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XU ABSTRACT

The title problem is treated in the limit of large activation energy. It
is shown that the evolutionary process takes place in a series of distinct
stages, and the spatial and temporal structure of each stage is described. It
is found that subsequent to thermal runaway, the behavior of the system
resembles that of self-induced combustion, except that the thermal explosion
is now confined to a thin surface layer. _-= 4
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SIGNIFICANCE AND EXPLANATION

Burning of an initially cold combustible material is studied. It is
assumed that combustion is initiated by heating the surface of the material.
This will result in a chemical reaction first occurring at the surface, and
then spreading through the material in the form of a flame or deflagration
wave. Asymptotic methods are used to study the transient process leading to
the establishment of the flame. Attention is confined to solid combustibles,
but it is envisaged that the techniques developed here will aid in the

eventual understanding of the evolution of gaseous combustion.
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EVOLUTION OF DEFLAGRATION IN A COLD COMRUSTIRLE
SUBJECTED TO A UNIFORM ENERGY FLUX
A. X. Kapila*
1. INTRODUCTION

ronsider a combustible material confined to a container and rapahle »f underacina -
exothermic chemical reaction of the Arrhenius type. There are essentially two modes o
which burning can be initiated in this system: either throuah self-inducel heating (tierrmal
explosion) or by an external stimulus (ignition). 1In the first mode the 1initial
temperature of the material is high enough so that a significant amount of chemical »eat
release beqins to occur immediately throughout the system. If heat loss is not
overpowering the temperature will rise, but seldom uniformly in space. The fastest rise
usually occurs at one or more discrete sites where hot spots form and eventually corbustin-
waves originate.

A detailed mathematical treatment of the dynamics of self-induced combustion for a
diffusional-thermal model has recently been given by Kapila [1]. B2 symmetric geometry is
chosen so as to lead to the development of precisely one hot spot, and the spatial and
temporal structures of the various phases of the evolutionary process are described, It is
shown that while the birth of the hot spot is a rather slcw phenomenon, its growth and
transition into a deflagrating wave are extremely rapid events indeed. A partial
development along the same lines, undertaken independently and including extensions to
several geometries, is due to ¥assoy and Poland [2-4]).

The above treatments have all been asymptotic, hased upon the limit of large
activation energy. This limit, although in implicit use since the early work o»f Zeldovich
and Frank-Kamenetskii (see, for example, (5] and [6]), was suggested as the basis for a

rational asymptotic theory only recently by Williams (7). Since then it has heen applieAd
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successfully to a wide variety of prohlems in combustion theory, and in fact has inspired a
forthcoming monograph on the subhject by Buckmaster and Ludford ‘R!'. In the present
context, Kassoy's extensive investigations (see [9) and the references contained therein)
of the spatially uniform thermal explosion deserve srecial mention.

In the ignition mode the initial temperature of the combustible is so low that :t 1s
practically inert, and will not burn if left alone. Energy transfer from an external
source is therefore needed to activate the chemistry. This raises a natural cuestion: how
long should the external stimulus be maintained before the material is sufficiently excited
to develop self-sustained combusion? Attempts to treat this question embody the classical
theory of ignition. For solid combustibles the status of the theory, ani the pertinent
literature as of 1970, are contined in the review article by Merzhanov and Averson (1N},
From a theoretical standpoint, two problems appear to have received the most attention.
These treat a homogeneous, semi-infinite reactive solid, heated either by applying a
consgtant energy flux at the surface or by raising and subsequently maintaining the surface
temperature. The nonlinear parabolic differential equations governing the problems have
either been solved numerically or by a variety of approximating techniques [10]. They all
have one common feature: ignition is deemed to have occurred when the solution is
perceived to have departed significantly from the chemically inert solution for the same
configuration.

The large activation-enerqgy limit has played a clarifying role in ignition theory as
well. Thus, most past approximations were rendered obsolete by the recent asymptotic
studies of Lifan and williams [11, 12]). Their work has two important features. First,
the onset of ignition is defined by a mathematically precise criterion based upon "thermal
runaway”. In other words, the solution is sought as a small deviation from the
corresponding inert solution, and the instant of ignition is defined to be the one at which
the perturbation develops a mathematical singularity. Second, explicit asymptntic
expressions are given for the ignition delay period. The results are found to be in close

agreement with numerical values available in the literature.
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while the ahove work answers one muestion satisfactorilv, {t raises another, namelv,
what is the post-iqnition transient that culminates in the development of a deflaaration
wave? A description of the transient falls outside the score of ianition theory, since
large departures from inert heating will be involved. The sinqularity of Linan and
Williams' quasi-steady solution does provide a clue, however; it suaqests that unsteady
effects will have to he reinstated for further develorment of the solutinn.

