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ABSTRACT

A review of the present state of understanding of continuous stirred

tank reactors is presented along with certain new results on bifurcation

phenomena for catalytic surfaces. A few examples are discussed which show

repeated Hopf bifurcation, complex oscillations, and chaotic behaviour arising

from a simple catalyst surface model.
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SIGNIFICANCE AND EXPLANATION

This paper surveys the state of knowledge regarding the

bifurcation behaviour of homogeneous stirred reactors and suggests a

mechanism which can explain observed complex oscillations and

apparent chaotic behaviour of catalytic r r The mathematical

concepts brought to bear on this problem include static and Hopf

bifurcation, multiple and secondary bifurcation, and singularity

theory. The features arising in the problems discussed here are

thought to be common to a wide range of chemically reacting systems.
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BIFURCATION PHENOMENA IN STIRRED TANKS

AND CATALYTIC REACTORS

W. H. Ray* and K. F. Jensen*

1. Introduction. The existence of bifurcation phenomena in

common types of chemical reactors has been known for more than 150

years (e.g.; [I - 31) and yet new experimental and mathematical

results are being discovered and reported even today. A rather good

history of the these developments may be found in recent review

articles (e.g. [4 - 61). Probably the simplest type of chemical

reactor which exhibits interesting bifurcation behaviour is the

continuous stirred tank reactor (CSTR). Equally interesting are

catalytic surfaces and catalytic reactors which are only slightly

more complex systems but which provide a wide variety of bifurcation

phenomena (e.g.; multiple steady states, both simple and complex

non-linear oscillations, chaotic behaviour, standing and travelling

waves, etc.) [4 - 71. In this paper we plan to briefly discuss new

results which have been reported for the CSTR and then move on to

show some of the intriguing bifurcation phenomena which arise from a

new model for catalytic surfaces.
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University of Wisconsin-Madison. This work was sponsored in part by the
United States Army under Contract Number DAAG29-75-C-0024 and the National
Science Foundation. Acknowledgement is made to the donors of the Petroleum
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support of this research. The authors are indebted to Tunde Ogunnaike for
contributing his artistic talents to Figure 1.
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2. The Continuous Stirred Tank Reactor. The continuous stirred

tank reactor (CSTP) is a stirred pot (Figure 1) into which chemicals

of a certain recipe flow continuously and are stirred and heated or

cooled while undergoing chemical reaction. These reactors often

occur in connected multiples which can have ever increasing static

and dynamic complexity. The bifurcation behaviour of the CSTR has

been studied for more than 25 years (6, P-151 and vet qualitatively

new results seem to continually appear. To begin the discussion let

us consider the simplext case: a CSTR in which a single

irreversible first order exothermic reactor is being carried out.

The modellinq equations take the form

dx I  2(1) '= "x + fa(1-x )exp{ }
1 1+x 21y

dx 2  x 2
(2) Le - -x + rDa(-x )eXp{- } -8(x -X

fit 2 1 1+x2/,y 2 2c

t2
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where To or anethcovrinfretatndxa

F" ePj ft

dimensionless temperature. The system parameters are B, a

dimensionless heat of reaction, y a dimensionless activation

energy, x 2c a dimensionless coolant temperature, Le a ratio of

characteristic times for transport, 0 a dimensionless heat

transfer coefficient, and Da a dimensionless ratio of reactor

residence time to reaction time. If desired, these latter two

parameters can be further parameterzed in terms of the reactor

residence time, T 

(3) Da = Da 0 T

(4) B8 0 T
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where Moto 0 are reference parameters.
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Figure 2. Rifurcation with respect to Da
and resulting phase portraits.

The structure of the static and Hopf bifurcation behaviour for

Equations (1,2) has been studied (e.g. cf [6, 12, 131) and may be

summarized in Figure 2. The formation of single limit cycles from

saddle loops was conjectured in 1131 as a means of explaining the
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disappearance of limit cycles of large amplitude and the numerical

computations in [131 support this conjecture. Recently, some

questions have been raised [16,17] about the possible bifurcation of

pairs of limit cycles from degenerate saddle loops. Speculations

that this could lead to a vast array of new phase portraits have

been made [171; however, no computations have been

6A
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Figure 3. Bifurcation with respect to T for y +
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reported which show these new phase portraits actually exist. Some

attempts at such calculations have been unsuccessful [16].

When the reparameterization given by Equation (3,4) is made

there is very complex static and Hopf bifurcation behaviour. For

the case where I + - , the structure has been calculated (cf.

[14]) and may be seen in Figure 3. Recent results by Golubitsky and

Keyfitz [18] as well as by Huang and Varma [191 seem to indicate

that for relatively small values of I and extreme values of

X2 c , even more variety in static bifurcation may occur (cf.

Figure 4).

The effect of the Iewis number, Le on the CSTR behaviour has

been analyzed by Schmitz et al [20] and by Ray and Hastings [21].

