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Introduction

The present monograph, essentially the sequel to the book "Aswmptoti: !
Expansions of Solutions of Singularly Perturbed Eguations" [13}], is devoted
to the asymptotic theory of differential eguations with a small parametor

¢ before the derivative, such as
Z d.\'
s F(Zr&'rt) ' a = f(Z:\’rt) ’ (1)

and to other related problems involving asymptotic behavior for small
Such problems are said to be singularly perturbed.

The difficulty with the construction of the asymjptotic expansion of
the solution of system (1) arises from the fact that for .. = 0 the
order of the system decreases; as a result, the solution of the degencrat:
system

- - dv - -
0 =F(z,v,t), a‘; = f(z,v,t) ., (2)

cannot in general satisfy all of the supplementarv conditions jrescribed
for (1). On account of this singularity the asvmptotic expansion n€

the solution of system (1) cannot be constructed solelv in the form of
an "ordinary" series in powers of (regular series) but a boundarv
series must be added whose terms are important only in a neighborhood of
those points at which the given supplementarv conditions for (1) are not

satisfied by (2).

*
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z . However, in applications one frequently encounters cases where this

The techniques for constructing regular and boundary series are des-
cribed in detail in [13]); in addition, methods for estimating the remainder
terms are also discussed there. 1

A1l of the problems discussed in [13)] were characterized by the

fact that the equation F(z,y,t) = O had one or several isolated solutions

equation has a family of solutions which depends on several arbitrary
functions. We shall call such cases critical and we shall consider them
in the present monograph. Many of these results were obtained in
(3,4,9,10,11,12,15] . The critical case can be distinguished analytically
by definite signs: some eigenvalues of a special matrix are identically
zero. We also discuss several problems of concrete physical importance

in a number of fields: problems in kinetics, problems in the theory '

of semiconductors, numerical difference schemes, etc.

The techniques for constructing the asymptotic expansion in this
critical case are basically the same as those in [13]. For a thorough
understanding it is advisable for the reader to become acquainted with '
the first three chapters of that book. However, in the present monograph,
for an understanding of at least the formal aspects of the construction
of the expansion, it is not necessary to consult [13]. Concerning the
estimates for the remainder terms of the asymptotic expansions, the
reader should consult [13]. The only exception is Chapter L where the
proof is somewhat different and so it is given in detail.

The presentation is sufficiently elgmentary that it can be under- ;

stood completely by those concerned with applied questions.
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Chapter 1

(V)
——— - . S S

Weakly Nonlinear Singularly Perturbed 1
Equations in the Critical Case:
Initial Value Problems

§1 Singularly Perturbed Differential Equations

l. Statement of the Problem. We consider the differential equation

uj‘% = A(t)x + pf(x,t,u) (1)

where p > O is a small parameter, x and f are m-dimensional vector
functions, A(t) is an (m x m)-matrix and 0<t < T . A solution of
equation (1) should satisfy the initial condition

x(0,m) = x° . (2)

If we formally set u = O in (1) then we obtain the reduced equation

A(t)x =0, (3)

If detA(t) 0 for 0<t < T, equation (3) has the unique
solution x= 0. 1In [13]) it was shown that if the eigenvalues Ki(t)

of A(t) satisfy for 0<t < T the inequalities
Reki(t) <0 (i‘l’oo.,m) ’

then the solution x(t,u) of the problem (1), (7) converges as u = 0

to x=0 for 0<t<T. o




Suppose, however, that detA(t) = O for 0< t<T . Then
equation (3) has infinitely many solutions and the question arises:
under what conditioné will the solution x(t,u) of the problem (1), (2) 1
converge as i — O to one of these solutions, and in particular, to
which one? The present section is concerned with this question as well
as with the question of the construction of the asymptotic expansion of
x(t,u) with respect to pu .

We impose several additional conditions on equation (1). All of
these conditions will not be formulated at the same time but as they are
stated in the text. They will be denoted by the numerals I, II, «e. .

The first condition concerns the smoothness of A(t) and f(x,t,u) .
We require sufficient smoothness in order to construct the desired
asymptotic expansion. A more precise formulation of Condition I will be
given in Section 3 after we describe the algorithm's construction; until

then we formulate this condition as follows.

I. Suppose that A(t) and f(x,t,u) are sufficiently smooth for
0<t<T and for (x,t,u) in the domain D(x,t,u) = D(x,t) x [O,uol ,

where D(x,t) is a domain in (x,t)-space and Wy 1is a positive constant.

The following two conditions are concerned with the eigenvalues
Ai(t) (i=1,...,m) of A(t) . Note that the assumption that det A(t)=0
for 0<t<T implies that at least one of the Ai(t) is identically

Zero.
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II. Suppose that for 0< t < T the following conditions hold:
xi(t)s 0 (i=1,e00,k 3 k<m, (%)
Reli(t) <0 (i=ktlysee,m) . (5)

Remark. In [13] the initial value problem was studied under the
assumption that condition (5) was satisfied for all i = 1l,...,m (that is,
the "noncritical" case). If at least one of the ki(t) has a positive
real part then, generally speaking, the solution of the initial value

problem is unbounded as py - O .

III. Suppose that there are k linearly in-ependent eigenvectors
ei(t) (1 =1,...,k) of A(t) corresponding to the k identically zero

eigenvalues for each t in ({O,T] .

Thus we are considering cases where the number of linearly independent
eigenvectors corresponding to A = ) 1is equal to the multiplicity of
A= 0. For the remaining eigenvalues for which Reki(t) < 0 , neither
their multiplicity nor the number of eigenvectors corresponding to them
is of importance; indeed, both of these quantities can change as t

varies.

2. Algorithm for the Construction of the Asymptotic Expansion of the

Solution. As we already stated, our goal is the construction of the

asymptotic expansion of the solution of problem (1), (2). In order to

_ T PR e wpy nrgreyerme— 4




achieve this we will follow the same procedure as that adopted previously . i
in the book [13]. First we develop an algorithm (rule) for the construc-

tion of certain formal series which determine the structure of the solu-

tion. In a neighborhood of the leading terms of these series, there

exists a solution of the problem, and the series is itself an asymptotic

expansion of this solution. The proof will be given in Section 3 .

Thus we construct a series formally satisfying equation (1) and

condition (2), and having the form

;(t,u) + ﬂx(T,u) s (6)

i}

x(tsu)

where

§O(t) + Q;l(t) +oeee 4 un;axt) + ... (7) )

;(t,u)

is called the regular series, while
Mx(T,u) = Wox(T) + uﬂlx(T) + eee + pnﬂnx(T) + e (8)
is called the boundary series for

T=th .

The coefficients in the series (7), (8) are determined by formally
substituting (6) into (1), (2) and equating terms with like powers of "
according to a definite rule which we state below. First note that the
asymptotic expansions in all of the singularly perturbed initial value
problems considered in [13) are constructed in the form of series having

the structure (6). This structure already occurs in simple examples.

Consider, for example, the problem




]

i
l
7 |
0 ‘
;;%% =ax+ t, x(Ou)=x |, |
where a is a negative constant. The exact solution is x(t,u) = -t/a

- u/ae + (xo + u/ae)exp( aT) , and it consists of terms of the type (7)
and (8). Both terms of the latter type converge to zero exponentially

as T —=® , and in a neighborhood of t = O they serve as a correction

to the regular part -t/a - u/a2 which does not satisfy the given initial
condition x{O,u) = xO . This structure of (6) reflects such behavior:
Mx(T,u) serves as a correction to x(t,u) in a neighborhood of t = 0
moreover, it converges to zero exponentially with increasing T .

The coefficients ﬂix(f) of the series (8) will be called boundary
functions, and we will require that the boundary functions converge to

zero as T — ® , Thus the formal algorithm for the construction of the

series (7) and (8) requires that
ﬂix(T) -0 as T~ . (9)

We pass now to the procedure for determining the coefficients in

(7), (8). To this end we first represent f(x,t,un) in the form

f(;(t’u') + TTX(T’U-)’t,U') = f(;(t,u),t,U)

+ [E(R(Tm,p) + Tx(Ton),Tu,u) = F(x(To,u),Tu,u) ] = £+ TF .




Here, by f we mean the expansion of £(x(t,u),t,u) 1in a series of the
type (7), while by Tf we mean an expansion of the term in square

brackets in a series of the type (8); namely,

E

L}

Fo(t) + wf(8) + oon s u“?n(t) toeee
e = ﬂof(T) + uﬂlf(T) + eee + un"nf(T) 4 eae .

We perform this same operation on A(t)x:

Alt) (x(t,p) + Mx(T,u)) = A(t)x(t,u) + A(Tu)Tx(T,u) = Ax + T(Ax)

We now substitute (6) into (1) and (2), taking account of the

transformations performed on f and Ax :

d

= (x > 4/ = -
Hﬂ%*“ﬁ“”*m(&+wﬁ+“4“
Ax + T(ax) + u(T + 7£) , (10)
- 0
x(0,u) + Mx(O,u) = x . (11)

Next we equate coefficients of like powers of p on both sides of equations
(10) and (11), and separating those terms depending on t and those depending
on T , we obtain equations and initial conditions for determining the
coefficients 'Ei(t) and ﬂix(T) of the series (7) and (8) .

For <§b(t) we obtain a linear homogeneous system of algebraic '

equations




A(t)zb(t) =0 , (12)

which coincides with the reduced equation (3). Ry virtue of Condition IIT

the general solution of (12) can be written in the form

;O(t) ai(t)ei(t) s (13)

1

"
LI o I

i
where e.(t) (i = 1,...,k) are the linearly indepenldent eigenvectors

i
corresponding to the zero eigenvalues of A(t) , and ai(t) are arbitrary

scalar functions.

Remark. By virtue of Condition III the rank of the matrix A(t) is
equal to m-k for each t in [0,T}, that is, there is a minor of order
m-k (in general, not the same for all t ) which is nonzero, and
consequently, the system (12) has k 1linearly independent solutions
(eigenvectors) ei(t) for i= l,...,k . If this nonzero minor can be
found, it is easy to construct eigenvectors ei(t) having the same degree
of smoothness as the matrix A(t) . If there is no such minor of A(t)
then the question of the degree of smoothness of the ei(t) becomes
more involved. From {27] it follows that it is possible to construct
elgenvectors ei(t) (i =1,...,k) having the same degree of smoothness
as the matrix A(t) . Such eigenvectors are used in (13) and below.

If we introduce the (mxk)-matrix e(t) whose columns are these

ei(t) and the k-dimensional vector function a(t) whose components

are ai(t) » then it is possible to write (13) in the form

T R
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x,(t) = e(t)aft) . (14)

For Wox(T) we obtain a linear homogeneous constant coefficient

system of differential equations, namely

X . (15)

Ay x= A(O)T

dr O

The general solution of this system can be written in the form (cf. for

example ([26])

k m
ﬂox(T) = iflciei(O) +i=§;lciwi(T)exp(ki(O)T) 5 (16)

where ci(i = 1,...,m) are arbitrary constants, ei(O) (i =1,...,k) are
the eigenvectors of A(0) corresponding to the zero eigenvalues, and
wi(T) (i = ¥1l,...,m) are known vector functions whose components are
polynomials in T . [If hl,...,hn is a Jordan chain of vectors cor-

responding to an eigenvalue A of A such that

Ah

1 = Ahl, Ah_ = Ah2+ hl’oco, Ahn = Ahn"’ hn-

2 12

then there are n 1linearly independent solutions xr(T) = wr(f)exp(kf)

(r = 1,...,n) of the system X _ ax , where

daT
Tr-l r-2
wr(f) = (r'l)! hl+ (1‘.2)z h2+ eee 4 hr(r = l,...,n) . ]

By virtue of condition (5) the second term in the right-hand side of
(16) converges to zero as T = ® . Therefore, in order that condition (9)

hold, it is necessary to set ¢, =0 (i = 1,...,k) .

i
The initial condition for "Ox(f) is obtained by equating the .

coefficients of the zeroth power of u in (11) , namely




11
o - 0 k
T x(0) = x - x.(0) =x - Ta/(de, (0 .
0 0 . i i
i=1l
Substituting now into (16) and noting that ey = 0 (1= 1,...,kK) we
obtain
k m 0
- T a (0)e.(0)+ £ cw (0)=x . (18)
=2+ 1 i=kel 12

The system (18) is a linear algebraic system of m equations in the m
unknowns ai(O) (i = 1y.00,k) and ci(i = ktly...,m) o« By virtue of the
linear independence of the column vectors ei(O) (i = 1,...,k) and

wi(o) (i = k+1,...,m) the system (18) has a unique solution.

Thus ﬂox(T) is completely determined. By virtue of (5) it is
clear that there exist constants ¢ > 0 and #u > O such that Hﬁox(T)H <
. cexp(-xt) for T > 0. [The symbol [|d| denotes the norm of a vector

(matrix) x which is defined, for example, as the sum of the absolute
values of its components (elements). ] The function ;b(t) is not defined
until the functions ai(t) (i =1,...,k) whose initial values ai(o)
are found from (18) are first defined. Let us set «a(0) = .

For ;i(t) we obtain the linear nonhomogeneous system of algebraic
equations

- _ dx,(t)

Since detA(t)=0 for 0< t < T a necessary and sufficient condition
1 for the solvability of system (19) is that its right-hand side be ortho-
gonal to each of the eigenvectors gj(t) (3 = 1,...,k) of the adjoint

»*
matrix A (t) corresponding to the zero eigenvalues. [From linear algebra

K *
A - 1t 1s known that the matrix A (t), which in the present case is simply




12

the transpose of A(t) , has a zero eigenvalue to which correspond k
linearly independent eigenvectors. We note that the degree
of smoothness of the vectors gj(t) is the same as that of the matrix
A(t) . ]

We denote by (a,b) the scalar product of two m-dimensional
vectors a and b , that is, the sum of products of correspending compon-
ents. Thus (taking note of (1k))the solvability condition for (19) can

be written as
(g4(t), -f(e(t)a(t),t,0) + a%(e(t)a(t))) =0, j=1lyeik .

We will obtain a system of k nonlinear differential equations for
the k unknown functions aﬁt). If we call g(t) the (kxm)-matrix
whose rows are the vectors gj(t) (j = 1,...5k), then it is possible to

obtain the corresponding system in matrix form, namely
(g(t)e(£)S2 = g(t) (t{e(t)alt),t,0) - e’ (t)alt)). (20)

The initial values «(0) = a'0 , as noted above, are found from (18) .
From the fact that the number of eigenvectors ei(t) and gj(t) is

equal to the multiplicity of the zero eigenvalue, it follows that the

determinant of the (kxk)-matrix (g(t)e(t)) is nonzero. For if this

determinant were zero for some t , then a certain nontrivial linear

k
combination of its columns gives a zero column, that is, T Yi<83’e‘> =0
K i=l 1 )

(3 =1,...,k) . It follows that (gJ, £ viei) = 0, that is, the

X i=1

eigenvector € = € AN of A(t) , corresponding to A = 0, is
i=1
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orthogonal to each gj(j =1,...,k) so the solvability condition is
satisfied for the linear system Ax = € . But this implies that the
zero eigenvalue of A(t) has adjoint vectors, which con?radicts the

fact that the nurber of eigenvectors ei(t) is equal to the multiplicity

of A =0 . Thus, the aforementioned determinant is nonzero, and there-

da

fore the system (20) can be solved for Tt that is,
do
3t = Fo(a,t) R (21)

with the form of Fy being clear from comparing (20) and (21) .

IV. Suppose that the equation (21) with the initial condition
a(0) = ao has a solution a = qa(t) for 0<t<T.

Now that a(t) is determined, the solution (14) of the reduced
system (12) is complete.

Let us introduce in the space of variables (x,t) a curve L con-
sisting of two components (this curve is the graph of the zeroth pproxi-

mation):

[
!

1= {(x,t): x Eb(o) + Wox(T)(T >0); t =0},

ot
!
"
»
—~
(a4

o= {(x,t): x=x(t); 0<t<T)

V. Suppose that the curve L 1lies in the domain 0(x,t) appearing
in Condition T.

Thus the zeroth order terms in the series (7) and (8) have been

determined.




% .

|
:
k The general solution of the system (19) can be written as
— k ~
. x,(t) = :‘ B;(the (t) + X (t) = e(t)B(t) + X, (t) , (22)

i=1
’ where il(t) is a particular solution of (19) and B8(t) 1is an arbitrary
k-dimensional vector function.

For ﬂlx(T) we obtain a linear nonhomogeneous system »f differential

equations

dﬂlx

ar

= A(O)ﬂlx + TA'(O)"Ox(T) + f(;O(O) + ﬂox(f),o,o)

- (23)
- f(xo(O),0,0) .

The initial condition for Wlx(T) is found by equating the coefficients

of the first power of u in (11), that is,

T x(0) = -El(o) .

The general solution of (23) can be written as

k m -
Mx(n) = Tae(0)+ T dwy(Nexp(hy(0)7) + Myx(m) (24)

where the di are arbitrary constants, wi(f) are the same vector functions
as those in (16), and ﬂlx(f) is a particular solution of (23) which, it is
not difficult to see, can be chosen so that Hﬁkl(f)ﬂ satisfies the same

inequality as Hﬂxo(T)H , that is, Hﬁlx(f)H < cexp(-uT) for T>O0 .

} Remark. The positive constants ¢ and u in the estimate for
"1?(') are, in general, not the same as those in the estimate for Tx(T) .

However, with a view to simplifying the notation, the same notation will

be used for analogous constants. Constants of the form c¢ will always
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denote an upper bound on such values, while constants of the form ‘

will always denote a lower bound.

As in the case of ﬂox(f) we require that 4, =0 (i = 1,000,k)
and then from the initial condition for Wlx(T), we obtain a linear
algebraic system of m equations in the m unknowns Bi(o) (1 = 1,...,k"
and di(i = ktl,...,m) :

k m _ X -
iflgsie.(o) +i=§+ldiwi(o\ = -% () - (o), (29)
which, like system (18), has a unique solution.

Thus ﬂlx(T) is completely determined, and it is obvious that
Hﬂix(T)H < cexp(-ut) for T >0 . The expression for ;l(t) is not
determined until we determine B(t) , whose initial value B(0) is
obtained from (25) . It can be determined from a solvability condition
for the linear system of algebraic equations relative to ;z(t) in a
manner analogous to that for a(t) . We obtain the linear differential

equation

%% = B(t)B + Fy () , (26)

where B(t) = %g(a(t),t) is a known matrix and Fl(t) is a known
function. By linearity the system (26) with the initial condition B(0)
has a unique solution.

The determination of the remaining terms in the series (7) and (8)

proceeds analogously. At the i-th stage an arbitrary vector function

(call it y(t)) enters the expression for ;1(t\ . First we determine

b
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¥(0) from an equation like (25) and then from the solvability condition

for '§i+l(t) we obtain for ¥(t) a linear differential equation of the

form of (26): Y= B(t)y+ F,(t) , from which Y(t) is finally
determined.
The boundary functions ﬂix(w) are constructed like ﬂlx(T) and

also satisfy the exponential estimate

IITTiX(T)“ < cexp(-ut) for T>0 . (27

3. An Estimate of the kemainder Term. Let us denote by Xn(t,u) the

n-th partial sum of the series (6), that is,
no._
X (t,u) = Tui(x(t) + Tx(1)) .
i=0
We note that for the determination of the terms appearing in xn(t,u)
it is sufficient that A(t) and f(x,t,n) have continuouc partial
derivatives with respect to all arguments up to order n inclusive. Ilow-
ever, for the proof of Theorem 1.1 below it will be necessary that A(t)
and f(x,t,n) have a higher degree of smoothness. Tt is now possible
ﬁo determine more precisely the extent of the domain D(x,t) appearing
in Condition I . Let us introduce a &-tube of the curve L , that is, the
set of points (x,t) whose distance from the curve 1 does not exceed & .
For the domain D(x,t) we can take an arbitrary &-tube of the

curve L where 5 is independent of p . Condition I can now be

formulated as:
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I. Suppose that A(t) in © <t<T and f(x,t,u) in the domain
D(x,t,u) = D(x,t) X [O,uo] have continuous partial derivatives of order

(n+ 2) inclusive (with respect to each argument).

Theorem 1.1l. Under Conditions I - V there exist positive

constants . and ¢ such that for 0 <u <u, the solution x(t,u)
of the problem (1), (2) exists in the interval [0,T], is unique and

satisfies the inequality
Ix(t,) - X (6l < ™Mot . (28)

(In place of an inequality of the type (28) we will also use the notation

x(tQU-) - Xn(t,u) = @(uml)-)

Proof. Let us set E(t,u) = x(t,u) - X, ,(t,u) . Substituting
x= Xn+l(t,u) + € into (1) and (2) we obtain for €(t,u) the initial

value problem

b3 = AGHE +ut (£,0)F + G(E,t0) (29)
g(0,u) = 0 , (30)

where f_(t,u) = fx(ib(t) + M x(1),t,n) and

G(Estom) = A(L)X  (t,n) + pf(X (tu) + E,tu)

d

a




18

The function G(E,t,u) has the following two important properties
which are established in the same way as in Subsection & of Section 10
of [13] :
n+2)

1. G(o’tsU') = 6(u
2., If HEl(t,u)H < and HEz(t,u)H <ew for 0Kt <T and
0<p < By (cl and Hq are certain constants), then there exist constants

¢, and uO‘S By such that for 0<t < T and 0<pu < o

0]

2
”G(gl’t,U) - G(gzat,u)“ < COLJ' max ”El - E‘:Jl .
(0,T]

When Property 2 holds we will say that G(f,t,u) is a contraction

operator with contraction coefficient of order @(ug) for € = 6(u) .

Remark. The constant Bo appearing in Property 2 is, generally
speaking, not the same as that appearing in the statement of Theorem 1.1l.
However, for the sake of simplicity of notation we will use the same
symbol 40 in all bounds involving conditions of sufficient smallness
for . It is clear a'priori that among all such constants ko the
least one will furnish a positive bound.

