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ABRSTRACT

Uperational analysis reolaces certain classical cueucins
theory assumptions with the conditions of "homogeneous service
times" and "on-line=off-line behavior." In the general case, it
has been conjectured that these conditions nold as t-->® only if
the service times are exnonentizlly distributed. 1In thnis ganer,
we show tnat this is correct for stable K/G/1 Jdaueueina systems.
We also state dual results for inter-arrival times in G/MN/1.
Finally, we consider the relationship betweren the operational
gquantities S(n) and the mean service time in ¥/C/1. This
relationship is shown to depend on the forr of the service time
distribution. It follows that using operational analysis to
predict the performance of an M/C/1 queueing system will he most
successful when the service time 1is exponential. Simulation

evidence is presented which supports this claim.
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SIGNIFICANCE AND EXPLANATION
Queueing theory models of computar systems hnave opeen

extremaly successful in spite of the numerous matnematical

assumptions reguirea to make the queueing analysis
cractanle. These assumptions are often unverifiable ana
sometimes ooviously incorrect. Cperational analysis

attempts to explain this success by developing a theory of
computer system moaeling which aoes not aepenua on the
classical assumptions.

For example, tile assumption of exponential service
times 1is replaced by the condition of "homogeneous service
times"; this means tnat tne average job interdeparture time
does not depena on the nunber of Jjobs in system. The
"on-line=off~-line Dbehavior" condition asserts that the
average Jjob interdeparture time does not Jdepend on the
system arrival rate. Finally, the operational analysts
maintain that Qgueueing system Dbehavior can be predictea
basea only on measured data ana without making any
distributional assumptions.

In this paper we show that a M/G/l1 gueueing system hac
homogeneous service times and satisfies on-line=otf-line
behavior as t-->® 1if and only if the service times are
exponential. Thus operational analysis 1is in a certain
sense equivalent to Markovian gueueing theory.
Adaitionally, it is shown that a particular prediction
problem of operational analysis 1is unsolvable for N/G/1

Jueues unless the service distribution is specified.

The responsibility for the wording and views expressed in
this descriptive summary lies with MRC, and not with the

author of this report.
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. 1. INTRCDUCTION

= Overational Analysis [3; 4; 5; €; 7] is a non-classical

approach to analysis of queueing systems in which the systenm

. parameters \(n) and u(n) are replaced by observed guantities I(n)

and S(n) respectively. Assumptions about arrival and service

time distributions are replaced by conditions on S(n) and I(n).

’ Two of the key conditions are "homogeneous service times" which

states that S(n) is constant in n and "on-line=off-line kehavior"

which states that the $S(n) can be estimated by observing the
system under a constant load.

Whenever a new idea like this appears, it 1is natural to
explore its relation to the existing theory. This paper examinecs
the relationship between operational and classical conceots by
considering the limiting values (as t-->o®) of I(n) and S(n) for
the sample paths of an M/G/1 dueueing svstem. The primary
results are that on-line=off-line behavior and homogeneous

» ’ service times occur in M/G/1 if and only if the service times are
exponentially distributed. (More precisely, it is shown that in
. any stable, non-exponential M/G/l queueing system, any set of
sample paths which have these properties must be a set of

1 probability zero.) Dual results for the G/M/1 gqueue are stated.

. Sponsored by the United States Army under Contract No.
f DAAG29-75-C-0024.
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It is also shown that open, feed-forward networks of
single-server gqueues with Poisson external arrivals can have
product form solutions valid across a range of arrival rates if
and only if all the service times are exponential. Finally,
exact values for S(n) in M/G/1 queueing systems are derived and
their dependence on the mean service time is depicted for several
standard service time distributions. This discussion implies
that the usual way of wusing the S(n) values to ©predict the
behavior of a system is correct only when the service times are
exponential. As an example, operational and stochastic methods
are used to attempt to predict the performance of a simulation of
some M/G/1 gqueueing systems. The operational method is most
successful in the exponential service time cases.

In Section 2 we describe the notation of the paper and give
definitions of "homogeneous service times® and "on-line=off-line
behavior." Section 3 discusses what it means for an M/G/1
gueueing system to have these operational properties; this
section also contains the main results of the nvaper. These
results are wused to oprovide a method of calculating S(n) for
arbitrary service times in an M/G/1 queue. Graphs of these
values versus mean service time are then given in Section 4.
This section concludes with an empirical comparison of the
accuracy of operational and stochastic methods fcr predicting the

mean number of Jjobs in an M/G/l1 gqueueing system when the mean

sexrvice time is halved.




2. NOTATICN ANLC DEFINITICNS

Throughout this paver, whenever we are considering an M/G/1 1
aqueueiny system, we will assume that the system is stable, is
load independent, has arrival rate X\ and service distribution
B(t). We let X denote the mean service time and u=1 / x. Ve
will let P denote the system wutilization and o(n) denote the
stationary orobability of finding n customers in system. For a
G/M/1 cqueueing system, we let A(t) denote the inter-arrival time
distribution, a denote the mean inter-arrival time, and u denote
the system service rate.

We will use a superscriot * to indicate the lLaplace-Stieljes
. transform; for example, B*(s) is the transform of B(t) and 1is

defined as:

+Q0
8¥(s) = /e'St dB(t)

-

Where necessary to distinguish real numbers from real valued
random variables, we will use an underline to indicate the randonm
variable.

For any particular realization of an M/G/1 queueing system,
we define the sample path w (t) as the right continuous function
defined for t>0 which gives the number of jobs in system versus
time. We assume that w (8) = # for all sample paths, and that w

¢ . is a sample point in some probability space S? .

> 11

) We will use the term "behavior seqguence" to refer to a ‘ ;

finite 1length sample vath resulting from the observation of a




physical system.

