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b SIGNIFICANCE AND EXPLANATION

| -
‘} This paper surveys the state of knowledge regarding the
|
bifurcation behaviour of homogeneous stirred reactors and suggests a
mechanism which can explain observed complex oscillations and
L_6~,"
apparent chaotic behaviour of catalytic reactors.— The mathematical
concepts brought to bear on this problem include static and Hopf
bifurcation, multiple and secondary bifurcation, and sinqularity
theory. The features arising in the problems discussed here are
thought to be common to a wide range of chemically reacting systems. .
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BIFURCATION PHENOMENA IN STIRRED TANKS
AND CATALYTIC REACTORS
W. H. Ray* and X. F. Jensen®*

F* t. Introduction. The existence of bifurcation phenomena in
common types of chemical reactors has been known for more than 150

years (e.g.; [1 - 3]) and yet new experimental and mathematical

results are being discovered and reported even today. A rather good

T history of the these developments may be found in recent review

—r

articles (e.g. [4 - 6]). Probably the simplest type of chemical
reactor which exhibits interesting bifurcation behaviour is the
continuous stirred tank reactor (CSTR). Equally interesting are
catalytic surfaces and catalytic reactors which are only slightly
more complex systems but which provide a wide variety of bifurcation
phenomena (e.g.; multiple steady states, both simple and complex
non-linear oscillations, chaotic behaviour, standing and travelling

waves, etc.) [4 - 7]. In this paper we plan to briefly discuss new

results which have been reported for the CSTR and then move on to
show some of the intriguing bifurcation phenomena which arise from a

new model for catalytic surfaces.

*Mathematics Research Center and Department of Chemical Engineering,
* University of Wisconsin-Madison. This work was sponsored in part by the
United States Army under Contract Number DAAG29-75-C-0024 and the National
Science Foundation. Acknowledgement is made to the donors of the Petroleum
’ Research Fund administered by the American Chemical Society for the partial
support of this research. The authors are indebted to Tunde Ogunnaike for
contributing his artistic talents to Figure 1.
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2. The Continuous Stirred Tank Reactor. The continuous stirred

tank reactor (CSTR) is a stirred pot (Figure 1) into which chemicals '
of a certain recipe flow continuously and are stirred and heated or
cooled while underaoing chemical reaction. These reactors often
occur in connected multiples which can have ever increasing static
and dynamic complexity. The bifurcation behaviour of the CSTR has
been studied for more than 25 years (6, R-15] and vet qualitatively
new results seem to continually appear. To begin the discussion let
. us consider the simplext case: a CSTR in which a single
irreversible first order exothermic reactor is being carried out.

The modelling equations take the form

dx1 x '
(1) T T m”'x1)exp{1+x2/v}
L]
dx x2
— I = n - —— - -
(2) Le = x, + paf x1)exp{1+x2/Y} B(x2 xzc)
.
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Figure 1. The Three Sisters

where x1 denotes the conversion of reactant and x, a
dimensionless temperature. The system parameters are B, a
dimensionless heat of reaction, Y a dimensionless activation
energy, x2c a dimensionless coolant temperature, le a ratio of
characteristic times for transport, B8 a dimensionless heat
transfer coefficient, and Da a dimensionless ratio of reactor
residence time to reaction time. If desired, these latter two
parameters can be further parameterized in terms of the reactor

residence time, T ,

(3) Da

]
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where Dao,B0 are reference parameters.
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Figure 2. Bifurcation with respect to Dha
and resulting phase portraits.

The structure of the static and Hopf bifurcation behaviour for
Equations (1,2) has been studied (e.qg. cf [6, 12, 13]) and may be

summarized in Figure 2. The formation of single limit cycles from

saddle loops was conjectured in [13]) as a means of explaining the
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disappearance of limit cycles of large amplitude and the numerical
computations in [13] support this conjecture. Recently, some
questions have been raised [16,17] about the possible bifurcation of
pairs of limit cycles from degenerate saddle loops. Speculations
that this could lead to a vast array of new phase portraits have

been made [17]; however, no computations have been
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Figure 3. Bifurcation with respect to 1t for y * o ,




reported which show these new phase portraits actually exist. Some
attempts at such calculations have been unsuccessful [16].

when the reparameterization given by Equation (3,4) is made
there is very complex static and Hopf bifurcation behaviour. For
the case where Yy + » , the structure has been calculated (cf.
[14]) and may be seen in Figure 3. Recent results by Golubitsky and
Keyfitz [18] as well as by Huang and Varma [19) seem to indicate
that for relatively small values of vy and extreme values of
x2c , even more variety in static bifurcation may occur (cf.
Figure 4).

