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ABSTRACT
The integral equation
6 (s) = = [T sing, () 1 sind(s+t) g
u T °9 | Sins(s-t)

- t .
0 1+f sin¢ (u)du
0 H
was derived by Nekrasov to describe waves of permanent form on the surface of a
non-viscous, irrotational, infinitely deep flow, the function ¢u giving the
angle which the wave surface makes with the horizontal. The wave of greatest
height is the singular case u = =, and it is shown that there exists a solu-
tion ¢ _ to the equation in this case and that it can be obtained as the limit
(in a specified sense) as yu + » of solutions for finite u . -
Stokes conjectured that ¢_(s) + %WT as s + 0 , so that the wave is sharply
. - . 1
crested in the limit case; and Krasovskii conjectured that sup ¢ (s) iET for
s €[0, 1l
all finite y. While the present paper makes only limited progress towards
deciding Stokes' conjecture, Krasovskii's conjecture is shown to be false for
sufficiently large u, the angle exceeding %m in what is a boundary layer.
AMS (MOS) Subject Classification: 45G05, 45Gl0, 76Bl5, 76B25
Key Words: Water waves, periodic waves, waves of permanent form, free
boundary problems, Stokes' conjecture, Nekrasov integral equation,

singular perturbations, boundary layer
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SIGNIFICANCE AND EXPLANATION

{

-~ It is shown that there exists a solution to Nekrasov's integral equation

- e

which describes a wave of greatest height and of permanent form moving on the

"P ) surface of a non-viscous, irrotational, infinitely deep flow. It is also shown
that this wave can be obtained as the limit, in a specified sense, of waves of
. almost extreme form.

Stokes conjectured, almost 100 years ago, that in the extreme case the
L r 7 o
= wave 1s sharply crested and the wave surface makes an angle ofé&# with the

horizontal at the crest, and Krasovskii conjectured that, for waves of non-

extreme form, which are smooth-crested, the angle between the surface and the

t e

horizontal at no point exceeds é-ﬁ, the latter belief being widely held until

some recent numerical calculations cast some doubt upon it. While the present

¥

paper makes only partial progress towards deciding Stokes' conjecture, it

does confirm the numerical evidence and prove that the Krasovskii conjecture

- Py 4
is false for waves sufficiently close to the extreme form, the angle exceeding
‘ &-n in a boundary layer. -
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THE STOKES AND KRASOVSKII CONJECTURES
FOR THE WAVE OF GREATEST HEIGHT
J. B, McLeod

1. Introduction

This paper considers the problem of a wave of constant periodic form moving with
constant velocity on the surface of a non-viscous fluid which is either of infinite
depth or on a horizontal bottom. The motion is two-dimensional, i.e, the motion is
independent of the coordinate in the horizontal direction perpendicular to the velocity
of the wave, and if we restrict ourselves to irrotational flow and assume that the
periodic form of the wave is in addition symmetrical about a vertical axis through a
crest, then it is known that the shape of the wave can be described (in the case of

infinite depth) by a solution of the equation

(1.1) o(s) == [" sing (t) sin ks sin kt |
3n_" Koy

v % [Ssing (w)du X

This equation is due to Nzkrasov {l]. An exposition of its deduction can be found
in [2], and in [3) an analysis of the equivalence between (1.l1) and other
formulations of the problem, which we shall not however require in the present paper.
The equation is obtained by mapping the region under one wave~length (from trough to
trough) conformally onto the unit disc cut along the negative real axis. The generic
point on the circumference of the disc is eis , with -7 < s <7, and ¢(s) gives

the angle between the wave surface and the horizontal at the point on the surface which

corresponds to the point e"® on the circumference of the disc. The constant . is
given by
3gic
u=.3..§,
2mQ

where g is the acceleration due to gravity, A the wave-length of the periodic wave,
¢ the speed at which the wave form is progressing, and Q the speed of particles at
the crest of the wave. In obtaining (1.1) it is assumed (as we have already mentioned)
that the wave is symmetrical about a vertical axis through a crest, and this is re-

flected in the fact that (1.l) certainly implies that ¢(-s) = -¢(s). Using this

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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we can restrict attention to the interval [0,7] and take the equation in the form

-]
T i t sin ks sin kt
(1.2) ols) = é% f ~ slg%( ) { z —i—-—_I_-—__—_ }dt )
0 u =+ [ singluddu \ k=l
o]

or, after summation of the series,

sint (s+t)

N 1 sing (t)
(1.3) w(s) = ""f ing sins (s-t)

- t
3 o 1 + I sing¢{u)du
[}

log

s,

and the last form is the form in which we shall mainly consider it.

