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ABSTRACT

New algorithms are described for Bayesian estimation of parameters

in nonlinear models of multiple-response systems. Modal and interval

estimates are provided for the parameter vector 3 of the predictor

model, and for the variance-covariance matrix c of a Normal error

distribution. Allowance is made for gaps (missing values of responses),

such as commonly occur in practice. Two chemical examples are analyzed.
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SIGNIFICANCE AND EXPLANATION

Some new algorithms are presented for fitting mathematical

models to multiple-response experiments. These algorithms give

estimates of the parameters in a user-defined predictor model,

and also estimate the parameters of a Gaussian model of the

observational error distribution. The development is based on

Bayes' theorem, and provides a natural extension of known least-

squares estimation methods. Allowance is made for missing values

of responses, which occur frequently in practical work.
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NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES

AND BAYESIAN PARAMETER ESTIMATION

Warren E. Stewart and Jan P. Sorensen

New algorithms are described for Bayesian estimation of parameters in

nonlinear models of multiple-response systems. Modal and interval estimates

are provided for the parameter vector 8 of the predictor model, and for the

variance-covariance matrix a of a Normal error distribution. Allowance is

made for gaps (missing values of responses), such as commonly occur in

practice. Two chemical examples are analyzed.

INTRODUCTION

Realistic models of multivariate phenomena often relate several predicted

responses to a common set of parameters. Multiresponse experiments are re-

quired to establish such models, but frequently yield irregular data which

are difficult to analyze by classical methods.

Bayes' theorem is a good starting point for parameter estimation in these

situations. The multivariate error distribution can be estimated concurrently,

whereas it has to be prescribed when least-squares methods are used. Thus,

the Bayesian approach allows more objective parameter estimates, if sufficient

data are provided. An excellent general account of this approach is given by

Box and Tiao (1973).

Bayesian inference deals with a data array {yu } E y, a model for E (y)

with parameter vector 8 , and an error distribution model. If a Normal error

model is used, with variance-covariance matrix a , the unknown elements of

a will appear as additional parameters. The full set of parameters can be

estimated optimally by maximizing the posterior density p(e,aly); confidence

regions can also be calculated from this function.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024; the
National Science Foundation Grant ENG76-24368; the Wisconsin Alumni Research
Foundation through funds from the Graduate School, University of Wisconsin.
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In certain cases, the posterior density can be integrated analytically

to obtain the marginal density p(OIy). Box and Draper (1965) accomplished

this for multivariate Normal error distributions and rectangular data structurte-

(Table la). For block-rectangular structures (Table lb), p(91y) is the pro,-

uct of the Box-Draper densities for the individual rectangles. More compli-

cated data structures often occur, however, such as that in Table 1c, for

which p(Oly) cannot be expressed in closed form. Therefore, in this paper

we use the full posterior density p(6,oly), which has a closed form for any

finite data structure.

Inspection of the parameter estimates and residuals often suggests

alternatives to the postulated model. Therefore, parameter estimation shoui2

not be viewed as an end in itself, but should be foll3wed by critical examinc-

tion of the model and investigation of any promising alternatives. Interesting

predictions or unresolved differences between models will naturally lead to

further experiments.

Table 1. Examples of Data Structures with m = 4 and n = 8

la. Rectangular lb. Block-rectanqular Ic. Irregular

U Yul Yu2 Yu3 Yu4 Yul Yu2 Yu3 Yu4 u1 Yu2 Yu3 Yu4

1 + + + + + + + + +

2 + + + + + + + + + +

3 + + + + + + + +

4 + + + + + + +

5 + + + + + + + +

6 + + + + + + +

7 + + + . + + + + +

8 + + + + + + + +

-2-
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PROBLEM FORMULATION

Consider a set of independent experiments, u = 1,...,n, in which a

table {y ui of observed responses have been obtained at known settings

{x I of the independent variables. There are m linearly independent.u

kinds of observations; thus the index i ranges from 1 to m , but in

each experiment some values may be missing as in Tables lb and ic.

The observations in the uth experiment are regarded as a sample from

a population of the form

yui = f. (xu' ) + Ei (1)

The functions fi(Xu,-) are models for the expected responses E(Yui 0).