For the problem (29), (30) we now transform the unknown function
by £(t,u) = T(t)w(t,u) , where T(t) is a certain differentiable

(m x m)-matrix. Thus we obtain the initial value problem

ua—‘: = T-l(t)A(t)T(t)W + pC(t,n)w + Gl(w,t,u) ’ (31)

w(O,u) = 0 (32)

s ST W - sy

——
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where
C(t,u) = T M) [£,(£,w)T(8) - T'(8)] and

Gy (w,5,8) = T H()G(T(6)w,t,0)

We choose for T(t) a matrix which transforms A(t) in the interval

[0,T] into the block-diagonal form, that is,
l(t) 0

T ()A()T(L) = :

0 AE(t)

where Al(t) is an (m-k) X (m~k)-matrix whose eigenvalues satisfy
Reki(t) <0(i = k+l,...,m) and A2(t) is a (k x k)-matrix with k
zero eigenvalues Ai(t) =0 (i=1,...,k) . Such a nonsingular matrix
T(t) exists and it is as differentiable as A(t) (cf. {©7]). 1Indeed,
in our case, A,(t) = 0 for 0<t<T.

We set

u
w =( ), Gl(w,t,u) =
v

(where u and G, have (m-k) - (and v and G3

we divide the matrix C(t,u) into compatible blocks

G2(u,v,t.u.)

G3(u,vst,U)

k-) components), and

Cll(tyu) Clz(t,£}

C(t,u) = ’
C21(t,u) c22(t,u)

where the C are continuous and bounded for 0<t<T, 0<u < By *

ij
From (31), (32) we obtain
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u%‘é = Al(t)u + ucu(t’u’)u + uClE(tsu)V + GE(U,V,t,LL) ’ (33)
d 1
d—: = Cel(t,u)u + CCQ(t’u)v + ’EG?)(U,Vst)u) ’
(34)

u(o,u) = v(o,n) = 0 .

The functions Ge(u,v,t,u) and G3(u,v,t,u) have the same two
properties as G(€,t,u) .
Let us denote the fundamental matrices of the homogeneous linear

systems

du dv

by U(t,s,un) and V(t,s,u) , respectively (U(s,s,k) = E_ i » the

(m-k) X (m-k)-identity matrix, and V(s,s,u) = E ) . Clearly the

K
matrix V(t,s,u) is bounded, and since the eigenvalues of Al(t) have

negative real parts, it follows that U(t,s,u) satisfies the inequality
lu(t,s,u)ll < cexp[:ﬁiﬁlél] for 0<s<t<T,O0<usgy, .

The proof of this estimate is given in Lemma 3.2 of [13]) . We now

replace the problem (33), (34) with the equivalent system of integral

equations
t
u(t,p) = IOU(t,s,u)[Cll(S,u)u(s,u) + € (s5m)v(s,m)
+ % Gz(usv:s,u) Jds ’ (35)
t
v(tw) = [ V(tsm) oy (spuhuls,m) + 2 6,(u,v,5,0) 1ds
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and then by applying the method of successive approximations as in
[13; Sec. 10], it is possible to prove that the solution ult,un),v(t,u)
of (35) exists, is unique, and satisfies the estimate u(t,u) = @(un*l) ,

v(ty) = 6(u™Y)

Thus it follows directly that

g(t,u) = x(t,u) - X 1(tsn) = @(uml) (36)

.

. ml,— ™1
Since Xn+l(t,u) - X (tyn) = u (xn+l + %) = &(u ) , from (36)

we obtain

e (™1

x(t,U) Xn(t,u)

and Theorem 1.1 is proved.

4. Remarks. 1. From (28) and the exponential bound (27) for

Trix(r) (i = 0,1,s..,n) it follows that 1_1'13 x(t,p) = Eo(t) for 0<t<T,
that is, the solution x(t,u) of the proﬁiem (1), (2) converges

as p = 0 to one of the solutions of the degenerate system. For
0<t,<t<T (t, fixed as p - Oy§b(t) is the leading term of the
asymptotic expansion. In certain problems (see, for example, Subsection 3
of Section 3 below) one is interested in a precise representation of

the leading term. Then to determine the initial values ai(o) of the
functions ai(t) appearing in §b(t) (see (13)) it is convenient to

have a system of equations involving the constants 5 of the leading

boundary function terms. Such a system can be obtained by taking the




22

scalar product of (18) with gj(o) (3§ =1,...,k), after which the terms
containing ¢y vanish, that is ,

k
F (85000 e, (00)a4 (0) = (55(0) O (=100 (37)

2. The construction of the asymptotic expansion and the bound
on the remainder term have been obtained under the condition that there
exist k linearly independent eigenvectors corresponding to the zero
eigenvalues of A(t) . In the case when the number of linearly independent
vectors corresponding to the zero eigenvalue is less than its multiplicity
the asymptotic expansion will contain fractional powers of u . We will
not consider the general problem but we will iilustrate the occurrence
of fractional powers of u 1in a model system of two equations,where

a,,(t)  ag,(t)

A(t) = .
a5 (t)  ay(t)

Suppose that detA(t) = 811805 ~ 81,85 0, 8y, + 8, = 0 and
&, #0 for 0<t<T. Thus A(t) = O is an eigenvalue of A(t) of
mltiplicity two, to which there corresponds only one eigenvector (since
8y, #0) . In this case (1) has the form

ax
e T I AT N ONC AL RA
(38)

dx
2
Bge = BorXyt 8np%p t BIL(x)x5thm) .
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Multiplying the first equation by -a,5y and the second by &4 and

adding we obtain the following system of equations for = = Xy and

y=-an%t inke

%2 y+og
U-'a:‘ = —a—-‘y + ufl(z) 9t,u) 9
11
Va2 wa. Z
gy - a.f(z-———-—-—-—gl tyw) f(ﬂ——-—--—el
= - 3 sTyp) + & Zy stym)
dat 211 a1y nme 317
a2
- a.élz B ail ael ’
11
that is, a system of the form
)
dz
pge = ety WF(z,y5ts0) g% = G(z,¥,t5n) . (39)

The behavior of solutions of system (39) depends critically on the sign
} .

of a(t) . Let us transform (39) by setting z =2y > ¥ =\/ffz2 . We
obtain the system

dzl
¥

a(t)z, + Ju F(zq, S zgsteh)
(40)

Jﬁ-gtg = 6(z, Ju zts0) -

The corresponding characteristic equation (cf. (3.21) in {131)has
the form
-\ a(t)

=22 . a(t)G, (a(t),0,t,0) = 0 ,
Gzl(¢(t) ,O,t,O) -A 1

xe el
[
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where =z, = o(t) 1is a root of the equation G(zl,o,t,O) =0.

It zanl < 0 then A will be purely imaginary and in the system
one usually sees oscillations. Solutions of the initial value problem
do not have a limit as u — O, but are bounded and oscillate with a
frequency of order 1 (ef. [19]). If however aGZ > O the roots X
will have differentwéigns (the so-called conditionalﬁ& stable case) and
consequently solutions will not generally be bounded as u = O . None-
theless, if we impose appropriate boundary conditions on (38), it is
possible to carry out the construction of the asymptotic expansion of
the solution as in [13, Sec. 14]. Such an expansion, as can be seen

from the way (40) is written, will contain powers of /u . This case is

considered in more detail in [24] .
3. Let us now consider the equation

2 d&x
g T A(t)x + pf(x,t,n) .

It differs from (1) in that the term multiplying the derivative is u2
and not g . Thus the coefficient multiplying the derivative is of a
greater degree of smallness than the coefficient multiplying the non-
linear term f(x,t,u) . As a result, the asymptotic expansion of the
solution of the initial value problem contains [along with the regular
part x{t,u) = Sc'o(t) + u.}'l(t) + ... and the boundary function

Mx(T,u) = ﬂox(f) + uﬂlx(f) + +se o depending on T = t/u] the boundary
function Px(s,u) = Pox(s) + uPlx(s) 4+ ++s, depending on s = t/'u.2 .

The conditions .a the matrix A(t) are the same as those in Subsection 1.

Consequently,




]

x,(t) = e(t)alt) ,

where the function a(t) is defined as in Subsection 2 by a solvability
condition in the equation for ;i(t) ; this time however we do not obtain

a differential equation for a{t) but rather an algebraic equation
S(t)f(e(t)a(t):t,c) =0 ,

where g(t) is the same matrix as in Subsection 2.
ﬂox(T) is obtained not from a differential equation but from the

algebraic equation A(O)ﬂox(f) = 0 . It follows that
ﬂox(T) = e(O)n(T)
where h(t) satisfies the differential equation

& . (g(0)e(0)) M (xy(0) + e(O)n(m),0,0) - £(x,(0),0,0)]

obtained from a solvability condition for ﬂlx(f) .
For Pox(s) we obtain the equation

dPo(s)
ds

= A(O)Pox

with the initial condition
P x(0) = x° - X.(0) - e(0)n(0)
0 0

(b(0) 4is as yet unknown). Since this equation is like (15) its general

solution can be written in the form of (16) :
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k m
Px(s) = € c.e.(0)+ T c.w, (=1exo(h (1))
© TSR A S L
From the condition that POX(S) -0 as s —~® we have c, = Mi=1,...,k)
and so the initial conditions imply
m 6 -
e(O)h(0) + € c.w,(0) = x - x.(DQ)
. 11 o]
=k+1
for the determination of h{0) and c; (i = k+l,...,m) . Likewise the

function Pox(s) will be determined completely, and by finding initial
conditions for h(T) we can finally determine this function h(T) from
its differential equation.

The essential role in the construction is played by the (k X k)-matrix
-1 —_
(S(t)e(t)) S(t)fx(xo(t)’tao)e(t) .
We require that its eigenvalues vi(t) satisfy
Re vi(t)<0 (i=1,...,k; 0<t<T ) .

If this condition is fulfilled together with certain others it is
possible to prove the validity of this asymptotic expansion with the

boundary functions having the exponential bounds

Imex(T)ll < c exp(-ut) (v > 0) ;

NP x(s)l < cexp(-us) (s >0) .

A more detailed consideration of this problem has been given in (5] .




§2 Difference Equations with Small Stepsize

In this section we will consider the difference equation
x(t+p) = B(t)x(t) + uf(x(t),t,u) , (41)

in which x 1is an m-vector and the argument t varies discretely with
small stepsize p , that is, t = O , u, 21, ... (t <T) . Such variations
of the argument occur, for example, in difference schemes for many integro-
differential equations (cf. Q;l. For simplicity of notation we will

write x(t) 1in place of x(t,u) . We prescribe the initial condition

x(0) = <. (L2)

I. Suppose that the (m X m)-matrix B(t) has for 0< t <T the
eigenvalue A(t) = 0 of multiplicity k to which there correspond for
each t k linearly independent eigenvectors ei(t) (i = 1,...,k) ,

while the other eigenvalues satisfy the condition Iki(t)| <1l .

In [13) it was shown that the asymptotic properties of the difference
equation (41) in the noncritical case (k = 0, that is, all lli(t)l <1)
are similar to the asymptotic properties of the differential equation
(1) in the noncritical case (all Reki(t)<20). We will consider the
critical case (k # 0) ; the asymptotic expansion turns out to be
similar to the one for the differential equation.

If we define the matrix A(t) = B(t) - Em , then it clearly

satisfies Conditions II and III of §1 .
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II. Suppose that B(t) and f(x,t,u) satisfy the same smoothness
conditions as A(t) and f(x,t,u) in §1 (cf. Condition I) .

For the problem (41), (42) it is possible to construct an asymptotic
expansion in the parameter p and to give an estimate for the remainder

term as in §1. We write the solution in the form (cf. (6) - (8))

x(t) = ;O(t) + u;l(t) 4+ eee + TTOx(T) +

lx('r) + see (43)

Substituting (43) into (41) and (42) we obtain

xo(t-rp.) + W l(t+u) 4 oeee + TTox(1’+l) + uTTlx('r+l) + oeee =

(Lb)
Bx + M(Bx) + u(f + ME)

;O(O) + u;c.l(o) + oeee + Tfox(o) + u.TTlx(O) + eee = xo . (45)

The right-hand side of (44) reduces to the same form as in (10) . Equating
coefficients of like powers of p in (44) and (45) as in (10) and (11) we

obtain for ;O(t) a system of equations
xo(t) = B(t)xo(t) or A(t)xo(t) =0 .

It follows that the representation (13) (or (1I4)) is correct for Tco(t) s

that is,
_ k
xo(t) = i;*:l ai(t)ei(t) = e(t)a(t) .

Remark. The expression for ;O(t) as well as the following equations

for ;i(t) (£ = 1,2,...) which appear in the construction of the
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asymptotic expansion of the solution will be considered not only for
t=0, u, 2u,... but also for all t in the interval [O,T] . This
is necessary as seen already in the equation for §O(t) and in the
determination of the subsequent functicns ‘zi(t) (i =1,2,00.) « The
asymptotic representation (43) naturally involves only values of Ei(t)
for t =0, u, 2u, .+. corresponding to the discrete variation of t
in (41) .

For ﬂox(T) we obtain the system
O -_—
ﬂox(1+l) = B(O)Wox(f) , HOX(O) =X - xo(O) . (46)

In contrast to (15) the system (46) is a linear constant coefficient
difference system in which the argument T <varies discretely with unit
steps. Its solution can be constructed in a manner completely analogous
to the construction of the solution of the constant coefficient differen-
tial system (cf. [7,21]), namely
k m

ﬂox(T) = ifl Ciei(o) +i=§;lciwi(T)ui(T) .
The wi(?) appearing here are somewhat different than those in the
expression (17), but as before, its components are polynomials in T

and the ui(T) are not exponentials as in (16) but solutions of the scalar

difference equations

ui(1+l) = li(o)ui(f), ui(O) =1 (i=ktlyees,m) .
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(It hl,...,hn is a Jordan chain of vectors corresponding to the eigen-
values of the matrix B , then there are n linearly independent solutions

xi(f) = wr(T)kT , (r=1,ee.,n) , of the system x(T+1) = Bx(T) , where

(cf. (17))
_a(r-1) ... (1-1+2) -1)...(7-r+3)
() = T(:"')l(r-l;:p+ Lt i:r_z(r-g;!rﬂ Pot et Byl
Thus,

u (1) = 1 ()17 (r=0,1,2,...) ,

from which it follows by Condition I that |ui(f)| decays exponentially
with increasing T . Taking this into account and proceeding as in §1
we set ¢, =0 for i=1l,...,k and further, with the aid of equation (18)
(as in §1) we determine ai(o) (i =1,.0.,k) and ci(i = kil,ee.,m) .
For 'Ei(t) we obtain the system:
dx (t)

X, (8) = B)x (t) + £(x (1),5,0) ~ —o— ,

coinciding with (19). The solvability condition for this system leads to

a system of differential equations (20) for a(t), as described in §1.

III. Suppose that Conditions IV and V of §1 are satisfied.
The construction of further terms is almost exactly as in §1. An

unimportant difference occurs only in the fact that in place of (23)

we have a nonhomogeneous difference equation
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TTlx(ﬂl) = B(0)7,x(7) + 7B (O)T x(7)

+ f(?o(o) + Tx(1),0,0) - f(?O(O),o,o) R

and in the expression for Wlx(f) we have ui(f) in place of
exp(li(O)T) . Such differences occur in subsequent T-functions, but

for them the exponential estimates

Hﬂix(f)H_g cexp(-nt) (T = 0,1,2,...)
hold. Let us denote by Xn(t,u) the n-th partial sum of the
series (43) .

Theorem 1l.2. Under Conditions I-III there exist positive constants Ko
f——— —————— {

and ¢ such that for 0<p < by & solution x(t) of the problem (Ll),

(42) exists in the interval [0,T], is unique and satisfies the inequality

fix(t) - Xn(t,u)ll < cu“"l for t=0, p, 2, ... (t<T) .

Proof. Let us set E(t) = x(t) - Xn+l(t,u) ; then for F£(t) we obtain

the system

E(t+n) = B(L)E(L) + uf (t,m)E(t) 4+ G(F,t,u)

€(0)

o,

where

T
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fx(t,u.) = fx(;O(t) + TTox(T),t,u) and

G(E,t,u)= B(L)X (tyu) + uf(X ,(tu) « E5t,0) - uf (4,0)€ - X . (t,u)

Note that G(€,t,u) has the same two properties as in §1 .

Let us now set

u(t)

w(t) = T (t-p)e(t) = ,
v(t)

where u has (m-k)-components, vk-components, and the matrix T(t)

puts B(t) into the block~diagonal form
Bl(t) 0

'r’l(t)B(t)T(t) =
0 Ey

Here
A i(1:) satisfying the inequality lki(t)l <1.

For u and v we obtain the system of equations

u(trp)
+ Ge(u,v,t,u) ’

v(trp) = v(t) + Cpy(tomdult) + C,on(t,u)v(t)
+ G3(u,v,t,u) s

u(0) = 0, v(0) = 0 s

Ek is the (k x k)-identity matrix and Bl(t) has eigenvalues

(u7)

(48)

R

bt . XS PO
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where
C(tsu) =
Cp (tsk) Coo(tsh)

= T7He)B(6) [T(t-p) - T(8)] + WTTH(R)E () & T(t-i)

satisfies the estimate

@(u) ’ (h9)

N

C(t’u)

and

G2(u,v,t,u)

u
Gl(u,v,t,u) = = T'l(t)G(T(t-u) ( ), t, n)
G3(u,v,t,u) v

has the same two properties as the function G(E,t,u) .
Let us denote by U(t,s,u) and V(t,s,u) the corresponding matrix

solutions of the homogeneous difference problems

Uttu,ssk) = Bi(£)U(t,s,u) (b = systpy vee )

U(s,s,u) = Epk °
and
V(trp,s,n) = (B + Coo(tm))V(t,0,0) (8 = 5,5¢0,000)
V(s,s,u) = Ee -
Since

he, + ng(t,u))v(t,s,u)n < (ep)lIvit,s,u)ll

by (49), it follows that 1 ‘I
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V(e sl < k(eaw) T4 < ke P < i

while U(t,s,u) , by virtue of the fact that the eigenvalues of the matrix

El(t) have modulus less than one, satisfies the inequality
t-
HU(tys,u)l! < cexp( -ﬂ-‘l—s)—) fOor t = S,S¢U 4, eos (50)

(cf. [13; Lerma 6.2]) .
Using the matrices U(t,s,n) and V(t,s,u) we convert the

system (47), (48) into the equivalent system of equations (t = Lu,4=0,1,0,...

L
u(t+p) = T Ultrw, (Lr1-1)u,u) (C; (t-duu)u(t-in) + Cp (t-du,u)v(t-in)
i=0
+ Ge(u(t-iu),v(t-iu),t-iu,u.)] s
L
v(thp) = T V(tep, (Lr1-1)u,u) [Cy) (t-iu,p)ult-iu)
i=0

+ G3(u(t-iu),v(t-iu),t-iu,u)1 .
[The solution of the difference problem
2(t+h) = A(£)z(t) + b(t) (t = 0,h,2h,...), 2(0) = 2° ,
can be written in the form (t = Lh, £ = 0,1,2,...)
o L
z(t+h) = $(t+h,0)z + € &(t+h,(&1-i)h)b(t-ih) ,
i=0

where

S,S"h,-o-) 3 Q(S,S) = kb . ]

$(t+h,s) = A(t)d(t,s) (¢
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By applying the method of successive approximatiors to this system and
using the two properties of 62 and G3 as well as the estirates (4<), '
(50), it is ncot difficult to prove (analogously to [13, §11)) that

a solution exists, is unique and satisfies the estimates u(t) = @(p

v(t) = @(un+1) . Thus Theorem 1.2 is established.

. 2
Remark. Suppose that the stepsize in (1.1) is equal to up  and noct
B , that is, the order of smallness of the stepsire ic greater than the

coefficient of the nonlinear term f{x(t),t,u)
x(tpd) = Bl)x(t) + wflx(t),tu) - (51)

Then besides the functions 'I(t,u) and Tx(t,u) (T - t/p) the boundary
function Px(s,u) (s = t/h2) will occur in the conditions determining
the asymptotic solution of the initial value problem, that is, the
indicated difference problem is similar in the sense of usymptotic
beﬁavior to the differential problem which we discussed in kemark 3 of

Subsection 4 in §1. Detailed considerations are given in [9! .

§3 Applications

1. Difference Formulas for the Numerical Integration of Differential

Equations. Difference formulas for the numerical integration of initial

value problems for the scalar differential equation




y' = fly,t), y(0) = yO (0<t<T7) (52)

can be written in the form {(cf. {2])

; = (=
OVieg ¥ Ho1Vig g1t oot OV T BTt cee v BT, (53

where y = y(ih), h is the stepsize, fi = f(yi,ih) , and ., Bi are con-

L

stants defined by certain equations, one of which is € Qg = O . Hence,
i=0

it follows that the characteristic equation

L ’A
aLk + ab-l} toeee ¥y Q

corresponding to (53) always has the root A =1 . TIf we write (93) in
the form of a system of difference equations of the type (lil) (the role
of u is played by h ) then the matrix 1u(t) of the resulting system
has the eigenvalue A =1 .

Let us consider in more detail one difference scheme of the type (93)

-3 1, _ 1. -
Vw2 - 2Vt 3% = 00T 30
(this is called a formula of extrapolation type, of second order (4 = 2)
with two steps). Since 4 = 2 , to use this formula we must prescribe
the initial values y(0) and y(h) , where y(h) 1is nearly equal to
y(0) by virtue of the smallness of h .

0 0 1l 22
Let us set y(0) =y , y(h) =y + hy «+ h'y + ... , where
2

¥ 3¥Y s+ are certain coefficients. Moreover let us set t = kh,

y = y(kh) = xl(t), Yol = xl(b+h) = x2(t) . Then we obtain a system

————— W -
o
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’

of two difference equations of the form (L1) for x(t) = xl(t)

xe(t)
(t = 0,h,2h,...), namely

xl(t,+h) = xg(t) s

1 . r
x,(88) = - 5x () + 3x,() (54)

i

+ h[5f(x2(t),t+h) - 3f(xl(t),t)1

with initial conditions

x,(0) = ¥°, xy(0) = 3%+ b W L (55)
0
1

The matrix B3(t) = of system (54) has the eigenvalues A, = 1

ok =

kg =-% , and so Condition I of §2 holds. A difference between the
problems (54), (55) and (41), (42) is that the initial value x2(0)
depends on h 3 however, this dependence introduces only an insignificant
change in the initial conditions for the coefficients of the asymptotic

expansion (43), and the algorithm for the construction of the asymptotic

solution as well as all estimates remain valid. _
x, (t)

The system of equations corresponding to ;O(t) = 4_10 will
Xpo( t)
have the form Eo(t) = B(t);o(t) , that is,
T () = % (t), T (t) = 2% (8) + 3% (t) ;
10 20 720 2710 2720 ?