For a fluid of finite depth there is a comparable formula; with the same interpre-

tations on ; and s , we have

log - dat ,
sn{" "K(s-t)!}

. -1 N
(1.4) ss) = é% fw - s;ni(t) sn{r "K(s+t)!
0w+ f sing (u)du

0

where sn denotes the Jacobian elliptic function whose quarter periods K, iK'
satisfy
K'/K = 4h/x ,
h being the mean depth of the fluid.
Nekrasov himself discussed solutions of (1.3) and (1.4) for waves of small ampli-
tude, but the first to tackle successfully the question of waves whose amplitude is not
necessarily small was Krasovskii [4). Using a different but equivalent form of (1.3-4)

(see [5) for an exposition of this equivalence), Krosovskii showed that, for each &

8
. 1 : . : ;
with 0 < 8 < g there exists a corresponding value of u and a continuous solution

¢ of (1L.3) (or (1.4))such that ¢ > 0 and

sup $(s) = B.
sc(0,n]

The method is essentially a degree theory argument in which the inequality B8 < %-w

plays a crucial role, but the approach does not give the range of values of . for

which the solution exists., Krasovskii's solutions all satisfy ¢(0) = ¢(n) = 0 , as

indeed (1.3-4) imply if u is finite, and so represent smooth-crested waves.

2=
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The gap over the range of values of | was filled by Keady and Norbury (3], who
have shown, again by degree theory arguments, that one can find a solution of (1.3) l
bifurcating from the trivial solution at the first eigenvalue 1 = 3 of the linearised
problem, and then follow it continuously for all finite u . Their final result is
that, for all finite . > 3 , there exists a continuous solution ¢ of (1.3) such that 1

$ 1is not identically zero and 0 < ¢ < 7. In the case of (1.4), the result remains *

true with 1 > 3 replaced by u > 3 coth (2nh/)A). (It is known that there can be no

solution ¢ with these properties if 0< u< 3in thecase of (1.3) or 0 <y < 3 coth (271h/%)

in the case of (1.4).) Again, the Keady-Norbury waves are smooth-crested,

The case u = = (Q= 0) corresponds to the presence of a stagnation point at the

. - wave crest, and it is the case in which, for given ¢ , the wave reaches the greatest
height above mean level [6]. In 1880 Stokes [7] conjectured that there does indeed
exist a wave in this limiting case, but that it is peaked instead of smooth-crested,
and he argued, on the basis of an asymptotic approximation near the crest, that for the
corresponding solution of (1.3-4)

- (1.5) lim ¢(s) =
¢ sS40

L

S+

i.e. that at the peak the slope of the wave is inclined at é-n to the horizontal. It
“ is not difficult to show that if there exists a solution ¢ to (1.3) (or (1.4)) with
p == , and if that solution (assumed continuous on (0,n] with 0 < ¢ < i1 ) is suf-
ficiently regular near the origin that 1lim ¢(s) exists and is non-zero, then neces-
: sarily (1.5) holds. Toland (5] gives a ::20f, and for completeness another (perhaps
simpler) is given in $2 below. But the difficulty is to establish first that there is
indeed a solution, and secondly that the solution has sufficient regularity.
The obvious approach is to take the Keady-Norbury solution for finite u , and

show that it converges to a solution of the limit equation as u -+ ©, at least through

some sequence of values. In [5] Toland carries through this process, using some rather

-

deez results from the theory of Fourier series, and concludes that there is convergence

SEilied

co a solution of the limit equation, but he can prove effectively no regularity .

-3-
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properties near the crest, so that (1.5) remains unproved. Toland works always with ‘
(1.3) but he remarks that the method extends to (1.4).
- N The first aim of the present paper is to give a quite different account of the
convergence process from that given by Toland. The method uses little more than ele-
mentary manipulations with the integral equation, and is both simpler than Toland's
and stronger, in that more detailed information is obtained. Even this more detailed
information is however insufficient to decide the truth of (1.5).
We work throughout with (1.3), but the argument is essentially unchanged for (1.4},

as we point out, Our goal therefore is the following theorem.