The residuals c . in the uth experiment are treated as a random sample

from an m-variate Normal distribution; this gives the probability density

(Wilks, 1962)
-mn /2 T-

p(ju1a) = (2.) u Ia 11/2 exp(- C a-1 ) (2)
-u u - U U -u

Here c is the column vector of error variables ul' """'um with dummy

zeroes inserted where observations are missing. Correspondingly, a is
-u

obtained from the full variance-covariance matrix, a = {a.. I , by sub-

stituting dummy elements 6.1 whenever observation yui or yuj is

missing. Here 6.. is unity when i=j, and zero otherwise.

The joint error density model for the set of n experiments follows

directly from Equation (2):

n -mu/2 T -i
p(Cle,a) = n (2 7) U 0 l 2 exp(-J . a _u). (3)

S~ - -U=uU -

Insertion of Equation (1) gives the corresponding density in observation

space:
n -mu/2

P(Yle,cy) ; (2Tr) U I -'2 }

u=l (4)
n m m

*exp(-! - u' ly. - f .i(011ty - f .j(01)I.
u=1 i=l j=l-uui - uj "

-3-u
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Here the functions f (6) stand for fi(xuO) evaluated at the known

settings x of the independent variables. The o ] are the elements of-U U
-I

the precision matrices *u " The right-hand term may also be regarded,

by Bayes' theorem, as the likelihood function for e and o when eval-

uated with given observations y

The usual factorization of the prior density p(e,o) is assumed,

p(0,G) = PMO p(C) (5)

and a locally uniform density p(O) is assumed in the region of appreci-

able likelihood. The latter assumption requires some care in the parame-

trization of the model. The prior density of a is taken from Box and

Draper (1965):

p(a) 1 1 -(
r+l)/2 (6)

Bayes' theorem then gives the posterior density

= OI- (m+l)/2  n 1ouj-I/2]  (7)

U7= 1

n m m

* exp{-, ' [ [ o131y - f (8)Hy - f .(OM]
u=li=lj=l U Ui U Uj

in which c is a proportionality constant. All that the data reveal about

the parameters 0 and a is contained in this density function.

Point estimates of 6 and a are obtainable by maximizing the posterior

density just described, or by minimizing the function

S( ) E S(8,a) = -2 In p(8,oly) + 2 in c
n

(m+l) in Jol + In Ina (8)
u=l _u

n m m
+ I a Yui - fui(ety uj - f .(0)
ul 1-1 j=l u U

over the permitted region of e and a . Here * is a column array of

the model parameters e1, ...,6P and the independent elements of a

-4-
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The latter are taken from the lower triangle of a in row order, i.e.

'p+k = aij with i > j and k = j + i(i-l)/2. Thus, the total number

of parameters is q = p + m(m+l)/2.

If the matrix a were believed to be known, i.e., if a sharply focussed

prior density p(g) were assumed, then S(q) would reduce to S(O) and we

would have a least-squares estimation problem with just p parameters. In

practice, one seldom knows a accurately; hence, the full Bayesian solution

is recommended.

¥-5



PARAMETER ESTIMATION ALGORITID"S

Several algorithms are described here for obtaining summary informa-

tion from Equation (8). These algorithms are part of a Fortran IV package

available from the authors.

1. Counting Algorithm

Before analyzing S we count Equations (1) to see which parameters

can plausibly be estimated from the data. We first try to match each

parameter a in i~ with an observation pair (y ,y ) of a replicate
kj uk' uj

experiment (i.e., an experiment which has the same expected response values

as a prior experiment in the data set). If this process cannot be completed

for a given k , we then try to match each remaining error parameter 7kj '

and each model parameter 0 in the function pairs f uk(0), f (0)], with

a non-replicate observation pair (yukYuj). Finally, any remaining model

parameters 0 are matched with remaining non-replicate observations. Ifr

the matching can be completed for all elements of ¢ , we proceed with the

estimation. Otherwise, the full set of parameters cannot be estimated from

the data.

The counting algorithm is a logical Gaussianelimination. This test

is a useful diagnostic, but is not infallible, since the actual rank of the

estimation equations depends on the numerical values of x, y, and 2.