In reference [201, theoretical predictions of bifurcation behaviour

were found to agree very well with observed experimental results for

the case of a second order exothermic reaction. Ray and Hastinms

(21] show that for sufficiently small values of Le, Hopf

bifurcation r:curs and the resulting limit cycle approaches a

relaxation oscillation as Le + 0.

If one considers more complox kinetics or multiple coupled

stirred tank reactors, the behaviour becomes even more

interesting. For example, Halbe and Poore [22] have carried out the

bifurcation analysis for the case of two consecutive reactions

A + P + C in a CSTR and have shown secondary static branching and a

rich variety of Hopf bifurcation behaviour. Recently, Aris and his

-6-
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Fiqure 4. Static bifurcation with respect to T for

both finite and infinite y '

students [26] have also studied the bifurcation behaviour of this

problem. Marek [23-25] and Aris [261 have considered the behaviour

of systems of coupled stirred tanks, and their results illustrate

quite clearly that for multiple CSTPs the story of CSTP bifurcation

behaviour is far from complete.

-7-



3. Catalytic Reactors. There are many types of catalytic

chemical reactors which exhibit interesting bifurcation behaviour.

These range from the catalytic converter used in automobile exhaust

purefication to large 10 story high fluidized bed catalytic crackers

used in oil refineries. The oscillations, multiple steady states,

and wave phenomena which arise in catalytic systems may be

instigated by the catalyst, the reactor configuration or the

interaction of both the catalyst and the reactor. (cf [4-71 and

references therein for more details) However, those effects due

solely to the reactor configuration are not specific to catalytic

systems and would arise for non-catalytic reactions in the same

reactor. Thus our discussion here will center on the bifurcation

behaviour of catalytic surfaces.

Although there have been many chemical explanations put forth

for the wide variety of dynamic behaviour exhibited by catalytic

surfaces (e.g.; [4-7]), these phenomena are so pervasive that a

physical explanation would seem plausible. Recently, the authors

developed such a physical model for unsupported [27,28] and

supported (29] catalytic surfaces.

For unsupported catalysts such as catalytic wires, the model

arose from the following experimental observations:

8--
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(i) Completely smooth wires do not readily ignite, but must

be "activated" by heat treatment which rouahens the

surface.

(ii) Smooth wires do not oscillate and analysis of simple

models confirms that such oscillations should not be

possible.

(iii) Roughened wires oscillate for a wide range of catalysts

and reactant gases, and these oscillations tend to be

very complex.

(iv) Optical observations of the roughened oscillating

surface show very high oscillating temperatures locally

on the roughened surface.

When one considers all of this evidence together, a new view of the

dynamics of a catalytic metal surface emerges. In particular, it

appears that the roughened surface of a catalytic wire or gauze

plays a key role in the dynamic behaviour of the reaction. Electron

micrographs of platinum and platinum alloy catalytic wires such as

shown in Figure 5 [31) clearly show the presence of rough, porous

protrusions on the surface of the catalytic wire. To mathematically

model this "fuzzy" wire, we shall choose the simple picture shown in

Figure 6. The protrusions on the wire surface are modelled as

cylinders of radius R and length Lp. Tnese protrusions have a

size distribution, F(Rp) dRP which defines the number of

protrusions per unit area of bulk wire surface in each size range

Rp to Rp + dRo Each size protrusion can oscillate with a

-9-
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Figure 5. Scanning electron micrographs of platinum rhodium

gauzes used for ammonia oxidation, above: smooth
wires before use, below: rough wires after use.
(Photograph kindly provided by Professor L. D.
Schmidt.)

frequency dependent on R and the distribution of protrusions can

give rise to complex oscillations on the wire. Thermal

communication between each protrusion and the bulk wire occurs at

the end of the protrusion over a circular cross section of area

-10-
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71 R2 
. The fraction of the bulk wire surface covered by these

protrusions is thus given by

(5)~ C '( )O dR 0 < C

Figure 6. The fuzzy wire modiel.
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and is assumed uniform over the entire wire surface. One may

formulate heat and material balances for this composite system in a

very general way [27,28]. However, a particularly simple model may

be developed by assuming a first order irreversible reaction on the

wire (in excess oxygen) with rate of mass transfer controlled by

adsorption to the surface. If one assumes both the wire and

protrusions to be uniform in temperature and concentration and the

heat transfer between protrusions and wire to be modelled by

Newton's law of cooling, then the modelling equations take the

dimensionless form

dxIn X2p

( 6 )= x + D a ( 1 - X , p(6i- Xp Xlp)x/

() Ledx p -(1 + )x + Da(1 X ex1 + 2p + ax
dx X2p(7) Ledt -( )2p + ~( lp) 1x + x 2p/-f X2w