For the purposes of this paper, we wish to make a formral
distinction between a "queueing system" and an arbitrarv "systenr"
in which some gqueueing happens to take place. The distinction we
wish to make 1is that a queueing system is a stochastic process
characterized by inter-arrival and service times which are
independent and identically distributed random variapbles, the
inter-arrival and service times themselves being independent,
service in order of arrival, and no idle server being allowed if
any customers are waiting. Thus when we refer to an M/G/1
queueing system, we are really referring in a shorthand way to a
particular probability space which could in principle be formally
specified, but in most cases is not.

Many real systems allow dqueues to form and are not
representable by queueing systems. Inter-arrival and service
times may not be independent, service times may not be
representable by random variables but instead may be cyclic or
deterministically formed; there are numerous reasons that a
system 1is not well modeled by a queueing system. The kav
distinction is that the characteristics of a real system are
contained in a finite set of observed behavior sequences. If the
system is sufficiently simple, then one can determine the set of
all possible behavior sequences, but for most interesting systems
this is not the case. With this distinction in mind one sees
that operational analysis is wprimarily the study of sets of
behavior sequences and their properties, while gueueing theory is

the study of sets of sample paths upon which a probability
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counterparts of conditional arrival and service rates in
classical gqueueing theory. In fact, for any behavior seguence
such that the total number of jobs in system is the same at times
2 and t, and for which arrivals and departures only occur one at
a time, we have the following exact relationship among P(n,t),
S(n,t) and I(n,t) [4]:

— n S(n,t)

(2.1) P(n,t) = G —_—
i=l I(n-1,t)

where G is a normalizing constant. We will refer to this
equation as the "generalized birth-death formula."

We will primarily be interested in the asymptotic values of
S(n,t) and I(n,t) as t-->0. We will indicate this limiting
value (assuming it exists) by dropping the parameter t. Thus:

S(n) = Lim S(n,t).
t=~>®

It is clear that in order for I(n) and S(n) to be defined that
the underlying behavior sequence must be defined for all values
of t. We will refer to S(n) and I(n) as the (asymptotic) service
and arrival functions, respectively. We adopt the convention
that the adjective "asymptotic," when applied to the definitions
of this section, implies that the guantities S(n) and 1I(n) have
been substituted for S(n,t) and 1I(n,t) in the associated
definition.

Finally, we wish to define certain operational terms so that
they can be conveniently referred to in the sequel:

Definition 2.1: A behavior sequence 1is said to have

SRS atatinias- ~ §&
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measure has been defined.

We now give some definitions from overational analysis.
Most of this material is contained in [4], however we prefer a
notation more similar to that of [(7]. To emphasize the fact (nat
these quantities depend on values observed from a particular
behavior seguence and during a finite time interval {8,t), we
will modify the notation of (7] to explicitly include tne
parameter t.

We beqgin by defining the "basic operational measures" of a
system during [0,t): B

A(n,t) is the number of customers who arrive in [08,t) to find
exactly n customers already in system.

C(n,t) is the number of customers who left the system during
[3,t) when there were exactly n customers in system.

T(n,t) is the amount of time during ([0,t) when there were
exactly n customers in system.

Give~ these guantities, we then may define the followinag
"operational performance measures." (We follow the convention
of [7] and 1leave undefined any quantity with a zero
denominator.):

S{n,t) =T(n,t)/C(n,t) is the mean service time between job
departures during [8,t) given n jobs in system.

I(n,t) =T(n,t)/A(n,t) 1is the mean inter-arrival time during
[0,t) given n jobs in system,

P(n,t) =T (n,t)/t is the pfoportion of time there were n jobs

in system during [@,t).

We note that 1I(n,t) and §S(n,t) are the operational

-d
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homogeneous arrival times (HAT) during [6,t) if 1I(n,t) is

constant in n.

Pefinition 2.2: A behavior sequence 1is said to have

homogeneous service times (HST) during [@,t) if S(n,t) is

constant in n.
Now S(n,t) 1is calculated by observina 2 system as it
interacts with its environment (i. e. "on-line"). Thus S(n,t)
can be referred to as the "on-line" service function. For the
purvose of vperformance prediction, it is necessary to estimate
values of €S(n,t) from system service requirements, and
independently of interactions with the system's environment [7].
In the terminoclogv of operational analvsis, one would estimate
. S(n,t) by observing an "off-line" exveriment where the system was
- subjected to a constant 1load of n jobs. This can be done by
placing n jobs in the system and then causing an an arrival to
occur every time a job departs. Let So(n) denote the mean
service time between job departures during an off-line experiment
- with n jobs in system. When interpreted as a function of n,

so(n) is the off-line service function. If the on-1line and

off-line service functions are the same then the behavior
sequence satisfies on-line=off-line behavior [6]:

Pefinition 2.3: A behavior seguence is said to satisfy

on-line=off-line behavior (on=o0ff-1line) dur ing (0,t) if
1

: s(n,t)=so(n) for all values of n for which S(n,t) is defined.

1 In [6], "on-line=off-line Dbehavior" 1is referred to as

"homogeneity."

—




Implicit in this definition is the fact that a svstem
satisfies on=off-line with respect to a particular, but
unspecified, set of off-line exper iments. The off-line
experiments may be based on a model of the system rather than on
measurement of an actual system. For example, 1if the service
distribution is Kknown, one might use an analytic or simulation
nodel to estimate So(n).

We point out that in operational analysis, the HST condition
is the counterpart of an exponential service time assumotion in
classical queueing analysis [7]. However it is easy to construct
finite behavior sequences for single server queueing systems
which have HST and/or satisfy on=off-line [5]. By replicating
such sequences, one can create deterministic behavior seguences
of arbitrary length for which S(n) can be defined, S(n) Iis
constant in n, and S(n)=x. The existence of such behavior
seqguences neither demonstrates nor denies the existence of
non-exponential gueueing systems which have HST. All that such
examples demonstrate is that there exist behavior sequences which
have these operational properties.