- _ 1 1, .
whence, xo(t) = a(t)el = a(t)(l) where e, = (l) is the eigenvector

w
3
-
AT A 5.0 0 s st SR M e e T - [ .




of the matrix B(t) corresponding to kl =1 and aft) 1is an artitrary

scalar function.

TToxl(T)
- The system of equations for Wox(T) = has the form
Mo¥o(™)
(cf. (L6)) TTOx('r+l) = B(O)Wox(f), that is,
ﬂ0x1(1+1) = ﬁoxz(f) ,
mx (1+1) = —lTT x (1) + 3mx (m) (56)
02 2 01 2 02 ’
with initial conditions
mx (0) = yo - a(0), Mx (0) = yO - o 0) (57)
0"l > 02 :

The general solution of (56) can be written as

T T
MG™) = cpey + g3 ey = gD + eyl (1>2)

(1’= 0,1,2,000 ) >

where e, = (1}2) is the eigenvector of B(t) corresponding to 12 =1/2 .,
We set c, = 0 in order that TTOx(T) -~ 0 as T~ = , and substituting

ﬂox(‘r) into the initial conditions (57) we obtain

MY

0 0
e, =y - a(0), c, =¥ - a(0)

0

whence, ¢, = 0 and a(0) =y . Thus TTOX(T) =0.

2
The system of equations corresponding to ;l(t) = is
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x),(t) = x,,(t) - a'(t)

35 - 1
(t) + 5%, (t) ~ar(£) + 5 E(alt),t) . (58)
Its solvability condition implies the equation
a' = f(a,t) . (59)

The initial condition for «a(t) was already determined: a(Q) =y .
Given that we can find a{t) , the construction of the zeroth approximation
Xo(t,h) ='§O(t) + ﬂox(T) ='§6(t) is complete. If the constructicn of
the asymptotic solution is continued then boundary functions appear in
the following terms, even in the term containing the arbitrary y]'.

We note that the zeroth approximation Xlo(t,h) for xl(t) is
equal to a(t), as we would expect from considering the exact solution of
the initial value problem (52). The solution obtained from the difference
scheme therefore generally differs from the exact solution by a term of
order h .

It yl were not prescribed arbitrarily, but rather so that
y(h) = yp-+ hy]T+ h2y2 + .os differs from the exact solution of (52)
by a term of order h2 (for this it is necessary to set yJ(O) = f(yo,o))
then Wlx(T) and ;il(t) are equal to zero, while xl(t) , found from
the system of difference equations, differs from the exact solution of

the problem (52) by a term of order h2 . In fact, by virtue of (59),

the system (58) assumes the form




Lo

o Koy (8) = -3%, () + 3%, (8) -For (v)
whence
- %15 (¢) 1 0
x.(t) =( _ =g(t) (1) + (L py) o

The equation for the scalar function B(t) is obtained from the solvability

_ x, .(t)
condition for the system corresponding to xz(t) = 12 s namely

x22(t)

xp(8) = Xpp(8) - 23 (6) =X (8)

EMORES TRORE EMORE SRDIENG
+§ ST (603, (0) + 5E,(6) - T x (0] .

It can be writ . en in the form

B! = fy(a(t),t)ﬁ .

Since Wox(f) 0 , the equation for ﬂlx(T) coincides with the

equation for TTOx('r) » and consequently,
1 T 1l 1 T 1
(1) = 41()) + 4127, ) = 43 (1))

because d, = O in order that Trlx('r) -0 as T-—® . Substituting

for ﬂlx(f) and Ei(t) into the initial conditions

~ 1
s TTlxa(o) + le(o) =y |,

T'rlxl( 0) + ;ll( 0)

we obtain




]
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) d2+ B(o) = 0,
24,4800 =y - (0) = ¥ - £°,0) .
Hence if yl = f(yo,O), d2 =8(0) = 0, so TTlX(T) =0, B(t) £ 0 and

xll(t) = 0, as stated above.

Remark. For the numerical integration of the singularly perturbed

initial value problem

w3 < £(y,8), y(0,) = y°(0<E ST

2
we naturally choose a stepsize smaller than p , for example h=u .

Then if we write the difference formula in the form (53) with step
h = u2 , we obtain an equation which reduces to a system of the form

(51).

2. Markov Chains. A. A continuous-time, homogeneous Markov

process with finitely many states m can be described by the system

dP _ _ 0
&= ap, P0) = P, (60)

where P(T) 1is a vector with components pl(T),...,pm(T) (pi(T) is the

probability of being in the i-th state at time T ), and A is a matrix

m
with constant elements aid s satisfying T aij = 0. It is known
i=1
. (cf., for example, [20]) that such a matrix A has A = O as an eigen-

value with as many linearly independent eigenvectors as the multiplicity
of the root A = O . We will assume that the other eigenvalues satisfy

the condition Re ki< 0 (a so-called proper chain) .

p— e T SR D S RO gy
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In the study of Markov chains we are interested, in particular, in
the limiting behavior of the probabilities pi(‘r) as T - . For the
system (60) the limiting values for p = O and fixed t = Tu ¥ O are

found as the components of the solution P(t,u) of

0

dP _ ap, P(0,u) = B° .

bt

Suppose that A = O has the eigenvectors €1seees®y o Then it follows
~
from §1 that
- k
lin P(T) = lim P(t,u) = Py = T a,(t)e; = ex(t) ,
T u=0 i=1
where a(t) is determined from equation (20), which for f = 0 has
the form
da = .
(se)'d_t =0
vhence, a—“: = 0 , that is, a(t) = a(0) . The initial value a(0) can

be determined from system (37), which herc assumes the (matrix) form

(ge)a(0) = F°

In particular, if the chain is regular (A = 0 is a simple root) then

e
k=1, e, =e =( I:‘) » while it is possible to take g =g~ (1ye0q,1)
e
k
by virtue of the condition <€ a,, = 0 . Thus
1=0 ik

n o, m m m o
a(0) = 3P1/2e1=1/2ei since €p, =1 ,
i=1

i=1 i=1 i=1
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and

— /m '
P.=e/Te, .
0 1=11

o7 Therefore the limiting probability is here independent of the initial
state P° .

B. A discrete Markov chain can be described by the difference

system
P(s+1) = BP(s), P(0) = P° , (61)
m
where s = 0,1,2,... 1is the number of trials. Now € bik =1, and so
i=1

the matrix B has A =1 as an eigenvalue. As before we will
assume that this is a proper chain, that is, each eigenvalue different
from one satisfies lkil <1l.

The limiting value as s—« of the probability P(s) coincides
with the limiting value as p ~ O for fixed t ¢ O of the solution

P(t,u) of the system (t = su)
P(thp,p) = BP(t,u) . (62)

It follows from §2 that the limiting value of P(t,u) as up = O can be

described as in case A, so for a reguler chain

1lim P(s) = lim P(t,p) = fo =e/ : e
i=

. el
where e =(! ) i1s the eigenvector of B corresponding to A =1 .
é
m

——p
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C. Passage from a discrete process to a continuous one. We consider
the Markov chain (61) where we take as independent variables the instants
of time t at which the trials occur. We suppose that the trials are
separated from each other by a small time interval g . Introducing t
we obtain a system which agrees formally with (62), but for which we
naturally scsume that the transition probabilities bik are small (of order u)

for i 4: k , but nearly one for i = k , that is,

by = Moy (W) (1 $ k), by, = 14 way,(0), 2y (w) ey

as B — O . Then (62) assumes the form
pi(ti-u) = pi(t) + p,(a.ilpl(t)+ ces + a'i.mpm(t)) (i=1,...,m). (63)

This system is of the type (41) where B = E, has A =1 as an eigen-

value of multiplicity m to which there correspond m eigenvectors

€

OeseOH
Oees O
tHeeeO O

These will be the vectors gj(j = 1ly000,m) .
It follows fram §2 that
1im P(t,u) = ea(t) = Ema(t) = a(t) ,
p=0
where «(t) is determined from the differential equation (20), which

in this case assumes the form

@

- Txean

PRt on * < — M
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(A is the matrix with elements a.,) with initial condition

ik

a(0) = g(O)Po = po .

Thus the limiting value P(t,h) satisfies a system of differential

equations of the type (60) .
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Chapter 2

Nonlinear Singularly Ferturbed Equations
in the Critical Case: 1Initial Value
Problems

§1 Statement of the Problem and Auxiliary Results

1. Statement of the Problem. In this chapter we consider problers

analogous to those of Chapter 1y however, now the nonlinearity in the

right-hand side of the equations is not necessarily small:

dx
hap = Flx,tm), 0<t<T, (1)

x(O,u.) = xO 3 (2)

where x is an m-dimensional vector. As in Chapter 1 we will consider
cases when the reduced equation does not have an isolated solution, but
a family of solutions. Consequently the same questions arise as there.
Under what conditions will the solution of the problem (1), (2) converge
as 4 = O to one of the solutions of this family, and in particular, to
which one? How can one construct the asymptotic expansion of the solu-
tion to an arbitrary order in p , uniformly valid for t in [O,T}?

The conditions, under which the asymptotic expansion will be constructed,

are numbered I, II, «e.

I. Suppose that the function F(x,t,u) is sufficiently smooth in

the domain D(x,t,u) = D(x,t) x [O,uo] , where D(x,t) is a domain in

(x,t)-space and uo is a constant.




s
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II. Suppose that the reduced equation
0 = F(x,t,0)
has for each t in [0,T] a family of solutions
x = tp(t,al,...,ak) = o(t, @) ,

where o(t,a) is a well-defined function of t and the arbitrary para-
meters ai""’ak which satisfies the following conditions in the domain

D(t,@) = [0,T] x D(a) :

1) the function o(t,a) is sufficiently smooth,
2) the rank of the matrix cb(t,a) = %§<t’a) is equal to k ,

the number of parameters.

From Condition II it follows that F(¢(t,a),t,0) = 0 for (t,q)

in D(t,@) . Differentiating this identity with respect to « we obtain
Fx(qa(t,a),t,o)cpa(t,a) =0 for (t,@) in D(t,a) .

This implies that the matrix Fx(w(t,a),t,o) has the eigenvalue A(t,a) =0
and that the columns of the matrix ¢h(t,a) are eigenvectors corresponding
to A =0 . By virtue of condition 2) of II these columns are linearly

independent since the multiplicity of A = 0 is not less than k .

IITI. Suppose that the multiplicity of the eigenvalue A = 0 is
exactly equal to k and that the remaining eigenvalues A\ i(1:,0;) of the

matrix Fx(cp(t,a),t,O) satisfy

. mﬂa S

k-




L8

Rexi(t,a) <0 (3)

in D(t,a) .

Under Conditions I-III and certain others which will be stated telow
we will construct the formal asymptotic expansion of the solution. In
§3 we estimate the remainder term, while in the next subsection we obtain
a number of auxiliary results which follow from analogous results in

[13, §14, Subsection 3] .

2. Auxiliary Results. A. Stability Manifolds. An equation which

will play an important role in the construction of boundary functions is

dx

i F(o(0,a) + x,0,0) , (4)

where o is a parameter. For any a in D(a) this equation has the
rest point x = O . By Condition III the characteristic equation corre-
sponding to this rest point, det(Fx(co(O,a),0,0) - AE ) = 0, has the root
A = 0 of multiplicity k and (m-k) roots satisfying condition (3) .
Therefore, the rest point x = O is not asymptotically stable in the
sense of Lyapunov, that is, a solution with initial value arbitrarily
close to the rest point will not necessarily converge to it as T =@
However, if we Dprescribe special initial conditions, then the solution
will converge exponentially to the rest point %x =0 as T -« , Put

precisely, we have

Lemna 1. In a sufficiently small neighborhood of the point x = 0

there exists an (m-k)-dimensional manifold (@) such that if the

e S s 4 st g
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initial values x{(0) belong to (@) , then one can find positive W
. constants y and o such that for T > O the solution x(T) satisfies 1
the inequality
lIx(")ll < vexp(-oT) . (5)
Proof. We linearize the right-hand side of (4) with respect to x
and write the system (4) as
dx
ar = A(Q)X + G(X,a) 3 (6)
where
Ala) = Fx(cp(O,a),0,0) and G(x,a) = F(o(0,0) + x,0,0) - A(x)x .
The function G(x,&) has the following two important properties:
1. G(0,a) = F(o(0,0),0,0) = 0 .
2. For any

€ > 0 there exists a & > 0 (depending on

and IIxzjl < 8 then

lla(x,,@) - G(xe,a)ll <ellx, - xJ .

€ and
possibly on ) such that if lelll <3

This inequality is established by elementary means using Taylor's formula,

and it shows that for sufficiently small |Ixl| G(x,q)

is a contraction
operator.
L 4

g

As noted above the matrix A(a) has A = O as an eigenvalue of
multiplicity k and m-k eigenvalues Ki(O,a) which satisfy condition (3).

Thus there exists a matrix B(a) , as smooth as A(a) (cf. [29])) , which
reduces A(a) to the block-diagonal form




-1 c{la) ©
B (a)A(a)B(a) = ’ (7
0 0

where the ({(m-k) X (m-k))-matrix C(a) has the stable eigenrvalues
ki(O,a) satisfying condition (3) .

Let us make the change of variables
u
x = B(a) (V) s

where u has (m-k)- and vk-components. For u and v we oSbtain

du _ cla)u+ G

d
o (w,v,0), gr = G,(u,v,0) (8)

1

in which Gy and G, are blocks of vectors B'l(a)G(B(a)(‘;) ,a) satisfying
the same two properties as G(x,a) .

We introduce the system of integral equations

u(r)

u(r,a)u° ¥ -1
sa)u” + [ U(1,0)U " (s,a)G, (uls) ,v(s) ,a)ds
0
and (9)

?
J‘ Gz(u(s) ,V(s) ,a)ds s

v(T)

vhere U(T,a) 4is a fundamental matrix of the system % = Cla)u(u(o,a) =Err-

and uo is an arbitrary constant vector. The matrix U(T,a) satisfies

X

the inequality HU('r,a)U-l(s,a)ll <M exp(-n(T-s)) (where the positive con-
stants M and x can depend on «a ) . Every solution of system (9) also
satisfies system (8).

We apply the method of successive approximations to (9), replacing u

and v 1in the right-hand side of (9) by u and Voo and in the left-hand




=1

side by Ul and Vo1 ® Taking U, = Vg = O we obtain wu (T} = UiT,x |

and vl(f) = 0 ; whence , 1
lhay (1)1 < Mexp(-n) [0 < MhuYl exp(-c) (10)

where ¢ is any number in the interval (C,n) .
Let us set B = max(¥/(u-c),1/c) and choose € > 0 so rmall that

2Be = q <1 . Corresponding tc this € is a certain numter & zefinet

by the second property of the functions Gl ani G, . Let us pick p > ¢
[

SO that the inequality (M/2)(1/{1-q) + 1)p < & holds. Now consiler

0 .
those u” with Hu%llg p . Using (10) and Property 1 of Gy and G

2
we obtain

v
Hug(f) - ul(T)H < f Mexp(-u(f-s))eMquiexp(-os)ds
0

< (M/2) q!luqlexp(-of) s

vy () = vy (Dl < [ eMiuYexp(-os)as
T

(M/2) dlu"llexp(-o7)

IA

It is easy to show that for n > 1

”un+l(7) - un(T)”‘f (M/2)qWIUQ|exp(-oT) ,

o, (O < (4/2) (" + "L+ oo+ 21T exp(-am

< B exp(-oT)

ke

|
1
l
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and likewise for vn(f). The uniform convergence in T of the
successive approximations follows, and this proves the existence of a

solution satisfying
Ha(m)ll < Bexp(-oT) , liv(r)l < dexp(-oT)

Hence, (5) follows directly.
The desired manifold «(@) has the form
uO 0
w(@ = {x: x = B(@)(")) ,u=u , v =[ G(u(s),v(s),a)ds ,

v [ J

|qu|_§ p}

|
This concludes the proof of Lemma 1.

If we consider the linear approximation for system (4), that is,

if we set G(x,a) = 0 in (6), then system (8) assumes the form

du
ar c(aju ’

av

ar -0 >

and consequently, to obtain a solution which converges exponentially to
zero as T —® , it is necessary to take v(0) = O (whence v(T) = 0)
and u(0) = 0 , where W@ s arbitrary. Let us denote by z and y
the upper and lower blocks of the vector x corresponding to the dimen-

sions m-k and k and by Bij(a) the corresponding blocks of the

1)

matrix B(a) ; from the equation (;) B(a)(g) we obtain z = Bll(a)u

and y = 321(”)“ .
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4
IV. Suppose that det Ell(a) #0 for a in D(a)
Then for the linear approximation the manifold (&) can be
b - written as
y=B8 (@B ez . (11)
21 1l

B. Extension of the Stability Manifcld.
The statement of Lerma 1 has a local character. If we continue the trajec-
tories originating in «{@) in the negative T-direction we obtain an
extended manifold (denoted by ¢{@)) which has the same property as a(ay,
that is, trajectories starting in 0(a) at T =0 remain in O(a)
for 1 > 0 and converge exponentially to the rest point x = O as
1 -® . In some cases we can construct (o) in an explicit form
(cf.§§L and 5 below). We will assume in the present chapter that O(a)

admits of the following analytical representation.

V. Suppose that in some domain D(z,a) the manifold ({e) can be

represented as
y = P(z,a) , (12)

where P(z,a) is a sufficiently smooth function.
Indeed, the definition (12) is an identity along trajectories
x(T) which converge exponentially to the rest point x = 0 as T-=o ,

{ that is, the manifold Q(a) consists of such trajectories. Thercfore,

d dP(z.a) dz . oP(z,a
. along any such trajectory a% = ——%;~—l-a; , and setting 3;(2’ ). H(z,qa),

Ar . ap




&y . dz
ar - Bz,
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(132)

Let us denote F(o(0,a) + x,0,0) by F(z,y,a,0,0) and the upper and

lower blocks of F by Fl and F2 .

the indicated trajectory
dz
= Fl(z,P(z,a),a,0,0) ,

X F,(2,P(2,0) ,0,0,0) = H(z,0)¥ (2,P(2,0) ,0,050)

Equation (14) is an identity for (z,a) in D(z,0).

with respect to z we obtain

_ (3 '
r21+ F22H— (az Fl) + H(Fll+ FlZH) y

where
O S U W
2105 3z 22T ¥y 11T ¥z’ "12 0 ¥y °

and (%% Fl) denotes the (k x (m-k)' -matrix with elements

(the upper indices correspond to the columns of the matrix).

definition of H(z,a) it follows that

an'® %Y % awY

azd  azdazt ated et
Therefore

m-k i m-k

iJ
M _ gl g ML

=1 2379 1 2z

L .

Then (4) and (13) imply that along

(1)

Differentiating

m-k il
g SH_ gt

=1 azJ

From the
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It is clear that the last sum taken along a trajectory x{1' in Q{a
is equal to dHlj/dT . Likewise, along the indicated trajectory the

equation (g% Fl) = dﬂ/df holds, and consequently, from (15) we have

M _

o - (
3r = + F__H) H(Fll + FyH) (16)

For* Fop

along any trajectory x{(T) in Q(a)

C. The Variational System on the Stability Manifold. We consider
now a nonhomogeneous system of equations whose homogeneous part is the

variational system for (4), namely

da

—_—

dr

FX(T)A+ (T , (17)

where Fx(T) Fx(m(o,a) + x(1),0,0), x(1) € Q(a) for some constant
vector a in D(a), and ¥(r) 1is a certain function. The upper and
lower blocks of A having dimensions m-k and k are denoted by
Al and A2 » while the corresponding blocks of {(T) are denoted by

'l(T) and *2(1) *

Lemma 2. The change of variables

Al = 81, AE = H(“’)Sl + 3 (18)

2 3
vhere H(t) = H(z(r),a) and 2z(T) is the upper block of x(¥) , trans-

forms the system (17) into the form

By
-F = a,u(f)bl + a.le(“')ae + ’1(1’) s (19)
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T = 38, + (V(1) - KNy (1)

where

au(f) = Fp,(7) + F (MH(T), a,,(1) = Fi.(m,
(20)

8,5(T) = Fou (1) = H(MF,(7) 3

here the Fij are the blocks of the matrix Fx(T) , as in (15)
The essence of the lemma is that by this change of variables the
equation for 8

can be separated from the equation for & To prove

2 1°
Lemma 2 it is necessary to write system (17) in block form, make the
change of variables, and use the identity (16).
Suppose now that the nonhomogeneous term ¢(¥) in system (17) is

Fx(T)wa(O,a) . Then the second equation of (19) assumes the form

d52

v = 2pp(MB,y + [F (7)o (0,0) ], - H(T) [F, (1) (0,0) ], (21)
(here and below the indices 1 and 2 denote the upper m-k and the lower
k rows of the indicated matrix).

A particular solution of system (17) for the given nonhomogeneous

term is clearly A = -Qa(o,a) . The corresponding particular solution of

(21) is

5, = H(¥) (o (0s2) ], - [coa(O,a) 1, = R(7,0) .