This paper aims at describing the entire seaduence of events, subseaquent to 1ignition,
for the case of the constant surface-flux stimulus. We shall finAd that the situnation is
quite akin to that for the self~induced combhustion mode discussed in 1', excent tha* the
thermal explosion is now confined tn a thin surface layer. The analvsis adain iraws unon
large activation-energy asymptotics, and a solution uniformly valid in space ani time is
sought. The problem correspondinag to a step increase in surface temperature will be the
subject of another paper.

on physical grounds it is ouite clear that for a solid reactant the ultimate state
will be one of nearly steady deflagration if heat loss is ahsent. For a aasenus mixture
the situation is not so obvious. Depending upon the strength of the reaction and its
coupling with the gas dynamics, the final state may well he a detonation. It is expected

that the techniques developed here will aid in the eventual understandina of the evolution

of combustion in confined gases,
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2. MATHEMATICAL FORMULATION. : {
Consider a combustible material occupying the right-half space x' > 0 and capable of

undergoing a first-order, one-step Arrhenius-type chemical reaction. (Primes indicate : 1

dimensional quantities.) We envisage a diffusional-thermal model in which the material is

assumed to have constant physical properties (density p', thermal conductivity k',

material diffusivity D' for the reactant species, and specific heat c¢'). 1Initially the

temperature is 96 and the fuel mass fraction Y6. Commencing at time t' =0, a

constant heat flux q' is applied at the surface. The equations governing the thermo-

- chemical behavior of the material are

p'cloy, = k'0, , + Q'A'Y'exp(-E'/R'8') ,

p'Yé, = p'D'Y)‘(,x, - A'Y'exp(-E'/R'6"')

6'(x',0) =87, Y'(x',0) = y¥! .

0

X'81, (0,£') = —q', B'(=,t') =815 YL, (0,t') =0, Y'(e') =1, i
° |

Here Q',E',A' and R' are, respectively, the heat of reaction, the activation energv, J
the pre-exponential factor and the gas constant. On selecting 66, Y&, k'ea/q' and I
p'c'k'eéz/q'2 to be the units of temperature, mass fraction, length and time

respectively, the above system reduces to the following dimensionless form:

et = exx + AY exp(~E/8) , (2.1a)

Y, = L-1Yxx - (A/B)Y exp(-E/8) , (2.1b)
8,(0,t) = -1, 8(=,t) =1, (2.2a)
Yx(O,t) =0, Y(o,t) =1, (2.2h)
8(x,0) = 1, (2.3a)

yi(x,0) = 1 . (2.3b)

The nondimensional parameters appearing above are
A= (Q'A'Y&k'et"/q'z, the Damkohler number,
B = (O'Y&)/(c'eé), the heat-release parameter,
L = k'/(p'e'D'), the lewis number, and

E= E'/(R'O(')), the activation energy.

-4-
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The mathematical model considered above is gquite adequate for an approximate
description of solid combustion (but not for gaseous reactants, since material deformation
has been ignored) and becomes still more realistic by taking L = «, because diffusion of
the solid reactant relative to that of heat is negligible. We shall, however, present the
analytical details only for L = 1; the special symmetry of the equations then renders the
mathematics particularly simple without compromising the essential physics. This was
verified by actual computations for L = ®, and it was found that the asymptotics must
then be taken to higher orders to capture the eguivalent results. A discussion of
significant departures from the L = 1 case is given in the last section.

Although, as pointed out above, the model under consideration is deficient as a tool
for studying the evolution of gaseous combustion, it has provided satisfactorv descriptions
of several other aspects of gaseous flames. See, for example, accounts of cellular flames
[13) and of flames in accelerating environments [14]; also see [15]) for a rational
derivation of the model from the equations of aerothermochemistry.

Typical values of A,B and E are 1015

, 2 and 2%, respectively (see, for example,
Bradley [16]). It is particularly realistic, therefore, to attempt an asymptotic analysis
in the limit E + o, taking B to be an O0(1) parameter. The largeness of A |is
accounted for by setting

A = A exp(E/6 ) (2.4)
where A is assumed to be at most algebraic in E for large E, and will be assigned
Aduring the course of the analysis. Thus (2.4) defines Bc, which is assumed to be
0(1). Also, we let

1< ec <1 +B. (2.5)
The lower limit ensures that combustion is not instantaneous, while the upper limit, as we
shall see, allows a self-sustained deflagration wave to propagate into the cold material.

