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ABSTRACT

Operational analysis replaces certain classical cueucin-,

theory assumptions with the conditions of "homoqeneous servicc

times" and 'on-line=off-line behavior." In the general case, it

has been conjectured that these conditions nold as t-->co only if

the service times are exo~onentially distributed. In tniS Cacer',

we show tnat this is correct for stable P,/G/l aueueinl systems.

We also state dual results for inter-arrival times in GI/t1/.

Finally, we considier the relationship betwnen the operational

quantities S(n) and the mean service time in T"/C/l. TIhis

relationship is shown to depend on the forTr of thle service time

*distribution. It follows that using operational analysis to

Predict the performance of an AIG/C/ queueing system will he most

successful when the service time is exponential. Simulation

evidence is presented which supports this claim.

* AMOS(MOS) Subject Classification 68C15

Key Words: operational analysis, queueing theory, computer

system modeling
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SIGNIFICANCE AND EXPLANATION

Queueing theory models of computer systems nave oeen

extremely successful in spite of the numerous mathematical

assumptions requirea to make the queueing anal 'sis

cractable. These assumptions are often unverifiable and

sometimes ooviously incorrect. Operational analysis

attempts to explain this success by developing a theory of

computer system modeling wnich aoes not aepena on the

classical assumptions.

For example, tne assumption of exponential service

times is replaced by the condition of "homogeneous service

times"; this means that tne average job interdeparture time

does not depena on the number of jobs in system. The

"on-line=off-line behavior" condition asserts that the

average job interdeparture time does not depend on the

system arrival rate. Finally, the operational analysts

maintain that queueing system behavior can be preaictea

oasea only on measured data ana without making any

aistributional assumptions.

In this paper weshowtnat a M/G/l queueing system ha..

homogeneous service times ana satisfies on-line=otf-line

behavior as t-->oo if and only if the service times are

exponential. Thus operational analysis is in a certain

sense equivalent to Markovian queueing theory.

Additionally, it is shown that a particular prediction

L problem of operational analysis is unsolvable for M/G/l

queues unless the service distribution is specified.

The responsibility for the wording and views expressed in
this descriptive summary lies with MRC, and not with the
author of this report.
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1. INTRODUCTION

Operational Analysis [3; 4; 5; 6; 7] is a non-classical

approach to analysis of queueing systems in which the system

parameters X(n) and )j(n) are replaced by observed quantities I(n)

and S(n) respectively. Assumptions about arrival and service

time distributions are replaced by conditions on S(n) and I(n).

Two of the key conditions are "homogeneous service times" which

states that S(n) is constant in n and "on-line=off-line behavior"

which states that the S(n) can be estimated by observing the

system under a constant load.

Whenever a new idea like this appears, it is natural to

explore its relation to the existinq theory. This paper examines

the relationship between operational and classical conceots by

considering the limiting values (as t-->ao) of I(n) and S(n) for

the sample paths of an M/G/ queueing system. The orimary

results are that on-line=off-line behavior and homoqeneous

service times occur in M/G/l if and only if the service times are

exponentially distributed. (More precisely, it is shown that in

any stable, non-exponential M/G/l queueing system, any set of

sample paths which have these properties must be a set of

probability zero.) Dual results for the G/M/l queue are stated.

Sponsored by the United States Army under Contract No.
DAAG29-75-C-0024.
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It is also shown that open, feed-forward networks of

single-server queues with Poisson external arrivals can have

product form solutions valid across a range of arrival rates if

and only if all the service times are exponential. Finally,

exact values for S(n) in M/G/l queueing systems are derived and

their dependence on the mean service time is depicted for several

standard service time distributions. This discussion implies

that the usual way of using the S(n) values to predict the

behavior of a system is correct only when the service times are

exponential. As an example, operational and stochastic methods

are used to attempt to predict the performance of a simulation of

some M/G/l queueing systems. The operational method is most

successful in the exponential service time cases.

In Section 2 we describe the notation of the paper and give

definitions of "homogeneous service times" and "on-line=off-line

behavior." Section 3 discusses what it means for an M/G/l

queueing system to have these operational properties; this

section also contains the main results of the paper. These

results are used to provide a method of calculating S(n) for

arbitrary service times in an M/G/l queue. Graphs of these

values versus mean service time are then given in Section 4.

This section concludes with an empirical comparison of the

accuracy of operational and stochastic methods for predicting the

mean number of jobs in an M/G/l queueing system when the mean

service time is halved.

TI
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2. NOTATION AND DEFIN ITIONS

Throughout this paper, whenever we are considering an ?/G/l

queueing system, we will assume that the system is stable, is

load independent, has arrival rate )and service distribution

B(t). We let x denote the mean service time and ;j=l / x. We

will let p denote the system utilization and u(n) denote the

stationary probability of findinq n customers in system. For a

G/M/I aueueinq system, we let A(t) denote the inter-arrival time

distribution, a denote the mean inter-arrival time, and p denote

the system service rate.

We will use a superscript * to indicate the Laplace-Stieljes

transform; for example, B (s) is the transform of B(t) and is

defined as:

B (s) e t dB(t)

Where necessary to distinguish real numbers from real valued

random variables, we will use an underline to indicate the random

variable.

