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ABSTRACT

The integral equation

1 (f sinO (t) I sin (s+t)L& (s) = r l-lotin (ut
-1 log sini(s-t) dt

0 Pi +ftsino PuMdu
0

was derived by Nekrasov to describe waves of permanent form on the surface of a

non-viscous, irrotational, infinitely deep flow, the function # giving the

angle which the wave surface makes with the horizontal. The wave of greatest

height is the singular case p = w, and it is shown that there exists a solu-

tion 0. to the equation in this case and that it can be obtained as the limit

(in a specified sense) as p1 - of solutions for finite U•

1
Stokes conjectured that 0.(s) w as s + 0 , so that the wave is sharply

1

crested in the limit case; and Krasovskii conjectured that sup 0 (s) < - I for
s E10,7T 

6
all finite p. While the present paper makes only limited progress towards

deciding Stokes' conjecture, Krasovskii's conjecture is shown to be false for

1
sufficiently large V, the angle exceeding Tv in what is a boundary layer.
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SIGNIFICANCE AND EXPLANATION

It is shown that there exists a solution to Nekrasov's integral equation

which describes a wave of greatest height and of permanent form moving on the

surface of a non-viscous, irrotational, infinitely deep flow. It is also shown

that this wave can be obtained as the limit, in a specified sense, of waves of

almost extreme form.

Stokes conjectured, almost 100 years ago, that in the extreme case the

wave is sharply crested and the wave surface makes an angle of with the

horizontal at the crest, and Krasovskii conjectured that, for waves of non-

extreme form, which are smooth-crested, the angle between the surface and the

horizontal at no point exceeds -, the latter belief being widely held until

some recent numerical calculations cast some doubt upon it. While the present

paper makes only partial progress towards deciding Stokes' conjecture, it

does confirm the numerical evidence and prove that the Krasovskii conjecture

is false for waves sufficiently close to the extreme form, the angle exceeding

in a boundary layer.
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The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.



THE STOKES AND KRASOVSKII CONJECTURES

FOR THE WAVE OF GREATEST HEIGHT

J. B. McLeod

1. Introduction

This paper considers the problem of a wave of constant periodic form moving with

constant velocity on the surface of a non-viscous fluid which is either of infinite

depth or on a horizontal bottom. The motion is two-dimensional, i.e. the motion is

independent of the coordinate in the horizontal direction perpendicular to the velocity

of the wave, and if we restrict ourselves to irrotational flow and assume that the

periodic form of the wave is in addition syimnetrical about a vertical axis through a

crest, then it is known that the shape of the wave can be described (in the case of

infinite depth) by a solution of the equation

(1.1 -1 fpi sinol(t) _ sin ks sin kt dt
31T +ftsinO(u)du l"

0
This equation is due to Nekrasov I]. An exposition of its deduction can be found

in [2], and in [3] an analysis of the equivalence between (1.1) and other

formulations of the problem, which we shall not however require in the present paper.

The equation is obtained by mapping the region under one wave-length (from trough to

trough) conformally onto the unit disc cut along the negative real axis. The generic

is
point on the circumference of the disc is e , with -7 < s < 7 , and ¢(s) gives

the angle between the wave surface and the horizontal at the point on the surface which

is
corresponds to the point e on the circumference of the disc. The constant . is

given by

3g~c
3,2irQ

where g is the acceleration due to gravity, A the wave-length of the periodic wave,

c the speed at which the wave form is progressing, and Q the speed of particles at

the crest of the wave. In obtaining (1.1) it is assumed (as we have already mentioned)

that the wave is symmetrical about a vertical axis through a crest, and this is re-

flected in the fact that (1.1) certainly implies that 0(-s) = -O(s). Using this

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.

A



we can restrict attention to the interval [0,7] and take the equation in the form

2 ( - I sino(t) sin ks sin kt }dt

(1.2) (s) = sin(u)du kk
0

or, after summation of the series,

1 p iT sin (t) in(st I d t

(1.3) (s) = sin (t ) log sinf(s+t) dt,

0 W + sinf(u)du
0

and the last form is the form in which we shall mainly consider it.