2. Minimization Algorithm

A modified Newton method is used to find a minimum of S(O). Let 0

be the value of i at the start of an iteration. A correction vector

?0)  is computed by minimizing the local quadratic expansion (see

Appendix A for derivative expressions)

2
( -S() (9)

?0 " 0t . .. ~ 0 ~

10

('p- p0 + - am(P 9-6-
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over a user-specified rectangular region around 0 The region is chosen

small enough to ensure that S( ) is a good approximation to the function .

S(4-) of Equation (9). A search is then made for a minimum of S in the

interval of positive definite 0 on the line from through 1 this

gives the starting point for the next iteration. The calculation continues

until two successive line-minima agree within confidence intervals calculated

from Equation (14) for each parameter.

3. Response-Independence Test

Box and co-workers (1973) have pointed out the need to test the respon eF

for linear independence. Preferably, one should perform this test on the

residuals [ -
fu .(0)], which might become linearly dependent in certain

regions of 8 . In the present procedure, such linear dependence is readily

detected during the inversion of a at the start of each iteration. The

calculation can continue if all pivot elements (Stewart, 1973) found in this

inversion are greater than a specified fraction, say 0.1, of the corresponding

elements a

4. Confidence Regions

Equation (8) gives the simple form

P(WpY) - expl-31 S(0] (10)

for the posterior density function, or "confidence density". Use of Equation

(9) gives the approximation

P(4'jy) -exp[-I( -~)A~ ,(1

valid in the neighborhood of the minimum point I, . Here A is the qxq

matrix (positive definite since S is at a minimum) with elements

a 2 S (12)

-7-



computed as described in the Appendix. Thus, near the optimum, the param-

eters are Normally distributed with variance-covariance matrix A If

Equation (11) is used as an approximation for all values of y , then the

confidence intervals for Normal distributions can be applied. For examPle,

the ellipsoidal region

_)T _ X 2 (q, c)

roughly approximates the 100(1 - a) percent highest-posterior-density region,

or joint confidence region, for t based on the given data. The intervals

- )k A < erfc-1(a) (14)

roughly approximate the 100(1 - a) percent confidQe intervals for the indi-

vidual parameters. For symmetric 95 percent confidence intervals (a = 0.05),

erfcl (a) has the value 1.96.

Equation (14) is more reliable than (13), since the integration used to

obtain it is less affected by the tails of the posterior density function.

More accurate intervals can be obtained, but with greater effort, by numerical

integration of Equation (7) or (10).

-8-
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RESULTS FOR RECTANGULAR DATA STRUCTURES

If every experiment gives a full set of observations yul'...Yum

then Equation (7) takes the form
m m

p(8,ofy) . 01 
- (m+n+ l ) / 2  exp[- a'i  V ()] (15)

i=l j=l 13

in which
n

*(8) = l [Yu - f u(6)][y - f (0)] . (16)
~ u=l ~ui u U]

Integration of Equation (15) over the region of positive definite o gives

the marginal density function

p(eOy) . lv(e)f -n/2  (17)

as shown by Box and Draper (1965). We wish to compare the estimates based

on this function with those obtained from the full density function of

Equation (15).

Setting p(ely) stationary with respect to its parameters gives

in Iv(0)J (13
Do V k 1,...,p (18)

ak k

when use is made of the Laplace expansion of iv + dv i. Here the v 1 3 are

-i
the elements of the matrix v

Setting p(O,aly) stationary with respect to its parameters gives, after

use of Equation (15),

D in p(8,aly) jvi (8)

-2 - -0 k1 ...,p (19)ij k

-2 a in p(6,°y)s (in J°I)+ i--rs - - -- (m+n+l) r 10- J .

(2 -6 )[-(m+n+l) a + v (O)] 0 (20)

r = 1,...,m S =

-9- 1



Equation (20) gives, at the stationary point,
v ()
rs (21)

rs m+n+l

Hence,

o = (m + n + 1) v rS(0) (22)

Insertion of Equation (22) into (19) gives Equation (18) at the stationary

point of p(0,oly). Hence, for rectangular data structures, the same values

of 6 and a are obtained whether one maximizes p(i,,0jy) or p(Oly)-

Of course, the marginal confidence regions for 0 can be estimated more

directly in the latter case. The normal equations based on p(ely), given

by Stewart and S5rensen (1976), are convenient for this purpose.

