l-(V i + (yj-Yi)a-.1-Vi 0

and

aw. 3w.
(xj-x i)a--(V ) + (y.-yi)--(Vj) = 0.

J ia j jiay

.1
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These conditions can be satisfied by a cubic polynomial and

so we define

Wi ((l-t)Vi + tV (l-t) (2t+l), 0 : t 5 1.

On all other edges we define W. to be zero. In order to

maintain continuity of the first order derivatives across

edges, it is convenient to specify the derivatives normal to

an edge as a linear function along the edge. That is

aw. aw.
(yj-Yi)a-x-((1-t)V i + tvj) - x-x i)a--((1-t)V i + tVj)

aw. aw.
(1-t)[(yj-yi)---(Vi) - (xj-xi)a- -(Vi)]

aw. aw.
+t(yj-Yi)--X-(j) - (x -xi)a- (V j ) ] .

In light of (2.5), this means that the normal derivatives will

all be identically zero. This completes the description of

the edge information for W.

In order to extend the definition of W. to the interior

of each triangle, we use an interpolation method [91 which

will assume predescribed position and slope on the entire

boundary of a triangle domain. After substituting the edge

information into this triangular blending method, we find

that for (x,y) c Tijk c Si, the weight functions have the

form

Wi(x,y) = b?(3-2b

ii

7l
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ii b ~ l i1 1 e 2 -1 2]
(3.4)bbb e + 2 _ ke1 b 2

b bibk+ b~ L Ilek2lekil
[ bei 1 2 + 1e. l 2 - Ilek"2 1

bk Ijej 11 2

where bi t bit bk are the barycentric coordinates of (x,y)

with respect to the triangle Tijk and Ilenll n = i, j or k

represents the length of the edge opposite Vn , n = i, j or k.

The barycentric (area) coordinates are given by the equations

x b x i + bx bkxk

(3.5) y = biY i + bjyj + bkYk

1 bi  + b +bk *

We can now note that on an arbitrary triangle T ijk the only

weights which are nonzero are Wi W. and Wk . Therefore, the

final interpolant is given by

(3.6) G[f](x,y) = Wi(x,Y)Qi(x,y) + Wj(x,y)Qj(x,y)

+ Wk(X,Y)Qk(x,y) , (x,y) F Tijk.

We also note that Wi + W. + Wk = 1, so that (2.6) is satisfied.

We now summarize this method.

1) Define the nodal functions Qk' k = 1,...,N

as in Method I,

ii) Form a triangulation of the points Vi = (xi,Yi ) ,

i =

iii) Given (x,y) determine the vertices Vi, V. and Vk

of the triangle that contains this point and

compute G(f](x,y) according to (3.6) using (3.4) and (3.5).

-- 41% . . ..
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We note that this method is very similar to that proposed

by McLain [8]. Our weight functions Wi, i = 1,...,N arise in

a natural manner, however, and use of the distance function

given in (2.7) is an improvement since it is generally the case

that shape characteristics of the nodal functions in relation

to f are adversely influenced when global approximations

are used.

4. Examples

In order to illustrate the performance of the two methods,

we include some examples. These examples are only a few of

many upon which our conclusions are based, but are representative

of the methods' approximation properties. The first group of

examples utilizes ordinates from the function

f(x,y) =.75EXP -9x-2) 2 +(9y-2) 2  + .75EXP [

-.2EXP L(9x-4) 2- (9y-7) ]+ .5EXP (9x-7) 2(9y4

A perspective plot of this surface, viewed from the first

quadrant at an angle of 300 from the x-axis is given in figures

3a and 4a. The function was chosen so as to present a variety

of behavior in a single surface. The maximum value of the

function is approximately 1.22 near the point (.22, .22), while

the minimum value is approximately .004 near the point (.47, .78).

Three sets of data (xi,Yi), i = l,...,N were used.

Set 1: This set consists of 100 points generated by a

pseudorandom number generator, one point in each subsquare

1r qr* T-10 0q
ft0W •* I. -f ,. 7 !



17

CIO 0
0 00

* 0

00 0 !, 0 0

0 00 !0
0

0 0 00 zO
0 0

(a Data Se 0

0 o!0 00

(b) 000a 0et 20 c at e

Fiur 2.