For any particular realization of an M/G/l queueing system,

we define the sample oath u (t) as the right continuous function

defined for t>0 which gives the number of jobs in system versus

time. We assume that w (0) = 0 for all sample paths, and that w

is a sample point in some probability space

We will use the term "behavior sequence" to refer to a

finite length sample path resultinq from the observation of a j
-3-



physical system.

For the purposes of this paper, we wish to make a formal

distinction between a "queueing system" and an arbitrary "system"

in which some queueing happens to take place. The distinction we

wish to make is that a queueinq system is a stochastic process

characterized by inter-arrival and service times which are

independent and identically distributed random variaoles, the

inter-arrival and service times themselves beinq independent,

service in order of arrival, and no idle server Deing allowed if

any customers are waiting. Thus when we refer to an M/G/l

queueing system, we are really referring in a shorthand way to a

particular probability space which could in principle be formally

specified, but in most cases is not.

Many real systems allow aueues to form and are not

representable by queueing systems. Inter-arrival and service

times may not be independent, service times may not be

representable by random variables but instead may be cyclic or

deterministically formed; there are numerous reasons that a

system is not well modeled by a queueinq system. The key

distinction is that the characteristics of a real system are

contained in a finite set of observed behavior sequences. If the

system is sufficiently simple, then one can determine the set of

all possible behavior sequences, but for most interesting systems

this is not the case. With this distinction in mind one sees

that operational analysis is primarily the study of sets of

behavior sequences and their properties, while queueing theory is

the study of sets of sample paths upon which a probability

-4-
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Iw
counterparts of conditional arrival and service rates in

classical queueing theory. In fact, for any behavior sequence

such that the total number of jobs in system is the same at times

0 and t, and for which arrivals and departures only occur one at

a time, we have the following exact relationship among P(n,t),

S(n,t) and I(n,t) [4]:

(2.1) P(n,t) = G T
- 1 n S(n,t)

-- I i=1 I(n-l,t)

where G is a normalizing constant. We will refer to this

equation as the "generalized birth-death formula."

We will primarily be interested in the asymptotic values of

S(n,t) and I(n,t) as t-->co. We will indicate this limiting

value (assuming it exists) by dropping the parameter t. Thus:

S(n) = Lim S(n,t).
t-~>OD

It is clear that in order for I(n) and S(n) to be defined that

the underlying behavior sequence must be defined for all values

of t. We will refer to S(n) and I(n) as the (asymptotic) service

and arrival functions, respectively. We adopt the convention

that the adjective "asymptotic," when applied to the definitions

of this section, implies that the quantities S(n) and I(n) have

been substituted for S(n,t) and I(n,t) in the associated

definition.

Finally, we wish to define certain operational terms so that

they can be conveniently referred to in the sequel:

Definition 2.1: A behavior sequence is said to have

-6-P.MIA mp ,r



measure has been defined.

We now give some definitions from ooerational analysis.

Most of this material is contained in [4], however we prefer a

notation more similar to that of [7]. To emphasize the fact Lnat

these quantities depend on values observed from a particular

behavior sequence and during a finite time interval [O,t), we

will modify the notation of [7] to explicitly include tne

oarameter t.

We begin by defining the "basic operational -measures" of a

system during [O,t):

A(n,t) is the number of customers who arrive in [0,t) to find

exactly n customers already in system.

C(n,t) is the number of customers who left the system durinq

1O,t) when there were exactly n customers in system.

T(n,t) is the amount of time during [t) when there were

exactly n customers in system.

Give-% these quantities, we then may define the followinq

"operational performance measures." (We follow the convention

of [7] and leave undefined any quantity with a zero

denominator.):

S(n,t) =T(n,t)/C(n,t) is the mean service time between job

departures during [0,t) given n jobs in system.

I(n,t) =T(n,t)/A(n,t) is the mean inter-arrival time during

[0,t) given n jobs in system,

P(n,t) =T(n,t)/t is the proportion of time there were n jobs

in system during [0,t).

We note that I(n,t) and S(n,t) are the operational

-.- f A



homogeneous arrival times (HAT) during [Ot) if I(n,t) is

constant in n.

Pefinition 2.2: A behavior sequence is said to have

homogeneous service times (HST) durinq [0,t) if S(nt) is

constant in n.

Now S(n,t) is calculated by observina a system as it

interacts with its environment (i. e. "on-line"). Thus S(n,t)

can be referred to as the "on-line" service function. For the

puroose of performance prediction, it is necessary to estimate

values of S(n,t) from system service requirements, and

independently of interactions with the system's environment [7].

In the terminology of operational analysis, one would estimate

S(n,t) by observing an "off-line" experiment where the system was

subjected to a constant load of n jobs. This can be done by

placing n jobs in the system and then causing an an arrival to

occur every time a job departs. Let S (n) denote the mean0

service time between job departures during an off-line experiment

with n jobs in system. When interpreted as a function of n,

S (n) is the off-line service function. If the on-line and

off-line service functions are the same then the behavior

sequence satisfies on-line=off-line behavior [6]:

Definition 2.3: A behavior sequence is said to satisfy

on-line=off-line behavior (on=off-line) during [0,t) if

S(n,t)=S0 (n) for all values of n for which S(n,t) is defined. 1

1 In [61 , "on-line=off-line behavior" is referred to as

"homogeneity."