The covariance estimates in Equation (21) are maximun-density values,

and thus differ from the expectation values E(a 1y) unless n-m-p isrs ~

very large. If expectation estimates of the a are desired, one can com-rs

pute them as the corresponding moments of the normalized posterior density

p(e,oly).

EXAMPLE 1. Kinetics of a Three-Component S.stem

Consider the chemical conversion of initially pure species 1 to species

2 and 3 in a batch isothermal reactor. Simulated data for the system are

given in Table 1, reproduced from Box and Draper (1965); here yui is the

yield of species i in experiment u . The system is modelled by the differ-

ential equations

df1

df 
2-i- = k, f, - k2 f2

df 37F3 = k2 f2

which have the solution

-10-
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f= exp(-k I t)

f exp(-k It)-
f2 =exp(-kI t) exp(-k 2 t)lk 1/(k2 - kI)

f3 1 - f 2 - f2

under the indicated initial conditions. As noted by Box and Draper, it is

natural to regard the parameters e. = In k. as uniformly distributed a priori.1 1

There are three responses yui per experiment. Only two would be linearly

independent if the yields were mass-balanced (i.e., if the yields in each row

added up to unity). The data in Table 2 are clearly not mass-balanced, so we use

all three columns of responses.

The replicates in Table 2 allow preliminary estimation of the parameters

oi by the relation
n

s 1 R YH
sR= (yri - Yri)( - Y'.)

ij n ri Yi rj -r2R r=l r

Here yri and y.' are the observations of response i in the first and
r ri

second tests of replicate pair r , and nR is the number of such pairs.

This procedure gives

0.00102 -0.00128 0.00025

{sij} {-0.00128 0.00351 0.00024

0.00025 0.00024 0.00101

as a preliminary expectation estimate of a . This is a well-conditioned

matrix, so our choice m = 3 was correct.

The parameter vector 4 for the present example consists of e,, 02,

and the six elements on and below the diagonal of a To test the conver-

gence of the estimation from a poor initial guess, the calculation was started

from the initial value shown in Table 3. Convergence was obtained in eight

iterations, to the point estimates and 95 percent confidence intervals given

there.

3-11-
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Table 2. Data for Example 1, from Box and Draper (1973)

tu Yul Yu2 Yu3

0.5 0.959 0.025 0.028

0.5 0.914 0.061 0.000

1. 0.855 0.152 0.068

1. 0.785 0.197 0.096

2. 0.628 0.130 0.090

2. 0.617 0.249 0.118

4. 0.480 0.184 0.374

4. 0.423 0.298 0.358

8. 0.166 0.147 0.651

8. 0.205 0.050 0.684

16. 0.034 0.000 0.899

16. 0.054 0.047 0.991

Table 3. Parameter Values for Example 1

Initial Solution 1 Solution 2 Solution 3

Parameter Value Eqs. (8,14)* Eqs. (8,14)* Es. (18,21)*

81 -2.3026 -1.5723±0.0567 -1.5723±0.0558 -1.5723±0.0800

02 0. -0.7023±0.1374 -0.7023±0.1346 -0.7023±0.1931

a 0.01 (0.76±0.52) 10 3  (0.76±0.53) 10 - 3  0.76 10- 3

G21 0. -(0.50±0.63) 10 -(0.50±0.63) 10- 3  -0.50 10- 3

a22 0.01 (1.86±1.28) 10-
3  (1.86±1.29) 10

- 3  1.86 10 - 3

031 0. (0.32±0.41) 10
- 3  (0.32±0.41) 10

- 3  0.32 10- 3

032 0. (0.40±0.62) 10
- 3  (0.40±0.62) 10-

3  0.40 10- 3

033 0.01 (0.77-0.54) 10- 3  (0.77±0.54) 10- 3  0.77 10 - 3

All intervals are 95% highest posterior density regions. In Solution 3, the

intervals are computed from the normal equations with "residual mean square"

Iv(6)I/(n-2) and n-2 w 10 residual degrees of freedom. In Solution 1, the

second-derivative terms of Equation (Al0) are included.