For a fluid of finite depth there is a comparable formula; with the same interpre-

tations on * and s , we have

(1.4) 1(s)= r / sin (t) log sn{V
1

iK(s+t) dt

o ' + f sin (u)du sn{ ,- K(s-t) I t

0

where sn denotes the Jacobian elliptic function whose quarter periods K, iK'

satisfy

K'/K = 4h/A

h being the mean depth of the fluid.

Nekrasov himself discussed solutions of (1.3) and (1.4) for waves of small ampli-

tude, but the first to tackle successfully the question of waves whose amplitude is not

necessarily small was Krasovskii (4]. Using a different but equivalent form of (1.3-4)

(see [5) for an exposition of this equivalence), Krosovskii showed that, for each F

with 0 < 3< , there exists a corresponding value of u and a continuous solution

¢ of (1.3) (or (l.4))such that > 0 and

sup (s) = 6.
sC [0,71]

1
The method is essentially a degree theory argument in which the inequality 5 <

plays a crucial role, but the approach does not give the range of values of u for

which the solution exists. Krasovskii's solutions all satisfy 0(0) = O(W) = 0 , as

indeed (1.3-4) imply if ij is finite, and so represent smooth-crested waves.

-2-
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The gap over the range of values of . was tilled by Keady and Norbury [3], who

have shown, again by degree theory arguments, that one can find a solution of (1.3)

bifurcating from the trivial solution at the first eigenvalue i= 3 of the linearised

problem, and then follow it continuously for all finite u . Their final result is

that, for all finite L > 3 , there exists a continuous solution € of (1.3) such that

k is not identically zero and 0 < < 7. In the case of (1.4), the result remains

true with i. > 3 replaced by w > 3 coth (2nh/X). (It is known that there can be no

solution 0 with these properties if 0< < 3in the case of (1.3) or 0 < ' 3 coth (27h/')

in the case of (1.4).) Again, the Keady-Norbury waves are smooth-crested.

The case u = (Q= 0) corresponds to the presence of a stagnation point at the

wave crest, and it is the case in which, for given c , the wave reaches the greatest

height above mean level [6]. In 1880 Stokes [7] conjectured that there does indeed

exist a wave in this limiting case, but that it is peaked instead of smooth-crested,

and he argued, on the basis of an asymptotic approximation near the crest, that for the

corresponding solution of (1.3-4)

(1.5) lim O(s) = 1-T ,
s 0

1
i.e. that at the peak the slope of the wave is inclined at 17T to the horizontal. It

is not difficult to show that if there exists a solution 0 to (1.3) (or (1.4)) with

; = - , and if that solution (assumed continuous on (0,r] with 0 < t < i ) is suf-

ficiently regular near the origin that lim O(s) exists and is non-zero, then neces-
s40

sarily (1.5) holds. Toland [5] gives a proof, and for completeness another (perhaps

simpler) is given in §2 below. But the difficulty is to establish first that there is

indeed a solution, and secondly that the solution has sufficient regularity.

The obvious approach is to take the Keady-Norbury solution for finite w , and

show that it converges to a solution of the limit equation as w , at least through

some sequence of values. In [5] Toland carries through this process, using some rather

deen results from the theory of Fourier series, and concludes that there is convergence

co a solution of the limit equation, but he can prove effectively no regularity

-3-
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properties near the crest, so that (1.5) remains unproved. Toland works always with

(1.3) but he remarks that the method extends to (1.4).

The first aim of the present paper is to give a quite different account of the

convergence process from that given by Toland. The method uses little more than ele-

mentary manipulations with the integral equation, and is both simpler than Toland's

and stronger, in that more detailed information is obtained. Even this more detailed

information is however insufficient to decide the truth of (1.5).

