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ABSTRACT

The title problem is treated in the limit of large activation energy. it

is shown that the evolutionary process takes place in a series of distinct

stages, and the spatial and temporal structure of each stage is described. it

is found that subsequent to thermal runaway, the behavior of the system

resembles that of self-induced combustion, except that the thermal explosion

is now confined to a thin surface layer. .- ,.
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SIGNIFICANCE AND EXPLANATION

Burning of an initially cold combustible material is studied. It is

assumed that combustion is initiated by heating the surface of the material.

This will result in a chemical reaction first occurring at the surface, and

then spreading through the material in the form of a flame or deflagration

wave. Asymptotic methods are used to study the transient process leading to

the establishment of the flame. Attention is confined to solid combustibles,

but it is envisaged that the techniques developed here will aid in the

eventual understanding of the evolution of gaseous combustion.

I' n

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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EVOLUTION OF DEFLAGRATION IN A COLD CoMPUSTI5LE

SUBJECTED TO A 1 :IFOPM ENEPGY FLPX

A. K. Kapila*

1. INTRODUCTION

Consider a combustible material confined to a container and ca nahIe of tineroc:nf

exothermic chemical reaction of the Arrhenius type. There are essentially two moler

which burninq can be initiated in this system: either throuch self-indluced heatingt

explosion) or by an external stimulus (ignition). In the first mode the initial

temperature of the material is hiah enough so that a sionificant amount o chemical 1'a-

release beqins to occur immediately throughout the system. If heat loss is not

overpowering the temperature will rise, but seldom uniformly in space. The fastest rls,

usually occurs at one or more discrete sites where hot spots form and eventually corhusti,-"

waves oriqinate.

A detailed mathematical treatment of the dynamics of self-induced combustion for a

diffusional-thermal model has recently been given by Kapila [11. A symmetric geometry is

chosen so as to lead to the development of precisely one hot spot, and the spatial and

temporal structures of the various phases of the evolutionary process are described. Tt In

shown that while the birth of the hot spot is a rather slc- phenomenon, its growth and

transition into a deflagrating wave are extremely rapid events indeed. A partial

development alonq the same lines, undertaken independently and including extensions to

several geometries, is due to Vassoy and Poland [2-a[.

The above treatments have all been asymptotic, based upon the limit of large

activation energy. This limit, although in implicit use since the early work if 7eldovich

and Frank-Kamenetskii (see, for example, [51 and [6[), was suggested as the basis for a

rational asymptotic theory only recently by Williams [7). Since then it has been apnlie&
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successfully to a wide variety of problems in combustion theory, and in fact 'as insre a

forthcoming monograph on the subject by Sucky-aster and Iudford 'Al. In the prpsert

context, Eassoy's extensive investigations (see [9! and the references containedi therein)

of the spatially uniform thermal explosion deserve special mention.

In the ignition mode the initial temperature of the combustible is so low that it is

practically inert, and will not burn if left alone. Energy transfer from an external

source is therefore needed to activate the chemistry. This raises a natural cuestion: how

long should the external stimulus be maintained before the material is sufficitntly ex,-ited

to develop self-sustained combusion? Attempts to treat this question embody the classical

theory of ignition. For solid combustibles the status of the theory, ani the pertinent

literature as of 1070, are contined in the review article by Merzhanov and Averson [In.

From a theoretical standpoint, two problems appear to have received the most attention.

These treat a homogeneous, semi-infinite reactive solid, heated either by applying a

constant energy flux at the surface or by raising and subsequently maintaining the surface

temperature. The nonlinear parabolic differential equations governing the problems have

either been solved numerically or by a variety of approximating techniques [10]. They all

have one common feature: ignition is deemed to have occurred when the solution is

perceived to have departed significantly from the chemically inert solution for the same

configuration.

The large activation-enerqy limit has played a clarifying role in ignition theory as

well. Thus, most past approximations were rendered obsolete by the recent asymptotic

studies of Linan and Williams [11, 12]. Their work has two important features. First,

the onset of ignition is defined by a mathematically precise criterion based upon "thermal

runaway". In other words, the solution is sought as a small deviation from the

corresponding inert solution, and the instant of ignition is defined to be the one at which

the perturbation develops a mathematical singularity. Second, explicit asymptotic

expressions are given for the ignition delay period. The results are found to be in close

agreement with numerical values available in the literature.