-12-



A second calculation was made with the same initial values, but with

second-ordcr 0-derivatives neglected. Convergence was obtained to the same

point estimates in nine iterations. The confidence intervals differed

slightly, as shown in Table 3.

A third calculation was made by minimizing the determinant Iv(e) I. Box

and Draper (1965) did this by a search procedure; we used the modified Newton

algorithm of Stewart and Sorensen (1976), but neglected the second-order 0-

derivatives of the functions f .(0) . Convergence was obtained in sevenul ~

iterations, tc the same point estimates 6. . The point estimates for the

a. . , computed from Equation (21), also agreed exactly with the two preceding

solutions. The one-parameter confidence intervals (computed in this case only

for 01 and 0 2) are wider than before, and are considered more accurate

since in this case the a.. have been integrated out exactly (Box and Draper,

1965).

EXAMPLE 2. Kinetics of a Five-Component System

Fuguitt and Hawkins (1945, 1947) did extensive experiments on the liquid-

phase thermal reactions of a-pinene and its decomposition products. The

following products, in order of boiling point, were identified.

A. c-Pinene C10 H16

B. a - and O-Pyronene Co H6

C. Dipentene C10 H16

D. allo-Ocimene C1oH16

E. Dimer C20 H32

The reaction conditions and yields are reported in Table 3.

We have normalized the yields to obtain exact mass balances; this makes

the yields linearly dependent, and accordingly we have omitted species D

The remaining species are grouped as cumulative distillation fractions:

-13-
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A, A+B, A+B+C, and E. Each of these responses represents essentially the total

mass fraction distilling above or below a particular temperature. The yield

of B originally reported in tests 1-15 have been deleted, since they were

interpolated values rather than observations (Fuguitt and Hawkins, 1947; Box

and co-workers, 1973).

There are numerous gaps in the data. a-Pinene (A) was reported in experi-

ments 1-16, but was considered negligible in the remaining experiments. Pyronen,:

(B) were reported only in experiments 16-31; they proved difficult to isolate

except at small concentrations of c-pinene. only the dimer fraction (E) wa

reported in the experiments with allo-ocimene (D) or dimer (E) as feed. Th<

simplified reaction scheme proposed by Fuguitt and Hawkins (1947) implies that

0-pinene (A) and dipentene (C) would not be formed in the latter experiment ,

but that the other three species would be present.

The first eight experiments were used for parameter estimation according

to Equation (17) with m = 3 by Box and co-workers (1973), and by the present

authors (1976). The full 41 experiments could not be so analyzed because of

their irregular structure; therefore, only rough estimates were obtainable for

several of the reaction parameters. With Equation (8), on the other hand, all

41 experiments can be analyzed.

We postulate the following reaction scheme,

A - C

k 5

4 3

E D 4m---oh B
k 4  k_ 3

-14-
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with the following differential equations for the concentrations:

doA =2

dt -(k +k 2) A -2k5 AdoA
dB
S=-k 3 CB +k 3  D

doc
C k1 0

doD
d - 

= k2 CA + k-3 'B - k3 'D - 2k4 CD + 2k_4 #E

doE 2 2
= k5 CA + k4 

4D - k 4  E

Here we have assumed equal densities for the reaction mixture and all species.