Thus we have proved
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Lemma 3. The matrix 5, = R{T,a) is a solution of equation (21) i

satisfying the initial condition

62(0) = H(O) [@a(oya) ]l - [Cpa(o,a) ]2 = R(O’a)

D. We now obtain a number of important results for the matrices
all('r) and a.22(1') (ef. (20)). Let us denote by H(®) the limiting value
of H(T) = H(z(%),q) as T - . Since (11) is the linear approximation

for (12) we have that

-g—g(o,a) = H(») = Bel(a)Bﬁ(a) . (22)

Let us denote by Fij(w) the limiting value of FiJ(T) . Then Fij(w)
are the blocks of the matrix F(=) = Px(w(o,a),o,o) = Ala) appearing in
equation (7). We write (7) as
cla) O
F (=)B(a) = B(a)
0 0

and by equating blocks with index 11 we obtain
On account of (20} and (22), it follows that
-1

Fiq(=) + Fy(®)H(=) = a),(®) = Bn(a)C(a)Bu(a)

Clearly the eigenvalues of all(ﬁ) coincide with those of C(q) ;

they are the Ai(O,a) which satisfy condition (3). Thus, the fundamental

matrix $(1) of dal/d-r = a,, (18, (8(0) = F.
(3.78)))

k) satisfies (cf. [13,




18()8 ™ (s)ll < cexp(-u(t-5)) for O<s<T. (23)

Analogously we can write (7) as

. cla) © _
B Ho)F, () = B Na)
0 0

and by equating the blocks with index 22 we obtain
(37Ha)) ,F, () + (B'l(a)). F(®) =0
21 12 22 22
Since
-1 -1 -1
(B77(0) 5y = -(B77(0)) 5,8,y (@) B17 (@) (28)

and

det(B'l(a))22 £ 0 (25)
(ef. [20" or [13, (4.55)1),

F

-1
- g = \ -— '
22(-) Bal(a) Bn(m rlz(cﬂ ] 22(., H(w) ’12(‘”’

= 322(3\ =0

Now Fi;j(ﬂ = Fij(cp(o,a) + x(1),0,0) converges exponentially to “13(‘”\
as T - ® by virtue of the exponential convergence of x(tf) to zero,

and so it follows that

lla (NIl < cexp(-u7) for v20 . (26

Lemma 4. The fundamental matrix Y(t) for d52/d1’ = a.22(‘r)62(‘l'(0\ =

satisfies:
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(1) Y(*) = lim Y(7) exists;
L ad-
(2) det¥(=)#0 ,
- (3) H¥(7) - ¥(=)} < cexp(-nT)
Proof. Consider the matrix integral equation
~ T ~
= . o7
¥(1) = E_+ ‘[Q a,,(s)¥(s)ds (z
Applying successive approximations to it, we consider the sequence
~ T ~ ~
= Y = . 28
Y (T =E + L a ()Y (s)ds , Y (7) = E (28)

By virtue of (26) and (28),
(%) - ¥ ()l S agy(allas < (elexplnn)

1Y, (1) - ¥, ()l s,r* lla, ()Y, (s) - ¥ (s)lids

< El'!—(c/u)‘?exp(-:’.’u‘r) ,

and

I (7) - ¥, (D] < Ee/n) expl-num)

n
a LA
<ar for a=c¢/n, n=1,2

Hence, it follows that

~ n -~ -
Yn(f) =E .+ 151"1(?) - Yi_l('r)]
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converges as n —=® (uniformly with respect to T > 0) to a matrix
";(1') which satisfies equation (27) and consequently, d‘;/df = a22(1'); _ ‘
- and ";(w) =E . It follows also that det‘;(o) #0, for otherwise
det;(‘r) =0 , contradicting the relation ;(w) = Ek . If we now set
¥(r) = ¥(ny o)

we obtain a fundamental matrix for which properties (1), (2) and (3)

of Lemma L are satisfied.

E. Let us turn now to the matrix R(T,r) of Lemma 3.

lemma 5. det R(®,a)#£0

Proof. Denotz the upper m-k and the lower k rows of the matrix

B‘l(a)wa(o,a) by h) and h, respectively, that is,

h
(g>=f%m%ma>. (29) -

h

Substituting coa(O,a) = B(a)(hl) into Fx(w)wa(o,n) = 0, multiplying

e
on the left by B-l(a) and taking account of (7), we obtain

(C(a) o) M\ <o .
o o) (i)

whence, it follows that C(ct)hl = 0, so that hl = 0 . Since the rank of

q,a(o,a) is equal to k , det he;!o . From (29) we then obtain

b, = (87Ha)) 5 [0,(0,0) 1 + (37H(@)) ol (0,0 ], - .

]
i
]
'
!
(]
!
l




"
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By virtue of (24) and (22), i

hy = ~(B7Ha)) () [0,(0,a) 1) - [0 (0,01} 1

-1l
= '(B (a))22R(“’,a)
Since det(87(a)),, # O (cf. (25)), detR(=,a) £0
§2 An Algorithm for the Construction of the Asymptotic Expansion
of the Solution of the Initial Value Problem

The asymptotic expansion of the solution of problem (1), (2) will

be constructed in the form

x(t,u) = x(t,u) + ™(7,m) (1= th) , (30)

il

where |
X(tan) = Xg(6) + Wy (8) + oo v WX (B0 e, |
Mx(7,u) =TTOx(1') + Lmlx(‘l') + ...+ un’Tnx(T) 4 e

By substituting (30) into (1) and representing the function F in the

form F =F + MF Jjust as in Chapter 1, we obtain a sequence of equations

: for the determination of SEi(t) and T"ix(-r) (i=0,1,2,...) .

For Eo(t) we have

F('io(t),o,O) =0 . ‘

. By virtue of Condition I solutions of this equation can be written in '
the form l

; _ s
xo(t) = o(t,alt)) , (31) i }

’ .
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where (t) 1is an as yet arbitrary k-dimensional vector function. v
For Tfox(f) we obtain ‘
dr_x
v = F(o(0,a(0)) + T _x,0,0) ,
which after the substitution x = TTOx is made coincides exactly with
equation (4) for a = a{0) . The initial condition for TTOx('r) is
obtained after substituting (30) into (2) as
o 20 - 0,(0,a(0))
mx(0) = x° - o(0,a(0)) ={
¥y - 0,(0,a(0))
where zo is the upper (m-k)-dimensional block of 50 R yo is the
lower k-dimensional block, and P O, are the analogous blocks of o .
Both the equation und the initial condition for T Ox( 7) then involve
the as yet arbitrary vector o(0) . Let us use this arbitrariness to
guarantee the exponential convergence of Tfox(‘r) to zero as T - > .,
For this i:t is sufficient to require Shat TYOX(O) belong to Q(a(0)) ,
that is, that TTox(o) satisfies (12). This gives ‘
y° - 9,(0,a(0)) = p(z° - o, (0,2(0)),a(0)) . (32)

Equation (32) is a k-dimensional vector equation for the k components

of the vector a(0) .

VI. Suppose that equation (32) has a solution «(0) = ao .

Taking a(0) = ao , TTox(‘r) belongs to O(ao) for ¢ > 0, that is,

the blocks M z(T) and T y(r) of T x(¥) satisfy 'Toy(t)=P(ﬂoz(f),a°)

and consequently, for T > 0




[SAY
(@8]

IMx(N)ll < e exp(-nr)

Remark. The functional determinant (corresponding to (32)) is

_ame(o,a) o acpl(o,o)
Aa) = det( — =g ¢ H{z" - wl(O,a),a)T -

Pot(zo - % (0,a),a))

If we denote H(Woz('r) ,a) by H(T),H(T) [wa(o,(‘t) I - [wa(O,C!) I, by

R(7,a)_ (as, in §1) , and P(TTOz(T) ,a@) by P(t,a) then
Ala) = det[R(0,a) - Pa(0,0t)]

For many singular perturbation situations analogous to this
(cf., for example, [13, §13, Condition III]) it is assumed that the cor-
responding functional determinant is nonzero. In the present problem this
requirement is unnecessary since it is not difficult to prove that
Pa(-r,a) = R(T7,q) - Y(«r)Y'l(m)R(w,a) (¥(r) being the fundamental matrix
from Lemma 4). Hence, it follows that A(a) = det‘{’-l(w)R(@,a) #0 by
virtue of Lemmas 4 and 5.

Thus the function Trox(-r) is completely determined, although a(t)
occurs in the expression (31) for ;O(t) . We only know «(O) = ao .

The function at) is determined completely from a solvability condition

in the equation for ;l(t) .

The equation for ;l(t) has the form




6L
&, ~ _ _
Tt - Fx(xo(t),t,O)xl + Fu(xo(t) »t,0)
or
F,(0(t,a(t)),t,0)%, = o (£,a(t))5F + ¢ (t,a(t) - (33)
B B x ’ RN § a 7’ dt 7 ’
Fu(w(t,a(t)) ,t,O)
The determinant of this linear algebraic system of equations is equal
to zero. For the solvability of this system it is necessary and suffi-
cient that the right-hand side be orthogonal to the eigenvectors
*
gj(t,a(t))(j =1,...,k) of the adjoint matrix Fx(@(t,a(t)),t,o) cor-
responding to the eigenvalue X = O . Let us denote by g(t,a{t)) the
(k X m) -matrix whose rows are the gj(t,a(t)) . Then the orthogonality
L condition can be written as
do
(8(t,a(t)) o (t,0(t))) 2 +
(34)

(g(t’a(t))[“’t(t’a(t)) - Fu(@(t,a(t))’tso) ]) =0 ,

| where (gma) denotes the (kxk)-product of g and % 5 analogous meaning
is given to the other terms in (34). As noted in Chapter 1 det(gcoa) £ 0,

and so (34) can be solved for do/dt :
dax
= Tolawt) - (35)

VII. Suppose that equation (35) together with the initial condition
0
s a(0) = a@” has a solution a=a(t) for t in [0,T] that belongs to

D(a) there, where D(a) is the domain in Condition II .




l
6: i
Through «a(t) we completely determine the zero-th term of the i
approximation. Let us introduce the curve L consisting of the two
pieces:
L = {(x,0): x = x,(0) « mx(n(r>0) 3t =0},
L, = {(x,8): x = x.(t)y 0<t<T}
0 _
It is natural to require
VIII. The curve L 1lies in the domain D(x,t) of Condition I .
The solution of equation (33) can be written in the form
x(t) = o (t)B(t) + K (t) , (36)
where E%Jt) = qa(t,a(t)),s(t) is an as yet arbitrary k-dimensional vector

function, and ;l(t) is a particular solution.

For T_x(7T) ,

1
dﬁlx _ _ _ {
el Fx(f)ﬂlx + [Fx(f) - Fx(O)][xl(O) + Txb(o)] +
(37)
[F (1) - F (0)]7 + (F,(m) - F (01 ,
where FX(T) = Fx(;o(o) + TTOX(T) ,0,0), Fx(t) = Fx(;o(t) »t,0) s etc.
Note that F (=) = 'fx(o) .
By using (36) for §l(o) and since Fx(o)Ba(O) =0,
dﬂlx _
ar = B (NTx+ F (1o, (0)8(0) + ¥(7) , (38)

8 SSRGS LR 20 551 1§ .
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where §{(T) is known and such that [|¥(T)!| < c exp(-uT)

The initial condition is

M x(0) = -x,(0) = - (0)8(0) - % (0) .

Thus, an as yet arbitrary vector B(0) appears in the equation ani

in the initial condition for ”lx(T) We use this arbitrariness to guaran-

tee that “lx(T) decreases exponentially as T —® . Let us denote

the upper and lower blocks of Wlx by ﬂlz and le , and let

= TT =
ﬂlz 61 » Ty H(T)sl + 62 ,

where H(T) = H(WOZ(T),a) .  Lemma 2 implies the equations

dad
= = 8 (18 + a, (18, + [F (10 (01],8(0) + ¥(7)

ds
_d_'?. = a,,(1)8, + {[F (1o (0)], - H(T) [F ()0 (0) ],}8(0)

+ [ (1) - Hin)y ()] (39)

with initial conditions

8,(0) = -[w,(0)],8(0) - Z(0) ,

(L0

5,(0) = {H(0) [5(0)]; - [g,(0)1,}B(0) + [H(0)Z;(0) - F;(O)} -

Using Lemma 3 and introducing 82 = {H(O)Ei(o) - §1(o)} we have




€7

5,071 = R(1,5°)B(0) + ‘Y(T)Sg
(L1
T -1
+ fo‘i’(‘r)‘i’ () [¥,(s) - H(s)¥,(s))ds
By requiring that 62(1') - 0 as T -~ o we obtain
B Q0 o] . -1 o/ L~
R(=,0")B(0) = -¥(=) {6, + [ ¥ (s) [¥,(s) - H(s)y (s)]ds} . (L2
0

By virtue of Lemma 5 this equation is uniquely solvable for B 0 B{ 0}
Substituting into (41) and using the exponential decay of ¥(%) and H(T)

we have

||62(1’)H < cexp(-nf) for >0 . (L3

Since Fx('r)cpa(o) = [Fx(‘r) - Fx(O) ]coa(O) satisfies the same exponen-

tial estimate ,

dbl ~
e = all(f)al + \"l(f) 3

dr
where IWl(‘r)H < cexp(-uT) . Thus
T 1 -
51(7) = 4’(1')51(0) + fo‘f’(“’)‘b (S)‘#l(S)dS s

where the fundamental matrix &(¥) satisfies (23), and so

T
"51(‘)“ < cexp(-n1) + f c exp(-#(T-s))c exp(-us)ds
0

< cexp(-ur) . (&)




dx1 _ _ _ 1 =
i ?;(t) X, (x Pxx(t)xl) + qu(t) x, + f'puu(t)' (45)

Here (;1. ?gx(t);i) is the vector whose components are the scalar products

<;1. Fz x> = (32¥2/3xiBXJXt);1;j (2=1,...,m), Substituting x, from
xx 1 1,3=1 1
] .

formula (36) and writing the solvability condition for equation (45) in a

form analogous to the condition (34), we obtain the equation

a8 _

I = £,08,0). (46)

At first glance it may seem that fl(B,t) depends quadratically on B(t)

as a result of the term (;i’f¥x(t);i) in (45), However this is not the case,

since

< gy(t,a(t)), (6, (t) B(t), F (£) §,(c) B(r)) > =0 )]

for j = 1,...,k. In order to verify (47) we differentiate the identity
F(¢(t,a),t,0) = 0 twice with respect to the components ap and aq of the
vector a(p,q = 1,...,k) and obtain

2

A 3 g 20

3a. * xx 3a_ x 30 3a_ - O
P q P q

Then, forming the scalar product with gj(t,a) and noting that < gj, Fx

2
32 ga > = 0 since Fx*sj = (0, we see that

< By (52;' xxs_'o >=0 .
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for §J, Py 9 = 1,...,k.

Thus equation (46) is linear, that is, fl(B,t) = A(t) B(t) + Bl(t), where
expressions for A(t) and B,(t) are obtained easily from (45). By virtue of
this linearity, there is a unique solution of (46) which exists in [0,T]
and satisfies B8(0) = Bo.

Thus the term of order u in the asvmptotic expansion is completely
determined. The determination of the successive terms of the expansion proceeds
in a manner analogous to that of ;i(t) and ﬂlx(r). At the i-th step an
arbitrary function (say y(t)) appears in the expression for ;;(t). First
we determine Y(0) from the condition that Hi x(T) + 0 as T *> ©; the equation
for y(0) is of the same type as (42), with det R(w,ao) # 0. Then from the

solvability condition in the equation for x_ , (t) we obtain an equation for

i+l
y(t) like (46), namely

dy _
Tl A(t) v + Bi(t)’

which determines y(t) uniquely in [0,T].

Thus it is possible, under Conditions I-VIII, to construct arbitrarily

many terms of the series (30).




72
3
§3 An Estimate of the Remainder Term
As in Chapter 1 let us first make a more precise formulation of
i ) Condition I concerning the smoothness of the function F(x,t,u) . We ncte

that it is possible to take an arbitrary 8&-tube of the curve L

(ef. VIII) to be the domain D(x,t)

I. Suppose that the function F(x,t,p) has continuous partial
derivatives with respect to each argument up to order (m2) inclusive

in the domain D(x,t,u) = D(x,t) x [O,uo]

Let us set
ko,
X (tu) = i__i_ou (x;(t) + m.x(7)) . .

- : Theorem 2. Under Conditions I-VIIT there exist positive constants
hg and c such that for 0 <u < Wy the solution x(t,u) of the
problem (1), (2) exists in the interval [0,T], is unique and satisfies -

the inequality

llx(t,u) - X (t,u)ll Sew™ " (0Kt <T)

Proof. Substituting x = xn+l 4+ E into equation (1) we obtain
an equation
dg
X H‘Eg = Fx(t:u)§ + G(E,t’u) ’ (’48) *

where

Fx(t’ﬂ') = Fx(xl(t,u-) styu)

- e et ety e ¢
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and

. d-xml(t’U-)
G(E,t,u) = F(Xn+l(t’ﬂ) + E,t,u) - Fx(t,u)E - u-—**ag-—— .

The function G(€,t,u) has the following two important properties
which can be established just as easily as in (13, §10, Subsection Ly,

namely

1. G(0,t,m) = 6(™3) .

lu2 for 0<t<T

and O0<yp < Wy (for some constants ¢y and ul), then there exist

2
2. If |Ig,(t,u)ll Sep and e (tull <e

constants <o and uolg ”1 such that for 0 < t<T and 0<u < uo

IG(E s t50) = GLE,t,m)ll < cdia[n(\)m; e (k9

(for ko note the remark in Subsection 3, §1, Chapter 1) . 1In conformity
with Chapter 1 G(E,t,u) is a contraction operator with contraction
coefficient of order G(ua) for € = G(ug)

We now introduce the change of variables
u
£ = T(t) (V) ’

where

a..(t 0
4 ay,(t)
T “(L)F, (¢)T(t) = R
0 0




for ?;(t) = Fx(§b(t),t,0) . Here the eigenvalues li(t,a(t)) of the

((m-k) x (m-k))-matrix all(t) satisfy condition (3) . Then

4 a),(tm)  ag ()
T “(£)F, (t,0)T(t) = ,
ael(t,u) a,o(tsh)

sO

ey (tn) - ap;(0)l < clexp(-nt/u)+ )
while the other blocks aik(t,u) satisfy
la;, (t,u)ll < clexp(-nt/u) + u)
The system for u and v has the form

du -1
udt a'll(t,u')u + 8'12<t”"')v = u'bll(t)u - uble(t)v + (T G)l b

dv

-1

where the b, (t) are the blocks of 771(¢) Q%%EL . Note that

Aik(t,u) = aik(t,u) - ubik(t) satisfy the same inequalities as the

aik(t"p') .
Suppose now that U(t,s,p) and V(t,s,p) are the fundamental

matrices of the homogeneous systems

d

bgg = Ap(twle (Ussw) =5 0
dv

u.‘az = A22(t,u)v (V(S,S,u) = Ek) .

T2

(50)




e
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By the properties of Eu(t), A (t,w) and A (t,u) , these fundamental

matrices satisfy for 0<s <t <T and O<u <y,
u(t,s,w)ll < cexp(-u(t-s)/u), IV(t,s,u)ll <ec .

Using the fundamental matrix V(t,s,u) and the trivial initial
values of u and v (as well as of €), we can express the second equation
in (50) as the integral equation

t
v(t,p) = [ K (t,s,u)uls,u)ds + @ (u,v,t,0) . (511
0
Here the kernel
Ko(tsS5m) = 1T V(t,5,0) Az (s,m)

clearly satisfies the inequalily

1Kty 5,801l < clu™ exp(-ns/u) + 1] (52)

while the integral operator
1t -1
Qe(u’v’t’u') =4u IV(t,S,u)(T G)eds
0

by the two properties of G(g,t,u) satisfies the estimate QQ(O,O,t,u) =

n+1) and is a contraction operator with an order G(u) contraction

("
coefficient for u and v of order m(ua) .

By substituting (51) into the first equation of (50) and using

U(t,s,u), we obtain the integral equation




TL

t
u(t,u) = joKl(t,s,p.)u(s,p,)ds + Ql(u,v,t,u) ’ (53]

where the kernel

t
-1
K (t,s,n) = u [ U(t,psm) A, (0,0 K (P, 550) AP
s
satisfies the same inequality as Kg(t,s,u) (ef. (52)) , while the

integral operator

t
- -1
Q, (u,v,t,) = 1IOU(t,s,u)[Al2(s,u)Q2(u,V,s,u) + (T 7G), lds

has the same two properties as Qa(u,v,t,p)
ILet us denote by R(t,s,u) the resolvent kernel of Kl(t,S,u) . It
satisfies the same estimates as the kernel itself. We can express (53)

as the equivalent equation

t
u(t’U) Ql(U,V,t,u) + IOR(t,S,u)Ql(u,V,S,u) ds

§,(u,v,t,0)

where the integral operator Sl(u,v,t,u) has the same two properties

as @ (u,v,t,u) .

Substituting (54) into (51) we obtain

t
v(t,p) = IoKz(t,S,u)Sl(u,V,S,u)ds + Qg(u,v,t,u)

E 82(u,vat,u) ’




"

where S2 has the properties of Sl . Therefore we can a2pply the method

of successive approximations to the system (54), (55) (with uy = vy = O

and easily show as in [13, §10] that for sufficiently small u a solutic:

u(t,u), v(t,n) exists in the interval [0,T] , is unique and satisfies

n+l)

"

6(u
directly that E(t,p) = x(t,u) - xn+l(t,u) = G(un+l) , so x(t,u) - Xn(t,p‘

6(n

the estimates u(t,u) and v(t,u) = G(un+l) . Hence, it follow:

n+l) and this proves the theorem.

§4 special Cases

1. Consider the system of equations

dz
5% A(y,t)z + B(y,t)

(0<t<T) (56)

%}f c(y,t)z + D(y,t)

with the infinitely large (as u — O) initial condition

z(O,u) = zo/u » y(O,u) = yo . (57)

In the special case that z and y are scalar functions with C(y,t) =1
and D(y,t) = O this problem was considered in detail in [13, §161 .

Suppose now that in the system (56) z is an (m-k) -dimensional veootoor
and y & k-dimensional vector. Ilet us introduce in place of 2z the

function pz (which we will again denote by =z ) , then (56), (57) takes

the form
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dz

U-’d‘g A(y,t)z + U-B(y,t) )

1

a
- - u;;f = C(y,t)z + uD(y,t) ,

z(O,p) = 20 ’ y(O,u) = yo . 1

This is a problem of the form (1), (2) for the m-dimensional vector

function x = (;) . The reduced system
Aly,t)z =0, c(y,t)z = 0

has the family of solutions

?=0,_}_’= Qs w(t,a)
The matrix Fx(w(t,a),t,o) can be written in block form as .

Ala,t) ©

c(a,t) O

and, consequently, Condition III is satisfied provided the eigenvalues
Ai(t,a) (i = 1,...k) of the matrix A(a,t) satisfy the inequality (3),

that is,
Reh, (t,a) <O . (58)

The matrix wa(t,a) , consisting of the eigenvectors corrcsponding to

A = 0, now has the form

0 -
wa(t,a) =( Ek) ’

S e . l
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and the system (4) can be written as

= = Ala*y,0)z , %{ = Clo#y,0)z . (59

Suppose that 2z and y are scalars, that is, m-k = k=1 . Then
condition (58) reduces to A(y,t) < O . If we assume that C(y,t) is of
constant sign then from (59) we obtain an explicit representation of the

manifold Q(a) , namely

y
z=J‘ML_Oldy, (60)

0 C(ary,0)

which agrees exactly with the formula in (12)
If C(y,t) =1 and D(y,t) = O (this case was discussed in

(13, §16]), then = (g) , g = (1,-A), Fu = (g) , and equation (3h)

%a

assumes the form
a
A(a’t)EE + Bla,t) = 0 .