Theorem 1. If y = =, there exists for s > 0 a solution ¢(s) of (1.3) with the
e ] g ——————

- following properties:

(i) ¢ is continuous on (0,7] ;

(ii) 0 < ¢ < in;

(iii) ¢(s) is bounded from zero as s + O ;

(iv) ¢ is the limit of a sequence of functions {¢u} as u > = , where N is

_ . a non-trivial solution of (1.3) continuous on (0,r] and satisfying O < ¢u < &m,

This limit process is uniform on [n,7] for any fixed n with 0 <n < 7w,

Theorem 2. Theorem 1 remains valid if (1.3) is replaced by (1.4).
3

Remarks. 1. In §3 we reduce the proof of Theorem 1 to that of two lemmas, which are
then proved in the succeeding sections.

2. The proof of Theorem 2, as we have already mentioned, is almost identical with
that of Theorem 1. What little needs to be said is said in a short section at the end
of the proof of Theorem 1.

The equation (1.5) embodies what is conven;ionally regarded as "Stokes' conjecture”.
But in fact, in his paper in 1880, Stokes says rather more. Having made the conjecture,

he goes on as follows.

"But whether in the limiting form theinclination of the wave to the horizon con-

{
1
tinually increases from the trough to the summit, and is consequently limited to 30°, J

— - e - g v e e - . e co—
P w2 et
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or whether on the other hand the points of inflexion which the profile presents in the ‘
general case remain at a finite distance from the summit when the limiting form is

reached, so that on passing from the trough to the summit the inclination attains a

maximum from which it begins to decrease before the summit is reached, is a question

which I cannot certainly decide, though I feel little doubt that the former alternative

represents the truth.”

More briefly, Stokes is making the further conjecture that the limiting solution
¢ satisfies ¢' < 0 . I suspect that the proof of this second conjecture is even more

difficult than that of the first.

Stokes, however, has not been the only one to make conjectures about this problem.
Krasovskii, in the light of his work in [4], was led to two conjectures which, expressod

in our notation, are as follows.

1. when sup ¢ (s) tends to %71, the solution ¢  tends to the limit solu-
- se(0,7) "
tion with u = =,

2. There exists no solution ¢u with sup ¢ (s) > %—ﬂ.
sc{0,n]) H
The truth of these conjectures is now in some doubt because of recent numerical

evidence by Longuet-Higgins and Fox [8]. The numerical results indicate that, once
is sufficiently large, sup ¢ (s) does slightly exceed % 7, by .37°, although it
. se [0,1]

o

does so in the boundary layer, i.e., at values of s which tend to zero as -

so that the effect dies out in the limit case. Our extimates enable us to make an

examination of the behaviour of the boundary layer and give an analytical proof that

Krasovskii's conjectures are indeed false.

Theorem 3 . The sequence of functions (Qu} in Theorem 1 or in Theorem 2 must satisfy

sup ¢ (s) > %1! if uw is sufficiently large.
se {0, ] H .
The proof, which is given in the final sections of the paper, is a matter of

R TS MM e s

ot

showing that in the boundary layer the function ¢u (with its argument suitably scaled)

s tends as p + @ to a solution of the integral equation




]

. ing (t s+t |
(1.6) R log‘;_ at

0 1+) sins(u)du '

0 -

and then investigating the asymptotic behaviourof solutions of (1.6) as s » ~ . It
. - 1
is a natural gquestion to ask whether the number of roots of & = . becomes un-

boundedly large as u » « , and the answer to this is presumably in the affirmative.
But the theorem states only that there is at least one solution for . sufficiently
large, and as is noted at the end of the proof of the theorem, to prove more would

seem to entail an altogether more detailed examination of the asymptotics of (1.6) and

is therefore not attempted in this paper.
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2. A formal proof of (1.5)

Our object is to prove that if

#(s) = 3—1_-f
7 e

which is continuous on (0,7] with
(2.1) lim ¢(s) =
s+0

then necessarily . =

OV

to (1.4) with . = «.)

In view of (2.1), we have

sing(t) N
ft sing¢ (u)du
o]
and it is well known that

sini (s+t)
sini(s=-t)

if s 1is of smaller order than ¢t ,

¢ 1is a solution of

i sing(t)

log! ==
e : +(s=t})
}7 sing(u)du ; sin(s
0
0 <t < 3 , and if
L#EO,

L

-0 (8)

and that, if both s and

| sini(s+t) s+t J
log isin}(s-t) * 1og ?s—t Pt
Thus, for small s (- 0)
k3 . t D eink
sy = ey el g ey |
0 3 /["sin¢(u)du >
S 0
N 1 rsél . S+t at Jaﬂ 1, Sat
P V), ¥t
=—1'fs-éilo L | gy 4 ootsh
3 ) g leg 1o |qu + ots)

by making the transformation t = s

last line clearly tends (as s +0)

