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k SINGULARLTY PERTURBED EcUATIO.'S IN THE CRITICAL CASE

A. B. Vasil'eva and V. F. Butuzov

Introduction

The present monoqraph, essentially the secuel to the book',v-rtoti:

Expansions of Solutions of Singularly Perturbed Equations" [13], is devctcd

to the asymiptotic theory of differential equations with a small ivarametcr

before the derivative, such as

dz dv
- = F(z,y,t) , f(z,v,t) , (]

and to other related problems involving asymptotic behavior for small

Such problems are said to be singularly: perturbed.

The difficulty with the construction of the asymi totic expansion of

the solution of system (1) arises from the fact that for = 0 t,

order of the system decreases; as a result, the- solution of tie de-qencrat,

system

0 = F(z,,,t), = f(z,v,t) , (2)
dt

cannot in general satisfy all of the supplementary conditions irescribed

for (1). On account of this singularity the asymptotic exp ansion of

the solution of system (1) cannot be constructed solely in tht. form of

an "ordinary" series in powers of (reoular series) but a boundary

series must be added whose terms are important only in a neighborhood of

those points at which the given supplementary conditions for (1) are not

satisfied by (2)

Originally published in 1978 by Moscow State University. Translated from the
Russian by F. A. Howes with the editorial assistance of R. E. O'Mallev, Jr.

Moscow State University

The publishing cost of this report is sponsored bv the United States Army under
Contract No. DAAG29-75-C-0024. Partially supported by the National Science
Foundation under (;rant No. MCS 78-00907.
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The techniques for constructing regular and boundary series are des-

cribed in detail in [13]; in addition, methods for estimating the remainder

terms are also discussed there.

All of the problems discussed in [13) were characterized by the

fact that the equation F(z,y,t) = 0 had one or several isolated solutions

z • However, in applications one frequently encounters cases where this

equation has a family of solutions which depends on several arbitrary

functions. We shall call such cases critical and we shall consider them

in the present monograph. Many of these results were obtained in

[3,4,9,10,11,12,15] . The critical case can be distinguished analytically

by definite signs: some eigenvalues of a special matrix are identically

zero. We also discuss several problems of concrete physical importance

in a number of fields: problems in kinetics, problems in the theory

of semiconductors, numerical difference schemes, etc.

The techniques for constructing the asymptotic expansion in this

critical case are basically the same as those in [13]. For a thorough

understanding it is advisable for the reader to become acquainted with

the first three chapters of that book. However, in the present monograph,

for an understanding of at least the formal aspects of the construction

of the expansion, it is not necessary to consult [13]. Concerning the

estimates for the remainder terms of the asymptotic expansions, the

reader should consult [13]. The only exception is Chapter 4 where the

proof is somewhat different and so it is given in detail.

The presentation is sufficiently elementary that it can be under-

stood completely by those concerned with applied questions.

_____ _____
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Chapter 1

Weakly Nonlinear Singularly Perturbed

Equations in the Critical Case:

Initial Value Problems

01 Singularly Perturbed Differential Equations

1. Statement of the Problem. We consider the differential equation

dx
dx = A(t)x + f(x,t,) , (1)

where . > 0 is a small parameter, x and f are m-dimensional vector

functions, A(t) is an (m x m)-matrix and 0 < t < T . A solution of

equation (1) should satisfy the initial condition

X(OP= x - (2)

If we formally set 0 = in (1) then we obtain the reduced equation

A(t)-x = 0 (3)

If det A(t) / 0 for 0 < t < T , equation (3) has the unique

solution x - 0 In [13] it was shown that if' the eigenvalues %.(t)

of A(t) satisfy for 0 < t < T the inequalities

Re i(t) < 0 (i - l,...,m) ,

then the solution x(tp) of the problem (1), (P) converges as p 0

to xa 0 for 0 < t < T.

two



Suppose, however, that det A(t) 0 for 0 < t < T . Then

equation (3) has infinitely many solutions and the question arises:

under what conditions will the solution x(t,.) of the problem (1), (2)

converge as 4 - 0 to one of these solutions, and in particular, to

which one? The present section is concerned with this question as well

as with the question of the construction of the asymptotic expansion of

x(t,4) with respect to p .

We impose several additional conditions on equation (1). All of

these conditions will not be formulated at the srae time but as they are

stated in the text. They will be denoted by the numerals I, II,....

The first condition concerns the smoothness of A(t) and f(x,t,p)

We require sufficient smoothness in order to construct the desired

asymptotic expansion. A more precise formulation of Condition I will be

given in Section 3 after we describe the algorithm's construction; until

then we formulate this condition as follows.

I. Suppose that A(t) and f(x,t,p) are sufficiently smooth for

0 < t < T and for (x,t,p) in the domain D(x,t,4) = D(x,t) x [o1

where D(x,t) is a domain in (x,t)-space and L0 is a positive constant.

The following two conditions are concerned with the eigenvalues

ki(t) (i = l,...,m) of A(t) . Note that the assumption that det A(t)--0

for 0 < t < T implies that at least one of the Xi(t) is identically

zero.

I.
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II. Suppose that for 0 < t < T the following conditions hold:

i(t )  = 0 (i = 1,...,k ; k < m) ,(4)

Re i(t) < 0 (i = k+l,...,m) (5)

Remark. In [13] the initial value problerr was studied under the

assumption that condition (5) was satisfied for all i = 1,...,m (that is,

the "noncritical" case). If at least one of the X (t) has a positive

real part then, generally speaking, the solution of the initial value

problem is unbounded as L - 0

III. Suppose that there are k linearly indlependent eigenvectors

ei(t) (i = ,...,k) of A(t) corresponding to the k identically zero

elgenvalues for each t in (0,Tj

Thus we are considering cases where the number of linearly independent

eigenvectors corresponding to X = ) is equal to the multiplicity of

- 0 . For the remaining eigenvalues for which ReX i(t) < O , neither

their multiplicity nor the number of eigenvectors corresponding to them

Is of importance; indeed, both of these quantities can change as t

varies.

2. Algorithm for the Construction of the Asymptotic Expansion of the

Solution. As we already stated, our goal is the construction of the

asymptotic expansion of the solution of problem (1), (2). In order to

-OftA
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achieve this we will follow the same procedure as that adopted previously

in the book [13]. First we develop an algorithm (rule) for the construc-

tion of certain formal series which determine the structure of the solu-

tion. In a neighborhood of the leading terms of these series, there

exists a solution of the problem, and the series is itself an asymptotic

expansion of this solution. The proof will be given in Section 3 •

Thus we construct a series formally satisfying equation (1) and

condition (2), and having the form

x(t,p) = x(t,) 4 Tx(T,4) , (6)

where

X(ti±) = x0 (t) + 1(t) +.. x n(t) + ... (7)

is called the regular series, while

7 = r) + LTrX(T) + ... + nTr n x(T) + ... (8)

is called the boundary series for

'r= t/P .

The coefficients in the series (7), (8) are determined by formally

substituting (6) into (1), (2) and equating terms with like powers of 4

according to a definite rule which we state below. First note that the

asymptotic expansions in all of the singularly perturbed initial value

problems considered in (13] are constructed in the form of series having

the structure (6). This structure already occurs in simple examples.

Consider, for example, the problem

a

2, - 7,
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dx , ax+ t , x(O,) = x 0

where a is a negative constant. The exact solution is x(t,L) = -t/a

- I + (xO+ 4/a 2)exp( aT) , and it consists of terms of the type (7)

and (8). Both terms of the latter type converge to zero exponentially

as T - - , and in a neighborhood of t = 0 they serve as a correction

to the regular part -t/a - p/a2 which does not satisfy the given initial

condition x(O,.) = x . This structure of (6) reflects such behavior:

TTx(T,j.) serves as a correction to x(tp) in a neighborhood of t = 0

moreover, it converges to zero exponentially with increasing T

The coefficients Tr.x(T) of the series (8) will be called boundary

functions, and we will require that the boundary functions converge to

zero as T - - . Thus the formal algorithm for the construction of the

series (7) and (8) requires that

TTx(i)-0 as T-- . (9)

We pass now to the procedure for determining the coefficients in

(7), (8). To this end we first represent f(x,t,4) in the form

f(X(t,4) + Tx(T,4),t,jP) = f(x(tjp),t,p±)

+ [fX(, &,) + Tx(T,p),Tp,L) - f(x(L,1i), T4,P) f f+ TTf

poor A6.



Here, by f we mean the expansion of f(x(t,) ,t, .) in a series of the

type (7), while by TTf we mean an expansion of the term in square

brackets in a series of the type (8); namely,

f = f0 t) + f1(t) + "'" + wLnf(t) +

lTf = TT0f(r) + lTT1 f(T) + ... + nTnf(T) +

We perform this same operation on A(t)x:

A(t)(x(t, i) + ITx( ,p)) = A(t)x(t,L) + A(T.)TX(T,L) AX + TT(Ax)

We now substitute (6) into (1) and (2), taking account of the

transformations performed on f and Ax

~ -- + 4l + + (T0 x + 4Tlx +

A+ Tr(Ax) + p (T + Trf) , (10)
0

x(O,) + flx(OP) =x . (11)

Next we equate coefficients of like powers of p on both sides of equations

(10) and (11), and separating those terms depending on t and those depending

on we obtain equations and initial conditions for determining the

coefficients xi(t) and TT.x(r) of the series (7) and (8)

For X0 (t) we obtain a linear homogeneous system of algebraic

equations

hl
11 IV IS



A(t)xo(t) = , (12

which coincides with the reduced equation (3). By virtue of Condition III

the general solution of (12) can be written in the form

k
x 0(t) = r ( .(Wei t) (13)

i=l

where eW(t) (i = 1,... ,k) are the linearly independent eigenvectors

corresponding to the zero eigenvalues -f A(t) , and a .(t) are arbitrary1

scalar functions.

Remark. By virtue of Condition 1I1 the rank of the matrix A(t) is

equal to m-k for each t in [Q,T1, that is, there is a minor of order

m-k (in general, not the same for all t ) which is nonzero, and

consequently, the system (12) has k linearly independent solutions

(eigenvectors) ei(t) for i = 1,...,k . If this nonzero minor can be

found, it is easy to construct eigenvectors e.(t) having the same degree

of smoothness as the matrix A(t) . If there is no such minor of A(t)

then the question of the degree of smoothness of the ei(t) becomes

more involved. From (271 it follows that it is possible to construct

eigenvectors ei(t) (i = 1,...,k) having the same degree of smoothness

as the matrix A(t) . Such eigenvectors are used in (13) and below.

If we introduce the (mx k)-matrix e(t) whose columns are these

ei(t) and the k-dimensional vector function a(t) whose components

are a 1 (t) , then it is possible to write (13) in the form

I il..... .. A
- -' ':~ . -- , ~
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Xo0(t) = e(t)a(t) .(14)

For ITox(T) we obtain a linear homogeneous constant coefficient

system of differential equations, namely

-- 4 x = A(O)7oX . (i )

dTO 0

The general solution of this system can be written in the form (cf. for

example (26])

k m
Trox(T) = E ciei(0) 4 E ciwi(T)exp(ui(O)T) , (16)

•=l i=k+ 1

where ci(i = 1,...,m) are arbitrary constants, ei(0) (i = 1,...,k) are

the eigenvectors of A(0) corresponding to the zero eigenvalues, and

wi(T) (i = kil,...,m) are known vector functions whose components are

polynomials in T . [If hl,...,h n  is a Jordan chain of vectors cor-

responding to an eigenvalue X of A such that

Ahl = h Ah2 = Xh2 + hl,... Ahn = h hn

then there are n linearly independent solutions x r(T) = Wr ()exp(XT )

(r = 1,...,n) of the system - = Ax , where
d'T

r-i r-2
Wr( ) = l  h2 + ... + hr(r -- l,...,n) . I

r (r-l). h1  7 (r-2)1. 2 r

By virtue of condition (5) the second term in the right-hand side of

(16) converges to zero as T -- . Therefore, in order that condition (9)

hold, it is necessary to set ci = 0 (i = lj...,k) .

The initial condition for TyoX(T) is obtained by equating the

coefficients of the zeroth power of p in (11) , namely

07 . .

..........



i=2i

Substituting now into (16) and noting that c i  0 (i = l,...,k we

obtain

k m 0

E ai(O)ei(0) + 1 c.w.(0) = x
i=l i=k+l 1 1

The system (18) is a linear algebraic system of in equations in the r.

unknowns a.(0) (i = 1,...,k) and c.(i = k41,...,im) . Py virtue of the

linear independence of the column vectors ei(O) (i = 1,...,k) and

wi(O) (i = k+l,...,m) the system (18) has a unique solution.

Thus lToX(T) is completely determined. By virtue of ('i) it is

clear that there exist constants c > 0 and x > 0 such that ITT X( )1 ! <

c exp(-KT) for - > 0 . (The symbol 1iI denotes the norm of a vector

(matrix) x which is defined, for example, as the sum of the absolute

values of its components (elements). ] The function xW(t) is not defined

until the functions ai(t) (i = l,...,k) whose initial values ai(0)

0
are found from (18) are first defined. Let us set a(0) = a

For x1(t) we obtain the linear nonhomogeneous system of algebraic

equations

d0 o(t)

A(t)-x1 (t) = -f(X 0 (t),tO) + dt - cp(t) • (19)

Since det A(t) S 0 for 0 < t < T a necessary and sufficient condition

for the solvability of system (19) is that its right-hand side be ortho-

gonal to each of the eigenvectors gi(t) (J = i,...,k) of the adjoint

matrix A*(t) corresponding to the zero eigenvalues. tFrom linear algebra

7 it is known that the matrix A*(t), which in the present case is simply

I G. I
" '..__ '""t"-
°' 'r

-- -- - __ _ '__ t4... . " - . . . . . . .
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the transpose of A(t) , has a zero eigenvalue to which correspond k

linearly independent eigenvectors. We note that the degree

of smoothness of the vectors gj(t) is the same as that of the matrix

A(t) . ]

We denote by (ab) the scalar product of two m-dimensional

vectors a and b , that is, the sum of products of corresponding compon-

ents. Thus (taking note of (lh))the solvability condition for (19) can

be written as

dt(g(t), -f(e(t)cz(t),t,O) + -(e(t)x(t))) = 0 , j = 1,. k.

We will obtain a system of k nonlinear differential equations for

the k unknown functions ai(t) . If we call g(t) the (kxm)-matrix

whose rows are the vectors g.(t) (j = 1,...,k), then it is possible to

obtain the corresponding system in matrix form, namely

(g(t)e(t))2 = g(t)(f(e(t)a(t),t,O) - e'(t)a(t)). (20)

The initial values a(O) = a , as noted above, are found from (18)

From the fact that the number of eigenvectors el(t) and gj(t) is

equal to the multiplicity of the zero eigenvalue, it follows that the

determinant of the (kxk)-matrix (g(t)e(t)) is nonzero. For if this

determinant were zero for some t , then a certain nontrivial linear
k

combination of its columns gives a zero column, that is, r y igj,e = 0
k iul

(j = l,...,k) • It follows that (gO' Y ie = o , that is, the
kJo

eigenvector = yiei of A(t) , corresponding to X 0 , is

PU

i~l
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orthogonal to each g(j = ,...k) so the solvability condition is

satisfied for the linear system Ax = i . But this implies that the

zero eigenvalue of A(t) has adjoint vectors, which contradicts the

fact that the number of eigenvectors e.(t) is equal to the multiplicity1

of X = 0 . Thus, the aforementioned determinant is nonzero, and there-

dce
fore the system (20) can be solved for , that is,

dt F0 (a,t ) , (21)

with the form of F0 being clear from comparing (20) and (21)

IV. Suppose that the equation (21) with the initial condition

a(0) = a0 has a solution a = a(t) for 0 < t < T .

Now that a(t) is determined, the solution (l4) of the reduced

system (12) is complete.

Let us introduce in the space of variables (x,t) a curve L con-

sisting of two components (this curve is the graph of the zeroth pproxi-

mation):

L = f(xt): x = X (0) + TT X(T)(T> 0); t = O,

L2 = ((x,t): x = x0 (t); 0 < t < T)

V. Suppose that the curve L lies in the domain D(x,t) appearing

in Condition I.

Thus the zeroth order terms in the series (7) and (8) have been

determined.

ma

'1 &
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The general solution of the system (19) can be written as

kXl1(t) = i(t)ei(t) 4 l(t) = e(t)O t) + SEl(t) ,(22)
i=l

where 1(t) is a particular solution of (19) and 0(t) is an arbitrary

k-dimensional vector function.

For TTx(T) we obtain a linear nonhomogeneous syster ' f differential

equations

dTTx

dT = A(O)lTX + TA'(O)Tox(T) + f(xo(O) + TT0x( T ) ,, °)
(23)-f(Xo0(0),OO)•

The initial condition for ITx(T) is found by equating the coefficients

of the first power of p in (11), that is,

ix(O) = -x (o) .

The general solution of (23) can be written as

k m
TTX(') = Z di ei(O) + i E d iW(1r)exp(Xi(O)T) + Tx( ,r) ' (24)

i=l i=k+ 1

where the di are arbitrary constants, wi(T) are the same vector functions

as those in (16 and TIx(l) is a particular solution of (23) which, it is

not difficult to see, can be chosen so that IITx1(101I satisfies the same

inequality as IlITx 0(-)1 , that is, IIrix(')II < cexp(-KT) for r > 0

Remark. The positive constants c and K in the estimate for

lx('r) are, in general, not the same as those in the estimate for %oX() .

However, with a view to simplifying the notation, the same notation will

be used for analogous constants. Constants of the form c will always

I
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denote an upper bound on such values, while constants of the formn

will always denote a lower bound.

As in the case of %oX(T) we require that d.i = 0 (i = 1,...,k)

and then from the initial condition for TTlX(T), we obtain a linear

algebraic s'ystem of m equations in the m unknowns 3i(C) (i = 1,...,k

and di(i = k+l,...,m) :

k m

i~1 iei(O) + ld.W.( O(0 = - 1 (() - ix(O ]  
, (291

which, like system (18), has a unique solution.
Thus fl x(i) is completely determined, and it is obvious that

IITIx(r)II < c exp(-KT) for r > 0 . The expression for X1 (t) is not

determined until we determine 0(t) , whose initial value J(0) is

obtained from (25) . It can be determined from a solvability condition

for the linear system of algebraic equations relative to x2 (t) in a

manner analogous to that for cr(t) . We obtain the linear differential

equation

d= B(t) F(t) (26)dt I

where B(t) = 1(a(t),t) is a known matrix and Fl(t) is a known

function. By linearity the system (26) with the initial condition j(o)

has a unique solution.

The determination of the remaining terms in the series (7) and (8)

proceeds analogously. At the i-th stage an arbitrary vector function

(call it Y(t)) enters the expression for xi(t) . First we determine

IJAI
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y(o) from an equation like (25) and then from the solvability condition

for Xi+l (t) we obtain for y(t) a linear differential equation of the

form of (26) B(t) Fi(t) , from which Y(t) is finally
dt

determined.

The boundary functions TT .x(T) are constructed like Tlx(T) and

also satisfy the exponential estimate

IlITx(r)II < c exp(-; ) for T > 0 . (27)

3. An Estimate of the Remainder Term. Let us denote by Xn(t,,) the

n-th partial sum of the series (6), that is,

n
Xn(t,4) = E i(x(t) + TTx(r))

i=0

We note that for the determination of the terms appearing in Xn(t,P)

it is sufficient that A(t) and f(x,t,L) have continuouL partial

derivatives with respect to all arguments up to order n inclusive. Ilow-

ever, for the proof of Theorem 1.1 below it will be necessary that A(t)

and f(x,t,p) have a higher degree of smoothness. Tt is naw possible

to determine more precisely the extent of the domain D(x,t) appearing

in Condition I . Let us introduce a 8-tube of the curve L , that is, the

set of points (x,t) whose distance from the curve L does not exceed b

For the domain D(x,t) we can take an arbitrary 8-tube of the

curve L where 8 is independent of 4 • Condition I can now be

formulated as:

l7

i
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I. Suppose that A(t) in 0 < t < T and f(x,t, ) in the domain

D(x,t,p,) = D(x,t) X [0,p 0 ) have continuous partial derivatives of order

(n + 2) inclusive (with respect to each argunent).

Theorem 1.1. Under Conditions I - V there exist positive

constants p0 and c such that for 0 < i < 40 the solution x(t,4)

of the problem (1), (2) exists in the interval [O,T], is unique and

satisfies the inequality

I~x(t, ) - Xn(t, )I, < cn+l (o < t < T) (28)

(In place of an inequality of the type (28) we will also use the notation

x(t,P) - Xn (t,4) = (,n+l).

Proof. Let us set (t,w) = x(t,p) - Xn+1 (t,4) • Substituting

X = Xn+l(t,4) + E into (1) and (2) we obtain for (t,.) the initial

value problem

dF A(t) +pf (t~g)! + G( ,t,) ,(29)

V(,P) = 0 , (30)

where fx(t,11) = fx(X0 (t) + Tox(),t,) and

G(9jtp) = A(t)Xn1 l(t,) + Pf(Xn 1 (t%) + Ft,4)

x .dt n+l

_ _ _ _ __ _ _ _ __ _ 1
I
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The function G(,tp) has the follwing two inportant properties

which are established in the same way as in Subsection 4 of Section l

of [13] :
1. G(,t,p) = (, n+ 2

2. If lIl~(t, )II < cla and JII 2 (t,L)! < cl for 0 < t < T and

0 < < ±i (c1  and are certain constants), then there exist constants

c and 0 < ± Ll such that for 0 < t < T and 0 < p < 0

JjG ( .t l , t , 4 )  - G ( 2 t , @ [ J 2 m a [ i - •

[O,T]

When Property 2 holds we will say that G(F,t,4) is a contraction

operator with contraction coefficient of order 0(42 ) for E = O(p)

Remark. The constant p0 appearing in Property 2 is, generally

speaking, not the same as that appearing in the statement of Theorem 1.1.