-7- i



Implicit in this definition is the fact that a svstam

satisfies on=off-line with respect to a particular, but

unspecified, set of off-line experiments. The off-line

experiments may be based on a model of the system rather than on

measurement of an actual system. For example, if the service

distribution is known, one might use an analytic or simulation

model to estimate S (n).0

We point out that in operational analysis, the HST condition

is the counterpart of an exponential service time assumotion in

classical queueing analysis [7]. However it is easy to construct

finite behavior sequences for single server queueing systems

which have HST and/or satisfy on=off-line [5]. By replicating

such sequences, one can create deterministic behavior sequences

of arbitrary length for which S(n) can be defined, S(n) is

constant in n, and S(n)=x. The existence of such behavior

sequences neither demonstrates nor denies the existence of

non-exponential queueing systems which have HST. All that such

examples demonstrate is that there exist behavior sequences which

have these operational properties.

Oftentimes sets of such behavior sequences can occur with

non-zero probability as the [O,t) portion of a sample path of a

queueing system, but when extended by letting t--> o, the

probability measure of these sets must tend toward zero. The

only exceptions are sets of behavior sequences of queueing

systems which themselves have HST or satisfy on=off-line (e. g.

stable D/D/l systems). Thus to explore the relationship between

HST, on-off-line and M/G/l queues, the definitions we have

i -8-



presented must be extended so that they apply to the ensetble of

sample paths which we implicitly think of when we consider a

aueueinq system. This is done in the next section.

3. OPERATIONAL ANALYSIS AND M/G/1 QUEUEING SYSTEPIS

The operational performance measures defined in the last

section are calculated from a oarticular behavior seauence durin1

a particular time interval [O,t). In the context of an G 1

queueing system, we would say that they have been defined for a

particular sample path, w 0" Thus, we have defined what it means

to say that "w 0 has HST during [(,t)" but we have yet to define

what it means to say that "an M/G/l queueing system has HST."

It is the purpose of this section to define the latter phrase in

what we believe is a natural way and to explore the conseauences

of such a definition.

For any sample path w in Q , let A(n,t,u ) , C(n,t,w )

S(n,t,u), and I(n,t,w) be the values of A(n,t), C(n,t), etc.

associated with w during [,t) . Let A(n,t) , C(n,t) , etc. denote

the random variables thus defined on Q. Also, let A(n), C(n),

etc. denote the limits of the random variables A(n,t), C(n,t),

etc. as t-->co. Let E (n) be the event that an arrival occurs toa

find n jobs already in system, and let Ed(n) be the event that a

7' departure occurs when there were n jobs in system. Finally, if E

is a recurrent event, let m(E) denote the mean recurrence time of

the event. Then we note that for any stable M/G/l queueing

system:

--- ' --9 -



(1) With probability one, T(n,t)/t-->p(n) as t-->oo.

(2) Since the embedded Markov Chain defined at departure

instants is irreducible and positive recurrent, it follows

that m(Ed(n))<(o, for all n>. Furthermore, since the

probability of two or more arrivals in [t,t+h) is o(h), it

follows that O<m(Ed(n)).

(3) The recurrence times of Ed(n) are independent random

variables. Therefore, by an elementary result of renewal

theory [12, o. 36]:

Lim C(n,t)/t = l/m(Ed(n))
t-->eo

with probability one.

(4) S(n)=Lim (T(n,t)/t)/(C(n,t /'t)'.
t-->o

We have thus shown:

Theorem 3.1: The limiting random variables S(n) are constant

with probability one and S(n)=p(n) m(Ed(n)). [I

To get a similar statement for I(n), we need the following

Lemma, which we will find useful later in this section:

Lemma 3.2: In any stable M/G/I queueing system,

A(n-l,t) C(n,t)
Lim Lim -
t-->OO t t-->CO t

with probability one, for all n > 1.

Proof: Let {ti} be the starting instances of the busy cycles

of the queue. Clearly t.-->o as i-->co and t.<co for all i,

both statements with probability one. Similarly,

-10-



Ain-l,ti)=C(n,t i) with orobability one, since the number of

up-crossinqs of level n-i must be the same as the number of

down-crossings level n at the start of each busy cycle. (Note

that the arrival at tile t. is not counted in A(O,t i ) since

A(,t i ) is the number of arrivals which found the system empty

during [O,t i ) .) Finally, we note that A(n-l,t,w ) > C(n,t,w ) >

A(n-l,t,uu )-1 for all t and all sarnole paths W. Thus with

probability one

A(n-l,t) C(n,t)
Lim - =Lim -n _

t-->co t t-->co t

Therefore, E a(n) is a recurrent event whenever Ed(n+l) is,

and we have

Theorem 3.3: The limitinq random variables I(n) are constant

with probability one and I(n)=p(n) m(E (n)).- a

Since I(n) and S(n) are almost everywhere constant, we will

drop the distinction between these random variables and their

values.