Oftentimes sets of such behavior sequences can occur with
non-zero probability as the [9,t) portion of a sample path of a
queueing system, but when extended by letting t-->m, the
probability measure of these sets must tend toward zero. The
only exceptions are sets of behavior sequences of gueueing
systems which themselves have HST or satisfy on=off-line (e. g.

stable D/D/1 systems). Thus to explore the relationship between

HST, on=off-line and M/G/1 queues, the definitions we have




presented must be extended so that they apply to the ensemble of
' sample paths which we implicitly think of when we consider =2

gueueing system. This is done in the next section.

- 3. OPERATIONAL ANALYSIS AND M/G/1 QUEUEING SYSTEMNS

+
-

| . The operational performance measures defined 1in the la

O]

section are calculated from a varticular behavior seaquence durina
a particular time interval ([@,t). In the context of an /G 1
aqueueing system, we would say that they have been defined for a

particular sample path, w Thus, we have defined what it means

g-
: to say that "uxg has HST during [3,t)" but we have vyet to define
what it means to say that "an M/G/l queueing system has HST."
It is the purpose of this section to define the latter phrase in
what we believe is a natural way and to explore the consequences
of such a definition.
For any sample path w 1in (} , let A(n,t,wm), C(n,t,w),
S{(n,t,w), and I(n,t,wm) be the values of A(n,t), C(n,t), etc.
associated with w during [@,t). Let A(n,t), C(n,t), etc. denote
the random variables thus defined on (2. Also, let A{(n), C(n),
etc. denote the limits of the random variables A(n,t), C(n,t),
- etc. as t-->®. let Ea(n) be the event that an arrival occurs to
find n jobs already in system, and let Bd(n) be the event that a
departure occurs when there were n jobs in system. Finally, if E
is a recurrent event, let m(E) denote the mean recurrence time of
the event. Then we note that for any stable M/G/1 queueing N

system:

-9-
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(1) With probability one, T(n,t)/t-->p(n) as t-->m.

(2) Since the embedded Markov Chain defined at departure
instants is irreducible and positive recurrent, it follows
that m(Ed(n))<a>, for all n>@. Furthermore, since the
probability of two or more arrivals in [t,t+h) is o(h), it
follows that 0<m(Ed(n)).

(3) The recurrence times of Ed(n) are independent randon
variables. Therefore, by an elementary result of renewal
theory [12, o. 36]:

Lim Cn,t)/t = 1/m(E4(n))
t-->c
with probability one.
(4) S(n)=Lim (T(n,t)/t)/(C(n,t]/t)". ) R
t-->00
We have thus shown:

Theorem 3.1: The limiting random variables S(n) are constant

with probability one and S(n)=p(n) m(Ed(n))- [
To get a similar statement for I(n), we need the following
Lemma, which we will find useful later in this section:

Lemma 3.2: In any stable M/G/l queueing system,

_A_(n-lrt) g(n,t)
Lim ————= Lim _
t-->c© t t--> t

with probability one, for all n > 1.
Proof: Let {ti} be the starting instances of the busy cycles
of the queue. Clearly ti-->a> as i-->m and ti<co for all 1,

both statements with probability one. Similarly,

-10-
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ﬁ(n—l,ti)=§(n,ti) with orobability one, since the number of
up-crossings of 1level n-1 must be the same as the number of
down-crossings level n at the start of each busy cycle. (Note
that the arrival at time t, is not counted in A(Cf,t;) since
ﬁ(ﬁ,ti) is the number of arrivals which found the system empty
dur ing [O,ti).) Finally, we note that A(n-l,t,w) > C(n,t,wm) >
A(n-1,t,m)-1 for all t and all samole paths w . Thus with

probability one

B(n_lrt) E(n,t)
Lim ——= Lim — . 0
t-->® t t--> t
Therefore, Ea(n) is a recurrent event whenever Ed(n+1) is,

3 s e . - . s o

and we have
Theorem 3.3: The limiting random variables I(n) are constant

with probability one and I(n)=p(n) m(Ea(n)). O

Since I(n) and S(n) are almost everywhere constant, we will
drop the distinction between these random variables and th:ir
values.

With these facts in mind, is seems natural to suggest the
following definitions:

Definition 3.4: An M/G/1 aueueing system will be said to

have stochastic homogeneous arrival times (S-HAT) if and only if

I(n) is constant in n.

Definition 3.5: An M/G/l1 queueing system will be said ¢to

have stochastic homogeneous service times (S-HST) if and only if

S(n) is ccnstant in n.




Since we are only considering load independent MG
gueueing systems, it is clear that the off-line service function
is given by So(n) = X. We therefore have:

pefinition 3.6: An M/G/l gueueing system will be said to

satisfy stochastic on-line=off-line behavior (stochastic
on=off-line) if and only if S(n) = x for all n.
Wwe have added the adjective "stochastic" to these

definitions to distinguish the properties of the gueueing systew
from the properties of individual sample paths and not because we
believe these concepts to be fundamentally different from the
definitions of Section 2. For example it is clear that if an
M/G/1 system has S-HST then almost every sample path has
asymptotic HST, while if an M/G/1 system does not have S5-HST then
‘" almost no sample pétﬁ has HST. Thhé an M/G/l Quehegné s?gtém
either does or does not have S-HST; one need not say that an
M/G/1 queueing system has S-HST with probability one. Similar
comments apply to gueueing systems which satisfy stochastic
on=off-line.