For unit Lewis number, equations (2.1-2.3) show that
8 + BY = GI + B, (2.6)

where 6 the inert temperature, is the solution of (2.1a), (2.2a) and (2.3a) for A =

II

0, and is given by

——
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i
j
i

1/ -
6I = 1 + 2(¢t/m) 2nxnf—x2/(4t)‘ - x erfc'x/ ey, (2.7

The result (2.6) effectively eliminates Y from explicit consideration as a dependent
variable., Followina Liﬁén and Williams [10! we recast the ¢-problem in terms nf 2,
where

=0 - A (.8
T

-
°

is the departure of 8 from the inert 81. Enuations (2.4), (2.f) and (2.8) thern lead teo

the reduced system

ind 2 -1 -1
= + - pxp ! §  ~ (8 s n (2.0}
%, = b, * (A/BI(R @)Pxp_(@c/c){ac gy ¢ Ok,
ox(ﬂ,t) = (o, t) = 0, (2.10)
¢{x,0) =0, 12.11)
where
€ = 82/r . 2.12)
o
Our aim is to develop an asymptotic solution, uniformly valid in x and t, as £+ N,

The solution will he seen to evolve in several stages, each characterized hy a Adistinc+
time scale. The longest of these is the inert stage, of ©0O(1l) extent on the time scale

t and characterized bv essentially zero chemical activitv. A short transition period

of 0f(€e) duration follows, in which a weak chemical reaction develops in a thin surface
layer, eventually leading to thermal runaway. The reaction intensifies during the ignition
state, 0(62) long in t, and a hot spot appears at the surface, The hot spot shrinks
and strenathens in an exponent .ally brief explosion perind., A still shorter detachment
stage follows, in which the hot spot leaves the surface and heains its advance into the
interior. Finally, a well-defined deflagration wave, travelina with practically unifrrm
speed, is established during the sliahtly loncer propagation staage. Thus, in phvsiral
terms, the transient heyond the transition stage is similar to that in self-induced
combustion, except that the thermal explosion is now confined to a narrow surface layer,

We shall take advantage of this similarity to omit details whenever possible, referring the

reader to [1] instead. 1In the interest of clarity, however, some repetition has been

unavoidable.

A schematic view of the transient appears in Figure 1.
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3. INERT AND TRANSITION STAGES

The first two stages were treated in detail by Linan and williams '11]. 1In orier
continue the solution further it is helpful to briefly reconstruct, and slightly amplify,
their analysis.

For small ¢, 8 = 91 + ¢ < ec, so that the reaction term in (2.9) is exponertiall~
small. Therefore, the solution to (2.9-2.11) is inert, i.e.

$ =0 + est , 3.1
where est stands for exponentially small terms. Correspondinaly, (2.f) shows that

Y = 1+ est ,
i.e., reactant consumption has been negligible. This solution becomes void and aives wav
to the transition stage as soon as the chemical term comes into play in (2.9). This will
occur first at the surface (where temperature is at its maximum) at time t, such that
GI(O,tc)= Sc, i.e. from (2.7),

tc = n<ec - 1)2/4 . (3.2
The argument of the exponential in (2.9) indicates that for € + 0, chemical activity will
be confined to the region where SI + o - ec = 0(e), i.e. to the thin surface zone R,
(see Figure 2) where the appropriate independent variables are £ and 1, defined by
x=¢c, t= tc +€T; £>0, 1> =,

Ecuation (2.9) then reads

- 3/2 _ 2 -1_ - —_ -1
€0y = bgp * €T (R /BN (B ¢)exp(ec/e){e (B, + ¢ -ef + e'r/v’ntc + ofe)) '}, (3.3)
where we have anticipated that

A=c"2

0 (3.4)

and the expression (2.7) for SI has been expanded in terms of £ and Tt. The O(1)
constant A, will be assigned shortly. We note that to leading order, ecuation (3.3) is
steady. With ¢ expanded as

¢ = €¢, (8,1 + 53/2¢1(£,1) + eee (3.5)
the left boundary condition in (2.10) yields

301/35 =0 at £ =0; i=20,1,2,...

while the initial conditions

-8
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exp. Small
’ EI/ R, R R, £-4 = e7b. small
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Figure 2. Various regions in the xt-plane (not to scale)
from inert through explosion stages.




are a result of matchina with t

found to be (see [11!)