With these facts in mind, is seems natural to suggest the

following definitions:

Definiti3n 3.4: An M/G/l oueueing system will be said to

have stochastic homoaeneous arrival times (S-HAT) if and only if

I(n) is constant in n.

Definition 3.5: An M/G/l cueueing system will be said to

have stochastic homogeneous service times (S-HST) if and only if

SIII I(n) is constant in n. .

.................................... 7..-



Since we are only considering load independent M/'C'1

queueing systems, it is clear that the off-line service function

is given by S0 (n) = x. We therefore have:

Definition 3.6: An M/G/l queueing system will be said to

satisfy stochastic on-line=off-line behavior (stochastic

on=off-line) if and only if S(n) = x for all n.

4e have added the adjective "stochastic" to these

definitions to distinguish the properties of the queueing systeT

from the properties of individual sample paths and not because we

believe these concepts to be fundamentally different from the

definitions of Section 2. For example it is clear that if an

M/G/l system has S-HST then almost every sample oath has

asymptotic HST, while if an M/G/I system does not have S-HST then

almost no sample path has HST. Thus an M/G/l gueueing system

either does or does not have S-HST; one need not say that an

M/G/l queueing system has S-HST with probability one. Similar

comments apply to queueing systems which satisfy stochastic

on=off-line.

Now we wish to determine what types of M/G/l queueing

systems satisfy these definitions. We begin with a basic Lemma:

Lemma 3.7: In any stable M/G/l gueueing system:

(3.1) s(1) = - I

Proof: Ed(1) occurs if and only if the system becomes idle.

Thus m(Ed(l)) is the mean busy cycle length. Now the Laplace

transform of the busy period distribution, G (s), is known to

-12-
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satisfy the functional equation:

G (s) = B [s + \ - \ G (s)]

(see, for example, [9, o. 2121). From this equation it is easy

to determine the mean busy period length, and uoon adding the

mean idle time we obtain the mean busy cycle length:

1 / N + x / (1 -

Also, we know p(l) = Q'(0), where Q(z) is the generatinq

function of p(n) . Thus p(M) can be found from the

Pollaczek-Khinchin tr ,,isform equation (see, for example,

[9, p. 194]):

, (I - (1-z)
(3.2) Q(z) = B (X-Xz) ,

B (N-Xz)-z

Calculating''p(li from equation (3.2) and using Theorem 3.1 shows

that S(1) has the indicated form. l

We observe that stochastic on=off-line implies that the

S(n)'s cannot depend on X\. This observation is the basis for the

following theorem.

Theorem 3.8: Suppose B (s) is analytic for 0 < Re(s) < p.

Then the M/G/I queueing system satisfies stochastic on=off-line

if and only if B(t) is exponential.

Proof: (i) If B(t) is exponential then the result is

straightforward.

(ii) Suppose that the system satisfies stochastic

on=off-line. Then, in particular, S(1) does not depend on N.
Solving equation (3.1) for B we get

-13-A-e.T7 7___
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, 1
B k 0 < <

1 + X S(1)

But we have thus determined E (s) on a set with limit point, and

hence determined B (s) throughout its region of analyticity.

Therefore B(t) = 1 - exp( t/S(1)). LI

Intuitively, this Theorem says that if an M/G/l queueing

system is decomposable in the sense that the off-line service

functions can be used to estimate the on-line service functions

for a variety of different arrival rates, then the service

distribution is exponential. The Theorem does not state that

there do not exist particular values of X for particular service

distributions B(t) such that S(n) = x. However,"sich v'alues of*'X

must be isolated in the sense that they cannot have a limit

point, or otherwise B(t) is exponential.

If B(t) is non-exponential, the dependence of S(l) on X can

be quite pronounced. In Figure 3.1 we have plotted S(l) versus X
for some typical service distributions. (All distributions have

x=l.0.) The horizontal line at S(1)=I.0 represents the S(l)

versus X\ curve for exponential service times. We see that those

distributions with coefficients of variation less than one have

S(l) versus X curves which lie above the exponential case; and

that those distributions with coefficients of variation greater

than one have SM() versus X curves which lie beluw the

exponential case.

We have shown that if the S(n)'s are constant in n and do

-14-
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SERVICE FUNCTION 5(1) VERSUS RRRIVRL RRTE

- ~1.1
1-4-

1-27

1 Exponential 6 .7 .8 .9 1.

2 Erlang-3
*3 Erlang-5

4 Erlang-lO
5 constant 2
6 Hyperexponential, =0.5', CV 1.5
7 Hypcrexponential,o(=O.5, CV =2.0
8 flyperexponential,c(=.5, CV 2 =2.5

9 Hypercxponential,o(=O.5. CV 2=2.9
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not depend on ), then the service time must be exponential. But

is it possible that the S(n)'s are constant in n, but all of them

depend on ). in the same way? If so, we would still have S-HST

but not stochastic on=off-line. To study this situation, we

begin with:

Lemma 3.9: In M/G/l, I(n)=X - I for all n.