(2.2) I -ll; log |
0

1~

u in the first integral.

to

U
du ,
u

sini {s+t)

dt

7. (An almost identical proof, which we shall not give, applies

t are small,

t

But the integral in the




F and since the value of this last integral is é*z , the result (1.5) follows. (The
| integral (2.2) can be evaluated, for example, by noting that the contribution to the
integral from [0,1] is equal to the contribution from [1,=], as is seen by the trans-

formation u*—’u-l , and then evaluating the integral over [0,1] by expanding the

®
r o integrand in a power series and using ) iz = é 2
'> 1 n
r -
h
-8-
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e 3. The proof of Theorem 1

In the proof of Theorem 1 and the attendant lemmas, N will ke a non-trivial
,‘gﬁ__> solution of (1.3), for finite L (>3), with 3, continuous on [0,-] and o .
¢L(O) = cb(f) = 0 . The existence of : is guaranteed by the work of Keady and Nort .
The letter K will stand for various positive constants, not necessarily the sam

at each appearance, but always independent of any of the parameters under considerat:

The notation K(nl,nz,...,wn) will mean that the constant X depends on
nl,...,nn , but on no other parameters in the problem.

The first step is to obtain an estimate for the denominator in the integrand iv

(1.3) as 1 -~ =, This is the effect of Lemma 1, which is proved in 4 below.
. Lemma 1, u-l + fn sin¢b(u)du > K n,
: 0
where the positive constant K 1is independent of both . and ~n

We also have (proved in 85 below)

. Lemma 2., The functions ¢“ are eqguicontinucus in [n,"] for any fixed - with

0O <n<mnm,

¢ Lemma 2, together with the bounds 0 < ¢ < 3 71, enables us to apply the Ascoli-
= T

Arzeld theorem in any fixed interval [n,n], and to conclude that there must be some
sequence {@u} which is pointwise convergent on (0,7] as u = = and uniformly so on
[n,7]. The limit ¢ is of course continuous on {0,-] and satisfies 0 L Ty,

and by applying the dominated convergence theorem to (1.3), with the integrand bounded

by
K s+t
(3.1) t 99io¢%|
- we see immediately that ¢ satisfies the limit equation,i.e, (1.3) with = =, The

proof of Theorem 1 is therefore complete once we have established that :(s) is
bounded fromzero as s + 0 .

i To show this, note that 0 < ¢ < 37 implies that

/5 ¢wau < ke for 0 <t <m,
0




and from the equation (1.3} (with = «) we have

Vi

‘s g(t) sind(set) | ‘
. . . 3 t .
Hls) —"g . !sinusm 'd '
- . But for 0 .t : s we have
sind{s+t) | t
.2 1 EALAPALASIN K —
(3.2) ° }siné(s-t); - s’
and so
ds) - S soae ook,
- & -
¢}
the last inequality following by taking the limit in Lemma 1l as . * =, This
completes the proof of Theorem 1.
. -» - - - e - » L] » - - - . - e
]
}
|
|
I
3
10~ \ .
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4. The jyroof of Lemma 1

1f the lemma is proved for, say, 9 _ ~ _ - , then it is trivially true (with a
possibly different K) for O - - - -. We therefore assume - - i~ . Also 0 - 1 - :-
implies

K siny /; - K
1 - / =2

and using this in (1.3), we have

: (b) 5 5. (e) N
£ 2 u Coe2n 1 (8in: (s+t) |
. — . —_——— - ———— | ds} at.
g s ds L K { ;-l+ft' (4)du ! 5os 1°g|sxn§(s-t)| S;
j
For the relevant ranges of s,t ,
4.1) S //Gog; ,
and so, with s = tv,
;. (s) 3. () '
N M y X
J FS as - K IZn _:f_ﬁ?_,~____ l !2n/t 1 Jog}l:% idv. db Lo e = e
it i W $ . (uw)du ‘n/t
0 M

For the relevant values of t the inner integral is both bounded and bounded from zero,

and so

¢ (s) _ t

+—as > Kllog™h + [ ¢ (waw 2"
5 v n

12”

Iv

2n
5N 6 (wau
n 4

p-1+fn® (u)du
o ¢

]