-2-

V -" -" ~mm m m mmmmmm m mml m mmmlm



While the above work answers one nuestion satisfactorily, it raises another, narelv,

what is the post-icnition transient that culminates in the ievelopment of a ieflacratin

wave? A description of the transient falls outside the score of ignition theory, since

large departures from inert heating will he involved. The singularity of Linan andl

Williams' quasi-steady solution does provide a clue, however; it suaqests that unsteady

effects will have to be reinstated for further development of the solution.

This paper aims at describing the entire secuence of events, subsenuent to iqnitin",

for the case of the constant surface-flux stimulus. WJe shall find tvat the situation is

quite akin to that for the self-induced combustion mode discussed in 'V, excent tfha th.-

thermal explosion is now confined to a thin surface layer. Thn analysis a'ain iraws u ,r

large activation-energy asymptotics, and a solution uniformly valid in space an time is

sought. The problem correspondino to a step increase in surface tpmrerature will be the

subject of another paper.

on physical grounds it is nuite clear that for a solid reactant the ultimate state

will be one of nearly steady deflagration if heat loss is ahsent. For a oaseous mixture

the situation is not so obvious. Depending upon the strength of the reaction anA its

coupling with the gas dynamics, the final state may well he a d-tonation. It is exnected

that the techniques developed here will aid in the eventual understandino of t e evolution

of combustion in confined gases.

-3-



2. MATHEMATICAL FORMULATION.

Consider a combustible material occupying the right-half space x' > 0 and capable of

undergoinq a first-order, one-step Arrhenius-type chemical reaction. (Primes indicate

dimensional quantities.) We envisage a diffusional-thermal model in which the material is

assumed to have constant physical properties (density p', thermal conductivity k',

material diffusivity D' for the reactant species, and specific heat c'). Initially the

temperature is 0 and the fuel mass fraction Y;. Commencing at time t' = 0, a

constant heat flux q' is applied at the surface. The equations governing the thermo-

chemical behavior of the material are

P'ce' = k8 I + Q'A'Y'exp(-E'/R'6')

PsYtf= 'D@Y'xlxt - A'Y'exp(-E'/R'8') ,
k'ex. (,t') = -q', e'(=,t') = e, yx,(0,t') = 0, Y'(-,t') - 1 ,

X. ' ') - -l, 81( , 0 Yx. O t

e'(x',0) = 6;, Y'(x',0) Y "

Here Q',E',A' and R' are, respectively, the heat of reaction, the activation enerqv,

the pre-exponential factor and the gas constant. On selecting 8', Y', k'O;/q' and

pc'ke 2/q'2  to be the units of temperature, mass fraction, length and time

respectively, the above system reduces to the following dimensionless form:

6t = 8xx + AY exp(-E/8) , (2.1a)

Yt . L-IYxx - (A/B)Y exp(-E/0) , (2.1b)

ex(0,t) = -1, 6(m,t) = I , (2.2a)

Yx(0,t) - 0, Y(_,t) - I , (2.2b)

8(x,0) - I , (2.3a)

y(x,O) * (2.3b)

The nondimensional parameters appearing above are

A = (Q'A'Ytkf ;/q'2, the Damkohler number,

B - (QYo)/(c'60), the heat-release parameter,

L - k'/(p'c'D'), the Lewis number, and

E = E'/(RO'), the activation energy.

-4-
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The mathematical moeel considered above is quite adequate for an approximate

description of solid combustion (but not for gaseous reactants, since material deformation

has been ignored) and becomes still more realistic by taking L = , because diffusion ,f

the solid reactant relative to that of heat is negligible. Wt shall, however, present the

analytical details only for L = 1; the special symmetry of the equations then renders the

mathematics particularly simple without compromising the essential physics. This was

verified by actual computations for L = -, and it was found that the asymptotics must

then be taken to higher orders to capture the eouivalent results. A discussion of

significant departures from the L = 1 case is given in the last section.

Although, as pointed out above, the model under consideration is deficient as a tool

for studying the evolution of gaseous combustion, it has provided satisfactory descriptions

of several other aspects of gaseous flames. See, for example, accounts of cellular flames

(13] and of flames in accelerating environments (14); also see [15] for a rational

derivation of the model from the equations of aerothermochemistry.