Now we wish to determine what types of M/G/1 queueing
systems satisfy these definitions. We begin with a basic Lemma:

Lemma 3.7: In any stable M/G/1 queueing system:

1 1
(3.1) s() = - [-r—- -1] .
A B (\)

Proof: Ed(l) occurs if and only if the system becomes idle.
Thus m(Ed(l)) is the mean busy cycle length. Now the Laplace

*
transform of the busy period distribution, G (s), 1s known to

-12-




satisfy the functional equation:
* * *
G (s) =B [s+ \=-X\NG (s5)]
(see, for example, [9, o. 212]). From this eguation it 1is easy
to determine the mean busy veriod length, and uoon adding the
mean idle time we obtain the mean busy cycle length:

1/ N+x/ (1 - g

Also, we know p(l) = Q'(0), where Q(z) is the generating
function of p(n). Thus p(l) can be found from the
Pollaczek-Khinchin traasform equation (see, for exampole,

[9, p. 194]):

. 1 -p) (1-2)
(3.2) Q(z) = B (\-\2) * .
B (\-\2)-2z

"Calculating p(l) from eguation (3.2) and using Theorem 3.1 shows

that S(1) has the indicated form. Ll

We observe that stochastic on=off-line implies that tne
S(n)'s cannot depend on \. This observation is the basis for thez
following theorem.

*
Theorem 3.8: Suppose B (s) is analytic for 8 < Re(s) < .

Then the M/G/l1 queueing system satisfies stochastic on=off-line
if and only if B(t) is exponential.

Proof: (i) If B(t) 1is exponential then the result is
straightforward.

(ii) Suppose that the system satisfies stochastic

on=off-line, Then, in particular, S(l1) does not depend on \.

*
Solving equation (3.1) for B (\) we get




- e

* 1
B (\) = —, 8 <\ < u.
1 + )\ S(1)
But we have thus determined E*(s) on a set with limit point, and
hence determined B*(s) throughout 1its region of analyticity.
Therefore B(t) = 1 - exp( t/S5(1)). D

Intuitively, this Theorem says that if an M/G/1 agueueing
system is decomposable in the sense that the off-line service
functions can be used to estimate tﬁe on-line service functions
for a variety of different arrival rates, then the service
distribution is exponential. The Theorem dJdoes not state that
there do not exist particular values of N\ for particular service
distributions B(t) such that S(n) = x. However, 'sich values of \
must be isolated in the sense that they cannot have a limit
point, or otherwise B(t) is expvonential.

If B(t) is non-exponential, the dependence of S(l1) on \ can
be quite pronounced. In Figure 3.1 we have plotted S(1) versus )\
for some typical service distributions. (All distributions have
x=1.8.) The horizontal line at S(l)=1.8 represents the S(1)
versus N\ curve for exponential service times. We see that those
distributions with coefficients of variation less than one have
S(l) wversus )\ curves which lie above the exponential case; and
that those distributions with coefficients of variation greater
than one have S(l1) wversus )\ curves which lie beluw the

exponential case.

We have shown that if the S(n)'s are constant in n and do

-14~
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not depend on )\, then the service time must be exvonential. But
is it possible that the S(n)'s are constant in n, but all of ther
depend on X\ 1in the same way? If so, we would still have 3-HST
but not stochastic on=off-line. To study this situation, we
begin with:

Lemma 3.9: In M/G/1, I(n)=\"' for all n.

2roof: Because the arrival process is Poisson, m(Ea(n)) =

p(n) \. The result then follows from Theorem 3.3. N

We now prove the stochastic analogue of eguation (2.1).
Lemma 3.10: In M/G/1, p(n) = p(n-1) S(n) / I(n-1), n > 1.
Proof: By Lemma 3.2 we know that m(Ea(n-l)) = m(Ed(n)).

Using this fact, combining the formulas for S(n) and I(n) from

. . . . - Py - -

Theorems 3.1 and 3.3, and solving for p(n) gives the desired

result. D

We can now show that S-HST 1is essentially edguivalent to
stochastic on=off-line:

Theorem 3.11: An M/G/1 queueind system has S-HST if and only

if the service distribution is exponential.

Proof: (i) As before, if the service times are exponential
the result is straightforward.

(ii) Let S denote the common value of S(n). From the
Lemmas it follows that p(n)= \ S p(n-1), n > 1. We know
p(d) =1 - P in any M/G/1 queue. Thus

p(n) = (1L -p) (NS)H", n>o.
But znp(n) = 1 implies that

-16-
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Hence p = NSor S=1/u. Thus S cannot depend on \.
To finish the proof without the explicit analyticity

condition of Theorem 3.8, we let P(z) be the generating function
of p(n). Equating P(z) and Q(z) from equation (3.2) gives us:
(1 -p) (1-2)

(1 _P) *
————— = B (\-\2) * .
(1 -p 2) B (N\-\2)-z

*
Solving for B ( A\ - \ z ) and substituting s = \ - \ z yields:

8" (s) = ——l—— |
1 +S s

Given this Theorem, how does one account for the existence
of sample paths for single server queueing systems which have
asymptotic HST, but which do not appear to have exponential
service times (such as are presented in [5])? The answer is that
the Theorem implies that any set of such sample paths must be
assigned probability zero in any stable M/G/1 aqueueina system
except perhaps when B(t) 1is exponential. Even in that case,
unless the set of sample paths exhibits the rest of the
properties required (e. g. independence of inter-arrival and
service times), the set will still be assigned probability zero.

We can summarize the results of our discussion in the
following way:

Corollary 3.12: Suppose that in an M/G/l gueueing system,

=17~
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p(n) satisfies the product form

A
o(n) = G o S(n) / I(n-1)
- = i=1
. where G is a normalizing constant and p(0)=G. Then orovided that

B(t) is well-behaved, the following conditions are eaquivalent:

(1) The S(n) do not devend on the I(n).

(ii) The S(n) are constant in n.

