AD=AGS3 619  WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/¢ 12/1
NEY ALOORITHNMS FOR NONLINEAR LEAST SOUARES AND SAYESIAN PARANET==ZTC(U)
FEB 80 W E STEWART: J P SORDNSEN T8=C:
UNCLASSIFIED MRC=TSR~0¥'

DAASRY~ i ead
14 [




I 28 {25
IS £ g
=334
flis -
| EEX

25 ffLis e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURZAU OF STANDARDS 1964 &




y
MRC Technical Summary Report #2037

- T ———

NEW ALGORITHMS FOR NONLINEAR LEAST
SQUARES AND BAYESIAN PARAMETER
ESTIMATION

oo

TZQFT'W‘

Warren E. Stewart and Jan P. Sgrensen

g
Yor

P 22
¥

Y

Mathematics Research Center
University of Wisconsin—Madison

—
-

- 610 Walnut Street

Madison, Wisconsin 53706
™ _
1 February 1980 !
1] 2 :
. /' H .
3 Received January 4, 1980 / ] A, L

Approved for public release
Distribution uniimited

x
= Jo—— 80 4 9 049

U. S. Army Research Office National Science Foundation Wisconsin Alumni
wead P.O. Box 12211 Washington, DC 20550 Research Foundation
. o h Triangle Park ; : : . -5
: Researc ang University of Wisconsin \»
58 North Carolina 27709 Graduate School 3
g Madison, WI 53706 3

e et = e e
S A AROCRIac: T e e o N 1T Sy e B




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES
AND BAYESIAN PARAMETER ESTIMATION

Warren E. Stewart and Jan P. Sgrensen

Technical Summary Report #2037
February 1980

- ABSTRACT

T
Vi

New algorithms are described for Bayesian estimation of parameters

in nonlinear models of multiple-response systems, Modal and interval

estimates are provided for the parameter vector # of the predictor

~

model, and for the variance-covariance matrix ¢ of a Normal error
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distribution. Allowance is made for gaps (missing values of responrses),

such as commonly occur in practice, Two chemical examples are analyzed.
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SIGNIFICANCE AND EXPLANATION
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Some new algorithms are presented for fitting mathematical
models to multiple-response experiments. These algorithms give
estimates of the parameters in a user-defined predictor model,
and also estimate the parameters of a Gaussian model of the
observational error distribution, The development is based on
Bayes' theorem, and provides a natural extension of known least-
squares estimation methods. Allowance is made for missing values

of responses, which occur frequently in practical work. o
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NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES
AND BAYESIAN PARAMETER ESTIMATION

Warren E, Stewart and Jan P. Sgrensen

New algorithms are described for Bayesian estimation of parameters in
nonlinear models of multiple-response systems. Modal and interval estimates
are provided for the parameter vector § of the predictor model, and for the
variance-covariance matrix ¢ of a Normal error distribution. Allowance is
made for gaps (missing values of responses), such as commonly occur in

practice. Two chemical examples are analyzed.

INTRODUCTION

Realistic models of multivariate phenomena often relate several predicted
responses to a common set of parameters. Multiresponse experiments are re-
quired to establish such models, but frequently yield irregular data which
are difficult to analyze by classical methods.

Bayes' theorem is a good starting point for parameter estimation in these
situations. The multivariate error distribution can be estimated concurrently,
whereas it has to be prescribed when least-squares methods are used. Thus,
the Bayesian approach allows more objective parameter estimates, if sufficient
data are provided. An excellent general account of this approach is given by
Box and Tiao (1973).

Bayesian inference deals with a data array {yui} H Yo a model for E(X)
with parameter vector § , and an error distribution model. If a Normal error
model is used, with variance-covariance matrix g , the unknown elements of

¢ will appear as additional parameters. The full set of parameters can be

estimated optimally by maximizing the posterior density p(e,oly); confidence

regions can also be calculated from this function.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024; the
National Science Foundation Grant ENG76-24368; the Wisconsin Alumni Research
Foundation through funds from the Graduate School, University of Wisconsin.
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In certain cases, the posterior density can be integrated analytically

to obtain the marginal density p(ng). Box and Draper {1965) accomplished .