Typical values of A,B and E are 1015, 2 and 25, respectively (see, for example,

Bradley (16]). It is particularly realistic, therefore, to attempt an asymptotic analysis

in the limit E + -, taking B to be an 0(1) parameter. The largeness of A is

accounted for by setting

A = A exp(E/Oc ) (2.4)

where A is assumed to be at most algebraic in E for large E, and will be assigned

during the course of the analysis. Thus (2.4) defines 6c , which is assumed to be

0(1). Also, we let

< 0 < 1 + B. (2.5)c

The lower limit ensures that combustion is not instantaneous, while the upper limit, as we

shall see, allows a self-sustained deflagration wave to propagate into the cold material.

For unit Lewis number, equations (2.1-2.3) show that

e+ By = e1 + B , (2.6)

where 8., the inert temperature, is the solution of (2.la), (2.2a) and (2.3a) for A =

0, and is given by

I -5-
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e 1 + 2(t/w) 1'2r2 Y./(4tV - x er fc 'X/ ( 2''-I

The result (2.6) effectively eliminates Y from explicit consileration as a irnlen

variable. Followino Linan and Williams [10' we recast the e-nrohleM in te-rs ,f

where

I

is the departure of 0 from the inert aI" Fnuations (2.4), (2.r) and (2.P) then lea! t',

the reduced system

= xx+ (A/B)(P - O)exnr(9 /c){0c - (2 1)1' ,

Cx(n,t) = ((=,t- = * ,2. 10)
x

) = 0 , )2 .11)

where

2 /
S= e /F . rI. 12

c

Our aim is to develop an asymptotic solution, uniformly valid in x ani t, as * n.

The solution will be seen to evolve in several stages, each characterized by a Oistinc.

time scale. The longest of these is the inert stage, of 0(1) extent on the time scale

t and characterized hv essentially zero chemical activity. A short trangition neriod

of O(c) duration follows, in which a weak chemical reaction develops :n a t$'in surface

layer, eventually leading to thermal runaway. The reaction intensifies during the ianition

state, O( 
2
) long in t, ana a hot spot appears at the surfac=. The hot spot shrinks

and strenothens in an exponent.ally brief explosion neriod. A still shorter detachment

stage follows, in which the hot spot leaves the surface and beains its advance into the

interior. Finally, a well-defined deflaqration wave, travelina with practically unifnrm

sneed, is established durinq the sliohtlv lonoer propagation staue. Thus, in nhvsi-al

terms, the transient beyonA the transition stane is similar to that in self-induced

combustion, except that the thermal explosion is now confined to a narrow surface layer.

We shall take advantafe of this similarity to omit details whenever possible, referring the

reader to [1] instead. In the interest of clarity, however, some repetition has been

unavoidable.

A schematic view of the transient appears in Figure 1.

... ..
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3. INERT AND TRANSITION STAGES

The first two staoes were treated in detail by Linan and Williams '11!. In rier

continue the solution further it is helpful to briefly reconstruct, and sliahtly amplify,

their analysis.

For small t, e = eI + < 6c, so that the reaction term in (2.9) is exprnertia '>

small. Therefore, the solution to (2.9-2.11) is inert, i.e.

= 0 + est , '3.1%

where est stands for exponentially small terms. Correspondinaly, (2.r) shows that

Y = 1 + est,

i.e., reactant consumption has been negligible. This solution becomes void and aives way

to the transition stage as soon as the chemical term comes into play in (2.9). This will

occur first at the surface (where temperature is at its maximum) at time tc such that

S(0,tc)= c , i.e. from (2.7),

tc = m(ec - 1) 2/4 * (3.2)

The argument of the exponential in (2.9) indicates that for E - 0, chemical activity will

be confined to the region where 8 + - Fc = 0(), i.e. to the thin surface zone R2

(see Figure 2) where the appropriate independent variables are and T, defined by

x = CC, t = t + £T; C > 0, T > - •C

Eouation (2.9) then reads

C = + 3/2 (A/B)(B-)exp[
2 
/){- -(a + - + C /Vc + o(E)) (3.3)

(A + 0  c c c c ~ 33

where we have anticipated that

- -1/2 (3.4)

A .C A 0 (34

and the expression (2.7) for 6 has been expanded in terms of & and T. The O(M)

constant A0  will be assiqned shortly. We note that to leading order, epuation (3.3) is

steady, With $ expanded as

f = coo(&,T) + )+ ... (3.5)

the left boundary condition in (2.10) yields

i/ 1 0 at = ol i = n,1,2,...

while the initial conditions

I
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are a result of matchina with the inert solution (3.1). .:-e irqt t -m er,- in . ar.

found to be (see fill)

n = fn(T) 3

A -'- )P(T) + f (T'

where

P(T) = exprf (1) + (t -1/.
0 C.

and the yet unknown functions f0 ,fl satisfy

r (-oo) = f1(-o ) = *.