(iii) Almost every sample path of the system has asymptotic
HST.

(iv) Almost every sample path of the system satisfies

asymptotic on=off-line with respect to the off-line
service function S _(n) = X.

(v) B(t) is the exponential distribution. L
Before turning to the case of G/M/1, we wish to state a
limited result for queueing networks. We recall that a
" feed-forward" network of aueues is a network in which a customer
is allowed to visit a server at most one time [10]:

Theorem 3.13: Consider any open, stable, feed-forward

network of sinqgle-server aueues, and assume that external
arrivals to the network are Poisson with overall intensity N\ and
independent of the network state. Let xi denote the arrival rate
at the ith node calculated from the routing probability matrix as
if the service times were all exponential. Then the network

stationary probability distribution p(n) is of the product form

b
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(3.3) o(n) = G

where the sij do not depend on \ if and only if all of the
service times are exvonential.

Proof: (i) If the service times are all exoonential, the
result is due to Jackson [8].

(ii) Pick any gqueue with only external arrivals. By the
form of eguation (3.3) the marginal stationary distribution of
this queue must be of the form:

— n

= (S}
p(n.) = G, \. S..
1 1 _l_ .l_ j:l 1 13

‘'wherfe the Sij do ' riot depend-on-kiu « For - -this gueue, Lemmas.3.9

and 3.1¢€ imply that S(j) = Sij' so that the service function for
this gqueue does not depend on \. Hence, by Theorem 3.8, the
service time at this queue is exponential. By Burke's Theorem
[2), we then know that the departure process from this gqueue is
Poisson. Repeating this argument at all queues with only
external arrivals shows that all queues 1in the network have
Poisson arrivals. Hence all queues in the network have Poisson
arrivals and a marginal distribution of the form indicated above.

Therefore all of the service times must be exponential. M

We note that exactly as in the case of single server

systems, it is easy to construct behavior sequences for networks

of aueues such that the behavior seduences satisfy a type of

S




product form but for which the service times do not appear to ope
exponential [7; 13}. Once again, the existence of such behavior
sequences does not confirm or deny the existence of stochastic
processes which satisfy product form and which are defined oy
non-exponential networks of gueueing systems. However 1f we
restrict our attention to the types of networks discussed in the
Theorem, we see that any stochastic process generated by a
network of non-exponential gueueing systems must assign
probability zero to any such set of sample paths.

We state without proof some dual results for G/M/1 gqueueing
systems:

* —_
Theorem 3.14: If A (s} 1s analvtic in re(s) > 1 / a, and

I(n) does not depend on u, then A(t) 1is the -exponential
distribution. 0

... - - o e . .

Theorem 3.15: A G/M/1 gqueueing system has S-HAT (see

Definition 3.4) if and only if the inter-arrival time

distribution is exponential. O

4. USING S(n) TO PREDICT BEHAVIOR IN M/G/1l

Let us consider the following per formance prediction
problem:
Random arrivals from a very large population are served

one at a time, in FCFS order. The system appears to pe

stable, but still is very heavily loaded. What would
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the mean number of jobs in system be if a server twice

as fast as the current one were installed? Observed

values of I(n,t) and S(n,t) are available.

To solve this problem using operational analysis, one would
adjust the S(n,t) values to represent the service function for
the faster server and leave the I(n,t) values unchanged. From
the generalized birth-death formula (eguation 2.1), one could
then estimate new values of P(n,t) and hence naw values of tne
mean number of jobs in system.

The difficult part of the problem 1is estimating the new
values for S(n,t). One obvious estimate is to let the new values
be one-half of the o0ld values. However, this is not correct for
all service distributions. 1Instead the exact way that the S(n,t)
depend on x varies with the service time distribution. To
illustrate this dependence, we will consider the relationship
between S(n) and x in an M/G/1 queueing system. (ve note that
Balbo and Denning [1] have considered the relationshio of S(n)
and the coefficient of variation of the service time of a
particular server in a network of queues. Their analysis was
based on simulation data.)

To evaluate S(n) we recall Lemma 3.18, which relates S(n),
I(n), and p(n). Since in M/G/1, I(n)=\"Y, it follows that the
p(n) determine the S(n). This observation (originally due to
Buzen (4]), allows the calculation of S(n) from the service time
distribution. To do so we can use a power series expansion of

the P-K transform formula (equation 3.2) to <calculate p(n).

While this process 1is algebraically involved, suitable tools




exist to assist 1in the calculation and evaluation of the
derivatives of O(z).2 Thus for a particular service distribution,
one can determine p(n) and hence §&(n) as a function of the
distribution parameters, at least for a few values of n.

For values of n > 10, the exoressions for p(n) become too
complex to handle. Even if such 1large expressions could be
generated, round off error would probably make any evaluated
results meaningless. As we shall see below, values of 5(n) for n
> 5 are usually not needed.

We Dbelieve it 1is wunlikely that significantly simpler
formulas for S(n) and arbitrary B(t) will ever be found. It is
clear that if simole closed form expressions for S(n) were known,
then simple closed form expressions for p(n) could easily be
constructed. Since no known formulas for the latter exist, it
sgem§_9pLigqu’qh§t_any will be found for S{(n). Howewver, [4)
discusses how to derive simple recursive formulas for calculating
S(n) when B(t) is a Coxian type distribution. We now return to
our discussion of the relationship between S(n) and x.