(
K log 4 1 +
'L

Now the left-hand side is certainly bounded, since

2 v (s) .
J " -Hg—-’ds < inllog s]in

n

’

and so the right-hand side is bounded. Also,
log(l + x) > Kx

for x positive and bounded. Hence

2" 6 (wau
2r s) H
f L ES ds > K ﬂ_____..___-__
S

-1 f 8, (wdu

2n ® {(u)
N
n u

LK Sy
s/ 8 (uyau
0 H

from which the result of the lemma follows,

-ll~




5. The proof of Lemma 2.

Let 51,52 ¢ [n,7]. Without loss of generality we shall suppose 51 S, i
we are interested in small values of ;sl-sz{. Then

t sin¢ (t) 1sind (s +t); sin: (s +t)

¢ (s,)=¢ (s,) = Lf" . l-{ gi logl —————r i
. =37 — t oy _ - T - _
ol b2 37 2 y l"’f sing. (u)dut | |$1n§(s1 t) . sin; (s: t)
5 u
= Il + 12 ’

say, where, for a given 6 > 0 ( ¢ being thought of as being small compared with

but large compared with lsl-szJ), I is the integral over the part of [0,-) lving

2
in the interval [sl-é,sz+6] and I1 is the integral over the remainder of [J,-]
Since
d 1 sini (s+t) }_ 1 . . .
I { T log sins(e-D) | T ¢ {cot 3(s+t) = cot i(s-t):
{’.1)

_ sin t
2tsini (s+t) sini(s-t)

it is clear, by use of Lemma 1, that in I the integrand does not exceed K(")s_1 s,~s .,

1 17
so that in fact
-1 ]
< -
1] < ks s s, [,
while
hzlixhwﬂlméL
The equicontinuity then follows by choosing first 3 sufficiently small, and then
lsl-szl. Specifically we could choose ¢ = wsl-szi’ , which shows that actually the
functions ¢u are equi-Holder-continuous for any exponent i with i - &
{

-12=

3
- j




6. The proof of Theorem 2

The only difference from the proof of Thecrem l is that the expression

. sini (s+t) |

.1 ELZirA L hA L]
6.1 log |STmi(s-t) |
has to be replaced by

-1 A
(6.2) log sn{n "K(s+t);

sn{w-lK(s—t)}

We have to verify only that the va: ~us estimates used in connection with (6.1) appylr
equally well to (6.2). The specific places where these estimates appear are (3.1),
(3.2), (4.1), (5.1),and there is no difficulty in carrying out the modificationsat

these points.

-13-
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7. The proof of Theorem 3

We shall give the proof for the case of equation (1.3), leaving to the reader
the very minor modifications necessary to deal with (1.4).

once again we begin by stating two lemmas which are of independent interest and
are proved in the succeeding sections. We obtain first an estimate on :: and ' ,

¢ being the solution obtained in Theorem 1.

Lemma 3. The functions Qu are continuously differentiable on [0,-] and

s|¢L(s)| <K for 0<s <m,

K being independent of u . Also, ¢ is continuously differentiable on (0,=}, and

s{¢'(s)[ <k for 0 <s <.
The next lemma asserts that the Stokes conjecture (1.5) is true at least in some

average sense,

$(s)-£n
Lemma 4. Uéw——-Lds|<K,
e . n S e o —~ . . - . - .

where K is independent of n as n +0 .

We turn now to the behaviour in the boundary layer. From Lemma 1 we see that if

n 1is of higher order than u-l, then in the expression

u_l + fn sin¢ (u)du
0 U
the integral term must dominate, while 0 < ¢u < 4n implies that, if n is of smaller
order than u-l, then u-l dominates. Since we certainly expect the integral to domi-
nate outside any boundary layer, we are led to believe that the width of the boundary
layer will be of order u-l and so to make the transformation
o =us , 9% (o) = ¢u(s) ’

and it is trivial to verify that ¢: satisfies

s _
sm% (1) sinkp l(o-n)

log

1
(7.1) o2 = 33 e ar.

0 1+ sing*(v)av
0 H

: -1
sindu " (o-1)
At the same time, the uniform bound 0 < ¢; < &7 and the equicontinuity estimate
o|¢;'(o)| 2 K which follows immediately from Lemma 3 assure us that, in any fixed

invexrval 0 < k < 0 < K < », there is a subsequence (¢;} which converges uniformly

~]l4-
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&
.

- &

- s

'/

-;

&

to :* , say. Further, by Lemma 1, and the fact that, in the range of integration,

Lo jsini e e
.. =1 l o=1
sin: u" (c=1)
(which is itself a consequence of
siniu_l(o+t) . sinip-l(o—r)
a+1 - o-1

i.e. of the monotonicity of sinu/u), we can bound the integrand in (7.1) by

K St

T log 0-1 | !
and so let 1y + + and apply the dominated convergence theorem to see that, for -~ > (.,
$* satisfies

o ing®* fo+t |

(7.2) o) = 5 | —sinpt) 'd-_—: d:.