0 f1

As , equations (3.6) show that t0, Oo not Aecav to zero, terehv Ia t i7

the right boundary condition in (2.10). This suggests the presence of a new rpinn PI.

separatina R2 from the inert reqion R., as shown in Fiqure 2. In r t"e spatial

coordinate is taken to be X, defined hv

x = VE x or = X/VE, x > r

which reduces (2.9) to

2 -1-1
T XX + /E (A /P(B - )expr(6 c / 

-)(e - (6 - V- x + I (VE((

Anticioating € to be O(E), it is clear that the reaction tern in th" ahnve erniati-o

exponentially small. On setting

0 = £ (X, ) + E3/ (X,T) +

ana are found to satisfy

0= I T > -, X > 0
S XX

In (,T) = f0 (T), W0  (0,T) -AnP(T), (-,T) = 0

0 X -)= n ,)

and0 an I = *I T > -
' IC > 0,

T XX

(0 '  
= fl

(T  
(f,T) = (

3
/
2
)A2 [P(T)1 

2  
A P(T)f (T), * (-"t) 0 (3.11)

X

l( ,a ) 
= 0 •

M--)

-10-
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The left boundary conditions* in the wo nrs b l above res' t frrm Mat7hina wi th R,,

while the right boundary crnditinns ani tikp iitial conditions are prnvided by -atchina

with the inert region RO" Both the probeems can be solved by usina a arlace trarsfor- ir

n. Thus, (3.10) has the transforned solution

0(x,T) L.T. of tp (X,T)
0

[_f0(a) + A. x (a) + (lit C)_ 112 leS2(oda

An integral equation for the still-unknown function f 0T) can be obtain by invertinn

P 0(s,T) and taking the limit q * 0. It is convenient to write
f 0(T) = f(T) 

(3.1C)

where

T ln ( tIt 4 A I + (Tt c) /2T ( 3.14)
c 0 c

Then f 0 satisfies the parameter-free integral equation0T

Cs 1/2 -/2 - +ad

f C(T) ( f ( - +) expI 0 ) +
o0

Linfan and Williams [111 obtain an equivalent integral equation, solve it numerically and

show that f 0 is positive, monotone increasing and becomes unbounded at T = b0; they

find b 0  to have the numerical value

h 0 = -0.431

Following (11] we choose

A 0 = (Wt C ) - 4e
b 0  

(3.15)

which, through (3.13) and (3.14), places the singularity in f (T) at T = 0. The

following asymptotic expansion can be developed:

*Specification of 4j (0,T) in (3.11) requires carryina (3.9) to an additional term.

x

I



f (T) =-1/2)ln(-T ) + lnrV',r/(2A )' + o(1I) as T
0 0

(The above expansion also appears in [111 but there the second term seems to have a

misprint.) Once f ( is known, (3.12) can be inverted to yield 4, 0(X,T). We shall neP4

the behavior of * n(X,0) for small X, and this can be calculated from the larqe s

txpansion of 0i (s,O). The result is

P )(, = -In X + [ln( //(2A 0)0 - Y/23 + OCX 2) as X 0,

where y is the Euler's constant.

The unknown function f IC() can also be determined from (3.11) in an entirely

analoctous way, and is found to have the asyw~ptotic behavior

1 T (/) / (2 - ii)- (-T)- / + o (1) as T - O

Returning now to the region R 2 ' we note that the unboundedness of f 0  and f1

leads to a breakdown of the expansion (3.5) as T - 0 .This is as far as Line and

Williams [11) went; they identified the appearance of the singularity as thermal rinawav,

i.e. the onset of significant departures from the inert solution.

I-N.
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4. IGNITION STAGE.

In order to continue the solution further in time, w observe that (3.5) yields

1 )-1
E E (-T as T - 0

indicating that the hitherto neglected unsteady term in (3.3) must be reinstated when

T = 0(E). This suggests a new time-variable T, defined via the scaling

T = CT, or equivalently, t = £ 2T.

As Figure 2 indicates, the relevant regions in the xt-plane are P (characterized by
2

and T) and RI (characterized by X and T). Of these, the latter is easily

disposed of; in it (2.9) reduces to

= OX + est.