We have already given a formula for S(1) in M/G/1, and we
begin our discussion by considering a graph of S(l) versus x for
some typical service distributions. (See Figure 4.1.)
Tnhroughout this discussion, we are considering a stable M/G/1
queueing system with A\=1.8. In this figure we have included the

S(l) versus x curve for exponential service times as a

The calculations in this paper used the FORMAL system [11], a

FORMAC like system developed at the University of Maryland.
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comparison. We see that of the service distributions we nave
considered, the distributions with sauared coefficients of

variation (CV2) greater than 1 have S(l) versus x curves walzh
lie below the exvonential case, and those distributions with CV2
< 1 have curves which lie above the exponential case. Thus to
estimate new wvalues of S(l,t) in our performance prediction
problem, we should more than halve the obseived S(l,t) values
wnen the service distribution has CV2 > 1, and less than halve
the observed S(1,t) values when CV2 < 1.

Figqures 4.2, 4.3, and 4.4 give S(n) versus x aqraohs for
higher values of n. 1In each graph the S(n) values for a specific
distribution have been plctted. (As before, we have included the
S(n) versus x curve for the exronential case as a reference.)
The first observation about these graphs 1is that S{(n) rapidly
aprroaches a limiting value as n increases. Apparently, the tail
of the distribution of number in system is abproximately
geometric for large values of n. A second observation 1is that
the limiting S(n) versus x curve alwavs lies on the other side of
the exponential case curve from the S(1) curve. Thus we cannot
extend the statement of the last paragraoh to higher values of n.
Exactly how to estimate these values of S(n,t) depends on the
current value of x and the other varameters of the service
distribution. Third, from these examoles it aopears that if CV2
<1, then the S(n) versus x curve is convex upward; if CV2 > 1
then the curve is convex downward,

In brief, the performance problem we have posed does not

appear to be solvable without makina additional assumotions about

-24-




SERVICE FUNCTIONS S(N} FOR M/G/1 WITH ERLANG-R SERVICE TIMES
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Figure 4.2

Values of service functions S(1), . . . ,8(5) versus
! mean service time for Erlang-5 distribution.




SERVICE FUNCTIONS S(N) FOR M/G/1 WITH CONSTANT SERVICE TIMES

s(1)
1.6 .

1.4

1.2
$(2)
1.0 OFso

s(4)
S{5)

S(N)

-6
o4

02-

-0)s== 1.0

: XBAR

Figure 4.3

Values of service functions S(1),. . .,S(5) versus mean
service time for constant service times
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SERVICE FUNCTIOGNS S{N) FOR M/G/1 WITH HYPEREXPONENTIRL SERVICE TIMES
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Figure 4.4

‘ Values of service functions s(1), . . .,S(5) versus
¢ mean service time for two stage hyperexponential
distribution, &£=0.5, CV¢=2.5.




the distribution of service time. To verify this statement, we
have wused both operational and stochastic methods to attemot to
predict the performance of a simulation of an M/G/1 qQqueueing
system when a server twice as fast as the original server is
installed. 1In this way, we can study in a controlled environment
the problems of using measured data to predict the performance of
a system.

The operational predictions were based on values of I(n,t)
and S(n,t) measured during a baseline simulation. Then the
S(n,t) values were halved, and the resulting S(n,t) values
{together with the old I(n,t) values) were substituted into the
generalized birth-death formula. The resulting values of P(n,t)
were used to calculate the mean number of jobs in system, n,
given that the service times were halved. The stochastic
predictions were based on observing the mean and variance of the '
service time as well as the arrival rate during the baseline
interval. These numbers were then modified to reflect a server

which was twice as fast, and the modified numbers were inserted

in the Pollaczek-Khinchin mean value formula [9]:

The prediction case simulations were then performed and the
observed values of n were recorded. The prediction case
simulations were arranged so that (1) the same random number
streams as the corresponding baseline case were used, (2) the

same number of arrivals and departures occurred as in the

[ LN
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corresponding baseline case, and (3) each service time randonm
variable was one-half of tne corresponding service time during
the baseline case. 1In all of the simulations the system started
and ended empty. PRy using the same random number streams in the
baseline and orediction cases, we have attempted to 1isolate
prediction errors in the prediction methods themselves, and
without extraneous errors being introduced through randomization.

Tables 4.5, 4.6, and 4.7 summarize the results of these
simulations. Each table gives the results for nine pairs of
baseline and prediction case simulations. In the first three
pairs of each table, the simulations were run until 100 arrivals
and departures had occurred; in the second set of three pairs
there were 16£0 arrivals and departures; in the third set of
three pairs there were 16000 arrivals and departures. Within
each set of three pairs, the only differences among the
simulation runs were the random number seeds. In all cases
\=1l.06, the nmean service time in the baseline cases was £.8, and
the mean service time in the prediction cases was #.4.

As a comparison to the operational approach, the baseline
values for \, x, and §J were also substituted into the P-K mean
value formula. These values are displayed under the heading
"M/G/1 Fit." Since the simulations started and ended with the
system empty, it is a characteristic of the generalized
birth-death formula that the baseline P(n,t) values would be
identically correct when the S(n,t) and I(n,t) values from the
baseline case are substituted into the equation. Thus there is

no need to do a corresponding operational calculation, since the

-29-




Case Arcival Base- M/G/l OA M/G/1 Pred. CA  M/G/1
Count Line Fit Pred. Pred. Case Error Error