This agrees precisely with equation (4.385) of [13,§16] , with oft)
playing the role of ;o(t) . The initial condition for o«(t) is
determined from equation (32) which, in the present case, through (60)

can be written as

0
y -a(0)

2° =[  Al(0) + y,0)ay ;
0

hence, we obtain

0

af 0)

20 = T A(M,0)dn or z°+ [ amoam=0 .
ol 0) ¥°




The succeeding equations agree exactly with the formulation in eguation
(4.395) of [13, §16] , and from them we can determine yo(o) . Thus o !
- coincides with _570(0) , that is, the formal construction of §2 reiuces

to the results obtained in [13, §16] .

2. The general singularly perturbed initial value problem

dz dy
ug = F(Z)Y:t) ’ E‘Ez f(Z:Y9t) (OE tST) ‘ol
¢] 0
2(0,u) =z, y(O,u) =y, (62

which was considered in detail in [13], can be reduced to a problem of

the form (1), (2) . To accomplish this we multiply the second equation

by u , and set x =(;) and G(x,t,u) = (:;.) . We obtain

u% = G(X,t,u) ’ (63\
0

x(0,u) = %0 = (Zo> , (64)
y

whose reduced system has the family of solutions
;=as;=c°(t:a) )

where o(t,a) is a z-root of the equation F(z,x,t) = O . It is possible
to develop the construction of the asymptotic solution of the problem (63},

(64) by the scheme of §2 , which after a finite number of calculations

gives the same result as in [13, Chapter 3] .
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¥ Applications of the Asymptotic Method to Problems in Hiretics |

-

1. The Equations of Cherical Kinetics. Suppose that there are

chemical reactions involving m substances, namely

X

1
— .
Fafy et Fpfe— Byt et By

i
(i =1,...,n)

Here Xi denotes the 1i-th substance, aik s Bik are integers Jdencting
the number of mclecules of the k-th substance which participate in the
i-th reaction (corresponding to the forward and reverse reacti.n,
respectively), and k; s k; are the rate constants of these reactions.
If we denote the concentration of the &-th substancc by X, then

the changes in Xy during the time dt , determined by the reaction

4+ -
rates ki » K. , are given respectively by

i
o 2 Q.
T S0 § im
de = kixl cee X (a;L-BiL)dt s
B.
_o. il im
dx, = kixl .. X (aiL Big)dt

and consequently, the total change in X, (as a result of all the

reactions) is ejual to

n .
+
= - S : .o
dx € Yitwidt , where LA klxl X
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Thus we are led to the system of differential equaticns
dxc n ¢
- = =t = cos . S
3t R Y ¥ (L=1,...,m (

Under actual conditions the rate constants differ widely from each

other. This property can be expressed by means of a small parameter g .

+ ¥
Suppose then that k; = u-l'E; (i=1,..., 0<n) . Then we have
- . o - B, B.
- + il im - il im . _ -
woo =W, o= kG XTT e X Tk g T e X (i=1,...,n)
So the system (65) can be written as
de n n
—_— w < = oo . 66
kT _El Yighi PR T Y (L=1,...,m (66)
= i=ml
Setting p = O we obtain the reduced system
E —-—
0= ifl YiL Wi (L = 1,---,m) . (67)

In practice it often happens that system (67) has a family of solutions
which depend on one or more arbitrary parameters, and thus, the problem
reduces to a singularly perturbed equation (66) in the critical case.

One method for determining approximate solutions of the equations of
chemical kinetics containing a small parameter is known in physical
chemistry as the method of quasi-stationary concentrations of Semenov-
Bodenstein. A number of works are devoted to questions involving the

mathematical justification of this method (that is, to a justification

of the passage to the limit as u = 0) ; cf., for example, [17,18] .

W wquyp g e o

—— o
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We now discuss an example of an actual chemical reaction for which the
calculations can be carried out using the asymptotic methods presented in

this chapter. This system is

ax dx

1 _ .+ - _2 _ A vt Lt ot
U -klxl+ klx2 Tl klxl klx2 k3x2x3 khxgxl4 s
(68)
d.x3 + d'xh +
& - E3 m T R,

[Such a system occurs in investigations of the reaction kinetics of
organometallic compounds and was proposed by A.N. Kashinym, a colleague
of ours in the chemistry department of Moscow State University. ] The rate

constants have the orders of magnitude

8 - -

* -1t K ~10° K=k =0 .

+ o~ R
k) 70, k7107, kg
Dividing each of these equations by kz and making the substitutions
+ + -t + 5t .
b=1Mk ,as= K, , b= kl/kh and k3/ku = ¢ , we obtain

d.xl dx

- -——2 — - - -
hrat p.a.x1+ bx2 s H it - u.a.xl bx2 cx2x3 xaxu s

i i (69)
—3__ —%_ )
BTaE = "CXX3 0 Mg T XKy

The reduced system

0= bxa s 0= -bx2 - cx2x3- XX, s

0= -cx X, , 0=-x2xl+

23

has a family of solutions depending on three arbitrary parameters, namely
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X. = X = X = X = . (
xl—al,xe-o,xB-az,xu 03 (70)
- . Here the matrix Fx(c.o(t,a),t,o) is
0 b o} 0
0 “b-ca - 0 ©
3 ’
0 - ca2 0O ©
(0] -a 0O O
3
. . =% =\ = A, = -b- -a. . Si
and its eigenvalues are Al 12 K3 0 and 4 b ca, a3 Since
b>0, ¢>0 and Cl2 s a3 are nonnegative (which makes sense physically),

it follows that Ah < 0 . Thus Conditions I-III of §1 are satisfied.

The system (4) now has the form

dxl dx2

5 = DX, 5 3 = b, - cx2(a2+x3) - x2(a3+xh) R
dax dx
—3 .- B S
= cx2(a2+x3) 'y IF x2(a3+xh)

This system is sufficiently simple that it can be integrated, and we obtain

for the manifold (a) the exact representation

x
Xy = - x4 (exp(-%xl) -l)c22+ (exp(-—bl)-l)a3 s

x (T2)

c 1
x3 = (exp(-5x)) -1)o, 5 X = (exp(-7) - Do,
: Thus, as in (12), the lower block (consistingof three components) of the .
vector x is expressed in terms of the upper block (consisting of one

component). By the same token Condition V is satisfied. An elementary

argument verifies Condition IV .
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Suppose now that the system (69) is furnished with the initial conii-

x° . Then the vector equation (32) assumes the form

tion x(0,p)

xg = -(xg-al(o)) + {exp[-%(xg-al(o)) ] -1}02(0)
+ fexpl- 3 (x7 -0 (0)) ] - Uay(0) (72!
xo-a (0) = {exp[-g(xo-a (0))] - 1}a,(0)
3 "2 b7l 1 2 ’
Xy - 05(0) = f{expl- (x] - (0)) ] - 1l (0)

By setting t = xo

1 al(O) we can determine a2(0) and a3(O) in terms

of t , namely

0

3exp(n%t) , a3(o) = xg

exp(o.l t)

02(0) =X B

Substituting into the first equation of (72) we obtain an equation for t

(0] [ 0 1 (0] 0 0
t+x3exp(~bt) + xhexp(-bt) = X34 X, - X,

Elementary considerations show that this equation has a unique solution
0 0
. i 1
for %3 >0 and x >0 . Thus al(O), a2(0) and a3(0) are uniquely
determined from (72), that is, Condition VI holds.

One can also write equations for al(t), aa(t) and a3(t) . In
the present case it is a matter of integrating by quadratures. Thus one
T ' . X = x = X = x =

can determine xlo(t) al(t), xeo(t) 0, x30(t) ae(t) and x}'o(t)

q3(t) .

. The determination of Wox('r) reduces to the integration of the

scalar equation




8l

dTrOxl ¢
= b{-m - -
I b{ o1t {exp( bﬁoxl) l]ae(O)
(73)
1
+ [exp(- T x)) -1)a3(0)]
6] -
with "oxl(O) =X - al(O) by quadratures. After determining ﬂoxl(¢) the

remaining functions Woxi(f) (i = 2,3,4) are found by means of the equation

for Q(a) (cf. (71)) .
Using the scheme of §2 we can also construct the successive terms

of the asymptotic expansion.

2. Equations of a Nonequilibrium Gas. The following equations are

valid for a spatially homogeneous gas with a distribution of velocities at

equilibrium:
i
bge = Tio(mT) « (D) (1= 1,...,0) (74)
aT _ _ 2
3" "3 22(n,T)

Here ny (i =1,...,N) denotes the density of those particles with
internal energy e and T 1is the translational temperature [25] .

0

(0]
To these are added certain conditions ni(O,u) = n;

and T(O,u) =T
Eio(n,T) characterizes the change in ni as a result of cxchanges of
energy in collisions, while til(n,T) characterizes the change in ni
as a result of the transfer of internal energy to the energy of trans-
lational motion. The small parameter p signifies that the transfer
of internal energy to translational energy is considerably less likcly

than the exchange of internal energy as a result of collisions. Ior .

particles of equal mass we have




T, (0,1 - T Q,:’;_‘(T) (nn, - nn)

i'm
b
Ae=0
- s _ i-!nq-\ - kLN\
til(n,T) —k f PRL(‘)nknL Pim(x)ninm) R
,4,m

Ae;b

and

. im kL
Ze(n,T) = T e'(PkL(T)nknL P,

N (T)n.n )
k,4,m,i oo rn

. im im
Here fe = et e -e -, while QKL(T) and PKL(T) are the

probability of the exchange of internal energy in collisions and the
probability of the transfer of internal energy to translational energy.

The reduced equatiocn fio(ﬁ,E) = 0 has solutions obtained from
the condition that H;HL ='H£Hﬁ » whence, taking note of the fact that

- de = e;+ e -~ -e = 0 we have that n, = c:exp(ﬁek) for arbitrary
parameters « and P . The Boltzmann distribution, in which -l/B
denotes the internal temperature and which depends on t , is found
by means of the following approximations which agree with the general

rules stated above in §2 .

The system of equations for the Wo-functions has the form

dTToni

— - zio(E(O) + Ton, T(0)) (i =1,...,N) .

The law of conservation of particles and the law of conservation of

energy can themselves be represented by two first integrals of this

. system, namely




€ (ni(O) + T.Toni) = const. = E ni(o)
i i
and

t ei(-ﬁi(o) + 1

ni) = const.
i

o € ei-r;i(o) R

and consequently, the equations

furnish a 2-dimensional stability manifold, while the equations

[{}
(@]

f [n?-a(o)exp(ﬁ(o)ei)] =0, fei[n?-a(o)eXP(B(O)ei)]

lead to a determination of @(0) and PB(0) . We note that <€ n, =1
i

implies immediately that «(0) can be determined in terms of B(o) ,
that is, a(0) = 1/ ‘:exp(B(O)ei) , after which B(0) can be determined
fram the second equation.

'Equations for oft) and B(t) can be obtained from the general
rule of §2 involving orthogonality conditions. In the present case

it is clear that system (74) has a first integral of the form

T+ g)Z!e n, = const. = T°+ =tTe n?

3111 3111’

n

n, =1 .
i

Lol |

Whence, by virtue of the fact that the "O-function converges to zero

as T ~ o , we have that

0 2 0
+ 31;:e:lni

- 2 -
T(t) + Sfeini(t) =T

s t:Ei(t) =1 . (75)
i




¥

From the second equation in (75) aft) = 1/ € exp(pitle ! , after which

the first equation gives the connection betwien T(t) ani B{t) . Suk-

stituting T(t) and n(t) , expressed in terms of B(t) , int> the

second equation of (74) we obtain a differential equation for prt [=.
We note finally that higher approximations are also constructed

in [25] -




Chapter 3 ' t

Boundary Value Problems for Singularly
Perturbed Equations of Conditionally
Stable Type in the Critical Case

In the previous chapters we assumed that the matrix Fx(w(t,a),t,O)
evaluated along a family of solutions of the reduced equation had the
eigenvalue A = 0 of multiplicity k and that its other eigenvalues
satisfied the inequality ReA <0 (Condition ITI) . However, it fre-
quently happens in applied problems (cf. §3) that this matrix also has
eigenvalues satisfying ReA >0 in addition to those with A = 0 and
ReA <0 . Such cases are naturally called cases of critical conditional
stability, and we shall investigate telow the associated boundary value
problems (as opposed to the initial value problems of Chaptersl and 2).

We examine such problems in this chapter as well ¢35 applications of

our asymptotic analysis to some concrete systems. In order to do this

we will make extensive use of the ideas, methods and results of [13, §14] ,
where we investigated boundary value problems in the "ordinary" conditionally
stable cases (that is, A = O 1is absent).

The systems of equations considered in this chapter do not have

the same general form as those in Chapter 2 ;, instead, we study several

important special cases.

' §1 Boundary Value Problems for Quasilinear Systems

} 1. Statement of the Problem. In this subsection we consider the

ff i system of equations

B

i
4
}i‘
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u% = A(u,t)y + uB(u,t) ,
oL W oz, (0stg) (1)

du
u-d? = C(u,t)y+ IJ-D(u’t) ’

where 2z and y are scalar functions and u 1is a k-dimensional vector
function. In this case the system is quasilinear because it is linear with
respect to z and y . The choice of such a system is motivated in part

by its occurrence in the study of applied problems from semiconductor theory.

We prescribe for (1) the following boundary conditions:
(0] 1l 0
Z(O’IJ-) =2 z(l,U) =2 U(O,u) =u . (2)
I. Suppose that the functions A(u,t) , B(u,t) , C{u,t) and D(u,t)
are sufficiently smooth in some domain G(u,t) .

II. Suppose that A(u,t) > 0 in G(u,t) .

It is clear that the reduced system
A(u,t)y=0,z=0, c(u,t)y =0
has the family of solutions

z=0,y=0 )‘G =Qa ,

where « 1is an arbitrary k-dimensional vector. The matrix Fx(evaluated

at z=y=u=p=0) , for
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Ay + uB z
F = z and x =(y ) , is equal to the block matrix
Cy+ uD e

0 Ala,t) O
1 (0] 0 .
0 cla,t)

o

It is easy to see that Fx has A = 0 as an eigenvalue of nmulti-
plicity k as well as two eigenvalues of opposite signs in the domain
G(a,t) , namely Al’z(a,t) = i\/m . Thus we have indeed a critical
conditionally stable case. This leads to boundary layers at both ends

of the interval [0,1] .

2. Construction of the Asymptotic Expansion of the Solution.

The asymptotic expansion of the solution of problem (1), (2) will be

constructed in the form

x(t,8) = x(t,p) + Mx(r,m) + Qx (T ,u)
(3)
(19 =t/ , 7 = (t-DA) ,

where

x(t,u) = ;o(t) + u.;l(t)-r v # u.n;n(t) + e,
Mx(Toh) = TMox(r) + wihix(e) + oo+ unﬂnx(fo) +oeee ()
x(T,u) = Qox(‘fl) + uQIX(Tl) 4 oee u,nan(fl) ¥ oeee W

"x(?o,u) and Q)t(fl,u-) represent boundary series at the left and the

right ends of the interval [0,1) respectively.
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Substituting (3) into (1) and replacing the right-hand side F &by
the sum F + TF + QF (as in [13, §14, Subsection 5] , we obtain a

sequence of equations for determining ;i(t) s Wix(f

o) and Qix(‘r '
(1 = 0,1,...)

1

For ;o(t) we have the reduced equation

A(Eost);o =0, ZO =0, C(Eoyt);o =0 ,

from which we obtain

?o=o,yo=o,i'o=a(t), (5)

where at) is an as yet arbitrary k-dimensional vector function.

For TTox(fO) there is the system of equations

d'Toz

dTToy
&, = Ala(0) + TTOu,O)TTOy s =m
dﬂou
3, = C(ax(0) + TTOu,O)TTOy .

zZ
dr 0 0

(6)

The initial condition for Tfox(‘ro) is obtained after substituting (3)
into (2) and has the form

,2(0) = 20, Tu(0) = w0 - af0) . (7)

As usual, we also require that ﬂ'ox(fo) -0 as W< ® that is,

ﬂ'ox(.) =0 .

(8)




ge

The as yet arbitrary vector «a(0) appears both in the equation (&'
and in the initial condition (7). Moreover, the initial value of
ﬂoy(fo) is as yet arbitrary. We will take advantage of this arbitrari-
ness in order to guarantee that condition (8) is satisfied.

To this end let us first describe the stability manifold OO for
system (6) ; it is analogcus to the one which figured in our discussions
in Chapter 2. From (6) we have that

dTTOu cla(0) + rrou,o)
dnoz A(a(o)a-ﬂou,o)

Let us denote by
= w
o Uo(a(O), Oz) (9)

the solution of this system such that " u=0 for ™z =0, that is,

0 0
Uo(a(O),O) = 0 . By virtue of Conditions I and II this solution exists

and is unique in a certain neighborhood of the point Woz = 0 . Substituting

it into the first two equations of (6) we obtain the system of equations

dﬂoz = Ala{0) + U _(af0),T z),0)T

ar, ~ PR A A
dﬂoy (10)
T " To?

0

The rest point Woy =0, ﬂoz = 0 of this system is a saddle (that is,
conditionally stable), since the roots of the corresponding characteristic
equation are clearly equal to */Ala 0),0) , and by virtue of Condition II,
are real and have opposite signs. System (10) can be integrated in an

elementary fashion by quadratures, and for stability as T, == we obtain

0

the equation of the separatrix of the saddle as
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"o £ df 12
= had
"W =@ e 0 (1)
0

The proper choice of the sign in front of the square root (in the present
case, minus) was easy to make from an analysis of the phase plane of the
variables Woz, ﬂoy . After linearizing the right-hand side of (11) with

respect to Woz we obtain

ﬂoy = -ﬂoz/,/A(a(0,0)

The formulas (9) and (11) give an analytic representation of the one-
dimensional manifold QO having the property that if the initial value

ﬂox(o) belongs to Q then Wox(fo‘ belongs to O, for « >0 . For

0’ 0]

such a T x(r

0 the inequality

O)
T x(e )l < cexpl-nr,) (1,>0) (12)
is satisfied, which implies the validity of condition (8)

Thus, in order that a solution of system (6) satisfy condition (8)

it is necessary to require that the initial value ﬂox(o) belong to OO .

IIIO. Suppose that the values of Woz = zO belong to the domain of
definition of the solution (9)

Substituting (7) into (9) we obtain the equation

w0 - af0) = uyal0), 2% (13)

which represents a system of k scalar equations in the k unknown

components of the vector a(0) .

- 4
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IV. Suppose that equation (13) has a solution «(0) = ozo .

If we take &(0) = a° and define the initial value W y(0) by
means of equation (11) (for this we must put TTOz = z0 and a(0) = o:o
in the right-hand side of (11)), then ﬂox(o) belongs to QO , and con-
sequently, TTOx('rO) satisfies the inequality (12) and condition (&
We note that for the actual determination of TTOx(‘ro) it is
. necessary to substitute (11) into the first equation of (10) and to
solve the resulting scalar equation for TTO.'-:(‘rO) with the initial con-
dition Tfoz(o) =20 . The functions TTOu(-rO) and Tfoy('ro) are determined
by formulas (9) and (1l) once Tfoz(‘ro) is found.

Thus Tfox('ro} is completely determined, while for the as yet
unknown function W, = a{t) we have the initial value a° . The
function at) is determined completely by the following steps.

The equation for ;l(t) (that is, for ;l(t), ;l(t) and El(t))
has the form

dz

o o— — — —-— —
T&- = A(uo)t)yl + Au(uo,t)youl + B(uoat) ?
-.d& = ;
dat 1 °?

du
o . — — —— —
= C(uo,t)y:L + Cu(uo,t)youl + D(uo,t)

Hence, by virtue of (5) we have that

z, = 0, ¥, = -Bla(t),t)/Alalt),t) (14)
é‘%, -C(a,t)B(a,t) /Ala,t) + D(a,t) . (15)




| :
] Equation (15) is a differential equation for the unknown function alt)

|
F . V. Suppose that equation (15) together with the initial condition
a(0) = ao (see IV) has the solution a=a(t) for 0<t<1l.
Thus ;o(t) is completely determined. Concerning ;l(t), the formula
(14) defines ;l(t) and yl(t) , while :l(t) is as yet undetermired,
that is, it is possible to set 'Gl(t) = B(t) , where B(t) is an as yet
arbitrary k-dimensional vector function.
For ﬂlx(-ro) we have the system of equations
dn'lz
dr

5 = A(r )Ty + A (T )T y(m us B(0)) + @ (7))
lely
d‘l’o
lelu

ar 0

=Tz , (16)

= C('ro)ﬂly + Cu('ro)"oy(ﬂlu+ B(0)) + “’2“0) >

where A(fo) = A(a°+ Trou('ro),o) and analogous meanings are attached to

the terms Au('ro) , c(1-0) and Cu("'o) , while '”1("0) and mz('ro) can

be expressed in terms of known functions and satisfy the exponential
estimates ||¢i(1'o)|| < cexp(-n'ro) . The supplementary conditions for

ﬂlx( 1’0) have the form

"12(0) =0, "lu(o) = -g(0) ,
) , (17)
Tflx(.) =0

As in the case of TTOx('ro) we can take advantage of the arbitrariness

of P(0) and choose it so that condition (17) is satisfied. Let us make

the change of variables in the system (16)

i
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C(TO) 8
ﬂlz=bl’ﬂly=52,ﬂlu=-A-rToysl+53 . (18)
It is easy to verify that we obtain the system
ds A (r)C(x.)
1 u* 0 0
ar, = T A1) T (1508 + AlT)3,
+ ‘n(*o)"OY(*o)(53*'B(°)) + o7y
as
2
ar, "% 9
ds clra (7))
d_fg' = [c, (v - —A(T—())——]TTOY(‘TO)(%*‘ B(0))
C(fo)

+ loy (7)) - m o) (1) ]

We note that C(vo)/A(fo) plays the role of H(e) in Chapter 2, and
that the application of this change of variables, as in Chapter 2, leads

to a system (19) in which the equation for & can be separated from

3

P
those for 81 and 82 .