Therefore, to leading order, 0 can depend only on X. Matching with RI then gives

* = )0 (X,0) "t O(E) • I4.1'

In R2' (2.9) assumes the form

T + 3/2(A 0 /B)(B - *)exp[(e2/E){e 1 -1 + - E + o(E))- ,0c (4.2)

> 0, T >

Matching with R2 as T * - dictates the expansion

C ln C + L[U (C,T) - ln A] + ... (4.3)
2 10

which, when substituted into (4.2), yields

UT = U1  + exp(U1 - C), C > 0, T > - . (4.4a)

The left boundary condition in (2.10) provides

U (0,T) = 0 (4.4b)

while matching with the R1 -expansion (4.1) yields (cf. (3.17))

U1 * - ln C + (ln - y- - y) as + . - . (4.4c)
2 2

The initial condition

i. .- 13- S



U, - - ln(-T) + ln - () as T f4.44)
1 22'

is the result of matching with the R2 -expansion (3.5). Here,
3 2 )-1I

v() -IT (2 - +Tr( + eI *) . 4.
n 8 4

We observe first that the above problem for U1  is parameter-free, and therefnrp

defines a universal function. Second, each of the three terms present in the full eIuati,!'

(2.9) still survives in the reduced form (4.4a), albeit the Arrrhenius exponent has bepr

simplified via linearization about a reference state (i.e. the inert state). This feature

is reminiscent of the induction-period problem for self-induced combustion, discusse,! in

[1], and we shall find that the similarity extends to the nature of the solution as well.

Equations (4.4) were solved numericallv by spacewise discretization, followed by a

numerical integration of the resulting system of ordinary differential equations with the

stiff ODE solver EPISODE B [17]. Prior to discretization, a coordinate transformation was

used to map the problem onto a finite spatial domain.

The numerical solution is displayed in Fiaure 3. Initially the temnerature rise is

everywhere aradual, but then TT1 begins to increase rapidly near F = 0 while variations

are more leisurely elsewhere. Eventually, at a definite time T (= -1A.719), 11(0,T)

becomes unbounded. The evolution of the singularity at T can be examined

analytically. (The following discussion will he brief, since the situation is analoqous to

that in [1].) We let

T = T. - p, p > 0 ,(4.6)

and in the limit p + n, develop two asymntotic expansions for U,. An outer expansion,

valid away from O = , has the form

U, = U10(K) + p U 11 (E) + ... , (4.7)

where U1 0 (&) is the numerically computed solution of (4.4) at T = T-, and the hicher-

order terms U1, can be Oetermined by substitutino (4.7) into (4.4a). An inner reqion, or

boundary layer, is characterized by the variables p and n, where

n = &lV/p, 0 < n < - , (4.8)

and the inner expansion is seen to have the form

-14-
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U1 = - In p + aO(r) + p + ...

In the limit p + 0, n fixed, the boundary-layer thickness is O(VT), and th- expAn':

(4.9) indicates explicitly that the singularity in U1  is logarithmic. When (4.1
) 

is

substituted into (4.4a), we obtain the following eauation for g0:

g- . + exp go I = 0, 0 < n < 4

The condition

g;(0) = 0 4.1
' -

is by now familiar, while the behavior

go = -2 In n + a 0 + O(n 
-2

) as nl4*

comes from suppressing the exponential growth of go for n + a; such a growth woull no,

be commensurate with the slow rate of change observed outside the boundary layer. The

constant &0  is determined by matching the exnansions (4.7) and (4.9), which reouires

U 10() = -2 in & + a0 + 0(4) as & + 0 . (4.111

A comparison of the above asymptotic expression for U 10 with the numerical solution of

(4.4) at the edge of the boundary layer (i.e. for such a choice (E,T) which satisfies

C<< 7, T - T < I and = /v/T - T >> 7) then yields a0(= 2.5). With a0  known,

go can be computed by integrating (4.10) backwards. The result in a monotonic curve with

g0 (0) > 0 (4.12)

(see Figure 5 of [1]. The higher order gi occurring in (4.9) can, in principle, he

computed in an analogous way.

To summarize, we have shown that the ignition stage terminates at a definite time

T . For T < T , the terpet ure increases throuqhout the O(C) thick surface layer

R2' but remains an O(e in e) perturbation of the inert temperature (cf. (4.3)). Toward

the end of the ignition period (T + Ta or p + 0), a boundary layer, or hot spot, of

thickness O(/p c) develops within R* In the hot spot the solution grows rapidly and

has the expansion

a 2 In e + e [-in p + go(i) - In A0 + O(/ )) + o(C), n , (4.13)

while in the remainder of R2 the solution remains

-16-



=- cln E + c[UI0( ) - In A0 + O(p)] + o(E), > (4.14)

In the O(rc) thick region RI the solution is constant in time, to leading order, durina

the entire ignition stage (cf. (4.1)) while in the inert region R0 , 0 = 0 to all

algebraic orders in c.