3
3
— » A + W~ - a4

1 100 2.66 6.15 1.28 0.66 0.64 +100% +3%
2 100 2.47 2.36 .71 0.53 @8.58 +22% -9% N
h ) 3 1009 1.79 2.91 2.86 ©0.56 0.51 +69% +10¢
4 1000 1.97 2.42 .81 ©6.53 .53 +53% =Q %
5 le00 2.35 2.43 0.77 0.54 @.54 +43% 209
6 1000 2.35 2.53 .79 0.54 0.54 +44% +2% <
7 10900 2.25 2.31 .75 0.53 @.53 +44% +2%
8 10000 2.37 2.5¢ 0.80 @0.54 0.53 +48% =0t
9 10000 2.29 2.48 0.79 ©.54 0.53 +49% +2%
Table 4.5
Operational and Stochastic Predictions for M/G/1
with Constant Service Times
Case Arrival Base- M/G/1 OA M/G/1 Pred. oA  M/G/1 '
Count Line Fit Pred. Pred. Case Error Error
- n n
1 1049 5.28 190.88 .79 1.3 0.99 -20% +4%
2 102 4.20 5.64 0.48 ¢.86 6.91 -47% -5% -
3 100 3.91 7.65 .71 6.91 @.93 -24% -2%
4 1000 5.30 6.20 .55 ©0.84 0.83 -34% +1%
5 1000 5.00 7.91 g.64 @0.93 0.91 -30% +2%
6 1009 4.56 4,80 .48 0.78 0.92 -48% -15%
7 10000 5.41 5.91 8.55 0.84 @.83 -34% +1%
8 100089 6.52 6.46 .54 0.86 0.85 -36% +1¢
9 1060090 5.45 5.83 .55 ©0.84 0.8l -32% +4%
Table 4.6

Operational and Stochastic Predictions for M/G/1
with Hyperexponentiak Service Times ¢
=A.5 CV°=2.5




Case Arrival Base- M/G/l OA M/G/1 Pred. oA M/G/1
Count Line Fit Pred. Pred. Case Error Error

! 1 198 2.71 4.€5 .79 ©.70 0.67 +18% +4%

- 2 190 1.53 2.18 .59 @.52 0.52 +13% =0y
3 100 2.88 5.73 .84 0.75 0.68 24%  +10%

4 1008 3.58 4.08 3.66 0.67 0.68 -3% -1%

5 10020 4.68 4.51 .63 D0.70 0.66 -5% +6%

6 1008 3.43 3.78 .66 0.65 0.74 -11% -12%

7 16000 3.66 4.01 .67 @.67 0.73 -4% -4%

8 16060 4.03 4.35 .70 @.68 @.68 +3% =03

9 12000 3.51 3.66 .66 0.65 0.63 +5% +3%

Table 4.7

Operational and Stochastic Predictions for M/G/1
with Exponential 3Service Times




resulting value of n must exactly match the observed value.

Table 4.5 summarizes the simulation experiments for the
constant service time cases. We observe that the "M/G/1 Fit"
value for n never exactly matches the value of n observed during
the baseline simulation. This is certainly one advantage of tne
operational equations, However, we see that the "M/C/L
orediction" values for n are consistently more accurate than are
the "OA (operational analysis) prediction” values. Returning to
Figure 4.3, we see that halving the S(n) values causes the 5(n)
values to be overestimated; it follows that the operational
estimates of n should be on the high side. This is indeed the
case in Table 4.5. Similarly, examining Figure 4.4 one would
expect the operational estimates of n in the hyverexponential
case to be on the low side. This is confirmed by the simulations
(see Table 4.6). Finally, we would expect that the operational
estimates would be most accurate in the exponential service time
case. By inspecting Table 4.7 (the exponential case) we see that
the OA and M/G/1 predictions have roughly the same ©vercentage
error. In both of the other tables, the operational estimates of
n wer~ significantly further off than the stochastic estimates.

Thus it is clear that if the system one is modeling
satisfies the assumptions of an M/G/1 system, and if the service
time is non-exponential, then using the P-K mean value formula
can provide more accurate predictions than the aeneralized
birth-death formula from operational analysis (with the present
method of predicting the new S(n,t) values).

Whether or not the operational or stochastic predictions are
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more robust in the general case has not been considered here.
Sevcik and Klawe [13] have done similar analysis in the case of
gueueing networks. Their examples show that wusing operational
methods to opredict the performance of 2 two-server gueueing
network when the service rate of one of tnhe servers is doubled 1is
about as accurate as using an aporopriate stochastic model. It
is clear that this matter needs further investigation.

In this section we have concentrated on the utility of usina
adjusted values of the S(n,t) to predict performance of an M/G/1
queueing system when the mean service time 1is chanaged. In
exactly the same way, we could adjust the I(n,t) values in order
to attempt to predict the performance of an M/G/1 queueing system
when )\ changes. The results of the last section show that the
relationship between I(n) and \ is independent of the service
distribution. However, we know that the S(n) are independent of
\ only when the service distribution 1is exponential. Thus it
appears that similar conclusions would be reached concerning the
accuracy of operational methods for predicting the performance of

M/G/1 queueing systems when the arrival rate is changed.

5. CONCLUDING REMARKS

In this paper we have attempted to clarify the relationship
between the assumptions of exponential service times in M/G/1
queueing systems and the conditions of homoageneous service times
and on-line=off-line behavior in operational analysis. We have

pointed out that the operational concepts are defined with
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respect to a particular behavior sequence (or set of behavior
sequences). However, immediate generalizations of these concepts
allow one to define what is meant by an M/G/1 queueing system
with homogeneous service times or on-line=off-line behavior. In
the sense of these definitions, we were able to show that an
M/G/1 queueing system will have these oroperties only when the
service time 1is exponential. More precisely, we showed that in
any non-exponential M/G/l gueueing system, the set of all samvle
paths which have these properties as t-->m must be a set of
probability zero. Note that our discussion does not deny the
existence of such sample paths, we merely regard them as very
unlikely to woccur. We then demonstrated that an open,
feed-forward network of single server gqueues with external
Poisson arrivals can have a product form valid across a range of
arrival rates only when the service times are all exponential.

We then discussed the problems of using the generalized
birth-death formula of operational analysis to predict (from
measured data) the verformance of an M/G/1 queueing system when
the service times were halved. We demonstrated that the
relationship of S(n) and x depends on the service distribution.
Among the distributions we considered, the relationship was
linear only in the exponential case. In the ncn-exponential
case, the standard estimate of the new values of S(n) (one-half
of the old values), was seen to lead to less accurate predictions
than use of the Pollaczek-Khinchin mean value formula with

estimated values for the arrival rate and the mean and variance

of the service time. It appears that similar results would be

e
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found for the prediction case when the arrival rate is changed.