——t—y

this for multivariate Normal error distributions and rectangular data structures
- . (Table la). For block-rectangular structures (Table 1b), p(?[y) is the prod-
uct of the Box-Draper densities for the individual rectangles. ‘lore compli-
cated data structures often occur, however, such as that in Table lc, for ‘
which p(glx) cannot be expressed in closed form. Therefore, in this paper i
we use the full posterior density p(Q,g{X), which has a closed form for any
finite data structure.
Inspection of the parameter estimates and residuals often suggests
alternatives to the postulated model, Therefore, parameter estimation should
not be viewed as an end in itself, but should be followed by critical examina-
tion of the model and investigation of any promising alternatives. Interesting
predictions or unresolved differences between models will naturally lead to

further experiments.

Table 1. Examples of Data Structures with m= 4 and n = 8

la. Rectangular 1b. Block-rectanqular lc. 1Irreqular
Yu1 Yu2 Yuz Yuq Yul yu2 Yu3 Yug “ul Yu2 Yu3 Yy
1 + + + + + + + + +
2 + + + + + + + + + +
3 + + o+ + + o+ + o+
4 + + + + + + +
) 5 + + o+ o+ + + + + . |
6 + + + + + + + i
7 + 0+ o+ o+ + o+ + o+ + '
8 + o+ o+ 4 + o+ + + I
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PROBLEM FORMULATION

Consider a set of independent experiments, u = 1,...,n, in which a
table {yui} of observed responses have bcen obtained at known settings
{Eu} of the independent variables. There are m linearly independent
kinds of observations; thus the index i ranges from 1 to m , but in
each experiment some values may be missing as in Tables 1lb and lc.

The observations in the uth experiment are regarded as a sample from

a population of the form

Yo T 8 ¢ oy - o

The functions fi(gu,g) are models for the expected responses E(yui!g).
The residuals €ui in the uth experiment are treated as a random sample

from an m-variate Normal distribution; this gives the probability density

(Wilks, 1962)

—mu/2

= =172 IR !
P(§u|g) = (27n) Igu| exp(-1 €a %y Eu)' (2)

Here gu is the column vector of error variables eul""'sum with dummy

zeroes inserted where observations are missing. Correspondingly, % is
obtained from the full variance-covariance matrix, o = {0.,} , by sub-

1)

stituting dummy elements 6ij whenever observation Yo ©OF yuj is

missing. Here 6ij is unity when 1i=j, and zero otherwise.

The joint error density model for the set of n experiments follows

directly from Equation (2):

n -mu/2
plele,0) = 1 (2m)

~1/2 T -1
lo,| exp(-3 ¢ o " e ). (3)

Insertion of Equation (1) gives the corresponding density in observation

space:
n -m /2
plyle,o) =1 2n ¥ o |71
o . - (4)
n m m ij
LI 2> 4 {'% [¢f [ .- f (8 - f
P u£1 121 jZl u YUL ul(_)][YuJ uj(g)]}°
-3-
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Here the functions fui(g) stand for fi(gu,g) evaluated at the known
settings X, of the independent variables., The oij are the elements of
the precision matrices g;l. The right-hand term may also be regarded,
by Bayes' theorem, as the likelihood function for 9 and o when eval-
uated with given observations y .

The usual factorization of the prior density p(8,0) is assumed,

p(8,0) = p(8) p(g) (5)
and a locally uniform density p(g) is assumed in the region of appreci-
able likelihood. The latter assumption requires some care in the parame-
trization of the model. The prior density of ¢ is taken from Box and
Draper (1965)}:

p(g) « IOI—(m+1)/2 . (6)

Bayes' theorem then gives the posterior density

p(8.cly) = p(e,9) plylo,0)

clgl“(m+1)/2 |—1/2

n
(n Igu ) (7)

u=1

n m m '
. exp{-} iy - £ (0 .- £ (8
p{-} uzl igl jgl 0 Wy = £, @Iy = £,.(0)])

in which ¢ is a proportionality constant., All that the data reveal about
the parameters 8 and ¢ is contained in this density function.
. Point estimates of 6§ and g are obtainable by maximizing the posterior

density just described, or by minimizing the function

S(y) = s(8,0) = -2 1n p(6,0|y) + 2 1In ¢
Y 2r? hedbar
= (m+1) 1n [0l + ] 1n |o | (8)
-~ u=1 ~u
n m m ij
+ ugl 121 j£1 0 Iy = £ (O1ly g - £ (0))

over the permitted region of 6 and o0 . Here ¢ is a column array of

the model parameters 61, ...,ep and the independent elements of o

-4-
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The latter are taken from the lower triangle of o in row order, i.e.