As the process evolves further, 0(1) departures from the inert solution will beqir

to occur at the surface. Therefore, it will be convenient to discard in favor of 9

as the dependent temperature variable.

-17-
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g. FVPLOSION STACr.

As p f l, the o(,(n r) hot spot diminishes in size hut orows in intersty,

eventually causino the expansion (4.12) to break down when E in p = 0(1). The furthler

,evelopment of the solution therefore takes place on the exponentially short time s ri

a, defined by

a - t ln(/t A p), a > 0 and n(I) .0

correspondingly, is exponentially small, anI in partic-ular,

2
Ein 2 = n )

at the edge of the hot spot.

The analysis again proceeds as in [11 and only a brief description will he aive-

here. In terms of the new hot spot variables T and a, equation (2.0) reads

8 - - n6 - F8 + (c/I)(B + e - 6)exp[(6 /)1{0 2(6 - a) - e 111
oyl 2 Ti C I c c c

where (2.R) has been employed to renlace hv 0. From (2.7) and (3.2) we note that in

the hot spot,

01 = c + est . (.3)

Also, the left boundary condition in(2.2a) reduces to

ae/aT = n + est at n = n , (;.4)

i.e. the time scale of the explosion stage is so small that practically no heat enters the

surface. It can then be shown that the solution of (5.3) satisfying (5.4) and matching

with the innition stage has the expansion

(8 -0) 2{0 +B- 2(0 -0)
-
1I

0 = (8 
-

C
) - 1  

+ 
E 2 (0 -a) 

- 2
o (T) - ln c c c c +

c c c c 0 Pe2
c

Here g (n) is the same function that anneared in (4.0), i.e. the hot spot retains the

spatial structure that it possessed at birth.

Outside the hot spot (denoted by RH  in Figure 1), i.e. for = O(1) and beyond,

the solution remains essentially frozen at its state at the end of the ignition stage.

This is because these iiffusion-dominated regions are unable to respond to exnonentially

rapid variations. Thus, in the inert region R0, the solution is

-18-
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S (x,t) 9 S( x,t + CT 2 est(5E

while in R, and R 2the solution is, respectively,

a = 9i (Vt X, tc + C6 T.) + E (, 4- 0( E)

and

9 0 (tEt + E T C -- EIn E: + Crr f ) -In A + 0() (*0I c 2 10'n

The last two expressions follow from(4.1) and (4.13), respectively, in conjunction wit h the

relation 6 9 o +

The hot-spot solution (5.S) does not match with the R, - solution (5.P). As pointed

out in (11, this is due to the looarithmic hehavior of U (E) for n (cf. (4.7)),

which causes (5.P) to break down before the edgre of R H is reached. The situation is

remedied by recognizing that an intermediate region R Ihas now evolved (see FiqurP 1),

separating the rapidly shrinking P~ from P1 I and characterized hy the variahieq a

and z, where

z = -e ln(VE A 0&2 ) 0 < z < o 050

By rewriting (2.9) in terms of the new variables, it can he shown that the

intermediate expansion proceeds as

(a-) o +R-e 2(6 -Z) -
2 -1 2 -2 c c cc 15.0

6 C (80 -Z) + E6 (6 -z) (a0 - InPO2+(.0

which matches with the outer solution (5.P) as z - 0 and with the hot spot solution(.)

as z a . This completes the description of the explosion stage.
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6. DETACHMENT STAGE

The hot spot reaches maturity at a = Bec/(ec + B). Then, as shown in Figure 1,

approaches its maximums value 8 + B and the mass fraction of the reactant, Y, F1:

zero inside the hot spot. At the same time, a logarithmic singularity develops in th-e

second term of the hot-spot solution (5.5), signalling a breakdown, while the expansions

(5.6-5.8) and (5.10), Pertaining to regions outside the hot spot, still hold. Further

evolution of the hot spot is now governed by the independent variables X and s~, wh'ere

x = X and t =t c+ e2T .+ 6s,

and the exponentially small parameter 6 is defined by

6 2= (B/A 0 c 12expE-Be c/{2c(6c + B)}]