6. ACKNOWLEDGEMENTS

The suvoort of the Madison Academic Computing Center for the
preparation of this document and for the simulations of Section 4
is gratefully acknowledged. The simulations were written in
SIMSCRIPT II.5, which 1is a product of C. A. C. I. incorporated,
and which has been supplied to the University of Wisconsin at no
charge. Comments by Micha Hofri, Ken Sevcik, and the referees
have helped shape the presentation of this material. In
particular, I would 1like to thank Peter Denning, whose careful
reading of and numerous comments about an earlier draft of this

document have resulted in an improved paper.

W .

i



REFERENCES

— > YRR W T e

(1] Balbo, G. and P. J. Denning, "Homogeneous approximations
of general queueing networks," Proceedings of the 4th 1
International Symposium on Computer System Modelling and |
Performance Evaluation, M. Arato, A. Butrimenko, and |
E. Gelenbe (eds.), Vienna, February 6-8, 1979,

pp. 353-374. !

Operations Research, 4, 699-7284 (1956).

[2] Burke, P. J., "The output of a gueueinq system,” {
{
|

13] Buzen, J. P., "Fundamental operational laws of conputer
system performance," Acta Informatica, 7, 2 (1976),
pp. 167-182.

(4] Buzen, J. P., "Operational analysis: an alternative to
stochastic modeling," Proceedinags of the International 1
Conference on the Performance of Computer Installations, (
D. Ferrari (ed.), North-Holland Publishing Co., Amsterdam, 1

The Netherlands (1978), op. 175-194.

[5] Buzen, J. P. and Denning, P. J., "Operational treatment of
gueue distributions and mean value analysis," Computer
Science Department Technical Report No. 309, Purdue
University, (August 1979).

[6] Denning, P. J. and J. P. Buzen, "Operational analysis of
aueuelnq networks," Proceedings of the 3rd International
Symposium on Modelling and Performance Evaluation of
Computer Systems, Bonn, W. Germany, (October 1977).

{71 Denning, P. J. and J. P. Buzen, “"The operational analysis
of queueing network models," ACM Computing Surveys, 16, 2
(September 1978), op. 226-261.

(8] Jackson, J. R., "Networks of waiting lines," Operations
Research, 5, 518-521 (1957).

{9} Kleinrock, L. Queueing Systems Volume I: Theory, John
Wiley and Sons, New York (1975).

[10] Kleinrock, L. Queueing Systems Volume II: Computer
Applications, John Wiley and Sons, New York (1976°'.

[11] Mesztenyi, C. K., "FORMAL - a formula manipulation
language," Computer note CN~1.1, University of Maryland

gggfutet Science Center, College Park, Maryland (October \
).

| -36-




[12] Ross, S. M., Applied Probability Models with Ootimization
Applications, Holden-Day, San Francisco (1970).

. (13] Sevcik, K. C. and Klawe, M. M., "Operational analysis
versus stochastic modelling of computer systems,"
Proceedings of the Computer Science and Statistics: 1l2tn

3 Annual Symposium on the Interface, J. F. Gentleman (ed.),

University of Waterloo, Waterloo, Ontario, Canada,
177-184.




o . ! Y gy - ) ) -
M- TER - 2948

SECURITY CLASSIFICATION OF THIS PAGE ‘When Data Entered) ¢

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORYT NUMBER 2. GOVY ACCESSION NO, 3 RECIP' 4
2045 AD-AGE3 827 Bo fuical
6 LFe (and subusie) - :
On Homogeneity and On-Line=0ff-Line C
@e‘navior in M/G/1 Queueing Systems,
6. PERFORMING ORG. REPORT NUMBER
(7a)
_ CONTRACT OR GRANT NUMBER(s)
Sl et e
fiRaymond MLBr ant )
Y Y /D) DraG29-75-C-p024 )
S —
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::giRAA'W‘OERLKE.JSINTT.NPU.:AOBJEEfgsT‘ TASK
Mathematics Research Center, University of Work Unit Number 5 -
610 Walnut Street Wisconsin Operit\idﬁﬁ, Research

Madison, Wisconsin 53706

11. CONTROLLING OFFICE NAME AND ADDRESS -
U. S. Army Research Office //
P.O. Box 12211

Research Triangle Park, North Carolina 27709

T4, MONITORING YGENCY NAME & ADDRESS(I! different from Controlling Office) | 1S. SECURITY CLA

UNCLASSIFIED

158, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

operational analysis, gueueing theory, computer system modeling

ot i

20. AQ{}I!ACY (Continue on reverse side if necessary and identity by block number)

Operational analysis replaces certain classical queueing

theory assumptions with the conditions of *homogeneous service
times® and %on-line=off-line behavior.® 1In the general case, it
has been conjectured that these conditions hold as t-->= only if
the service times are exponentially distributed. In this paper, we
show that this is correct for stable M/G/l queueing systems. We
also state dual results for inter-arrival times in G/M/1. Finally,

we consider the relationship between the operational gquantities

DD ,'o'3; 1473  eoiTion oF 1 WOV 68 1s oBsOLETE

UNCLASSIFIED

a 1 i- Q 0 ¢ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ey S




\\\ABSTRACT {Continued)

S(n) and the mean service time in M/G/l1. This relationship is
shown to depend on the form of the service time distribution. It
follows that using operational analysis to predict the performance
of an M/G/l1 gueueing system will be most successful when the
service time is exponential. Simulation evidence is presented
which supports this claim.

(\

- B O T

PV

L i PR, O