where

and the yet unknown functions

As £ + ®, equations (3.6

. the right boundary condition in

separatina Ry from the inert

coordinate is taken to be X,

he inert solution (3.1), The €irst twe *erms in (1,61 are

¢n = fn(T) B 13,43

4y = RgLE + SEypiny . £,00) P,

e =12 1.7

P71} = £(r) + ST [
p(1) exp n( ) (Wto)

fo,f1 satisfyv
f (=) = f (=) = 0 , 3.2

0 1
) show that to,c do not Aecav to zern, thereby violatingy
(2.10), This suggests the presence of a new reaion Fyr

region Ry, as shown in Figure 2. In Ry tre spatial

defined bv

x =VeE X or % =x/Ne, X > P,

which reduces (2,9) to

Or T 9k * /e (a /R)(R

Anticipating ¢ to he O(e),

exponentially small. On settin
¢
wn and w1 are found to sati
v =V i
01 XX

wn(o,r) =f

wo(x,-m) =

and
W1 = ¢1 P T D> —e,

¥ (0,1) = £(T), y, (0,1) = (3/2)A%(R(T)

X
01()(,-‘”) =0 .

- O)EXP((Gy/e){G_1 “ 6 =dEX st o e L
lod (o] [od

it is clear that the reaction terrm in the ahove equation 11
g

, 3/2,
= evn(x,x) + € v1(x,1) + eee (3.9

sfy

5

T> =™, X >N, |

i
!
\
0('r), wov(o,r) = =R P(1), bpl=,1) = o, f f3.1m
h¢ '
|
n, )
X >0, \

2
17 = RPUTIE (T, Y (1) = 0 ,} (2,11)
f
)
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The left boundary conditions® in the *wo protlems above resnlt from matthing with R,
while the right boundary conditinng and the 1nitial conditions are provided by matchirg
with the inert region R,. Both the prob.ems can be solved hy using a larlace transfor— ir

n. Thus, (3.10) has the transformed solution

wo(x,r) = L.T. of WO(X,T)

3.121
N 1/2 =2(' o)
= - = e e
o -sfto) + Ay exp{fo(o) + (me ) c}le 40 .

0

An integral equation for the still-unknown function fo(r) car be obtained by irverting

WO(S,T) and taking the limit n » 0. It is convenient to write

= T (3.
fo(r) fO(T) . (3.13)
where
T = Intene )41+ e V30 (3.14)
c 0 c
Then ?0 satisfies the parameter-free integral eguation
- = -1 - -1 -
£,(1) = (M) /2J (t - o) /zexn[fo(c) + oldo .

Lindn and williams [11] obtain an equivalent integral eaquation, solve it numericallv and

show that ;0 is positive, monotone increasing and becomes unbounded at 1= ho; they
find by to have the numerical value

bo = =0,431 .
Following (11] we choose
h
-1/4e 4

A, = (®t )
c

0 (3.15)

"
2
.

which, through (3.13) and (3.14), places the singularity in fn(r) at 1 The

following asymptotic expansion can bhe developed:

*specification of ¢, (0, 1) in (3.11) requires carryina (3.5) to an additional term.
. X

¥
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£,01) = =(1/2)In(=1) + In[/7/(2R)) + o(1) as T + 1 . FRER
(The above expansion also appears in [11] but there the second term seems to have a
misprint.) Once f, is known, (3.12) can be inverted to yield wo(x,r). We shall nee”
the behavior of wn(x,O) for small ¥, and this can be calculated from the large s
expansion of io(s,n). The result is
¥o(X,0) = -In X + (1n(v’?/(2Ao))' - y/2] +0(x°) as x>0, (3.17)
where Yy 1is the Euler's constant.
The unknown function f1(1) can also be determined from (3.11) in an entirely
analoqous way, and is found to have the asymptotic behavior
0 =~/ 2 =m0 oy as T e o
Returning now to the region Rz, we note that the unboundedness of fo and f1

leads to a breakdown of the expansion (3.5) as 1 + 0 . This is as far as Linan and

williams [11] went; they identified the appearance of the singularity as thermal runawav,

i.e. the onset of significant departures from the inert solution.
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4. IGNITION STAGE.
In order to continue the solution further in time, we observe that (3.5) vields
¢T ~ % E(-T)-1 as 1> 0,
indicating that the hitherto neglected unsteady term in (3.3) must be reinstated when
T = 0{(e). This suggests a new time-variable T, defined via the scaling
T = €T, Or equivalently, t = ezT.
As Figure 2 indicates, the relevant regions in the xt-plane are 52 (characterized by