However, for the sake of simplicity of notation we will use the same

symbol A0 in all bounds involving conditions of sufficient smallness

for p . It is clear atpriori that among all such constants 40 the

least one will furnish a positive bound.

For the problem (29), (30) we now transform the unknown function

by .(tq) = T(t)w(t,A) , where T(t) is a certain differentiable

(m x m)-matrix. Thus we obtain the initial value problem

dw T'l(t)A(t)T(t)w + pC(t,it)w + G (w,t,s) 9 (31)

w(Oti) =0 , (32)

i

___i
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where

C(t,4) =T_ (t)[f x(t,p.)T(t) - T'(t)] and

G 1 (Wt,4) = T -1(t)G(T(t)w,t,4)

We choose for T(t) a matrix which transforms A(t) in the interval

[0,T] into the block-diagonal form, that is,

T _ (t)A(t)T(t) =( 0 A2 t

where A Wt is an (rn-k) x (m-k)-matrix whose eigenvalues satisfy

*Re Xi (t) <O(i = k-~l,...,m) and A2 (t) is a (k x k) -matrix with k

zero eigenvalues X i(t) =_0 (i = 1,...,k) . Such a nonsingular matrix

T(t) exists and it is as differentiable as A(t) (cf. [271). Indeed,

in our case, A 2 (t) _=0 for 0 <t <T

We set

(where u and G2have (rn-k) -(and v and G 3k-) components), and

we divide the matrix C(t,p) into compatible blocks

whreth c "( 21 tJ 022(tI)

wbee te Cijare continuous and bounded for 0 <t <T 0 _

From (31), (32) we obtain

4l
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du=A (t)u + ti.c 1 (t,~p)u + LC1 (t,LLj)v + G (Upv~ti) , (33)

dv = 21 (t' L)u + C,, 2 (t,LL)v + 1: UV )O
Tt- C1 4 3(314)

u00= v(0,p4) 0

The functions G 2(u,v,t,") and G 3(u,v,t,"i) have the n-am'e two

properties as FtL

Let us denote the fundlamrental matrices of the homogeneous linear

systems

PdL t u d v=
t A1 tu , , C22 (t,4i)v ,

by U(t,s, Li) and V(t,s, t) , respectively (U(s,z, i) = inmk I the

(rn-k) X (m-k)-identity matrix, and V(s,s,v) = E k) Clearly the

matrix V(t,s,p.) is bounded, and since the eigenvalues of A 1(t) have

negative real parts, it follows that U(t,s, L) satisfies the inequality

IIU(t,s,p)I < c exprK (tS)] for 0<s <t<T f O<L<L0

The proof of this estin'ate is given in Lemma 3.2 of [13] . We now

replace the problem (33), (314) with the equivalent system of integral

equations

t

V~")= f (t,s, L) tc'(s,p)u(s,0) + G3(,v,,)d
0

M MG(,vsJ)ds ,()

v~t,) =fv~t~) C,~1 s,~)u~s~) A G(u~~s,~ id
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and then by applying the method of successive approximations as in

[13; Sec. 101, it is possible to prove that the solution u(t,4),v(t, )

n+lof (35) exists, is unique, and satisfies the estimate u(t) = O(n

V(t, ) = . (,nr+1) .

Thus it follows directly that

.(b)=x(t,4) -Xn+l (t, ) = ( n~l. (36)

Since Xn+1 (t) _ Xn(tP) = (n1 + = (1X ( ) n+l from (36)

we obtain

x(t' L) X Xn(t' L) =(q( "n+l)

and Theorem 1.1 is proved.

4. Remarks. 1. From (28) and the exponential bound (27) for

Trx(T) (i = 0,1,...,n) it follows that lim x(t,=) X o(t) for O < t < T,

that is, the solution x(t,) of the problem (1), (2) converges

as g - 0 to one of the solutions of the degenerate system. For

O < t0: t < T (t fixed as p- 0)x (t) is the leading term of the

asymptotic expansion. In certain problems (see, for example, Subsection 3

of Section 3 below) one is interested in a precise representation of

the leading term. Then to determine the initial values ai(0) of the

functions a i(t) appearing in io(t) (see (13)) it is convenient to
have a system of equations involving the constants ci of the leading

boundary function terms. Such a system can be obtained by taking the

.



22

scalar product of (18) with gj(O) ( 1,...,k), after which the ter=.s

containing c. vanish, that is ,1

k

Z(g (0),ei(0))a i(O) = (gj(O),xC (j 1,...,k) (37)
i=1 i

2. The construction of the asymptotic expansion and the bound

on the remainder term have been obtained under the condition that there

exist k linearly independent eigenvectors corresponding to the zero

eigenvalues of A(t) . In the case when the number of linearly independent

vectors corresponding to the zero eigenvalue is less than its multiplicity

the asymptotic expansion will contain fractional powers of U . We will

not consider the general problem but we will illustrate the occurrence

of fractional powers of A in a model system of two equations,where

a (t) a12(t)

At) 21(t) a22 (t))

Supose that det A(t) = a a a = 0 , a + a - 0 and
Spos ~ 2 2  1 2 a2 1 O~ a 11 22d

all 0 for 0< t < T . Thus X(t) E 0 is an eigenvalue of A(t) of

multiplicity two, to which there corresponds only one eigenvector (since

all1 0) . In this case (1) has the form

dxId- 1 allx, + a.2X2 + 4fl(xlX2,t,)

dX2  (38)
-= a21x1 + a2 2x2 + "f 2 (x 1,x 2 ,t,P)

S

ONi
T
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Multiplying the first equation by -a21 and the second by all

adding we obtain the following 
system of equations for z and

y =-a 2 1 x 1 + allX2 :

dz a2 y, a 21dz _ y + f l(z,Y ,t,i) ,

y+a21 z y* a 2 1z

dy -a f (Z-- ,t, L) + af 2(z, a
dt 2121 a 12

Y+ a2 1-z

- a &l z -
a l - 2 l

that is, a system of the form

a(t)y + ,LF(z,y,t,) , G(z,y,t, ) (39)
dt ' dt

The behavior of solutions of system 
(39) depends critically on the sign

of a(t) . Let us transform (39) by setting z = , . We

obtain the system

dz1dt - = a(t) z + v/"4 F(zI , %/P z2,t 24),

(40)
dz2

,r,- = G(zl,.'/ z2 ,t, )

The corresponding characteristic equation (cf. 
(3.21) in 131)has

the form

G~z(P(t) 101t )a() a(t)GzI((t),Ot O) 0

i __,O 
_ tO)___-

-.. .. 
-_I.
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where zI = w(t) is a root of the equation G(zl,O,t,O) = 0

If aG < 0 then X will be purely imaginary and in the systemz1

one usually sees oscillations. Solutions of the initial value problem

do not have a limit as p - D , but are bounded and oscillate with a

frequency of order (cf. [19]). If however aG > 0 the roots .

J Zi

will have different signs (the so-called conditionally stable case) and

consequently solutions will not generally be bounded as - 0 . None-

theless, if we impose appropriate boundary conditions on (38), it is

possible to carry out the construction of the asymptotic expansion of

the solution as in [13, Sec. 14]. Such an expansion, as can be seen

from the way (40) is written, will contain powers of V • This case is

considered in more detail in (21]

3. Let us now consider the equation

2 dx-T= A(t)x + pf(x,t,p.)

2

It differs from (1) in that the term multiplying the derivative is P 2

and not . Thus the coefficient multiplying the derivative is of a

greater degree of smallness than the coefficient multiplying the non-

linear term f(x,t,4) . As a result, the asymptotic expansion of the

solution of the initial value problem contains (along with the regular

part X(t,p) = o(t) + ji(t) + ... and the boundary function

7Tx('r,) = %x(r) + 4Tlx( ) + ... , depending on T = t/p] the boundary

function Px(s,4) = P0X(s) + PP 1x(s) + ..., depending on s = t/ ? .

The conditions -a the matrix A(t) are the same as those in Subsection 1.

Consequently,

=77 77 7W W
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X0(t) = e(t)c(t) ,

where the function a(t) is defined as in Subsection 2 by a solvability

condition in the equation for xl(t) ; this time however we do not obtain

a differential equation for a(t) but rather an algebraic equation

g(t)f(e(t)(t),t,C) = 0

where g(t) is the same matrix as in Subsection 2.

lToX(T) is obtained not from a differential equation but from the

algebraic equation A(O)TToX( ) = 0 . It follows that

IToX(T) = e(O)h(T) ,

where h( ) satisfies the differential equation

dh = (g(O)e(O))- [f(X (0) + e(O)h(T),0,0) - f(x (0),O,O)]

obtained from a solvability condition for TYX( )

For Pox(s) we obtain the equation

dPo(a)
a = A(O) ox0

with the initial condition

PoX(O) = x - "Xo(O) - e(O)h(O)

(h(O) is as yet unknown). Since this equation is like (15) its general

solution can be written in the form of (16)

-o £
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k m
Pox(S) = t e.i(O) + r c w i(ex- (Xi) =S)

i=l i=k 1

From the condition that P0x(s) - 0 as s - we have ci - 'Ii = l,... ,k!

and so the initial conditions imply

m 0
e(O)h(O) + w cwi(0) =x - xo()

i=k+l 1

for the determination of h(O) and c. (i k+l,...,.) Likewise the

function P0 x(s) will be determined completely, and by finding initial

conditions for h(T) we can finally determine this function h(T) from

its differential equation.

The essential role in the construction is played by the (k X k)-matrix

(g(t)e(t))-i g(t)fx (Xo0(t),t,O)e(t).

We require that its eigenvalues vi(t) satisfy

Revi(t)<0 (i=l,...,k O0<t<T

If this condition is fulfilled together with certain others it is

possible to prove the validity of this asymptotic expansion with the

boundary functions having the exponential bounds

IITrx('r)(I < c exp(-Kr) (r > 0)

1P i x(s)jj < c exp(-Ks) (s > 0)

A more detailed consideration of this problem has been given in t5

-pd ,- -
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12 Difference Equations with Small Stepsize

In this section we will consider the difference equation

x(t+p) = B(t)x(t) + 4f(x(t),qt,4) , (41)

in which x is an m-vector and the argument t varies discretely with

small stepsize 4 , that is, t = 0 , a, 2i, ... (t < T) . Such variati:nz

of the argument occur, for example, in difference schemes for rr-any intejro-

differential equations (cf. §.I. For simplicity of notation we will

write x(t) in place of x(t,4) . We prescribe the initial condition

x(O) = x0• (42)

I. Suppose that the (m x m)-matrix B(t) has for 0 < t < T the

eigenvalue X(t) - 0 of multiplicity k to which there correspond for

each t k linearly independent eigenvectors ei(t) (i = l,...,k)

while the other eigenvalues satisfy the condition IXi(t)l < 1 .

In [13] it was shown that the asymptotic properties of the difference

equation (l) in the noncritical case (k = 0, that is, all IXi(t)I <1)

are similar to the asymptotic properties of the differential equation

(1) in the noncritical case (all ReXi(t) <0) . We will consider the

critical case (k 0) ; the asymptotic expansion turns out to be

similar to the one for the differential equation.

If we define the matrix A(t) = B(t) - m , then it clearly

satisfies Conditions II and III of §1

ML __

':i 1
I - -- -
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II. Suppose that B(t) and f(x,t,p) satisfy the same smoothness

conditions as A(t) and f(x,t,.) in §1 (cf. Condition I) .

For the problem (41), (42) it is possible to construct an asymptotic

expansion in the paraiaeter . and to give an estimate for the remainder

term as in §1. We write the solution in the form (cf. (6) - (8))

x(t) = X0 (t) + Pxl(t) + ... + TOX(T) + 4iTT1x(T) + ... (43)

Substituting (43) into (41) and (42) we obtain

Xo(+) + t 1 (t+P) + ... + %x( +1) + 4o'(x( +l) +

(44)

lsc+ T(Bx) + P.(iT*+ Trf)

o) + - (o) + ... + oTOX(0) + pTflx(o) + .... (45)

The right-handside of (44) reduces to the same form as in (10) Equating

coefficients of like powers of 4 in (44) and (45) as in (10) and (11) we

obtain for x0 (t) a system of equations

X0(t ) = B(t)7 0 (t) or A(t)xo(t)

It follows that the representation (13) (or (14)) is correct for 'R(t) ,

that is,

k
x0(t) = T ai(t)ei(t) = e(t)a(t)

i=l

Remark. The expression for 0 (t) as well as the following equations

for xi(t) (i 1,2,...) which appear in the construction of the

0
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asymptotic expansion of the solution will be considered not only for

t = 0, ., 21,... but also for all t in the interval [O,T] . This

is necessary as seen already in the equation for xo(t) and in the

determination of the subsequent functions xi(t) (i =1,2,...) . The

asymptotic representation (43) naturally involves only values of x. (t)
1

for t = 0, p,., 2 ... corresponding to the discrete variation of t

in (41)

For 7oX(T) we obtain the system

0

TToX(-+l) = B(O)TTox( ) , flox(O) = x -X 0 (O) (46)

In contrast to (15) the system (46) is a linear constant coefficient

difference system in which the argument T varies discretely with unit

steps. Its solution can be constructed in a manner completely analogous

to the construction of the solution of the constant coefficient differen-

tial system (cf. [7,211), namely

k mTfoX(T) = Z c iei(O) + 'E c iw i(T)u i(T) •

i=1 i-k

The wi( ) appearing here are somewhat different than those in the

expression (17), but as before, its components are polynomials in T

and the ui(T) are not exponentials as in (16) but solutions of the scalar

difference equations

Ui(-+l) = Xi(O)ui(T), ui(0) = 1 (i = k+l,...,m)

Ora"
- ..4
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[If hl,...,hn is a Jordan chain of vectors corresponding to the eigen-

values of the matrix B , then there are n linearly independent solutions

xr(-) = Wr( )%T , (r = l,...,n) , of the system x(+l) =bc(T) , where

(cf. (17))

wr) T(-l) ... (T-r+2) h + T(Tr-1)...(r-r3) h4 + hr V- r-l ! 1 r-2 (r21 2r

Thus,

ui(T) = [(O)]T (T = 0,1,2,...)

from which it follows by Condition I that Iui(T)l decays exponentially

with increasing T . Taking this into account and proceeding as in §1

we set c= 0 for i = l,...,k and further, with the aid of equation (18)

(as in §1) we determine a (O) (i = l,...,k) and ci(i = k+l,...,m)

For X (t) we obtain the system:

0 (t)
x (t) = B(t)X1 (t) + f(-Xo(t) ' t ' O) - dt '

coinciding with (19). The solvability condition for this system leads to

a system of differential equations (20) for a(t), as described in §1.

III. Suppose that Conditions IV and V of 01 are satisfied.

The construction of further terms is almost exactly as in 11. An

unimportant difference occurs only in the fact that in place of (23)

we have a nonhomogeneous difference equation

Sn

-... *tt4*.*. i*
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TI x(,-r.l) B(o)TTx( ) + rB'(O)Tox(,)

+ f(x 0 (O) + Tox(i),OO) - f(xo(O),0,O) ,

and in the expression for TTX( ) we have ui(T) in place of

exp( i(0)-) . Such differences occur in subsequent a-functions, but

for them the exponential estimates

ITT ix(T)II < c exp(-wt'r) (T = 0,1,2,...)

hold. Let us denote by Xn(tp) the n-th partial sum of the

series (43)

Theorem 1.2. Under Conditions I-III there exist positive constants u

and c such that for 0 < g < p0 a solution x(t) of the problem (41),

(42) exists in the interval [0,T], is unique and satisfies the inequality

Ix(t) - X n(t,P)Ij < n + l for t = o, j, 24, ... (t < T) •

Proof. Let us set g(t) = x(t) - X n+(t,p) ; then for F(t) we obtain

the system

g(t ) = B(t)!(t) + pf(tp)F(t) G(F,t,p) ,

x

(0) = 0

where

i

T! I
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f t =L r(X 0 (t) + Tx( ((),t, I) and~

G(E,t,.L)= B(t)X n1 (tI.L + l~x~l(t,') + '~p -f~tO X-~~t

Note that G( ,t, i) has the same two properties as in §1

Let us now set

w~)= (_1(-PM)=U(t))

(v( t)

where u has (n-k)-components, v k-components, and the matrix T(t)

puts B(t) into the block-diagonal form

T (t)B(t)T(t) (k)t

Here Ekis the (k x k)-identity matrix and Bl(t) has eigenvalues

~(t) satisfying the inequality 1%iX(t)I < 1

For ui and v we obtain the sy.stem of equations

utL)= B 1(t)u(t) + C 1(t,Pi)u(t) + C l2(t9,)v(t)

+ G 2(uqV~t2Pj) 9 (47)

v~~)= v(t) + C 21(t,P)U(t) + C22(t,Pj)v(t)

+ G 3 (u~v~ts)I

U(O) 0, Ov(O) =0,(48)

Iasi-_
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where

C(t,Pi) =)

satisfies the estimate

C(t,P) (9p (49)

and

G (u,V,t,il) G 2 U t ) =T -1(t)G(T(t-i)t,)

has the samie two properties as the function G( ,t,p)

Let us denote by U(t,s,i) and V(t,s,4) the corresponding matrix

solutions of the homogeneous difference problems

U~~gs~)= B1(t)U(t,s,4) (t = S,s+4,..),

U(ss.ji) = Ern-k

and

V(t+p.,s,.) = (E.k + C 2 2 (t,P.))V(t,SP)(t zi,.) ,

V(stsop) = E k

Since

by (49), it follows that

7~-I -111 12N---. 7~7n77
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while U(t,s,pI) , by virtue of the fact that the eigenvalues of' the mratrix

B 1(t) have modulus less than one, satisfies the inequality

IIU(t,s,ki)IH < c exp( - ;(t-s) ) for t = s,s+p. . 5

(cf- [13; Lemmna 6.2]))

Using the matrices U(t,s,LL) and V(t,s,4i) we convert the

system (47), (48) into the equivalent system of equations (t = Ct,t=Ql,..

i=O 
1

V(t+w,) = 'C I((4li.4) C2 1 (t-ipI u(t-IW
i=o

[The solution of the difference problem

z(t+h) = A(t)z(t) + b(t) (t = ,h,2h,...), 7,(() z0

can be written in the form (t th =, 0,1,2,...)

0 I
z(t+h) = $(t~h,0)z + T. *(tA~h,(C41-i)h)b(t-ih)

i=O

where

f=~,S A(t)C(t,s) (t =s,s~h,-.) , *s,s) E;.

W MENA
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By applying the method of successive approximatiorm to this syster. and

using the two properties of G2 and G3 as well as the estirates ('s),

(50), it is ncct difficult to prove (analogously to [13, §1'%1 that

a solution exists, is unique and satisfies the estimates u(t) = (n(l),

v(t) = (n+l) . Thus Theorem 1.2 is established.

2

Remark. Suppose that the stepsize in (1) is equal to t andi net

, that is, the order of smallness of the stepsi:e is greater than the

coefficient of the nonlinear term f(x(t),t,L)

X(t+4 2  B(t)x(t) 4 4f(x(t),tL)

Then besides the functions x(t,") aid 'Tx(T,4) (T- t/.) the bouniary

function Px(s,4) (s = t/4 2 ) will occur in the conditions determining

the asymptotic solution of the initial value problem, that is, the

indicated difference problem is similar in the sense of asymptotic

behavior to the differential problem which we discussed in kemark 3 of

Subsection 4 in §1. Detailed considerations are given in [,)I

13 Applications

1. Difference Formulas for the Numerical Integration of Differential

Equations. Difference formulas for the numerical integration of initial

value problems for the scalar differential equation

i -P -I
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y f(y,t), y(O) = y (0 < t < T) (52)

can be written in the form (cf. [2])

,Ik+- + k+L I  . ?'k = h(+Ifk+L4 f 3 'T ,

_l+yy =c yO Dk

where y = y(ih), h is the stepsize, f. = f(yi,ih) , and a., i are con-
1 1 1

stants defined by certain equations, one of which is E ci 0 . Hence,
i=0

it follows that the characteristic equation

a ... + ao  0

corresponding to (53) always has the root X = 1 . If we write (53) in

the form of a system of difference equations of the type (hl) (the role

of L is played by h ) then the matrix B(t) of the resulting system

has the eigenvalue X = 1 .

Let us consider in more detail one difference scheme of the type (53)

1k2 1 =1 (f -3

- 2Yk+l+ 2Yk k k

(this is called a formula of extrapolation type, of second order (4 = 2)

with two steps). Since 4 = 2 , to use this formula we must prescribe

the initial values y(O) and y(h) , where y(h) is nearly equal to

y(O) by virtue of the smallness of h .