Proof: Because the arrival process is Poisson, m(E a(n)) -

p(n) \. The result then follows from Theorem 3.3. ni

We now prove the stochastic analogue of equation (2.1).

Lemma 3.10: In M/G/l, p(n) = p(n-l) S(n) / I(n-l), n > 1.

Proof: By Lemma 3.2 we know that m(E a(n-l)) = m(Ed(n)).

Using this fact, combining the formulas for S(n) and I(n) from

Theorems 3.1 and 3.3, and solving for p(n) gives the desired

result. n

We can now show that S-HST is essentially eauivalent to

stochastic on=off-line:

Theorem 3.11: An M/G/l queueing system has S-HST if and only

if the service distribution is exponential.

Proof: (i) As before, if the service times are exponential

the result is straightforward.

(ii) Let S denote the common value of S(n). From the

Lemmas it follows that p(n)- X S p(n-l), n > 1. We know
p(0) = 1 - p in any M/G/l queue. Thus

p(n) = (1 - p) ( s )n, n > 0.

But EnP(n) - 1 implies that

-16-



1 1

1 -S 1 -p

Hence p = X S or S = 1 / .. Thus S cannot depend on X.

To finish the proof without the explicit analyticity

condition of Theorem 3.8, we let P(z) be the qeneratinq function

of p(n). Equating P(z) and Q(z) from equation (3.2) qives us:

(i -X)z, (1 -P) ( -z)

(1 - p z) B (X-Xz)-z

Solving for B( >\ - )k z ) and substituting s = )X - X z yields:

, 1
B (s) - ._

1 +S s

Given this Theorem, how does one account for tne existence

of sample paths for single server queueing systems which have

asymptotic HST, but which do not appear to have exponential

service times (such as are presented in [5])? The answer is that

the Theorem implies that any set of such sample paths must be

assigned probability zero in any stable M/G/l aueueing system

except perhaps when D(t) is exponential. Even in that case,

unless the set of sample paths exhibits the rest of the

properties required (e. g. independence of inter-arrival and

service times), the set will still be assigned probability zero.

We can summarize the results of our discussion in the

following way:

Corollary 3.12: Suppose that in an M/G/1 queueing system,

-17- j
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p(n) satisfies the product form

-T N
p(n) = G I I S(n) / I(n-l)- -i=l

where G is a normalizing constant and p(0)=G. Then orovided that

B(t) is well-behaved, the following conditions are equivalent:

(i) 'he S(n) do not depend on the I(n).

(ii) The S(n) are constant in n.

(iii) Almost every sample path of the system has asymptotic

HST.

(iv) Almost every sample path of the system satisfies

asymptotic on=off-line with respect to the off-line

service function S0 (n) = x.

(v) B(t) is the exponential distribution. I

Before turning to the case of G/M/l, we wish to state a

limited result for queueing networks. We recall that a

"feed-forward" network of queues is a network in which a customer

is allowed to visit a server at most one time [101:

Theorem 3.13: Consider any open, stable, feed-forward

network of single-server queues, and assume that external

arrivals to the network are Poisson with overall intensity X and

independent of the network state. Let X i denote the arrival rate

at the ith node calculated from the routing probability matrix as

if the service times were all exponential. Then the network

stationary probability distribution p(n) is of the product form

M-i -



(3. 3) o(n) = G I I - 1 i S..
-_] _ i=l - ! j=l 1

where the S.. do not depend on ) if and only if all of the

service times are exoonential.

Proof: (i) If the service times are all exponential, the

result is due to Jackson [8].

(ii) Pick any queue with only external arrivals. By the

form of equation (3.3) the marginal stationary distribution of

this queue must be of the form:

I I i * s ..
p(ni) Gi - S= i

- J=l ii

whefe the S'.. 'doriot depend-on-X... For. .this queue, Lemmas.3.9

and 3.10 imply that S(j) = Sij, so that the service function for

this queue does not depend on ). Hence, by Theorem 3.8, the

service time at this queue is exponential. By Burke's Theorem

[2], we then know that the departure process from this queue is

Poisson. Repeating this argument at all queues with only

external arrivals shows that all queues in the network nave

Poisson arrivals. Hence all queues in the network have Poisson

arrivals and a marginal distribution of the form indicated above.

Therefore all of the service times must be exponential. [

We note that exactly as in the case of single server

systems, it is easy to construct behavior sequences for networks

of queues such that the behavior seauences satisfy a type of
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product form but for which the service times do not appear to oe

exponential [7; 131. Once again, the existence of such behavior

sequences does not confirm or deny the existence of stochastic

processes which satisfy product form and which are defined o,.'

non-exponential networks of queueing systems. However if we

restrict our attention to the types of networks discussed in the

Theorem, we see that any stochastic process generated by a

network of non-exponential queueinq systems must assign

probability zero to any such set of sample paths.

We state without proof some dual results for C/M/I aueueinq

systems:
*

Theorem 3.14: If A (s) is analytic in re(s) > 1 / a, and

I(n) does not depend on p, then A(t) is the exponential

distribution.

. . •o • o .,o•. . • S -. . . . .... •.. .