£ and T) and Et (characterized by X and T). Of these, the latter is easily

disposed of; in it (2.9) reduces to

Therefore, to leading order, ¢ can depend only on X. Matching with R1 then gives

¢ = :wo(x,O) 4+ o(g) (4.1
In Ez, (2.9) assumes the form
2 - -1
b = 0., +€72(a /B)(B - rexp((82/€1{8° = (8 + ¢ - £ + o(en '},
T EE 0 c c c
(4.2)
£E>0, T> >,
Matching with R2 as T + - » dictates the expansion
¢ = - % € lne + e[U1(€,T) = In Al 4+ eee (4.3)
which, when substituted into (4.2), yields
U1 = U1 + exp(u1 -£), £E>0, T > ==, (4.42)
T 34
The left boundary condition in (2.10) provides
U, (0,T) =0 (4.4b)
1
13
while matching with the E1-expansion (4.1) yields (cf. (3.17))
U, + =«1n & + (1n fi - Y) ag £ + w (4.4c¢)
1 2 2
The initial condition
-13-
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1 Vv 2 .
- - - r . . - y
i U1 + 3 In(-T) + 1ln 3 ot \O(E) as T + = (4.4
is the result of matching with the Rz—expansinn {3.5)s Here,
\ -1 1 -£
| vn(i) = % n2(2 -n) + ry m(E + e 7)) . (4.5

We observe first that the above problem for U, is parameter-free, and therefnre
defines a universal function. Second, each of the three terms present in the full equation
(2.9) still survives in the reduced form (4.4a), albeit the Arrrhenius exponent has heen
simplified via linearization ahout a reference state (i.e. the inert state), This feature
is reminiscent of the induction-period problem for self-induced combhustion, discussed in
1), and we shall find that the similarity extends to the nature of the solution as well.
Equations (4.4) were solved numericallv by spacewise discretizatinn, followed by a
numerical integration of the resulting system of ordinary differential equations with the
. stiff ODE solver EPISODE B [17). Prior to discretization, a cmorAinate transformation was

used to map the problem onto a finite spatial domain.

The numerical solution is displayed in Figure 3. Initially the temperature rise is
everywhere aradual, but then u, begins to increase rapidly near £ = 0 while variations
are more leisurely elsewhere. Eventually, at a definite rime T, (= -14,719), U1(0,T)

. . becomes unbounded. The evolution of the singularity at T, can be examined
analytically. (The following discussion will he brief, since the situation is analogous to
that in [1]).) We let
T=Tm-P: p>0, (4.6)
and in the limit p + 0, develop two asympntotic expansions for Uy+ B2n outer expansion,
valid awav from £ = N0, has the form
Uy = Uy gl8) + p U (B) + oet (4.7)
where U10(£) is the numerically computed solution of (4.4) at T = Ty r and the higher-
order terms U1i can be determined by substitutina (4.7) into (4.4a). An inner reaion, or
boundary layer, is characterized by the variables p and n, where
n=t¢Np, 0¢n<cw, (4.8)

and the inner expansion is seen to have the form

14~
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u1=-1np+a0:n)+/5 g (m + el 10

In the limit p + 0, n fixed, the boundary-layer thickness is O(Y1), and the expan<:
(4.9) indicates explicitly that the singularity in U, is logarithmic. when (4.7 1s
substituted into (4.4a), we obtain the following eauation for 9p:
ga - % n 96 + exp g, - 1=0, 0<n <>, (4.1
The condition
9(',(0) =0 (4.1°%
is by now familiar, while the behavior
9y = -2 lnn*ao+o(n'2) as n + @ (4.10¢)
comes from suppressing the exponential growth of 90 for n + »; such a growth would nn+
be commensurate with the slow rate of change observed outside the boundary layer, The
constant a, is determined by matching the exvansions (4.7) and (4.9), which reaquires
Uw(E) = =2 1n£+a0+0(£) as £ + 0 ., (4,11
A comparison of the above asymptotic expression for 010 with the numerical solution of
(4.4) at the edge of the boundary layer (i.e. for such a choice (§,T) which satisfies
£<¢ 1, T =T <1 and n=ENT =T > 1) then yields a (= 2.5). With ag known,
gy can be computed by integrating (4.10) backwards. The result is a monotonic curve with
90(0) >0 (4,12)
(see Figure S of [(1). The higher order 95 occurring in (4.9) can, in principle, be
computed in an analogous way.
To summarize, we have shown that the ignition stage terminates at a definite time
T, For T < Ty the tempe: ure increases throughout the 0(€) thick surface layer
52, but remains an O(e 1ln g£) perturbation of the inert temperature (cf. (4.3)). Toward
the end of the ignition period (T + T_ or p + 0), a boundary layer, or hot spot, of

thickness O(/; €) develops within R In the hot spot the solution grows rapidly and

2
has the expansion

¢ -% € lne +e[=1lnp + go(n) - ln A +0(/5)) +o(e), n20, (4.13)

0

while in the remainder of R the solution remains

2

-16-
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¢ = -%e In e+ elu, (£) ~ In A, + O(p)] + ole), & > 0, (4.14)

0

In the O(/e) thick region §1 the solution is constant in time, to leading order, durina

the entire ignition stage (cf. (4.1)) while in the inert region R ¢ = 0 to all

ol
algebraic orders in €.
As the process evolves further, 0(1) departures from the inert solution will begin

to occur at the surface. Therefore, it will be convenient to discar@ ¢ in favor of 2

as the dependent temperature variable.