We work throughout with (1.3), but the argument is essentially unchanged for (1.4),

as we point out. Our goal therefore is the following theorem.

Theorem 1. If = = , there exists for s > 0 a solution O(s) of (1.3) with the

following properties:

(i) is continuous on (0,r]

(ii) 0 < <0 Jr;

(iii) O(s) is bounded from zero as s 0

(iv) 0 is the limit of a sequence of functions {0 I as p 4 , where € is

a non-trivial solution of (1.3) continuous on (0,v] and satisfying 0 < OW < ?
"

This limit process is uniform on [n,w] for any fixed n with 0 < n < 7.

Theorem 2. Theorem 1 remains valid if (1.3) is rellaced by (1.4).

Remarks. 1. In §3 we reduce the proof of Theorem 1 to that of two lemmas, which are

then proved in the succeeding sections.

2. The proof of Theorem 2, as we have already mentioned, is almost identical with

that of Theorem 1. What little needs to be said is said in a short section at the end

of the proof of Theorem 1.

The equation (1.5) embodies what is conventionally regarded as "Stokes, conjecture".

But in fact, in his paper in 1880, Stokes says rather more. Having made the conjecture,

he goes on as follows.

"But whether in the limiting form the inclination of the wave to the horizon con-

tinually increases from the trough to the stmit, and is consequently limited to 300,

-4-



or whether on the other hand the points of inflxion which the profile presents in th.

general case remain at a finite distance from the summit when the limiting form is

£ -- sreached, so t n 0asspect that the rough to the smmit the inclination attains a
~maximum from which it begins to decrease before the summit is reached, is a question

~which I cannot certainly decide, though I feel little doubt that the former alternative

represents the truth."

More briefly, Stokes is mnaking the further conjecture that the limiting solution

A, satisfies 01 < 0 . I suspect that the proof of this second conjecture is even more

difficult than that of the first.

Stokes, however, has not been the only one to make conjectures about this problem.

Krasovskii, in the light of his work in [4], was led to two conjectures which, expressoc4

in our notation, are as follows.
1

1. When sup 0 (s) tends to !Tr, the solution tends to the limit solu-
sE [O,sJ]

tion with ii =

2. There exists no solution 0. with sup ( Cs) >
slc[O ' T]

The truth of these conjectures is now in some doubt because of recent numerical

evidence by Longuet-Higgins and Fox [8]. The numerical results indicate that, once
1

is sufficiently large, sup ( Cs) does slightly exceed C 7, by .37°, although itsc [,Tr]

does so in the boundary layer, i.e., at values of s which tend to zero as - -

so that the effect dies out in the limit case. Our extimates enable us to make an

examination of the behaviour of the boundary layer and give an analytical proof that

Krasovskii's conjectures are indeed false.

Theorem 3 . The sequence of functions {O} in Theorem 1 or in Theorem 2 must satisfy

sup O (s) > 6iT if 1 is sufficiently large.
sc [0,7r]

The proof, which is given in the final sections of the paper, is a matter of

showing that in the boundary layer the function (with its argument suitably scaled)

tends as p - m to a solution of the integral equation

-5-
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1( sin,(t) ost_- I dt(1.6) - (S) lo -
0 1+J sin:(u)du

0
and then investigating the asymptotic behaviourof solutions of (1.6) as s -. It

1
is a natural question to ask whether the number of roots of . = i - becomes un-

boundedly large as i - , and the answer to this is presumably in the affirmative.

But the theorem states only that there is at least one solution for . sufficiently

large, and as is noted at the end of the proof of the theorem, to prove more would

seem to entail an altogether more detailed examination of the asymptotics of (1.6) and

is therefore not attempted in this paper.