Theorem 3.15: A G/M/1 queueing system has S-HAT (see

Definition 3.4) if and only if the inter-arrival time

distribution is exponential. _

4. USING S(n) TO PREDICT BEHAVIOR IN M/G/l

Let us consider the following performance prediction

problem:

Random arrivals from a very larqe population are served

one at a time, in FCFS order. The system appears to oe

stable, but still is very heavily loaded. What would

-20-
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the mean number of jobs in system be if a server twice j
as fast as the current one were installed? Observed

values of I(n,t) and S(n,t) are available.

To solve this problem using operational analysis, one would

adjust the S(n,t) values to represent the service function for

the faster server and leave the I(n,t) values unchanged. From

the generalized birth-death formula (equation 2.1), one could

then estimate new values of P(n,t) and hence new values of tne

mean number of jobs in system.

The difficult part of the problem is estimating the new

values for S(n,t). One obvious estimate is to let the new values

be one-half of the old values. However, this is not correct for

all service distributions. Instead the exact way that the S(n,t)

depend on x varies with the service time distribution. To

illustrate this dependence, we will consider the rel~ationsh-i...

between S(n) and x in an M/G/l queueing system. (We note that

Balbo and Denning [1] have considered the relationshio of S(n)

and the coefficient of variation of the service time of a

particular server in a network of queues. Their analysis was

based on simulation data.)

To evaluate S(n) we recall Lemma 3.10, which relates S(n),

I(n), and p(n). Since in M/G/l, I(n)=X - , it follows that the

p(n) determine the S(n). This observation (originally due to

Buzen (4]), allows the calculation of S(n) from the service time

distribution. To do so we can use a power series expansion of

the P-K transform formula (equation 3.2) to calculate o(n).

While this process is algebraically involved, suitable tools

-21-
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exist to assist in the calculation and evaluation of the

derivatives of O(z). 2 Thus for a particular service distribution,

one can determine p(n) and hence S(n) as a function of the

distribution parameters, at least for a few values of n.

For values of n > 10, the expressions for p(n) become too

complex to handle. Even if such larqe expressions could be

generated, round off error would probably make any evaluated

results meaningless. As we shall see below, values of S(n) for n

> 5 are usually not needed.

We believe it is unlikely that significantly simpler

formulas for S(n) and arbitrary B(t) will ever be found. It is

clear that if simole closed form expressions for S(n) were known,

then simple closed form expressions for p(n) could easily be

constructed. Since no known formulas for the latter exist, it

seems unlikely.that any will be found for S(n). Howev.er, [41

discusses how to derive simole recursive formulas for calculating

S(n) when B(t) is a Coxian type distribution. We now return to

our discussion of the relationship between S(n) and x.

We have already given a formula for S(l) in M/G/l, and we

begin our discussion by considering a qraph of S(l) versus x for

some typical service distributions. (See Figure 4.1.)

Throughout this discussion, we are considering a stable M/G/l

queueing system with )=1.0. In this figure we have included the

S(l) versus x curve for exponential service times as a

2 The calculations in this oaper used the FORMAL system 111, a

FORMAC like system developed at the University of Maryland.

-22-
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*SERVICE FUNCTION S(1) VERSUS MERN SERVICE TIME
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Figure 4. 1

Curve Number Distribution

1 Exponential
2 Erlang-3
3 Erlang-5
4 Erlang-lO
S Constant2
6 Hyperexponcritial,(=.5, CV .
7 Hypcrexponentia,<:=.5, cv2 =2.0
a Hyperexponentialo(=05, CV 2 =2.5
9 Hyperexponential, Q(=O.5, CV =2.9
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comparison. We see that of the service distributions we n-ve

considered, the distributions with scuared coefficients of

2variation (CV ) greater than 1 have S(l) versus x curves which

lie below the exponential case, and those distributions with CV

< 1 have curves which lie above the exponential case. Thus to

estimate new values of S(l,t) in our performance prediction

problem, we should more than halve the observed S(l,t) values

when the service distribution has CV2 > 1, and less than halve

the observed S(l,t) values when CV2 < 1.

Figures 4.2, 4.3, and 4.4 give S(n) versus x araohs for

higher values of n. In each graph the S(n) values for a specific

distribution have been plotted. (As before, we have included the

S(n) versus x curve for the exoonential case as a reference.)

The first observation about these graphs is that S(n) rapidly

approaches a limiting value as n increases. Apparently, the tail

of the distribution of number in system is approximately

geometric for large values of n. A second observation is that

the limiting S(n) versus x curve always lies on the other side of

the exponential case curve from the S(l) curve. Thus we cannot

extend the statement of the last paragraoh to higher values of n.

Exactly how to estimate these values of S(n,t) depends on the

current value of x and the other oarameters of the service

distribution. Third, from these examples it appears that if CV 2

< 1, then the S(n) versus x curve is convex upward; if CV 2 > 1

then the curve is convex downward.