"0 1+ [Tsine*(viav

0
In fact, since (7.1) implies that ¢*(0) = 0 for all u , (7.2) holds also for . = O,
i

and so for o 2 0.

« o . - . .

In order to prove Theorem 3, it is only necessary to show that any solution of

a et e e et s .

(7.2), or at least any solution satisfying whatever conditions can be deduced from the
limit process ¢* = lim ¢; . cannot satisfy the inequality 0 < ¢* :_é-N. For if the
inequality is broken by ¢* , then it must be broken by o: for u sufficiently large,
and the theorem is complete.

1 Co s . .
To show that 0 < ¢* < g" is impossible, we remark first that we can assert that
$*(0) ~ &
| I doj < K,
1
where K 1is independent of n as n » = . This result is comparable to Lemma 4, and

is proved by manipulations on (7.2) which are sufficiently similar to those used in the

proof of Lemma 4 as to require no further mention. Now suppose for contradiction that

(7.3) 0 < ¢* < %:v.

Then clearly 1
¢* (o) = &

(7.4)

do
o

1

exists, and this certainly implies that %1! is one limiting value of ¢*(0) as o + =,




T

In fact,
1
(7.5) ¢* (o) » g7 as o0 >,

For if not, suppose that

lim inf ¢*(o0) = %“H- 38 (§ > 0).
g > @
Then Lemma 3 assures us that, for 02 > cl ,
[+ o
2 2
[¢] < K log P
9 1
and if we choose o, so that ¢*(ol) = %n— 28 and g, so that
o]
2
K log Pl S,
1
then we see that
¢* (o) _f_-é—n—d for cl <0 i°2 N
and 1
oy ¢*(0) = =7 g 2
. .« 6 do] > 61 _2.= .6—- ° e s ‘
o - °9 5 K
o 1

Since this is true fnr arbitrarily large values of o Oy it contradicts the conver-

1

gence of (7.4) and so establishes (7.5) (always under the assumption that (7.3) is true).

We can now use the fact (cf. §2) that

1 1 (=1 o+T
6" " 3n£ T 09| o7 | dt
to see that
i *
IR S TN ot d I E
0 |1+ sing*(v)av
o

i *
o o[ singrlow 1 log‘é:g

i 1+f°“sin¢*(v)dv ou
0

and so
¢.(°)-é" 1 1 1l+u sin¢® (ou) 1
e = [ b sesff{ e L acow ) e
P [o] ou 1+f sin¢* (v)av
4]
1+ Y singt(vrav
1 1 l4+u 0
3n {i u log 1-u 1 ipu du ,
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where, to obtain the last line, we have used the fact that sins*(s) ~ + as = = =,

Finally, therefore, we have

. O*(o)=Z7

o (7.1 f . do
P
g 1+ fou(sino" (v) -~ dav
— S W o § 1+u Y
" e i log|i—| log ll + on J du
'
1+ [Csine* () = drav |
- _ 1 1 p+t 0
= 3"({ ¢ log pyacy log |1 + T at.
. 1
Since 0 < ¢* < gy we know that
ES
i +
(7.8) [Tsing*(v) - $)dv
0
either converges as t > » or else diverges to ==, 1In the latter case we can split
& the last integral as
esee o o s o e o . e . “ s ce o . .
1+ [Fisinotr(v) = hrav .
- 1 A o | 1 p+t 0 =
(7.9) 3"[1 +f Jtlog s log (1 + T =1, + 1,
. & 0 A
say, where A is a number chosen so that the logarithm is negative for t > A. Now,
™ ]
§ for large p, in I1 ’
&
: £t b3
. log oot <K P
and so
-1
I = olp 7).
Also, (7.5) implies that
* 1t
i T [~ (sing*(v) - 3)dv

g is small for large t , and so




el
<2
At 0

| .
* - d ‘—-—. ti at [
f (sin¢*(v) ) v.log!" !