-6-
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2. A formal proof of (1.5)

Our object is to prove that if is a solution of

0 1s, t sifl (udu lo'sinl(s-t)Id

0
which is continuous on (0,r] with 0 t and if

(2.1) Jrn '(s) = Z C

then necessarily 7 -. (An almost identical proof, which we shall not giv.e, applies

to (1.4) with ~

In view of (2.1), we have

sin;(t) 1 s tf t *()

and it is well known that

log sinA (s+t) 0
sini(s-t) (t

if s is of smaller order than t , and that, if both s and t are small,

IL ~log sin-, s+t) 'tlog +

si~st 5-t

Thus, for small s (- 0)

Ifs S f7 j si t log 'in(st) dt
3 ~ 7T0 s fsino(u)du in J ,t

3nT t is-t t

fs 0g IL'a du + (s)
37T U 1-u

by making the transformation t =su in the first integral. But the integral in the

last line clearly tends (as s 4 0) to

(2.2) -log r-u du

-7-
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2

and since the value of this last integral is ?' , the result (1.5) follows. (The

integral (2.2) can be evaluated, for example, by noting that the contribution to the

integral from [0,1] is equal to the contribution from (l,-], as is seen by the trans-
-i

formation u-u , and then evaluating the integral over [0,1] by expanding the

integrand in a power series and using 
12

ln

-8-



3. The proof of Theorem 1

In the proof of Theorem 1 and the attendant lemmas, will be a '.o-rxv.

solution of (1.3), for finite ,( >3), with continuous on [0,-] andi

(0) (7) = 0 . The existence of is guaranteed by the work of Kea:- a3 r- .

The letter K will stand for various positive constants, not necessaril..y tcn ar.

at each appearance, but always independent of any of the parameters un.er c:nsio erat I

The notation K( 1l,n 2.... n ) will mean that the constant K depends on the n

l, ...,9n , but on no other parameters in the problem.

The first step is to obtain an estimate for the denominator in the intozran 
. 
i

(1.3) as L -- '. This is the effect of Lemma 1, which is proved in :4 bDel w.

Lemmal. 1 + sin' (u)du > K n,
0

where the positive constant K is independent of both ,. and .

We also have (proved in §5 below)

Lemma 2. The functions 0,, are equicontinuous in [f, for any fixed with

0 < rl < "r

Lemma 2, together with the bounds 0 <, , enables us to apply the Ascoli-

ArzelA theorem in any fixed interval [n,i], and to conclude that there must be some

sequence p} which is pointwise convergent on (0,-] as * - - and uniformly so on

[n,r]. The limit is of course continuous on (0,-] and satisfies 0 < : - -,

and by applying the dominated convergence theorem to (1.3), with the integrand bounded

by

(3.1) log st

we see immediately that satisfies the limit equation,i.e. (1.3) with -=. The

proof of Theorem 1 is therefore complete once we have established that I(s) is

bounded from zero as s + 0

To show this, note that 0 < < implies that

ft o(u)du < Kt for 0 < t <

0

-9-
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and from the equation (1.3) (with _ ) we have

:()_K ±.. lg sin (S-t)It

But for 0 t i s we have

(3.2) log Ki~st K
sini(s-t)i - s

and so

'(s) - (t)dt _K-so0

the last inequality following by taking the limit in Lemma I as . .This

completes the proof of Theorem 1 .



4. The i'roof of Lemma I

if the lemma is proved for, say, D , then it is trivially true (with a

possibly different K) for 0 -. We therefore assume * Also 0 - -

implies

K1  sin; / K

and using this in (1.3), we have

(S) 2'i (t) :2 1 log sin (s+t) "d t
s--sds _ K - 1 -+t - sin ( dsdt.

(u)du l

For the relevant ranges of s,t

sn(s~t) / s+t

(4.1) K, log 
s in  

log-I K
,sinl(s-t) s-t 2

and so, with s = tv,

(s) (t) ,2 1 l+v

ds K fI 2 / /t 1 0 !v dd
+fJ; (u)du ,n/t
0

For the relevant values of t the inner integral is both bounded and bounded from zero,

and so

f2n P (S) ds _ K[log( ;
-I 

+ f 21()du)]2'

n W

r f2ni (u)du

- K log 1 + + } (u du

0

Now the left-hand side is certainly bounded, since

f2n -P (S)ds * In[log s]
2
n

s n

and so the right-hand side is bounded. Also,

log(l + x) > Kx

for x positive and bounded. Hence

f2q (u)du
f2r

l  
-. ds K

Po 0
s - -7l+f (u)dun0 u

nJ du

> K i u

-+j W(u)du
0

from which the result of the lermna follows.