Since the above scaling implies

Bo /( = 8 + B) - c ln(-Bs/e)

we expect the detachment stage to match with the explosion stage as s - In the new

variables, (2 .93 reads

es = e + (8 + R - 0 + est)exp[(6 /W)(ec + B) - e-1}]S xx c c c

which suggests the following expansion:

8 =8e + B + tw I(X's) + . ,(61

where

2 2
E (e (8 + B) E/B8

The problem for w1 is found to be

W, =w 1  - w1 a ,x > 0, 8 > - ,(A.2a'

1(O's) =0 ,(A.2h)

x

W1 -In X
2 
_ln(nX

2 '+ a 0  as * X (6.2c)

w I + -In(-a) - lnfln(-s)) + gq0 (X/-8) Aas 8 .X/v(-s fixed . (6-2d)

The argument behind the left boundary condition (6.2b)is the same as that behin'l (5.4).

-20-
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analogous to those for the transition-stage problem encountered in 11, and were solved 1y i

a similar numerical procedure. The solution, displayed in Fiqure 4, exhibits an exnanlini

region adjacent to the surface in which w, approaches zero as s increases. At the same

time the region of significant spatial structure is pushed farther and farther into the

interior. Thus, as the last remnants of the reactant are consumed, the hot spot evolves

into a travelling front, or flame, or deflagration wave.

-21-
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7. PPOPAGATInN STAGE

In this section the speed and structure of the proanaoa1nu wave are deter-inel. The

structure is found to he uuasi-stealv and self-similar (see ioiures I and "). It 'nssts

of a thin reaction zone surrounded hy a sliahtly thicker envelope which separates the c-, l

material ahead of the front from the burnt material hehind (c-f. ' V. Te portin F 1'e

envelope ahead of the reaction zone is a preheat region where the material is hrouah- :r

the reacting temperature.

Figure I shows that the termperature of the cold material into which tbe fror,

advances falls steadily away from the surface. This leads to a iradual retarlati-r. an

thickening of the flame, as we shall see. Let ×0' taken to he 0(1), b- the time-

varying location of the flame. We shift to a reference frame in which the flame is at rest

by setting

x = x 0  + ( 1 /r1 )c ,(7.1

where is the spatial coordinate in the envelope. The small panrameters C

(exponentially small in E:) and E 1  (proportional to c), themselves dependent upon

X., are to be assigned. The scaling (7.1) clearly implies that 6 1/ is the thickness

of the envelope. We shall later find that 61 is the thickness of the reactior zone

within the enveloe. The appropriate time scale r for the propaaation staoe is defined

via the expression

t = tc + 2T + (61 1 )r, r ) 0 , { .2)

indicating that the solution continues to envolve with exponential rapidity. The wave

speed now emerges as

dX0 C 1 dx 0 1
at T, dr T- 1(r (7)

say, where 1(r) is 0(l). The inert temperature at x0 will play a critical role;

therefore we set

0 = 6 (xrtc + 2
T) (7.4)

and observe, from (2.7) and (7.2), that for r = 0(1),

-23-
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1(x ,t) = e + est (7.51 0' I

We can now define 6 and E I as follows:

6 2 (B/A ) ( exp[(e2/c)[( + B)- - o-}1 (7.6a)
1 c c

and

= + B) 2/E = (60 + B)2C/o 2

0 0Thus, both 6 and E1 depend upon xn through 61. Since 6 decreases monotonically

(to urity) as x0  increases (cf. (2.7) and (7.4); also see Figure 1), 61 increases wh'ile

E1 decreases with x0 . However, the ratio 6 1 /E I increases, so that as the flame

advances it thickens and, from (7.3), its speed falls.

In the C,r variables, (2.9) transforms into

6 [l - ru(ae f/x0)] r = o + U6 +
1 1 I )O 0C r

-_2 (0+ 1 - ) x (60 1 )2 /E(e0 + -_1 6-11 (7.7)£;2(
6
1 + 6 )exp[{(60 + B)2/c}{(e6 + B)- 

- e-l}j 7v

- < < ", r > 0

The subsequent analysis follows along the lines of that in section 6 of [I], so that a

brief account should suffice. Separate solutions need to be constructed for the reaction

zone, the envelope and the region outside the front. In this outer region (see Figure 1),

8 (x,t) + B = ei(x,t C + C2T ) + B + est, x0 < 0 (burnt region) , (7.Qa)

6 1 (X,t) (x,tc + C2T2) + est, x0 > 0 (cold region) (7.Rb)

The burnt-region solution (7.Ra) is an exact solution of (7.8), satisfying the surface

boundary condition in (2.2a), while the cold-region solution (7.8b) is just the frozen

solution (5.6). In the envelope the portion & < 0 is a part of the burnt region, i.e.