-~

¢p+k = oij with i > j and k = j + i(i-1)/2. Thus, the total number

of parameters is q = p + m(m+l)/2,
If the matrix g were believed to be known, i.e., if a sharply focusscd
prior density p(g) were assumed, then S(y) would reduce to S§(0) and we

would have a least-squares estimation problem with just p parameters. In

practice, one seldom knows g accurately; hence, the full Bayesian solution

is recommended.

——y
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PARAMETER ESTIMATION ALGORITHMS

Several algorithms are described here for obtaining summary informa-
tion from Equation (8). These algorithms are part of a Fortran IV package
available from the authors.
l. Counting Algorithm

Before analyzing S we count Equations (1) to see which parameters
can plausibly be estimated from thc data. We first try to match ecach
parameter okj in ? with an observation pair (yuk'yuj) of a replicate
experiment (i.e., an experiment which has the same expected response values
as a prior experiment in the data set). 1If this process cannot be completed
for a given Kk , we then try to match each remaining error parameter Ukj ’

and each model parameter Or in the function pairs [fuk(o), fuj(g)], with

a non-replicate observation pair (yuk,yuj). Finally, any remaining model

parameters Or are matched with remaining non-replicate observations. If
the matching can be completed for all elements of | , we proceed with the

estimation, Otherwise, the full set of parameters cannot be estimated from

the data.
The counting algorithm is a logical Gaussianelimination. This test
is a useful diagnostic, but is not infallible, since the actual rank of the

estimation equations depends on the numerical values of x, y, and .

2. Minimization Algorithm

A modified Newton method is used to find a minimum of S(§). Let wo

~

be the value of  at the start of an iteration. A correction vector

(wl - wo) is computed by minimizing the local quadratic expansion (see

Appendix A for derivative expreséions)

2

= 3S
S = sty +5p] mu) + 2 )" -y (9)
-~ ~ M 0 -~ ~ -~ -~ yey O ~ -~
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over a user~-specified rcctangular region around . The region is chosen

o
small enough to ensure that 5(;) is a good approximation to the function t

S(y) of Equation (9). A secarch is then made for a minimum of S in the

Pi"" interval of positive definite ¢ on the line from Yo through this

- -~

vy
gives the starting point for the next iteration. The calculation continues

until two successive line-minima agree within confidence intervals calculated

from Equation (14) for cach paramcter.

3. Response-lndependence Test

Box and co-workers (1973) have pointed out the need to test the responses
for linear independence. Preferably, one should perform this test on the
residuals [yui - fui(o)], which might become linearly dependent in certain
regions of 6§ . 1In the present procedure, such linear dependence is readily
detected during the inversion of ¢ at the start of each iteration. The

calculation can continue if all pivot elements (Stewart, 1973) found in this

inversion are greater than a specified fraction, say 0.1, of the corresponding

elements O
4, Confidence Regions
Equation (8) gives the simple form
plyly) = expl-} s(y)) (10)
for the posterior density function, or "confidence density". Use of Equation

(9) gives the approximation

A T ~ a~
pw|y) = expl=3(y = ¥)° Aty = NI, (11)

valid in the neighborhood of the minimum point ¢ , Here A is the qxq

~ ~

matrix {(positive definite since S is at a minimum) with elements

2
! " 9°S
= ) = (12)
km awkawm a

>




computed as described in the Appendix. Thus, near the optimum, the param-

. . . . . . ~=1
eters are Normally distributed with variance-covariance matrix A . If

Equation (11) is used as an approximation for all values of y , then the ‘
confidence intervals for Normal distributions can be applied. For example, ,

the ellipsoidal region

AT A A 2 -~
(v - v)° Ay -vy) X (g,a) {13
roughly approximates the 100(1 - a) percent highest-posterior-density region,
or joint confidence region, for Yy based on the given data. The intervals

KK ') < erec™ (@) (14)

Ju - 017 722
roughly approximate the 100(1 - a) percent confidegge intervals for the indi-
vidual parameters. For symmetric 95 percent confidence intervals (a = 0.05},
erfc-l(u) has the value 1,96.

Equation (14) is more reliable than (13), since the integration used to

obtain it is less affected by the tails of the posterior density function.

More accurate intervals can be obtained, but with greater effort, by numerical

integration of Equation (7) or (10).
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RESULTS FOR RECTANGULAR DATA STRUCTURES
If every experiment gives a full set of observations yul,...,yum '

then Equation (7) takes the form

E]
3

p(o,oly) « lol-(m+n+l)/2 expl-3 } ] o) v, (8)] (15)
- - i=1 j=1 ) -
in which
n
nij(g) = uzl [yui - fui(?)][yuj - fuj(?)] . (16)

Integration of Equation (15) over the region of positive definite o gives

the marginal density function

-n/2 (17)

p(oly) = |v(e)]
as shown by Box and Draper (1965), We wish to compare the estimates based
on this function with those obtained from the full density function of

Equation (15).