-11-
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5. The proof of Lemma 2.

Let s1,s 2  [ni7. Without loss of generality we shall suppose s

we are interested in small values of 'sThen

( (st sinlP (t) lgsinl (sl+t): sin-(s, t

js 1 )(s) = - ~ ~ 1 ogI
0 ~+Jsin . Mudu i st) lg (.-t

0

I,1 2'

say, where, for a given 6 > 0 ( 6 being thought of as being small compared with -

but large compared with isl1-s2 1), 1 2 is the integral over the part of [0,-] 1:..Inc

in the interval (s -6's +6] and I is the integral over the remainder of

Since

d log sin j(s+t) ico I ' (S+t) - cot 1 (s-t)
Us' sij~s-) j 2t

j 5.. 1)
sin t

2tsin~s~t sin~s-1

it is clear, by use of Lemma 1, that in 1 the integrand does not exceed K(-), s -

so that in fact

while

'121 <K(n)6jlog6!.

The equicontinuity then follows by choosing first 5 sufficiently small, and then

I s1-s2 l. Specifically we could choose Is s1 -s2 K which shows that actually the

functions are equi-Holder-continuous for any ex~ponent with

-12-
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6. The proof of Theorem 2

The only difference from the proof of Theorem I is that the expression

sini (s+t) i
sinj(s-t)

has to be replaced by

(6.2) log sn{-IK (s+t)i
sn{r 1-K (s-t),i

We have to verify only that the va. )us estimates used in connection with (6.1) api'lv

equally well to (6.2). The specific places where these estimates appear are (3.1),

(3.2), (4.1), (5.1),and there is no difficulty in carrying out the modificationsat

these points.

t

V

-13-
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7. The proof of Theorem 3

We shall give the proof for the case of equation (1.3), leaving to the reader

the very minor modifications necessary to deal with (1.4).

Once again we begin by stating two lemmas which are of independent interest and

are proved in the succeeding sections. We obtain first an estimate on ' and

being the solution obtained in Theorem 1.

Lemma 3. The functions 0 are continuously differentiable on [0,-] and

sl¢ s)l <K for 0<s< ,

K being independent of W . Also, 0 is continuously differentiable on (0,-1, and

sIl'(s)[ <K for 0 < s < 7

The next lemma asserts that the Stokes conjecture (1.5) is true at least in some

average sense.

Lenma 4. J7 (s)-lT d
Ld/ <K,

n

where K is independent of n as n 4 0

we turn now to the behaviour in the boundary layer. From Lemna I we see that if
-1

n is of higher order than p , then in the expression

+ sino (u)du
0

the integral term must dominate, while 0 < o < J implies that, if n is of smaller
-l -l

order than W , then p dominates. Since we certainly expect the integral to domi-

nate outside any boundary layer, we are led to believe that the width of the boundary
-i

layer will be of order p1 and so to make the transformation

a = PS , *(O) = 0 (s)

and it is trivial to verify that * satisfies

(7.1) 0*(C) = S 1 n log sin -l(GT) dT.
I 3 T0 l+f TsinO*(v)dv Isinip- (C-i)I

0
At the same time, the uniform bound 0 < 0: < *i and the equicontinuity estimate

j* (a) I < K which follows immediately from Lemma 3 assure us that, in any fixed
I4

in"erval 0 < k < a < K < =, there is a subsequence {0*} which converges uniformly

-14-
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to :* , say. Further, by Lemma 1, and the fact that, in the range of integration,

1 sin, l(+) +

(which is itself a consequence of

•-l -l
sins. (0+i) sin'. (c-i)

0+1 - 0-1

i.e. of the monotonicity of sinu/u), we can bound the integrand in (7.1) by

log 1+

and so let and apply the dominated convergence theorem to see that, for > C,

;* sitisfies

(7.2) €*(o) = ± sin*() o - d .