The *i are molar cDncentrations relative to the molar density of pure liquid

a-pinene at the reaction temperature. The resulting initial ¢. values for the1

pure reactants are: 1.0 for a-pinene, 1.0 for allo-ocimene, and 0.5 for

dimer. The rate coefficients are represented as Arrhenius functions,

In (k) =.6 - (l/T - i/TB) i+5  i = 1,...,5

in (k3/k_ 3) = -011/TB + (1/T - B/TB ) 013

in (k4/k_4) = - 12/TB + (1/T - l/T B ) 14

S-1
with k. values in mn , T in Kelvins, and a base temperature T of1 B

478.5 K.

The data and parameters were paired to check the feasibility of the

estimation. This indicated a sufficient amount of data for estimation of all

parameters except a 21 However, the replicate comparisons (u = 18-19,20-21,

22-23,24-25) involving yu2 all give duplication of y 3 ; furthermore each of

these comparisons gives a duplication of either yu2 or yu4" With these

results, we find that neither 032 nor 042 can be estimated; indeed, an

attempt to estimate them was terminated by the linear independence test

described above. Thereafter, 0211 a32' and 042 were all fixed at zero, and

the remaining parameters were estimated by minimization of S

-15-



Initial values of the 8-parameters were chosen from the results of

Fuguitt and Hawkins (1945, 1947), Box and co-workers (1973), and the present

authors (1976). Initial variance estimates a., were calculated from rf!l-

cate data available in Table 4, and zeros were inserted initially as covaria.. 

The model was integrated, for each experiment, by the method of Guerti:.

et al (1977) with 6 mesh points. The coefficients in Equation (9) were com-

puted as described in the Appendix, with first-order sensitivities D ui

computed by the method of Stewart and S~rensen (1976).

A first minimization, with reaction 5 omitted, converged within 20 itcrl:-

tions. This gave S = 41.06 with parameter estimates as shown in Table 5.

The confidence intervals show the 8's to be estimated quite precisely. TI.,

a.. are estimated less precisely, as anticipated from the limited number of

data on several combinations of responses. The deviations of the data fr(m

the fitted model are shown in Table 6.

A second minimization of S was done with the full 5-reaction model.

This calculation converged to a very flat minimum at S = 34.09, with param-

eter estimates as shown in Table 5. The deviations of the data from this

fitted model are also shown in Table 6.

The 5-reaction model is better able to describe the polymer yields from

a-pinene at short times, as can be seen in Table 6. We can also test the

significance of the added parameter 85 by use of the confidence intervals.

Table 5 gives 85 = -11.945 ± 0.698, based on Equation (14); this implies the

limits (1 ± 0.698) exp(-ll.945) for k5 with the alternate prior p(k 5) = c.

Hence, the 95% confidence interval for k5 does not include zero.

On the other hand, Equations (9) and (13) give the following approximate

expression for the 95% confidence region of the 20 fitted parameters of the

5-reaction modelt

-16-
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t

Table 4. Data for Example 2, from Fuguittand Hawkins (1945,1947)

** Normalized yields, weight percent

Expt. Feed T, C. tuomin wu  Yul Yu2 Yu3 Yu4
u (A) (A+B) (A+B+C) (E)

