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ABSTRACT

The solutions to a partial differential equation that arises in the

physical sciences are expected to be restricted in nature, since they are

intended to represent some physically significant behavior. In particular,

they can approximate the general continuous function on a compact set K

only if K is "thin", e.g. nowhere dense in The purpose of this

note is to show that this does not hold for all smooth partial differential

equations. Specifically, for any n > 2 there exist partial differential

equations of polynomial type on R whose Co solutions are uniformly

dense in the space C[I] of all continuous functions on the n-cube I.
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SIGNIFICANCE AND EXPLANATION

The solutions to a partial differential equation that arises in the

physical sciences are expected to be restricted in nature, since they are

intended to represent some physically significant behavior. In particular,

they can approximate the general continuous function on a compact set K

only if K is "thin", e.g. nowhere dense in Rn . The purpose of this note

is to show that this does not hold for all smooth partial differential

equations. Specifically, for any n > 2 there exist partial differential

equations of polynomial type on Rn whose C solutions are uniformly

dense in the space C[I] of all continuous functions on the n-cube I.
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THE SOLUTIONS TO A SMOOTH PDE CAN BE DENSE IN C1I]

R. C. Buck

The solutions to a partial differential equation that arises in the physical

sciences are expected to be restricted in nature, since they are intended to

represent some physically significant behavior. In particular, they can approximate

the general continuous function on a compact set K only if K is "thin", e.g.

nowhere dense in Rn . The purpose of this note is to show that this does not hold

for all smooth partial differential equations. Specifically, for any n > 2 there

exist partial differential equations of polynomial type on R whose C' solutions

are uniformly dense in the space C[I] of all continuous functions on the n-cube

I.

Here, I is the set of all x = (xi, x, ... , x) E Rn with 0< x. <1.

The vector exponent a = (al, a2 ' "'" a n ) has integer components a. > 0, and

,= ; the general multinomial, denoted by

n a.
xa X.x = Ii x.

1'1

is said to have (total) degree 1-1.

We also use this notation for partial derivatives, so that

a n 

is one of the derivatives of F of order I .

We prove the following result:

Main Theorem. If n > 2 there are integers k = k(n) and A A (n) and a partial

differential equation on R of order not greater than k, whose C' solu-

tions F(x) are uniformly dense in C[I], the space of all continuous real

valued functions on the n-cube I. The form of the differential equation is

(i) Q(wI, w2 , ... , w )
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is based upon work supported by the National Science Foundation under Grant No.
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where the w i are a listing of all the partial derivatives of F of order

k, and where Q is a nontrivial polynomial of total degree at most

The construction of such a "universal" PDE which we will outline denends upon

a combination of familiar facts, of which the central one is the Kolmogorov solu-

tion of Hilbert's 13th Problem (See 13]). This asserts that every continuous

function F on I can be represented there in the form

2n+1

(2) F = 7 f o g

where the fj are continuous functions of one variable, and the g are sums of

such functions:

(3) g.(x) .(x ) + (x ) + ... + (! N

3 1l j2 2 3 n n

The various proofs of this surprising fact depend on the Baire category

theorem, and are not constructive. It is known however that one cannot in general

hope for all the component functions f. and to be differentiahl , even if

F itself is reasonably smooth (See again [3]).

We introduce the special term smooth Kolmogorov function for a fu7' 'ion F

defined on I that is represented there in the format (2) and (3), where ecch of

the component functions is of class C . As observed above, these for a rroper

subset of CII].

Lemma 1. The clars of smooth Kolmogorov functions are uniforl;, dense i '!I.

This depends on the elementary observation that if gn : A - B and

fn : B -. C, are continuous mappings between compact metric spaces, and if fn

and {gn
} 

converge uniformly on their domains to f and g, respectively, then

fn o gn converges to f o g, uniformly on A.

The proof of the main theorem will be completed by showing that a PDE, of the

form (1), can be constructed whose solutions include all the smooth Kolmogorov

functions. The argument uses two elementary results dealing with polynomials.
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Lemma 2. The collection of polynomials in r indeterminates of total degree at

,r + d

most forms a vector space V(r,d) of dimension i
( r

The second result is the standard theorem on algebraic dependence.

Lemma 3. (i) If N I m and P (u), P 2(u), ... , PN (u) is a collection of poly-

nomials in the indeterminates u = (u u2, ....  um ), then there is a non-

trivial polynomial Q such that

(4) Q(P I P2' " P

(ii) If deg (P) for each i, thenn

(5) deg (Q) N M/N-m)

, Proof :

Set w= Pi (u, u2 ' u... u ), for i 1 1, 2, ... ,.N. The goal is to

eliminate the indeterminates ui, obtaining (4). Choosing an as yet unspecified

form all the multinomials w for ... By Lemma 2, we will have

(6 ) s ( ) N

of these. But,
N .