0 1+ fsin *(vdv

0

In fact, since (7.1) implies that 0*(0) = 0 for all 1, (7.2) holds also for = 0,

and so for u > 0.
* . . . . .- .

In order to prove Theorem 3, it is only necessary to show that any solution of

(7.2), or at least any solution satisfying whatever conditions can be deduced from the

1
limit process P* = lim 0* ,cannot satisfy the inequality 0< < r iT. For if the

inequality is broken by 0* , then it must be broken by 0: for r sufficiently large,

and the theorem is complete.

1
To show that 0 < 0* < is impossible, we remark first that we can assert that

e*(w) I- T
6- 6 T

1

where K is independent of n as q a This result is comparable to Lemma 4, and

is proved by manipulations on (7.2) which are sufficiently similar to those used in the

proof of Lemma 4 as to require no further mention. Now suppose for contradiction that

1
(7.3) 0 < 0* - "

Then clearly

0*(C) -6IT

(7.4) do
11

exists, and this certainly implies that 1i is one limiting value of **(a) as a - a.

-15-
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In fact,

(7.5) *(a) - as 0

For if not, suppose that
1

lir inf 0*(a) = t- 36 (6 > 0).

Then Lemma 3 assures us that, for 02 > al

1 < K log a2

1

and if we choose 01 so that 0*(aT) 26 and 02 so that

02

K log a 6,

then we see that
1

*(a) <_L -6 for 0 < a < 02

and I 0a2 0)(o) - T o.,, - 62

G 6 d 6 log a = -
a1

Since this is true fnr arbitrarily large values of 0la2, it contradicts the conver-

gence of (7.4) and so establishes (7.5) (always under the assumption that (7.3) is true).

We can now use the fact (cf. §2) that

1 .1 L log +T I6" 37r 0 T o-7 T

to see that

1 1 ___Sin0r 11 I or
(7.6) 0*(o) - i =- I' -(T log a~~d

6 10 = 0 ll+f Tsino*(v)dv T G-T

0

0 [ O sino*(ou) 1 1 l+u:--- hog L- du,
31 l+ au sino*(v)dv a log

and so 
0

T d O _. i l+u.[ sino'(au) 1 Id(ou)4 du
f' da = u 1- au

p a31 0 IlIPuI +f sino*(v)dv o
0
0i + f Pu sin (v)d v du= - lo g L ' 10J 0. du,

-16-
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where, to obtain the last line, we have used the fact that sin*() -. as - .

Finally, therefore, we have

(7.7) do
p

f 1 + 0fU(sino*(v) - J)dv '

=- logjj.- log + 0 du

0

1 ft 1sno (v) 0
-- . og l og 1 + 0 dt.

: 1
Since 0 < < -- , we know that

- 6

(7.8) ft(sin*(v) - )dv

0
either converges as t -* or else diverges to -. In the latter case we can split

the last integral as
+ (s in*(v) -)dvt

(7.9 - A+ log log J1 + = Ij + 12'

A0 A

say, where A is a number chosen so that the logarithm is negative for t > A. Now,

for large p, in 1

and so

I =O(p
-  .