In brief, the performance Problem we have posed does not

appear to be solvable without makinq additional assumptions about

-24-
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SERVICE FUNCTIONS S(N) FOR M/G/1 WITH ERLRNG-R SERVICE TIMES
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Figure 4.2

Values of service functions S(l), . S(5) versus
mean service time for Erlang-5 distribution.
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SERVICE.-FUNCTIONS 5(N) FOR Mi// WITH CONSTANT SERVICE TIMES
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Figure 4.3

Values of service functions S)...S()versus mean
service time for constant service times
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SERVICE FUNCTIONS SfN) FOR MI/G/1 WITH HYPEREXPONENTIAL SERVICE TIMES
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Figure 4. 4

Values of service functions S~i), o o .,S(5) versus
* mean service time for two stage hyperexponential

distribution,o(=O.5, CV2=2.5.

-27-



the distribution of service time. To verify this statement, we

have used both operational and stochastic methods to attemot to

predict the performance of a simulation of an M/G/l queueinq

system when a server twice as fast as the original server is

installed. In this way, we can study in a controlled environment

the problems of using measured data to predict the performance of

a system.

The operational predictions were based on values of I(n,t)

and S(n,t) measured during a baseline simulation. Then the

S(n,t) values were halved, and the resulting S(n,t) values

(together with the old I(n,t) values) were substituted into the

generalized birth-death formula. The resultinq values of P(n,t)

were used to calculate the mean number of jobs in system, n,

given that the service times were halved. The stochastic

predictions were based on observing the mean and variance of the

service time as well as the arrival rate durinq the baseline

interval. These numbers were then modified to reflect a server

which was twice as fast, and the modified numbers were inserted

in the Pollaczek-Khinchin mean value formula [91:

2 - 2 2I~ [x +0 or
2 (l-p)

The prediction case simulations were then performed and the

observed values of n were recorded. The prediction case

simulations were arranged so that (1) the same random number

streams as the corresponding baseline case were used, (2) the

same number of arrivals and departures occurred as in the

-28-
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corresponding baseline case, and (3) each service time random

variable was one-half of the correspondinq service time durina

the baseline case. In all of the simulations the system started

and ended empty. By using the same random number streams in the

baseline and orediction cases, we have attempted to isolate

prediction errors in the prediction methods themselves, and

without extraneous errors being introduced through randomization.

Tables 4.5, 4.6, and 4.7 summarize the results of these

simulations. Each table gives the results for nine pairs of

baseline and prediction case simulations. In the first three

pairs of each table, the simulations were run until 100 arrivals

and departures had occarred; in the second set of three pairs

there were 1000 arrivals and departures; in the third set of

three pairs there were 10000 arrivals and departures. Within

each set of three pairs, the only differences among the

simulation runs were the random number seeds. In all cases

X=l.0, the mean service time in the baseline cases was 0.8, and

the mean service time in the prediction cases was 0.4.

As a comparison to the operational approach, the baseline

values for ., x, and d were also substituted into the P-K mean

value formula. These values are displayed under the heading

"M/G/I Fit." Since the simulations started and ended with the

system empty, it is a characteristic of the generalized

birth-death formula that the baseline P(n,t) values would be
.

identically correct when the S(n,t) and I(n,t) values from the

baseline case are substituted into the equation. Thus there is

no need to do a corresponding operational calculation, since the

-29-
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Case Arrival Base- M/G/l OA M/G/I Pred. GA M/G/I
Count Line Fit Pred. Pred. Case Error Error

n n

1 100 2.66 6.15 1.28 0.66 0.64 +100% +3%
2 100 2.47 2.36 0.71 0.53 0.58 +22% -9%
3 100 1.79 2.91 0.86 0.56 0.51 +69% +10%

4 1000 1.97 2.42 0.81 0.53 0.53 +53% -=0
5 1000 2.35 2.43 0.77 0.54 0.54 +43% =0%
6 1000 2.35 2.53 0.79 0.54 0.54 +44% +2%

7 10000 2.25 2.31 0.75 0.53 0.53 +44% +2%
8 10000 2.37 2.56 0.80 0.54 0.53 +48% -0%
9 10000 2.29 2.48 0.79 0.54 0.53 +49% +2%

Table 4.5

Operational and Stochastic Predictions for M/G/l
with Constant Service Times

Case Arrival Base- !/G/I OA M/G/l Pred. OA M/G/l
Count Line Fit Pred. Pred. Case Error Error

n n

1 100 5.28 10.80 0.79 1.03 0.99 -20% +4%
2 100 4.20 5.64 0.48 0.86 0.91 -47% -5%
3 100 3.91 7.65 0.71 0.91 0.93 -24% -2%

4 1000 5.30 6.20 0.55 0.84 0.83 -34% +1%
5 1000 5.00 7.91 0.64 0.93 0.91 -30% +2%
6 1000 4.56 4.80 0.48 0.78 0.92 -48% -15%

7 10000 5.41 5.91 0.55 0.84 0.83 -34% +1%
8 10000 6.52 6.46 0.54 0.86 0.85 -36% +1%
9 10000 5.45 5.83 0.55 0.84 0.81 -32% +4%

Table 4.6

Operational and Stochastic Predictions for M/G/1
with Hyperexponentiaj Service Times