The supplementary conditions for 61 R 82 and 83 are

81(0) =0 ’ 63(0) = 'B(o) ’ 8i(°) =0 (i = 1’2,3)

The solution of the third equation in (19) and the initial condition

53(0) = -B(0) can be written as

%

-1
83(7g) = -B(0) + [ ¥(1)¥ (s)oy(s)as
0
where Y(vo) is a fundamental matrix of the corresponding homogeneous

system (¥(0) = Ek) » having the same properties as the function ¥(+)

in lemma b4 of Chapter 2. The function

T T e
MU R




C(To)
°3('O) = wg(To) - KT;ST ”1('0)
satisfies an exponential estimate.

The condition 83(°) = 0 uniquely determines B(0) :

B(0) = ¥(®)] R OPXOLE

By virtue of the exponential convergence of Y(TO) to Y(») as " ®

(Lemma 4, Chapter 2) we obtain for ('o) the estimate

°3

18,(ro)ll < exp(-ntg) (r,20)

Having defined 63(10) we now write the first two equations in
(19) as

ds A (r.)C(T,)

1 u 0 0
T, =T Ary ooyt Alrgdsy v H(To)

(20)
P2 _ s
= b

dto 1

where v(fo) is an exponentially decreasing function. The homogeneous
system corresponding to (20) is the variational system of (10) . Hence,
by virtue of Lemma 4.5 in [13), it follows that there exists a unique solu-
tion of (20), which satisfies the conditions 51(0) =0, 51(0) = 0 and

which is exponentially decreasing, that is,

Thus Wlx(fo) is completely determined and satisfies an exponential

estimate, while for the as yet unknown function pB(t) we have found the

initial value B(0) . The complete determination of B(t) follows by
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steps analogous to those used for the determination of a(t) , except that
for B(t) we obta;n a linear differential equation. Thus it is possible
to construct the terms ‘§i(t) and ﬂix(fo) up to an arbitrary order n .
The determination of the right boundary functions Qix(ri) is
analogous to the determination of the left boundary functions Wix(TO)

For Qox(fl) we have

) dQ 2 _ dQy
TTT = A(uo(l) + Qou,l) Qoy ’ —cq = QOZ ’ (21)
dQ.u

: Tol = c(ug(1) + qu,1) ey

and the supplementary conditions
Qz(0) = zl , Qux(-=) =0 .

A fundamental difference between system (21) and the analogous system (6)
for ﬂox(to) is that 'Gb(l) is a known quantity, while at the same stage
u(0) = a(0) in system (6) is as yet arbitrary. By using this arbitrari-
ness to choose a(0) in a special way (equation (13)), we were able to
satisfy conditions (7) and (8). 1In system (21) there is no such
k-dimensional parameter, but the number of supplementar& conditions for
Qox(fl) is clearly less than the k identities obtained by comparing
(7), (8) since Qou(o) is not specified.

From the first two equations in (21) we have

aQu c(io(l) +Qqu,1) (22)

Ro®  A(uy(1) + Qgu,)

let us denote by

.

ot g

e h e =

e o

.




’ Qu = Ul(Qoz) (23) ‘

: the solution of equation (22) satisfying the condition QU = 0 for !

Qyz = O . PFrom this we obtain (cf. (11))
Qz
0 2
e )" san(eg2) - (24)
Auy(1) + U, (8),1)

W = (2]

0
The formulas (23) and (24) provide an analytic representation of the one-

dimensional manifold (), which is analogous to that for the manifold CO .

1
It is natural then to require that

IIIl « The valuesof Qoz = zl belonge to the domain of definition

of the solution (23) .

The initial values Qou(o) and Qoy(O) are determined by the

. formulas (23), (24) for Q2 = 2t , while the solution Qox(fl) of system

(21) with these initial conditions belongs to 0, for 7, <0 and
satisfies the inequality
IIQOx(fl)“ < cexp(ntl) (TlSO) . (25)
Consequently it also satisfies Qox(-e) =0 .
We obtain for le( 'rl) the system
dQ,2
‘ o, " Alr)Qy + A (r)aev(t)Qu+ v (7))
Q¥
N Qz > (26)

ol C(*l)Qly + Cu(“'l)Qoy('l)Qlu v (),

- -
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and the supplementary conditions
Q,2(0) = -’z'l(l) =0, le(_.,) =0 , (271) ‘

where A(fl) = A(Eo(l) + Qou(fl),l) and analogous meanings are ascribed
to Au(fl), C(fl) and Cu(fl) . The functions wl(-rl) and v2(72) are
known and satisfy an exponential estimate of the type (25).

By means of a change of variables like (18) it is a simple matter to
prove that le(vl) exists and satisfies an exponential estimate like (25).

Succeeding terms Q.x(?,) follow in an analogous manner.
SRR §

- -

3. An Estimate of the Remainder Term. Let us introduce in the space

of the variables (x,t) a curve L composed of the three pieces:

L, = {(x,t): x = x,(0) + Mx(r ) (7 >0); t = O} ,
Ly = {(x,t): x = xy(t); 0<t <1},
L, = {(x,8): x = x (1) + Qx(7 ) (7, <0); t =1} .

We denote by ¢ the projection of this curve onto the space of the
variables (u,t) . It is possible to take for the domain G(u,t)
occurring in Condition I an arbitrary &-tube of the curve ¢ . More

precisely,

I. Suppose that the functions A(u,t) and C(u,t){B{u,t) and

D(u,t)) have continuous partial derivatives with respect to each argu-

ment up to order (m2)((m+l)) inclusive in some B&-tube of the curve ¢ .




&
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Having defined the terms of the series (L) up to order (m+l) inclusive,

let us now denote by Xk(t,u) the k-th partial sum of the series (3), tha:

is,
k i—
= ” .
X () = T wilx (t) + "ox(r)) + qx(7))) (28)
i=0
Theorem 3. Under Conditions I-V there exist positive constants o

and ¢ such that for 0 <y <p, there exists a unique solution x{t,p)
of the boundary value problem (1}, (2) lying in a cp-tube of the curve L

and satisfying the inequality
Ix(t,w) - X (6wl <aw™Ho<t < . (29)

Proof. Let us set g:z-Zml,T]=y-Yn+l and w=u-Uml,

where z, y and u is the unknown solution of the problem (1), (2), and
Zm»l’ Yn+l and Uml are the partial sums determined by (28). By sub-
stituting these into (1), (2) we obtain for { ,1 and w the boundary

value problem

¥

e = AWM + A (ULE Y (6w + 6 (Myw,t)

I (i B (30)
D (ULt + C (UL t)Y(t,u)w + G t,u)
Wat = *o u Ve W Yol + Gollw,tu)

¢o,u), ¢(1,0) and w(O,u) are known and of order m(u""z)

e

V., W o e, R
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In the equations‘of (30) we have isolated the linear terms whose coefficiernts

are evaluated at the zeroth approximation. The funections

Gl(T\,W,t,u) = AU, + w,t)(le + M)

dUn+l

+ u.B(Un+l + w,t) - p Tt

- A(ant)n - Au(UO:t)YO(t’u)W

and Ge(ﬂ,w,t,u) » which is defined analogously, satisfy the following
two important properties:

1. 6,(0,0,t,u) = 8(u™2) 5

2. Gi(n,w,t,u) is a contraction operator with contraction coefficient
of order ®(u) for N and w of order 6(p)

It is necessary to transform the Gi(n,w,t,u) into a different form

for the subsequent analysis. We begin with the identity

AU t)w

1t ¥at)

AU, 1,8) + A (U o,

+

[A(Uml + w,t) - A(Um_l,t) - Au(Um_l,t)w]

A(Uh+1’t) + Au(Un+1,t)w + ql(w,t,u) .

Here the function ql(w,t,u) is clearly a contraction operator with con-
traction coefficient of order ®(u) for w of order 6(u) ; moreover R

ql(o,t,u) = 0 . By expressing C(Un+l+ w,t) in an analogous form (cor-

responding to ql(w,t,u) there is a contraction operator which we denote

o s e oy y




by qe(w,t,u)) and doing the same for B(Un+l+ w,t) and D(Un+l+ wyt)

the functions Gi(ﬂ,w,t,u) can be reduced to the form
G, (Myw,t,u) = pa (t,u)M+ wd, (tu)w + ey (t,u)Mv
+ qi(W’tsu)Yo(t,U) + Qi(ﬂ,w,t,u) )

where a; bi and c; are certain bounded functions or matrices (Here
and below for ease of writing we will denote a function or matrix by one
and the same symbol w since only the boundedness of this quantity is
important to us.), and Qi(ﬂ,w,t,u) is a contraction operator with con-
traction coefficient of order @(ue) for N and w of order ®&{u)
In addition, Q(0,0,t,u) = 6(u™3)

Let us now replace w(t,u) in the system (30) by the function
E(t,u) , where w= € + (C(Uo,t)/A(Uo,t))g . An elementary calculation

shows that this system of equations assumes the form

A (U.,t)c(Uu,,t)
c(u.,t)
+ lo¥o(t,0) 84 6 (M,F+ Ty Cotsu) 1, (31)
0)
u% =(+ f“(ume) ’

I-l%% = h(t,u)€ + [c(e,M,C,t,u) + q(F,C,t,u)Yo(t,u)

+ Q(,!"ngc,tﬂ‘-) 1,

s
! where
tv




lou

n(t,u) = 6(u+ exp(-nt/u)+ exp(-n(1-t) /) , (32)

G(E,T],C,t,u) ]+ paf + #wm + K..LT]Q ,

C(Uy,t) C(U,t)
a(€,C5t,u) = - m ql(E + W C,t,u)

C(Uo,t)

qg(g*m Crt,u)

C(Uy,t) C(Uyst)
QIE,M,C,t,m) = - _AYU_O,?T Q (M, e + ‘m € >t,u)

C(Uo,t)
+ (M, + K(—Uo_’a Cotm) .

4+

The operator q(€,{,t,u) is a contraction with contraction coefficient of
order 6(p) for € and ¢ of order ®(u) satisfying q(0,0,t,u) = 0,
while the operator § 1is also a contraction with contraction coefficient

of order @(uz) for €, TN and { of order ®(u) satisfying Q(0,0,0,t,u) =

s(u-m'z)

We will consider the terms conteined in the square brackets of the
equations in (31) as nonhomogeneous terms by passing from system (31) to
an equivalent system of integral equations. Let us denote by [I(t,s,u)
the Green's matrix for the boundary value problem consistingof the first
two equations in (31) together with the voundary conditions ({(O,u) =
¢(l,s) = 0. It is possible to prove as in [8)] that the Green's matrix

exists and satisfies the estimate .

T(t,s,u) = 6(exp(-u|t-s|/u))




1¢

The solution of the corresponding homogencous system and the boundary i

n+2) has the same order of

conditions ((O,u) = @(un+2), g(l,u) = 6(u
- smallness as the boundary values. In place of the first two equations in
(31) we have therefore the integral equation

@Y (s,u) €(s,u) + G|

1
G(un+2) + I M lr(t,S,u) 2 ds
0 6(u )

Q(t,u)
ﬂ(t,u)

S, (€,M,C,t,u)
1 (33

S,(E,TC5t50)

Let us denote by H(t,s,u) the fundamental matrix of the homogeneoux
system pdg/dt = h(t,u)€ . By virtue of (32) H(t,s,u) is bounded. The
initial condition for #(t,u) is clearly ol the same type ac that for
n+2)

w(t,u), that is, #(0,u) = &(u Therefore the last equation in (31}

can be written as the integral equation

t
E(t,u) = G(u.mz) + p.-lf H(t,s,u) [G(F,ﬂ,g,s,u) +
0 (34)

Q(E’Q,S,U)Yo(sa“) + Q(E,H,Q:S’U)]ds .
The operator
-1 F
Rl(E,ﬂ,Q,t,u) =u I H(t’saH)QdS
(o]

by virtue of the properties of Q 1is a contraction with contraction
coefficient of order 6(u) for €, N and ¢ of order 6(u) 3 morecover,

R,(0,0,0,t,s) = 6(u™?) . since

LR o L

b
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Yo(t,m) = 6(exp(-nt/u) + exp(-n(1-t)/u)) ,

and therefore

t
IO 6(exp(-ns/u) + exp(-u(1l-s)/u))ds

t
I H(t,S,u)YO(S,u)dS
0

G(u) ’

the operator

t
-1
Rz(i,ﬂ,g,t,u) M I H(t,S,u)Q(E,C,S,u)Yo(s,u)ds
0
has the same properties as Rl(i,n,g,t,u.) . Let us now set R(E,M,(,t,u) =
™2
Rl + R2 + 0 %)

 and TN from formula (33) . Then in place of (34) we obtain the equation

and substitute into the expression for G the values of

t
e(t,u) = J‘o H(t,s,u)(wsl + S, + %) €S, + %Slsa)ds
(35)

+ R(E,H,C,t,u)
By taking account of the estimate ror the Green's function, namely
T(t,s,u) = @(exP('”lt'sl/h) ’

the estimate for Yo(t,u) and the fact that

t 1
[ r b Yexp(-n|s-plw) [exp(-wp/k) + exp(-x(1-p)/u) ldp ds
‘0'0

= Q(U) Py




g

it is easy to show that the first term in the right-hand side of (35 is a
contraction operator of the same type as the second term R(E,T,(,t,u)

Thus, equation (35) can be written as
E(t,u) = Tl(f,“,C,t,u) ’ (36)

where the operator Tl(E,ﬂ,g,t,u) is a contraction with contraction
coefficient of order ®(u) for €, and { of order &(y) , moreover,
T,(0,0,0,t,u) = &(u™1)

Substituting (36) into (33) we obtain the equations

C(tsU)

Sl(Tl,ﬂ,C,t,u) TQ(F,W,C,t,u) H
(37

i

/ ﬂ(t,u) = Se(Tl,ﬂ,C,t,u) T3(E,ﬂ,€,t,u) )

5 and T3 are similar to Tl .

We now apply to the system (36), (37) the method of successive

in which the operators T

aprroximations as in [13]. It is possible to prove that for sufficiently

small gy a unique solution exists in a certain cp- tube of the curve

1]
D
———

b=

E=T={ = 0, and satisfies the estimates €

(= s(un+l) . Hence, it follows also that w

n
7. ]

n+l)

Thus 2z - 2 Y and u - Un+ are all of order 6(u

m1® Y n+l

3

1
and since X . - X = 6(u™1)  the inequality (29) is established.

This completes the proof of the theorem.

BUEP <o
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§2 Other Boundary Value Problems

1. Boundary Value Problems of a More General Type. In §1 we considered

a problem with the boundary conditions (2) . Using the results for this
problem it is possible to consider more general boundary conditions. The
corresponding constructions are analogous to those which were performed
in detail in [13, §13] for the case Re Ai<:o and in [23] for the con-
ditionally stable case. Therefore we confine ~urcelves to a brief
description of the constructive scheme.

Suppose that the boundary conditions for system (1) are of the form

R(X(O,u) ’ X(l,u‘ )

= R(Z(Osu)s y(O,u), U(O,u), Z(l,u), Y(lsu), u(l’U)) =0, (38)

in which the dimension of the vector R is equal to k+2 , the dimension

of x . We consider as an auxiliary problem the boundary value problem

(1), (2) with as yet arbitrary values of zo, zl and uo . We propose

to select zo, zl and u’ so that the solution of the problem (1), (2)
satisfies the condition in (38) . This device was used in [13, §13] .
Let us seek z0 R zl and uO in the form of power series in y

for example,

2% =204 204+ %0 4
=2t Bzt ez, b

Under Conditions I - V we can construct an asymptotic expansion of the
solution and substitute it into equation (38) . By further decomposing
R(x(0,u), x(1,u)) into a power series in | we obtain equations for the

o i
terms in the series for 27, zl and u0 . Thus, in the zeroth :
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approximation, we have the equation (for simplicity of notation we omit

the lower index O , that is, we write zo in place of zo for example)

0o
R(zo,“oy(o), °, 2t Qv (0), 'Go(l) + Qu{0)) =0 . (39)
We note that ﬂoy(o) as defined by formula (11) for "Oz = zO is
a function of zO and «a(0) . In turn o0} is defined by equation (13)
as & function of zO and uo . Thus Woy(o) is a known function of zo

ana o . Similarly,'ﬁo(l) is a known function of z° and u® , while

Qou(o) and Qoy(o) are defined by the formulas (23) and (24) for Q2 = zl.

Hence it follows that Qou(O) and Qoy(O) are known functions of

zl, zo and uo . This dependence on zo and uo results from the fact

that 'Eb(l) enters into equations (23) and (24). Thus the equation (39)

is a (k+2)-dimensional vector equation in the (k+2) unknowns: zo, zl

and k components of the vector uo . If the equation (39) has a solu-

tion zO = zg ’ z1 = zl and uo = uo and if the corresponding functional

0 0
1 0

determinant D(R)/D(zo,zl,uo) is not zero at the point (zg » Zg > Ug) s

then each of the succeeding equations can be solved for z? ’ zi ’

ug (i = 1,2,...) . Moreover, for sufficiently small values of u there

1l 0

O,uo) a unique point

exists in a certain &-tube of the point (zg, z

(zo(u), zl(u) , uo(u)) such that the solution of the equation (1) and the

boundary condition

2(0,u) = 20() 5 2(L,p) = 2 (k) ,» uw(0w) = wO(n) (40)
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satisfies the boundary condition (38). The formally constructed series

1 0] 0
+RZOH eee, UgE pUy 4+ e

0
4 UZS 4 ceay 2 1

0
z 1

0 0

are asymptotic series for zo(u) s zl(u) and uo(u) , while the asymptotic
expansion of the solution of the problem (1), (40) serves as an asymptotic
expansion for the basic problem (1), (38). The proofs of these assertions

can be given without difficulty by using the methods in [13, §13] .

2. A Class of Bcundary Value Problems Reducible to a Type Already

Considered. Suppose that a singularly perturbed systém has the form

“2% = F(u,t) , % = C(u,t)y + D(u,t) , (b1)

where y 1s a scalar and u a vector, and suppose that a certain boundary
value problem is posed for the system (4L1) . For definiteness we will con-

sider the following boundary conditions
o 1
u(O,p) = u , y(lu) =y . (42)

(It is of course possible to consider other types.) The peculiar thing

about the system (41l) is that the function F does not depend on y ,

and therefore the usual algorithm for the construction of the asymptotic

solution of a singularly perturbed problem is inapplicable here. This

follows because for p = O the equation F(u,t) = O cannot %e solved for .
¥y . One way of circumventing this difficuliy is the following. We

differentiate the first equation in (41) and use the second equation to

obtain




1.
}

F
. 111 :
2 4° '
d .
. wo =% =F (u,t)[C(u,t)y + D(u,t)] + F(u,t) |
dt |
.. = A(u,t)y + B(u,t) . 1
If we now introduce the new variable 2z =;;%% , then we are led to the
system
{
d e}
IJ-E% = A(“,t)Y+ B(u’t): U'E% =2z , ‘
du _ t (L‘x
3t - C(u,t)y + D(u,t) . 3
It is necessary to prescribe for the system (43) another condition besides
the boundary conditions (4L2), since as a result of differentiation the
order of the system has increased by one. This condition is obtained frem
the first equation in (41) by setting t = O :
) 0
Flu’,0
2(0,u) = -J—'I‘—l .
Thus the boundary conditions for system (43) have a singularity as
p = 0. However, it is possible to remove this singularity (cf. Chapter 2, *
§4, Subsection 1) by introducing the new variables % = pz , ¥ = uy . For
these new var:ables we have |
|
- < |
dz ~ 4 .
‘d—t’ = A(u,t)y+ u.B(u,t), u,a% =Z , ();h) |
du ~
. b3t = C(u,t)¥ + uD(u,t) , !
which coincides with (1) except for notation. The boundary conditions for ‘
Eal
; : the new variables are now regular in p , and so we can use the method
' described in Subsection 1 for the construction of the asymptotic expansion (

»

of the solution. 1
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We note that the passage from system (4l) to system (4L} is not the
only one which allows the construction of the asymptotic expansion. It
is possible to apply to the original problem (41), (L2) a certain modi-
fied algorithm for the construction of the expansion in the form of a
regular part and a boundary part. For simplicity let us consider the case
when both y and u are scalar functions. We seek a solution of the

problem (41), (42) in the following form

y(t,u) =.;O(t) + u?i(t) + oe.. * u-lﬂ_ly(fo) + Woy(fo) 4o 4
Qev(Ty) + way(r) + .o
u(t,y) = ;O(t) + u-El(t) oo Tou(ry) + uﬂlu('ro) o+

Qou('rl) + quu(fl) 4 e

Then for ;o(t) and Eo(t) we obtain the system

_ du,
0= Fluy,t), 5

t = C(Eost)}o"’ D(ant) . ("‘5)

Suppose that ¢(t) =‘Eb(t) is a certain root of the first equation in
(k5). Substituting it into the second equation gives ;0 :

= _ @' (t) -D(o(t),t
Yo = T c(e(t),t)

Thus the leading term of the regular part of the asymptotic expansion is

determined in a rather unusual way. For ﬂ_ly(to) and "ou(fo) we

obtain the system

o
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dﬂly d"ou
—_ _ = m
I F(o(0) + Wou,o) , ar_ C(ew(0) + Wou,o) Y (L6
together with the supplementary conditions
0]
Tlrou(o) = u = @(O) ’ ﬂ_ly(c) = O 3 ﬁou(m) = o . ()"7

If Fu(w(o),O) C(w(0),0) > 0 (In order to obtain an asymptotic expansian

of the desired form it is natural to require that Fu(m(t),t)c(m(t\,t) > 0y

such a condition appears in the first approach considered for the system
(41)), then the rest point MY =Tyu=0 of system (L6) will be con-
ditionally stable. The stability separatrix for AP is described bty
the equation

o4 1/2
F(w(0) + F,0
ﬂ—ly = -(2 f Eﬁ;xay:‘gf6% dF) sgnC(w(O),O)sgnWOu
0

. 0 . . .
By substituting "ou(o) = u = (0) into the right-hand side we

_obtain the initial value ﬂ_ly(o) . The solution of system (L46) with

these initial values satisfies each of the conditions in (47) and an
exponential estimate.