0000 I~0 0

00 0



18

of side 1/9 centered at (i/9,j/9), i, j = 0,1,...,9. These

points are shown in Figure 2a.

Set 2: This set of 33 points was selected manually to have

regions of varying density. These points are shown in

Figure 2b.

Set 3: This set of 25 points was selected manually to yield

a somewhat uniform coverage of the unit square, and are similar

to a set appearing in [8]. These points are shown in Figure 2c.

The interpolants were evaluated on a uniform grid of

33 x 33 points in the unit square. The resulting surfaces

are shown in Figures 3 and 4. Table 1 contains the maximum,

mean, and RMS deviations at these points. For Method II a

few of the display points lie outside the convex hull. For

plotting purposes, these were set to zero and were omitted

in the calculations leading to the errors of Table 1.

Case Max Mean RMS

1.1 .0573 .0079 .0128

1.2 .1844 .0340 .0478

1.3 .1584 .0353 .0486

11.1 .0481 .0072 .0113

11.2 .1501 .0326 .0455

11.3 .1535 .0349 .0475

Table 1. Errors

g!
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Figures 3b and 4b show that both methods reproduce the

surface quite well for data set 1. The main defect appears

to be near the higher peak, particularly for Method I. As

can be seen from the disposition of the points in Figure 2a,

this is in a region where a relatively large gap between points

occurs. A similar occurrence accounts for the depressed area

behind the dip in both figures 3b and 4b.

Figures 3c and 4c are quite similar and both have noticeable

defects when compared to the test surface. In particular, the

dip is completely missed because the data points fail to define

it. The appearance of a crease in Figure 4c near the right

rear edge is due to the occurrence of a long thin triangle

along that edge which causes blending of two nodal functions

from points relatively far apart in the definition of the

interpolant for that triangle. When these two nodal functions

differ significantly, as they do here, rapid variations can

occur across the narrow part of the triangle.

Figures 3d and 4d appear to be less alike than they actually

are because values outside the convex hull have been set to

zero in Figure 4d. The most significant difference between

the two is near the left rear edge, where Figure 3d shows

the surface (apparently) dipping down rather rapidly, while

Figure 4d shows a near crease similar to that in Figure 4c.

Because of a data point near (.47, .78), the dip is partially

defined in this case, but since there are no other nearby

points it is extended over a much wider area than in the

test surface.

I
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(a) Test surface (b) Interpolant for Data Set 1

(c) Interpolant for Data Set 2 (d) Interpolant for Data Set 3

Figure 3: Method I

17 A
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(a) Test surface (b) Interpolant for Data Set 1

(c) Interpolant for Data Set 2 (d) Interpolant for Data Set 3

Figure 4: Method II
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Another set of data obtained from Akima [i, which arises

in a study of waveform distortion, is given in Table 2. We

use this set to illustrate the effects of varying the parameters

Nq and N w . The results are shown in Figure 5.

Figures 5a and 5c appear to be difficult to choose between.

Very slight differences can be observed along the front edge.

Figure 5e is definitely less desirable than 5a or 5c because of

more undulations near the front edge and a higher peak at the

right rear. Extensive testing has shown that Method I is

fairly stable for values of N and N in the ranges given here.q w

Figure 5d appears to be the more desirable surface among

5b, 5d, and 5f. Figure 5b shows a small defect near the right

front edge, while the choice between 5d and 5f is less obvious.

All three show the characteristic defect over the long slim

triangle at the right rear edge, allowing the surface to dip

out of sight there. It should be pointed out that there is

no known "parent" surface here, and in fact that behavior may

be correct, although that part of the interpolant is not

pleasing because of the very rapid changes which occur.

5. Conclusions and Recommendations

The two schemes discussed here have been found to be

capable of generating reasonable interpolation functions in

a variety of cases. A number of comments are appropriate,

however.