X-0.5 CV U2.5
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Case Arrival Base- M/G/1 OA M/G/1 Pred. OA M/G/l
Count Line Fit Pred. Pred. Case Error Error

n n

1 100 2.71 4.65 0.79 0.70 0.67 +18% +4%
2 100 1.53 2.18 0.59 0.52 0.52 +13% E0%
3 100 2.88 5.73 0.84 0.75 0.68 +24% +10%

4 1000 3.58 4.08 0.66 0.67 0.68 -3% -1%
5 1000 4.68 4.51 0.63 0.70 0.66 -5% +6%
6 1000 3.43 3.78 0.66 0.65 0.74 -11% -12%

7 10000 3.66 4.01 0.67 0.67 0.70 -4% -4%
8 10000 4.03 4.35 0.70 0.68 0.68 +3% -0%
9 10000 3.51 3.66 0.66 0.65 0.63 +5% +3%

Table 4.7

Operational and Stochastic Predictions for M/G/1
with Exoonential Service Times
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resulting value of n must exactly matcn the observed value.

Table 4.5 summarizes the simulation experiments for the

constant service time cases. We observe that the "M/C/l Fit"

value for n never exactly matches the value of n observed durinq

the baseline simulation. This is certainly one advantage of tne

operational equations. However, we see that the "M/C, 1

orediction" values for n are consistently more accurate than arc

the "OA (operational analysis) prediction" values. Returning to

Figure 4.3, we see that halving the S(n) values causes the S(n)

values to be overestimated; it follows that the operational

estimates of n should be on the high side. This is indeed the

case in Table 4.5. Similarly, examining Figure 4.4 one would

expect the operational estimates of n in the hyperexponential

case to be on the low side. This is confirmed by the simulations

(see Table 4.6). Finally, we would expect that the operational

estimates would be most accurate in the exponential service time

case. By inspecting Table 4.7 (the exponential case) we see that

the OA and M/G/l predictions have roughly the same oercentage

error. In both of the other tables, the operational estimates of

n wer - significantly further off than the stochastic estimates.

Thus it is clear that if the system one is modeling

satisfies the assumptions of an M/G/l system, and if the service

time is non-exponential, then using the P-K mean value formula

can provide more accurate predictions than the generalized

birth-death formula from operational analysis (with the present

method of predicting the new S(n,t) values).

Whether or not the operational or stochastic predictions are
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more robust in the general case has not been considered here.

Sevcik and Klawe [13] have done similar analysis in the case of

queueing networks. Their examples show that using operational

methods to predict the performance of a two-server aueueinq

network when the service rate of one of the servers is doubled is

about as accurate as using an appropriate stochastic model. It

is clear that this matter needs further investigation.

In this section we have concentrated on the utility of usino

adjusted values of the S(n,t) to predict performance of an M/G/1

queueing system when the mean service time is chanoed. In

exactly the same way, we could adjust the I(n,t) values in order

to attempt to predict the performance of an M/G/l queueing system

when X changes. The results of the last section show that the

relationship between I(n) and ) is independent of the service

distribution. However, we know that the S(n) are independent of

> only when the service distribution is exponential. Thus it

appears that similar conclusions would be reached concerning the

accuracy of operational methods for predicting the performance of

M/G/l queueing systems when the arrival rate is changed.

5. CONCLUDING REMARKS

In this paper we have attempted to clarify the relationship

between the assumptions of exponential service times in M/G/l

queueing systems and the conditions of homoqeneous service times

and on-line-off-line behavior in operational analysis. We have

pointed out that the operational concepts are defined with
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respect to a particular behavior sequence (or set of behavior

sequences). However, immediate generalizations of these concepts

allow one to define what is meant by an M/G/1 aueueing system

with homogeneous service times or on-line=off-line behavior. In

the sense of these definitions, we were able to show that an

M/G/l queueing system will have these properties only when the

service time is exponential. More precisely, we showed that in

any non-exponential M/G/l queueing system, the set of all sample

paths which have these properties as t-->co must be a set of

probability zero. Note that our discussion does not deny the

existence of such sample paths, we merely regard them as very

unlikely to occur. We then demonstrated that an open,

feed-forward network of single server queues with external

Poisson arrivals can have a product form valid across a range of

arrival rates only when the service times are all exponential.

We then discussed the problems of using the qeneralized

birth-death formula of operational analysis to predict (from

measured data) the performance of an M/G/I queueing system when

the service times were halved. We demonstrated that the

relationship of S(n) and x depends on the service distribution.

Among the distributions we considered, the relationship was

linear only in the exponential case. In the non-exponential

case, the standard estimate of the new values of S(n) (one-half

of the old values), was seen to lead to less accurate predictions

than use of the Pollaczek-Khinchin mean value formula with

estimated values for the arrival rate and the mean and variance

of the service time. It appears that similar results would be

-34-
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found for the prediction case when the arrival rate is changed.

1
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ABSTRACT (Continued)

"KS(n) and the mean service time in M/G/l. This relationship is
shown to depend on the form of the service time distribution. It
follows that using operational analysis to predict the performance
of an M/G/1 queueing system will be most successful when the
service time is exponential. Simulation evidence is presented
which supports this claim.

Oj