1 A 189.5 1230. 1 88.3 ** 96.2 2.2

2* A 189.5 1230. 1 88.2 *** 95.7 1.3

3 A 189.5 3060. 2 76.4 *** 92.7 2.8

4 A 189.5 4920. 2 64.8 *** 88.9 5.8

5 A 189.5 7800. 2 50.3 84.7 9.3

6 A 189.5 10680. 2 37.5 *** 82.0 12.0

7 A 189.5 15030. 2 25.9 77.1 17.0

8 A 189.5 22620. 2 14.0 *** 73.9 21.0

9 A 204.5 440. 2 86.6 *** 95.3 .6

10 A 204.5 825. 2 75.0 ** 91.5 1.6

11 A 204.5 1200. 2 66.0 88.8 3.4

12 A 204.5 1500. 2 59.4 *** 86.4 5.1

13 A 204.5 2040. 2 48.9 83.0 8.3

14 A 204.5 3060. 2 32.8 *** 77.8 13.8

15 A 204.5 6060. 2 11.5 70.4 22.5

16 A 189.5 36420. 2 4.5 7.4 70.5 25.7

17 A 204.5 16020. 2 - 3.1 66.2 28.6

18 A 225.0 3000. 1 - 3.0 66.0 28.0

19* A 225.0 3000. 1 - 4.0 66.0 28.0

20 A 245.0 630. 1 - 4.0 65.0 27.0

21* A 245.0 630. 1 - 5.0 65.0 27.0

22 A 265.0 120. 1 - 7.0 65.0 23.0

23* A 265.0 120. 1 - 7.0 65.0 24.0

24 A 285.0 30. 1 - 11.0 66.0 19.0

25* A 285.0 30. 1 - 9.0 66.0 19.0

26 D 189.5 1020. 1 - - - 80.0

27 D 189.5 3990. 1 - - - 87.3

28* D 189.5 3990. 1 - - - 87.3
29 D 189.5 6780. 1 - - - 87.5

30 D 189.5 8220. 1 - - - 86.5

31 D 189.5 13260. 1 - - - 88.5

32 D 189.5 14760. 1 - - - 89.8

33 D 204.5 3480. 1 - - - 87.5

34 D 204.5 5700. 1 - - - 86.8

35 E 189.5 8880. 1 - - - 91.9

36* E 189.5 8880. 1 - - - 92.0

37 E 189.5 14340. 1 - - - 89.8
38 E 189.5 23400. 1 - - - 89.7
39* E 189.5 23400. 1 - - - 88.5

40 E 204.5 5700. 1 - - - 88.4

41 E 204.5 8100. 1 - - - 87.9

Replicate of the preceding test.

iwu is the number of independent tests combined to obtain each observation Y.i

Originally reported but not observed; see text.

- No value reported.
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Table 5. Parameters for a-Pinene Conversion

Estimates for Estimates for

Parameter 4-Reaction Model 5-Reaction Model

01 -8.331 ± .024 -8.333 ± .025

82 -8.898 ± .029 -8.961 ± .054

03 -8.242 ± .341 -8.196 ± .325

04 -5.389 ± .081 -5.438 ± .087

S5 -11.945 ± .698

e6 19814. ± 428. 19785. ± 457.

07 20828. ± 474. 20890. ± 536.

08 17336. ± 4079. 17212. ± 4203.

09 10321. ± 915. 10322. ± 918.

010 19957. **

011 269. ± 83. 279. ± 83.

0 -1976. ± 64. -1985. ± 63.
12

013 -336. ± 950. -259. ± 958.

014 -3873. ± 1624. -3781. ± 1555.

011 .696 ± .419 .784 ± .492

021 .000 .000

022 .391 ± .359 .376 ± .348

a31 .358 ± .412 .426 ± .456

032 .000 ** .000 **

033 .706 ± .426 .732 ± .444

041 -.248 ± .344 -.294 ± .354

*42 .000 .000 **

043 -. 504 ± .317 -.493 ± .314

044 .744 ± .304 .654 ± .282

95% highest posterior density intervals calculated from Equation (14).

Posterior estimates were not obtained for these parameters.
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I
Table 6. Final Residuals c i(e) for Example 2.

4-Reaction Model 5-Reaction Model

Expt., cul cu2 cu3 cu4 ul cu2 cu3 £u4
u (A) (A+B) (A+B+C) (E) (A) (A+B) (A+B+C) (E)

1 -1.32 - -.37 2.00 -1.22 - -.26 1.69

2 -1.42 - -.87 1.10 -1.32 - -.76 .79

3 .26 - .24 .88 .43 - .43 .45

4 .28 - -.15 1.10 .45 - .06 .72

5 .38 - -.04 .22 .48 - .12 -.04

6 -1.13 - .70 -.81 -1.12 - .78 -.96

7 -.32 - -.26 -.17 -.43 - -.29 -.18

8 .66 - .89 -1.06 .47 - .74 -.92
9 .88 - .21 .30 1.00 - .35 -.11

10 .10 - -.17 .14 .24 - .04 -.38

11 .31 - -.07 .16 .45 - .15 -.34
12 .27 - -.51 .23 .38 - -.29 -.23

13 -.04 - -.86 .42 .01 - -.69 .08
14 -1.44 - -1.56 .90 -1.52 - -1.49 .75
15 -.47 - -1.47 .63 -.70 - -1.61 .77

16 .60 .78 ,98 -.36 .44 .72 .74 -.14
17 - -.12 -.67 .34 - -.07 -.87 .50
18 - -.81 .51 -.48 - -.76 .38 -.39
19 - .19 .51 -.48 - .24 .38 -.39
20 - -.89 .29 -.56 - -.88 .22 -.47