Also, (7.5) implies that

1 ft (sino*(v) - i)dv

0
is small for large t , and so

-17-

-, ,~ ZS i, ___________________



I2> K (sin,: i (v) - )dv. lg dt
A t 2 0

K I dt
A' t

= 1 f~lg ~ 1 du

-lu~ log,+U

since the integrardI behaves like u- for small u .This implies that (7.9) is

positive for large p, which contradicts the fact that it is equal to (7.7) , and this

contradiction establishes that (7.8) converges as t - . Indeed, exactly the same

argument shows that (7.8) cannot converge to a limit less than -1, and so, for all t 7

(7.10) 1 + ft(sin *(v) - ')dv > 0

0
The convergence of (7.8) implies the convergence of

0 )- 1T

f T do
0 a+

-for any a with -1 < e < 0 , and in fact

(7.11) TM1 do
0 a

(7.12) _Lf sino*(T) - ~...log 2+j1 do} dT
3n0 [1 + f Ti*(vdv 0 a+1 10-TI

( 1 + fT (sin * (v) dv
1 ~ . 0

(7.13) = tanC -vi) f -y log 1+- dr

by setting a =Tu in the inner integral in (7.12), using

f - I Io
Ur1l L'- du Ita0 )

and then integrating the outer integral by parts. if we now let aL -~ -1, the integral

(7.11) remains bounded because of the convergence of (7.8), and so also therefore does

(7.13). Since tan(jra) * ,the integral in (7.13) muse tend to 0 , whereas in fact

the integral has a strictly positive limit because of (7.10). This final contradiction

-18-
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shows that (7.3) is false and proves the theorem.

This shows that * = has at least one root, and so also therefore has

" 3 
=  

11
1 - for . sufficiently large. To show that the number of roots of "*
6 .- 6

is unbounded as 
-

, we should need to show that :* oscillates about infinitely

1
often, and this would be proved by obtaining a contradiction to the fact that ;* - -

6

is ultimately of one sign. The assumption that * - is ultimately of one sign

allows us to follow through much of the above analysis. We can conclude (7.4) and (7.5),

and the convergence of (7.8). One can even show (what we could have shown above but

did not need) that

(7.14) J-(sin¢*(v) -. )dv = -.
0

But the argument above did require in the last step the inequality (7.10), and this we

1
no longer have if we are merely assuming that : - is ultimately of one sign; nor

does it seem easy to modify the argument.

1
An alternative approach (under the assumption that * - - is ultimately of one

sign) is to use the consequent fact that in to generate an asymptotic expansion61

and deduce from this the contradiction that * must oscillate about 1-r. Formally,

a6
this is easy. For suppose that

(a) - as a -

where re a > 0 . We have from (7.6) and (7.14) that

T(sin *(T)-) + f'(sin *(v)-)dv

a log dl
0 T(OT - f (sinp*(v) - )dv)

T

1(-a_ 1-a)

1 -V
3 ( 

0+I
- f-J2 log O-T

03 a 0 d

- 73 r ....f +I log d-T
1 -a l

- 1 l-a tan( a),

so that a satisfies

-19-

,-=, .



(7.15) tan(iza) = (a-l)v3,

and the question is to determine the roots of this equation with smallest i.ositlv.

real part. It is straightworward to verify that (7.15) has no real root satisf'Yi:i

0 < a < 2 but it does have roots in the strip 0 < re a < 2. To see this, ailly

Rouch4's theorem to

(ce-i) 23- (s-l) tan( ra).

On the line res = 0 ,

Itan( 0 )Tl = Itanh (JTia) I _ 1

so that

1(s.-i) 2V31 > (-i) tan,(-),-

and there is a similar argument on re a = 2. Hence (7.15) has precisely two zeros in

the strip, which are of course complex conjugates, and it is easy to check that the.:-

in fact lieon the line re a = i. Since ti~e roots of (7.15) with smallest positive

real part have non-zero imaginary parts, the function 0* is oscillatory, as

required.

The above argument is, however, only formal, and we will not attempt here to

make it rigorous.

-20-
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8. The proof of Lemma 3

It should be remarked that Lemma 3 states much less than is true. The fact that

0 is continuously differentiable, indeed analytic, on (0,7] can be regarded as a

particular case of the theorem by Lewy [9] on the analyticity of free boundaries awa:,

from stagnation points, and we could also get that information, and estimates on highIer

derivatives, by a more detailed examination of the proof below. The same applies to

on (0,71, but we will in fact restrict ourselves to proving the lemma as stated, sinco

that is all that we require subsequently.