Setting p(ely) stationary with respect to its parameters gives

3 1n |v(e)] 4 AV,
o 211 viggt=o k=1,...,p (18)
k ij k

when use is made of the Laplace expansion of v + dv|. Here the vt are

the elements of the matrix v—l .

-~

Setting p(e,c]y) stationary with respect to its parameters gives, after

~ o~ .

use of Equation (15),

3 1n p(8,0ly) 15 3y (®)
-2 ae“ e = Z Z ot —~3%-=— =0 k=1,...,p (19)
k ij k

3 1n p(8,0ly)

-2 Lo 3 ) ij
z (m+n+l) ——— (1n |o|)+ o “v,.(8)
3o™S Y l“l 3or§ g g 13-
= (2 - Grs)[-(m+n+l) Ops * vrs(Q)] =0 (20)
r=1,.,..,m S =1,0..,r .
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Equation (20) gives, at the stationary point,

R v s(é)
6 = === (21,
rs m+n+l .
Hence,
6% = m+n + 1) vV . (22) !

Insertion of Equation (22) into (19) gives Equation (18) at the stationary
point of p(O,on). Hence, for rectangular data structures, the same values
of 6 and § are obtained whether one maximizes p(8,cly) or p(2|y).

Of course, the marginal confidence regions for 0 can be estimated more
directly in the latter case. The normal equations based on p(@ly), given
by Stewart and Sgrensen (1976), are convenient for this purpose.

The covariance estimates in Equation (21) are maximum-density values,
and thus differ from the expectation values E(orsly) unless n-m-p is
very large. If expectation estimates of the Grs are desired, one can com-
pute them as the corresponding moments of the normalized posterior density
p(8,0ly).

EXAMPLE 1. Kinetics of a Three-Component S, stem

Consider the chemical conversion of initially pure species 1 to species

2 and 3 in a batch isothermal reactor. Simulated data for the system are

given in Table 1, reproduced from Box and Draper (1965); here Yui is the

yield of species i in experiment u . The system is modelled by the differ-

ential equations

— =k, £f. -k, f

at = 2 2

which have the solution




E L Wi

fl = exp(-kl t)
£, = lexp(-k; ) - exp(-k, t)]k /(k, = k)
f3 =1 - fl - f2

under the indicated initial conditions. As noted by Box and Draper, it is
natural to regard the parameters Gi = 1n ki as uniformly distributed a priori.
There are three responses Y,; Per experiment, Only two would be linearly
independent if the yields were mass-balanced (i.e.,, if the yields in each row
added up to unity). The data in Table 2 are clearly not mass~balanced, so we use
all three columns of responses.
The replicates in Table 2 allow preliminary estimation of the parameters

oij' by the relation
R

= em—— - ’ -— L] .
2nR rzl (yri yri)(yrj yrj)

Here yri and y;i are the observations of response i in the first and
second tests of replicate pair r , and ng is the number of such pairs.
This procedure gives
0.00102 =-0,00128 0.00025
{sij} = {-0.00128 0.00351  0.00024
0.00025 0.00024 0.00101
as a preliminary expectation estimate of o . This is a well-conditioned
matrix, so our choice m = 3 was correct.
The parameter vector ? for the present example consists of 91, 92,
and the six elements on and below the diagonal of ¢ . To test the conver-
gence of the estimation from a poor initial guess, the calculation was started

from the initial value shown in Table 3. Convergence was obtained in eight

iterations, to the point estimates and 95 percent confidence intervals given

there.