0 0 1 2 2
Let us set y(0) = y , y(h) = y 4 hy i hy + ... , where

1 2
y ,y ,... are certain coefficients. Moreover let us set t = kh,

y = y(kh) x1 (t), yk+l = xl(t+h) = x2(t) . Then we obtain a system

S
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of two difference equations of the form (41) for x(t) x xt)

(t = O,h,2h,...), namely

x1 (th) = x2 (t)

x2 (t+h) --Ix (t) + Ix 2 (t) (54)

+ 2h [5f(x (t),t+h) - 3f(xl(t),t) 1

with initial conditions

x1 (O) O 0 x(O) y0 + hyl + h 2y2  (55)

The matrix B(t) ( of system (54) has the eigenvalues X, 1
1

S= - ' and so Condition I of §2 holds. A difference between the
2 2

problems (54), (55) and (41), (h2) is that the initial value x 2 (O)

depends on h ; however, this dependence introduces only an insignificant

change in the initial conditions for the coefficients of the asymptotic

expansion (43), and the algorithm for the construction of the asymptotic

solution as well as all estimates remain valid.
/ 10(t)\

The system of equations corresponding to x0 (t) y l0) will

have the form 
x0 (t) = B(t)xo(t) , that is,

x1 x 2 0(t) -. xlo(t) -X 20(t) ;

whence, x0(t)= a(t)e1 = a(t)(I) where el= (i) is the eigenvector

t Ab

. . . . .... ? .
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of the matrix B(t) corresponding to I= I and a(t) is an arbitra-ryv

scalar function.

The system of equations for T ( ) = has the form

(cf. (46)) roX(T+I) = B(O)ox(,T), that is,

T xl(4+l) = Tox 2() ,

x2 21 + 2 2 (56)

with initial conditions

Tox1(o) = yO - C(o), 'ox 2(o) - y0 - a(o) . (57)

The general solution of (56) can be written as

x(r) -- cle 1  c2(2 ) e2 = ci(1) + c I

(= 0,1,2,... )

where e= (i}2) is the eigenvector of B(t) corresponding to X2 = 1/2

We set c1 = 0 in order that T ox( ) - 0 as T- , and substituting

Toe(T) into the initial conditions (57) we obtain

= 1 0

C Y0 - a(o), 1:c 2 :y - a(o) ;

whence, c2 = 0 and a(0) = YO Thus Tx(T) E 0

The system of equations corresponding to xl(t) =(x21(t) is

S21(
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Sll t) = X-2l(t) -a'(t),

x 21 (t) ! t) + 1 2 1 (t) -a,'(t)+ 'f(a(t),t) (58)

Its solvability condition implies the equation

a' = f(a,t) • (59)

0

The initial condition for a(t) was already determined: a(O) y 0

Given that we can find a(t) , the construction of the zeroth approximation

X0 (t,h) = X0 (t) + 7Tox( ) = :0(t) is complete. If the construction of

the asymptotic solution is continued then boundary functions appear in
1

the following terms, even in the term containing the arbitrary y .

We note that the zeroth approximation X 10(t,h) for xl(t) is

equal to a(t), as we would expect from considering the exact solution of

the initial value problem (52). The solution obtained from the difference

scheme therefore generally differs from the exact solution by a term of

order h .
1

If y were not prescribed arbitrarily, but rather so that

y(h) = yO + hy + h2 Y 2+ ... differs from the exact solution of (52)

2 0
by a term of order h (for this it is necessary to set A0) = f(y ,o))

then T1 x(r) and x--If(t) are equal to zero, while x1(t ) , found from

the system of difference equations, differs from the exact solution of

2
the problem (52) by a term of order h In fact, by virtue of (59),

the system (58) assumes the form

ir"i

I7 77I_ I

rK
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1-1

whence

The equation for the scalar function 0(t) is obtained from the solvability

condition for the system corresponding to x 2(t) , namely
x 22(t)/

131- 1-1-

4 -tfy(t) 2 1 (t) + 5ft(t) - 3fx1 ()

It can be writ--e in the form

of f (aWt),t)p

Since rre(') 0 , the equation for Tr1x( ) coincides with the

equation for %xO(r) , and consequently,

Tr.()= d1(l) + d(/) (v) = d . ) (,/,,)

because di= 0 in order that Tr1x(r) -0 as r Substituting

for T x.('r) and xl(t) into the initial1 conditions

TVi~x 1(0) + -x(0) =0 , TT 1 x2(O) + x 21 () y1

we obtain

W11 Me
__________4%__4!-_
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d2 + 0(o) =o ,
3. 1 3.'

d2 + (0) = y - a'(0) = y - f YO0 1)

Hence if y = f(y 0,), d 2 = (Q)= 0 , so TTx( ) = 0 , 1(t) - 0 and

Xl(t) = 0 , as stated above.

Remark. For the numerical integration of the singularly perturbed

initial value problem

dt = f(y,t), y(Ow) = yo (0 < t <T)

2

we naturally choose a stepsize smaller than p , for example h 2

Then if we write the difference formula in the form (53) with step
2

h = p& , we obtain an equation which reduces to a system of the form

(51).

2. Markov Chains. A. A continuous-time, homogeneous Markov

process with finitely many states m can be described by the system

dP =AP, P(O) = PO (6o)dr =

where P(T) is a vector with components pl( ) ,..,.m(T) (pi(T) is the

probability of being in the i-th state at time T ), and A is a matrix
m

with constant elements aij , satisfying E a.. = 0 . It is known
i=1LJ

(cf., for example, [20)) that such a matrix A has X = 0 as an eigen-

value with as many linearly independent eigenvectors as the multiplicity

of the root X = 0 . We will assume that the other eigenvalues satisfy

the condition Reki < 0 (a so-called proper chain)

i7ZT.. .. . . . ... ..... ... . .. .. . .. . ... ... ... ..;.o . .. .... ..... ... .. .... ..... . .. . . ...
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In the study of Markov chains we are interested, in particular, in

the limiting behavior of the probabilities pi(T) as T - For the

system (60) the limiting values for L - 0 and fixed t T4 /. 0 are

found as the components of the solution P(t,p) of

dP 0Od= AP, P(OP) = P

Suppose that X 0 has the eigenvectors el,...,ek . Then it follows

from §1 that

k
lim P(r) = lim P(t,P) = T0 = ai(t)ei = ea(t)

.rc POi=l1 2

where a(t) is determined from equation (20), which for f = 0 has

the form

(ge)d =o ;dt

whence, 2 = 0 , that is, a(t) - a(0) • The initial value a(0) can

be determined from system (37), which hero assumes the (matrix) form

(ge)a(0) = PO

In particular, if the chain is regular (X = 0 is a simple root) then

k = i, e ev(I , while it is possible to take g1 = g= (1,...,l)
(e-) k

by virtue of the condition E a A = 0 Thus

i=O

I(O)= TPi/te,= 3/ e, since Pi=]. 1
i=l i i=l

a
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and
m

TO e/te

Therefore the limiting probability is here independent of the initial

state PO .

B. A discrete Markov chain can be described by the difference

system

P(s+l) = BP(s), P(O) = PO , (61)

m
where s - 0,1,2,... is the number of trials. Now t bik = 1 , and so

i=l
the matrix B has X = 1 as an eigenvalue. As before we will

assume that this is a proper chain, that is, each eigenvalue different

from one satisfies J~ij < 1

The limiting value as s-- of the probability P(s) coincides

with the limiting value as p - 0 for fixed t + 0 of the solution

P(t,IA) of the system (t = sl)

p(t+4, ) = BP(t,.) • (62)

It follows from §2 that the limiting value of P(t,.) as i 0 can be

described as in case A, so for a regular chain

mlim P(S) l im P(t"P) = -P0)= e/ ti e

where e =( ) is the eigenvector of B corresponding to = 1

__ '

- i-
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C. Passage from a discrete process to a continuous one. We consider

the Markov chain (61) where we take as independent variables the instants

of time t at which the trials occur. We suppose that the trials are

separated from each other by a small time interval p . Introducing t

we obtain a system which agrees formally with (62), but for which we

naturally azsume that the transition probabilities bik are small (of order )

for i + k , but nearly one for i = k , that is,

bik = pa(ik()(i + k), b ii- 1+ p aii (w), aik(p) - a ,

as p - 0 . Then (62) assumes the form

pi(t+4) = pi(t) + p(ailpl(t)+ ... + aimPm(t)) (i = l,...,m). (63)

This system is of the type (41) where B = Em has X = 1 as an eigen-

value of multiplicity m to which there correspond m eigenvectorsel l ee
eI = 2 = m

These will be the vectors gj(j = .... M)

It follows from §2 that

lim P(t,iL) = ea(t) = Ema(t) = a(t) ,

where a(t) is determined from the differential equation (20), which

in this case assumes the form

dt

_ _ _ _
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(A is the matrix with elements aik) with initial condition

a(O) = g(o)P 0 = p0

Thus the limiting value P(t) satisfies a system of differential

equations of the type (60)

Z
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Chapter 2

Nonlinear Singularly Perturbed Equations

in the Critical Case: Initial Value

Problems

§1 Statement of the Problem and Auxiliary Results

1. Statement of the Problem. In this chapter we consider problers

analogous to those of Chapter 1; however, now the nonlinearity in the

right-hand side of the equations is not necessarily small:

F(x ) 0< T (1)

x(O ) = x0  (2)

where x is an m-dimensional vector. As in Chapter 1 we will consider

cases when the reduced equation does not have an isolated solution, but

a family of solutions. Consequently the same questions arise as there.

Under what conditions will the solution of the problem (1), (2) converge

as p - 0 to one of the solutions of this family, and in particular, to

which one? How can one construct the asymptotic expansion of the solu-

tion to an arbitrary order in 4 , uniformly valid for t in [O,TI?

The conditions, under which the asymptotic expansion will be constructed,

are numbered I, II,

I. Suppose that the function F(x,t,g) is sufficiently smooth in

the domain D(x,t,p) = D(x,t) x [O,k0 , where D(x,t) is a domain in

(x,t)-space and 40 is a constant.

7
.~,- *-~i
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II. Suppose that the reduced equation

0 = F(x,t,o)

has for each t in [O,T] a family of solutions

x = cp(tal,...,ak) = o(t,a)

where cp(t,a) is a well-defined function of t and the arbitrary para-

meters a,...,ak which satisfies the following conditions in the doltain

D(t,a) = [O,T] x D(a)

1) the function tp(t,a) is sufficiently smooth;

2) the rank of the matrix cp,(t,a) e(t,)ualto k

the number of parameters.

From Condition II it follows that F(tp(t,a) ,t,O) = 0 for (t,a)

in D(t,a) . Differentiating this identity with respect to a we obtain

Fx(p(t,a),t,0)cp(t,g) M 0 for (t,a) in D(t,a)

This implies that the matrix F x(((t,a),t,O) has the eigenvalue X(t,a) 0

and that the columns of the matrix cp (t,a) are eigenvectors corresponding

to X - 0 • By virtue of condition 2) of II these columns are linearly

independent since the multiplicity of X = 0 is not less than k .

III. Suppose that the multiplicity of the eigenvalue X = 0 is

exactly equal to k and that the remaining eigenvalues X.(t,a) of the

matrix Fx(cp(t,c),t O ) satisfy

A

. .. . . . . l 'i , . .. . . . . ... .... ,A
|4
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ReX (tc) <0 (3)

in D(t,c) .

Under Conditions I-III and certain others which will be stated below

we will construct the formal asymptotic expansion of the solution. In

§3 we estimate the remainder term, while in the next subsection we obtain

a number of auxiliary results which follow from analogous results in

[13, §14, Subsection 3] •

2. Auxiliary Results. A. Stability Manifolds. An equation which

will play an important role in the construction of boundary functions is

= F(w(O,a) + x,O,O) , (4)

where a is a parameter. For any a in D(a) this equation has the

rest point x = 0 . By Condition III the characteristic equation corre-

sponding to this rest point, det(F x((O,a),O,O) - XEm) = 0 , has the root

X = 0 of multiplicity k and (m-k) roots satisfying condition (3)

Therefore, the rest point x = 0 is not asymptotically stable in the

sense of Lyapunov, that is, a solution with initial value arbitrarily

close to the rest point will not necessarily converge to it as T

However, if we prescribe special initial conditions, then the solution

will converge exponentially to the rest point x = 0 as 1 -T . Put

precisely, we have

Lemma 1. In a sufficiently small neighborhood of the point x = 0

there exists an (m-k)-dimensional manifold w(a) such that if the

hf

- - 4.2
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initial values x(O) belong to w(a) , then one can find positivef

constants y and a such that for I > 0 the solution x(r) satisfies

the inequality

llx(-r)l < yexp(-a ) • (5)

Proof. We linearize the right-hand side of (4) with respect to x

and write the system (4) as

dx A(a)x + G(x,) (6)d, =

where

A(a) = F x((O,a),O,O) and G(x,a) = F((O,a) 4 x,0,0) - A(a)x

The function G(x,a) has the following two important properties:

1. G(O,a) = F(c-(-,a),0,) = 0.

2. For any e > 0 there exists a 5 > 0 (depending on c and

possibly on a) such that if Ijxlj < 6 and 11x21 < 8 then

IIG(x 1 a) - G(x2 ,a)II < ejjx1 - x211

This inequality is established by elementary means using Taylor's formula,

and it shows that for sufficiently small II1x G(x,a) is a contraction

operator.

As noted above the matrix A(a) has X = 0 as an eigenvalue of

multiplicity k and m-k eigenvalues Xi(0,a) which satisfy condition (3).

Thus there exists a matrix B(a) , as smooth as A(a) (cf. [29]) , whicn

reduces A(a) to the block-diagonal form

A,



B 1 (a)A(a)B(a) C(a) (7)
00

where the ((m-k) x (m-k))-matrix C(a) has the stable eigenvalues

X i(O,a) satisfying condition (3) •

Let us make the change of variables

x =B(a) (u),

where u has (m-k)- and vk-components . For u and v we obtain

dr C(a)u + Gl(u,v,), G a) (8)

in which G and G are blocks of vectors B-1(a)G(B(a)(u),ct) satisfying1 ~2
the same two properties as G(x,a)

We introduce the system of integral equations

0 If -1
u(i) = U(,a)u + u(UT,a)u (s,a)Gl(u(s),v(s),a)ds

0
and (9)

IT
v( ) = f G2(u(s),v(s),a)ds

where U(Ta) is a fundamental matrix of the system u = C(a)u(U(O,a) =E

and u0  is an arbitrary constant vector. The matrix U(T,a) satisfies

the inequality IU(T,a)u-l (s,a)II < M exp(-K(T-s)) (where the positive con-

stants M and x can depend on a ) . Every solution of system (9) also

satisfies system (8).

We apply the method of successive approximations to (9), replacing u

and v in the right-hand side of (9) by un and vn , and in the left-hand
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side by unM1  and vn+. Taking u0 =v 0 =0 we obtain U T= or

and vl( ) = 0 ; whence ,

Iul(,j)I < Mexp(-KT) 11u91 < M!Iu91 exp(-o'r) , (10)

where a is any number in the interval (0,K)

Let us set = max(,/(x-c),l/c) and choose e > 0 so rfall that

2B€ = q < 1 Corresponding to this c is a certain nu.Tber 5 iefint&

by the second property of the functions G an! G2 Let us pick > C
1 C

so that the inequality (M/2) (1/(l-q) + 1)p < 5 holds. No " ccnsiier

those u0 with lHu9f < o Using (10) and Property 1 of 1  anJ G2

we obtain

Hlu (r) - u (-r)ll < .F Mexp(-;t(T-s))¢Mluqlexp(-us)ds
0

< (M/2)qllujIlexp(-a ")

f1v2 ( ) - vl(r)!I < Fr eN11uOexp(-cs~ds

< (M/2)41u 0 1 Iexp(-C-)

It is easy to show that for n > 1

Iunl(1r) - Un(iii _< (M/2)q 1u9!exp(-ar)

Ilu 1 (.)lI < (M/2)(qn + qnil + + 2)IluOlexp(-r,,1

5 expo(-ar')

N- NS'A =

1
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and likewise for vn(). The uniform convergence in T of the

successive approximations follows, and this proves the existence of a

solution satisfying

I1u( )II < 5exp(-a ) , Iiv(r)1! < 5exp(-cr)

Hence, (5) follows directly.

The desired manifold c,(a) has the form

0o o

w(a) = fx: x = B(a)(u , u = u , v = G (u(s),v(s),a)ds
o ' D 2V

uI1 < o

This concludes the proof of Lemma 1.

If we consider the linear approximation for system (h), that is,

if we set G(x,) = 0 in (6), then system (8) assumes the form

du dv
,j-,=C(r)u , -dT

and consequently, to obtain a solution which converges exponentially to

zero as T -w , it is necessary to take v(O) = 0 (whence v( ) a 0)

0 0
and u(O) u , where u is arbitrary. Let us denote by z and y

the upper and lower blocks of the vector x corresponding to the dimen-

sions m-k and k and by B ij(a) the corresponding blocks of the

matrix B(a) ; from the equation (Z) = B(a)(O) we obtain z = (COu

and y = B2 1 (Y)u

I
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IV. Suppose that det B1 1 (a' / 0 for a in D(a)

Then for the linear approximation the manifold ,c(Qr can be

written as

y = B2 (a) B()z (1l

B. Extension of the Stability Manifcli.

The statement of Lemm.a 1 has a local character. If we continue the traie:-

tories originating in w(a) in the negative T-direction we obtain an

extended manifold (denoted by r,()) which has the sane property as -i(c),

that is, trajectories starting in P(a) at T = 0 remain in 0(a)

for T > 0 and converge exponentially to the rest point x = 0 as

In some cases we can construct 2(a) in an explicit form

(cf.§§4 and 5 below). We will assume in the present chapter that O(ry)

admits of the following analytical representation.

V. Suppose that in some domain D(z,a) the manifold 0(a) can be

represented as

y = P(z,a) , (12)

where P(z,a) is a sufficiently smooth function.

Indeed, the definition (12) is an identity along trajectories

x(r) which converge exponentially to the rest point x = 0 as I - ,

that is, the manifold O(a) consists of such trajectories. Therefore,

dr d and setting 2P(z,Q)

j __~a)

'!___________.. . .
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H( dz (13)

Let us denote F(cp(O,a) + x,0,0) by F(z,y,a,0,0) and the upper a=d

lower blocks of F by F and F 2  Then (4) and (13) imply that along

the indicated trajectory

dz

= F 1(zP(,a),,O ~,)1'(,~~rrOO J
d Fd :F(z'P(z'a)'a,0,0)" = H(z,a)II (Z,P,:(z,t),Ct,0,0) (14)

d'r 21

Equation (l) is an identity for (z,a) in D(z,a). Differentiating

with respect to z we obtain

F2 1  F F22 H F1) + H(FI5 + F1 eH) , (15)

where

)F2 )F2 3F1  1
F21 =-'F22- 11 ' - az ' 12- y

rn-k i .

and (- F ) denotes the (k x (m-k)'-matrix with elements r zJ" Ft
Bz 1 t-=l azj 1

(the upper indices correspond to the columns of the matrix). From the

definition of H(z,a) it follows that

it 2-1 2 1 i
B - P P

Therefore

r-k BH Fi , m 6Hi j  t,
z -F"= 1 - I.

4=1 B.atl Z "

IF!
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It is clear that the last sum taken along a trajectory x(T) in 42"Ct'

is equal to dHiJ/dT Likewise, along the indicated trajectcry the

equation (z FI) dH/dT holds, and consequently, from (15) we have
z1

dr (F21+ F22 H) - H(F1 + FI2H) (16)

along any trajectory x( ) in 0(.)

C. The Variational System on the Stability Manifold. We consider

now a nonhomogeneous system of equations whose homogeneous part is the

variational system for (h), namely

SFx('r)A + *( ) , (17)

where F (1) = F (c(O,a) + x(0),0,0), x( ) E O(a) for some constant

vector a in D(a), and *(T) is a certain function. The upper and

lower blocks of A having dimensions m-k and k are denoted by

AI 9md A , while the corresponding blocks of *(T) are denoted by

(-) and 2 ( ).0

Lemma 2. The change of variables

a1 = 5, A2 = H(r)5 1 + 5 2 , (18)

where H(T) = H(z(i),a) and z(r) is the upper block of x( ) , trans-

forms the system (17) into the form

d51
d - a1(.)8 1 + a12() 52 + *1( ) , (19)

i

__M

* '.1.
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d5 2

- - 22 2 ((v) -

where

all(V) = Fll(r) + F1 2 (-)H(1), a1 2 (r) F12 (r),

(20)

a22(r) = F 22(r) - H()F 1 2( ) -

here the F.. are the blocks of the matrix F(V) , as in (15)

The essence of the lemma is that by this change of variables the

equation for 82 can be separated from the equation for 51 . To prove

Lemma 2 it is necessary to write system (17) in block form, make the

change of variables, and use the identity (16).

Suppose now that the nonhomogeneous term *(v) in system (17) is

F x(,)cp(O,a) Then the second equation of (19) assumes the form

d 5 2 a22( )52 + [F x ( r) cD:(O ' ) 2 - H ( ) [Fx ( -r) (O , .)  ]1 (21)

(here and below the indices 1 and 2 denote the upper m-k and the lower

k rows of the indicated matrix).