-17-
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R. FYPLNSION STAGF.

As p + 0, the 0(/p €1 hot spnt diminishes in size hut arows in intersity,
eventually causing the expansion (4,12) to break Adown when ¢ In p = O(1). The further
Jevelopment of the solution therefore takes place on the exponentially short time scale

o, defined by
0 = -¢ InlVe Ao P), a >0 and o0(1) . (e,
correspondingly, £ is exponentially small, and in particular,
€ 1ln 52 = 1)
at the edge nf the hot spot.

The analysis again proceeds as in [1] and only a hrief description will he agiven

here, In terms of the new hot spot variables n and o0, equation (2.9) reads

-1,

1 2 -2
- - - - § £ - - M e
8 n6 €8 + (e/R)(B + eI Jexp{ (6 /L){G (8 a) § ! {82

nn 2 n
where (2.R) has been emploved to remlace ¢ by 8. From (2.7) and (3.2) we note that in
the hot spot,
01=6c+est . (5.3)

Also, the left boundary condition in(2.2a) reduces to

36/3n = N + est at n =0, (R.q)
i.e. the time scale of the explosion stage is so small that practically no heat enters the
surface. It can then be shown that the solution of (5.3) satisfying (5.4) and matching
with the ianition stage has the expansion
(8_=012{0_+8-62(8 -0y "}

c [ c ¢

re2
C

6 = ez(ec-o)'1 + 565(0c~c)-2{ao(n) -1n ] 4 eee o (5.5)
Here gn(n) is the same function that ampeared in (4.%), i.e. the hot spot retains the
spatial structure that it possessed at bhirth.

Outside the hot spot (denoted by ;H in Figqure 1), i.e. for £ = O(1) and beyond,
the solution remains essentially frozen at its state at the end of the ignition stage.
This is hecause these diffusion-dominated regions are unahle to respond to exronentially

rapid variations. Thus, in the inert reqion R the solution is

0'

-18-
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2

6 = GI(x,t) = QI(x,tc + € Tm) + est (S./) i
while in ;1 and ;2 the solution is, respectively,
8 =8 (/Ex, t_+ eZTQ) + ey, (X,0) + ofe) (5.7 1
and
8 = 6_(gk,t + 62T )y - 1 € lne + €fl, (£ = 1In A Y + ofc) . (5.2)
I [o] © 2 10 n

The last two expressions follow from (4.1) and (4.13), respectively, in conjunction with the
relation 6 = 91 + b
The hot-spot solution (5.5) does not match with the R,- solution (S.R). As pointed

out in [1), this is due to the locarithmic hehavior of U1n(£) for £ + 0 (cf. (4.7)),

which causes (S5.R) to break down before the edge of RH is reached. The situation is
remedied by recognizing that an intermediate region RI has now evolved {see Fiqure 1),

separating the rapidly shrinking RH from R1, and characterized by the variables ¢

and z, where

. . ® e+ & . . e . ® & a .

z = -¢ In(/e AOCZ), 0<z<o . (5,9)
By rewriting (2.9) in terms of the new variables, it can bhe shown that the

intermediate expansion proceeds as

IR - (8 _-2)°(0_+r-0(6_-2)7")
+ €07(6 -2z) “fa_ ~ 1n < 1 4 oo, (5.10)
c c 0 2
PBC

8 = 82(8 -2)
[o] [od

which matches with the outer solution (5.8) as z » 0 and with the hot spot solution (5.5)

as z + 0. This completes the description of the explosion stage.
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6. DETACHMENT STAGE

* PR * W e v

The hot spot reaches maturity at o = Bec/(ec + B), Then, as shown in Figure 1, - t
approaches its maximum value Bc + B and the mass fraction of the reactant, Y, falls -«
zero inside the hot spot. At the same time, a logarithmic singularity develops in tte

second term of the hot-spot solution (5.5), signalling a breakdown, while the expansions

(5.6=-5.8) and (5.10), pertaining to regions outside the hot spot, still hold. Further
evolution of the hot spot is now governed by the independent variables x and s, whrere
x = §y and t = et szT“ + 625 '
- and the exponentially small parameter ¢ is defined by