Table 2. Data for Example 1, from Box and Draper (1973)
tu yul YuZ yu3
0.5 0.959 0.025 0.028
0.5 0.914 0.061 0.000
- 1. 0.855 0.152 0.068
1. 0.785 0.197 0.096
2. 0.628 0.130 0.090
2, 0.617 0.249 0.118
a. 0.480 0.184 0.374
4, 0.423 0.298 0.358
8. 0.166 0.147 0.651
8, 0.205 0.050 0.684
16. 0.034 0.000 0.899
16. * 0.054 0.047 0.991
Table 3. Parameter Values for Example 1
Initial Solution 1 solution 2 Solution
Parameter Value Egs. {(8,14)* Egs. (8,14)* Egs. (18,21)*
8, -2.3026 -1.5723%0,0567 -1.5723+0.0558 -1.5723#0.0800
0, 0. -0.7023:0.1374 -0.7023+0.1346 -0.702340.1931
; o) 0.01 (0.76:0.52) 10~°  (0.76+0.53) 10 ° 0.76 10~°
LI 0. ~(0.5020.63) 10" >  -(0.50+0.63) 1073 -0.50 10>
o, 0.01 (1.86+1.28) 10 > (1.86£1.29) 107> 1.86 10°°
01 0. (0.32%0.41) 10°>  (0.32:0.41) 107> 0.32 10°°
LI 0. (0.4020.62) 10> (0.40%0.62) 10~ > 0.40 10>
%33 0.01 (0.7720.54) 10> (0.7740.54) 10> 0.77 1073

*
All intervals are 95% highest posterior

density regions.

In Solution 3, the

intervals are computed from the normal equations with "residual mean square"

|v(8)|/(n-2) and n-2 = 10 residual degrees of freedom. In Solution 1, the

second-derivative terms of Equation (Al0) are included.




A second calculation was made with the same initial values, but with
second-order O-derivatives neglected. Convergence was obtained to the same
point estimates in nine iterations. The confidence intervals diifered
slightly, as shown in Table 3.

A third calculation was made by minimizing the determinant ]v(e)l. Box
and Draper (1965) did this by a search procedure; we used the modified Newton
algorithm of Stewart and Sgrensen (1976), but neglected the second-order 8-
derivatives of the functions fui(?) . Convergence was obtained in seven
iterations, tc the same point estimates éi . The point estimates for the
oij , computed from Equation (21), also agreed exactly with the two preceding
solutions. The one-parameter confidence intervals (computed in this case only
for © and 6.) are wider than before, and are considered more accurate

1 2

since in this case the oij have been integrated out exactly (Box and Draper,
1965).
EXAMPLE 2. Kinetics of a Five-Component System

Fuguitt and Hawkins (1945, 1947) did extensive experiments on the liquid-
phase thermal reactions of &=-pinene and its decomposition products, The

following products, in order of boiling point, were identified.

A. a-Pinene Clol-ll6
B. a - and B-Pyronene CloH16
C. Dipentene ClOH16
D. allo-Ocimene C10H16
E, Dimer C20H32

The reaction conditions and yields are reported in Table 3,
We have normalized the yields to obtain exact mass balances; this makes

the yields linearly dependent, and accordingly we have omitted species D .

The remaining species are grouped as cumulative distillation fractions:




A, A+B, A+B+C, and E. Each of these responses represcnts essentially the total
mass fraction distilling above or below a particular temperature. The yiclds
of B originally reported in.tests 1-15 have been deleted, since they were
interpolated values rather than observations (Fuguitt and Hawkins, 1947; Box
and co-workers, 1973),

There are numerous gaps in the data. o-Pinene (A) was reported in experi-
ments 1-16, but was considered negligible in the remaining experiments. Pyronencs
(B) were reported only in experiments 16-31; they proved difficult to isolate
except at small concentrations of a-pinene. Only the dimer fraction (E) war
reported in the experiments with allo-ocimene (D) or dimer (E) as feed. The
simplified reaction scheme proposed by Fuguitt and Hawkins (1947) implies that
a-pinene (A) and dipentene (C) would not be formed in the latter experiments,
but that the other three species would be present,

The first eight experiments were used for parameter estimation according
to Equation (17) with m = 3 by Box and co-workers (1973), and by the present
authors (1976). The full 41 experiments could not be so analyzed because of
their irregular structure; therefore, only rough estimates were obtainable for
several of the reaction parameters. With Equation (8), on the other hand, all

41 experiments can be analyzed,

We postulate the following reaction scheme,




with the following differcntial equations for the concentrations:

A 2
—(kl + kz) ¢A - 2ks QA

at = ko3 ep t k3 d,

dt 1 ¢A

2
at - Ky fa t kg gt Ky = 2k bp+ 2k, 0p

2 2
Gt " ks 9y t kg by -k, o

Here we have assumed equal densities for the reaction mixture and all species.
The ¢i are molar concentrations relative to the mqlar density of pure liquid
a-pinene at the reaction temperature. The resulting initial ¢i values for the
pure reactants are: 1.0 for a-pinene, 1.0 for allo-ocimene, and 0.5 for
dimer. The rate coefficients are represented as Arrhenius functions,

n (k) =6, - (1/T - /1) 6, i=1,...,5

5
In (ky/k_3) = =0)y/Tg + (I/T = 1/Tg) 8y,

In (k4/k_4) = —912/'1‘B + (/T - l/TB) 614

. , ) | . .
with ki values in min ~, T in Kelvins, and a base temperature TB of

478.5 K.
The data and parameters were paired to check the feasibility of the
estimation., This indicated a sufficient amount of data for estimation of all

parameters except o However, the replicate comparisons (u = 18-19,20-21,

21 °

22-23,24-25) involving Y2 all give duplication of Yo3¢ furthermore each of
these comparisons gives a duplication of either Yo OF Y4 With these

results, we find that neither ¢ nor o

can be estimated; indeed, an

32 42

attempt to estimate them was terminated by the linear independence test 4

described above. Thereafter, Op1¢ 032, and O4p Were all fixed at zero, and

the remaining parameters were estimated by minimization of S .




Initial values of the @-paramcters were chosen from the results of ’
Fuguitt and Hawkins (1945, 1947), Box and co-workers (1973), and the present

authors (1976). 1Initial variance estimates oy, Were calculated from repl.- '

——

cate data available in Table 4, and zeros were inserted initially as covarianc.:
- - The model wgs integrated, for each experiment, by the method of Guerti:.
et al (1977) with 6 mesh points. The coefficients in Equation (9) were com-
i puted as described in the Appendix, with first-order sensitivities 3¢ui/3*k 1
computed by the method of Stewart and Sgrensen (1976).
A first minimization, with reaction 5 omitted, converged within 20 iter.-
tions. This gave § = 41.06 with parameter estimates as shown in Table 5.
The confidence intervals show the 0's to be estimated quite precisely. Th:
oij are estimated less precisely, as anticipated from the limited number of
data on several combinations of responses. The deviations of the data from
the fitted model are shown in Table 6,
A second minimization of S was done with the full 5-reaction model.
This calculation converged to a very flat minimum at S = 34.09, with param-
eter estimates as shown in Table 5. The deviations of the data from this
fittedAmodel are also shown in Table 6.
The 5-reaction model is better able to describe the polymer yields from
a-~pinene at short times, as can be seen in Table 6. We can also test the
significance of the added parameter 6_ by use of the confidence intervals.

5

Table 5 gives 85 = ~=11.945 * 0.698, based on Equation (14); this implies the

limits (1 + 0.698) exp(-11.945) for ks with the alternate prior p(ks) = c.

Hence, the 95% confidence interval for ks does not include zero.

On the other hand, Equations (9) and (13) give the following approximate

expression for the 95% confidence region of the 20 fitted parameters of the '

S-reaction model:

=16=




Table 4. Data for Example 2, from Fuguittand Hawkins (1945,1947)
Normalized vields, weight percent
®®
Etft. Feed T, C. tu,min L yul Y2 Y3 Yu4
(n) (A+B) (a+B+C) (E)
\ 1 A 189.5 1230. 1 88.3 ool 96,2 2,2
- 2* A 189.5 1230. 1 88,2 *xx 95.7 1.3
3 A 189.5 3060, 2 76.4 faflald 92.7 2.8
4 A 189.5  4920. 2 64.8 *k ok 88.9 5.8
5 a 189.5 7800. 2 50.3 *Ex 84.7 9.3
6 A 189.5 10680, 2 37.5 ol 82.0 12.0
7 A 189.5 15030. 2 25.9 11 77.1 17.0
8 A 189.5 22620. 2 14.0 bl 73.9 21,0
9 A 204.5 440, 2 86.6 *hx 95.3 .6
10 A 204.5 825, 2 75.0 ol 91.5 1.6
11 A 204.5 1200, 2 66.0 ool 88.8 3.4
12 A 204.5 1500. 2 59.4 falal 86.4 5.1
13 A 204.5 2040. 2 48.9 ool 83.0 8.3
14 A 204.5 3060. 2 32.8 * 77.8 13.8
15 a 204.5 6060. 2 11.5 *hx 70.4 22.5
16 A 189.5 36420. 2 4.5 7.4 70.5 25,7
17 A 204.5 16020. 2 - 3.1 66,2 28.6
18 A 225.0 3000, 1 - 3.0 66.0 28,0
19* A 225,0  3000. 1 - 4.0 66,0 28,0
20 A 245.0 630, 1 - 4.0 65.0 27.0
21* A 245.0 630. 1 ~ 5.0 65.0 27.0
22 A 265.0 12¢0. 1 -~ 7.0 65.0 23.0
) 23% A 265.0 120. 1 -~ 7.0 65.0 24,0
24 A 285.0 30, 1 -~ 11.0 66.0 19.0
25% A 285.0 30. 1 - 9.0 66.0 19.0
26 D 189.5 1020. 1 ~ - - 80.0
- 27 D 189.5 3990. 1 - - - 87.3
28* D 189.5 3990. 1 - - - 87.3
29 D 189.5 6780, 1 - - - 87.5
30 D 189.5 8220. 1 - - - 86.5
) 31 D 189.5 13260. 1 - - - 88.5
‘ 32 D 189.5 14760. 1 - - - 89.8
33 D 204.5  3480. 1 - - - 87.5
34 D 204.5 5700, 1 - - - 86,8
35 E 189.5 8880, 1 - - - 91.9
36* E 189.5 8880. 1l - - - 92.0
37 E 189.5 14340, 1 - - - 89.8
38 E 189.5 23400, 1 - - - 89.7
? 39* E 189.5 23400. 1 - - - 88.5
40 E 204.5 5700, 1 - - - 88.4
. 41 E 204.5 8100, 1 - - - 87.9
*
W Replicate of the preceding test.