We will prove the result for . The reader will find that it is even easier for

(', and that in that case the relevant estimates are independent of ~.*as required.

We write

0(s, f7= t-r sino~t) s sin is) }1lg dt

OL0 fsino(u)du fs sinoiu)du t 'st
0 0

1 p _ _ _ t flogt sin -log+t s al dt
37 0 ftsifl~)duj t st

0

+ .1 s sino(s) PT1 lg S-t dt

0
and so

~'~ - ~ { t sino(t) _ s sin (s) } dt
3T0 fsin4'(u)du f~ sino(u)du s 2-t

0 0

.LfT t sino(t) 1 d g sinJ(s+t) s dt
(8.1)~~~~~~ + iF~u s ~ s (s-t) Is-t d

0 ft ioud
0

+1 ssino(s) d f islogI!Jl dv.

31t f s sino(u)du ds v l-v J

* 0
There is no difficulty in justifying the above differentiation (for s > 0) except

for the first integral, since the expression ... ) in the second term has no singularity.

at s =t; the differentiation of the first integral is also justifiable since is

-21-



Holder-continuous of order Isay, this following from the remarks at the close of

Lemma 2.

To obtain the estimate

se~s) _K,

we observe that the third term in (8.1) is OR1) as s ,0 , and so causes no trouble.

The regular behaviourof the expression -,**. in the second term of (8.1) assures us

that the integrand is bounded for small s and t (which is all that we are real!-,

concerned with), and thus again leads to a term 0(1) in .For small s , th,-ere,-

fore, we can write

W -(2S) t sin;(t) s sAi,(s) 2 5 +Os
(7.2)ft sin (uOdu Is sinc(u)du s~ dSt + Cs

II +12 +3 + 0s

say, where 1 1 is the integral over [0,k Is], 1 2 over [k~s,k 2s] I and 1 3 over

[k2  Tr I, k 1 (<I) and k 2 (-1)- being. fixaJ positiv.e q~umbers- which ire sh~all c'.hcxse more

precisely later. Then using

S in P(u)du Kt

0
obtainable by letting w in Lemma 1, we obtain

0 s
and similarly !131 <K

Also, we can write, for some between s and t

t sino(t) a sino(s)

ft.()d fS s influ)du

0 0

-s +si2

sinp(u)du f in Mudu (f sinoIu)du
0 0 0

and so

-22-
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+ k s up U:)

wh er e k (which deprends on k, and k,) can be taken 1,.sta nt if k anA k
1 -a

are fixed sufficiently cls to unity. Thus we have Iron (8.2) that

sup S:().u:'(s), u
S.

from which the final res-ult of thu lemmna follow: irnmedat,.

p -23-
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9. The proof of Lemma 4

We first make the observation that

il gsinils+t)jlog l (-t) I I

_________j sinistt K

-og sinl(s+t) 1- jsn(-~ s

by an application of the mean value theorem, provided that s 0, t 0) ,s

say. Also,

1 'T= 1r 1logla tdt = f7j logl -+tdt + O(s)T T 0t s-t 0t ,S-tl

as s 0 , and so

1~s 1 fI -in--------- - -t lo Idt + 0(s), as s
710 f ftsin~p(u)du t S-tj

S f 77/S L si(sv) _1 lv0
fsT, 1 log j-+-vdv + O(S)

Thus 0J

11

T) 10 Lfssino(udu sv j l-v

0

= ~.fn/n log {tI 4fmin(T/viT)(.sin~sv) I ds dv
iT 0 I LSv sinO(u)du V

f Sv i { 1 S i s -m i n ( i/v , J dv

-24-



But Lemma 1 (in the limit as w * o) tells us that the logarithm in the last formula

is uniformly bounded for all relevant values of sv , and so the integral is bounded

by

K f l  l og [ lo dv

which gives the required result.

4

V

-25-
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