vt

K

N
[

S
Fal

qu [
since the integrard behaves like u—l for small u . This implies that (7.9) is
positive for large  , which contradicts the fact that it is equal to (7.7), and this
contradiction establishes that (7.8) converges as t = v. Indeed, exactly the same
argument shows that (7.8) cannot converge to a limit less than -1, and so, for all t -0,
t .
(7.10) 1+ [ (sing*(v) - i)av > 0 .
o]
The convergence of (7.8) implies the convergence of

o $*(0) = é-ﬂ

do
0 c,:a:.-t—l
.. * for any a with =1 < o< 0 , and in fact * - ‘ -
1
* - —
(7.11) '[“.@_.m__é_ﬂ_d
- a+l N »
0 o
" i * 00
(7.12) T e { [ 10g| 22 do}dr
0 {1+ [Tsing*(v)av T 0 o® N -
0
1+ 7 (sine*(v) - })dv
1 . w 1 0 .
h (7.13) = 3 tan(ina) ({ = log |1 + e - | a1,

by setting ¢ = tu in the inner integral in (7.12), using
1

[" == 1og
5 uu+1

and then integrating the outer integral by parts. If we now let o + =1, the integral

1+

u
1-u

du = g tan(ina),

(7.11) remains bounded because of the convergence of (7.8), and so also therefore does
(7.13). Since tan(ina) » ==, the integral in (7.13) must tend to O , whereas in fact i

the integral has a strictly positive limit because of (7.10)., This final contradiction

-]18=
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shows that (7.3) is false and proves the theorem.

This shows that :* = %—n has at least one root, and so also therefore has

% = é~ for . sufficiently large. To show that the number of roots of :* = é—
W I
. 1 e
is unbounded as .. + =, we should need to show that :* oscillates about - infinitely
often, and this would be proved by obtaining a contradiction to the fact that ;* - % -

is ultimatély of one sign. The assumption that :* - é-— is ultimately of one sign
allows us to follow through much of the above analysis, We can conclude (7.4) and (7.5),
and the convergence of (7.8), One can even show {(what we could have shown above but
did not need) that
(7.14) fw(sino*(v) - .)dv = -1
But the argument gbove did require in the last step the inequality (7.10), and this we
no longer have if we are merely assuming that :* - é" is ultimately of one sign; nor
does it seem easy to modify the argument.

An alternative approach (under the assumption thaf: o* ~ -ér is ulFf.ma_tely of one

. - . N S .« . . .« e

sign) is to use the consequent fact that ¢* » = n to generate an asymptotic expansion

OV

and deduce from this the contradiction that ¢* must oscillate about %-W. Formally,

this is easy. For suppose that

o* (o) - %11 N g as g > » ,
where re a > 0 . We have from (7.6) and (7.14) that

T(sin¢*(1)-%4) + fw(sin¢*(v)-é)dv

- 1 t
LR Sg‘fm = log %;% dt
0 Tt - [“(sine*(v) ~ })av)
1
1 Wit L 1)
W 2 1 L 9+ 31
37 L 2 °% |o=1
0 3t

107
= - 751 tan(ina),

so that a satisfies

~19-
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(7.15) tan(ima) = (a=1)v3,
and the question is to determine the roots of this equation with smallest positiv
real part. It is straightworward to verify that (7.15) has no real root satisfying
0 < a <2 but it does have roots in the strip O < re a1 < 2. To see this, ajyply
Rouché's theorem to

(a—1)2/3 - (a=1) tan(ima).
on the line rea =0 ,

[tan(ina) | = |tanh (4mia)| <1,
so that

[(a=1)2V3] > |(a-1) tan(ma) ],
and there is a similar argument on re a = 2. Hence (7,15) has precisely two zeros 1in
the strip, which are of course complex conjugates, and it is easy to check that they
in fact lieon the line re a = 1. Since tue roots of (7.15) with smallest positive

real part. have non-zero imaginary parts, the function ¢* is oscillatory, as .
- - . . - & - . . L .
required.
The above argument is, however, only formal, and we will not attempt here to

make it rigorous.
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8, The proof of Lemma 3

It should be remarked that Lemma 3 states much less than is true. The fact that
ou is continuously differentiable, indeed analytic, on [(0,7] can be regarded as a
particular case of the theorem by Lewy (9] on the analyticity of free boundaries away
i from stagnation points, and we could also get that information, and estimates on higher
derivatives, by a more detailed examination of the proof below. The same applies to

. on (0,7], but we will in fact restrict ourselves to proving the lemma as stated, since