The effect of the lewis number, 1Ie on the CSTR behaviour has
been analyzed by Schmitz et al [20) and by Ray and Hastings [21].
In reference [20), theoretical predictions of bhifurcation behaviour
were found to agree very well with observed experimental results for
the case of a second order exothermic reaction. Ray and Hastinas
(21] show that for sufficiently small values of le, Hopf
bifurcation czcurs and the resulting limit cycle approaches a
relaxation oscillation as le » 0 ,

If one considers more complex kinetics or multiple coupled
stirred tank reactors, the hehaviour becomes even more
interesting. For example, Halbe and Poore ([22] have carried out the

bifurcation analysis for the case of two consecutive reactions

A+ R+ C in a CSTR and have shown secondary static branching and a

rich variety of Hopf bifurcation behaviour. Recently, Aris and his
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Figure 4. Static bifurcation with respect to 1 for

both finite and infinite Yy .

students [26] have also studied the bhifurcation hehaviour of this
problem. Marek [23-25] and Aris [26]) bhave considered the bhehaviour
of systems of coupled stirred tanks, and their results illustrate
cquite clearly that for multiple CSTRs the story of CSTR bifurcation

behaviour is far from complete.
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3. Catalytic Reactors. There are many types of catalytic

chemical reactors which exhibit interesting bifurcation behaviour.
These range from the catalytic converter used in automobile exhaust
purefication to large 10 story high fluidized bed catalytic crackers
used in oil refineries. The oscillations, multiple steady states,
and wave phenomena which arise in catalytic systems may be
instigated by the catalyst, the reactor configuration or the
interaction of both the catalyst and the reactor. (cf [4-7] and
references therein for more details) However, those effects due
solely to the reactor configuration are not specific to catalytic
systems and would arise for non-catalytic reactions in the same
reactor. Thus our discussion here will center on the bhifurcation
behaviour of catalytic surfaces.

Although there have been many chemical explanations put forth
for the wide variety of dynamic behaviour exhibited by catalytic
surfaces (e.g.; [4-7])), these phenomena are so pervasive that a
physical explanation would seem plausible. Recently, the authors
developed such a physical model for unsupported [27,28] and
supported [29] catalytic surfaces.

For unsupported catalysts such as catalytic wires, the model

arose from the following experimental observations:




(i) Completely smooth wires do not readily ignite, but must
be "activated” by heat treatment which roughens the
surface.

(ii) Smooth wires do not oscillate and analysis of simple
models confirms that such oscillations should not be
possible.,

(iii) Roughened wires oscillate for a wide range of catalysts
and reactant gases, and these oscillations tend to be
very complex.

(iv) Optical observations of the roughened oscillating
surface show very high oscillating temperatures locally
on the roughened surface.

When one considers all of this evidence together, a new view of the
dynamics of a catalytic metal surface emerges. In particular, it
appears that the roughened surface of a catalytic wire or gauze
plays a key role in the dynamic behaviour of the reaction. Electron
micrographs of platinum and platinum alloy catalytic wires such as
shown in Figqure 5 [31] clearly show the presence of rough, porous
protrusions on the surface of the catalytic wire. To mathematically
model this "fuzzy" wire, we shall choose the simple picture shown in
Figure 6. The protrusions on the wire surface are modelled as
cylinders of radius Rp and length Lp. These protrusions have a
size distribution, F(Rp) dRp which defines the number of

protrusions per unit area of bulk wire surface in each size range

Rp to Rp + dRp. Fach size protrusion can oscillate with a




Figure 5. Scanning electron micrographs of platinum rhodium
gauzes used for ammonia oxidation, above: smooth
wires before use, bhelow: rough wires after use.
{Photograph kindly provided by Professor L. D.
Schmidt.)

frequency dependent on Rp and the distribution of protrusions can
give rise to complex oscillations on the wire. Thermal
communication between each protrusion and the bulk wire occurs at

the end of the protrusion over a circular cross section of area
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"Rg « The fraction of the bulk wire surface covered by these
4 protrusions is thus given by
L‘s
a0 2
(5) € = [ _F(R_JMR® dR 0 <ce ¢ 1
" p P P