A particular solution of system (17) for the given nonhomogeneous

term is clearly A = -cpa(O, a) The corresponding particular solution of

(21) is

52 = H(v) [a(O,a) 1 [a(Oa) 12 R(T,a)

Thus we have proved

7"jI~t
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Len'.a 3. The matrix b 2 = R(,ra) is a solution of equation (21)

satisfying the initial condition

52(0) = H(O) [Ta(O,a) ]l - [%O,a) ]2 = R(O'a)

D. We now obtain a number of important results for the matrices

all(r) and a22 (-) (cf. (20)). Let us denote by H(-) the limiting value

of H( ) = H(z(r),a) as r-- Since (11) is the linear approximation

for (12) we have that

= H(-) = B (a)Bj(a) . (22)

Let us denote by F ij(-) the limiting value of F ij( ) . Then F. (-)

are the blocks of the matrix F(-) = (CO(OY),0,O) = A(a) appearing in

equation (7). We write (7) as

F x(- B~a = B~a (0)

and by equating blocks with index 11 we obtain

F 1(-)B (a) + F1 2 (e)B 2 1 (a) = B (a)C(a)

On account of (20) and (22), it follows that

Fu(-) + F1 2 (-IH(-) = a 1 (- ) = Bll(a)C(a)B 1(a)

Clearly the eigenvalues of all(m) coincide with those of C(c) ;

they are the Xi(O,a) which satisfy condition (3). Thus, the fundamental

matrix I(T) of db1/dT = al(T)51 ( (O) Frk) satisfies (cf. [13,

(3.78)]) i
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II(r$(s)JI < c exp(-x(-r-s)) f or 0 < s < r 23

Analogously we can write (7) as

B-1 (a)F x(c) C a a) B l(a)

and by equating the blocks with index 22 we obtain

(B1(Cz))2aFl2(-) + (3-1 (a)) 2 2 F2 2(w 0

Since

(B- (a) (B'-(a) 2 B 1  (a) (24)

and

det(B 1 (a)) 2 2 / (25)

(cf. (201 or 113, (4-55) 1),

22 2 1 ) 1 1(a 1 2  22~ 12

Nowv1 Fij(1) = F .j(cp(0~c) + x(- ),0,0) converges exponentially to I- . *(cc)

as - - by virtue of the exponential convergence of x(1r) to zero,

and so it follows that

Ila22(-r)I <5 cexp(-wtr) for T > 0 (26)

2222

satisfies:

t

IMMMOW, MFX



(1) T(-) = lr Y(T) exists;
.r _W

(2) detIf(-) /0 0

(3) II (r) - IF(-) 1< c exp(-xv)

Proof. Consider the matrix integral equation

Ek + a22 (s)i(s)ds . 27

Applying successive approximations to it, we consider the sequence

Y ( ) E + ~)fs~s ~
n+l = k + 22 (S)0 Ek (28)

By virtue of (26) and (28),

do'

11Y2(dr) - r'()ll < I la 22(s)I!WY 1l(S) - o(Ods

_I .(clK)2xp(- ,Kr),

and

IIn(r) <nV1 (')!I <_.( c/K)nexp(-nx )

n
a for a= c/, n 1,2...

Hence, it follows that

VE =k + r [ i T i- I

iAda

T4"
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converges as n - (uniformly with respect to T > 0) to a matrix

,Y(r) which satisfies equation (27) and consequently, dY/d = a 2-)

and 'Y E k* It follows also that det-i'(0) / 0, for otherwise

det-'Y( ) =-0 , contradicting the relation T'(-) = E. If we now set

llrT) = 'i(. )' (0)

we obtain a fundamental matrix for which properties (1), (2) and (3)

of Lemma 4 are satisfied.

E. Let us turn now to the matrix P( ,o') of Lemma 3.

Lemma 5. det R(-,a) /0

Proof. Denota the upper in-k and the lower k rows of the matrix

B- (a)cpa(0,a) by hl and h 2respectively, that is,

( 1l) = B'(a)cpa(0,a) .(29)

Substituting w (0~a) = B(a) ()into F(w)cD (,rt) = 0 , multiplying

on the left by B (a) and taking account of (7), we obtain

(C(a) 0)(h)o

whence, it follows that C(a)h1  0 ,so that h1  0 -Since the rank of

cp OC(Oa) is equal to k , det h2 /0 .From (29) we then obtain

h 2= (B-1 (a))21i(%a(,a) 11 + (B-1(a))2 (ao a)]1

kL i IN U
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By virtue of (24) and (22),

(B1(a)) 22 Rm a]

Since det(B- (a)) 22 / 0 (cf. (25)), det R(-,a) /o0

§2 An Algorithm for the Construction of the Asymptotic Expansion

of the Solution of the Initial Value Problem

The asymptotic expansion of the solution of problem (1), (2) will

be constructed in the form

X(t,p) =X(t,O. + TX(.r,") (I = t/0) (30)

where

n-
X(t,p) =i 0 (tW + P-X Wt + .. + P. x (t)+

'Tx(.rltl) =%xr(r) + p.TTlx(.r) + .. + Pn'Tnx(-r)

By substituting (30) into (1) and representing the function F in the

form F =F+ TF Just as in Chapter 1, we obtain a sequence of equations

for the determination of x (t) and Tx() (i = 0,1,2,...)

For 0 (t) we have

F(x 0(t),0,0) = 0

By virtue of Condition I solutions of this equation can be written in

the form

XO(t t C(t,af(t)) ,(1

t

.............................
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where a(t) is an as yet arbitrary k-dimensional vector function.

For %ox(1) we obtain

dTox
- F((O,a(O)) + TxO,0)

which after the substitution x = 1T0x is made coincides exactly with

equation (4) for a = a(O) . The initial condition for ToX(T) is

obtained after substituting (30) into (2) as

Tx(0) = x - CD(O,a(o)) = )
y 0 2(o,a(o)

where z is the upper (m-k)-dimensional block of x 0 y is the

lower k-dimensional block, and 91' (2 are the analogous blocks of cn

Both the equation and the initial condition for TTox( ) then involve

the as yet arbitrary vector a(O) . Let us use this arbitrariness to

guarantee the exponential convergence of YoX(xr) to zero as T- .

For this it is sufficient to require that TT x(O) belong to D(a(O))
0

that is, that Tx(0) satisfies (12). This gives

y 0 - 2(oa(O)) = P(z ° - co,(oa(o)).a(o)) . (32)

Equation (32) is a k-dimensional vector equation for the k components

of the vector a(O) .

VI. Suppose that equation (32) has a solution a(0) = a0

Taking a(O) = a0 , xf(r) belongs to O(a0) for T > 0 , that is,

the blocks T0z(,) and %Oy(,) of TrX(1) satisfy Oy(r) =P(%oz(,)a °0

and consequently, for T > 0

W 4
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IlTTox(r)Il < c exp(-Kr)

Remark. The functional determinant (corresponding to (32) is

21(2(o, ) 0 6 (  O ,

A(a) = det(" 2 + H(z - l (j0, a ) , a) Q

P °z - P.(OC a))))

If we denote H(T0z(1,) a) by H(T),H(r) [%c(0,a) 11 [-o0(a) 12 by

R(§,a).1asin ). and P(%oz(i),a) by P( ,a) then

A(a) : det[R(O,a) - Pa(0,a)]

For many singular perturbation situations analogous to this

(cf., for example, [13, §13, Condition III]) it is assumed that the cor-

responding functional determinant is nonzero. In the present problem this

requirement is unnecessary since it is not difficult to prove that

P (r,a) = R( ,C,) - (v)'I- (-)R(m,r)(\V( ) being the fundamental matrix

from Lemma 4). Hence, it follows that A(a) = detT- ()R(-,a) /0 by

virtue of Lemmas 4 and 5.

Thus the function %OX(T) is completely determined, although a(t)

occurs in the expression (31) for xo(t) . We only know a(0) = a0

The function a(t) is determined completely from a solvability condition

in the equation for xl(t) .

The equation for x1(t) has the form

A

Ilk-- - -- -*W
ova. -k* Alp
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dx~ 
0

or

F= x wtaW)t 0 (tla~t t))da+ ' (t'a(t)) (33)

F tL(CD(t,c(t)),It,1O)

The determinant of this linear algebraic system of equations is equal

to zero. For the solvability of this system it is necessary and suffi-

cient that the right-hand side be orthogonal to the eigenvectors

9 (t,a(t))(j =l,...,k) of the adjoint matrix F~c',~),,) cor-

responding to the eigenvalue X = 0 . Let us denote by g(t,a(t)) the

(kX m)-natrix whose rows are the g.i(t,a(t)) . Then the orthogonality

condition can be written as

(34)

(g(t,a(t))[wt(t,a(t)) - F P(cp(t,c(t)),t,0)]) 01

where (gcol) denotes the (kx k)-product of g and %; analogous meaning

is given to the other terms in (34). As noted in Chapter 1 det(go) / 01
and so (34) can be solved for da/dt

Tt= f(a,t) .(35)

VII. Suppose that equation (35) together with the initial condition

a(0) =ao has a solution a = a(t) for t in (0,T] that belongs to

D(a) there, where D(a) is the dcnain in Condition II

M - 4



Through a(t) we completely determine the zero-th term of the

approximation. Let us introduce the curve L consisting of the tw:?

pieces:

L (X,t) - -x 0)+ T X ( -) ( - > 0) ;t 0

L 2 (x,t):. x X x 0 (t); 0 < t < T)

It is natural to require

VIII. The curve L lies in the domain D(x,t) of Condition I

The solution of equation (33) can be written in the form

X N = pa(t)~t) + 71(t) ,(36)

where coa(t) = cD,(t,a(t)),j3(t) is an as yet arbitrary k-dimensional vector

function, and 7,(t) is a particular solution.

For T (r

d~r F(-)lx + [F(r) - (0)][x 1 (0) + rx~(0) ] +

(37)
[ t ( ) +F L(0

where F x( -r) FX(-X0 (0) + r0 x(- ) ,0,0) , Tx(t) = F x - (t, , etc.

Note that F X(-) = F (0)

By using (36) for x 1 (0) and since F x(O)c(Da(o) =0

1- F~ (- )TIx + F ( r)wC(0)P(0) + *( r) ,(38)

d~r x 1 x
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where (,r) is known and such that 11*(4r)I < cexp(-x )

The initial condition is

, x(o) = - 1(o) = -Ta(o)1(0) - RIM .

Thus, an as yet arbitrary vector 1(0) appears in the equation a.nd

in the initial condition for rrix(T) We use this arbitrariness to Eua-a:.-

tee that TT lx() decreases exponentially as T - - Let us denote

the upper and lower blocks of Trix by TTiz and Ty , and let

Tr 1
z = 1, Try = H('r)8 1 + 52  2

where H( ) H(z(-r), a) Lemma 2 implies the equations

d51
-r = a(r)8 1 + a12(.)82 + [Fx(r)cp(O)]11(0) + *,(-)

d62 = a 2 (a) 2  + F (x( ) a(0) ] H r) F ( )ca(0)] W O)

+ [V2 - H(,T) 1 (.r)] (39)

with initial conditions

8 (o) = -coa(o) 113(o) - l(o)

52(0) = (H(o)[ (o)I1 - 0(()12]0(o) + (H(0) F(0) - (4(o)0

2 (%(O0)(O -1 lO we ha2

Using Lemma 3 and introducing 2 =(H(0)11 (0) -i(0)] we have

- M______._
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(1 = R(T,)(O) + 2()°

+ fj' (2'( s)[,() - H(s)*1 (s)]c s

By requiring that 62(1 )  0 as T we obtain

0(o)f8o+ j TV-I(s)[* 2 (s) - H(s) '1 (s)lds] (,2

By virtue of Lemma 5 this equation is uniquely solvable for 0 1,0)

Substituting into (41) and using the exponential decay of Y( r) and H(-r)

we have

115 2(I)l < cexp(-xr) for -" > 0 (143'

Since Fx (r)p(O) = [Fx(l ) - Tx(O) ;ca(O) satisfies the same exponen-

tia.l estimate ,

d a11(,r) 81 + (,T)

where II 1(r)II < cexp(-tr) Thus

51(-) = 1 (1F) 0)+ ,r (s)l1 (s)ds

where the fundamental matrix (T) satisfies (23), and so

le(-r)ll < c exp(-xr) + co exp(-K(-r-s) )c exp(-Ks) ds

< c exp(-tr) (44)

J

' " J' ' . .. . . .. ...J IL i _- -: t__ _.,_-,_ _.,__ _.-

K!



- T (t) -x + !--x(t)'i) + (t) (t) (45)dt x 2 2P x 1 J

Here (X, Fx (x 1) is the vector whose components are the scalar products

- Txx Xl> - E (a2 F/axaxlxt)x (2=1, ,m) Substituting x from
tJ=l

formula (36) and writing the solvability condition for equation (45) in a

form analogous to the condition (34), we obtain the equation

d f ( ,t). (46)
dt 1

At first glance it may seem that f1(8,t) depends quadratically on 8(t)

as a result of the term (x1,F xx(t)x 1) in (45). However this is not the case,

since

< g (t,CL(t)), (Tct(t) B(t), F x(t) T (t) B(tO) > = 0 (47)
j axx at

for J - 1,...,k. In order to verify (47) we differentiate the identity

F(V(t,a),t,O) = 0 twice with respect to the components a and a of thep q

Vector a(p,q = l,...,k) and obtain

a-. xx a + x aa aa
P q p q

Then, forming the scalar product with g (t,a) and noting that < gi, F

a-2q= 0 since Fx*g j  O, we see that
p q

< Fj >< 'J '=N - 0

) aa

................................................
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for j, po q 1,...,k.

Thus equation (46) is linear, that is, f1 (6,t) = A(t) S(t) + B (t), where

expressions for A(t) and Bi(t) are obtained easily from (45). By virtue of

this linearity, there is a unique solution of (46) which exists in [0,T]

and satisfies a(0) = 0

Thus the term of order p in the asymptotic expansion is completely

determined. The determination of the successive terms of the expansion proceeds

in a manner analogous to that of x 1 (t) and TI x(T). At the i-th step an

arbitrary function (say y(t)) appears in the expression for x i(t). First

we determine y(O) from the condition that 11 x(T) - 0 as T - -: the equation

for y(O) is of the same type as (42), with det R(-, O ) 0 0. Then from the

solvability condition in the equation for x i+lt) we obtain an equation for

y(t) like (46), namely

d y = A(t) y + Bi(t),
dt

which determines y(t) uniquely in [0,T].

Thus it is possible, under Conditions I-VIII, to construct arbitrarily

many terms of the series (30).

A
-oi -Il
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§3 An Estimate of the Remainder Term

As in Chapter 1 let us first make a more precise formulation of

Condition I concerning the smoothness of the function F(x,t,4) We note

that it is possible to take an arbitrary &-tube of the curve L

(cf. VIII) to be the domain D(x,t)

I. Suppose that the function F(x,t, ) has continuous partial

derivatives with respect to each argument up to order (n+2) inclusive

in the domain D(x,t,) = D(x,t) X [0,4 O ]

Let us set

k
Xk(tp ) = E 4i(xi(t) + Tix(,))

i=O

Theorem 2. Under Conditions I-VIII there exist Dositive constants

p0 and c such that for 0 < 4 : 40 the solution x(t,4) of the

problem (1), (2) exists in the interval [0,TJ, is unique and satisfies

the inequality

llx(t,IL) - Xn (t,4)11 < c~ n+ l1 (0 < t < T)

Proof. Substituting x = Xn+1 + E into eqaation (1) we obtain

an equation

p = F (t,pj) + G(!,t,) (48)

where

F x(tp) F Fx(X l(t,),t,)

tVl
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and

dXn+ l(t, L)

G(,t1 .)=F(X 1 (t,Pj) + F -F(t,LL) Id__t

The function G( ,tp) has the following two important properties

which can be established just as easily as in 113, §10, Subsection L]

namely

1. G(O,t,g) = (,,, n21

2 2
2. If l )<a(t,P)I,< -l 2 and < cpi for 0 < t < T

and 0 < j; < l (for some constants c1  and .1 then there exist

constants c0  and p0 P-  such that for 0 < t < T and 0 < <

lGlt,)-G(E 2,ttL)1 < Co 2 tmax.I , (Y
[0,T]

(for p0 note the remark in Subsection 3, §1, Chapter 1) In conformity

with Chapter 1 G(f,t,p) is a contraction operator with contraction
coefficient of order (p 2) for E =O(p 2

We now introduce the change of variables

L= T(t) (v) ,

where

T-1 (t) (t)T(t) Olt

0 0

-Ada

771:
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for i (t) =F x(-x (t),t,0) Here the eigenvalues X. (t,a(t)) of the

((rn-k) x (m-k))-matrix a 1(t) satisfy condition (3) Then

T1 (t)F (t,p.)T(t) al~'L 1('L

so

while the other blocks a ik(t,4i) satisfy

Ila A (t4L)I < c(ex(-Kt/p) + 4

The system for u and v has the form

du -
4 T a 31(t,p)u + a 12 (t,P)v - Pb 1 1 (t)u - Pb 12 (t)v + (T-C) G)

(50)

dv -lG1,T a 21(t,p)u + a 2 2 (t,p)v - pb21 (t)u - b 22 (t)v + (T 2)

where the b (t) are the blocks of T- t dT(t) Note thatik(t dt,

AA (t,p) =a ik(t,4) - VbA()satisfy the same inequalities as the

a ik(t,J)

Suppose now that U(ts,P) and V(t,s,p) are the fundamental

matrices of the homogeneous systems

W = A (t,P)u (U(s,s,P.) = ErnK

d -v = t~~ (V(s,s)= E)
dt 2 2~4 ~ =k

Co..
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By the properties of all(t), All(t,4) and A22 (ti) , these fumdamental

matrices satisfy for 0< s < t < T and 0 < < iO

JIU(t,s, L)II < c exp(-K(t-s)/P), Ilv(t,s,4)11 < c

Using the fundamental matrix V(t,s,4) and the trivial initial

values of u and v (as well as of E), we can express the second equation

in (50) as the integral equation

t
v(t,) K2 (t,s,.)u(s,p)ds + Q_(u,v,t,L) (51"

0

Here the kernel

K2 (t,s,) = 4-lV(t,s,)A 2 1 (s,')

clearly satisfies the inequality

1K2 (t,s,4)l < c[t- exp(-ns/p) + 11 , (52)

while the integral operator

Q (usvvt)p= V(t,s,p)(T-G) 2 ds
0

by the two properties of G(.,t,4) satisfies the estimate Q2 (O,O,t,) =

@(Un*1) and is a contraction operator with an order 0(p) contraction

coefficient for u and v of order ( 2)

By substituting (51) into the first equation of (50) and using

U(t,s,p), we obtain the integral equation

I

f41 -r

tI
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u(t,u.) K fK(t,s,.)u(s,p~)ds + Q1(u~vt,0± ~

where the kernel

satisfies the same inequality as K,(t,s,ji) (cf. (52)) ,while the

integral operator

Q1(u~v~tJO = 4L~ U(t,spL)[A 12 (s, .)Q2 U v)s4L + (T- G) 1]ds

has the same two properties as Q 2(U,vt,.)

Let us denote by R(t,s,p) the resolvent kernel of K 1(t,s,.L) . It

satisfies the same estimates as the kernel itself. We can express (53)

as the equivalent equation

t
U =~g Q1(u)v,t,p) + 1 0 (t,s,p.)Q1 (u,v,s,p.)ds

- S1(uv~t)4.L)

where the integral operator S 1(u,V,t,l.) has the same two properties

as Q, (u,vjtPP)

Substituting (54) into (51) we obtain

t

0 Kf K2(t,s,IL)S 1 (Uv,s~j.)ds + -2 (ujv.%t,P.)

5 S2(u,Vt,WLI

& NMI
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where S2  has the properties of S1  Therefore we can apply the methc: i

of successive approximations to the system (5h), (55) (with u0 = V0 -

and easily show as in (13, §10] that for sufficiently small i a solutic::

u(t,p), v(t,v) exists in the interval [0,T] , is unique and satisfies

the estimates u(t,P) = ( n+l) and v(t,p) = &(n 1) Hence, it follw:

directly that .(t,p) = x(t,)) - Xn1 (t,) = @(nYl), so x(t,4) - Xn(t,gi

(n+l ) and this proves the theorem.

§4 Special Cases

1. Consider the system of equations

dz = A(y,t)z + B(y,t)

(0 < t < T) (56)

dX = C(y,t)z + D(y,t)
dt

with the infinitely large (as .i - 0) initial condition

0 0
z(OP) = z , y( , ) = y (57)

In the special case that z and y are scalar functions with C(y,t) 5 1

and D(y,t) - 0 this problem was considered in detail in (13, §161

Suppose now that in the system (56) z is an (m-k)-dimensionJl vc:t ,r

and y a k-dimensional vector. Let us introduce in place of z the

function pz (which we will again denote by z ) , then (56), (57) takes

the form

. "- 7 - i -
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dz

z= A(y,t)z + B(y,t) ,

Al = C(y,t)z + O(y,t) ,

0 0z(o, ) = z , y(o, L) = y

This is a problem of the form (1), (2) for the m-dimensional vector

function x (z) The reduced system
y

A(y,t)z = 0 , C(y,t)z = 0

has the family of solutions

z = 0 , y = a- cD(t,a)

The matrix Fx (c(t,a),t,O) can be written in block form as

A(a,t)

C(a,t) 0)

and, consequently, Condition III is satisfied provided the eigenvalues

Ai(t,a) (i = 1,...k) of the matrix A(a,t) satisfy the inequality (3),

that is,

ReXi(t,a) < 0 (58)

The matrix ca(t,a) , consisting of the eigenvectors corresponding to

w 0 , now has the form

I
(P -(t'- ~- 4

E_______
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and the system (4) can be written as

d A(iy,0) z , d (a y 0,) z (9dr d

Suppose that z and y are scalars, that is, m-k = k = 1 . Then

condition (58) reduces to A(y,t) < 0 . If we assune that C(y,t) is of

constant sign then from (59) we obtain an explicit representation of the

manifold 2(a) , namely

z = jy A(ay,O) dy , (60)

which agrees exactly with the formula in (12)

If C(y,t) 1 1 and D(y,t) - 0 (this case was discussed in

£13, §16]),then (= (0) , g = (1,-A), F ('), and equation (34)

assumes the form

A(a,t)j + B(a,t) = 0

This agrees precisely with equation (4.385) of [13,&16] , with a(t)

playing the role of y0 (t). The initial condition for a(t) is

determined from equation (32) which, in the present case, through (60)

can be written as

y0-a(0)
zO = fO  A(a( O) + y,O)dy ;

0

hence, we obtain

z = A(,O)d or z0 + A(%,O)dj = 0

a(O) 0

I _

__ _ -
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The succeeding equations agree exactly with the formulation in equation

(4.395) of [13, §16] , and from them we can determine y (0) . Thus ct

coincides with y0(0) , that is, the formal construction of §2 reducez

to the results obtained in [13, §16] .