6 00I + B + est, & < 0 . (7.4a)

For & > 0, chemistry is still unimportant since 6 < 8
0 

+ B. 7he leading-order balance
I

in (7.7) is therefore diffusive-convective, yielding

8 = A (s) + B 1(s)exp[-U(s)K] + .... (7.9b)

Continuity of (7.9a,b) across - 0 gives

-25-
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n
A, + =e z +P (7.fl

while matching between the preheat solution (7.9b) and the cold-reqion solution (7.Pb)

leads to

A = e . (7.11)1 I

Then, (7.10) determines BI, i.e.

= B . (7.12)

The remaining unknown U is determined by analyzing the structure of the reaction zone.

This is accomplished by the reaction-zone scaling

= C1p

(which confirms that 6 is the thickness of the reaction zone) and the reaction-zone

expansion

00= I + B + £1v(p,r) +...
I1

which reduce (7.7), to leading order, to

v - v exp v = 0, - < p < . (7.13)
PO

Matching with (7.9a,b) provides the boundary conditions

v + 0 as p * - -, v * - B1 UP  as p

which, when applied to the first integral of (7.13), yield

B U = V2

whence (7.12) leads to

U(s) = V2/B . (7.14)

On substituting for U, c and 6 in (7.3), the speed of the flame is seen to be

dx0  (6~ + B)2  2A~c Oz - 1 ~ } ~1
c eI +

The ultimate, steady flame speed will correspond to 00 = I in the above expression; the
I

right ine iality of (2.5) guarantees that this speed will not be. exponentially small.

The above analysis is predicated upon x0  being 0(1), which leads to the

temperature imediately ahead of the flame being essentially due to inert heating. Such is

-26-
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rot the case when the flame is very clos tn the surface. Tpt x, be expxonentiallv small,

i.e. let

2 - z I 
"/

2 3/2 )e 1xn = (/ /A )e , 0 < Zn < P /(9 + P)

Then, the front edHe of the flame lies in the intermediate realon discussel in section S,

and there the temperature differs from the inert solution by an 0(1) amount (cf.

(5.10)). It can be shown that (7. 14) must then be replaced by

(s= 2/r + B - 2(0 c  .

As z 0 . 0, (7.14) is recovered. As z 0 . TOc/9 c + R), U becomes sinqular, sli ,St1g ina i

breakdown of the analysis. This is to he epxected, because the flame, at that time, Is

still in the detachment staqe discussed earlier.
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S . CONCLUDING REMARKS

An asymptotic description of the evolution of a deflagration wave in an initially

material under the stimulus of a constant heat flux has been given. The analysis revlas

that the situation is quite similar to that for self-induced combusion, discussed earlier

[1], with the exception that the thermal explosion process responsible for the birth of

hot spot is now confined to a thin surface layer. Furthermore, it is found that once

ignition has occurred, events evolve so rapidly that the system becomes oblivious to tle

presence of the external heat supply.

To be sure, the results are based upon the assumption of the Lewis number being

unity. However, the case L = -, corresponding to solid combustibles, was also

analyzed. The full system (2.1-2.3) must then be dealt with head on, since (2.6) no loner

obtains. The reactant equation (2.1b) does simplify due to the absence of the diffusior

term, and the boundary conditions (2.2b) have to be abandoned. Otherwise, the analysis

proceeds in an analogous way. Up to the end of the explosion period, such calculations for

the case of self-induced combustion appear in the forthcoming paper by Kassoy and Poland

[3].

The results differ from the L = I case only in one significant respect. As lona as

combustion is confined to a stationary zone adjacent *o the surface (i.e prior to the

detachment of the hot spot), any reactant consumed there is not replenished by diffusion

from outside. Therefore, for a given temperature rise, the reactant concentration falls to

a lower value within the zone than it would if diffusion of reactant were permitted. This

effect appears as early as the transient stage. Thus, Linan and Williams [III found that

an O(E) change in * corresponds to a (much larger) O(VE) change in Y. The same

holds true during the ignition period. By the time the explosion stage ends, it is seen

[3] that the maximum temperature reached in the stationary hot spot is lower, by as much as

an O(1) amound, than the corresponding value for the case L - 1. The propagatinq flame

does not suffer from such a fate because it obtains the necessary reactant supply throuqh

convection.
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