Figure 6. The fuzzy wire model,
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and is assumed wniform over the entire wire surface. One may
formulate heat and material balances for this composite system in a
very general way [27,28). However, a particularly simple model may
be developed by assuming a first order irreversible reaction on the
wire (in excess oxygen) with rate of mass transfer controlled by
adsorption to the surface. If one assumes both the wire and
protrusions to be uniform in temperature and concentration and the
heat transfer between protrusions and wire to be modelled by
Newton's law of cooling, then the modelling equations take the

dimensionless form

1p 2p
—_— o - + - -
(€) 3t x1p Da(1 x1p) exp TF % /v
2p
[}
dx2p x2
7 = =(1 + + B - —=P '
(7) le —¢ ( IB)xzp Da(1 x1p) exp T x2p/Y + szw
dx x
w 2w
2] = - + - —_—
(/) at X tPAOY =X )X T A
2w
x
(9) Le 2w=-(1-e+se)x + B € <x_>
w Adat w 2w w 2
X
2w
+ - i - ). S,
(1 e)Bw31(1 x1w) exp 1T xzw/Y

.12 =

——— i W
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where Xqpr Xyp are the composition and temperature of a protrusion

R

of size RP and Xqgr Xy, Aare the corresponding values on the bulk

wire. Here

roo

- acF( RP )xzdep

— (10) <x2> = —
Io a F(R )AR,

is the dimensionless area average protrusion temperature. For

purposes of simulation it is useful to assume a discrete set of

protrusion sizes, Rpi' so that

o~
-]
[
x
o
]
x

(11) F({R ) =
P

where npi is the number of protrusions/unit wire area of sgize

Rpi. Thus Bquations (6 - 10) represent a set of 2N + 2 model

equations.
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Figure 7. Hopf bifurcation points for the fuzzy wire
model simulations, with varying catalyst
activitiy, (.) bifurcation point, (x)
simulation. The wire totally covered by six
protrusion sizes evenly distributed, B = 6.0,
le = 0.20, 0.17, 0.14, 0.11, 0.08, 0.05,
B =10, Y =20.0, T =2.0.




This model gives an amazing variety of ignition, extinction and
oscillatory behaviour [28], but space only allows the presentation
of a few results here. For example, in the case where there are 6
different protrusion sizes on the wire, there is secondary,
tertiary, and higher order Hopf bifurcation as each size protrusion
begins to oscillate with decreasing values of Da. The bifurcation
points for the individuwal protrusions and the resulting complex

dynamic behaviour of the entire wire is shown in Figqure 7.

An even more interesting case involving only two protrusion
sizes may be seen in Figure 8. Here as Da decreases the smaller
protrusion bifurcates first and begins to oscillate as shown in
Figure 8(d). Then as Da 1is decreased only slightly, the larger
protrusion is "excited" and participates in a large complex
oscillation in tandem with the smaller protrusion. As Ma is
decreased still further, the larger protrusion bifurcates and
oscillations become less complex and more nearly regular. The fact
that this rather complex oscillation arises for only two protrusion

sizes on an inert bulk wire suggests that even simple interacting

reaction systems can show a wide variety of dynamic behaviour.
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Figure 8.

Bulk wire oscillations for varying
catalytic activity. The wire is totally
covered by equal areas of two protrusion
sizes, B = 7.2, lLe = 0.09, 0.005, B8 = 2.0,
YO = 30.0, Tt = 0.053

(&) pa = 0.064, (b) Da = 0.067, (c) ba

= 0.069' (d) Da = 0.070.

16~

e 4 AR ——\ S—— e o




o~

‘4

Two forms of oscillating behaviour are possible when the bulk
wire is only partially covered by protrusions. In the first case
the bulk wire serves to attenuate the protrusion generated
oscillations [27), while in the second and more interesting case the
wire also sustains oscillations. A particularly interesting case
arises when both the protrusion and wire are about the same size, in
this case the Hopf-bifurcation pcints for wire and protrusion
equations can coincide. Figure 9 illustrates the time evolution of
the state variables, x1p and xzw for a wire half covered by
protrusions of a uniform size as Da is decreased away from such a
multiple Hopf-bifurcation point. 1Initially the oscillations are
complex, but as Da decreases further they become single peaked due
to synchronization of wire and protrusion dynamics.

To illustrate the prediction of apparent chaotic behaviour from
our model and a comparison with experiment, we provide in Figure 10
a simulation with four protrusion sizes and the parameters for the
catalytic oxidation of butane over Pt. Note that the chaotic
temperature dynamics predicted by the model are in rather good

agreement with the experimental observations of Edwards et al ([30].

4. Concluding Remarks. From the very few examples presented

here it is clear that commonly encountered chemical reactors provide
an abundance of mathematically interesting bifurcation phenomena.
In the case where the number of chemical reactor equations rises

above two, then complex oscillations, chaos, and other exotic

-17-
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behaviour are predicted even from simple models. The fact that ;
these dynamic systems are also very important from the practical
1
viewpoint, means that they make very good candidates for further ‘
study both by engineers and mathematicians.
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