2. The general singularly perturbed initial value problem

dz = , 4Ly f(z,y,t) (0 < t < T) '61
SF(z,y,t)

0 0z(0,4) z , y(OL) = y , (62)

which was considered in detail in [13], can be reduced to a problem of

the form (1), (2) To accomplish this we multiply the second equation

by p , and set x (z) and G(xtp) We obtain

d- = G(x,t,4) , (63)

x(O)P) = 0 , (64)

whose reduced system has the family of solutions

Y= , =Cj (t,a)

where cp(t,a) is a z-root of the equation F(z,a,t) = 0 . It is possible

to develop the construction of the asymptotic solution of the problem (63),

(64) by the scheme of §2 , which after a finite number of calculations

gives the same result as in [13, Chapter 3]

*k AW V- Ole~.
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§5 Applications of the Asymptotic Method to Problems in Kinetios

1. The Equations of Chemical Kinetics. Suppose that there are n

chemical reactions involving m substances, na.ely
i+

Ia ll~l+ ... + Gim~m -  i l X1  ... + .X
c1X+k. ir.r

1

1i =,...,In)

Here Xi  denotes the i-th substance, aik , 3ik are integers denoting

the number of molecules of the k-th substance which participatc in the

i-th reaction (corresponding to the forward and reverse reacti-n,

respectively), and k. , k.- are the rate constants of these reactions.2. 1

If we denote the concentration of the t-th substance by x. , then

the changes in x during the time dt , determined by the reaction

rates k+ , k- , are given respectively by

+ ail a.
dxI& = k il . x m m(:i&-Oit ) d t ,

dx =-k'.x i ir

dx ='kx X m (a U-if )dt

and consequently, the total change in x (as a result of all the

reactions) is equal to

n + al ex - Oil OirdxY T ywidt ,where w. =k x ... x -k x x
i=l 1 .l m m

and v-

a
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Thus we are led to the system of differential equations

dx n
.t - y w ( = l,...,m) (65'
dt i=l

Under actual conditions the rate constants differ widely from each

other. This property can be expressed by means of a small parameter .

+ +
Suppose then that k. = i k. (i = 1,..., n < n . Then we have

1 1

-- = .Jwi = k+ X ... Xm - k. xI  ... Xm (i 1 ,.. .,n)

So the system (65) can be written as

dx: n n
- t . wi + . yiwi (L = 1,... ,m) (66)

i=n+l

Setting L = 0 we obtain the reduced system

n
0= Y wi ( = l,...,m) (67)

1=1

In practice it often happens that system (67) has a family of solutions

which depend on one or more arbitrary parameters, and thus, the problem

reduces to a singularly perturbed equation (66) in the critical case.

One method for determining approximate solutions of the equations of

chemical kinetics containing a small parameter is known in physical

chemistry as the method of quasi-stationary concentrations of Semenov-

Bodenstein. A number of works are devoted to questions involving the

mathematical justification of this method (that is, to a justification

of the passage to the limit as - 0) ; cf., for example, [17,181

7 "Mr,, 7
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We now discuss an example of an actual chemical reaction for which the

calculations can be carried out using the asymptotic methods presented in

this chapter. This system is

dx dx
k k - . xx

dt 1 1 12' dt kI 1 - 1 x2 -k3x23 - h4x2 4

(68)
dx dx4

-I= -k-x x -
dt 3 2x3 2 'dt -k4x2x4

[Such a system occurs in investigations of the reaction kinetics of

organometallic compounds and was proposed by A.N. Kashinym, a colleague

of ours in the chemistry department of Moscow State University. ] The rate

constants have the orders of magnitude

+lO 1k0 8lOI0  -kI 1 , k 19, k+ ,1 k 4  108  k 0

113 4 '3 4

Dividing each of these equations by k4 and making the substitutions

/ a = k b = k + and kk = c ,we obtain

dx -cxx

- - 1aX+bX 2 ' dt - Iax l ' bx 2  2x 3 - x 2 x4

(69)
dx, dx4

11 dt -cx 2x 3  , -x 2 -4

The reduced system

0 =bx2  0 -bx 2  O x 2* 3  x2x4

0 =-cx 2 x 3  ) 0 =-

has a family of solutions depending on three arbitrary parameters, namely
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X =, l x2 = 0 , x3 = 0 2 ,x 4 = a3  (7o)

Here the matrix F x(m(t,a ) ,t,0) is

0b 0 0

0 -b - ca2 -a3  0 0

0 -ca2  0 0

0 -a3  0 0

and its eigenvalues are X X = X 3 = 0 and X = -b- ca 2 -a 3  Since

b > 0 , c > 0 and a2  a a3  are nonnegative (which makes sense physically),

it follows that X4 < 0 Thus Conditions I-III of §1 are satisfied.

The system (4) now has the form

dx1 dx2d 2 ) d, 2 2(a. x3 ) - x2(a 3+x4)
-= -ba2x - x( +

dx , c 
XdT -- -dV " x2(a3+x)

This system is sufficiently simple that it can be integrated, and we obtain

for the manifold 0(a) the exact representation

x2--_ 1 (exp(- -Sxl  -a2 + (exp(- x -1 a3

X (71)
(exp(-x , x (exp(-- ) -1)a 3x3  bexp)-a2l)- 4 =3

Thus, as in (12), the lower block (consistingof three components) of the

vector x is expressed in terms of the upper block (consisting of one

coponent). By the same token Condition V is satisfied. An elementary

argument verifies Condition IV
a

_ _ _ _ I 4

- t MA,-e



Suppose now that the system (69) is furnished with the initial ccni4i-

0
tion x(O,V) = x Then the vector equation (32) assures the form

S O(x0-ao0Y + (exp[.-(x -a (0))]-1 i( O)
2 _( L b 1 1

+ (exp[--!(x 1  - (0) (72'

O c 0 0iO }2Ob 1 3
x -a (0) = (exp[--(x0- a(')] 12- (0)
3 2 b 12
0 ( 0) = (exp[- 1 (x I - ( 0) ) l-11a (0)

By setting t = x - a(O) we can determine a2(0) and a (0) in terms
1 .L23

of t . namely

0 0 exp( 1
a2(0) = x~exp(3 t) , a3(O) = x4 b

Substituting into the first equation of (72) we obtain an equation for t

0 C 0 ( 1  0 0 0

t+x 0exp ( *-t) + x 0 exp(-! t) = xO + x -x

3 b 4 3 4

Elementary considerations show that this equation has a unique solution
0 0

for x3> 0 and x 0 > 0 . Thus cl(O), a2 (0) and a3(0) are uniquely

determined from (72), that is, Condition VI holds.

One can also write equations for al(t), a 2(t) and a3(t) . In

the present case it is a matter of integrating by quadratures. Thus one

can determine x1 0 (t) a l(t), x 2 0 (t) = 0, X3 0 (t) = a2 (t) and Xo(t) =

%(t)

The determination of lToX(T) reduces to the integration of the

scalar equation



d = b{ -TTOx, [exp( - o-xl) - Ia 2 (o)
(73)

+ [exp(-iTToxl) - 1)ca3(0))

with TToX(O) = 0 
- c (0) by quadratures. After determining TTx ( ) the

remaining functions oXi (T) (i = 2,3,4) are found by means of the equation

for O(a) (cf. (71)) .

Using the scheme of §2 we can also construct the successive terms

of the asymptotic expansion.

2. Equations of a Nonequilibrium Gas. The following equations are

valid for a spatially homogeneous gas with a distribution of velocities at

equilibrium:

dni

I-L-d Zi(nT) + p E.(n,T) (i = 1,...,N) (74)

dT_ 2
dt -V 2 (n,T)

Here ni (i = 1,...,N) denotes the density of those particles with

internal energy ei and T is the translational temperature [251

0 0To these are added certain conditions ni(O,p) = n. and T(O,L) = T1

Si0(nT) characterizes the change in n. as a result of exchanges of

energy in collisions, while Eil(n,T) characterizes the change in n.
1

as a result of the transfer of internal energy to the energy of trans-

lational motion. The small parameter p signifies that the transfer

of internal energy to translational energy is considerably less likely

than the exchange of internal energy as a result of collisions. For

particles of equal mass we have

.... ____ _ V AN
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ionT k t(T) (nkn - n.n m

Ae=O
im k T) i mICil (n,T) 'C P t P T)nknt ,('% ~ m

and

t (n,T) =E e (P (T) n - Pm(T)ninm )2 kL. i k (Iyn .(~k,L,m,i

imisT

Here Ae = e. + e - ek - e , while Q (T) and 'm( are the

probability of the exchange of internal energy in collisions and the

probability of the transfer of internal energy to translational energy.

The reduced equation E io(n,T) = 0 has solutions obtained from

the condition that nknt = ninm ; whence, taking note of the fact that

Ae = ei + em - ek - e = 0 we have that n = a exp(e k) for arbitrary

parameters a and P The Boltzmann distribution, in which -I/a

denotes the internal temperature and which depends on t , is found

by means of the following approximations which agree with the general

rules stated above in §2 .

The system of equations for the 7T -functions has the form

dfon
i

dr = EiO(n( O) + 7T0n, T(O)) (i = 1,...,N)

The law of conservation of particles and the law of conservation of

energy can themselves be represented by two first integrals of this

system, namely

. ...
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(ni(0) + Toni) = const. = n ()

i i

and

t ei (niO) + ni) = const. . e i(0)i i

and consequently, the equations

CTrn = 0 , T eoTni = 0
i i

furnish a 2-dimensional stability manifold, while the equations

r [n - a ( O)exp(O ( O)e i ) = 0 0 i[n i - a ( O) e x p ( ( O) e  0

i i

0
lead to a determination of a(0) and 1(0) . We note that C n. = 1

i1

implies immediately that ci(O) can be determined in terms of P(O)

that is, c(O) = 1/ 'exp(1(0)e.) , after which P(0) can be determined

fram the second equation.

Equations for a(t) and A(t) can be obtained from the general

rule of §2 involving orthogonality conditions. In the present case

it is clear that system (74) has a first integral of the form

2 0O 2 0 n
T + -ie n =const. =T + 2 e i ni 0 =

31 i_ i i

Whence, by virtue of the fact that the T 0-function converges to zero

as T ,we have that

T(t) + 3Ceini(t) = T ein£ , Cni(t) 1• (75)ii

SI
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From the second equation in (75) a(t) = I/ t exp(lt)ei' , after whichi 2

the first equation gives the connection between T(t, an! 5't, Sub -

stituting T(t) and n(t) , expressed in terms of 0(t) , into the

second equation of (74) we obtain a differential equation for ait [3'<.

We note finally that higher approximations are also constructei

in [251

4,

4,
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Chapter 3

Boundary Value Problems for Singularly

Perturbed Equations of Conditionally

Stable Type in the Critical Case

In the previous chapters we assumed that the matrix F (r(t,a),t,O)x

evaluated along a family of solutions of the reduced equation had the

eigenvalue X 0 0 of multiplicity k arid that its other eigenvalues

satisfied the inequality Rek < 0 (Condition III) . However, it fre-

quently happens in applied problems (cf. 03) that this matrix also has

eigenvalues satisfying Re% > 0 in addition to those with X 0- 0 and

Re% < 0 . Such cases are naturally calle' cases of critical conditional

stability, and we shall investigate 1elow the associated boundary value

problems (as opposed to the initial value problems of Chaptersl and 2).

We examine such problems in this chapter as well V3 applications of

our asymptotic analysis to some concz.ete systems. In order to do this

we will make extensive use of the ideas, methods and results of [13, §14]

where we investigated boundary value problems in the "ordinary" conditionally

stable cases (that is, X a 0 is absent).

The systems of equations considered in this chapter do not have

the same general form as those in Chapter 2 ; instead, we study several

important special cases.

11 Boundary Value Problems for Quasilinear Systems

1. Statement of the Problem. In this subsection we consider the

system of equations

£.4 " I '
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dz

d- = A(u,t)y + B(u,t)

d-1z = z , (0< t < 1)(1

du
d= C(u,t)y + iD(u,t)

where z and y are scalar functions and u is a k-dilrensional vector

function. In this case the system is quasilinear because it is linear with

respect to z and y . The choice of such a system is motivated in part

by its occurrence in the study of applied problems from semiconductor theory.

We prescribe for (1) the following boundary conditions:

0 1 (2
z(o,P) = z , z(l,4) = z , u(0,p) - u (2)

I. Suppose that the functions A(u,t) , B(u,t) , C(u,t) and D(u,t)

are sufficiently smooth in some domain G(u,t) .

II. Suppose that A(u,t) > 0 in G(u,t) .

It is clear that the reduced system

A(U,t)y = 0 , z = 0 , C(u,t)y = 0

has the family of solutions

Z Oy= 0 , U=,

where a is an arbitrary k-dimensional vector. The matrix F x(evaluated

at z y =u = =O) ,fo-

A "a
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Ay+ LB\ iZ

F = and x Y ) is equal to the block matrix
(Cy+ p u

(0 A(a,t) 0

1. 0 0

0 C(a,t) 0 )

It is easy to see that F has X = 0 as an eigenvalue of multi-x

plicity k as well as two eigenvalues of opposite signs in the domain

G(a,t) , namely X1 , 2 (a,t) = .V/ -,t) Thus we have indeed a critical

conditionally stable case. This leads to boundary layers at both ends

of the interval [0,1]

2. Construction of the Asymptotic Expansion of the Solution.

The asymptotic expansion of the solution of problem (1), (2) will be

constructed in the form

x(t,P) = x(t,P) + X(To+,) + QX(¢l,p)

(3)
(,T0 = t/P , = (t-1)/L)

where
i(t,&) = 0 (t) + ,Tl(t)+ ... + 1n(t) +

Trx(-ro,4) = ox(,o) + L &Ilx(vo) + ... + ,n nX(-ro) + , (4)

Qx(-r,) = %x(,r) + Q 1x(v) + ... + t, nx(l.1 ) +

1Ix('o,4) and Qx(Tl,4) represent boundary series at the left and the

right ends of the interval [0,11 respectively.

7. 
4
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Substituting (3) into (1) and replacing the right-ha-nd side F by

the sum F+ TrF+ QF (as in [13, §14, Subsection 51', we obtain a

sequence of equations for determining xi(t) , TTi x() and Qix( '

(i = 0, ,...

For x0 (t) we have the reduced equation

A(u 0 t)Y = 0 , oC t) y = 0

from which we obtain

zo = 0, y0 = 0 , uo = a(t) , (5)

where a(t) is an as yet arbitrary k-dimensional vector function.

For X(V o) there is the system of equations

cro z  V OY
dT- = A(a(O) + %ou,O) O y , d TT 

z

d1 oU (6 )

dT 0U
-- = C(a(O) + TrU, O)%oy .

The initial condition for oX(To) is obtained after substituting (3)

into (2) and has the form

Tr0 z(O) = z ° , %oU(O) = u - a(O) • (7)

As usual, we also require that %ox(To) - 0 as TO - , that is,

10x(M) = 0 . (8)

6S --opA
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The as yet arbitrary vector a&O) appears both in the equation k

and in the initial condition (7). Moreover, the initial value of

T 0Y(T0) is as yet arbitrary. We will take advantage of this arbitrari-

ness in order to guarantee that condition (8) is satisfied.

To this end let us first describe the stability manifold 0 for

system (6) ; it is analogous to the one which figured in our discussions

in Chapter 2. From (6) we have that

dVou C(a(0) + %roU,O)

d oZ-(a(O) + u, 0)

Let us denote by

T0 u = Uo(a(O), T0
Z)  (9)

the solution of this system such that r0u = 0 for Tv0z = 0 , that is,

U0 (a(O),O) = 0 • By virtue of Conditions I and II this solution exists

and is unique in a certain neighborhood of the point T0z = 0 • Substituting

it into the first two equations of (6) we obtain the system of equations

d~oZ = A(a(O) + Uo(a(O) ,T Z),O)TT y
do0 dTTY (10)

dv0  0

The rest point oy = 0, 0= 0 of this system is a saddle (that is,

conditionally stable), since the roots of the corresponding characteristic

equation are clearly equal to -/A (O) ,0) , and by virtue of Condition II,

are real and have opposite signs. System (10) can be integrated in an

elementary fashion by quadratures, and for stability as T- we nbtain

the equation of the separatrix of the saddle as
4U

Spnm V
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Tr0z 1/2

0ry=-2 A(a(O) + UO(a(O), )0) )  sg(0z)(

0

The proper choice of the sign in front of the square root (in the present

case, minus) was easy to make from an analysis of the phase plane of the

variables T0 z, TToy . After linearizing the right-hand side of (11) with

respect to T0z we obtain

lTy = zAa00

The formulas (9) and (11) give an analytic representation of the one-

dimensional manifold 0 having the property that if the initial value

%x(0) belongs to no , then Vox(io0  belongs to 00  for To > 0 . For

such a T0 x(,r0) the inequality

IjoX('ro) < c exp(-K-r0 ) (,o>0) (12)

is satisfied, which implies the validity of condition (8)

Thus, in order that a solution of system (6) satisfy condition (8)

it is necessary to require that the initial value Ix(O) belong to 0 0
O0

1110. Suppose that the values of T0Z = z belong to the domain of

definition of the solution (9)

Substituting (7) into (9) we obtain the equation

uo -a()=U(a(), z° ) , (13)

which represents a system of k scalar equations in the k unknown

components of the vector a(0) i
011'
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IV. Suppose that equation (13) has a solution a(O) =a

If we take a(0) = aO and define the initial value Oy(0) by

means of equation (11) (for this we must put T0z = zO and a(0) =

in the right-hand side of (11)), then %ox(0) belongs to 0 , and con-

sequently, x(r0 ) satisfies the inequality (12) and condition (8)

We note that for the actual determination of TT 0x( 0 ) it is

necessary to substitute (11) into the first equation of (10) and to

solve the resulting scalar equation for 0 (-) with the initial con-

dition r 0Z(O) = z0 . The functions T 0u(- 0 ) and %oy(io) are determined

by formulas (9) and (11) once Toz(-o) is found.

Thus 0x(T 0
) is completely determined, while for the as yet

unknown function u 0 = a(t) we have the initial value a 0 • The

function a(t) is determined completely by the following steps.

The equation for x1 (t) (that is, for z1 (t), Yl(t) and u1 (t))

has the form

dzo

dt= A(uo,t)Y1 + Au(Uo,t)YOU1 + B(u 0 ,t)

-- = -

dt 
1-at- c6uO01t) j1 + C u 0 ,t)y7u 1 + D(U0 ,t)

Hence, by virtue of (5) we have that

l = 0 , yi = -B(Ct(t),t)/A(a(t),t) , (14)

t _ C(a,t)B(a,t)/A(a,t) + D(a,t) (15)



Equation (15) is a differential equation for the unknown function a(t)

V. Suppose that equation (15) together with the initial condition

a(O) = aO  (see IV) has the solution a = a(t) for 0 < t < 1

Thus X0 (t) is completely determined. Concerning x1(t), the formula

(14) defines zW(t) and l(t) , while U-l(t) is as yet undetermined,

that is, it is possible to set u1 (t) = 1(t) , where 0(t) is an as yet

arbitrary k-dimensional vector function.