s *

KRR

= No value reported.

*
vy is the number of independent tests combined to obtain

Originally reported but not observed; see text.

each observation yui'

e -

—




Table 5. Parameters for a-Pinene Conversion

Estimates* for Estimates* for
Parameter 4-Reaction Model 5-Reaction Model ‘
01 -8,331 * ,024 -8.333 * ,025 '
62 -8,898 * ,029 -8.961 + ,054 1
63 -8.242 * .341 -8.,196 + 325
64 -5.389 * ,081 -5.438 + ,087
65 -11.,945 * .698
86 19814, t+ 428, 19785, + 457,
97 20828, t 474, 20890, + 536.
68 17336, t 4079. 17212, + 4203,
69 10321, * 915, 10322. + 918.
610 19957. * %
611 269, ¢t 83, 279. * 83.
612 -1976. ¢ 64, -1985. * 63,
013 -336. * 950. -259, + 958,
614 -3873, ¢+ 1624, -3781. * 1555,
%11 .696 * 419 .784 492
951 .000 k% .000 *x (
%, <391 * .359 .376 +  ,348
%3 .358 * .412 .426 +  .456
O3, .000 *x .000 **
033 .706 * ,426 .732 L4844
%41 -.248 * ,344 -.294 + ,354
%49 .000 ol .000 e
%43 -.504 * (317 -.493 £ .314
%44 .744 + ,304 .654 + ,282

®
95% highest posterior density intervals calculated from Equation (14).

*

*
Posterior estimates were not obtained for these parameters.
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- Table 6. Final Residuals cui(é) for Example 2.

_ s SRR W ~ gt T o

4-Reaction Model S5-Reaction Model
Expt., €u1 €u2 €u3 €u4 ful eu2 a3 €ua
} u (a) (A+B) (A+B+C) (E) (a) (A+B) (A+B+C) (E) ‘
[
1 ~1,32 - ~-.37 2.00 -1.22 - -.26 1.69
2 -1.42 - -.87 1.10 -1.32 - -.76 .79 :
3 26 - .24 .88 .43 - .43 .45
i 4 .28 - -.15 1.10 .45 - .06 .72 |
5 .38 - -.04 .22 .48 - .12 -.04
6 -1,13 - .70 -.81 -1.12 - .78 -.96 |
7 -.32 - -.26 -.17 ~.43 - -.29 -.18
8 .66 - .89 -1.06 .47 - .74 -.92 ‘
9 .88 - .21 .30 1.00 - .35 ~-.11
10 .10 - -.17 .14 .24 - .04 -.38
11 .31 - -.07 .16 .45 - .15 -.34
12 .27 - -.51 .23 .38 - -.29 -.23
13 -.04 - ~.86 .42 .01 - -.69 .08
14 -1.44 - -1.56 .90 -1,52 - -1.49 .75
15 -.47 - -1.47 .63 -.70 - -1.61 .77
16 .60 .78 .98 -.36 .44 .72 .74 -.14
- 17 - -.12 -.67 .34 - -.07 -.87 .50
‘ 18 - -.81 .51 -.48 - -.76 .38 -.39
19 - .19 .51 -.48 - .24 .38 -.39
20 - -.89 .29 -.56 - -.88 .22 -.47
- 7 21 - .11 .29 -.56 - .13 .22 ~.47
22 - -.54 -3 ~.37 - -.58 -.32 -.28
23 - -.54 -.31 .63 - -.58 -.32 .72
24 - 1.54 .49 -.15 - 1.51 .58 -.20
. 25 - ~-.46 .49 -.15 - ~.49 .58 -.20
26 - - - 1,12 - - - 1.95
27 - - - ~.92 - - - -.61
28 - - - -.92 - - - -.61
- 29 - - - -1.31 - - - -1.16
¥ 30 - - - ~2.37 - - - -2.27
31 - - - -.41 - - - -.42
32 - - - .90 - - - .86
. 33 - - - .67 - - - .72
; 34 - - - -.31 - - - -.40
35 - - - 1.26 - - - 1.17
36 - - - 1.36 - - - 1.27
: 37 - - - .24 - - - .16
b 38 - - - .91 - - - .80
. 39 - - - -.29 - - - -,40
40 - - - .42 - - - .27
41 - - - .51 - - - .35 o