3n fs sing (u)du
0

that is all that we require subsequently.
We will prove the result for ¢ . The reader will find that it is even easier for
. ®u , and that in that case the relevant estimates are independent of . , as reguired.
We write
. N !
o) = 5# fﬂ{ tt sing(t) _ - s_sing(s) } 1 log{::t at
& 0 f sin¢ (u)du f sin¢ (u)du
o} o]
- . - . = . . [ LI S PO EE . > » * e P . .
. 1 sini(s+t}| _ s+t
. g e L Resfgreny] -t [ |) o
37 t . t
o} f sing¢ (u)du
.
0
* . 1
g gl e
’ f sin¢{(u)du O
= 0
and so
i t ] t
. o' (s) = ;i Iw { tt sin¢(t) _ Ss sin¢(s) } 2d .
[" sind(wydu [ sing¢(uw)du / s°-t
o] 0
1 (v _tsine{t) 1 4 { sin}(s+t) |s+t1
: (8.1) +—-f - 7= { log - - log |=—]} dt
- 3n o It siné(u)du t ds sint(s-t) s=tj)
15 0
» .
&, 1 s sing(s) 4a /s 1 l+v
£ * ds { / vl I & ) -
g 0
3

There is no difficulty in justifying the above differentiation (for s > 0) except
for the first integral, since the expression {+++} in the second term has no singularity;

at s = t; the differentiation of the first integral is also justifiable since ¢ is ’

=21~ ‘




Holder-continuous of order : , say, this following from the remarks at the close of
Lemma 2.

To obtain the estimate

sii'(s)] < K,

we observe that the third term in (8.1) is 0(1) as s + 0 , and so causes no troukle.
The regular behaviourof the expression :+*»} in the second term of (8.1) assures us
that the integrand is bounded for small s and t (which is all that we are really
concerned with), and thus again leads to a term 0(l) in 2' . For small s , there-

fore, we can write

sa'(s) = - 3% Ia ttsm;(t) _ s sin:(s) } 2s ~at + 0(s)
o f sind (u)du fs sing{u)du s =t
(8.2) 0 0

= Il + I2 + I3 + O(s) ,

say, where Il is the integral over [O,kls], 12 over [kls,kzs] , and 13 over
isz;"],'kl(<1) and kz("l)- being- fixed positive sumbers which we shail chcoose nore
precisely later. Then using

ft sing (u)du > Kt ,

¢}
obtainable by letting u * « in Lemma 1, we obtain
k.s
1 dt
ltex [0 = 2k,
o}

and similarly |1

Also, we can write, for some ¢{ between s and t ,

t sing(t) _ s sing(s)
ftsin¢(u)du IS sin¢ (u)du
0 0
f 2
= (t-s) { sing(€) | £ cosp(E)e'(E) _ € sin“g(£)
L fg sin¢ (u)du fe sin¢ (u)du (IE sin¢(u)du)2
¢} 0 0

and so
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K. c g
1 T LI —~—(—-)—~ o 4t
2= k" Toaet
S ‘
- ek - ] H
K+ ksup (),
o,
where k  (which depends on kl and k,) can be taken less than uni if an
" are fixed sufficiently close to unity. Thus we have from (8.0) that
sy st (s) K s
5. (0,1
-

Pt ) e )

'

from which the final result of the lemma follows immediately.




9. The proof of Lemma 4

We first make the observation that .

sin: (s+t) ] _
sini (s=t) |

| [s+t|
I‘].og 109{5_:5_}

|
|

Isind(s-t) i ‘

- sini (s+t) _ .
tog ! 3 (s+t) ‘ tog l s (s=t) ' L Kst

by an application of the mean value theorem, provided that s -0, t - 0 s o+t -

say. Also,

1 1 = ) s+t 71 S+t
g7 = 37‘6[ : log s—t;dt —g T loq!;t—:dt + O(s) ,

as s + 0 , and so

O(s)—%'n=3~];;fv %EM——-%}‘log‘i:—z|dt+o(s), as s « 0,
0 f sing{u)du [S=%
0
_ s In/s sing (sv) 1 1+v | d
= = = ——| log|3—|dv + O(s) .
3n 0 fsvsin¢(u)du sV 1 v’
(4]
Thus [ 4
fﬁn ¢(s)=>=m
ds
n s
{
-+ fén }/s einplsv) _ . L log Ly dv} ds
4 0 [*sinp(wau Y 1=v
o]
=3in fﬂ/n log i:: Fnln(N/v'h)'sxs/an(SV) _ s_].‘7 ds\ av
0 n [*Vsing (w)du
0
- Isv s=min(n/v,i7)
ing (u)du
L /ndg o iy o =mre
T / vi |1-v log sv av .
- : s=n
~24-
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But Lemma 1 {(in the limit as u -+ =) tells us that the logarithm in the last formula

is uniformly bounded for all relevant values of sv , and so the integral is bounded

by
i 1 1+
Kf/n ;1091—-‘5(]\/,

0

which gives the required result,
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