For Trlx('r O) we have the system of equations

dTiz
d-- = A( 0)TT1y + AU(- 0 )T0IIy'u+ 0(o)) + cl(.0 )

1 ~ 0, (16)

di 0 C( 0 )rly + Cu(-ro)Tr(TTu+ p(o)) + r2(,o)

where A(r0)" = A(a 0+ Tr0u(-r0 ),0) and analogous meanings are attached to

the terms Au(0) , C(T0) and Cu(-0) , while pl(r0) and w2(-0) can

be expressed in terms of known functions and satisfy the exponential

estimates 1lcpi(,r 0 )II < cexp(-K-0 ) • The supplementary conditions for

(-rh) ave the form

11z(O) = 0, Tr1u(O) = -s(o) ,

(17)

I1x() = 0

As in the case of %o(xro) we can take advantage of the arbitrariness

of 1(0) and choose it so that condition (17) is satisfied. Let us make

the change of variables in the system (16) j
______________________________________________
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c(, O)
Ti Z 1 , 8ly 2 ,Tl

u -Ar 61+ 3  (18)

It is easy to verify that we obtain the system

d5 1 Au(r0) C('0)

dr0  A( 0)  0Y('0) 1 + A(T0)82

+ Au(rO) T y(,o)(8 3 +0(o)) + c .( o)

d82

dr0

C( "o) A u r0 )
j C - u( () Y(., ) (E3 + 1(0))dr 0  A(,rO)

c(00)
+ [t2(,o) - col(ro )

0

We note that C(T0)/A(T0) plays the role of H(T) in Chapter 2, and

that the application of this change of variables, as in Chapter 2, leads

to a system (19) in which the equation for 83  can be separated from

those for 81 and 82 *

The supplementary conditions for 5 1 ,5 2  and 63 are
1 (0) -- 0, 53 (0) =---0() , 5i(-) -- 0 (1-- 1,2,3)

The solution of the tird equation in (19) and the initial condition

S3(0) = -0(0) can be written as
3r 0

83(,o) -1(o) + Y(.r 0 )Y' (s),v 3(s)ds

0
where t(-r0 ) is a fundamental matrix of the corresponding homogeneous

system (T(O) = Ek) , having the same properties as the function T(T)

in Lema 4 of Chapter 2. The function

] I'
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c3 (. O)  2( A(I0 ) 1( 0

satisfies an exponential estimate.

The condition 53 () = 0 uniquely determines P(O)

P(O) = (-)o Y- (s)C 3(s)ds

By virtue of the exponential convergence of T( to Y() as --

(Lemma 4, Chapter 2) we obtain for 53(- 0  the estimate

115 3 (.o) 11 <5 c exp(-KT 0) (-ro>O0) •

Having defined 5 ('0 we now write the first two equations in

(19) as

d 1 Au('r )C( 0 +
-0 A(,O)5 2 + (' )

0~ A ('0) T~~~) 1 ++*~)(0

db 2

d',rO '

where *('0 ) is an exponentially decreasing function. The homogeneous

system corresponding to (20) is the variational system of (10) . Hence,

by virtue of Lemma 4.5 in [13bit follows that there exists a unique solu-

tion of (20), which satisfies the conditions 51(0) = 0 , 8i(m) = 0 and

which is exponentially decreasing, that is,

II~i(1o)I < c exp(-xwr O) ('r0 > 0 i = 1,2)

Thus TT1x(-r0 ) is completely determined and satisfies an exponential

estimate, while for the as yet unknown function P(t) we have found the

initial value 0(0) The complete determination of 1(t) follow- by

IS VP
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steps analogous to those used for the determination of a(t) , except that

for 1(t) we obtain a linear differential equation. Thus it is possible

to construct the terms xi(t) and Ii x( 0 ) up to an arbitrary order n

The determination of the right boundary functions Qix(ri) is

analogous to the determination of the left boundary functions ri x(To

For Qx(v) we have

dQoZ dQOY
d A(Uo(1)+ Q0u')Q° y' d % , (21)

dQoU = C(Uo(1) +u,)Q

and the supplementary conditions

%z(O) = z, %x(--) = 0

A fundamental difference between system (21) and the analogous system (6)

for ox('r0 ) is that uo(l) is a known quantity., while at the same stage

u0 (0) = a(0) in system (6) is as yet arbitrary. By using this arbitrari-

ness to choose a(O) in a special way (equation (13)), we were able to

satisfy conditions (7) and (8). In system (21) there is no such

k-dimensional parameter, but the number of supplementary conditions for

Qox(Tl) is clearly less than the k identities obtained by comparing

(7), (8) since %u(O) is not specified.

Frcm the first two equations in (21) we have

du C(u (1) + %u,1)
- = - •(22)
dz A( u(l) + %u,l)

Let us denote by

4 a

&A, 44
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%u = U1 (%Z) (23)

the solution of equation (22) satisfying the condition QOu 0 for

Qoz = 0 . From this we obtain (cf. (11))

Qy = (2Q0 J' dE 1 sgn(QoZ) (24)
0 A(Uo(l) + UI( ) ,l)

The formulas (23) and (24) provide an analytic representation of the one-

dimensional manifold 0i which is analogous to that for the manifold C0

It is natural then to require that

1
III 1 * The valuetof QO = z belonge to the domain of definition

of the solution (23) •

The initial values Qou(O) and QoY(O) are determined by the

formulas (23), (2) for QOz = z , while the solution Qox('T) of system

(21) with these initial conditions belongs to 01 for rl < 0 and

satisfies the inequality

II%x('r1 )ll < c exp(K,-r (,r<0) (25)

Consequently it also satisfies qox(--) = 0

We obtain for Qix(il) the system

dQ1y 26

dr-- A(,rI )QlY + A u (-l)Qoy(-r)QlU + *l(-rl ) '

1d~lu M- "C(-,)Qly + Cu(, l)V%(. ,)qj +U * (,l),di, u1 1 .
ka,
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and the supplementary conditions

%z(o) =-Z 1 (1) = 0 (27)

where A(I) 1 A(uo(l) + Qou(- 1),l) and analogous meanings are ascribed

to Au(-1 ), C(r 1 ) and Cu(rI) - The functions *1(T 1 ) and *2(-2) are

known and satisfy an exponential estimate of the type (25).

By means of a change of variables like (18) it is a simple matter to

prove that Qlx(Tl) exists and satisfies an exponential estimate like (25).

Succeeding terms Qix(T 1 ) follow in an analogous manner.

3. An Estimate of the Remainder Term. Let us introduce in the space

of the variables (x,t) a curve L composed of the three pieces:

L = ((xt): x = x o(0) + oX(ro)('>O0) ; t = o)

L2 = I(x,t): x = Xo(t); 0< t ] ,

L3 = [(x,t): x = x0 (l) + QoX( 1 )( l<0); t = 11

We denote by t the projection of this curve onto the space of the

variables (u,t) . It is possible to take for the domain G(u,t)

occurring in Condition I an arbitrary 5-tube of the curve t . More

precisely,

I. Suppose that the functions A(u,t) and C(u,t)(B(u,t) and

D(ut)) have continuous partial derivatives with respect to each argu-

ment up to order (n+2)((n+l)) inclusive in some 5-tube of the curve t

i

1>~ ,. - 2.!

~ .- -. ... -. -
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Having defined the terms of the series (4) up to order (n+l) inclusi.-c,

let us now denote by Xk(tp) the k-th partial sum of the series (3), that

is,

k
X k(t,) = " i(xi(t) + i x( 0 ) + Qix(,l )) (28)

i=O

Theorem 3. Under Conditions I-V there exist positive constants 0

and c such that for 0 < i < 1Lo there exists a unique solution x(t,")

of the boundary value problem (1), (2) lying in a cl-tube of the curve I.

and satisfying the inequality

IIx(t, L) - Xn(tL)jj _< c~n+l (0_< t < 1) (29)

Proof. Let us set =z - Zn+ , =y Yn+l and w = u - U

where z, y and u is the unknown solution of the problem (1), (2), and

Zn+'1 Y n+ and Un+1 are the partial sums determined by (28). By sub-

stituting these into (1), (2) we obtain for ,T and w the boundary

value problem

dI = A(Uo,t)q + Au(Uo,t)Yo(t,p)w + Gl(q,w,t,p),

dt = P n+2 (30)

d = C(Uo,t) + Cu(Uo,t)Yo(t, L)w + G2 (f,w,t,)

S((0,i), C(l,p) and w(O,p) are known and of order A(rL+2)

. ii
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In the equations of (30) we have isolated the linear terms whose coefficier.t.

are evaluated at the zeroth approximation. The functions

G 1l,w,t,.) = A(U n+ + w,t)(Y + + 1)

dU
+ pB(UnM1 + w,t) - dt

- A(Uot)j - Au(U 0 ,t)Y 0 (t,)w

and G2 (,w,t,p) , which is defined analogously, satisfy the following

two important properties:

1. Gi(0,0,t,.) = n2) 

2. Gi(,w,t,4) is a contraction operator with contraction coefficient

of order t@(p) for T and w of order ((p)

It is necessary to transform the Gi(Ti,w,t,p) into a different form

for the subsequent analysis. We begin with the identity

A(Un+ 1 + w,t) = A(Un+lt) + Au (Un+lt)w

+ [A(U 1 + w,t) - A(Unl,t) - A (Ult)w ]

a A(U j1,t) + AUnUrt)w + ql(w,t,p) .

Here the function ql(w,t,p) is clearly a contraction operator with con-

traction coefficient of order A(p) for w of order &(&) ; moreover

ql(O,t, ) = 0 By expressing C(Un+1 + w,t) in an analogous form (cor-

responding to ql(w,t,p) there is a contraction operator which we denote
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by q2(w,t,L)) and doing the same for B(Un+I+ wt) and D(U nI+ w't),

the functions Gi(jw,tp) can be reduced to the form

Gi(%,wtp) = ai(t)TI+wLb 1(t,)w + ci(tw'nw

+ qi(wt,)Yo(t, ) + Qi(%w,t,4)

where a. , b i and c. are certain bounded functions or matrices (Here

and below for ease of writing we will denote a function or matrix by one

and the same symbol w since only the boundedness of this quantity is

important to us.), and Q i(,w,t,3) is a contraction operator with con-

traction coefficient of order A(2k ) for T and w of order c( )

In addition, Qi(O,O,t, a,) = (,n+2)

Let us now replace w(t,t) in the system (30) by the function

g(t, ) , where w = F + (C(Uot)/A(Uot))C . An elementary calculation

shows that this system of equations assumes the form

SAu(Uot)C(Uot) +
dt A(Uo19t )  0Ot  +AU~)

C(Uot)
+ [WY0 (t,g)g + GI(I, A(u t) C,t,u) 1 , (31)

dt = ( )

Wt - = h(t,i&)E + (G(E,2,,t,) + q(,C,t, )Yo(tl )

+ Q( r,C(,t,j) 1,

where

1d
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h(t,L) (4+ exp(-xt/L)+ exp(-x(l-t)/)) , (32)

G(W,4,t,4) = + + # + ,' ,

C(Ut) C(Uo, t)
= - A(Uo,t) qI( + A(Uo,t) ,

C(Uot)
2( A(Uo,t)  ,) ,

C(Uot) C(Uot)
Q(£,,,t,LQ) : - A(Ut) ( t,)

1 +A(U 0,t)

C(Uot)
+ Q2 l + A(Uot) ,

The operator q(E,t,i) is a contraction with contraction coefficient of

order &(.) for E and C of order 1(4) satisfying q(O,O,t,.) = 0

while the operator Q is also a contraction with contraction coefficient

of order ( 2) for , T and C of order t(4) satisfying Q(O,0,0,t,p) =

We will consider the terms contained in the square brackets of the

equations in (31) as nonhomogeneous terms by passing from system (31) to

an equivalent system of integral equations. Let us denote by r(t,s,L)

the Green's matrix for the boundary value problem consisting of the first

two equations in (31) together with the boundary conditions C(O, L) =

C(ip) = 0 . It is possible to prove as in [81 that the Green's matrix

exists and satisfies the estimate

r(t,s,;) = 1(exp(-.l t-sl/l))

a- rw
m



The solution of the corresponding homo-cncous ryztem and the ,,wluiary

conditions C(0,) = (n+2), C(l,U) = (,n+2) has the sane order of

smallness as the boundary values. In place of the first two equations in

(31) we have therefore the integral equation

= ( (L) ( n+ 2) 1 1 1 ) (llw(t's'i) S ) + G ds

(t,,)(,0 2

- ~ ,L (33)s 2( ,7,C t, ) .

Let us denote by H(t,s,4) the fundamental matrix of the homogeneou .

system w dE/dt = h(t,i)E . By virtue of (32) H(t,s,L) is bounded. The

initial condition for F(t,4) is clearly of the same type an that for

n+ 2
w(t,p), that is, q(O,4) = (n+ ) Therefore the last equation in (311

can be written as the integral equation

(tp) = 0(fn+2) + j- 1 H(t,s,)[G(£,t,,,s, ) +
0 (34)

q( ,C,s,)Y o(S,) + ]ids

The operator

t-i
R 0

by virtue of the properties of Q is a contraction with contraction

coefficient of order b(p) for F, I and C of order 0(4) ; moreover,

Rl(O,O,0,t,.) = (n+) Since
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Y 0(t~ O(exp(-Kt/.) + exp(-K(1-t)/.L))

and therefore

t tSH(ti's,.Y 0 (s,4.)ds (q t(exp(-Ks/4) + ep-~-) )d
0 0

64

the operator

R2( 'TbC2t . 0 lt t,s,0)q(,,s,L) Y 0sL.

has the same properties as R1(,f,~~. Let us now set ~t 1 ,

R+ R2+ (,+ ) and substitute into the expression for G the values of

Cand I) from formula (33) .Then in place of (34) we obtain the equation

t
E =t 5 H(t.Is,~k)(us 1 + ais + ES + S S)ds

(35)

+

By taking account of the estimate for the Green's function, namely

r(t,S,P) = (x(jts/i

the estimate for Y 0(t,4I) and the fact that

4- ~ 1 exp(-KjspI ) [exp(-Kp/ L) + exp(-x(l-p)/0jdp d
0 0

=7 
AI.)
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it is easy to show that the first term in the right-hand side of (35) is a

contraction operator of the same type as the second term (E(. lC,t,.

Thus, equation (35) can be written as

E(t,4) = Tl(£F,,,t,p) , (36)

where the operator T1 (EJ,C,t, ) is a contraction with contraction

coefficient of order t(4) for F.11 and C of order A(4) moreover,

Tl(O,O,O,t,.) =0((n+l)

Substituting (36) into (33) we obtain the equations

t,)= Sl(T,l,jC,t,) T2(7,1,,t,) ,

(37
1(t,4) = S2 (TIfC,t,J ) T3(,, ,t,.)

in which the operators T2  and T3  are similar to T1

We now apply to the system (36), (37) the method of successive

app-oximations as in [13]. It is possible to prove that for sufficiently

small 4 a unique solution exists in a certain cp- tube of the curve

I = = O, and satisfies the estimates F = ,( ),n = ( n ,

4= -( l Hence, it follows also that w = (,n+ )

Thus z - Zn*l, Y - Yn+l and u - U n+ are all of order A(nil

and since Xn+l - Xn = ,(,n+l) the inequality (29) is established.

This completes the proof of the theorem.

____
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§2 Other Boundary Value Problems

1. Boundary Value Problems of a More General Type. In §1 we considered

a problem with the boundary conditions (2) . Using the results for this

problem it is possible to consider more general boundary conditions. The

corresponding constructions are analogous to those which were performed

in detail in [13, §13] for the case HeX.<O and in [23] for the con-1

ditionally stable case. Therefore we confine -u"ielves to a brief

description of the constructive scheme.

Suppose that the boundary conditions for system (1) are of the form

R(x(O,L) , x(1, il)

R(z(OL), y(Op), u(Op), z(l, ), y(l,4), U("4)) = 0 , (38)

in which the dimension of the vector R is equal to k+2 , the dimension

of x . We consider as an auxiliary problem the boundary value problem

0 1 0(1), (2) with as yet arbitrary values of z , z and u . We propose
0 1 0

to select z , z and u so that the solution of the problem (1), (2)

satisfies the condition in (38) . This device was used in [13, §13] .
0 1 0

Let us seek z , z and u in the form of power series in p ;

for example,

0 0 0 20Z = Z 0 + z 1 + z 2 +

Under Conditions I - V we can construct an asymptotic expansion of the

solution and substitute it into equation (38) . By further decomposing

R(x(O,4), x(1,4)) into a power series in p. we obtain equations for the
0  1 0

terms in the series for z z and u Thus, in the zeroth



approximation, we have the equation (for simplicity of notation we omit
the lower index 0 , that is, we write z0  in place of z0  for example)

R z ,o )u0 0 1 Uo-
0.R~ J YO , z 1, QoY(O), -U0()+ Qo0UklO)) = 0 (39)

We note that To y(O) as defined by formula (11) for TT0 Z = z 0  is0

a function of z and a(0) In turn or(O) is defined by equation (13)

as a function of z0  and u . Thus To y(O) is a known function of z 0

00 0

and u0 . Similarly, Uo(l is a known function of z and u , while

%ou(O) and Qoy(O) are defined by the formulas (.23) and (24) for Q z = z

Hence it follows that Qou(O) and Qoy(O) are known functions of

1 0 0 0 0z , z and u . This dependence on z and u results from the fact

that U0(1) enters into equations (23) and (24). Thus the equation (39)

is a (k+2)-dimensional vector equation in the (k+2) unknowns: z 0 , z1

0
and k components of the vector u . If the equation (39) has a solu-

0 0 1 1 0 0
tion z = z0 , z = z0  and u = u0  and if the corresponding functional

0 0 0determinant D(R)/D(zO,zl, u O) is not zero at the point (z 0 , z 0 , Uo),

0 1
then each of the succeeding equations can be solved for zi , zi ,

u (i = 1,2,...) . Moreover, for sufficiently small values of 4 there

0 1 0exists in a certain b-tube of the point (Zo010, uoUo) a unique point

(zO (4), z(.) , uO (4)) such that the solution of the equation (1) and the

boundary condition

m = z ( ) z(1,) = z1 () u(o,P) u (1) (40)

__
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satisfies the boundary condition (38). The formally constructed series

0 0 1 1 0 0z 0  IZ+ ... , z 0 + IZ+ ... , u O0 + LuI +..

are asymptotic series for zO () , z () and uO () , while the asymptotic

expansion of the solution of the problem (1), (40) serves as an asymptotic

expansion for the basic problem (1), (38). The proofs of these assertions

can be given without difficulty by using the methods in [13, §131

2. A Class of Bcundary Value Problems Reducible to a Type Already

Considered. Suppose that a singularly perturbed system has the form

2 d du
d = F(ut) , dt= C(u,t)y + D(u,t) • (41)

where y is a scalar and u a vector, and suppose that a certain boundary

value problem is posed for the system (41) . For definiteness we will con-

sider the following boundary conditions

: 0 1
U(,4 =u0,y(194) = y 1(42)

(It is of course possible to consider other types.) The peculiar thing

about the system (41) is that the function F does not depend on y ,

and therefore the usual algorithm for the construction of the asymptotic

solution of a singularly perturbed problem is inapplicable here. This

follows because for p = 0 the equation F(u,t) = 0 cannot 1e solved for

y . One way of circumventing this difficulty is the following. We

differentiate the first equation in (41) and use the second equation to

obtain

It
7A_ , i
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2y Fu(u,t)[C(u,t)y + D(u,t)] + Ft(u,t)2

dt 2

= A(u,t)y + B(u,t)

If we now introduce the new variable z = t ~dt ~te eaeldt h

system

dzBut
Az =A(u,t)y + B(u,t), - = z ,

dudu = C(u,t)y + D(u,t) ('3

It is necessary to prescribe for the system (h3) another condition besides

the boundary conditions (42), since as a result of differentiation the

order of the system has increased by one. This condition is obtained from

the first equation in (41) by setting t = 0

Z(0,4) = F(u0 10)

Thus the boundary conditions for system (43) have a singularity as

p. - 0. However, it is possible to remove this singularity (cf. Chapter 2,

§14, Subsection .) by introducing the new variables i = pz , = FY . 1or

these new var..ables we have

Tt = A(u,t) Y+ 4B(u,t), p = 04)

du C(ut)y + pD(u,t) ,

which coincides with (1) except for notation. The boundary conditions for

the new variables are now regular in 4 , and so we can use the method

described in Subsection 1 for the construction of the asymptotic expansion

of the solution.

Wiw
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We note that the passage from system (41) to system (44) is not the

only one which allows the construction of the asymptotic expansion. It

is possible to apply to the original problem (41), (42) a certain modi-

fied algorithm for the construction of the expansion in the form of a

regular part and a boundary part. For simplicity let us consider the case

when both y and u are scalar functions. We seek a solution of the

problem (41), (42) in the following form

y(t,) = Yo(t) + l1 (t) + ... + -_l~ y(,o) + Tr0Y(ro) + ... +

Qoy(, I ) + LQJy( l) + ...

u(tj) = uO(t) + ±lUl(t) + ... + Trou(o) + TIu(,o) + ... +

ou(, ) + QlU(,l) +

Then for y0(t) and 0(t) we obtain the system

duo
0 = F(u ,t), _~o = C(U1,t)y0 + D(uo,t) (45)

Suppose that (P(t) = U0(t) is a certain root of the first equation in

(45). Substituting it into the second equation gives y0

-O C(CP(t),t)

Thus the leading term of the regular part of the asymptotic expansion is

determined in a rather unusual way. For Try(-ro) and Tou(ro) we

obtain the system
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dTrly doU
-- F(W(O) + T0u,O) d = C(CP(0) .+TU,O)TTly (46)

together with the supplementary conditions

Tr0u(O) = U0 
- C(0) , T_1 y(-) 0 ) Tu(w) = 0 (47)

If Fu(c(O),0) C(w(O),0) > 0 (In order to obtain an asymptotic expansion

of the desired form it is natural to require that F u((t) ,t)C(Q(t),t) > 0

such a condition appears in the first approach considered for the system

(41)), then the rest point nl1y = TT0u = 0 of system (46) will be con-

ditionally stable. The stability separatrix for To  is described by

the equation

Ty 0 U F (0)+ 01) 1/2
IT -ly = -(2 1 C(CP(O) + E,0) dF) sgnC(p(O)0) sgnToU

0 0

By substituting TrU(O) = u - c(0) into the right-hand side we

.obtain the initial value ITly(O) . The solution of system (46) with

these initial values satisfies e.ch of the conditions in (47) and an

exponential estimate.