62 = (B/A0)€1/2

exp[-Bec/(ZC(ec + BY}] .
Since the above scaling implies
o =B8 /(68 + B) - ¢ ln(-Bs/c) ,
¢ e

we expect the detachment stage to match with the explosion stage as s + ~w, In the new

;arfablés; ?2.93 reads

_ 2 -1 -1
8 exx + (8, + R -0+ esthexpl(6_/e){(0_ + B) e '} .
which suggests the following expansion:
8 = ec + B + cw1(x,s) + eee (6 1)
where
- 2 2
€ = (ec + B) 5/6c .
The problem for w, is found to be
Y1
vy = v, - we ', x> 0, 8> -m, (f.2a)
8 XX
w1 (0,8) =0 , (6.2b)
X
2 2
w, * =In x” = In(ln x°) + a, as y * =, (6.2¢)
w, o+ =1n{-g) = In{ln(-8)} + go(x//:;) as 8+ =@, y/f-g fixed . (6.24)

The arqument behind the left boundary condition (6.2b)is the same as that behind (5.4).

=20~
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analogous to those for the transition-stage problem encountered in (1!, and were solved hv

a similar numerical procedure. The solution, displayed in Figure 4, exhibits an expandina

region adjacent to the surface in which v, approaches zero as s increases. At the same

time the region of significant spatial structure is pushed farther and farther into the

interior. Thus, as the last remnants of the reactant are consumed, the hot spot evolves

into a travelling front, or flame, or deflagration wave.
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7. PROPAGATION STAGE

In this section the speed and structure of the pranagatina wave are deter—ined. The
structure is found to be quasi-steady and self-similar (see Fiaqures 1 and S). It ronsists
of a thin reaction zone surrounded by a sliahtly thicker envelope which semarates the coll
material ahead of the front from the hurnt material behlind (cf, 171, The portion nf +he
envelope ahead of the reaction zone is a preheat reaion where the material is brouah* ur *o
the reacting temperature.

Figure 1 shows that the termperature of the cold material into which the frars
advances falls steadily awav from the surface, This leads to a aradual retardation an?
thickening of the flame, as we shall see. lLet Xqe taken to be 0(1), be the time-
varying location of the flame. We shift to a reference frame in which the flame 1s at rest
by setting

x = Xy + (61/c1)c ' 7.1

where [ 1is the spatial coordinate in theAenvelope. The small p;?aﬁefers é}
(exponentially small in €) and 51 (proportional to €), themselves dependent unon
Xqye are to be assigned. The scaling {7.%) clearly implies that 61/c1 is the thickness
of the envelope. We shall later find that 61 is the thickness of the reaction 2zone
within the envelope. The appropriate time scale r for the propagation stage is defined
via the expression

t =t + cZT + U8 /e, ©r >0, (7.2)

c L 1"

indicating that the solution continues to envolve with exponential rapidity. The wave

speed now emerges as
=T 5T =37 Ur), (7.3)

say, where U(r) is O0(1). The inert temperature at Xq will play a critical role;

therefore we set

0 2
61 = eI(xn,tc +eT,) (7.4)

and observe, from (2.7) and (7.2), that for r = O(1),

-23-
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0
BI(xo,t) = SI + est . (7.5}

We can now define 61 and ¢ as follows:

1
_ 1/2 2 0 -1 _ .
85 = (B/A )¢ exp[(ec/e){(GI + B) eC h (7.6a)

and
0 2 0 2 2
= + = 8" . (7.Fh)
€, (eI B)“/E (eI + B) e/ c
0 .
Thus, both 61 and €, depend upon x, through 92. Since 61 decreases monotonically
(to urity) as x;, increases (cf. (2.7) and (7.4); also see Figure 1), 61 increases while

61 decreases with Xge However, the ratio 61/51 increases, so that as the flame
advances it thickens and, from (7.3), its speed falls.

In the ¢,r variables, (2.9) transforms into

0
51[51 - rU(BBI/axO)]Gr = eCC + UeC +

2 -1 (7.7)

€726 + R - e)exp[{(e°I + 8)2/5}{(62 + B)

-1
1 -6 }] .

- <7 <C®, r >0.