The function Qou(fl) is found to be identically zero !This is
quite natural since the function u is not given at the point t =1 .),

while for Qoy(fl) and Qlu(Tl) we obtain the linear system

d dQ,u
—;’11 = P (o(1),1)epu , ‘EQflT = ¢lal1), 155y 4

along with the supplementary conditions

Q{0 = ¥* - Ty(1) , q(-=) =0, qul-=) = 0. (49)

)

)

’

-'”,,.o .-

T e
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1

Since Fu(w(l),l) C(w(1),1) > O the characteristic equation for system (L8
has roots A = i,/F C of opposite signs, and the solution satisfying ths
i,2 u ?

conditions in (49) has the form

(Tt = (7' - T (W)exprry)

(yl-?o(l) 12

Qlu('l’l) = W exp()\fl), for A = /FuC .

One can now construct the succeeding terms of the asymptotic expansion

in a similar manner.

3. Boundary Value Problems for a Weakly Nonlinear Equation. 1In

Chapter 1 we considered the initial value problem for the weakly nonlinear

equation

pEE = A(t)x + pf(x,t,8) (0L LT

under the assumption that the matrix A(t) had the eigenvalue A(t) = O
of multiplicity k and that the remaining eigenvalues )\i(t) satisfied
Re ) j_('c.) <0 . If now in addition to the zero eigenvalue of multiplicity

1

and m, eigenvalues xi(t) such that Reki(t)>0 (with k+ m, + m2=m) ,

then we would like to obtain the same qualitative results as in Chapter 1.

k the matrix A(t) has m, eigenvalues ki(t) such that Reli(t)<o

In other words, we want to determine which solution of the reduced
equation A(t)X = O is the limit as u ~ O of the solution x(t,p)
To achieve this it is necessary to consider in place of an initial value

prodblem a boundary value problem in which at least my components of

L R R RS AT T
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x are prescribed at t = O and at least m, components are prescrited at
t =T . The asymptotic expansion of the solution will have the form (3),
but the terms of the expaﬁsion are determined using certain modifications
in the construction procedure which are analogous to those employed in
Chapter 1. The details are given in [16]), where a similar boundary value

problem for a weakly nonlinear system of difference equations is considered.

§3 Applications

1. A Problem from the Theory of Transistors. We first make some

explanatory remarks of a physical nature. Consider a contact (w= 0
between two semiconductors of different tyvpes, leading to a one-dimensional
problem. To the left of the contact (-L.S w < 0) we place a semiconductcr
of p-type, while to the right (0 < w < 1) a semiconductor of n-type,
that is,a (p-n) junction. Such a semiconductor scheme can be described

by a system of equations, consisting of Poisson's equation

3E

R VR
3w = e(P-n+ Ny -N,) (50)

(Here E 4is the polar electric voltage, D, n, N; and N; are the
respective concentrations of holes, electrons, donors and acceptors, g
is the electron charge, and € 1is the dielectric permeability.) and

the equations for the holes (ip) and “he electron current (in)

451

1 = quEP - qD
p - W - P
(51)

an
in = qunEn + an v .
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(Here up, W, are the mobilities of holes and electrons, respectively, and
Dp’ Dr are the diffusion coefficients of holes and electrons.)

It is known that up/Dp = un/bn = q/KT , where k 4is Boltzmann's
constant and T is the temperature. We will assume that the problem is
stationary in time and that there are no externally generated sources. Then
from the continuity equation it follows that ip and in are constant.

We will consider the following special case, namely, to the left of the
+

= 0 , while to the right N; = 0, ND = N . Let us now

- +
contact NA = N,ND

introduce the dimensionless variables

t = w/t, ¥ = Etq/kT, v, = p/N, v, = n/N ,

2 2
Cys inL/Nan SChp u = ekT/quL

i4/ND
P /hq p
Then the system (50) - (51) can be written in dimensionless form as

u2 & _ v, - v+ N(t) ,

dv _ dv2 i} . (52)

-1, 1<t <0
where N(t) = , and y 1is a small quantity of order
1, 0<t<1

102,
It is possible to consider various kinds of boundary conditions for

the system (52). We restrict ourselves here to one of the simplest,

known as the symmetric case, in which ¢y =cy= ¢ is a given constant,
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and so the boundary conditions are given separately for the intervals

(-1,0] and [0,1] ; namely,

Vl('l) =1, Ve('l) =0, Vl(o) = V2(O) s (53!
and

v (0) = v (0) , v(1) =0, v (1) =1 . (5L

In the present case the problem (52), (53) reduces to the problem (52), (=L

under the changes of variables t -~ -t , vy TV, and v,V Therefors

it suffices to consider only one of these problems. We will consider the

system
5 a5
“%%”’1"’2*1 ’
av, av, (0t <] (55)
at - YT Tgg TVYP e

along with the conditions in (5k) .
By introducing the new variables u, =v. + v, , u.=v, ~ v

obtain the system

24§ _
et tls

(56)
du1 du

= u _— o T -
at - Y¥ @ T WY -,
which is clearly of the same type as (41) since the right-hand side of the
first equation does not contain ¥ . Proceeding as in Subsection 2 of

§2 , that is, differentiating the first equation and introducing the new

variables
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we obtain the system

4z _ . dy _
u'dt"uly Quc,udt—za

du1 du,
Wgg = Up¥ o BTgp T WY - &c

(571

This system is of the type studied in §1 , where the dimension of the
vector u is now two. The boundary conditions (54) in the new variables

have the form
u2(O) =0, ul(l) =1, u2(l) =-1 . (s8)

In addition, it is necessary to supply a further condition, which is

obtained from the first equation (56) in the two forms

z(0) =1, (59)

and

z(1) (60)

"
o

It is easy to see that of the five conditions (58), (59) and (60) we

need only conslder the four
z(0) = 1 s z(1) =0, ul(l) =1, ua(l) = -1, (61)

since the condition u2(0) = 0 is automatically satisfied. Indeed, from
the first and last equations in (57) it follows that dz/dt = duz/dt 3
whence, noting the boundary conditions z(1) = O, ua(l) = -1 , we obtain
that z = u_ + 1 . Hence, by virtue of the condition 2z(0) = 1 it

2
follows that ue(o) =0 .,




N
—— 3 S —— * S

Thus we have a boundary value problem (57), (61) which is of the sam-

type as the problem (1), (2) in §1 , the only exception being that the

f
]

becundary condition for u is given at t = 1 rather than at ¢ C
Iet us now construct the asymptotic expansion of the solution as in

§1 . We have first that

ZO=O,;O=O,_111=01(1’,),32=02(t) ,

where Qi and @, are as yet arbitrary functions. Since u 1is prescrite:

2

at t = 1 we consider first the system of equations for Qox(fl‘

(11 = (t-1)/u) (Note that the roles of Tx and Qx in the present

problem are interchanged relative to §1 .)

dQOz dQOY
ar (o (1) + Qgu))Qyy ar, © W
(62)
dqQ.u dqQ.u
01l _ 02 _
3, " (@, (1) + quu)ey » —d'l = (q(1) + qu))ey -
The supplementary conditions for Qox are
Qoz(o) =0 ’ Qoul(o) =1 - Ql(l) » QOuQ(O) = -1 - ae(l) ’
(63)

Qox(-w) =0 .

Let us construct the manifold Ql for the system (62). We obtain
from (62) the equations

onul 02(1)+ Q0u2 dQO“a
Qe "My R 1 .

s - -

N VT - W i W R S e e .
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The solution of this system and the initial condition Qou = 0 for Qoz =0

is

2 2 M2
Qg = - (1) + (senay(1) (o5(1) + 2a,(1)Qz+ Qa) (64)

Equation (64) is analogous to equation (9) of §1 , while the equation

( 0 ?oz e ae 1/2 )
QY = (senc 1)) (2 =) sgn(Q.z) (65)
! o (6514 2 (1)es e2) /2 0

is analogous to equation (11). The equations (64) and (65) provi.de an
analytic representation of the manifold Ql .
By substituting the boundary values (63) into (6L4) we obtain equations

for al(l) and az(l) , that is, 1 - ai(l) =0, -1- 02(1) = 0 . Hence

al(l) =1, 02(1) -1, (66)

and the function Qox('rl) is easily seen to be identically zero in the
present case.
The system of equations for al( t) and a,)(t) is obtained in the usual
[ =4

way and has the form (cf. (15) in §1)

da.l dox

- —2 _
Xy, =0

The solution of this system and the supplementary conditions (66) is

(1) = (1+be@-0) Y2, a(t) = -1 .
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We have for ﬂox(fo) the system
an .z an
o” | T,
ar ” (o (0) + Mgu )Ty ar, ” To?
) (67
dr_u anm_u
01 _ _02_ T o T
o (=14 U)oy ar, (o) (0) + Touy )Moy
1/2 cy s
(for al(O) = (1+ ko) ) and the supplementary conditions
m2(0) = 1, Mx(®) = 0
The manifold €, for (67) is represented by
1/2
1/2 2
ﬂoul = -(1+kc) + (l+hc-2ﬁoz+ Woz) ,
ﬂoue = ﬂoz ’ (68)
T2 1/2
0 £ d€
mTy= -(2‘r = ) sgn(7.z) .
o’ (l+hc-2§+g2)L/2 0

0

It is necessary now to substitute the last equation of (68) into the
first equation of (67) and to solve the resulting differential equation
for WOZ(TO) together with the initial condition ﬂoz(O) = 1 . After this
the rest of the function ﬁox(fo) is determined from (68) .

The construction of the succeeding terms of the asymptotic expansion
can be executed as in §1.

A comparison with experiments shows that that the application of the
asymptotic method under consideration is suitable already in the zeroth
approximation with a high degree of accuracy in processes involving tran-

sistors. A more detailed physical analysis of the mathematical results

is given in [14] .

2
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' 2. Some Control Problems. Certain problems in control theory appear

as singularly perturbed boundary value problems of the critical condition-
b - - ally stable type. As an example, consider the linear problem of Mayer-
‘;

Bolza [22)

ug_: = A (t)z + A (t)y + B (t)u,

= ay(0)z + A (D)y + By(tu

]

z(0,u) = 2° » y(O,u) = yo ’
1
min{d*X(l,u) + %j’o [x*(t,u)F(t)X(t,u) + u*(t,u)R(t)u(t,u) Jat} .

Here z and y are M- and m-dimensional phase vectors, respectively,
u 1is the control, x denotes 2z and y taken together, *denotes transpose,
and F(t) , R(t) are symmetric matrices.

. Suppose that no supplementary conditions involving bounds on the
control are imposed. Then the problem becomes‘a classical problem in
the calculus of variations. By applying the method of Lagrange multipliers,
we can reduce the problem to the following one for the auxiliary Lagrangean
vector functions Al(t,p) and A2(t,u) of dimension M and m , respec-

tively, namely

dz -1 % -1 *
u-&- = Auz + BlR lBlAl + A12y + BlR ]‘132&2 ,

» a
—i-F z-*k +F -A*A
bge = FpyZ = Apghy + Fio¥ - Ak,

J: . S T e e
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4y _

- +* - »*
at = A%t BR 151"1 + Ay + BR 52*2 ]

P2, W A
at = Fo12 - Ayt Foo¥ - At

0 0
2(0,u) =z~ , M (L,m) = -dl/u » ¥(0,m) =y, A (1,0) = -4,

Here we have denoted by Fij and di the appropriate blocks of the matrix
F and the vector 4 .
Thus we obtain a problem with a singular boundary condition at t = 1.

By changing variables as in Subsection 2 of §2 we are led to a problem
having nonsingular boundary conditions and a corresponding matrix with
zero eigenvalues. In order to apply our asymptotic methods, it is neces-
sary to assume that the matrix

- *
BB,

»

Fpo ~ Ay

has M eigenvalues with negative real parts. Then we obtain a con-

A

ditionally stable system in the critical case.

Similar kinds of systems occur in other, more complicated problems

of optimal control (cf., for example, (1}) .




§4 The Case of an Incomplete Set of Eigenvectors

In Chapter 1 we showed for the system of two linear equations (38)
that {f the number of eigenvectors cofresponding to X = 0 is less than
the multiplicity of this eigenvalue, then in order to obtain a solution
bounded as p = 0 we must pose, in general, a boundary value problem.
Moreover, the asymptotic expansion of the solution will contain fractional
powers of u.

We now consider this question for a certain nonlinear system.

1. A System of Two Nonlinear Equations. Let us consider the system

dz
13 at = Fl(z,)') + P-fl(z,y,t),

0<t<l (69)
d - -
b5 = Fy(z,y) + b, (2,5,0),
where the functions Fi(z,y) and fi(z,y) (i=1,2) are sufficiently smooth
for z in (zl,zz), y in (yl,yz) and t in [0,1].

Suppose that the equation Fl(z,y) = 0 has a root y = 9(z) in (yl,yz)
for z in (zl,zz) such that Fly(z,¢(z)) ¢ 0, and also that Fz(z,w(z)) =0
for z in (;1,22). Then the reduced system corresponding to (69) has

the family of solutions

(52-C ) e

and

F, . (z,9(2)) Fly(z,v(z))
det F_ = =0 (71)
F,,(2,9(2)) Fzy(z.cp(z))




+
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for z in (zl,zz). In addition, we assume that

P (2.00) + Fy (2,0(2)) =0 in (z),2)). (72)

It follows from (71) and (72) that the matrix Fx has a zero eigenvalue
of multiplicity two (Xl = 12 = 0) to which corresponds the single eigen-

1
vector (¢,(a)).
Let us introduce new variables z and w = Fl(z,y) in (69), and
note that in a neighborhood of y = ¢(2) we can define a function

y = Y(z,w) for which Y(z,0) = @(z). Then the system (69) becomes

4] 'dd—: =w+ uf(zﬂ".t):

(713)

: d
B E% = A(z,w)w + pg(z,w,t),

P
where £(z,u,t) = £, (2,¥(z,),t), A(z,0) = (F), + F) é) (z,¥(z,w)), and

! g(z,w,t) = (Flzfl + Flyfz)(z,Y(z,w),t). We have that
RAS F,,(2Y)  F, (2,9(2)

L e R GD " Mo F @D T F EeE)

and so
A(z,0) = Flz(z,v(z)) + Fzy(z,¢(z)) = 0

by virtue of (72). Thus, the order of A(z,w) as w—0 is at least w

} 5 . . and we can write (73) in the form

d
B ‘d—: = w + pf(z,w,t),

b e =BG,V + pg(zw,0),




where B(z,0) is bounded for =z 1in (zl,zz).

Setting w = Vi v we obtain

——r

.g_%=v+fuf(2./u v,t), 1

(74)

/B % = sz(Z.fu v) + g(z,/u v,t),

whose reduced system is

v= 0

g(z,0,t) = 0.

We assume that the second of these equations has a root z= ;(t)

in (zl,zz) and that gz(;,o,t) >0 for t in [0,1]. The characteristic
equation corresponding to
-A 1

8, (2,0,t) A

defines a pair of characteristic values with opposite signs, namely

A g =t g, G002,

Thus the system (74) is of conditionally stable type with small parameter

/B, to which we can apply the theory developed in [13, Sec. 14].

We consider now various supplementary conditions for the system *

69).




1°. Llet us first prescribe the initial conditions

2(0,p) = 2%, y(0,p) = y°, (75)

which can be written in terms of the variables z, v as ‘

o Fl(z°.y°)
z(0,p) =27, v(0,p) = ——

/b
Then, in general, the solution of this initial value problem for the
conditionally stable system (74) is unbounded as p - 0. (This
phenomenon occurs even if the term 1//s 1s absent from the expression
for v(0,u).)

2°. Let us now prescribe the boundary conditions

z(0,u) = zo’ y(l,u) = ylv (76)

which'we write as
~ 2(0,p) = 2°, /b v(Q,p) = Fl(z(l.u).yl),

in the variables z and v. This boundary value problem, in principle,
admits a solution bounded as p = 0, and its asymptotic expansion, which
features right and left boundary layers, consists of powers of /u. The
question of the existence of such a solution is investigated by the
method in [13, Sec. 13] (cf. also [23] and §2 of this chapter).

These remarks also apply to the more general boundary conditions

R(z(0,u), z(1,w), y(O,u), y(1,)) = 0.

. As an illustration of the theory consider the system




dz _ dy . . 2 _ +
bge=vt oz, p at (z+y) (z+y) + u(l+t),

which can be written as (cf. (74))

___dz_ ___d“__z + t.
./pl—v+ﬂz,/p.|—v+z+l t

The solution of this system satisfying the boundary conditions (76) has

the following asymptotic representation valid to order 6(/R):
2‘=+noz+0°2a )"Y"'no)"”oo)'-

Here z = -y = -(1+t) and Hoz = —Hoy, Q2 = -QqY -are found by

quadratures from

d 1 1,1/2
-d-;r; Hozi= -sgn HOZ(E exp[-znoz] + ﬂoz - 5) ,
0 .
noz(o) =z +1, T = t/J/o;
I P R 1,172
‘"1 Qoz sgn Qoz(2 exp[ ZQoz] + Qoz - 2) ,

-

1

0z (0) =2 -y, T, = (1-t)/h.

2. A Problem Arising in the Theory of Singular Optimal Control. ([This

problem has been investigated by M. G. Dimitriev.] Suppose that it is

required to minimize the functional

3 = 9(x, (1)) an

along trajectories of the system of two equations

o




dx,
de = f0%0,

dx

Tt - fz(x t) + f3(x2,t)u, (78)

1'*2°

xl(O) = xz, x2(0) = xg.
There is no bound on the control u of the type involving a closure
inequality. Now this problem need not have a solution in the class of
continuous functions u and so there is the question of the construction
of a generalized solution of the problem (77), (78).

To this end we introduce a regularized problem, that is, in place of

the functional (77) we consider the functional

B 12
AL CCRDES SRS

If we then introduce conjugate variables (Lagrange multipliers), we can
reduce this problem, as in Section 3 of the present chapter, to a
system of differential equations with boundary conditions, namely

dx,
F = fl (xl ’xz ’t) »

dx2 2
Crrale ufz(xl,xz,t) + fy(x :t)ﬁz» (80)

ay,
T '(f1x1*1 + fle'z)'

~




-

M e £ 4,) - £, £.¢
u——g-u * + - '.
lxz 1 2x2 2 3Ix, 372

dt 2
xl(O,u) = x:, xz(O,M) = x;,

(81) ' \
LW = g (L), H (LW = 0.

The right-hand sides of the equations for the fast variables X,

and '2 have the same properties as in the system (69). (The presence

of the slow variables x1

of Chapter 2.) In fact, if we assume that f3(x2,t) 4 0, then setting

and #1 offers no complication; cf. Section 5

p = 0 in the second and the fourth equations of (80) we obfain *2 = 0,
wvhile xz remains undetermined. The determinant (71) here has the

form

and consequently, 11 = 12 = 0; thus condition (72) holds.

The change of variable described in Subsection 1, having the form
ve= fgtzlJQ’ leads to a problem in which the characteristic values are
again equal to zero. However, by using the change of variable

V) f312//b we obtain in place of (80), (81) the following problem




dx dy f
O 1. . - 2x
a ~“fr 3 flx ¥y - B LV,
1 £5
dx,
Ju T - Vis £, + £, (82)
£, +f
2 3x 3t
dy _ _—2 " . -
s f"( £ )" f1x 539
£, X2 2

o
x, (0,8) = x7, x,(0,b) = x,,

(83)
'l(lau‘) = -¢x1(x1(11u’)), V(ls“) = 0.
This problem is conditionally stable if we assume that
flxzxz(XIO'xzo’t)*lo < 0. (84)

An investigation of this problem by the methods discussed in
Subsection 1 reveals that the leading term of the asymptotic expansion

for xz(t,u) has a boundary layer at the left endpoint. The asymptotic

expansion of the control u(t,p) to order &(/i) is found from the formula

u = v//, once we have found the expansion of v to order &(p). After

the corresponding calculations have been made, we find that to order

6(/B) the control u(t,u) has the form

ndv(Tb)

u(t,p) = + ;1“) + Mv(Ty) +Qv(T), (85)

while the optimal trajectory is

PR Srvin 1 NG A U S

B B o




X (E,8) = X0 (), %, (t,0) = X0 (8) + Tpx, (7). (86)

From the relation (85) it follows that the leading term of the asymptotic
expansion as p = C has the character of a 6-function.

Remarks. 1. Using singular perturbation theory, we can define a
class of singular functions in which the problem (77), (78) 1is
solvable.

2, The method discussed above can be applied in the vector case.

2

(k X k)-matrix, then the problem of zero characteristic values can be

For example, if u and x, are k-dimensional vectors and f3 a

*
eliminated by means of the change of variable v = f3i2/Jﬁ.
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Chapter &4

- - Singularly Perturbed
Integro-differential Equations

in the Critical Case

§1 Statement of the Problem and Auxiliary Results

l. Statement of the Problem. The results of Chapter 1 can be extended in

a natural way to cases where A(t) is no longer a matrix, but rather a

more complex linear operator. In this chapter such a generalization is

made in the following direction: x is assumed to be a scalar function

of two variables t and s as well as of the parameter u , while A

is assumed to be an integral operator, integration being with respect to s .
(Analogous problems in a more abstract form are considered in ([28].)

Thus, we consider the equation

b
ufﬁiﬁz§lﬁl= -[x(t,s,u) - I K(s,0)x(t,0,u)do |

ot a
(1)
+ pfx,t,s,u)(0<t<T,a<s<b),
which can be written in the simple form
X = '
w3g = Ax+uf = - [x-Bx]+ uf, (1)
. and we prescribe the initial condition
0
x(0,8,u) = x (s) . (2)
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Let us assume that A =1 is an eigenvalue of the operator & .
the operator A has the eigenvalue A\ = 0 , and so the reduced equaii =
Ax =0 has a family of solutions which depends on one or more arbitrary
functions of t . The same questions arise here as in the previcus
chapters: To which member of this family does the solution of the protlex
(1), (2) converge as w = 7, that is, how do we determine the function
t 1in the family of solutions for the reduced equafion which providers th-
limiting solution of (1), (2)? What does the asymptotic expansicn of the
solution of this problem with respect to u look like?

Suppose that the following conditions are satisfied:

I. K(s,0) 1is continuous in the square R = {a<s<b, a<oc <b},
f(x,t,s,u) 1is continuous with respect to s and sufficiently smooth
with respect to x,t and p in a domain D(x,t,s,u) = D(x,t,s) x [O,uo} ,
where D(x,t,s) is some domain in the space of the variables (x,t,s),
and xo(s) is continuous for a < s <b .