The function qou(-r) is found to be identically zero (This is

quite natural since the function u is not given at the point t = 1 .),

while for o(T1) and Qlu( l) we obtain the linear system

dy du
- = Fu(l (1) l)QlU ' d_ - C((1),l)y ,8)

dr1 u r1

along with the supplementary conditions

V O 0 y(l) , YOy(.) =o0, 0 Qu(--) = 0 (49)

t

I
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Since F (c(l),l) C(D(1),l) > 0 the characteristic equation for system (-8'

has roots X 1,2 t+FuC of opposite signs, and the solution satisfying the

conditions in (49) has the form

V (-fI ) = (y' -_O(l))exp(XT 1 )

QlU(ri) = F (((l) exp(k-1) , for X=1F77
u

One can now construct the succeeding terms of the asymptotic expansion

in a similar manner.

3. Boundary Value Problems for a Weakly Nonlinear Equation. In

Chapter 1 we considered the initial value problem for the weakly nonlinear

equation

= A(t)x + jf(x,t,i) (0 < t < T)

under the assumption that the matrix A(t) had the eigenvalue X(t) - 0

of multiplicity k and that the remaining eigenvalues Xi(t) satisfied

Re Xi(t) <0 . If now in addition to the zero eigenvalue of multiplicity

k the matrix A(t) has m1 eigenvalues Xi(t) such that Re Ai(t) <0

and m2 eigenvalues Xi(t) such that Re% i(t)>O (with k+ml+ m2 =m)

then we would like to obtain the same qualitative results as in Chapter 1.

In other words, we want to determine which solution of the reduced

equation A(t)x = 0 is the limit as lk - 0 of the solution x(t,4

To achieve this it is necessary to consider in place of an initial value

problem a boundary value problem in which at least m1  components of

... .
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x are prescribed at t = 0 and at least m2  components are prescribed a-

t = T • The asymptotic expansion of the solution will have the form (3),

but the terms of the expansion are determined using certain modifications

in the construction procedure which are analogous to those employed in

Chapter 1. The details are given in [16], where a similar boundary value

problem for a weakly nonlinear system of difference equations is considerei.

03 Applications

1. A Problem from the Theory of Transistors. We first make some

explanatory remarks of a physical nature. Consider a contact (w = 0)

between two semiconductors of different types, leading to a one-dimensional

problem. To the left of the contact (-C < w < 0) we place a semiconductor

of p-type, while to the right (0 < w < L) a semiconductor of n-type,

that is, a (p-n) junction. Such a semiconductor scheme can be described

by a system of equations, consisting of Poisson's equation

.E (p - n+ ND -N) (50)

(Here E is the polar electric voltage, p, n, ND  and N A are the

respective concentrations of holes, electrons, donors and acceptors, q

is the electron charge, and e is the dielectric permeability.)and

the equations for the holes (ip) and 'he electron current (in)

p n

i =qgEP -qD 3

£ p p~ (51

-. -qi'E + qD21
n n n n ow" t

hid
"Y 7-- -- 1 II1.. _
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(Here wp' .n are the mobilities of holes and electrons, respectively, "nd

Dp, Dr are the diffusion coefficients of holes and electrons.)

It is known that = /D = q/kT , where k is Boltzmann's

constant and T is the temperature. We will assume that the problem is

stationary in time and that there are no externally generated sources. Then

from the continuity equation it follows that i and i are constant.p n

We will consider the following special case, namely, to the left of the

contact NA= N,ND = 0 , while to the right NA= 0, ND = N. Let us now

introduce the dimensionless variables

t :w :Etq/kT, v 1 p/N, V2 = n/N

ipq/NDp cl, in1/kqDn =c 2 , 

Then the system (50) - (51) can be written in dimensionless form as

2 _ = -V 2 + N(t);dt 1l-V

dv1  dv 2  
(52)

dt -V lY cis dt- -v2Y + c2

-1i, -i< t < 0

where N(t) = , and 6 is a small quantity of order

-2 
i

10

It is possible to consider various kinds of boundary conditions for

the system (52). We restrict ourselves here to one of the simplest,

known as the symmetric case, in which c1 = c2 = c is a given constant,

Ii

hALW-77--
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and so the boundary conditions are given separately for the intervals

C-1,0] and [0,1] ; namnely,

Vl(-l) = 1 , v2 (-l) = 0 , V1(O) = v2 (0) , (53)

and

v (0) =v 2 (O) , vl(1) = 0 , v2 (1) = I (5L

In the present case the problem (52), (53) reduces to the problem (p2), H.4

under the changes of variables t - -t , vI - v 2 and v2 - v 1 • Therefore

it suffices to consider only one of these problems. We will consider the

system

dt = 1 2

dv( < t < 1) (55)
t-VlY" c dt - -v2Y + c ,

along with the conditions in (54)

By introducing the new variables uI = V1 + v2 ,u 2 = v 1 - v2 we

obtain the system

dt 2
(56)

dul  du2-t --- u 2 ' d t - V -2 c ,

which is clearly of the same type as (hi) since the right-hand side of the

first equation does not contain Proceeding as in Subsection 2 of

§2 , that is, differentiating the first equation and introducing the new

variables

A

Ij z , dy--



we obtain the system

dz= uly - 24c , b = z

du1  du2  (57)
-L =u2 y , L - -=ulY4-2c

This system is of the type studied in §1 , where the dimension of the

vector u is now two. The boundary conditions (5h) in the new variables

have the form

u 2 (0) = , Ul() = 1 , u2 (1) = -1 (5)

In addition, it is necessary to supply a further condition, which is

obtained from the first equation (56) in the two forms

z(O) = 1 , (59)

and

z(l) = 0 (60)

It is easy to see that of the five conditions (58), (59) and (60) we

need only consider the four

z(O) = 1 , z(1) =0 , Ul(l ) = 1 , u2(1 ) = -1 (61)

since the condition u2 (O) = 0 is automatically satisfied. Indeed, from

the first and last equations in (57) it follows that dz/dt = du/dt ;

whence, noting the boundary conditions z(l) = 0 , u2 (1) = -1 , we obtain

that z = u2 + 1 . Hence, by virtue of the condition z(O) = 1 it

follows that u (0) = 0

2i
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Thus we have a boundary value problem (57), (61) which is of the Sa_'e

type as the problem (1), (2) in §1 , the only exception being that the

bcundary condition for u is given at t = 1 rather than at t = C

Let us now construct the asymptotic expansion of the solution as in

§1 . We have first that

z0 = 0 , YO = 0 , uI1 = Cl(t) , u2 = a2(t)

where a, and a 2  are as yet arbitrary functions. Since u is prescriCE-i

at t = 1 we consider first the system of equations for Q0x(¢!

(-r = (t-l)/A) (Note that the roles of lTx and Qx in the present

problem are interchanged relative to §1 .)

d~oZ dQoYd11 -- (al(l) + Qul)%y d QO ,
1 (62)

dQo 0 u1dQoU 2
doI  = (a2(l) + QoU2 )Qoy , = ( , +) Q 0oUl)Qo y

The supplementary conditions for QOx  are

Qoz(O) = 0 , %5u(o) = 1 - %(1) , QOu 2 (o) = -1 - a 2 (l)
(63)

X( = o

Let us construct the manifold 0 for the system (62). We obtain

from (62) the equations

du 1  a2 (1)+ %u2  du 2

dQoZ al) + %u' dQz

77 -
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The solution of this system and the initial condition QOu = 0 for QOz = 0

is

Qul = -a.(l) + (sgn l)) 2 2 12(64)

QoU2= QOz

Equation (64) is analogous to equation (9) of §1 , while the equation

Qo z  d 1/2
Qy= (sgna(l)) (2 r T) ) /sgn(Q°z) (65)

0 (1)+ 2a 2 (l) + F

is analogous to equation (11). The equations (64) and (65) provide an

analytic representation of the manifold Dl

By substituting the boundary values (63) into (64) we obtain equations

for 01(1) and a2(1) , that is, 1 - al(l) = 0 ,- - a2(l) = 0 . Hence

al(l) = 1 , a2(1) = -1 , (66)

and the function Qx(-r1 ) is easily seen to be identically zero in the

present case.

The system of equations for al(t) and a 2 (t) is obtained in the usual

way and has the form (cf. (15) in §1)

dt 2 dt

The solution of this system and the supplementary conditions (66) is

01 (t) = (1+ 4c(l-t))1/2 , a2 (t) --

a2(t.'



121

We have for ITox(,o) the system

dT 0  th dT O ,d = (aljo) + %TUJTT0 Y, d-~ =rrTz
r0 0 '(6 7 V

dToUI  dToU1 _ (-l+ToU0 r o u°0 + T O~Oy
d 0 0 2 dT02

(for ai(0) = (1+ 4c) / 2 ) and the supplementary conditions

T 0 z(O) = 1 , TTox() = 0

The manifold 0 for (67) is represented by

Toul= -(1+4c)1/2 + (l+4c - 2TTz+ TT2Z) 1/2

0o2 0= T , (68)

T z 1/2
rO y  -(2 0 d2 1 2 sgn(T1' 0 z)0 (l+4c-2 + 2 ) 1/2)

It is necessary now to substitute the last equation of (68) into the

first equation of (67) and to solve the resulting differential equation

for 7T0 z(,or) together with the initial condition lT0 z(O) = 1 . After this

the rest of the function ToX( o )  is determined from (68)

The construction of the succeeding terms of the asymptotic expansion

can be executed as in 01.

A comparison with experiments shows that that the application of the

asymptotic method under consideration is suitable already in the zeroth

approximation with a high degree of accuracy in processes involving tran-

sistors. A more detailed physical analysis of the mathematical results

is given in (14]

79i
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2. Some Control Problems. Certain problems in control theory appear

as singularly perturbed boundary value problems of the critical condition-

ally stable type. As an example, consider the linear problem of ayer-

Bolza [22]

dz All(t)z + A1 2(t)y + Bl(t)u

y = A-(t)z + A22 (t)y + B2 (t)u

z(0) = z 0 , y(O,.) = y ,

2 0

min~dx(,.) + rf [ tr)Ft~t t Rtut ]t

Here z and y are M- and m-dimensional phase vectors, respectively,
.

u is the control, x denotes z and y taken together, denotes transpose,

and F(t) , R(t) are symmetric matrices.

.Suppose that no supplementary conditions involving bounds on the

control are imposed. Then the problen becomes a classical problem in

the calculus of variations. By applying the method of Lagrange multipliers,

we can reduce the problem to the following one for the auxiliary Lagrangean

vector functions X1 (t,p) and X 2 (t,p) of dimension M and m , respec-

tively, namely

dz AIz + B -I -+R+ B2 2d 31 zB 1  1 l 1 2

S* A 1 F*~dt- FIz2 " Al1+FIli"A212 '
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y A1 z + B2RBX + + BR B2
dt 21 2 2 2

dIX 2 _ . *
dt = F21Z - A1 211 + F22 - A22X 2

z(0,) = z, X1 (, ) = -dl /1 , y(0,) = y0 X 2 (1, ) = d2

Here we have denoted by F.. and d. the appropriate blocks of the matrixiJ i

F and the vector d

Thus we obtain a problem with a singular boundary condition at t = 1.

By changing variables as in Subsection 2 of §2 we are led to a problem

having nonsingular boundary conditions and a corresponding matrix with

zero eigenvalues. In order to apply our asymptotic methods, it is neces-

sary to assume that the matrix

F 3. - An

has M eigenvalues with negative real parts. Then we obtain a con-

ditionally stable system in the critical case.

Similar kinds of systems occur in other, more complicated problems

of optimal control (cf., for example, (11).

YA



§4 The Case of an Incomplete Set of Eigenvectors

In Chapter 1 we showed for the system of two linear equations (38)

that if the number of eigenvectors corresponding to X M 0 is less than

the multiplicity of this eigenvalue, then in order to obtain a solution

bounded as i - 0 we must pose, in general, a boundary value problem.

Moreover, the asymptotic expansion of the solution will contain fractional

powers of p.

We now consider this question for a certain nonlinear system.

1. A System of Two Nonlinear Equations. Let us consider the system

dz

0 < t < 1 (69)

dt 2 (z,y) + 2

where the functions Fi (z,y) and fi(zy) (i=1,2) are sufficiently smooth

for z in (zl,Z2), y in (yly 2) and t in [0,11.

Suppose that the equation F (z,y) = 0 has a root y = cp(z) in (yly 2 )

for z in (z1 ,z2) such that F ly(z,(z)) 0 0, and also that F2 (zW(z)) = 0

for z in (zlz 2). Then the reduced system corresponding to (69) has

the family of solutions

(; - ( (a , a in (Z, ,  (70)

and
F lz (Z, (z)) F ly(z,cp(z))

det F1 z 20 (71)

v OWN
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for z in (z11z 2). In addition, we assume that

F lz(z~q(z)) + F2 zq) 0 in zl 2.(72)

It follows from (71) and (72) that the matrix F xhas a zero elgenvalue

of multiplicity two ( I= 0)2 to which corresponds the single cigen-

vector (11)

Let us introduce new variables z and w = F I(z,y) in (69), and

note that in a neighborhood of y = cp(z) we can define a function

y = Y(z,w) for which Y(z,0) -cp(z). Then the system (69) becomes

ii = +f f(z,v,t),

(73)
* 1wP 51- A(z,w)w + pg(z,w,t),

where f(z,w,t) - f I(z,Y(z,w),t), A(z,w) (F 1Z + F 1  (zYzw) and

g(z,w,t) - (FlZ fi1 + F 1yf 2)(zY(z~v).t). We have that

lisa F 2 (z,Y) = lF 2y(zY) .F 2Y(z'i(z))

and so

A(z,O) - Fi l(z'cp(z)) + F2y(z'CP(z)) - 0

by virtue of (72). Thus, the order of A(z,w) as w-0 is at least w

* and we can write (73) in the form

dt

law 2
P B(z,v)w + p.g(z,v~t).

I . ; j - 'g



where B(z,O) is bounded for z in (z1,z2 ).

Setting w /P v we obtain

/P z= v + AiP f (Z,. v t)0
dt

(74)

dv = v2 B(z,/ v) + g(z,/& vt),

whose reduced system is

v=0

g(;,o,t) - 0.

We assume that the second of these equations has a root z = z(t)

in (zlz 2 ) and that gz(z,Ot) > 0 for t in [0,11. The characteristic

equation corresponding to

-A 1
M=0

gz (:,O,t) -A

defines a pair of characteristic values with opposite signs, namely

A1 ,2  -+ , 1/2

Thus the system (74) is of conditionally stable type with small parameter

A, to which we can apply the theory developed in [13, Sec. 141.

We consider now various supplementary conditions for the system

(69).

a I
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01° . Let us first prescribe the initial conditions

z(O,P) - 0 Y0,1) - y0  (75)

which can be written in terms of the variables z, v as

z(OP) = z 0, v(0,) 

Then, in general, the solution of this initial value problem for the

conditionally stable system (74) is unbounded as p-. 0. (This

phenomenon occurs even if the term 1/b is absent from the expression

for v(0,p).)

02 . Let us now prescribe the boundary conditions

Z(O'W z , y(W) = y, (76)

which we write as

z(O,) - z° , A v(l,p) - Fl(z(1, ),y

in the variables z and v. This boundary value problem, in principle,

admits a solution bounded as A - 0, and its asymptotic expansion, which

features right and left boundary layers, consists of powers of fp. The

question of the existence of such a solution is investigated by the

method in [13, Sec. 131 (cf. also [231 and §2 of this chapter).

These remarks also apply to the more general boundary conditions

R(z(Op), z(l,p), y(Op), y(l,p)) - 0.

As an illustration of the theory consider the system

4
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dz 2

dz . V+/Az, PA X . -(z+y) 2 
- (z+y) + p(l+t),ddt

which can be written as (cf. (74))

/P v+ z, - 2+z+l+t.

The solution of this system satisfying the boundary conditions (76) has

the following asymptotic representation valid to order &(/):

z - z z z + 0Z , y = y + 110 y + OoY.

Here z - -y = -(I +t) and f10 z = -0y , %Oz = -OY are found by

quadratures from

d 11/2
d To0z -sgn 1 0 z( exp[-2r1oZ ] + -0z  2" ,

flOz(0) - z + 1, r0 = //rp;

d Q =su 1 1)1/2
d z - sgn Qoz(2" exp[-2QoZ] + % z " )12

0z(0) - 2 - y , '1 - (I-t)/ .

2. A Problem Arising in the Theory of Singular Optimal Control. [This

problem has been investigated by H. G. Dimitriev.] Suppose that it is

required to minimize the functional

J - y(x 1 (1)) (77)

along trajectories of the system of two equations



dx -= f (Xl 'x2,t),

O<t<l

dx2dT 2 f2(Xl'X2 t ) + f3 (x2,t)u, (78)

x (0) = x0, x2 (0) -x.

There is no bound on the control u of the type involving a closure

inequality. Now this problem need not have a solution in the class of

continuous functions u and so there is the question of the construction

of a generalized solution of the problem (77), (78).

To this end we introduce a regularized problem, that is, in place of

the functional (77) we consider the functional

2J = CP(x (l,)) + u f'uidt.

If we then introduce conjugate variables (Lagrange multipliers), we can

red-ice this problem, as in Section 3 of the present chapter, to a

system of differential equations with boundary conditions, namely

dx
1I

dt f 1 (Xl'IX2 ' t ) '

o 2 (80)
dt f2(x1 ,x2,t) + f3 (x2 ,t)*2 ,

dt1 (f -  -lx #1 + f 2x *2),

it
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d2 2" -- I(fl .4.f + -~ ~32
dt '21 12x 2 2 3x 2 '2

x I (0,A) =x x 2 (O,.) = x2 ,

= - x(x l (1,4)), *2(1,11) = 0.

The right-hand sides of the equations for the fast variables x2

and *2 have the same properties as in the system (69). (The presence

of the slow variables x and *I offers no complication; cf. Section 5

of Chapter 2.) In fact, if we assume that f3 (x2,t) 0 0, then setting

- 0 in the second and the fourth equations of (80) we obtain #2 = 0,

while x2  remains undetermined. The determinant (71) here has the

form

0 3

0 0I: f'
and consequently, X\ - X = 0; thus condition (72) holds.

The change of variable described in Subsection I, having the form

f 3 2 I leads to a problem in which the characteristic values are

again equal to zero. However, by using the change of variable

V - f 3 *2 /I'1 we obtain in place of (80), (81) the following problem

tt
IJ



dx1 d4 1  f x1
dt f 1 -i = flx " A 2x v,

dt f2 + f 3v, (82)

f 2f 32+f 3
Xf "f 2  v -f f

XI(OP) - xl, X2 ( ) =X 2

(83)

1(1,P) = -(X(1,11)) , v(1,11) = 0.

This problem is conditionally stable if we assume that

f 1 7 (x,x 2 ot) 1 0 < 0. (84)

An investigation of this problem by the methods discussed in

Subsection 1 reveals that the leading term of the asymptotic expansion

for x2 (t,) has a boundary layer at the left endpoint. The asymptotic

expansion of the control u(t,) to order &(/fp) is found from the formula

u - v/A, once we have found the expansion of v to order 0(p). After

the corresponding calculations have been made, we find that to order

O(AP) the control u(t,p) has the form

b + vl(t) + 11v('r0) + Qv(rl), (85)

while the optimal trajectory is

~i
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x 1 (tI) - x10 (t), x2 (t,$) - x2 0 (t) + %,x 2 (O). (86)

From the relation (85) it follows that the leading term of the asymptoti'

expansion as P - C has the character of a 6-function.

Remarks. 1. Using singular perturbation theory, we can define a

class of singular functions in which the problem (77), (78) is

solvable.

2. The method discussed above can be applied in the vector case.

For example, if u and x2 are k-dimensional vectors and f3 a

(k X k)-matrix, then the problem of zero characteristic values can be

eliminated by means of the change of variable v f f3*2/L.
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Chapter 4

Singularly Perturbed

Integro-differential Equations

in the Critical Case

§1 Statement of the Problem and Auxiliary Results

1. Statement of the Problem. The results of Chapter 1 can be extended in

a natural way to cases where A(t) is no longer a matrix, but rather a

more complex linear operator. In this chapter such a generalization is

made in the following direction: x is assumed to be a scalar function

of two variables t and s as well as of the parameter . , while A

is assumed to be an integral operator, integration being with respect to s

(Analogous problems in a more abstract form are considered in [28].)

Thus, we consider the equation

;Iax(tsp) = -[x(t,s,4) b K(s,a)x(t,a, )dry
a (1)

+ f.(x,t,s,)(O < t < T, a < s < b)

which can be written in the simple form

at Ax+ .Lf a - [x-Bx] + f (i')

and we prescribe the initial condition

X(O'SOL)= x°(s) . (2)

71 a,
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Let us assume that X = 1 is an eigenvalue of the operator . -

the operator A has the eigenvalue X = 0 , and so the reducej equ-:i r,.

Ax = 0 has a family of solutions which depends on one or more arbitrary-

functions of t . The same questions arise here as in the previous

chapters: To which member of this family does the solution of the pr.z 11,

(1), (2) converge as - ') , that is, how do we determine the functior --

t in the family of solutions for the reduced equation which provide2 th.:

limiting solution of (1), (2)? What does the asymptotic expansion of the

solution of this problem with respect to 1. look like?