First, we have restricted ourselves here to the

discussion of local interpolants. Local methods are necessary

for very large sets of data, but in exploring their properties

£ - .-. ~ * '!tL
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x. y z i x. y z

1 11.16 1.24 22.15 26 3.22 16.78 39.93

2 24.20 16.23 2.83 27 0.00 0.00 58.20

3 12.85 3.06 22.11 28 9.66 20.00 4.73

4 19.85 10.72 7.97 29 2.56 3.02 50.55

5 10.35 4.11 22.33 30 5.22 14.66 40.36

6 24.67 2.40 10.25 31 11.77 10.47 13.62

7 19.72 1.39 16.83 32 17.25 19.57 3.43

8 15.91 7.74 15.30 33 15.10 17.19 12.57

9 0.00 20.00 34.60 34 25.00 3.q7 8.74

10 20.87 20.00 5.74 35 12.13 10.79 13.71

11 6.71 6.27 30.97 36 25.00 0.00 12.00

12 3.45 12.78 41.24 37 22.33 6.21 10.25

13 19.99 4.62 14.72 38 11.52 8.53 15.74

14 14.26 17.87 10.74 39 14.59 8.71 14.81

15 10.28 15.16 21.59 40 15.20 0.00 21.60

16 4.51 20.00 15.61 41 7.54 10.69 19.31

17 17.43 3.46 18.60 42 5.23 10.72 26.50

18 22.80 12.39 5.47 43 17.32 13.78 12.11

19 0.00 4.48 61.77 44 2.14 15.03 53.10

20 7.58 1.98 29.87 45- 0.51 8.37 49.43

21 16.70 19,65 6.31 46 22.69 19.63 3.25

22 6.08 4.58 35.74 47 25.00 20.00 0.60

23 1.99 5.60 51.81 48 5.47 17.13 28.63

24 25.00 11.87 4.40 49 21.67 14.36 5.52

25 14.90 3.12 21.70 50 3.31 0.13 44.08

Table 2.

Wa

TF FW7
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(a) Method I: N q=12,NW=6 (b) Method II: N q=12

(c) Method I: N q=18, NW=9 (d) Method II: N q=18

Figure 5.

a. -,I low
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(e) M eth o N q = 24 NW =12 (f Me ho I :N 2

Figur 5. contnued
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one need not consider large sets because they are local.

We have only considered interpolation methods here, although

we recognize that often it may be more appropriate to use

approximation methods which smooth the data in some sense.

While we have not investigated this possibility, it is clear

that replacement of the nodal functions Qk(xy) with local

smoothing functions rather than ones which take on the value

fk will lead to a smoothing approximation which is local.

The use of the same radius of influence for each point,

and the calculation of that radius from the diameter of the

point set is strictly a matter of convenience for the user.

One could argue that this device makes the methods global

since addition of a point will change the radius of influence

and hence the entire interpolant. For this reason we made the

computation of the radius of influence an option (although

it is the default option). The use of different radii of

influence could be a necessary and desirable feature when the

density of points varies drastically over the point set. Our

experience indicates that one should probably choose radii so

that the disks associated with a point contain approximately 18

points for defining the nodal functions (Methods I and II) and

about 9 points for defining the weight functions (Method I).

Regarding the choice between Method I and Method II,

we make the following comments: Method I has the advantage of

simplicity. While Method II requires a triangulation (and the

machinery for generating it if it is not already available),

L*
I. tI
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and thus more auxiliary storage, it is considerably faster

since each evaluation involves only three nodal functions,

while Method I typically involves about 9 (Nw = 9) nodal

functions. Method II also has the disadvantages noted in

the examples when long thin triangles occur. Method II is

not readily extended to more than two independent variables,

as is Method I. Nonetheless, for certain applications, Method

II may be the appropriate choice, particularly if a triangula-

tion is already in existence.

In conclusion, we note that all local methods involve

some ad hoc assumptions and/or parameters to be specified

by the user. The methods we propose have endured through

extensive testing of their fitting properties and appropriate

values for their parameters. We feel they will perform quite

adequately in a variety of situations. Nonetheless, we

recognize that selection of a suitable interpolant is a sub-

jective matter even in the case of one independent variable,

and thus the choice of an interpolant ultimately rests with the

user.

FORTRAN programs which implement Methods I and II are

available on request from the authors.

Acknowledgement: We wish to thank William J. Gordon for
encouragement and helpful criticism during the preparation
of this paper.
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