(7) w = i (u 1  1

which is a polynomial in the u. of total degree at most 7 -t = ,

1 1

belonging to the vector spa'ce V(m, iA). By Lemma 2, the dimension of this space is

t C, + m+

m

Thus, if s(,) t(), the polynomials will be linearly dependent, and there will

exist scalai" c , not al! zero, such that 0 = c w' = c w

Q(w, . , a polynomial of degree at most such that (4) holds. To obtain

-3-



s(A) > t(A), we observe that (6) shows that s(A) = 0(N), while (8) gives

t(A) = 0(Am); since N > m, s(A) > t(A) when A is sufficiently largE.

The explicit estimate given in (5) is easily obtained, since

A(A > t( L)
N-m

a

The proof of the main theorem is now completed by returning to (2) and dif-

ferentiating it repeatedly, up to partial derivatives of total order at most k,

thereby obtaining a large number of equations of the form

a(9) r~ F-- =- P (U , u , .. , urn

where the u. are the functions arising from differentiating the component func-1

tions entering into the Kolmogorov -iat representation of F, and P is a

polynomial.

Consideration of a related case may clarify this (See [1]). Suppose that

(10) G(x,,x2 ) = f(¢(x1 ) + (x2)) = (f o g)(x)

where f, c and y are in C . By differentiation, we obtain

GI, = u u2G1,0 U1 U2

G0, = uI u 3G0,1 1 U3

G = uI us + u4(u)
2

G = u4 u2 u3

etc

where

u1  f'o g , u2  V , u 3

U , = , u 6  1"

etc.

-4-
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In this example, it may be seen that the U. can be eliminated, resulting in a poly-I

nomial relation among the G., namely:

2 2 2 2
(G10) G01 G12 G 10 (G01) G21 (G10 G11 G02 +G G1 1 G2 0  C)

This is a partial differential equation of order 3 and degree 4 satisfied by all the

functions G that can be represented in the format (10) with smooth component

functions f, 0, and p. Note that this PDE does not depend upon f, , or ,

but only upon the specific format displayed in (10).

The procedure in the Kolmogorov case is essentially the same. By differentiating

(2) up to order k, we produce N equations of the form

u1Vu 2, ... u) 1< 1 < k

where the u. are the functions DP. and (Dp f.) o g.i for p = 1, 2, .... k,

j = 1, 2, ... , 2n + 1, i = 1, 2, ... , n, and D is d/dt. Thus,

m = k(2n + 1)(n + 1). By Lemma 2, the number of equations obtained, N, is the

4dimension of V(n,k) minus 1, since we omit the Oth order derivative. Hence,

=k + n 1

n

Moreover, each of the polynomials P has degree at most k + 1, and integral

coefficients. Since N = O(k n ) while n > 2 and m = 0(k), we see that N > m

when k is sufficiently large. Thus, by Lemma 3, there is a polynomial Q with

rational coefficients and of degree less than the integer A given in (5) such

that

Q ....

which depends only upon the integer n and the format given in (2) and (3) and not

upon the specific functions f. and . that appear there. Thus, this partial

differential equation will have as solutions all the smooth Kolmogorov functions of

n variables on I. The main theorem follows.

i 'W_W+5iI



Explicit values of k and L can be found for any n .2. However, it is not

likely that anyone will wish to exhibit Q itself, since the order and degree for

low dimensions n are so large. Interest in this theorem lies in the fact that

such "universal" differential equations exist, and that they are themselves smooth

(of polynomial type) and that it is the C solutions of these equations that have

the approximation property.

For the record, we record that if n = 2, k = 28, N = 434, m = 420; if n = I0,

k = 4, N = 1000, m = 924; that if n = 32, k = 3, N = 6544, m = 6435. All of the

upper bound estimates for A are very large.

There is no reason to believe that "universal" differential equations of much

lower order, degree, and dimension may not exist. However, the present line of

argument does not yield any PDE of order 2. It would be of interest to show that

no second order partial differential equation of polynomial type in n variables

can have the approximation property. It is very plausible that this is true for

polynomial equations in one variable, of any order.

The restriction to equations of polynomial type may be an essential feature of

the example given in this paper. In subsequent discussions, Professors Crandall

and Turner, (21, have shown that it is relatively easy to construct ODEs of the

form Q(u',u") = 0 with solution sets that are uniformly dense on intervals, and

with Q of class C . These are constructed by careful selection of the desired

solution sets S in advance, and then construction of the function Q so that it

vanishes on a countable family of curves yu where

Yu(t) = (u'(t),u"(t)), for t c I and u E S0 c S

This of course forces S to be a subset of the solutions of Q(u',u") = 0. In

particular, such a construction of S is possible for any C functio Q with

compact support.
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