Suppose that the following conditions are satisfied:

I. K(s,a) is continuous in the square R = (a < s < b , a< a < b}

f(x,t,s,p) is continuous with respect to s and sufficiently smooth

with respect to x,t and M. in a domain D(x,t,s,4) = D(x,t,s) x [0,1 oi

where D(x,t,s) is some domain in the space of the variables (x,t,s),

and x (s) is continuous for a <. s < b .

II. The kernel K(s,o) is sycmetric, that is, K(s,a) = K(a,s)

in R.

III. The eigenvalues of the operator B are such that

'"-k ,i <  for i = k + l,

The corresponding set of eigenfunctions (cpi(s)] is assumed to be ortho-

normal, that is,

" 'X l 'N _nul mm m
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b (1, 1= j ,

c w1 (s)w (s)ds 5 j i
In what follows we will denote the scalar product of two functions u(s)

and v(s) by

b
(u,v) = (u(s),v(s) = r u(s)v(s)ds

a

2. An Auxiliary Lemma. Let us consider an equation of the form

By( r, - [y(T,s) -. K(s,)y(,,a)d] + g(y,s) (3)
B~r aa

(,r>0, a< s <b)

or

-Y -[y - By] + g (3')

together with the initial condition

y(0,s) = ys0  . (4)

(As we will see below, this is an equation for a boundary function.)

We make the following assumptions:

00
10. yO(s) is continuous for a < s < b

0
2 . The operator B satisfies Conditions I-III.

* 03 . g(r,s) is continuous for v> 0 and a < s < b , and satisfies

the estimate jg(r,s)l < cexp(-xT) , where c and k are positive con-

stants.

IW A



We now pose the following questions: How does one choose y (s) in

order that the solution of the problem (3), (4) will converge to zero as

m ? Will this convergence be of exponential type, that is, do we

have an estimate of the same type as that for g in 30 ? The answers

to these questions are given by

Lemma 1. Suppose that Conditions 1 - 30  are satisfied, and that

the function y (s) is such that

<yo(S), wi(s)) = - .<g(.r,s), pi(s))dr (i = l,...k). (5)

Then the solution y('T,s) of the problem (3), (4) exists and is continuous

for v > 0 and a < s < b , and converges to zero as r uniformly for

a in (a,b] ; moreover,

ly(r,s)l c exp(-wr) (6)

(We note, as i, previous chapters, that the constants c and x in

various estimates of the type (6) are not generally the same, despite

the fact that they are denoted by the same letters.)

Proof. It is not difficult to prove the existence and the continuity

of the solution in the stated domain if we pass from (3), (4) to the inte-

gral equation

y('r,s) = y0 (s)exp(--) + J" exp(-('r-e)) x
0

b (7)
K [. K(s,o)y(9,a)da + g(e,s)

a
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and apply the method of successive approximations. For this to succeed we

require only the continuity of y (s), K(s,c) and g( ,s) , and the

boundedness of g( ,s) .

Let us then establish the estimate (6) We set

y(r,s) = j(,r,s) + b2(r,s) , (8)

where
kS2 (-,,s) -- z 21(r) ti(s), ' 2i(r) ( Y(., I, i( s)
i=l

Hence, it follows that

(6(81(T,s), wi(s)) = 0 , (Bl,cp) = 0 (i = 1,...,k) (9)

Substituting (8) into (3') we obtain

ab1 2!2  B + ,B r [Br 1 2 1 - 2

and since 82 -B 2 = 0 , that

1 +!2= ( B 5 +g (10)
dr BT 1 1

After taking the scalar product of (10) with cpi(s) (i = l,...,k) and

using (9) we obtain

db 21
,r (i = ,...,k) .(1)

By virtue of (5)

Bm(o) . (yo,q,1 - .f' (g"q1 d '
0 ID

5t( iS .*- p- . .-r
a



and therefore it follows from (11) that

82i(i) = - (g,CD.) 1- i + f g d = - I (gw )dr

00

In view of Condition 30 we have that 2i(r) , and consequently, 5 (1%<

satisfy an exponential estimate, namely

18 21 (d) c < exp(-r), 12 (-,,s) I <c ex ( -Kr)

(,r>o, a <s<b)

From (10) we obtain now for 51 the equation

1 [=- [6 ]+g (3)

where

k d521 kg, - g  Z dr, -- g - (g'cD,)ti ; Igll -5 c exp(-K-)
i=1 i=1

Taking the scalar product of (13) with 2E1 , we obtain

d
d, (81,81) = -2[51,51 - (51,B51)] + 2(b1,g1) " (14)

By the Hilbert-Schmidt Theorem B5 1 = X i < 51P ci > ti ,where
iul

the summation begins with i = k+ 1 because of (9). Hence,

a 2

i=k+l

Since X < 1 for i = k+ 1,... and since X = 1 is not a limit point of

the spectrum of B , there exists a positive constant T < 1 such that

X, < for i - k+ 1,.... Further, Bessel's inequality

1-|
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2
i k , 1 , _< (56 1 implies that
i=k+l

so

-BZ (81,B81) > (1-X) (8i,8i) ,. (16)

where < 1.

Let us rewrite equation (14) as

d B = -2D(')(8 1,8> + 2(51 ,g) , (17)

where
() 51,51) - 56',B5)

D OV, ) > 1- >0. (18)

Dividing by 2(8 8b)1/2

-90 5 )1/2 1/2 + (61 'gl
)

= -1, ()1/2

and integrating, we obtain

(81,8)>1/2 = (8o1 (,s),8I(o,s))1/2exp(-.f D()de) +
S(19)

By virtue of Cauchy's inequality and 
Condition 30

I(51,g1) 5(, 5, 1 ) V'2(g1 ,g1 )V 1
2 < <.,) '1/2e (-x,)

Thus

(52,5.)2 < c exp(-xr) (, > 0, a < s < b)

_ _ _ __I I_ ll iI IT] .. ....
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In order to obtain a similar estimate for 51itself, we note that

from (13) 51 (v,s) can be represented by

5 -,S 81 (O,s)exp(-'r) + f' Irep-- ) K(s,a) x

X 5 (e~~da gl(e,s) idO

So

15 1 (-r, s) I<c exp(-'r) (Cy> 0, a < s < b)

follows since

If bK~s,a) 8 1 (e,s)dal .5 (K,K)l1/2(5 111)l/ 12 < c exp(-Ke)
a

Thus, from (8) and (12) we finally have the estimate

This concludes the proof of Lemma 1.

12 Construction of the Asymptotic Expansion

1. An Algorithm for the Construction of the Expansion. The asymptotic

expansion of the solution of problem (1), (2) in the parameter ~&is

sought in the usual form

x~t~,Ij = xt~s 1&)+ Trx(.sqPi)
(20)

(' + P-1 (t's) + ... + 'tk ) n. +t

+ l0 (ra + ~1 (~)+ .. + &' Tx('r, a) +

St/1k) £



By substituting (20) into (3), (4) and equating coefficients of like

£ powers of t , separately for coefficients depending on (t,s) and those

depending on ( T,s) , we obtain equations and supplementary conditions

for the determination of x.i(t,s) and T x(,,s) . By substituting (20)

into the nonlinear function f(x't's,i4) we can express f as f + lTf

just as in previous chapters.

We obtain first the equation

b
i0 (t's) = 'K(s,a~ 0 (t,oy)dc

a

Eu virtue of Condition III its general solution is

k
XOts)= 'E ai(t)tpi(s) ,(21)

iahere the oti(t) are as yet arbitrary functions.

The equation and the initial condition for 'Tx 0 (r,s) are

b~ 0x( , s) b
B- - [(r(,s) - .rK(s,a)lTx('r,a) doj,

T0 X(0s) x x(s) - X0(0s xs) - ta 1(0)(s)
i=0

In addition, as is our custom, we impose the restriction that

Ir0X-s)-0as Tr~ (22)

Thus we have for Tr 0x(dr,s) a problem of the type considered in Subsection 2

of §21 for the case g(r,s) = 0 . By virtue of Lesmma 1, %rx(r,s) satisfies

the condition in (22), and moreover, the inequality



I1T0x( r,s)I < Cexp(-Kr) (,r > 0, a < s < b) ,

provided the initial value ToX(O,s) satisfies the condition in (5 , thu:

is,

k
(x°(s) - t a.(o)coj(s),w.(s)) 0 0 (i = 1,...,k). (2Y

j=l )

Hence,

ai(O) = (x0(s),coi(s)) (i = l,...,k) (2W

As was the case in previous chapters, we now determine the functicns

ai (t) completely by considering the equation for x1 (t,s), namely

o(ts) b
a)t = - [;1(t s ) "a K(s')xl1(t')do]

+ f(x0 (ts) ,t,s,)

or
b

-a(t,s) K(s,o)xl(t,a)da =
a (26)

k k da i(t)
f( : a(i(t)Cvi(s),t,s,O) - . dt Ti(s) -(ts)

i=l i=l

For the solvability of this inhomogeneous problem it is necessary and

sufficient that the right-hand side ,(ts) be orthogonal to each epi(s)

(i - l,...,k) . This orthogonality condition is itself represented by a

system of differential equations for ai(t) , namely

da ' k
-.-A (f( ' aJ(t)cpj(s),t,s,O), q,(s) (i = 1,...,k) (27)

Jul
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IV. Suppose that the system (27) together with the initial conditions

(25) has the solutions a.i = a.(t) for 0 < t < T

1141

Thus the function x0 (t,s) is determined completely by the formula (21!,

and the construction of the zeroth term in the expansion is finished.

Let us now introduce in the space of the variables (x,t,s) a surface

L which consists of the two parts:

L1 = ((x,t,s): x = x0 (0,s) + rrox(-,s)(,r >0 ) ; t = 0; a<s<b)

L2 = ((x,t,s): x = Xo(t,s); 0< t< T; a< s < b)

It is natural to require that the following condition holds:

V. Suppose that the surface L belongs to the domain D(x,t,s)

which appears in Condition I.

The general solution of equation (26) can be written as

k
X1 (t,s) = C it) (s) + 2l(ts) , (28)

where the fi(t) are as yet arbitrary functions and El(ts) is a

particular solution of (26) which, for example, has the form

f(t,s) -- (t,s) + C i t)(),(t
+ 'C 14 *#i(t)C i(s)'*i(t) = (*(t's), ~i(s))

1 i=k+l 14

The equation and the supplementary conditions for 1 x(-r,s) are

[11x(r,s) - ,rK(sa)1"x(ra)da1 + g(,r,s)

SI a

-~W- A..* i,



where

g('r,s) = 0f = f(X0 (0,s) + x(r,s),o,s,o) - f(x0 (0,s),0,s,O)

Tr x(o,s) = - 1(O,s)

TX( ,s) 0 as T (29)

By virtue of (23) the function g(r,s) satisfies the exponential estimate

Ig (,,s) 1_< c exp(-'r) (-r > 0, a < s < b) Thus the function 1T1X(,s) is

the solution of a problem of the type considered in Subsection 2 of §L.

And by virtue of Lesmma 1 it satisfies condition (29) and an exponential

estimate, provided that

-x 
0<- 1O~s, i~)) -o <(,,s), i(s) / (jq (i = ,..k

By inserting here the expression (28) for x1 (0,s) , we obtain the values

Pi(0), namely

i (0) -. g(T,s),(D (s))d-r ( i = 1,...,k)
1 0

Thus, rl1X(1,s) is completely determined, and we have found the initial

values 1i(0) The functions 1i(t) are determined completely from a

solvability condition for the integral equation defining x2(ts), in a

manner analogous to that for the determination of the functions ai(t)

It turns out that the 0i(t) satisfy the system of linear differential

equations

C0i k

d--T= tb Cj(t)pi (t ) + f1(t )  (i = 1,...,k) (30)

where b1 (t) = (fx(X0 (t,s),t,s,O)ci(s),(s)' and fl(t) is a known function.



The determination of the remaining terms in the expansion proceeds

according to considerations analogous to those used for the determination

of x1 (t,s) and Tfix(l,s) - At the i-th step the expression for xi(t,s)

contains k arbitrary functions (let us denote them by yi(t), i =l,...,k)

Nov the problem for Vi x(.r,s) is analogous to the one for Tix(T,s)

while the values yi(0) are found from a condition like (5) Finally,

we obtain a system of linear differential equations like (30) for Yi(t)

from a solvability condition in the equation for x i+l(ts) It follows

also that each IT-function satisfies an exponential estimate

lrix(-,s) < cexp(-x) (, > 0, a < s < b)

2. An Estimate of the Remainder Term. Let us first make more pre-

cise the requirement involving the smoothness of f(x,t,s, L) (cf. I)

It is possible to take as the domain D(x,t,s) occurring in Condition I

an arbitrary 6-tube of the surface L (cf. V) . We then require that

f(x,t,s,&) have continuous partial derivatives up to order n+ 2 inclu-

sive with respect to x,t and p in the domain D(x,t,s,p) = D(x,t,s,4)

x[0,40 ] -We have determined the terms of the series (20) to order n+ 1

inclusive, and let us denote by Xk(t,s,4) the k-th partial sum of

(20), that is,
k

x k(tvs,)= E i (i(t,s) + Trix(,r,s))
i=o

Let us now introduce the norm of a function y(t,s,j) by Ijy(t,s,4)jj

,Mply(t,,.)l. 0< t< T, a< s < bl

& ~ 1 LA



Theorem 4. Under Conditions I-V there exist positive onstants -

and c such that for 0 < V< 0 the solution x(t,s,4) of the problern

(1), (2) exists in the domain [0 < t < T, a < s < b) , is unique and

satisfies the inequality

Iix(t,s,J) - X (t,s,. )f < c4n+l

Proof. (Suggested by A. Kasanov.) Set F(t,s, ) = x(t,s,") -Xn(t,.,-

Then by substituting x = Xn+ 1 + F into (1), (2) we obtain for F the p:"

lem

at [ -E + wXX(~,t + G(F,t,s,p.) ,(31)

I(otsp) = 0 , (32)

where

f (t,s,&) = fX(o(t,s) + -oX(Ts),t,s,.) and
x

G( ,t'sp) =-[xn+ - BX n+] + 11.f(X n+ + tVS, )

(ts,1 dXn+l(ts,4)
X dt

As in the previous chapters, it is not difficult to show that

G(1,ts,1&) has the following two properties:

1 . ll-(O,t,s , 
- A 

(. 2
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2. G(.,t,s,L) is a contraction operator with contraction coefficient

of order (w.2 ) for III = .( ) •This means that if !IF(t,s, )" <Cl

and II 2 (ts,")II < cl , then there are constants c and 40 -< U1 such

that for 0< L_ 0

lIG(El,t,s,) - G(! 2 ,t, S,)I -5 cOL 2 H.1 - Fj (33)

See our remark in Subsection 3, §1 of Chapter 1 regarding the constant 0

Let us now write (31) as

U = G( ,t'slk) , (34)

where U is the operator defined by UE= + [p-B - f Fat x

We consider first the auxiliary linear problem

Uy = a(t,s,), y(O,s,.) 0 , (35)

where a(t,s,) is a given continuous function.

Lemma 2. For each sufficiently small value of 4(0 < 1 < O) the

solution y(t,s,&) of problem (35) exists in the domain (0 < t < T

a < s < b] , is unique, continuous and satisfies the inequality

ll¥(tps,1)ll <5 Mlk' la(t,s,L )Jj , (36)

where the constant M > 0 is independent of .

i .7JhII|A



Remark. The constant in this estimate, because of its importance for

later discussion, is denoted by M rather than by c

The existence, uniqueness and continuity of y(t,s,) can be

established without difficulty by passing from (35) to the integral equation

exp(p 1 , (-i+ LLf )de) By+ ((,s,4) de 37)y(t,s,j) =Byaes± de37

0 e X LI.

and applying the method of successive approximations.

Let us prove that the estimate (36) is valid. By taking the scalar

product of equation (35) with y we obtain the equation

1vLd(y,y) = -(y,y) + P(y,y) + LtQ(y,y) + R(y,y) / , (38)

where

P X2 Q R
=(y'y) ' (y'y) ,) 1T:>2((y

We know already from an analogous situation that

(y,By) = (y, i(Y,C)c = 2,i

< (Y CD i)2 < (y,y)i=l

so P < 1 • Moreover, it is clear that

JJQll < 11f x1I and IIRJJ < lIC41(b-a) 1 / 2  
(39)

Dividing (38) by (y,y)!/ 2 we obtain

f L , , , -' ' 'i ... .. . . .. . . - . ' . . . . . ... ... ... .......... ' = ' .. . -
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S- 1 (,12 = (-1i+ P+ VQ)yy) 1/2 + R

and so

1/2 = Joex( Ll '(-1+ P+ LtQ) de) •-dO

(' 0 Ir

By virtue of the properties just noted P and Q are exponentially bounded,

and consequently, by taking account of the inequality in (39) for R , we

have the estimate

(y,y)i/2 < c L-]]joj (40)

From the obvious inequality

t(-i+ Ufx ) dO) < exp(-h-l (t-1))

e-

(37) implies now that

Hy(t,s,l)ll < c(OIByt + II) (4,1)

Since

bIBYl = If K(s,a)y(t,, ) l < (K,K) /(y,y)/2 < C1

a

it follows from (h0) that IIByil < -11 , and so,

I11 < -41i1

If we replace the constant c by M then the lemma is proved.

We turn now to equation (34) and the initial condition (32). We will

prove the existence of a unique solution satisfying the estimate



for all sufficiently small t . This will establish the theorem.

In order to apply the method of successive approximations we set

to = 0 and define 9k+l inductively by U k+1 = G( k,t,s,"') . By vir-

tue of Property 1 for G IjG(.o,t,s,)II < c.in+ 2  while from Lemma 2

M n+2 n+1  '1 n+el
II l_ Mc _ nL (43)

We continue now by induction on indices knowing that 1II 011 < cl and
nl

II llt < cln • If we assume that

cn+z (i =o,1, ... , (44)

then we must prove that (44) is also valid for i = k+ 1 . Clearly

U G(ktsu) -G(

and since I c1 tiin+_1 < cp and "Ik.l' < cl & for 0 < p < i 1

we can apply the inequality (33) to the difference in the right-hand side.

In addition, by using Lemma 2, we obtain

1 - V 0 1' !klV = McOW1Ik F -k-1' 1

We now choose t0 so small that the inequality Mc& 0 <- is satisfied.

Then, taking account of (43), it follows that

(45)
< 1 1 n+1

2 k 2k+!cz ii.zlI _z~z _ .I



Hence

-1k+ 11 1 tik+ l  9k1 + +1~k k-11 . + .

1 1 1 1n+1 n+ 1

2 2~ C

Thus, (44) and therefore, (45) are valid for any number k . By

virtue of (45) the series of terms %+l - k converges uniformly with

respect to (t,s), that is, the sequence ( k converges uniformly.

This, in turn, implies the existence of a solution of the problem (34),

(32). To see this, simply write equation (34) as an integral equation

(from (37) it suffices to write y for F and a for G ). The unique-

ness of the solution of this integral equation can be proved in the usual

way, if we note that the operator BF + G(F,t,a,j) is Lipschitzian.

Finally, the estimate (42) follows from the fact that each k satisfies

the inequality (44). This concludes the proof of Theorem 4.

3. Concluding Remarks. 1. Our results can be extended, under cer-

tain additional assumptions, to the more general equation

Bx(t,.s ) = -a(t,s)[x(ts,M) - j K(t,s,a)x(t,a,)da]at -- a (46)
b

+ f(x,,ts. H(xtap)dag)
a

The most interesting feature of this equation is the appearance of the

factor a(t,s) , whose dependence on s destroys the symmetry of the

operator A

Let us first investigate how to modify the construction in the special

case when equation (46) is of the form

OW,
..............



b
at -a(s) Wxt,s,U.) -. r K(s,a)x(t,o,)diI

+

(This equation has been studied by A. Kasanov.) For x 0(ts an Tx(-r,s)

we have that

k

B ix(t-, s) b .t~.s

B= a(s) [%Tx(-r, s) -.r K(s,a)Trx('F,cY) dc
a

Tr 0 x(O's) = x 0(S) -x ~0(O's)

and

Tr(,)-0as T- (4~7)

Condition (47) reduces to the condition that the initial value TV x(O,s) be

bounded, that is,

bi 0r(O~~p, ds = 0 (i = 1 . k

(cf. (24i)); whence, a,:(O) can be defined by the formula (cf. (25))

aim = Tb x 0(s)W (S s) (

aFS

We must of course choose the eigenfunctions cp1(s) (i = 1,...,k) to be

orthogonal with weight Va(s)

The equations for the coyi(t) are obtained, as before, from a solv-

ability condition in the equation for x (tss),, that is,

RPM



1 3

s(t,s) b

a -a(s) [x (t,s) - a K(s,,)xl(t,)da]t a

+ f(xo(t,s),t,s,O) ,

and they are k

doi  b f(j a.(t cpj (s) ,t, s, O)c i(s)

-= a a(s) dsa

2. Equations and systems of the form p = A(t)x + pf where A is

a certain integral operator, arise in kinetic theory (for example, Boltzmann's

equation; see [6]). It is true that the structure of the operator A is

more complicated in such problems than in the cases considered here; moreover,

the problems are nonlinear. However, it is important to note the following:

solutions of the degenerate equation A(t)x = 0 contain an indeterminacy.

In this regard we note that some of the approximation methods in kinetic

theory (cf. (6]) lead to nonlinear systems of the type considered in Chapter 2.

Iq
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