dxl X2w
(R) = -x + Da(1 - Xw) exp 1 2w

dt 1w 1 + X2w/Y

dX2w

dx 2
(9) Le - = -(1 - £ + w£)X2w + w < x2 >

+ (I- e) Da(1 -x exp X 2
w 1w 1 + X 2w/Y

al-1-
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whezire x~ X x are the composition and temperature of a protrusion

of sze .ad xw, ~w ae te crreponingvalues on the bulk

a F(R )x dR
(10 2 > c p 2p p

2 '; acF(R P)dR

is the dimensionless area average protrusion temperature. For

purposes of simulation it is useful to assume a discrete set of

protrusion sizes, Rpi so that

a N
(11) F(R) I n 6CR - R

p J- Pi p P

where n Piis the number of protrusions/unit wire area of size

*pi Thus Equations (6 -10) represent a set of 2N + 2 model

equations.

-13-
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Figure 7. Hopf bifurcation points for the fuzzy wire

model simulations, with varyinq catalyst
activitiy, (.) bifurcation point, (x)

simulation. The wire totally covered by six
protrusion sizes evenly distributed, B = 6.0,
Le = 0.20, 0.17, 0.14, 0.11, 0.08, 0.05,
B = 1.0, y =20.0, T =2.0.
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This model gives an amazing variety of ignition, extinction and

oscillatory behaviour [281, but space only allows the presentation

of a few results here. For example, in the case where there are 6

different protrusion sizes on the wire, there is secondary,

tertiary, and higher order Hopf bifurcation as each size protrusion

begins to oscillate with decreasing values of Da. The bifurcation

points for the individual protrusions and the resulting complex

dynamic behaviour of the entire wire is shown in Figure 7.

An even more interesting case involving only two protrusion

sizes may be seen in Figure 8. Here as Da decreases the smaller

protrusion bifurcates first and begins to oscillate as shown in

Figure 8(d). Then as Da is decreased only slightly, the larger

protrusion is "excited" and participates in a large complex

oscillation in tandem with the smaller protrusion. As Pa is

decreased still further, the larger protrusion bifurcates and

oscillations become less complex and more nearly regular. The fact

that this rather complex oscillation arises for only two protrusion

sizes on an inert bulk wire suggests that even simple interacting

reaction systems can show a wide variety of dynamic behaviour.

- j-, . . . .... I__ _____ ___I______



7; X

SO 0. I

t" I",

"MOM I fllow Il.. ,.. i

Figure B. Bulk wire oscillations for varying
catalytic activity. The wire is totally
covered by equal areas of two protrusion
sizes, B - 7.2, Le = 0.09, 0.005, B = 2.0,
Y - 30.0, T - 0.053
(a) De - 0.064, (b) Da - 0.067, (c) Da
= 0.069, (d) Da , 0.070.
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Two forms of oscillating behaviour are possible when the bulk

wire is only partially covered by protrusions. In the first case

the bulk wire serves to attenuate the protrusion generated

oscillations [27], while in the second and more interesting case the

wire also sustains oscillations. A particularly interesting case

arises when both the protrusion and wire are about the same size, in

this case the Hopf-bifurcation points for wire and protrusion

equations can coincide. Figure 9 illustrates the time evolution of

the state variables, x1 p and x2w for a wire half covered by

protrusions of a uniform size as Da is decreased away from such a

multiple Hopf-bifurcation point. Initially the oscillations are

complex, but as Da decreases further they become single peaked due

to synchronization of wire and protrusion dynamics.

7b illustrate the prediction of apparent chaotic behaviour from

our model and a comparison with experiment, we provide in Figure 10

a simulation with four protrusion sizes and the parameters for the

catalytic oxidation of butane over Pt. Note that the chaotic

temperature dynamics predicted by the model are in rather good

agreement with the experimental observations of Edwards et al [30].

4. Concluding Remarks. From the very few examples presented

here it is clear that commonly encountered chemical reactors provide

an abundance of mathematically interesting bifurcation phenomena.

In the case where the number of chemical reactor equations rises

above two, then complex oscillations, chaos, and other exotic

III -17-j I



behaviour are predicted even from simple models. The fact that

these dynamic systems are also very important from~ the practical

viewpoint, means that they make very good candidates for further

study both by engineers and mathematicians.
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Figure 9. Oscillations in fx and lxw for Da
decreasing aLay fr a mut le Hopf-
bifurcation point Da = n.1089, P~ - 8.32, 4
B - 4.99, Iae 0. 1, le = 0. 1,

= 0.1, 1 = 0.3, y = lo, E .0.5
(a) Da . 0.103, (b) Da = 0.102q, Cc) Da
-0.09808, (d) Da =0.09696, (e) Da =0.0179,

Mf Da - 0.07637.
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) Figure 10. Comparison of experimentally observed
and theoretically predicted oscillations in
butane oxidation. (a) Experiments (Ref.
(301), (b) Fuzzy wire model prediction.
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