The subsequent analysis follows along the lines of that in section 6 of [1], so that a
brief account should suffice. Separate solutions need to be constructed for the reaction
zone, the envelope and the region outside the front. In this outer region (see Figure 1),

2

el(x,t) + B = eI(x,t + €T ) + B + est, X, < 0 (burnt region) , (7.8a)

o]

2
BI(x,t) = eI(x,tC + €T ) + est, x, > 0 (cold region) . (7.8b)

0
The burnt-region solution (7.8a) is an exact solution of (7.8), satisfying the surface
boundary condition in (2.2a), while the cold-region solution (7.8b) is just the frozen
solution (5.6). In the envelope the portion § < 0 is a part of the burnt region, i.e.
8~6)+Brest,co. (7.9a)

For £ > 0, chemistry is still unimportant since 6 < Og + B. The leading-order balance
in (7.7) is therefore diffusive-convective, yielding

6 = A (s) + B,(s)exp[~U(8)E] + ... . (7.9b)

Continuity of (7.9a,b) across £ = 0 gives

-25-
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A+B-Bn+P (7.10)
1 1771 :
CT - while matching betweer the preheat solution (7.9b) and the cold-region solution (7.Rb)
leads to
0
A, = . 7.11}
1 eI (
Then, (7.10) determines B1, i.e.
R1=B. (7.12)
The remaining unknown U 1is determined by analyzing the structure of the reaction zone.
This is accomplished by the reaction-zone scaling
£ =€,
* (which confirms that 61 is the thickness of the reaction zone) and the reaction-zone

! expansion
6 = 80 + B+ e vip,r) + «o.
I 1 r r
! which reduce (7.7), to leading order, to
- ex = - < < = , 7.13
vpp v p v 0, P ( )
- Matching with (7.9a,b) provides the boundary conditions
v+0 as p * =-®, v+ = B1Ub as p + @»
which, when applied to the first integral of (7.13), yield
B.U = V2
1
whence (7.12) leads to

u(s) = vY2/8 . (7.14)

On substituting for U, ¢ and 61 in (7.3), the speed of the flame is seen to be

1

2

0
| dx0 ) (eI + B) ) 1 1 1)
, at 2 ) ) : :
; Bc 61 + B c J

The ultimate, steady flame speed will correspond to eg = 1 in the above expression; the
right inequality of (2.5) guarantees that this speed will not be exponentially small.
The above analysis is predicated upon Xg being 0(1), which leads to the

! : temperature immediately ahead of the flame being essentially due to inert heating. Such is

-26-
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rot the case when the flame is verv close to the surface. letr x, he exponentiallv small,
, i.e. let
y - -
| -2z /¢
3 2 3/2 0’
= 3 a ny .,
X, (e /An)e , N < z, < KZC/(\,C + ")
Then, the front edae of the flame lies in the intermediate reaqion discussed in section 5,
and there the temperature differs from the inert solution by an 0O(1) amount (cf.
(5.10)). It can be shown that (7.14) must then be replaced by
V2718 6206 !
T = - - .
. U(s) 2/[C+B C(C z, )
As z0 + 0, (7.14) is recovered. As z,* QOC/‘)C + R), U hecomes sinqular, sunaaestinag a
breakdown of the analysis. This is to be epxected, hecause the flame, at that time, 1is
. still in the detachment stage discussed earlier.
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8. CONCLUDING REMARKS

An asymptotic description of the evolution of a deflagration wave in an initiallwv -0l
material under the stimulus of a constant heat flux has been given. The analysis revelas
that the situation is quite similar to that for self-induced combusion, discussed earlier
[1], with the exception that the thermal explosion process responsible for the birth of +'.
hot spot is now confined to a thin surface layer. Furthermore, it is found that once
ignition has occurred, events evolve so rapidly that the system bhecomes oblivious to the
presence of the external heat supply.

To be sure, the results are based upon the assumption of the Lewis number being
unity. However, the case L = =, corresponding to solid combustibles, was also
analyzed. The full system (2.1-2.3) must then be dealt with head on, since (2.6) no lonager
obtains. The reactant equation (2.1b) does simplify due to the absence of the diffusior
term, and the boundary conditions (2.2b) have to be abandoned. Otherwise, the analysis
proceeds in an analogous way. Up to the end of the explosion period, such calculations for
the case of self-induced combustion appear in the forthcoming paper by Kassoy and Poland
[31.

The results differ from the L = 1 case only in one significant respect. As lona as

combustion is confined to a stationary zone adjaceni *o the surface (i.e prior to the

detachment of the hot spot), any reactant consumed there is not replenished by diffusion
from outside. Therefore, for a given temperature rise, the reactant concentration falls to
a lower value within the zone than it would if diffusion of reactant were permitted. This
effect appears as early as the transient stage. Thus, Linan and williams [11] found that
an O(e) change in ¢ corresponds to a (much larger) o(/e) change in Y. The same
holds true during the ignition period. By the time the explosion stage ends, it is seen
[3] that the maximum temperature reached in the stationary hot spot is lower, by as much as
an O(1) amound, than the corresponding value for the case L = 1, The propagating flame

does not suffer from such a fate because it obtains the necessary reactant supply through

convection.
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