II. The kernel K(s,o) is symmetric, that is, K(s,0) = K(o,s)
in R .

III. The eigenvalues of ihe operator B are such that

x1=coo=xk=l,xi<l fO!‘ i=k+l’ s

The corresponding set of eigenfunctions {mi(s)} is assumed to be ortho- .

normal, that is,




b 1, i=9J,
‘rawi(S)coJ(s)ds =8,=

In what follows we will denote the scalar product of two functions u(s)

and v(s) by

b
(u,v) = {u(s),v(s)) = f u(s)v(s)ds .
a

2. An Auxiliary Lemma. Let us consider an equation of the form

y(1,s) b
2 a: 2= - [y(7,s) - f K(s,0)y(T,0)do] + g(v,s) (3)
a
(r>0,a<s<b)
or
’ Yoly-mylve (3)

together with the initial condition
0
y(0,s) = y'(s) . (4)

(As we will see below, this is an equation for a boundary function.)

We make the following assumptions:

1°, yo(s) is continuous for a <s <bd

20. The operator B satisfies Conditions I-III.
30. g(r,s) 1is continuous for >0 and a <s <b , and satisfies

the estimate |g(r,s)] < cexp(-xut) , where ¢ and k are positive con-

. stants.




We now pose the following questions: How does one choose yo(s) in
order that the solution of the problem (3), (4) will converge to zero as
¢~ ? Will this convergence be of exponential type, that is, do we
have an estimate of the same type as that for g in 30 ? The answers

to these questions are given by

Lemma 1. Suppose that Conditions l0 - 30 are satisfied, and that

the function yo(s) is such that

(-]
(yo(s), “i(s)) = - fo(g(f,s), wi(s)BdT (i=1,...k). (5)
Then the solution y(T,s) of the problem (3), (4) exists and is continuous
for £ >0 and a <s <b, and converges to zero as T = uniformly ror

s in ([a,b] ; moreover,
|y(7,s)| < cexp(-nt) . (6)

(We note, as ir previous chapters, that the constants ¢ and x in
various estimates of the type (6) are not generally the same, despite

the fact that they are denoted by the same letters.)

Proof. It is not difficult to prove the existence and the continuity
of the solution in the stated domain if we pass from (3), (4) to the inte-
gral equation

T
y(r,8) = y%(s)exp(-7) + J'o exp(-(r-6)) x

(m

b
X [I K(s,0)y(9,0)do + g(0,s) )de
a
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and apply the method of successive approximations. For this to succeed we

require only the continuity of yo(s), K(s,0) and g(t,s) , and the

boundedness of g(T,s) .

Let us then establish the estimate (6) . We set

Y(7’s) = 51(7’5) + 52(7’5) ’
where
k
8,(7,s) =i£1 8,;(Nw,(s), &, (%) = (y(7,.), o, (s))
Hence, it follows that

(8,(7,5), 9,(s)) =0, (Bo,,0) =0 (i=1,...,k

Substituting (8) into (3') we obtain

®, B,

R I PR T AR
and since 52 - 382 = 0, that

¥, P

1, %P2 )

axt - By -B e

After taking the scalar product of (10) with cpi(s) (i=1

using (9) we obtain

as
—Egi = (g,q&) (1 =1,...,k)

By virtue of (5)

521(0) = <yo,¢i = - IO (g,oi)d‘l’ ’

(8)

(9)

(10)

,o++,k) and

(11)




and therefore it follows from (1l1) that

@ T ©®
- = . "
8,0 (1) = - f (g,0) 17 + [ (gyoar = - [ (g,0)ar .
0] 0 T
In view of Condition 3o we have that 521(1) , and consequently, 52(1‘,3\
satisfy an exponential estimate, namely
|521(1')[ < cexp(-uT) , |52(1',s)l < c exp(-uT)
(1g;
(r>0, a<s<b) .
From (10) we obtain now for 8, the equation
as1
3¢ = - (8 - B8]+ g (13)
where
k d82:L k
g,=€8- L —=¢, =g -T (8,0)0, 5 |&| < cexp(-ur)
1 o 9T 1 oy % R
Taking the scalar product of (13) with 28, , we obtain -
d
(- -]
By the Hilbert-Schmidt Theorem B8, = T A, <&., . > v, , Where
1 i=1 i 1’ Vi i
the summation begins with i = k+ 1 because of (9). Hence,
® 2
(8,,B8.) = T A, (B, ,0,) . (15)
1’1 =kl i1’ .

8ince Ai <1l for 1=k+1,... and since A =1 is not a limit point of
the spectrum of B , there exists a positive constant X < 1 such that

Aisf for { = k+1,... . Further, Bessel's inequality




-]
2
T (Sl,coi> < (51,51> implies that
i=k+l
(81,88, <A (8,,8)) 3
80

(8,,8,) - (8,,B5,) > (1)) (sl,al> >

where A <1.
let us rewrite equation (14) as
d
d—1,(81,51) = ‘2D(‘\')<51,61> + 2(51’8].) )

where
- <613B61)

>1-%X>0.

Dividing by 2( 51,51> 1/2

{5.,8,)
a 1/2 1/2 1’51
—(d' al,al) = -n(q)(sl,al) + ————7-(61’51)1 s

and integrating, we obtain

T
(81,82 = (5,(0,5) ,5,(0,8)>™ exp(-] D(0)a0) +
0

T T - ]/2
f ol .ren(e)de)<al’gl>(6l’5l) a6 .

By virtue of Cauchy's inequality and Condition 3o

(61,61)1/2 < cexp(-nr) (*> 0, a <s<b)

(16)

(17)

(18)

(19)

. -‘.,




In order to obtain a similar estimate for 61 itself, we note that '

from (13) 61(1',s) can be represented by
| b
8,(7,s) = 8,(0,s)exp(-1) + j‘o exp(-(‘r-e))[‘fa K(s,0) x

X 51(9,o)da + gl(e,s) ]de

So

|8,(1,)] < cexp(-x7) (120, a<s<D)
follows since
> 1/2 1/2
|f x(s,o)al(e,s)dal < (KK (8,807 < cexp(-x8)
a

Thus, from (8) and (12) we finally have the estimate

|¥(tys)| < cexp(-nr) (>0, a<s<H) .

This concludes the proof of Lemma 1.

§2 Construction of the Asymptotic Expansion

1. An Algorithm for the Construction of the Expansion. The asymptotic

expansion of the solution of problem (1), (2) in the parameter u is

sought in the usual form

x(t,s,u) = ;(t,s,u) + Tx(x,s,u)

(20)
= ;o(t,s) + u;l(t,s) + e+ un;n(t,s)-r cee #
+ ﬂox(f,s) + uﬂlx(‘l‘,s) + cee + pnﬂnx(‘r,s) + e .

(v =t/ . 4




By substituting (20) into (3), (4) and equating coefficients of like
powers of pu , separately for coefficients depending on (t,s) and those
depending on (T,s) , we obtain equations and supplementary conditions
for the determination of Ei(t,s) and T.x(r,s) . By substituting (20)
into the nonlinear function f(x,t,s,u) we can express f as f + Tf ,
Just as in previous chapters.

We obtain first the equation

b
Xo(tss) = j‘a K(s,0)x,(t,0)do -
Bu virtue of Condition III its general solution is
_ k
xo(t,s) = .2 ai(t)cpi(s) s (21)
i=1
where the ai(t) are as yet arbitrary functionms.

The equation and the initial condition for Trxo(T,s) are

arr x(,s) D
— =" [Tl'ox(-r,s) - .ra K(s,o)"OX('I',U)dO] s

k
m x(0,8) = xo(s) - x.(0,8) = xo(s) - €T a(0olls) .
0 0 i i
i=0
In addition, as is our custom, we impose the restriction that
ﬂox(f,s) -0 as T~» . (22)

Thus we have for TTOx(‘r,s) a problem of the type considered in Subsection 2

of §1 for the case g(v,s) = 0. By virtue of Lemma 1, Trox(-r,s) satisfies

the condition in (22), and moreover, the inequality




~ -

ITTOx('r,s)l < cexp(-ut) (fr>0, a<s<b), Z3

provided the initial value TTox(O,s) satisfies the condition in (5), that

is,
0 k
(x(s) - T a.(0)wp.(s),0,(s)) =0 (i=1,...,k). (21
j=1 J J 1
Hence,
a,(0) = xXs),0,(s)) (1= 1,0.%) . (21

As was the case in previous chapters, we now determine the functiocns

ai(t) completely by considering the equation for ;l(t,s) , hamely

3x(t,8) - o -
—— = - X (t,9) - ‘['a K(s,0)x, (t,0)do]

+ f(;o(t,s),t,s,o)
or

b
;l(t’s) = J‘a K(S,U);l(t,o)do =

(26)
k k  da, (t)
f( ifl ai(t)mi(s) ,t,S,O) = j:l —at Cpi(s) = W(t,S)

For the solvability of this inhomogeneous problem it is necessary and
sufficient that the right-hand side ¢(t,s) be orthogonal to each cpi(s)
({ =1,...,k) . This orthogonality condition is itself represented by a

system of differential equations for ai(t) , namely

hi k
d_t = <t(dfl aj(t)wd(s) ,t,s,O), ‘91(3)) (i = 1’”',k) . (27)
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IV. Suppose that the system (27) together with the initial conditions

(25) has the solutions a; = a,(t) for 0<t<T.

Thus the function ‘Eb(t,s) is determined completely by the formula (21},

and the construction of the zeroth term in the expansion is finished.
Let us now introduce in the space of the variables (x,t,s) a surface

L which consists of the two parts:
L = {(x,t,s): x = ;O(O,s) + TTOX(T,S)(TZ 0) 5 t =0, a<s<b} ,
Ly = {(x,t,8): x = ’io(t,s)-, 0<t<T; a<s <b}
It is natural to require that the following condition holds:

V. Suppcse that the surface L belongs to the domain D(x,t,s)

which appears in Condition I.

The general solution of equation (26) can be written as

k
Ei(t,s) = 121 Bi(t)¢&(5) + il(t,s) , (28)

where the si(t) are as yet arbitrary functions and il(t,s) is a
particular solution of (26) which, for example, has the form

o
%)(t,8) = 4(t,8) + T lﬁ—i ¥, (D)0, ()4, () = (¥(t,5) 0, (s))

i=lk+

The equation and the supplementary conditions for ﬂlx(f,s) are

aﬂlx(t,s) b
= - [ﬂlx(v,s) - f; K(S,O)"lx(7:°)d0] + g(1,s) ,

v =

ol S S S

ey




where

S(T,S) = TTo

f = f(?o(o,s) + Mx(1,5),0,s,0) - f(?o(o,s),o,s,m ,
Trlx(oss) = = ;l(oss) s

ﬂlx(T,s) -0 as T~ . (29)

By virtue of (23) the function g(r,s) satisfies the exponential estimate
lg(7,s)| < cexp(-ur) (T>0, a<s<b) . Thus the function TTlx('r,s) is
the solution of a problem of the type considered in Subsection 2 of §1 .
And by virtue of Lemma 1 it satisfies condition (29) and an exponential
estimate, provided that
o

( -;i(o,s),mi(s)) = -fo (g(f,s),q&(s) Far (i =1,...,k

By inserting here the expression (28) for ;i(o,s) , we obtain the values

Bi(O) 2 na'lnely

B,(0) = ,FO (a(1,8),0,(s)dar (i

1,...,k) .

Thus, "lx(f,s) is completely determincd, and we have found the initial
values Bi(O) . The functions ﬁi(t) are determined completely from a
solvability condition for the integral equation defining ';Q(t,s), in a
manner analogous to that for the determination of the functions ai(t)

It turns out that the Bi(t) satisfy the system of linear differential

equations
a8 k
d—ti = Jflbij(t)BJ(t) +1(8) (121,00, (30)

where bid(t) = (fx(EO(t,s),t,s,o)¢&(s),gh(s)5 and fl(t) is a known function.

S L T
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The determination of the remaining terms in the expansion proceeds
according to considerations analogous to those used for the determination
of ;i(t,s) and ﬂlx(f,s) . At the i-th step the expression for ‘;i(t,s)
contains k arbitrary functions (let us denote them by yi(t), i=1,...,k)
Now the problem for ﬂix(f,s) is analogous to the one for ﬁlx(f,s) s
while the values yi(O) are found from a condition like (5) . Finally,
we obtain a system of linear differential equations like (30) for Yi(t)
from a solvability condition in the equation for ';i+l(t,s) . It follows

also that each T™T-function satisfies an exponential estimate

|1rix(1',s)l < cexp(-us) (>0, a<s<b) .

2. An Estimate of the Remainder Term. Let us first make more pre-

cise the requirement involving the smoothness of f(x,t,s,u) (cf. I)
It is possible to take as the domain D(x,t,s) occurring in Condition I
an arbitrary ©&-tube of the surface L (cf. V) . We then require that
f£(x,t,s,u) have continuous partial derivatives up to order n+ 2 inclu-
sive with respect to x,t and gy in the domain D(x,t,s,u) = D(x,t,s,p)
x[O,uo] . We have determined the terms of the series (20) to order n+1
inclusive, and let us denote by Xk(t,s,u) the k-th partial sum of

(20), that is,
k 4 -
Xk(t,ssu) = € u (xi(t,s) + WiX(T,s)) .
i=0

Let us now introduce the norm of a function y(t,s,u) by Illy(t,s,n)ll=

sup{]y(t,s,u)|: 0<t<T, a<s<b) .




Theorem 4. Under Conditions I-V there exist positive constants ..

and c¢ such that for 0 <y < o the solution x(t,s,u) of the probler
(1), (2) exists in the domain {0 <t < T, a <s <b}, is unique and

satisfies the inequality

™l
Hx(t,s,u) - Xn(t,s,u)%l < cu

Proof. (Suggested by A. Kasanov.) Set E(t,s.u) = x(t,s,u) -Xml(t.s,_ :

Then by substituting x = X + F into (1), (2) we obtain for ¢ the pr .i-

1l
lem
14
u—a—€ = -[E-BE] + u.fx(t,s,u)f + G(F,t,S,u) s (31) [
£€(0,s,u) = 0 , (32)
where

fx(t,s,u,) = fx('fo(t,s) + "Ox('r,s),t,s,u.) and

G(E,t,s,u) = -[xn+l - me—l] + “'f(xml + Eyt,s,u)

ax_ . (t,s,u)
]l 27?
- ufx(t’s,u)r - u—___at__ .

As in the previous chapters, it is not difficult to show that

G(e,t,s,u) has the following two properties:

1. 116(0, 8,80l = 6(u™3) .




2. G(e,t,s,u) is a contraction operator with contraction coefficient
of order @(ue) for {|g| = 6(u) . This means that if !!El(t,s,u)"SCIu
and H§2(t,s,u.)|l < i then there are constants ¢, and uy < u, such

that for 0 < "’5"'0

2
“G(El’t)s:u) = G(Ee,t,S,u)” 5 COU- ”El - Fé] . (33)

See our remark in Subsection 3, §1 of Chapter 1 regarding the constant Ly -

let us now write (31) as
U§= G(.E’tss,u) ’ (31*)

where U 1is the operator defined by UE = u-g—% + [F-BE] - u.fxE .

We consider first the auxiliary linear problem
Uy = a(twsauv)’ y(O,SsU-) =0, (35)
where o(t,s,u) is a given continuous function.

Lemma 2. For each sufficiently small value of u(0 <y < p.o) the
solution y(t,s,u) of problem (35) exists in the domain {0<t < T ,

a <s <b}, is unique, continuous and satisfies the inequality

lyC,s,wll < M Ylalt,s,u)ll (36)

where the constant M > O is independent of .




Remark. The constant in this estimate, because of its importance for

later discussion, is denoted by M rather than by c .

The existence, uniqueness and continuity of y(t,s,u) can be

established without difficulty by passing from (35) to the integral equation

t t
yltsw) = [ exp(u™lf (14 ur )ao) BEOa0) 4 (37)
e

and applying the method of successive approximations.
Let us prove that the estimate (36) is valid. By taking the scalar

product of equation (35) with y we obtain the equation

%ua‘%w,w = (¥, ) + Hy,y) + uQ(y,y) + R(y,ﬁl/a , (38)
where
{y,By) (y,fxy§

= I et — =-ﬂa) .
P vy Q (v, 0 ° R (y’y\)172

We know already from an analogous situation that

@ «
(7,B9) = (¥, T A dy,0)0) = T A ly,0)°
i=1 i1 =1 1 i

< <Y9¢i>25 (Y:Y) ’
i=1

so P<1. Moreover, it is clear that
I <Nl ana IR < tail(b-2) /2 (39

Dividing (38) by (y,y)l“/2 we obtain
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; 1
[ ' u'dit <yaY>l/2 = (-1+ P+ uQ)(Y,ﬁ /2 +R ,
- . and so

t t
(y,y>l/2 =f exp(u'lj‘ (-1+ P+ uQ)as) -%ds
0 6

By virtue of the properties just noted P and Q are exponentially bounded,
and consequently, by taking account of the inequality in (39) for R , we

have the estimate
1l/2 -
Y2 < o Hial (10)
From the obvious inequality
t

exp(u-lf (-l4-ufx)d9)_§ exp(—u-lu(t-s)) s
e

(37) implies now that

Hy(t,s,u)ll < c(l'Byll + lladt) . (1)
Since

b
|By] = || K(s,0)y(t,0,mds] < (K,ml/‘?(y,y)l/‘?gﬁﬂou ,
a

it follows from (4LO) that HByH_S-ﬁldl , and so,
¢
It < Sl

If we replace the constant ¢ by M then the lemma is proved.
We turn now to equation (34) and the initial condition (32). We will

prove the existence of a unique solution satisfying the estimate




el = (™ (L2

) - - for all sufficiently small p . This will establish the theorem.
_' In order to apply the method of successive approximations we set
& = O and define €, inductively by UF . = G(Ek,t,s,u) . By vir-

tue of Property 1 for G [IG(E,,t,s,u)ll < ™2 , while from Lemma 2

1_5% n
hell < Teu™? = Me™t = 2™t (L3)

‘F l:z
=
0
) =
"

We continue now by induction on indices knowing that IIEOII < cluml and

||§l|| < cluml . If we assume that

legll < eu™h (1= 0,3,...5) (k1)

then we must prove that (44) is also valid for i = k+1 . Clearly

U(E,, ;- &) = 6(E,t,5,u) - G(& _),t,s,u)

n+l

and since IIE | <e < Cqh and ||Ek l” < e for 0<pu< My < <1,

l
we can apply the inequality (33) to the difference in the right-hand side.

In addition, by using Lemma 2, we obtain

gy - 81 <5 cpuiie, - g ol = Meglig - o0

We now choose By 89 small that the inequality Mccp,0 <% is satisfied.

Then, taking account of (43), it follows that

<ipre

LWRLVES LRSS JLPEL W E SN

1 1 1 ntl
<< llg, -t = =|€ || <=5 ¢ 1 .
y } 175" T kSTl Y

(435)
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Hence

e, qll S g,y = Gl + 1&g - & 5l + - + NEI

1 1 1 ml nl
5(2k+l+ -2—k+ cee+ e T <cgu

Thus, (44) and therefore, (45) are valid for any number k . By
virtue of (45) the series of terms E.,1 - G converges uniformly with
respect to (t,s), that is, the sequence {gk} converges uniformly.
This, in turn, implies the existence of a solution of the problem (34),
(32). To see this, simply write equation (34) as an integral equation
(from (37) it suffices to write y for & and a for G ). The unique-
ness of the solution of this integral equation can be proved in the usual
way, if we note that the operator BF + G(f,t,5,p) is Lipschitzian.
Finally, the estimate (42) follows from the fact that each & satisfies

the inequality (Lbk). This concludes the proof of Theorem k4.

3. Concluding Remarks. 1. Our results can be extended, under cer-

tain additional assumptions, to the more general equation

b
uaxgta,s,g)= -a(t,8) [x(t,s,u) - [ K(t,s,0)x(t,0,n)do])
- 3
(46)

b
+ Hf(x’t’s,.r H(xstsasu) do >U-)
a

The most interesting feature of this equation is the appearance of the
factor a(t,s) , whose dependence on s destroys the symmetry of the
operator A .

Let us first investigate how to modify the construction in the special

case when equation (46) is of the form




1s.

b
u-ai(%'-ti’ﬂ)- = -a(s) [x(t,s,n) -.r K(s,o)x(t,0,u)do] ‘

s S

+ uf(x,t,s,u)

(This equation has been studied by A. Kasanov.) For ;o(t,s) and TTOx(f,s)

we have that

k
X,(t,s) = L aels
Bﬂox('r,s) b
T = -a(s)[ﬁox(f,s)-'r K(s,c)ﬂox(‘f,c)do] E

a
mx(0,8) = «2(s) - ;0(0’5) ’
and

Tx(T,s) =0 as T-= . (v7)

Condition (47) reduces to the condition that the initial value Tfox(o,s) be
bounded, that is,

b T x(0,8) 0, (s)

o) ds = 0 (i =1,...,k)

a
(ef. (24)); whence, ai.(O) can be defined by the formula (cf. (25))
0
b x (s)o,(s)
a,(0) = J‘Q—EGYL ds (i=1,...,k)
We must of course choose the eigenfunctions q:i(s) (i =1,...,k) to be
orthogonal with weight 1/a(s) .

The equations for the cri(t) are obtained, as before, from a solv-

ability condition in the equation for El(t,s) , that is,




,_.
21
)

B?c'o(t,s) _ b _ ‘
—— = -a(s) [xl(t,s) -J' K(s,c)xl(t,o)do] 1
a

ot
o+ f(;o(t,s),t,s,O) 3
and they are K
T
dai b f(J;laJ(t)‘DJ(s) ,t,S,O)wi(S)
at - r a(s) ds .

2. Equations and systems of the form u-g—: = A(t)x + uf , where A 1is
a certain integral operator, arise in kinetic theory (for example, Boltzmann's
equation; see [6]). It is true that the structure of the operator A is
more complicated in such problems than in the cases considered here; moreover,
the problems are nonlinear. However, it is impcrtant to note the following:
solutions of the degenerate equation A(t); = 0 contain an indeterminacy.

In this regard we note that some of the approximation methods in kinetic

theory (cf. [6]) lead to nonlinear systems of the type considered in Chapter 2.
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