S(y) - 34.09 < x;o(0.0S) = 31.41,

All ¢ values such that S(y) < 65.50 lie within this estimated 95% joi::

~ - ‘ M
confidence region. By this criterion, the model with k5 = 0 1is acceptabhle. ‘
However, as indicated earlier, Equation (14) is more reliable than (13). i 4 1

this, and a study of the residuals, we conclude that the S-reaction modcl i

to be preferred,
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APPENDIX: DERIVATIVES OF S .

The matrices o are real and symmetric; furthermore, S is defined only
u

when these matrices are positive definite. The following derivative relations

then hold: “
- 3 1n |o | i3
N - _ . ; Al
a0 . . (2 5ij)cu yzd (A1)
uij
ij
9 0 . . . .
u 1 ik 23 if kj
= -1 - . A2
3°ukz ¥ (2 6k£)[°u e Yo% 9% ] £ <k (p2)

The relations for second derivatives follow by combination of (Al) and (A2):
- 2
)

in lo ] . .
23 ig2 k . .
e R I IR RS eIt el cie) BENNE I P L
uk2°%uij ]
(A3)
32033
=3(2 -8 )(2-26 )
Y
aoustaouk2 k& st
. . . . 4 ¢ .
[(015 otk + o1t OSk) 02] + le (cls ot ol GSJ) .
u u u u u u u u u u
i it st j if tj t j
+ (aF otl + 06 okJ + 0 (oks a4 ck o>
u u u u u u u u u u 1
L<k, t<s. (a4)

As indicated earlier, if response h is absent from experiment u , the

elements o and ou

uhi 3h are replaced by the constant dummy values § .

hj

Note also that the symmetry of %, has been used to express these deriva-

-~

tives in terms of elements on and below the diagonal.

The derivatives required for Equation (9) are obtained as follows:

35 . s ij 3
dgpm=- D L Lo @-s0 0 g5 tey ey (a3)

b o u 1) ‘<_1 r

2 2

(e . € .) (a6) ‘




- R — " S

ij
2 dc
3°S R u d
3 =7 ) 1 i@-s) =— (e . c.) (A7)
36 aok£ i< ij aoukl acr ui uj
’ 3s . yin lg]  ° 3ol
d g = -iml) /¢ -1 3a
st st u=1l st
- > Boij
-yl 1l - Gi.) Bou €4i Eus (n8)
uij<i J st J
2
22 1 32 1n [0 L2 in |o |
P P LA v v + 1Y 553
st k& t ki u ust ukf
D o
+ 32 -6.) = € . € . (A9)
u i j<i 137 90,6¢%%ky U U3

Equations (a6), (A7), and (A9) evaluated at 00 and % provide the coef-
ficient matrix A of the normal equations., Equations (A5) and (A8) give the
right~hand column vector,

The residuals eui and cuj are expressed as functions of 8 by use

of Equation (l1). The 6-derivative in Equation (A6) is expanded to give:

y 82 ( C - aeui Beuj . BEuiraeui
26 90 tui tuj 36_ a8 30 36
v ) r v x v
2 2
] euj 9 €ui

+ € (A10)

ui 36_36. ' uj 36 _36
r v r v

The second-derivative terms are unimportant if the data are well fitted;
compare Solutions 1 and 2 in Table 3,

If the experiments have different weights w, as in Table 4, then
€ cuj and its derivatives should be multiplied by v, throughout the

development. As usual, the matrix o is defined for experiments of unit

weight.
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