21 - .11 .29 -.56 - .13 .22 -.47
22 - -.54 -.31 -.37 - -.58 -.32 -.28
23 - -.54 -.31 .63 - -.58 -.32 .72

24 - 1.54 .49 -.15 - 1.51 .58 -.20
25 - -.46 .49 -.15 - -.49 .58 -.20
26 - - - 1.12 - - - 1.95
27 - - - -.92 - - - -.61
28 - - - -.92 - - - -.61
29 - - - -1.31 - - - -1.16
30 - - - -2.37 - - - -2.27
31 - - - -.41 - - - -.42
32 - - - .90 - - - .86

33 - - - .67 - - - .72

34 - - - -.31 - - - -.40
35 - - - 1.26 - - - 1.17

36 - - - 1.36 - - - 1.27
37 - - - .24 - - - .16

38 - - - .91 - - - .80
39 - - - -.29 - - - -.40
40 - - - .42 - - - .27
41 - - - .51 - - - .35
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2
S(*) - 34.09 < X20 (0.05) = 31.41.

All p values such that S( ) < 65.50 lie within this estimated 95't j.f:i

confidence region. By this criterion, the model with k 5 = 0 is accei ' 1b>1 .

However, as indicated earlier, Equation (14) is more reliable than (13). ;'1

this, and a study of the residuals, we conclude that the 5-reaction mo!,-l

to be preferred.
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APPENDIX: DERIVATIVES OF S

The matrices a u are real and syrunetric; furthermore, S is defined only

when these matrices are positive definite. The following derivative relations

then hold:

a In Iou0
- (2 - 6i)J j < i (Al)

u 2" ii kj

uk(2 6 k toik a ] + °u a ]  Z < k. (A2)ac ukZ k u

The relations for second derivatives follow by combination of (Al) and (A2):
2 In 1o 1a u o )(2 6 [ik aj + aiz a]kj j < i, Z < k

aa a. uk Id.jil u u u u - -A3

(A3)

2 aijaaoi

u = (2 - 6 )(2 - 6s)
3°ust ukk kZ st

is tk it sk) j ik (as tj it sj[(a~ a +a o )ao +ao (a at  +a a s

U u u u U u u u u u

(ais t+ it s)a kj i (ks tj kt Sa + a ok j + (a at  +a a os3

U U U U U U U U U U

Z < k , t < s . (A4)

As indicated earlier, if response h is absent from experiment u , the

elements auhj  and aujh  are replaced by the constant dummy values 6hj

Note also that the symmetry of a has been used to express these deriva-
~u

tives in terms of elements on and below the diagonal.

The derivatives required for Equation (9) are obtained as follows:

aS -j ( (C . .) (A)

r U i j<1i r

= I I Y ( ij a2oE. (6

2- 2

6. %v ~i-~-- v (Eui Euj ) (A6)

r v ui i rZ4
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2u

°r kk -u i i <i u c-6 ) kl r Ciuaea 77~( 6)-u ) c (A7)

DS aml) In 1., n a in jouI

-sst ast u=l ast

-~~~~~a [ 2- i) (S

u i j<i s ui uj

(m+) a2 in Ij a 2 in 1 u1o 3os = re c o
st° kk 30st 3°ki u 3°ust uki

a2 aij
+ 2'(2 6 £ (A9)

u i j<i 13 3ust 3 ukz i uj

Equations (A6), (A7), and (A9) evaluated at 0 and o provide the coef-

ficient matrix A of the normal equations. Equations (A5) and (A) give the

right-hand column vector.

The residuals cui and cu. are expressed as functions of 0 by use

of Equation (1). The e-derivative in Equation (A6) is expanded to give:

a2  DE . 3C . 3Eui(C . ) _ u_ uiR + _)__
aO r0 ui uj ae 38 a0 0r v r v r v

+ C . + C aAIO)ui 30ae uj ae Oer v r v

The second-derivative terms are unimportant if the data are well fitted;

compare Solutions 1 and 2 in Table 3.

If the experiments have different weights w as in Table 4, then

. £ . and its derivatives should be multiplied by w throughout theu1 uj u

development. As usual, the matrix o is defined for experiments of unit

weight.
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